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Abstract: This paper presents a data-driven structural health monitoring (SHM) method by the use of
so-called reduced-order models relying on an offline training/online use for unidirectional fiber and
matrix failure detection in a 3D woven composite plate. During the offline phase (or learning) a dataset
of possible damage localization, fiber and matrix failure ratios is generated through high-fidelity
simulations (ABAQUS software). Then, a reduced model in a lower-dimensional approximation
subspace based on the so-called sparse proper generalized decomposition (sPGD) is constructed. The
parametrized approach of the sPGD method reduces the computational burden associated with a
high-fidelity solver and allows a faster evaluation of all possible failure configurations. However,
during the testing phase, it turns out that classical sPGD fails to capture the influence of the damage
localization on the solution. To alleviate the just-referred difficulties, the present work proposes an
adaptive sPGD. First, a change of variable is carried out to place all the damage areas on the same
reference region, where an adapted interpolation can be done. During the online use, an optimization
algorithm is employed with numerical experiments to evaluate the damage localization and damage
ratio which allow us to define the health state of the structure.

Keywords: structural health monitoring; model order reduction; proper generalized decomposition

1. Introduction

In aerospace engineering, structural health monitoring (SHM) represents a timely
approach to evaluate in real time the integrity and safety of airplane components [1]. Based
on this, SHM aims to gather insightful data from measured responses over time to identify
in real time any unusual change in the structure behavior. Indeed, future aircraft will
need to meet better standards for safety, dependability, supportability and lifespan. The
application of multifunctional materials (such as composites) and technologies in essential
aircraft structural components set strict criteria for the strength and structural integrity.

Advanced composite materials and more specifically three-dimensional (3D) woven
composites have been widely used in different domains, including aerospace, civil engi-
neering and other industries due to the benefits of a light weight, high ductility, corrosion
resistance, and thermal resistance [2]. However, due to their complexity, they are suscep-
tible to several types of structural damage, such as fiber breakage, matrix cracking and
delamination [3]. At their onset, these damages are tiny and hardly noticeable to visual
examinations. However, if left unrepaired, they might also result in catastrophes which,
especially when airplanes are involved, result in a significant loss of human lives and
financial losses. Therefore, it is important to monitor these structures.

More precisely, structural health monitoring (SHM) refers to an automated monitoring
procedure that includes many new and advanced sensors and data processing techniques
to assess the state of damage of a given structure of interest [4]. In the aerospace industry,
monitoring systems are needed to evaluate the state of aircraft parts either during missions
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(diagnosis) or predicting their future behavior (prognosis). Different levels contribute to
SHM: the first level is to detect if the structure is damaged and the type of damage; the
second consists in locating the region where the structure is damaged and quantifying the
size and severity of the damage.

SHM is a combination of a sensing system in the operational environment, a data
acquisition system, data processing techniques and a damage detection procedure. The
placement of sensors on the structure is fixed during design and manufacturing and
defines how the monitoring will be accomplished. Data acquisition is performed by
embedded technology connected to sensors to collect quantities of interest (e.g., strain,
displacement). Data processing is combined with the damage detection algorithm. The
aim is to interpret the data from the monitored structure to detect the onset of damage and
assess its characteristics in real time to inform predicting maintenance procedures.

Depending upon the type of data processing, two approaches for damage detection
have been developed: a “data-based” approach and a “model-based” approach. Both use
an offline/online methodology. Actually, it offers an effective technique to carry out an
SHM procedure.

Model-based approaches rely on the updating of a numerical model of the moni-
tored structure. Inverse and optimization methods such as inverse finite element method
(iFEM) [5], Kalman filter [6], optimization algorithms [7] or model correction and enrich-
ment [8] are used to determine the structure’s health state through updated parameters.
However, the inverse problem lead to costly calculations, which is not relevant for real-
time SHM applications. Moreover, uncertainties and parameters variation may appear.
Therefore, the data-based approach is becoming increasingly common.

The data-based approach is built entirely upon experimental data, but the main
challenge is to construct a relevant offline database [9]. In most cases, it is difficult to
obtain sufficient experimental data for a physical structure. Generally, experiments are
limited and not available for a large number of test cases and possible damage conditions
of the structure. To address this issue, in our approach, model-based and data-driven
approaches are merged by incorporating a physics-based model commonly based upon
the development of a finite element (FE) model of the considered structure to simulate a
large number of damage configurations and to create an efficient dataset. They also enable
access to properties and mechanical phenomena that are out of reach in experiments.

A powerful numerical technique to analyze the behavior of a 3D woven composite
structure is the finite element method. It allows the prediction of the behavior of such
structures and their collapse through the implementation of failure criteria. The FE method
can be used to simulate the macroscale behavior of the structure under failure according to
the different types of failure modes.

Several failure criteria models have been developed to investigate the effects of damage
on the macroscale in 3D woven composites [10]. To study the aspects of stiffness reduction
influencing material behavior, the Hashin criteria model is able to evaluate the influence
of damaged modes on the material stiffness. They are associated with different damage
modes using a distinct failure index [11] for fiber and matrix failure. The damage model
must be able to simulate different types of damage at different locations so that the SHM
system can perform damage detection and assessment.

However, one of the remaining challenges is the lack of predictive physical models
to generate numerical solutions. These models are complex and must be solved using
discretization techniques, such as, for example, the FE method. The construction of the
offline dataset is therefore computationally expensive and makes their use incompatible
with the requirements of a real-time response. Indeed, the offline database must be usable
with a reduced computational time to be combined with a machine learning algorithm.

For this purpose, model order reduction (MOR) techniques for parametrized systems,
such as the sparse proper generalized (sPGD) method [12], offer new opportunities to
generate a consistent database that should be used in the offline training. The sPGD
method provides a powerful tool to construct parametric solutions from a number of high-
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fidelity simulations according to a state-of-the-art design of experiments, while attempting
to minimize the size of the sampling as much as possible. The sPGD method deals with
the curse of dimensionality by the use of the concept of separate representation. Thus, an
approximated function is expressed as a tensor product of separate terms resolved by a
nonlinear solver. Using the approximated function, it is possible to evaluate any parameter
value in the training intervals with a reasonable computational time. This method is already
used for different applications, see [13,14].

However, when the chosen parameters are associated with the localization of the
damage to the structure, the sPGD method is not accurate enough to provide valuable
predictions. This is because the solutions are strongly influenced by the localization of
the damage. To overcome this difficulty, we propose an adaptive sPGD using a change of
variable in the parameters’ definition and an adapted interpolation procedure. Figure 1
presents the proposed SHM methodology relying on an offline/online strategy. In the
offline phase, by the use of a consistent DoE and an adaptive sPGD method, a parametric
solution of unidirectional fiber and matrix failure ratios and their localization on the
structure is expressed. Then, in the online use, the parametric solution is combined with
optimization methods to find the model parameters from measured data through a sensor
network. By defining damage-related parameters in the dataset, such as fiber and matrix
failure ratios and damage localization, the health state of the structure is determined.

Figure 1. Offline/online-based SHM strategy.

The paper is organized as follows, Section 2 first details the construction of a damaged
3D woven composite model of an FOD panel using failure criteria and the FE method and
then the construction of the reduced-order physics-based model using the classical sPGD
method. In Section 3, the adaptive sPGD is presented using a change of variable and the
adapted interpolation procedure. Last, Section 3.4 presents results of this approach on
our case study. In Section 4, the inverse problem is defined and solved. Conclusion and
remarks are finally discussed in Section 5.

2. Materials and Methods

Aerospace structures have employed 3D woven composites in a variety of applications,
such as fan blades in the CFM International LEAP (Leading Edge Aviation Propulsion)
engine (SAFRAN and GE) [15].
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The fan is the first rotating element in contact with the air at the entrance of a turbojet
engine. It consists of a number of blades arranged on a hub and rotating at the same speed
as the rotor. Aircraft fan blades are manufactured using 3D fiber reinforced composites [16].
To demonstrate our methodology based on an offline/online strategy, we used numerical
simulations of damaged blades to construct an offline database. The literature on numerical
modeling of 3D woven composites reveals that several noteworthy investigations have
been conducted in the past 20 years [17].

The foreign object damage panel (FOD panel) used in our case study is a representative
substructure of the fan blade chord of dimensions 800× 350× 50 mm3 as shown in Figure 2
and it is used in a V&V (verification and validation) process by the engine OEM (original
equipment manufacturer) to evaluate the designed and manufactured hybrid material
regarding bird strike and its induced damage. The FOD panel is considered in the European
project MORPHO (H2020 EU Project) [18].

Figure 2. Schematic diagram of the geometry of the fan blade preform considered in the H2020
EU project. The 3D woven composite FOD panel is the structure shown in grey. The titanium leading
edge (not considered in this study) is the orange part.

2.1. Numerical Model

Three-dimensional woven composites exhibit a hierarchical structure. Three different
scales can be distinguished by the representation of the structure of 3D woven composites.
The microscale is the finest scale relevant to a continuum model; it describes the yarns
as fiber filaments embedded in a matrix material. The mesoscale describes the woven
architecture of the yarns, and the macroscale describes the material at the component level.
The macroscale behavior of the material is influenced by the characteristics of the micro-
and mesoscales.

In solid mechanics, the finite element method (FE) is usually employed to model
and solve mechanical problems. The mechanics of the continuous model is represented
by the subdivision into a number of elements whose behavior is represented by a finite
number of parameters. For the sake of simplicity, the fan blade preform was assumed to be
represented by an orthotropic material at the macroscale. The composite was assumed to
be homogeneous and modeled as an elastic continuum.

The structural model of the fan blades used was based on the application of the
linearized Lagrange equations. For the sake of simplicity and to focus on methodologies,
we restricted our analysis to the static case.

Consider a domain Ω ⊂ R3; the global equilibrium equation reads:

KU = F, (1)

where F and U are, respectively, the vectors of nodal forces and displacements in three
dimensions.

The solution of the global problem presented in Equation (1) is obtained by assembling
the elements in the FE model, following the rules of the usual FE method.
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The global force vector F results from the assembly of the so-called elementary force
vectors. The elasticity matrix K is specific to the properties of the considered material and
results from the assembly of all element stiffness matrices.

In intrinsic notation, the elasticity tensor establishes a multilinear application between
the stress and strain tensors. For anisotropic materials, Hooke’s law can be written as:

σ = Hε, (2)

where σ and ε are the macrostress and macrostrain tensors, respectively, expressed in a
vector form and H is the macroscale orthotropic elastic matrix that reads:

H =



1−νyzνzy
EyEz∆

νyx+νzxνyz
EyEz∆

νzx+νyxνzy
EyEz∆ 0 0 0

νxy+νxzνzy
EzEx∆

1−νzxνxz
EzEx∆

νzy+νzxνxy
EzEx∆ 0 0 0

νxz+νxyνyz
ExEy∆

νyz+νxzνyx
ExEy∆

1−νxyνyx
ExEy∆ 0 0 0

0 0 0 Gxy 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gyz


, (3)

∆ =
1− νxyνyx − νyzνzy − νzxνxz − 2νxyνyzνzx

ExEyEz
. (4)

The engineering constants, the moduli Ex, Ey and Ez, the Poisson ratios νxy, νxy,
νxz and νyz and the shear moduli Gxy, Gxz and Gyz express the linear elasticity in an
orthotropic material.

2.2. Damage Mechanics of Composite Structures

In the present study, a constitutive model based on continuum damage theory was
employed to perform quasi-static damage simulations of the 3D woven composite fan
blade. This choice was made for modeling the impact of the damage to the structure by
locally decreasing the stiffness.

Fiber and matrix failures are the most frequent 3D woven composite failures, most of
which take place internally and are hardly perceptible. They should be detected early to
prevent catastrophic structural failures since they can significantly reduce the performance
of composite materials.

By considering that the damage is already initiated, the existence of microcracks
reduces the ability of the damaged structure to support loads. Consider a region, where
an effective section A0 is reduced to AD because of the presence of numerous microcracks.
The undamaged region is then subjected to higher stresses. This gives rise to the idea of
effective stress, which is the stress that applies in the undamaged region. The nominal
stress σ and the effective stress σ

′
are related by a damage variable D that quantifies the

area reduction.
σ
′
=

1
1− D

σ, with D =
AD
A0

. (5)

According to the 3D formulation, in a matrix form, the effective stress in terms of nominal
stress reads:

σ′ = Dσ, with D = W−1, (6)
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where W is the damage factor matrix given by:

W =



(1− D11) 0 0 0 0 0
0 (1− D22) 0 0 0 0
0 0 (1− D33) 0 0 0

0 0 0 (1− D44) 0 0

0 0 0 0 (1− D55) 0

0 0 0 0 0 (1− D66)


. (7)

For 3D woven composites, the damage variables are based on Hashin’s theory. The
damage variables D11, D22 and D33 represent the damage modes of the fiber, matrix and
shear in the fiber direction of a fiber strand while D44 and D66 represent the combination
of fiber breakage and transverse matrix cracking (out-of-plane); finally, D55 represents
transverse matrix fractures (in-plane and out-of-plane). When the material is damaged, the
stress in Equation (2) is updated based on the damage stiffness matrix and the strain εd.
The constitutive equation reads:

σd = Hdεd, (8)

where σd and εd are the damaged stress and strain tensors, respectively, expressed in a
vector form. Hd is the damaged elasticity matrix as follows:

Hd = HW. (9)

2.3. Model Order Reduction Using Sparse Proper Generalized Decomposition

Model order reduction (MOR) has gained popularity in recent years, because of its
advantage in significantly reducing the computational cost while minimizing a loss of
accuracy. The objective is to define a simplified representation of the evolution of physical
systems. In the context of the FE method, it corresponds to the use of a very reduced
number of degrees of freedom.

2.3.1. Parametric High-Fidelity Solution

A parametric solution depends on ND features (parameters) within a parametric space
D that could represent geometric parameters, material parameters or any other parameter
involved in a generic model.

f (p1, ..., pND ) : D ⊂ RND → R. (10)

Computing parametric solutions based on surrogates (metamodels or response sur-
faces) requires defining a design of experiments (DoE) to work with. Generally, the number
of points for the sampling grows exponentially with the number of dimensions ND . A
method commonly used to achieve a reasonably accurate random distribution covering
D while reducing the number of samples is the Latin hypercube sampling (LHS). Then,
if we consider the parameters p1, p2, ..., pND involved in the vector p ∈ D, the sampling
that constitutes the DoE results in the parameters choice pb, where b = 1, ...B, and B is the
number of computed solutions trying to cover the parametric space as much as possible.
Then, for each set of parameters, a high-fidelity simulation is computed.

In the present case study, to demonstrate our methodology, four parameters ND = 4
related to damage were considered. The aim of the SHM framework consists of the
detection, localization and characterization of damage. For that purpose, we considered
the damage model presented in Section 2.2 combined with the FE solver to emulate a
damage on the blade. That damage led to a stiffness reduction at a certain location of the
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structure. Two parameters were chosen to demonstrate the proposed methodology and
characterize the damage severity, D11 and D22, respectively. In our structure, the FOD
panel was subjected to a longitudinal tensile force. The most likely initial failure in this
configuration is a fiber failure and it can be followed by other failure mechanics such as a
matrix failure. Finally, in order to assess the localization of the damage on the structure,
two other parameters characterized the damage location, x̄ and ȳ. The size of the damage
(L̄× l̄) was constant in our study. That is, once the FE model was created, the damage
variables became parametric.

A single instance of the data was comprised of a set of elements solution of the FE
model e = 1, ...E E being the total quantity of collected data at elements, represented by
the strain in direction x, εxx such as f (D11b , D22b , x̄b, ȳb) = [ε1

xxb
, ε2

xxb
, ..., εE

xxb
] ∈ RB×E The

model was trained with B = 250 samples according to the Latin hybercube sampling.

2.3.2. Sparse Proper Generalized Decomposition

The sparse proper generalized decomposition (sPGD) aims at approximating such
a function by a sum of products of one-dimensional functions. This has an advantage,
since it allows one to reduce a high-dimensional problem into a series of several one-
dimensional problems computed consecutively until convergence. In our work, the function
was constructed using data collected at the chosen elements of the FE model that were
represented by their two coordinates x and y as the computation proceeded. The dataset
was split into two parts, the first part to train the model and a second part to test it.

Considering an objective function f in the parametric space D that we try to approxi-
mate, the separate representation of the approximated solution is written as:

f (p1, ..., pND ) ≈ f̃ (p1, ..., pND ) =
M

∑
m=1

Um

ND

∏
d=1

ψd
m(pd) ∈ RE, (11)

where f̃ is the approximation of f , Um is a column vector which has E rows, M denotes
the number of PGD modes and ψd

m is the one-dimensional function for modes m and
dimension d.

The precise form of the functional ψd
m(pd) was obtained by first projecting it in a

standard approximation basis and by employing a greedy algorithm. That is, once the
approximation to order M− 1 was completed, we searched mode M as follows:

f (p1, ..., pND ) ≈ f̃ (p1, ..., pND ) =
M−1

∑
m=1

Um

ND

∏
d=1

ψd
m(pd) + UM

ND

∏
d=1

ψd
M(pd), (12)

Functions ψd
m(pd) with m = 1, ..., M were expressed from a standard approximation basis

NDm and coefficients ad
m:

ψd
m(pd) =

N f

∑
i=1

Nd
i,mad

i,m =
(

Nd
m

)T
ad

m (13)

where N f represents the number of degrees of freedom of the one-dimensional functions
and Nm is the vector containing the shape functions.

To construct the one-dimensional functions ψd
m(pd), several options can be employed,

such as polynomial basis functions, piecewise linear shape function, splines, kriging, etc.
To demonstrate the methodology, Legendre polynomial basis functions were chosen.

Finally, the approximation error minimization was:

f̃ (p1, ..., pND ) = arg min
f ∗
|| f − f ∗||22 = arg min

f ∗

B

∑
b=1
|| f (pb)− f ∗(pb)||22. (14)
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2.3.3. Numerical Simulations

The FE analysis was performed at the macroscale by using Abaqus software, to
determine macrostrains in the first direction εxx due to applied load and damage modes.
The structure was subjected to a tensile force F = 1000 N in the x direction on one of its
sides while the displacement vanished on the opposite side. The mesh was comprised of
129 thousand elements of C3D8R (8-node hexahedra with reduced integration) elements
that consisted of 175 thousand nodes. Figure 3 shows the finite element model considered
in the numerical simulations.

Figure 3. Finite element (FE) model of the structure and boundaries conditions.

The considered material properties of the 3D woven composite preform are given in
Table 1. The intervals related to each parameter are given in Table 2 with L̄ = 40 mm and
l̄ = 20 mm.

Table 1. Material properties.

Property and Symbol Value

Elastic modulus Ex 82.46 (GPa)
Elastic modulus Ey 37.77 (GPa)
Elastic modulus Ez 5.31 (GPa)
Poisson’s ratio νxy 0.17
Poisson’s ratio νyz 0.32
Poisson’s ratio νxz, 0.31
Shear modulus Gxy 6.03 (GPa)
Shear modulus Gyz 2.24 (GPa)
Shear modulus Gxz 2.27 (GPa)

Table 2. Parametric space.

Parameters Minimum Maximum

Fiber damage amplitude D11 0 0.5
Matrix damage amplitude D22 0 0.5

Damage position x̄ 0 L− L̄
Damage position ȳ 0 l − l̄

The FE model was applied using the high-fidelity solver in Abaqus software for
B = 250 damaged configurations according to the DoE. To demonstrate the ability of the
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method to reconstruct different types of damage on the structure, we chose to show six
simulations in the test database. For each of them, the damage was observed in the area
with the maximum strain. Figure 4 shows the εxx-component of the strain on the top-view
xy-plane for the damage configurations reported in Table 3.

Figure 4. εxx-component corresponding to damage configurations in Table 3.

Table 3. Input parameters corresponding to strain εxx shown in Figure 4.

Parameters f230 f232 f235 f239 f242 f249

D11 (-) 0.3783 0.4922 0.2523 0.1293 0.3467 0.1011
D22 (-) 0.4576 0.4942 0.1269 0.0439 0.1383 0.3097
x̄ (mm) 671.97 117.03 570.88 64, 20 568.80 604.9
ȳ (mm) 270.95 89.92 228.11 153.84 158.84 195.10

2.3.4. Reduced Basis Approximation

We applied the sPGD methodology presented in Section 2.3.2 using a classical poly-
nomial basis. M = 100 modes were used, and the training dataset was comprised of the
first 230 high-fidelity solutions and the test dataset of the last 20 high-fidelity solutions. To
train the model, we used 1728 elements of the 2D model presented in Figure 4. Figure 5
compares the reference solution f and the values predicted using the sPGD regression
using a polynomial basis f̃ . The blue and red points represent the training and test dataset,
respectively, in the parametric domain.

The perfect prediction is indicated by the diagonal line. We can notice that the re-
gression failed to predict the right values of the strain εxx. Very certainly the regression
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underperformed due to the solution localization, which was difficult to approximate by
considering a usual polynomial approximation.

Figure 5. Predicted values versus real values using sPGD method.

3. Adaptive Sparse Proper Generalized Decomposition
3.1. Motivation

We observed that the sPGD model was not able to approximate the parametric solution
when damage was located in different areas along the surface of the structure. To ensure
accurate results, the proposed approach applied to the initial dataset (DoE) a change of
variable. With this technique, it was possible to center the coordinate system around
the damage location, making the interpolation easier to obtain. For all the damaged
configurations of the DoE, the parameters related to the damage localization x̄ and ȳ were
subtracted from their coordinates as x̄− x, ȳ− y. The result of the change of variable for the
damage configurations proposed in Tables 3 and 4 is shown in Figure 6. All the damages
were centered in the middle of the FOD panel surface.

Figure 6. Centering damages prior to applying interpolation.

The sPGD method represents a powerful tool to approximate parametric solutions,
but functions ψd

m(pd) cannot be approximated using the classical polynomial basis when
the involved parameters induce a solution localization, as is the case for the parameters
defining the location of the damaged area. Thus, a valuable route to enhance accuracy
consists in approximating the associated functions related to the damage localization using
a piecewise cubic interpolation. Polynomials are too smooth (C∞) and tend to grow very
quickly when approaching the border of the domain (except for the constant polynomial).
The parameter functions in this case need to capture a localized perturbation in the center
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of the domain and be close to a constant near the borders. Using piecewise cubic functions
is a good compromise, because it allows the representation of localized behaviors.

3.2. Modified Dataset Construction

A change of variables was applied to center functions involved in the damage location:
x̄ was replaced by x̄− x and ȳ was replaced by ȳ− y.

Consider a new function that we are trying to approximate that depends on differ-
ent dimensions in the new parameter space D∗(D11b , D22b , (x̄− x)b, (ȳ− y)b, S) ⊂ R4 ×N,
where S is the element id of the considered mesh in Section 2.3.4. The sampling presented in
Section 2.3 was used. The vector output was expressed as f (D11b , D22b , (x̄− x)b, (ȳ− y)b, S)
= [ε1

xx1
, ..., εE

xx1
, ε1

xx2
, ..., εE

xx2
, ..., εE

xxB
] ∈ R(B×E)×1 . The first four functions were approxi-

mated using piecewise functions, while the functions involving element ids were functions
of a discrete variable. Figure 7 presents the adaptive sPGD methodology. In the first part,
high-fidelity simulations were computed using the DoE, then centered and approximated
as a function using a greedy algorithm and a piecewise cubic approximation basis.

Figure 7. Adaptive sPGD methodology.

3.3. Regression Using Piecewise Cubic Functions

We sought to approximate ψd
m(pd) in the new parameter space D∗, defined by N f

piecewise cubic functions. For that, we considered a piecewise cubic function Nd
i,m(pd) ∈ C2

for each i = 0, 1..., N f − 1.

ψd
m(pd) =

N f

∑
i=1

Nd
i,mad

i,m =
(

Nd
m

)T
ad

m. (15)

In our work, the number of functions N f was a hyperparameter of the problem and
could be adjusted to obtain the best compromise between underfitting and overfitting,
through means such as a cross-validation. Figure 8 shows an example of the piecewise
cubic basis functions for N f = 10 functions in the interval [0, 1000].

Then, using these regressions, the sPGD method presented in Section 2.3.2 was imple-
mented as previously explained. Equation (12) was computed using a greedy approximation.

3.4. Results

The result obtained by the adaptive sPGD is presented in Figure 9. The blue and
red points represent the training and test datasets, respectively, in the parametric domain.
We observed that the improved method provided more accurate predictions of εxx than
the classical sPGD results shown in Figure 5. The adaptive sPGD method allowed us to
approximate the parametric solution which contained localized solutions. The precision
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of the learning stage was essential because it was then used in the online stage. Figure 10
shows a comparison between real values presented in Figure 4 and predicted values using
the adaptive sPGD of the εxx-component of the strain on the top view xy.

Figure 8. Piecewise cubic basis functions with N f = 10.

Figure 9. Predicted values versus real values using adaptive sPGD.

The relative errors between the classical sPGD method and the adaptive sPGD in the
test dataset are compared in Table 4. Each method’s error in the test dataset was determined
as follows:

Err =
‖~fBtest −

~̃fBtest‖2

‖~fBtest‖2

. (16)

where ~fBtest is the reference solution evaluated on the test dataset Btest = 20 and ~̃fBtest is the
approximate solution.
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Figure 10. Comparison between real and predicted exx-component corresponding to the damage
configurations in Table 3.

Table 4. Relative errors obtained by the sPGD and adaptive sPGD methods.

Methods Relative Errors

sPGD–polynomial basis functions 0.0288
Adaptive sPGD–piecewise cubic functions 0.005

We observed that by choosing an adequate approximation basis that fitted each one-
dimensional function combined with a change of variable, the adaptive sPGD method had
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a lower approximation error compared to the traditional sPGD method with a classical
polynomial basis.

4. Online Parameter Estimation

In structural health monitoring settings, the problem of structural parameter estima-
tion from measurements collected by only a few sensors is a well-known challenge. By
using the offline parametric database proposed in Section 2, the objective was to solve an
inverse problem. An inverse problem describes how knowledge about a parameterized
physical system can be obtained from experimental data, that is, the relationships between
model parameters and data. For that purpose and for the sake of simplicity, we assumed
that the experimental data were computed numerically and collected in a set of points;
the sensor locations are shown in Figure 11 in orange and correspond to some elements
ek, with k the sensor set. All measured data were stored in a scalar form in the vector f M.
Thus, the optimization problem was:

(p1, ..., pND )M = arg min
k

∑
s=1

∣∣∣ f̃s(p1, ..., pND )− f M
s

∣∣∣2, (17)

where (p1, ..., pND )M are the estimated parameters and f̃s is the approximated function
chosen at the sensors’ location.

Figure 11. Sensors’ location.

To solve the minimization problem (17), the Nelder–Mead simplex method was em-
ployed [19]. The Nelder–Mead method is a common numerical method to find the min-
imum/maximum of a multidimensional objective function. The algorithm used was
provided by the Python optimization library SciPy [20]. Parameters related to the damage
mode were initialized randomly from a uniform distribution while the parameters related
to the damage localization were initialized by the coordinates of the element ekmax , with the
highest strain value εxx in the measurements.

The estimated parameters from the minimization problem corresponding to the dam-
age configurations in Figure 4 are presented in Table 5. By the use of the parametric
approximation and the optimization algorithm, we observed that the estimated parame-
ters were broadly in line with the input parameters, which showed the robustness of the
adaptive sPGD.

Table 5. Estimated parameters corresponding to the strain Exx shown in Figure 12.

Parameters f M
230 f M

232 f M
235 f M

239 f M
242 f M

249

D11 (-) 0.3872 0.4840 0.2410 0.1305 0.3464 0.1085
D22 (-) 0.3450 0.4331 0.1100 0.0325 0.1586 0.2005
x̄ (mm) 678.73 115.15 560.88 64.380 563.46 610.47
ȳ (mm) 271.70 85.02 228.34 154.56 159.08 196.03
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Figure 12. Comparison between real and estimated εxx-components corresponding to the damage
configurations in Table 5.
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Our approach made it possible to localize the damage on a structure by a good
estimation of the parameters x̄ and ȳ. Both parameters had a strong influence on the solution
since we had to adapt the classical approach to successfully capture these dependencies.

Moreover, we highlighted that the damage parameter D11 had a stronger influence
on solutions than D22. Indeed, solutions were reconstructed correctly with the estimated
parameters, even if D22 was not accurate enough. Several reasons can be discussed, for
example, to only observe εxx. It would be then necessary to also learn εyy and to place
sensors in the y directions. However, the model would be harder to learn and the structure
would be further complexified.

5. Conclusions

This work proposed a structural health monitoring method relaying an offline/online
strategy. To overcome the lack of experimental data, model-based approach and data-
driven approaches were combined to create an offline database of a damaged FOD panel
by the use of a physics-based numerical model. The dataset consisted of the most probable
3D woven composite failures when the FOD panel was subject to a longitudinal tension: a
fiber failure and a matrix failure. Moreover, different locations of the damage were taken
into account.

To alleviate the computational cost of the numerical model and the interpolation
difficulties related to localized solutions, an adaptive sparse proper generalized was pro-
posed that allowed us to evaluate the influence of the parameters faster without the need
to perform simulations. Thus, once the parametric space was created, damages became
parametric, making it possible to evaluate them in real time. The reference solution was
approximate using the concept of separate representation, which dealt with the curse of
dimensionality. Then, during an online phase, numerical sensor’s measurements from the
FOD panel to be diagnosed were generated and combined with the parametric approxi-
mation and an optimization algorithm to define the health state of the structure from a
parameter estimation.

The proposed method allowed us to evaluate the influence of many parameters in
the strain response of the structure with a reduced computational time and provided
a relevant damage detection of the structure. This approach could be exploited using
experimental data as soon as the numerical model is developed. Despite the proposal
to improve the traditional sPGD method using a change of variable and an adequate
approximation basis, another interpolation procedure could be exploited to handle the
difficulties of localized solutions.
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