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Abstract
The problem of computing a minimum set of vertices intersecting a finite set of forbidden minors in a
given graph is a fundamental graph problem in the area of kernelization with numerous well-studied
special cases.

A major breakthrough in this line of research was made by Fomin et al. [FOCS 2012], who
showed that the ρ-Treewidth Modulator problem (delete minimum number of vertices to ensure
that treewidth is at most ρ) has a polynomial kernel of size kg(ρ) for some function g. A second
standout result in this line is that of Giannapoulou et al. [ACM TALG 2017], who obtained an
f(η)kO(1)-size kernel (for some function f) for the η-Treedepth Modulator problem (delete fewest
number of vertices to make treedepth at most η) and showed that some dependence of the exponent
of k on ρ in the result of Fomin et al. for the ρ-Treewidth Modulator problem is unavoidable under
reasonable complexity hypotheses.

In this work, we provide an approximate interpolation between these two results by giving, for
every ϵ > 0, a (1 + ϵ)-approximate kernel of size f ′(η, ρ, 1/ε) · kg′(ρ) (for some functions f ′ and g′)
for the problem of deciding whether k vertices can be deleted from a given graph to obtain a graph
that has elimination distance at most η to the class of graphs that have treewidth at most ρ.

Graphs of treedepth η are precisely the graphs with elimination distance at most η − 1 to the
graphs of treewidth 0 and graphs of treewidth ρ are simply graphs with elimination distance 0 to
graphs of treewidth ρ. Consequently, our result “approximately” interpolates between these two
major results in this active line of research.
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1 Introduction

Polynomial-time preprocessing is one of the widely used methods to tackle NP-hardness
in practice, and the area of kernelization has been extremely successful in laying down a
mathematical framework for the design and rigorous analysis of preprocessing algorithms
for decision problems. The central notion in this area is that of a kernelization algorithm
(whose output is often called a kernel), which is a preprocessing algorithm that runs in
polynomial time and transforms a “large” instance of a decision problem into a significantly
smaller, but equivalent instance. Over the last decade, the area of kernelization has seen the
development of a wide range of tools to design preprocessing algorithms and lower bounds
techniques. The reader may find an introduction to the field in [16, 18, 6, 8]. An “efficient

© Akanksha Agrawal and M. S. Ramanujan;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 36; pp. 36:1–36:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2023.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


36:2 Approximately Interpolating Between Polynomial Kernels

preprocessing algorithm” in this setting is referred to as a polynomial kernelization and is
simply a kernelization algorithm whose output has size bounded polynomially in a parameter
of the input. The central classification task in the area of kernelization is to identify NP-hard
problems and associated parameters for which polynomial kernels exist.

One of the most intensively investigated problems in the literature on kernelization is the
F-Deletion problem and its special cases, which are well-studied NP-complete problems
in their own right. In this problem, F is a fixed finite family of graphs and one is given
a graph G and an integer k as input. The objective is to determine whether at most k

vertices can be deleted from G so that the resulting graph is F -minor free (does not contain
a minor isomorphic to a graph in F). Well-studied special cases of this problem include
Vertex Cover (F = {K2}), Feedback Vertex Set (F = {K3}), Planarization
(F = {K3,3, K5}) [21], Diamond Hitting Set (F = {θ3}) [9], Pathwidth One Vertex
Deletion (F = {K3, T2}) [22], and θc-Deletion [14, 10].

A common feature shared by many such well explored special cases of this problem is that
F contains at least one planar graph. Motivated by this, Fomin et al. [11] in an influential
work, investigated this restriction of the problem (when the family F contains at least one
planar graph) and demonstrated the existence of a polynomial kernel for every such F . This
particular variant of F-Deletion is known in the literature as the Planar F-Deletion
problem. More precisely, Fomin et al. showed that for every such family F , there is a
function g depending only on F such that Planar F-Deletion has a polynomial kernel of
size bounded by kg(F). This raised the question of designing a uniformly-polynomial kernel,
i.e., a kernel of size at most f(F) · kc for some universal constant c that does not depend
on F . Subsequently, Giannopoulou [12] addressed this question and proved that: (i) even
when the F-minor free graphs under consideration are the graphs of treewidth at most a
constant ρ, one does not expect a uniformly-polynomial kernel for Planar F-Deletion
(this problem is called ρ-Treewidth Modulator) unless NP ⊆ co-NP. ), and (ii) if the
F-minor free graphs correspond to the class of graphs of treedepth at most some constant
η (i.e., for the η-Treedepth Modulator problem), then there is indeed a kernel of size
f(η) · kc for some constant c independent of η, i.e., there is a uniformly-polynomial kernel.
In fact, they obtain a kernel of size 2O(η2) · kc. Note that the treedepth of a graph expresses
the number of rounds needed to obtain an empty graph by removing one vertex from every
connected component in each round and this parameter upper bounds treewidth.

1.1 Our work
The aforementioned results of Fomin et al. [11] and Giannopoulou et al. [12] are the starting
point of this work. Our main goal is to obtain a unifying result “interpolating” between
the positive results of both these papers. That is, we would like to obtain an algorithm
where, by instantiating various parameters appropriately we can derive both their results
as special cases (at least in the qualitative sense contrasting uniformly vs non-uniformly
polynomial kernels, i.e., ignoring the precise growth rate of the functions f and g). However,
at first glance, it is not even clear what problem such an algorithm could be required to solve.
Our first contribution therefore is to introduce a new problem (which we call Deletion
(η/ρ)-Elimination) as the ideal candidate for this task. This problem is built on the recently
popular notion of elimination distance [3, 4, 1, 17, 13] and is formally described as follows:
The input is a graph G, and integer k and the goal is to decide whether there is a set
S ⊆ V (G) of size at most k such that G − S has elimination distance at most η to graphs of
treewidth ρ?
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The notion of elimination distance of a graph G to a graph class H was introduced by
Bulian and Dawar [3] and roughly speaking, it expresses the number of rounds needed to
obtain a graph in H by removing one vertex from every connected component in each round.
Notice how elimination distance naturally generalizes treedepth. We refer the reader to
Section 2 for formal definitions of these notions. At this point, it is sufficient to know that:

Graphs of treedepth η are precisely the graphs with elimination distance at most η − 1
to the graphs of treewidth 0. Therefore, when ρ = 0, Deletion (η/ρ)-Elimination is
nothing but the (η + 1)-Treedepth Modulator problem.
Graphs of treewidth ρ are simply graphs with elimination distance 0 to graphs of treewidth
ρ. Therefore, when η = 0, Deletion (η/ρ)-Elimination is simply the ρ-Treewidth
Modulator problem.

Thus, if one were to obtain a kernel of size f(η, ρ) · kg(ρ) (where the function g is
independent of η) for the Deletion (η/ρ)-Elimination problem, then by setting η = 0 one
would obtain the non-uniformly polynomial kernel result of Fomin et al., whereas setting
ρ = 0 gives the uniformly-polynomial kernel result of Giannopolou et al. [12] (again, ignoring
the precise growth rates of f and g). Although we have not settled this question completely
in this paper, we provide an approximate polynomial kernel [20] for this problem whose error
can be made arbitrarily small thus providing an arbitrarily refined interpolation between
these two results. Stated formally, we prove the following:

▶ Theorem 1. For every ρ, η ∈ N and 0 < ε < 1, (ρ/η)-Modulator has a (1 + ε)-
approximate kernel of size f(η, ρ, 1/ε) · kg(ρ) for some functions f and g.

Approximate kernels are a useful relaxation of the standard notion of kernels and combine
well with approximation algorithms. Informally speaking, an α-approximate kernel is a
polynomial-time algorithm that given as input a pair (I, k) where I is the problem instance and
k is the parameter, outputs an instance (I ′, k′) of the same problem such that |I ′| + k′ ≤ g(k)
for some computable function g and any c-approximate solution for the instance I ′ can be
turned in polynomial time into a (c · α)-approximate solution for the original instance I. We
refer the reader to Section 2 for a formal definition of all related terms.

By instantiating η = 0 and ρ = 0 respectively in Theorem 1, we obtain, for every
0 < ε < 1, a (1 + ε)-approximate kernel of size at most f1(ρ, 1/ε)kg(ρ) for ρ-Treewidth
Modulator for some functions f1 and g, and a (1 + ε)-approximate kernel of size at most
f2(η, 1/ε)kc for ρ-Treewidth Modulator for some function f2 and a universal constant c

independent of η and ε.

2 Preliminaries

We refer to the book of Diestel [7] for standard graph terminology. Whenever the context is
clear, we use n and m to denote the number of vertices and the number of edges in the input
graph, respectively. The set C(G) denotes the set of connected components of G. For sets
X, Y ⊆ V (G), an X-Y separator in G is a set S ⊆ V (G), such that G − S has no x − y path,
where x ∈ X \ S and y ∈ Y \ S. By sepG(X, Y ) we denote the size of a minimum sized X-Y
separator in G. For a tree T and vertices u, v ∈ V (T ), we denote the unique path between u

and v by PthT (u, v). A rooted tree is a tree with a special vertex called the root of the tree.
Consider a rooted tree T with root r. A vertex t ∈ V (T ) \ {r} is a leaf of T if it is a vertex
of degree exactly one in T . Moreover, if V (T ) = {r}, then r is the leaf (as well as the root)
of T . A vertex which is not a leaf, is a non-leaf vertex. By descT (t), we denote the set of
all descendants of t in T . The subscript T is dropped when clear from the context.

FSTTCS 2023
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A rooted forest is a forest where each of its connected component is a rooted tree. For a
rooted forest F , a vertex v ∈ V (F ) that is not a root of any of its rooted trees is a leaf if it
is of degree exactly one in F . We denote the set of leaves in a rooted forest by Lf(F ). The
depth, denoted by depth(T ) of a rooted tree T is the maximum number vertices in a root to
leaf path in T . The depth, denoted by depth(F ) of a rooted forest is the maximum over the
depths of its rooted trees.

Least Common Ancestor-Closure of Sets in Trees. For a rooted tree T and vertex set
M ⊆ V (T ) the least common ancestor-closure (LCA-closure), denoted by LCA-closureT (M),
is obtained by the following process. Initially, set M ′ = M . Then, as long as there are
vertices x and y in M ′ whose least common ancestor w is not in M ′, add w to M ′. When
the process terminates, output M ′ as the LCA-closure of M . The following folklore result
summarizes the properties of LCA-closures which we will use in this paper.

▶ Observation 2. Let T be a rooted tree, M ⊆ V (T ) and M ′ = LCA-closureT (M). Then
|M ′| ≤ 2|M | and for every connected component C of T − M ′, |N(C)| ≤ 2. Moreover, the
number of components of T − M ′ that have exactly 2 neighbors in M ′ is at most |M ′| − 1.

Tree decompositions. A tree decomposition of a graph G is a pair (T, β), where T is
a tree rooted at r and β : V (T ) → 2V (G) that satisfies the following properties: (i)⋃

t∈V (T ) β(t) = V (G), (ii) for every edge {u, v} ∈ E(G) there is a node t ∈ V (T ), such
that u, v ∈ β(t), and (iii) for every v ∈ V (G), the graph T [Xv] is a subtree of T , where
Xv = {t ∈ V (T ) | v ∈ β(t)}. For t ∈ V (T ), we call β(t) the bag of t. The sets in
{β(t) | t ∈ V (T )} are called bags of (T, β). We refer to the vertices in V (T ) as nodes. The
width of the tree decomposition (T, β) is maxt∈V (T ) |β(t)| − 1. The treewidth of G, denoted
by tw(G), is the minimum over the widths over all possible tree decompositions of G. For
ρ ∈ N, by Tρ, we denote the family of graphs of treewidth bounded by ρ.

▶ Proposition 3. Consider a graph G, a tree decomposition (T, β) of G, and a clique
S ⊆ V (G) in G. Then, there is t ∈ V (T ), such that S ⊆ β(t).

▶ Proposition 4. For a graph G and distinct non-adjacent vertices u, v ∈ V (G) such that
sepG({u}, {v}) ≥ tw(G) + 2, we have tw(G) = tw(G + {(u, v)}). That is, adding the edge
(u, v) does not increase the treewidth of G.

▶ Proposition 5. Consider an integer ρ and two graphs H1 and H2, where:
1. Z = V (H1) ∩ V (H2) is a clique in both H1 and H2, and
2. tw(H1), tw(H2) ≤ ρ.

Then, tw(H1 ∪ H2) ≤ ρ, where H1 ∪ H2 is the graph with V (H1 ∪ H2) = V (H1) ∪ V (H2) and
E(H1 ∪ H2) = E(H1) ∪ E(H2).

▶ Proposition 6 ([15]). For a graph G, in time 2O(tw(G))|V (G)|, we can compute a tree
decomposition of G of width at most 2 · tw(G) + 1.

Forest embeddings and (η, H)-decompositions. We define some useful definitions and
give some preliminary results regarding forest embeddings and (η, H)-decompositions.

▶ Definition 7 (Forest embedding). A forest embedding of a graph G is a pair (F, f), where
F is a rooted forest and f : V (G) → V (F ) is a bijective function, such that for each
{u, v} ∈ E(G), either f(u) is a descendant of f(v), or f(v) is a descendant of f(u). The
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depth of the forest embedding (F, f) is the depth of the rooted forest F .1 The treedepth
of a graph G, denoted by td(G), is the minimum over the depths over all possible forest
embeddings of G.

The next observation states that for every clique S in G and every forest embedding of
G, there is a root-to-leaf path in this forest embedding that contains all the vertices of S.

▶ Observation 8. Consider a graph G, a forest embedding f : V (G) → V (F ) of G into the
rooted forest F , and a clique S ⊆ V (G) in G. Then, there is a rooted tree T ∈ C(F )2 with
root r and a leaf t ∈ V (T ), such that for each s ∈ S, we have f(s) ∈ V (PthT (r, t)). That is,
the vertices in S must be mapped to vertices in one root-to-leaf path in a tree of F .

Next, we recall the notion of elimination distance introduced by Bulian and Dawar [3].
We rephrase their definition and introduce notation that will facilitate our presentation in
this paper.

▶ Definition 9 (Elimination Distance and (η, H)-decompositions). Consider a family H of
graphs and an integer η ∈ N. An (η, H)-decomposition of a graph G is a tuple (X, Y, F, f :
X → V (F ), g : C(G[Y ]) → Lf(F ) ∪ {⊥}), where (X, Y ) is a partition of V (G) and F is a
rooted forest of (at most) depth η, such that the following conditions are satisfied:
1. (F, f) is a forest embedding of G[X],
2. each connected component of G[Y ] belongs to H, and
3. for a connected component C of G[Y ], a vertex v ∈ V (C), and an edge {u, v} ∈ E(G),

either u ∈ Y or f(u) is a vertex in the unique path in F from r to g(C), where r is the
root of the connected component in F containing the vertex g(C).3

We say that G admits an (η′, H)-decomposition if there is some η ≤ η′, for which there is
an (η, H)-decomposition of G. The elimination distance of G to H (or the H-elimination
distance of G) is the smallest integer η∗ for which G admits an (η∗, H)-decomposition.

Note that when H is the class of edgeless graphs, then a graph has elimination distance
η to H precisely when it has treedepth at most η. On the other hand, for every class H, a
graph G has elimination distance 0 to H precisely when G ∈ H. A graph has elimination
distance 0 to graphs of treewidth at most ρ if and only if it has treewidth at most ρ.

Consider an (η, H)-decomposition D = (X, Y, F, f, g) of a graph G. We say that X is the
interior part of D and Y is the exterior part of D. For a leaf u ∈ Lf(F ), by P̂D

u we denote
the path from u to r in the tree T , where T is the tree rooted at r in F , containing u.
Moreover, by PD

u , we denote the graph G[{f−1(w) | w ∈ V (P̂D
u )}]. For a connected component

C ∈ C(G[Y ]), by CD
ext we denote the graph G[V (C) ∪ {f−1(w) | w ∈ V (PthF (g(C), r))}],

where r is the root of the component of F containing g(C). (For the above notations we
drop the superscript D, when it is clear from the context.)

▶ Observation 10. If (X, Y, F, f, g) is an (η, H)-decomposition of a graph G such that
|V (G)| ≥ 2, then there is an (η′, H)-decomposition (X ′, Y ′, F ′, f ′, g′) such that (1) F ′ is
a rooted tree with at least two vertices, (2) f ′ : X → V (F ′) is a bijective function, (3)
g′ : C(G[Y ]) → Lf(F ′), and (4) η′ = depth(F ′) ≤ η + 2.

1 Sometimes we slightly abuse the notation for simplicity, and say that, for every β ≥ α, (F, f) is a forest
embedding of depth β, where α is the depth of F .

2 Recall that C(F ) denotes the set of connected components of F ,
3 If g(C) = ⊥, then u must belong to Y .

FSTTCS 2023
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For a graph G and integers η, ρ ∈ N, a set S ⊆ V (G) is a (ρ/η)-modulator, if G − S

admits an (η, Tρ)-decomposition. Next we state a pair of results regarding the computation
of (η, Tρ)-decompositions in bounded treewidth graphs that use Courcelle’s theorem [5] and
the Counting Monadic Second Order Logic (CMSO)-expressibility of graphs of treewidth ρ

as well as that of elimination distance to CMSO-expressible graph classes.

▶ Observation 11. There is an algorithm that, given a graph G and non-negative integers
ρ and η, runs in time f(ρ, η, tw(G))nO(1) for some computable function f and computes a
minimum (ρ/η)-modulator S of G and an (η, Tρ)-decomposition of G − S.

We note that in order to obtain an (η, Tρ)-decomposition of G − S given S, one cannot
use a direct invocation of Courcelle’s theorem on G − S. However, one can use standard
self-reducibility arguments using repeated invocations of Courcelle’s theorem. In particular,
if we can identify a vertex v (which must exist) such that G − S − {v} has a (η − 1, Tρ)-
decomposition, then we can place v at the “top” of the decomposition, delete it and recurse
into each connected component.

▶ Observation 12. Given a graph H, a vertex set Q in H, and integers η′ and ρ′, in
time ĥ(η′, ρ′, tw(H)) · |V (H)|O(1), we can correctly do one of the following: i) determine
the existence of an (η′, Tρ′)-decomposition D = (X, Y, F, f, g) of H, such that Q ⊆ Y , or ii)
conclude that such a decomposition does not exists.

Parameterized problems and (approximate) kernels. A parameterized problem Π is a
subset of Γ∗ ×N for some finite alphabet Γ. An instance of a parameterized problem consists
of a pair (x, k), where k is called the parameter. We assume that k is given in unary and
hence k ≤ |x|.

▶ Definition 13 (Kernelization). Let Π ⊆ Γ∗ × N be a parameterized problem and g be a
computable function. We say that Π admits a kernel of size g if there exists an algorithm
referred to as a kernelization algorithm (or a kernel) that, given (x, k) ∈ Γ∗ × N, outputs in
time polynomial in |x| + k, a pair (x′, k′) ∈ Γ∗ × N such that (a) (x, k) ∈ Π if and only if
(x′, k′) ∈ Π, and (b) |x′| + k′ ≤ g(k).

▶ Definition 14 ([20]). A parameterized optimization (minimization or maximization)
problem is a computable function Π : Σ∗ × N × Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N, and
a solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I| + k. The value of the
solution s is Π(I, k, s). Since we only deal with a minimization problem in this work, we
state some of the definitions only in terms of minimization problems when the definition for
maximization problems is analogous. The parameterized optimization version of Deletion
(η/ρ)-Elimination is a minimization problem with the optimization function ρ/η-Del :
Σ∗ × N × Σ∗ → R ∪ {∞} defined as follows.

ρ/η-Del(G, k, S) =
{

∞ if S is not a solution for G,

min{|S|, k + 1} otherwise.

▶ Definition 15 ( [20]). For a parameterized minimization problem Π, the optimum value of
an instance (I, k) ∈ Σ∗ × N is OPTΠ(I, k) = min s∈Σ∗

|s|≤|I|+k

Π(I, k, s).

Consequently, for Deletion (η/ρ)-Elimination, we define OPT(G, k) =
minS⊆V (G) ρ/η-Del (G, k, S).
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In the above definition, k is effectively a threshold; for solutions of size at most k we care
about what their size is, while all solutions of size larger than k are equally bad, and are
consequently assigned value k + 1. We point the interested reader to Section 2.1, [20] and
Section 3.2, [19] for an in-depth discussion of these definitions and their motivations.

We now recall the other relevant definitions from [20] regarding approximate kernels.

▶ Definition 16 ([20]). Let α ≥ 1 be a real number and Π be a parameterized minimization
problem. An α-approximate polynomial time preprocessing algorithm A for Π is a pair of
polynomial-time algorithms. The first one is called the reduction algorithm, and computes a
map RA : Σ∗ ×N → Σ∗ ×N. Given as input an instance (I, k) of Π, the reduction algorithm
outputs another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution-lifting algorithm. This algorithm takes as input
an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction algorithm, and
a solution s′ to the instance (I ′, k′). The solution-lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k) such that Π(I,k,s)

OPT(I,k) ≤ α · Π(I′,k′,s′)
OPT(I′,k′) .

The size of a polynomial time preprocessing algorithm A is a function sizeA : N → N
defined as sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

▶ Definition 17 (α-approximate kernelization). An α-approximate kernelization (or α-
approximate kernel) for a parameterized optimization problem Π, and real α ≥ 1, is an
α-approximate polynomial time preprocessing algorithm A for Π such that sizeA is upper
bounded by a computable function g : N → N. We say that A is an α-approximate polynomial
kernelization if g is a polynomial function.

▶ Definition 18 ([20]). Let α ≥ 1 be a real number, and Π be a parameterized minimization
problem. An α-approximate polynomial time preprocessing algorithm for Π is said to be
strict if, for every instance (I, k), reduced instance (I ′, k′) = RA(I, k) and solution s′ to
(I ′, k′), the solution s to (I, k) output by the solution-lifting algorithm when given s′ as input
satisfies the following.

Π(I, k, s)
OPT (I, k) ≤ max

{
Π(I ′, k′, s′)
OPT (I ′, k′) , α

}
The notion of strictness in the above direction allows one to “chain” multiple α-

approximate preprocessing algorithms to obtain a single α-approximate preprocessing al-
gorithm.

▶ Definition 19. A reduction rule is simply the reduction algorithm of a polynomial time
preprocessing algorithm. The reduction rule applies if the output instance of the reduction
algorithm is not the same as the input instance.

▶ Definition 20 ([20]). A reduction rule is said to be α-safe for Π if it is the reduction
algorithm of a strict α-approximate polynomial time preprocessing algorithm for Π. A
reduction rule is safe if it is 1-safe.

In the context of our work, it is sufficient for us to argue that all our reduction rules are
(1 + ε)-safe.

▶ Definition 21 ([20]). A polynomial-size approximate kernelization scheme (PSAKS) for a
parameterized optimization problem Π is a family of α-approximate polynomial kernelization
algorithms, with one such algorithm for every α > 1.

FSTTCS 2023
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3 The PSAKS for DELETION (η/ρ)-ELIMINATION

3.1 Overview of our algorithm
We begin with an overview of our algorithm. Let (G, k) be the given instance of Deletion
(η/ρ)-Elimination. We begin by computing a factor-O(1)-approximate solution S for G (see
Lemma 22 in Section 3.2). That is, there is a constant γ such that S is a (ρ/η)-modulator
of size at most γ · OPT. If |S| > γk, then we conclude that the input instance is a no-
instance and so, we return a trivial no-instance of size O(k). Henceforth, we assume that
|S| = O(k). We next compute an (η, Tρ)-decomposition (X, Y, F, f, g) of G − S in polynomial
time using Observation 11. By Observation 10, we may assume without loss of generality
that (X, Y, F, f, g) is an (η′, Tρ)-decomposition of G − S where F is a tree and η′ ≤ η + 2.

We next execute a series of reduction rules that either delete vertices or add edges between
non-adjacent vertices. Each such rule reduces our instance complexity by a polynomial (in
n) amount after each application, where the rules are applied in the order in which we state
them. In particular, assuming n denotes |V (G)|, our algorithm will apply a total of at most(

n
2
)

+ n reduction rules. Moreover each of these rules is either 1-safe or (1 + ε)-safe (see
Definition 20), implying that by combining them, we get the required PSAKS.

We now proceed to sketch each reduction rule and give intuitive reasonings behind their
correctness. The formal description of the rules and correctness arguments can be found in
Section 3.2.

3.1.1 Overview of the reduction rules
Rule 1: Identifying highly-connected pairs. Our first reduction rule adds edges between
non-adjacent pairs of vertices in G, that have sufficiently high flow between them. This
reduction rule is based on the fact that, roughly speaking, for such pairs of non-adjacent
vertices u, v one of the following holds with respect to some solution S∗ (i.e., a (ρ/η)-modulator
of size at most k) and an (η, Tρ)-decomposition of G − S∗, call it D :

(i) At least one of them belongs to S∗.
(ii) Both belong to the interior of D and are mapped to vertices in a single root-to-leaf

path in the associated forest.
(iii) Exactly one of them belongs to a connected component C in the exterior of D while the

other belongs to the interior of the same decomposition and is mapped to a vertex of
the associated forest, which is an ancestor of the leaf-vertex with which C is associated.

(iv) Both belong to a bag in any optimal tree decomposition of the exterior part of D.

In any of these cases, the addition of such an edge (u, v) maintains equivalence with the
given instance. A similar observation was crucially used in the work of Fomin et al. [11]
and this rule (adding edges between highly connected pairs of non-adjacent vertices) was
also explicitly used by Giannapolou et al. [12] in their work. The reduction in the instance
complexity given by this rule is captured by the fact that the number of non-edges strictly
decreases with each application.

Rule 2: Bounding the degree of F (and hence, the size of the interior X) and the
number of connected components in G − (S ∪ X ∪ Mark1) where X and F are given
by the current decomposition (X, Y, F, f, g) and Mark1 is a marked set of vertices to
be defined. Note that since the depth of F is bounded by η′, if we have a bound on the
degree of F , then we can obtain a bound on the number of vertices in X. This part of our
work is also inspired by arguments used by Fomin et al. [11] and Giannopolou et al. [12] (the
latter in the setting of treedepth modulators).
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Towards designing rules that help us achieve the required degree bound, we begin by
employing the near-protrusion decomposition technique of Fomin et al. [11] as follows. We first
create a marked set of vertices, denoted by Mark1, in G−S. We do this by adding a minimum
separator to our marked set, for every pair of non-adjacent vertices in S. We remark that
inapplicability of our first reduction rule ensures that the sizes of such separators are “small”.
For technical reasons, we will in fact add more vertices to Mark1 besides what we discussed
above and we defer the precise description of these vertices to the next subsection. After we
remove S ∪ Mark1 from G, we obtain a set of connected components. We observe that the
first reduction rule ensures that the neighborhood of each such connected component inside
S is a clique. Moreover, we observe that the neighborhood of each such connected component
disjoint from S has size bounded by O(ρ + η). We next analyze these connected components
and group them into different classes based on an appropriate notion of equivalence, which
depends on the following for each such connected component C:

Firstly, we have a set Ŝ′ of at most ρ + 1 vertices from S ∩ N(C). Intuitively speaking
Ŝ′ represents the vertices from S that are not deleted in some hypothetical optimal
solution and instead, lie in the exterior part of the associated optimal decomposition
(since S ∩ N(C) is shown to be a clique it follows that these vertices must be contained
in a single bag of any tree-decomposition of the exterior part).
The second element determining the equivalence class of C will be a set B ⊆ X ∩ N(C)
of size at most η + 1. This set denotes the vertices in X ∩ N(C) that are disjoint from an
optimal solution.
We will further partition the above set B into two sets, B1 and B2, that will correspond to
the subsets that go to the interior and exterior of an optimal decomposition, respectively.
Finally we have an integer η̂ which will denote the minimum integer for which an (η̂, Tρ)-
decomposition for the connected component exists, such that Ŝ′ ∪ B2 belong to the
exterior of this decomposition.

Once we formalize the above equivalence, we show that (a) the number of possible equivalence
classes to which C can belong is bounded polynomially in k and (b) if, for the equivalence
class containing C we have sufficiently many other connected components, then we can safely
reduce the size of the instance by deleting C. Once this is done, we obtain bounds on: i) the
number of vertices in X, and ii) the number of connected components in G− (S ∪X ∪Mark1).

From this point onwards, in order to obtain our approximate kernel, it is enough to bound
the sizes of the connected components in G − (S ∪ X ∪ Mark1). To achieve this, we will in
fact bound the sizes of the connected components in G − (S ∪ Mark1). Towards this, we
design our next two reduction rules, out of which the next rule is the only “lossy” reduction
rule in our algorithm.

Rule 3: Converting near protrusions to protrusions. Using the terminology of Fomin et
al., the connected components of G − (S ∪ Mark1) are near protrusions. Essentially, for
each connected component C of G − (S ∪ Mark1), the graph induced on C has bounded
treewidth (in this case, treewidth O(ρ + η)) and moreover, any (ρ, η)-modulator of size at
most k contains all but at most κ(ρ + η) neighbors of C for some constant κ. We note that
in standard terminology, such a connected component C would be a O(ρ + η)-protrusion if
the neighborhood of C is also bounded by O(ρ + η), in which case one can rely on several
“protrusion-reduction” techniques in the literature. However, dealing with near protrusions
requires a more careful approach because there could be kO(ρ+η) possible ways in which an
optimal solution intersects N(C). As our main aim is to avoid the dependence on η in the
exponent of k, this obstacle cannot be overcome only by using techniques from literature
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and requires a new approach. The key insight in this part of our work lies in a reduction
rule that enables us to delete vertices in such a way that we eliminate near protrusions that
are not already O(1/ε(ρ + η))-protrusions. However, this rule is not lossless although the
loss ε can be made arbitrarily close to 0 (at a cost of larger kernel size eventually). We next
describe the key insight that facilitates this.

Consider a connected component C of G−(S ∪Mark1) such that N(C) > (κ/ε+1) ·(ρ+η)
where κ is the constant described in the previous paragraph. Then, we have that by greedily
adding N(C) to any solution we eventually compute (i.e., by deleting N(C) from the graph
and modifying the budget k accordingly), we will correctly pick at least (κ/ε) · (ρ+η) vertices
of an optimal solution and incorrectly pick at most an ε fraction of |N(C)| to the solution
that is eventually returned. This is the informal reasoning behind the (1 + ε)-safeness of this
rule. By repeating this rule exhaustively, we arrive at an instance where every component of
G − (S ∪ Mark1) is a (κ/ε + 1) · (ρ + η)-protrusion, i.e., it induces a graph with treewidth at
most (κ/ε + 1) · (ρ + η) and has a boundary of size at most (κ/ε + 1) · (ρ + η) through which
it interacts with the rest of the graph.

Rule 4: Bounding the size of components in G − (S ∪ Mark1), i.e., protrusion reduction.
Here, we use the “lossless protrusion replacer” of Fomin et al. [11] to reduce all remaining
(κ/ε + 1) · (ρ + η)-protrusions to a size that depends only on ε, ρ and η. Essentially, this is a
subroutine that replaces any sufficiently large (κ/ε + 1) · (ρ + η)-protrusion in G − (S ∪ Mark1)
with a strictly smaller one, repeatedly. In the process, one is guaranteed that any feasible
solution for the reduced instance can be used to efficiently compute a feasible solution for the
original instance without changing the gap between the feasible solution and the optimum.
Since every connected component of G − (S ∪ Mark1) is a (κ/ε + 1) · (ρ + η)-protrusion
following the application of Rule 3, this gives a bound of f(1/ε, ρ, η) (for some function f)
on the size of each component of G′ − (S ∪ Mark1) where G′ is the graph obtained after
exhaustively applying Rule 4.

3.2 Formal description of the algorithm
We now formally describe our kernelization algorithm. The algorithm begins by computing
an approximate solution of size at most O(k), using the following lemma.

▶ Lemma 22. There is an algorithm that, given a graph G and non-negative integers
k, η, ρ, runs in time bounded by h̃(η + ρ) · nO(1) for a computable function h̃ and either
correctly concludes that (G, k) is a no-instance of Deletion (η/ρ)-Elimination, or outputs
a (ρ, η)-modulator of G of size at most ĉ · log(ρ + η) · k for some constant ĉ.

If Lemma 22 returns that (G, k) is a no-instance of Deletion (η/ρ)-Elimination, then
we return a trivial instance with O(k +η +ρ) vertices and an optimal solution value of at least
k + 1, as our output. Hereafter we assume that the output of Lemma 22 is a (ρ, η)-modulator
S for G, of size at most ĉ · log(ρ+η) ·k. We also assume that |V (G−S)| ≥ 2, as otherwise, we
can return G itself as a kernel with at most ĉ · log(ρ+η) ·k +2 vertices. Using Observation 11,
we compute an (η, Tρ)-decomposition, D̃ = (X̃, Ỹ , T̃ , f̃ , g̃), of G − S in time ℓ̂(ρ + η)nO(1)

for some computable function ℓ̂. Notice that using the above (η, Tρ)-decomposition and our
assumption that |V (G − S)| ≥ 2, we can compute an (η′, Tρ)-decomposition (Observation 10),
D = (X, Y, T, f, g), of G − S, where the following properties are satisfied:

T is a rooted tree with at least two vertices,
f : X → V (T ) is a bijective function,
g : C(G[Y ]) → Lf(T ) and
η′ = depth(T ) ≤ η + 2.
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We let r denote the root of the tree T . For a ∈ V (T ), we let Xa = {f−1(a′) | a′ ∈
V (PthT (a, r))}. Furthermore, we let Ga be the graph that appears “below” a, i.e., V (Ga) =
{v ∈ X | f(v) ∈ descT (a)} ∪ {v ∈ Y | v ∈ V (C), where C ∈ C(G[Y ]) and g(C) ∈ descT (a)},
and Ga = G[V (Ga)] .

In the following we formalize the “monotonicity” of the problem in a way that will be
useful in our proofs.

▶ Observation 23. For every ρ, η ∈ N, graph H, (ρ, η)-modulator Ŝ ⊆ V (H) for H and
every (not necessarily induced) subgraph Ĥ of H, Ŝ ∩ V (Ĥ) is a (ρ, η)-modulator for Ĥ.

3.2.1 Identifying highly connected pairs
Let ϕ1 = k + η + 6ρ + 1 . The first reduction rule adds an edge between a pair of (distinct)
non-adjacent vertices u, v ∈ V (G), where sepG(u, v) ≥ ϕ1 + 1. Recall that sepG(u, v) denotes
the maximum number of internally vertex-disjoint u-v paths in G.

▶ Reduction Rule 1. Let the input be (G, k). If there are distinct non-adjacent vertices
u, v ∈ V (G) such that sepG(u, v) ≥ ϕ1 + 1, then return (G + {u, v}, k).

Notice that this rule can be applied exhaustively in polynomial time. In the next lemma,
we analyze the effect of this reduction rule on the input instance.

▶ Lemma 24. Let u, v ∈ V (G) be non-adjacent vertices such that sepG(u, v) ≥ ϕ1 + 1, and
let G′ = G + {(u, v)}. Then, the following hold:
1. Every (ρ, η)-modulator for G′ is also a (ρ, η)-modulator for G.
2. Every (ρ, η)-modulator for G of size at most k is also a (ρ, η)-modulator for G′.

The main consequence of Lemma 24 is that we can exhaustively apply Reduction Rule 1
without affecting solutions of size at most k for our instance.

In the context of our approximate kernel result, this is formalized below.

▶ Lemma 25. Reduction Rule 1 is 1-safe.

3.2.2 Bounding the degree of T

In what follows, we assume that Reduction Rule 1 is not applicable and continue to work
with the (ρ, η)-modulator S and the (η′, Tρ)-decomposition D = (X, Y, T, f, g), of G − S

where r denotes the root of the tree T . For each C ∈ C(G[Y ]), in time 2O(ρ)n we compute
a tree decomposition of C, denoted by TC = (TC , βC) of width at most 3ρ, where TC is a
rooted tree, using Proposition 6. To formalize our next marking scheme we recall the notion
of “upward closure” for a vertex in G − S, which has also been used in previous related
work [12, 1].

▶ Definition 26. Consider a vertex v ∈ V (G − S). The upward closure of v in G − S is
the set Up-Cls(v), defined as follows: If v ∈ X, then Up-Cls(v) = Xf(v) and if v ∈ Y , then
Up-Cls(v) = Xf(g(C)) ∪ β(b∗

v), where b∗
v is an (arbitrarily selected) node from TC , such that

v ∈ βC(b∗
v) and TC = (TC , βC) is the tree decomposition computed above for the component

C ∈ C(G[Y ]) that contains v.

We are now ready to present our first marking scheme.

▶ Marking Scheme 1. Initialize Mark1 = ∅, and perform the following two steps (in the
given order).
1. For every distinct u, v ∈ S, such that {u, v} /∈ E(G), compute a minimum {u} − {v}

separator Zu,v in G (in polynomial time), and for each w ∈ Zu,v, add Up-Cls(w) to Mark1.
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2. For C ∈ C(G[Y ]), i) if Mark1 ∩ V (C) ̸= ∅, then let M∗
C = ∅, and ii) otherwise, let

M̂C = {b∗
v ∈ V (TC) | v ∈ Mark1 ∩ V (C) ̸= ∅}, and M∗

C = LCA-closureTC
(M̂C). For each

C ∈ C(G[Y ]) and b ∈ M∗
C , add βC(b) to Mark1.

As Reduction Rule 1 is not applicable, we obtain the following bound on |Mark1|.

▶ Observation 27. We have |Mark1| ≤ 2 ·
(|S|

2
)

· ϕ1 · (η′ + 1) · (ρ + 1).

We define a few notations and give some results that will be useful in designing our next
reduction rule. For a graph H and vertex set Q in V (H), we let elim-distQ(H) the smallest
integer λ for which H admits a (λ, Tρ) decomposition, D̃ = (X̂, Ŷ , F̂ , f̂ , ĝ), such that Q ⊆ Ŷ ,
that is, Q appears in the exterior of this decomposition. If Q = ∅, then elim-distQ(H) is simply
the elimination distance of H to Tρ. Notice that due to Observation 12, we can compute
elim-distQ(H) in time bounded by ĥ(η, ρ, tw(H)) · |V (H)|O(1). In all our instantiations of H,
we will have tw(H) = O(η + ρ), and hence, the time required to compute elim-distQ(H) in
these cases will be bounded by ĥ(η, ρ) · nO(1)

For every set Z ⊆ V (G) \ S, we define D̂Z to be the set of connected components from
C(G − (S ∪ Z)) that do not contain a vertex from Mark1, i.e., D̂Z = {D ∈ C(G − (S ∪ Z)) |
V (D) ∩ Mark1 = ∅}. For such a Z and S, we now define a table D indexed by tuples
comprising an element s ∈ S ∪ {ι}, a subset of S of size at most ρ + 1, a pair of disjoint
subsets of Z plus a number.

▶ Definition 28. Fix Z ⊆ V (G)\S and a subset D ⊆ D̂Z . For every s ∈ S ∪{ι}, S′ ⊆ S \{s}
of size at most ρ + 1, disjoint subsets B1, B2 of Z, and η̂ ∈ [η]0 ∪ {∞}, D[s, S′, B1, B2, η̂]
denotes the set of all connected components D ∈ D ⊆ D̂Z for which the following hold:
1. if s ̸= ι, then s ∈ N(V (D)),
2. S′ ∪ B1 ∪ B2 ⊆ N(V (D)), and
3. if η̂ ̸= ∞ then elim-distS′∪B2(D) = η̂, and otherwise, elim-distS′∪B2(D) > η̂.

The following regarding the elements of D̂Z will be handy.

▶ Observation 29. Consider a set Z ⊆ V (G) \ S. For each D ∈ D̂Z , the following properties
hold:
1. N(V (D)) ∩ S is a clique and
2. elim-dist∅(D) ≤ η.

We will now describe a marking scheme, where, for a given Z ⊆ V (G) \ S and a subset
D ⊆ D̂B , will create a subset of D. We remark that for the actual execution of this marking
scheme, we select Z and D later.

▶ Marking Scheme 2. Given Z ⊆ V (G) \ S and a subset D ⊆ D̂Z as input, create a set
Mark2[Z, D] as follows:
1. Initialize Mark2[Z, D] = ∅.
2. For each s ∈ S ∪ {ι}, S′ ⊆ S \ {s} of size at most ρ + 1, disjoint subsets B1, B2 of

Z, and η̂ ∈ [η]0 ∪ {∞}, add min{|D[s, S′, Bdel, Bint, Bext, η̂]|, ϕ1}-many elements from
D[s, S′, B1, B2, η̂] to Mark2[Z, D].

Using the above marking scheme, we design our next reduction rule.

▶ Reduction Rule 2. Given Z ⊆ V (G) \ S and a subset D ⊆ D̂Z , if D \ Mark2[Z, D] is
non-empty, then select D ∈ D \ Mark2[Z, D] and return (G − V (D), k).
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We say that for a given Z and D, Reduction Rule 2 is applicable if D \ Mark2[Z, D] is non-
empty. Notice that given Z ⊆ V (G) \ S and a subset D ⊆ D̂Z , |Mark2[Z, D]| can be bounded
by (|S|+1)ρ+3 ·3|Z| · (η +3) ·ϕ1. In all our applications of Reduction Rule 2, we will have that
|Z| ≤ η′ + 1 = η + 3, which implies an upper bound of ϕ2 = (|S| + 1)ρ+3 · 3η+3 · (η + 3) · ϕ1

on the size of |Mark2[Z, D]| in all our instantiations of Z. Moreover, it is straightforward to
see that for all such Z, Mark2[Z, D] can be computed in time O(ϕ2 · nO(1)).

The exhaustive application of Reduction Rule 2 essentially says that any element in
D that is “untouched” by Marking Scheme 2 must be deleted. The intuition is that for
any component that is deleted by this rule, sufficiently many “similar representatives” are
preserved, thus also preserving solutions of size at most k. This is formalized in the following
lemma.

▶ Lemma 30. Given Z ⊆ V (G) \ S and D ⊆ D̂Z , for which there is a D ∈ D \ Mark2[Z, D],
let G′ = G − V (D) be the graph obtained by an application of Reduction Rule 2. Then, a
set S∗ ⊆ V (G) of size at most k is a (ρ, η)-modulator for G if and only if S∗ ∩ V (G′) is a
(ρ, η)-modulator for G′.

We now argue that Reduction Rule 2 can be used in our approximate kernel.

▶ Lemma 31. Reduction Rule 2 is 1-safe.

Recall the (η′, Tρ)-decomposition D = (X, Y, T, f, g) of G − S that we currently have.
Using Reduction Rule 2, we are able to reduce |V (T )|, |C(G[Y ])|, and for each C ∈ C(G[Y ]),
bound |C(C − Mark1)| by appropriately choosing (several values for) Z and D. This is argued
as follows.

Reducing |V (T )| and |C(G[Y ])|

Recall that depth(T ) ≤ η′ = η + 2. Thus, the number of vertices in T is at most η + 2 times
the maximum degree of a vertex in T . We will next focus on bounding degree of vertices in
T , in particular, we will bound the maximum number of children for a vertex in T . Consider
a vertex a ∈ V (T ). Recall that Xa = {f−1(a′) | a′ ∈ V (PthT (a, r))}, where r is the root
of T .

We apply Reduction Rule 2, by choosing Z = Xa with the subset D = Da ⊆ D̂Xa defined
as follows:

If a is a non-leaf vertex in T , then we set Da = {D ∈ C(Ga′) | V (D) ∩ Mark1 = ∅, a′ ∈
V (T ) and a = parT (a′)}.
Otherwise, a is a leaf of T and we set Da = {C ∈ C(G[Y ]) | V (D)∩Mark1 = ∅ , g(C) = a}.

Intuitively speaking, we have defined Da as the subset of D̂Xa
that comprises of those

connected components that appear “below” the children of a in T . Moreover, when a is a
leaf, Da will be those connected components C ∈ G[Y ], for which g(C) = a.4

Note that Da ⊆ D̂Xa
(see Definition 28 to recall the definition of D̂Z for our choice of

Z = Xa). Also, notice that the number of children of a in T is bounded by |Da| + |Mark1|.
Recall that for a ∈ V (a), |Xa| ≤ η. This together with Lemma 22 and Lemma 30 implies
the following result.

4 Recall our assumption that for each C ∈ G[Y ], g(C) ∈ Lf(T ).
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▶ Observation 32. For each a ∈ V (T ), in time bounded by (k · log(η + ρ))O(ρ) · 2O(η) · nO(1)

we can either apply Reduction Rule 2 for Z = Xa and D = Da, or correctly conclude that
it is not applicable. Moreover, if for no a ∈ V (T ), the reduction rule is applicable, then
|V (T )| ≤ η′·(ϕ2+|Mark1|) = (k·log(η+ρ))O(ρ)·2O(η) and |C(G[Y ])| ≤ |V (T )|·(ϕ2+|Mark1|) =
(k · log(η + ρ))O(ρ) · 2O(η).

Note that to obtain our kernel, it is enough to bound the number of vertices appearing in
the connected components in G[Y ] by our stated bound. To this end, we will first bound the
number of connected components in G[Y ] − Mark1 by this bound. Due to Observation 32,
we have already bounded the number of connected components in C(G[Y ]) and therefore, to
achieve the above, it is enough to bound, for each C ∈ C(G[Y ]), the number of connected
components in C − Mark1.

Bounding |C(C − Mark1)|, for C ∈ G[Y ]

Consider a connected component C ∈ G[Y ]. Recall that we have already computed a tree
decomposition TC of width at most 6 ·ρ for C. If V (C)∩Mark1 = ∅, then |C(C −Mark1)| = 1.
Thus we hereafter assume that V (C) ∩ Mark1 ̸= ∅. The above implies that M∗

C ̸= ∅ (see
Marking Scheme 1). By the construction of Mark1, notice that Mark1 ∩ V (C) = ∪b∈M∗

C
βC(b).

Let HC be the set of connected components in TC −M∗
C , i.e., HC = C(TC −M∗

C). For each H ∈
HC , let D̃H be the set of connected components of G[VH ], where VH = (∪b∈V (H)βC(b))\Mark1.
For H ∈ HC , (intuitively speaking) we let Z[H] be set of vertices that appear in the bags
that neighbor H in TC and the vertices from X, that appear in the root-to-g(C) path in F

(recall that g(C) ∈ Lf(F )). Formally, for H ∈ HC , let Z[H] = (∪b∈NT (V (H))βC(b)) ∪ Xg(C).
We next summarize some properties of HC and the sets we constructed above, which follows
from their definitions and Observation 2.

▶ Observation 33. We have |HC | ≤ 2|Mark1|, and for each H ∈ HC , the following holds:
1. |NT (V (H))| ≤ 2,
2. Z[H] ⊆ Mark1 ∪ X ⊆ V (G) \ S, where |Z[H]| ≤ 2 · (6ρ + 1) + η′ = 2 · (6ρ + 1) + η + 2,
3. for each D ∈ D̃H , N(V (D)) ⊆ S ∪ Z[H],
4. D̃H ⊆ D̂Z[H], and
5. for each D ∈ C(C − Mark1), there is some H ∈ HC , such that D ∈ D̃C .

From the above observation, to bound the size of C(C − Mark1), it is enough to bound
|D̃H |, for each H ∈ HC . For each H ∈ HC , we use Reduction Rule 2 (if applicable), for
Z = Z[H] and D = D̃H . The above, together with Lemma 30 implies the following.

▶ Observation 34. For each C ∈ C(G[Y ]) and H ∈ HC , in time bounded by (k · log(η +
ρ))O(ρ) · 2O(η) · nO(1), we can either apply Reduction Rule 2 for Z = Z[H] and D = D̃H , or
correctly conclude that it cannot be applied. Moreover, if for no C ∈ C(G[Y ]) and H ∈ HC ,
the reduction rule is applicable, |C(G[Y ]−Mark1)| can be bounded by (k · log(η +ρ))O(ρ) ·2O(η).

That is, if we have exhaustively applied the first two reduction rules, then we will have
bounded |X| and the number of connected components in G[Y ] − Mark1 by f(η, ρ) · kO(ρ)

for some comptuable function f . In the rest of the paper, our goal is to bound the size of
the components in G[Y ] − Mark1.

3.2.3 Converting components in G − (S ∪ Mark1) to protrusions
We begin by arguing that for any component C of G − (S ∪ Mark1), any (ρ, η)-modulator
contains “almost all” neighbors of C inside S.
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▶ Lemma 35. For every C ∈ (G − (S ∪ Mark1)), any (ρ, η)-modulator for G must contain
at least |N(C) ∩ S| − η − ρ − 2| vertices of N(C) ∩ S.

We have already noted that every component in (G−(S ∪Mark1) has at most 2ρ+η′ +1 =
2ρ + η + 3 neighbors in Mark1 (see discussion following Observation 27). This fact, plus
Lemma 35 motivate the following reduction rule.

▶ Reduction Rule 3. If there is a C ∈ (G − (S ∪ Mark1)) such that |N(C)| ≥ (⌈1/ε⌉ + 1) ·
(3ρ + 2η + 5), then return (G − (N(C), k − (|N(C)| − 3ρ − 2η − 5)). That is, delete N(C)
and reduce the parameter by |N(C)| − 3ρ − 2η − 5|.

We note that if Reduction Rule 3 is not applicable, then every connected component in
(G − (S ∪ Mark1) has a neighborhood of size at most ξ = O(1/ε(ρ + η)). The intuition behind
the this reduction rule is that if N(C) is sufficiently large compared to 3ρ + 2η + 5, then,
any (ρ, η)-modulator for G contains “most” vertices of N(C) and we can add all vertices of
N(C) to the solution while charging the few error vertices to the many “correct” vertices.

▶ Lemma 36. Reduction Rule 3 is (1 + ε)-safe.

3.2.4 Reducing protrusions in G − (S ∪ Mark1)
At this point, we have that every component of G − (S ∪ Mark1) has treewidth at most
η + ρ + 1 ≤ ξ and moreover, has neighborhood at most ξ. In other words, every component
of G − (S ∪ Mark1) is a ξ-protrusion, where ξ is a constant depending only on 1/ε, ρ, η. In
what follows, we use tools from protrusion reduction and replacement to reduce the size of
each component of G − (S ∪ Mark1). In particular, we use the lossless protrusion replacer of
Fomin et al. [11].

▶ Definition 37 ([11]; Lossless Protrusion Replacer). A lossless protrusion replacer for a
min-CMSO vertex subset problem Π is a family of algorithms, with one algorithm for every
constant r. The r’th algorithm has the following specifications. There exists a constant r′

(which depends on r) such that given an instance G and an r-protrusion X in G of size at
least r′, the algorithm runs in time O(|X|) and outputs an instance G′ with the following
properties:
1. G′ is obtained from G by replacing X by a r-boundaried graph X ′ with fewer than r′

vertices and thus |V (G′)| < |V (G)|.
2. OPT(G′) ≤ OPT(G).
3. There is an algorithm that runs in O(|X|) time and given a feasible solution S′ to G′

outputs a set X∗ ⊆ X such that S = (S′ \ X ′) ∪ X∗ is a feasible solution to G and
|S| ≤ |S′| + OPT(G) − OPT(G′).

Since graphs admitting an (η, Tρ)-decomposition are minor-closed, CMSO-expressible and
exclude at least one planar graph as a minor (e.g., an (η + ρ + 2) × (η + ρ + 2) grid), it follows
from [11] that the Deletion (η/ρ)-Elimination problem has a lossless protrusion replacer.
Moreover, using reasoning similar to that in Lemmas 25, 31 and 36 (with the solution-lifting
algorithm given by the third property listed in Definition 37), we conclude that this reduction
is 1-safe. Hence, we infer that by exhaustively invoking this subroutine with r = χ, we are
able to reduce the size of every connected component in G − (S ∪ Mark1) to some r′ which
is a function of r, which in turn is only a function of 1/ε, ρ and η. This gives us a bound
of f(η, ρ, 1/ε) · kg(ρ) on the size of the final reduced instance (for some functions f and g),
proving Theorem 1.

FSTTCS 2023



36:16 Approximately Interpolating Between Polynomial Kernels

4 Conclusion and future work

The central follow-up question to our work specifically on Deletion (η/ρ)-Elimination is
whether the approximation in our result can be avoided and instead a “standard” polynomial
kernel of size f(η, ρ)kg(ρ) can be obtained for the problem.

On a broader level, our work motivates the interpolation between other results centered
around treedepth and treewidth in parameterized complexity. For example, consider a graph
problem that has an f(td) · nO(1) algorithm parameterized by the treedepth td for some
function f , but has a best-possible (or best-known) algorithm with running time ng(tw) for
some function h when parameterizing by the treewidth tw (e.g., Grundy Coloring [2]). Our
work naturally motivates the study of these problems with the aim of obtaining algorithms
with running time f(η) · ng(ρ) on graphs that have elimination distance η to the class Tρ.
Such algorithms would provide interpolations between known results that are based on these
well-studied width measures.
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