
ARTICLE OPEN

Cancer drug sensitivity prediction from routine
histology images
Muhammad Dawood 1✉, Quoc Dang Vu1, Lawrence S. Young2,3, Kim Branson4, Louise Jones5, Nasir Rajpoot 1,3,6 and
Fayyaz ul Amir Afsar Minhas 1,3

Drug sensitivity prediction models can aid in personalising cancer therapy, biomarker discovery, and drug design. Such models
require survival data from randomised controlled trials which can be time consuming and expensive. In this proof-of-concept study,
we demonstrate for the first time that deep learning can link histological patterns in whole slide images (WSIs) of Haematoxylin &
Eosin (H&E) stained breast cancer sections with drug sensitivities inferred from cell lines. We employ patient-wise drug sensitivities
imputed from gene expression-based mapping of drug effects on cancer cell lines to train a deep learning model that predicts
patients’ sensitivity to multiple drugs from WSIs. We show that it is possible to use routine WSIs to predict the drug sensitivity
profile of a cancer patient for a number of approved and experimental drugs. We also show that the proposed approach can
identify cellular and histological patterns associated with drug sensitivity profiles of cancer patients.
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INTRODUCTION
The premise of precision medicine is to develop therapies that
target important characteristics such as the molecular profile of an
individual tumour. The outcome of drug therapy is often
unpredictable ranging from desirable to toxic and predominantly
driven by a tumour’s molecular profile1. The response to anti-
cancer drugs can be influenced by both germline and acquired
somatic mutations2 as well as the status of molecular/signalling
pathways3, suggesting that therapies targeting the genomic
landscape of an individual are more effective compared to one-
size-fits-all therapy approaches4. Pharmacogenomics is a pivotal
component of precision oncology that fuses pharmacology and
genomics to study an individual’s response to drug based on their
genomic profile5. Recent advances in high-throughput drug
screening and the availability of pharmacological data together
with a multitude of omics data (genomic, mutational, transcrip-
tomic, proteomic and metabolomic data) have paved the way for
identifying genetic biomarkers that are associated with treatment
response6,7.
Cancer cell lines (CCLs) provide an easy-to-manipulate vehicle

for high-throughput drug screening at scale, prior to the more
expensive in vivo testing and clinical trials of a drug6. Pioneers of
these large-scale genomic and drug screening datasets include
the NCI-60 database8, Cancer Cell Line Encyclopedia (CCLE)9,
Genomics of Drug Sensitivity in Cancer (GDSC)10, and the Cancer
Therapeutic Response Portal (CTRP)11. These datasets have helped
assess the sensitivity of many compounds including FDA-
approved drugs in vitro and have led to the discovery of novel
anti-cancer therapies12,13. The pharmacogenomics data provided
by these initiatives have enabled collective analysis of drug
sensitivity and gene expression data to uncover novel drug–gene
relationships8. Several machine learning (ML) methods have been
proposed for associating mutation and gene expression data of
CCLs with their respective drug efficacy metrics such as half
maximal inhibitory concentration (IC50), or area under the dose-

response curve (AUC-DRC)10,14,15. Similarly, deep learning (DL)
based methods16–19 and several other approaches20–22 have been
proposed for predicting patient response to drugs using genomic
information.
Despite advances in genomics-based drug sensitivity analysis,

the applicability of genomics profiling for selecting appropriate
drugs remains limited. The digitisation of tissue slides and recent
advances in detailed tissue profiling using digital scans of routine
Haematoxylin and Eosin (H&E) stained tissue slides offer a new
way to predict drug sensitivity via spatial histological profiling. To
the best of our knowledge, this is the first study that proposes the
prediction of patients’ sensitivity to multiple drugs from routine
H&E images by training a predictive model using drug sensitivity
data imputed from CCLs. We address the question as to whether
and to what extent it is possible to predict a breast cancer patient
tumour’s sensitivity to multiple approved and experimental drugs
based on their histological profile as captured by DL-based
analysis of the H&E images. The resulting association of visual
histological patterns with drug sensitivity can be helpful in
identifying histological motifs associated with high and low
sensitivity of drugs. Not only can it pave the way for spatial
characterisation of treatment response, but it also carries the
potential of ruling out treating a patient with certain drugs due to
their histological profile.
Histological examination of tissue sections is considered a gold

standard for the clinical diagnosis of solid tumours. Recent
advancements in deep learning for computational pathology
have proven valuable for using WSIs of routine H&E-stained tissue
sections to predict cancer subtypes23,24, patient survival25,26,
mitosis detection27, DNA methylation patterns28, cellular composi-
tion29,30, and tumour mutation burden31. Moreover, histology
image-based prediction of mutation and expression profile of
different genes32–34 and prediction of molecular markers and
pathways35,36 has been achieved using DL. Recently, a DL model
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has been proposed for predicting breast cancer patients gene
expression state from WSIs37.
In this work, we investigate the association between cellular and

morphometric patterns contained in the digitised WSIs of routine
H&E tissue slides of breast cancer tumours and their drug
sensitivity profiles. We employ the method proposed in37 for
predicting patient’s likelihood of response to treatment to specific
drugs. The framework proposed in this study (see Fig. 1) offers
several possible advantages. First, it enables a direct association of
phenotypic information present in WSIs with the likelihood of
response to different drugs. Second, by utilising pharmacoge-
nomic datasets, a large population of patients can be virtually
screened for a broad spectrum of compounds in a relatively short

amount of time giving valuable insights into the association of
patient-specific histological signatures with drug sensitivities.
Third, harnessing ML for drug sensitivity estimates allows
modelling the relative contribution of the expression level of
various genes to the patient’s sensitivity to a broad spectrum of
compounds in an unbiased manner. The proposed framework
does not rely on any assumption about the mechanism of action
of compounds, which may be unknown, or on patient’s survival
data. Fourth, the framework offers flexibility to investigators when
studying the response of a lead compound in different tissue
types, subtypes, or any other patient population as part of a drug
discovery pipeline. Finally, histological patterns discovered using
the proposed framework can be easily translated into clinical

Fig. 1 Workflow of the proposed approach for predicting patient sensitivities to different drugs from histology images. a Regression
model was developed using cancer cell line gene expression data and in vitro drug screening data to learn the association between cell lines
gene expression profile and their sensitivity to 427 compounds. b The trained model was then used to infer the sensitivity of breast cancer
patients to these drugs based on their gene expression. The output of the model is a matrix listing the gene expression-based imputed drug
sensitivities of each patient (one per row) to 427 compounds (one per column). c Prediction of patient sensitivities to compounds from whole
slide images (WSIs) of formalin-fixed paraffin-embedded (FFPE) H&E-stained tissue section using a Graph Neural Network (GNN). We represent
each WSI as a graph and then pass the WSI-graph as input to a GNN for predicting WSI-level and patch-level sensitivities of a patient to
different drugs. Node-level prediction highlight the spatially resolved contribution of different region of WSI towards the predicted sensitivity
of a certain drug. d Histological motifs associated with high and low sensitivity of Tamoxifen and Paclitaxel are shown for illustration.
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practice as it is built on digital scans of routine H&E tissue slides
and does not require any expensive or time-consuming assays.

RESULTS
Imputed drug sensitivities from cell lines
We used estimated sensitivities of the Cancer Genome Atlas breast
cancer (TCGA-BRCA) patients to 427 compounds from a previously
published method15, which fits a linear ridge regression model
between CCLs based gene expression data of genes as input and
the corresponding in vitro measurement of drug response in
terms of AUC-DRC as output. Once trained, these linear regression
models (one per drug) were then used for imputing the sensitivity
of TCGA-BRCA patients to every drug in the CTRP database11. An
overview of the approach used for obtaining patients ground-
truth sensitivity estimates is provided in Fig. 1a, b. It is important
to note that the higher the AUC-DRC, the lower the drug
sensitivity since a higher concentration of the drug is required for
it to be effective and vice versa.

Analytical pipeline for whole slide image analysis and
predictive modelling
To explore the association between cellular and histological
patterns contained in WSIs and patient tumour’s sensitivity to
different drugs, we propose an end-to-end DL pipeline that takes
WSI of a patient as input and predicts the sensitivity of 427
compounds as output. An overview of the proposed framework
is provided in Fig. 1c. We employed our in-house SlideGraph1

pipeline37 that first constructs a graph representation of the WSI
and then uses a graph neural network (GNN) to predict node-
level (patch-level) and WSI-level sensitivity of a patient to all the
compounds (compounds listed in Supplementary Data 1). The
node-level scores are then used to identify regions within the
WSI that contribute to high or low sensitivity. This gives insight
into different types of cells present in the tumour microenviron-
ment (TME) in a spatially resolved manner as shown in Fig. 1c, d.
In this study, we utilised WSIs of TCGA-BRCA patients (n= 551)
that have gene expression-based imputed sensitivity score for all
427 drugs. Finally, we developed an interactive web interface
called Histology image-based Drugs Sensitivity Prediction (HiDS),
that allows users to analyse spatially resolved contribution of
different regions of the WSI towards predicted sensitivity

estimates. The interactive web interface can be accessed at
(http://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiDS).

Prediction of drug sensitivity from whole slide images
Our predictive analysis shows that patient sensitivity to several
compounds can be predicted from histology images with high
Spearman correlation coefficient (SCC) values and significant p
values, as shown in Fig. 2. It can be observed that for 186 out of
427 drugs, the sensitivities predicted by our model are
significantly correlated (p � 0:001) with the ground-truth sensi-
tivity estimates, and for the top 10 drugs the mean SCC values are
above 0.5. Detailed results for all compounds are provided in
Supplementary Data 2 and 3. This shows that the responsiveness
of the patient’s tumour to many compounds can be inferred from
their histological imaging profile. In addition, we have also
provided the results of different ablation studies such as
restricting the analysis to only tumour regions of WSIs, using
domain-specific feature representations, leaving one site out of
validation, and using high-quality vs all WSIs in supplementary
materials (Supplementary Figs. 1 and 2).

Association of drug sensitivity with spatially resolved cellular
and histopathological phenotypes
Pathological assessment of TME in breast cancer plays a pivotal
role in predicting tumour behaviour and treatment outcome38.
The proposed graph-based approach allows the highlighting of
spatially localised morphometric patterns associated with the
sensitivity of different drugs using node-level prediction score as a
guiding signal. Figure 3 shows some example heatmaps high-
lighting the contribution of different regions of the WSI towards
the predicted sensitivity of the patient’s tumour to paclitaxel and
tamoxifen. For both drugs, an example WSI and a heatmap are
shown for a highly sensitive tumour and a relatively insensitive
tumour. The heatmaps show the relative contribution of different
regions of the WSI towards the predicted sensitivity estimate of
the tumour to a certain drug using pseudo-colours, with dark red
colour indicating regions contributing to high sensitivity and dark
blue colours corresponding to regions contributing to the
prediction of low sensitivity. From the high and low contributing
regions, we extracted some sample regions of interest (ROIs)
outlined by red and blue colour, respectively, in Fig. 3. The figure
illustrates that ROIs associated with high sensitivity to paclitaxel

Fig. 2 Predictibility of patient tumour sensitivity to different compounds from histology images. a Scatter plot showing the correlation
between histology image-based predicted sensitivity and gene expression-based imputed drug sensitivity using Spearman correlation
coefficient (SCC) as performance metric. The mean SCC across 5-fold cross-validation is shown along x-axis with its corresponding -log10 (FDR
corrected p value) along y-axis. Each dot represents a particular drug and its colour represents the statistical significance of the alignment
between the predicted score and ground-truth value. The diamonds highlight the top 10 drugs whose histology image-based-predicted
sensitivity closely matches with ground-truth values in terms of SCC. b Boxplot showing the distribution of SCC across 5-fold cross-validation
for the top 10 best-predicted compounds from histology images. Boxes show quartile values while whiskers extend to data points within 1.5×
interquartile range. The black horizontal line in each box represents the median of the distribution, while the white dot represents the mean
of the distribution.
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exhibit relatively high proportions of tumour cells as well as
lymphocytes. Conversely, ROIs indicative of low sensitivity to
paclitaxel are characterised by a notable myxoid change in the
stroma.
Regarding tamoxifen, ROIs indicative of high sensitivity are

characterised by tumour cells that have relatively low nuclear
pleomorphism. Conversely, in ROIs indicative of low sensitivity, the
presence of necrosis, increases in mitotic count and cribriform
DCIS (ductal carcinoma in situ) can be observed.

Histological patterns associated with sensitivity to
different drugs
We investigated the association of visual histological patterns in
the WSIs with the sensitivity of drugs by identifying exemplar
patches (of size 512 ´ 512 pixels at a spatial resolution of 0.25
microns-per-pixel) for the high and low sensitivity of each drug

using clustering. For these patches, we also computed the cellular
composition (counts of neoplastic, inflammatory, connective, and
epithelial cells), overall cellularity and mitotic counts. These visual
patterns or histological motifs can be used as a potential indicator
to guide therapeutic decision making. Figure 4 shows representa-
tive patches for patients showing high or low sensitivity to
paclitaxel and tamoxifen. The most prominent feature in patches
representative of high sensitivity to paclitaxel is sheets of
pleomorphic tumour cells. In addition, some patches also exhibit
evidence of necrosis and lymphocytic infiltration. In contrast,
dense sclerotic stroma is the most consistently observed feature
across patches representative of low sensitivity to paclitaxel.
Regarding tamoxifen, we observed similar histological patterns
relating to high sensitivity as the ones present in patches
predicting low sensitivity to paclitaxel. For example, both
tamoxifen high sensitivity and paclitaxel low sensitivity

Fig. 3 Illustration of different histological patterns within the WSIs associated with patient sensitivity towards Paclitaxel and Tamoxifen.
Example WSIs and their corresponding heatmaps are shown for patients being either highly or lowly sensitive to these drugs. The heatmaps
use pseudo-colours (blue to red) to highlight the spatially resolved contribution of different regions of the WSI towards the predicted
sensitivity. Bluer and redder colour respectively indicate regions of the WSI that contribute the most towards deciding low or high sensitivity.
From the WSIs, we extracted magnified versions of regions of interest (ROIs), indicated by the black circles within the WSIs, that are associated
with high and low sensitivity of a certain drug. ROIs outlined in red colour are indicative of high sensitivity, while those outlined in red blue
colour are indicative of low sensitivity of a certain drug. For an interactive visualisation, please see: tiademos.dcs.warwick.ac.uk/bokeh_app?
demo=HiDS.
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representative patches are more sclerotic with less pleomorphic
tumour cells. However, in patches indicative of patient low
sensitivity to tamoxifen the cells are more pleomorphic with some
evidence of necrosis.
In addition to paclitaxel and tamoxifen, Supplementary Table 1

lists several other compounds along with their histological
patterns of sensitivity and insensitivity. The table also provides
information about the gene name of the protein targeted by the
compound, compound activity, and compound FDA approval
status.

Association of drug sensitivity with pathologist-assigned
histological phenotypes
We validated the predicted sensitivity estimates for several drugs
and their associated histological patterns (identified using the
proposed pipeline) by calculating Kendall’s tau correlation
between image-based predicted sensitivities of drugs and
pathologist-assigned WSI-level histological phenotypes. Owing
to the difference in morphology39 and diagnosis40 of invasive
ductal carcinoma (IDC) and invasive lobular carcinoma (ILC), the
two most common histological subtypes, we analysed the

Fig. 4 Representative patches (each measuring 128 × 128 μm) of Paclitaxel and Tamoxifen high and low sensitivity. The bars below each
patch respectively show its cellular composition in terms of relative counts of four different cell types (neoplastic, inflammatory, connective
and epithelial), mitotic counts and overall cellularity (cell counts). Sheet of pleomorphic tumour cells (e.g., R11, R14, R21, R22, R25, R31, R35,
R42 and R45) and necrosis (R13, R24, R33 and R41) can be seen in patches relating to paclitaxel high sensitivity. In patches relating to paclitaxel
low sensitivity and tamoxifen high sensitivity, the consistent feature is dense sclerotic stroma. In patches associated with tamoxifen low
sensitivity, the cells are more pleomorphic (R12, R14, R23, R24 and R33) with some evidence of necrosis (R11, R25, R32, R35 and R42).
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association for each subtype separately. We found IDC patients
predicted sensitivities to chemotherapy drugs (e.g., paclitaxel,
docetaxel, doxorubicin, etc.) positively associated (FDR corrected
Wilcoxon rank-sum test p � 0:05) with cancer grade, mitosis,
inflammation, necrosis, nuclear pleomorphism, epithelial tubule
formation, TIL regional fraction41 and buffa hypoxia score (see Fig.
5a). However, an opposite association was observed for hormonal
therapy drug tamoxifen. For example, tamoxifen is likely to be
more effective for patients with low-grade cancer and reduced
hypoxic tumour features, while paclitaxel is likely to be more
effective for patients with aggressive cancer characteristics.

Regarding ILC patients, the degree of association between
patients’ sensitivity to compounds and pathologist-assigned
phenotypes (Inflammation, TIL regional fraction, nuclear pleo-
morphism, necrosis, and cancer grade) is weaker compared to
IDC patients (see Fig. 5b). For example, ILC patients’ sensitivity to
chemotherapy compounds (e.g., SR-II-138A, paclitaxel, tivanti-
nib, KX2-391 and Fluorouracil) show relatively weak association
with cancer grade compared to IDC patients. In addition, ILC
patients’ image-based predicted sensitivity to chemotherapy
drugs shows negligible association with epithelial tubule
formation (see Fig. 5b).

Fig. 5 Association of drug sensitivity predicted by our model with pathologist-assigned WSI-level histological phenotypes and breast
cancer receptor status. Compounds are shown along x-axis, and histological phenotypes and receptor status are shown along y-axis. Red and
blue colours indicate the degree of association (Kendall’s tau correlation) between the predicted sensitivity of compounds and a specific
histopathological phenotype or clinical marker. Bluer colour show strong negative correlation while strong positive correlation is shown using
dark red colour. Boxes in the heatmap marked with an asterisk (*) indicate a statistically significant association (determined by the two-sided
Wilcoxon rank-sum test, p � 0:05). Panel (a) shows the association for patients with Invasive Ductal Carcinoma (IDC), while panel (b) for
patients Invasive Lobular Carcinoma (ILC). TIL tumour infiltrating lymphocytes, LCIS lobular carcinoma in situ, DCIS ductal carcinoma in situ, ER
estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2.
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For both these subtypes, we also analysed the association
between patient’s gene expression-based imputed sensitivity to
compounds and histological phenotypes, and we observed
roughly similar association patterns (see Supplementary Fig. 3)
to those seen when using image-based predicted sensitivity.

Association of drug sensitivity with Receptor status
We analysed the association of image-based predicted
sensitivity with routine breast cancer clinical markers (ER, PR
and HER2 status) with the end goal of explaining the model-
predicted sensitivity in terms of these markers. As expected,
we found that patients’ sensitivity to compounds can be
explained in terms of these markers. For example, for IDC
patients, we found their image-based predicted sensitivities to
most of chemotherapy drugs (e.g., paclitaxel, docetaxel, etc.) to
be negatively associated with ER and PR status (see Fig. 5a).
However, we found a positive association between patients’
sensitivity to tamoxifen (a hormone therapy drug) and their ER/
PR status. These results are in line with previous studies that
have reported the effectiveness of tamoxifen in low-grade ER-
positive patients treated with tamoxifen42,43. Regarding ILC
patients, we see a small degree of positive correlation between
ER positivity and tamoxifen sensitivity, while for chemotherapy
drugs, we see a negative correlation, as can be seen in Fig. 5b.
Finally, for both IDC and ILC patients, our analysis does
not show significant association (FDR corrected Wilcoxon
rank-sum test, p � 0:05) between patients’ image-based
predicted sensitivity to compounds and their HER2 status
(see Fig. 5b).

Correlation of drug sensitivity with cellular composition
We analysed the relative proportion of neoplastic, inflammatory,
connective and epithelial cells in WSI patches contributing to high
and low sensitivity, as shown by a radar plot of the various cellular
counts in Fig. 6. For all drugs other than tamoxifen, image patches
representative of high sensitivity have a relatively higher
proportion of inflammatory cells compared to patches associated
with low sensitivity. Apart from inflammatory cells, the sensitivity
of different compounds shows an association with different
patterns of cellular composition. For example, paclitaxel and KX2-
391 show high sensitivity when the counts of neoplastic cells are
relatively higher. As for the remaining drugs, the counts of
neoplastic cells do not show notable differences in high- and low-
sensitive groups. Similarly, BI-2536, Dinaciclib, Paclitaxel, and
Leptomycin B show high sensitivity when the count of normal
epithelial cells is relatively low, while the remaining drugs show
high sensitivity when epithelial cells are higher in number. Among
the listed drugs, a different pattern is shown by tamoxifen, which
is highly sensitive when the normal epithelial cell count is
relatively high, whereas its sensitivity is low in tumour-rich regions
(i.e., patches with relatively high neoplastic cell counts with almost
no normal epithelial cells). Finally, for all compounds (except
Dinaciclib, Tivantinib, and Leptomycin B), high-scoring patches of
sensitivity/insensitivity show significant (FDR corrected p ≪ 0.05)
differences in patch-level connective cell counts (see Supplemen-
tary Fig. 4).

Correlation between drug sensitivity and inflammatory to
neoplastic cell ratio
We assessed the association between patch-level inflammatory to
neoplastic cell count ratio (INCCR) and sensitivities of several

Fig. 6 Radar plots of drug sensitivity and cellular composition. The plots show the association of relative counts of different type of cells
with high and low sensitivity to a certain drug. Each axis of the plot represents a particular cell type, and the length of the axis shows their
counts on a log scale. For example, the radar plot of Paclitaxel shows that patients who are highly sensitive to Paclitaxel have relatively higher
numbers of inflammatory and neoplastic cells compared to those who are less sensitive.
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drugs. We found that most chemotherapy drugs show high
sensitivity when the patch-level INCCR is higher, whereas the
opposite is true for tamoxifen, a hormonal therapy drug (see Fig.
7a). We validated our findings statistically using Wilcoxon rank-
sum test. Notably, for most compounds (except paclitaxel and
tamoxifen), patches associated with high sensitivity exhibit
significantly (p � 0:05Þ higher INCCR compared to patches
associated with low sensitivity.

Correlation between drug sensitivity and patch-level
mitotic counts
We examined how patch-level mitotic counts are related to the
sensitivity of various drugs. Our analysis shows that most
chemotherapy drugs tend to be more sensitive when the patch-
level mitotic counts are higher, whereas the opposite is true for
tamoxifen (a hormonal therapy drug), which shows high
sensitivity when patch-level mitotic counts are lower, as can be
seen in Fig. 7b. For example, patients’ shows high sensitivity to
paclitaxel when patch-level mitotic counts are relatively higher.
We validated these findings statistically using Wilcoxon rank-sum
test. Apart from doxorubicin, all drugs listed in the figure show
significant (p � 0:05Þ difference in patch-level mitotic counts
between patches associated with high and low sensitivity.
We also analysed the association of compound sensitivity with

patch-level interaction of mitotic counts and INCCR using a
regression model (see Methods section ‘Cellular composition and
statistical analysis’). For most compounds (except tamoxifen and
LE-135), we found that patch-level mitotic counts and INCCR have
a joint multiplicative effect on drug sensitivity (FDR corrected
p � 0:05) (see Supplementary Table 2) over and above their direct
effects on sensitivity.

DISCUSSION
In this study, we proposed a deep learning pipeline to predict the
sensitivity of breast cancer tumours to various drugs from WSIs. To
explicitly model the local and global histological patterns in WSI,
we employed our recently proposed SlideGraph1 pipeline37,
which constructs a graph representation of the WSI first, and
then train a GNN that predict WSI-level sensitivity while also
highlighting the spatially resolved contribution of different
regions within the WSI. We analysed the performance of
SlideGraph1 in predicting the sensitivity of TCGA breast cancer
patients to 427 drugs using only routine H&E histology images.
Almost one-half (186 out of 427 drugs) showed a statistically
significant correlation (p � 0:05Þ between the patients’ predicted
sensitivity to the drugs based on histology images and their
imputed sensitivity based on gene expression. Moreover, we also
identified histological patterns associated with high and low
sensitivities to several drugs in terms of cellular composition,
mitotic counts and histological motifs.
The proposed approach is fundamentally different from other

approaches that predict patient sensitivity to different drugs by
associating genomic and pharma data from cancer cell lines using
ML14,16. Most of these methods aim to discover patterns of gene
expression that play a role in determining patient responsiveness
to a particular drug. To the best of our knowledge, this is the first
study to associate the sensitivity of anti-cancer drugs with tissue
phenotypic information from routine histology images. We
anticipate that direct association of drug sensitivity with
histological profiles will help in discovering new histological
patterns that can be analysed by a pathologist to assist with
therapeutic decision making for individual patients. The ground-
truth sensitivity estimates used for training our histology-based
model were obtained using a model trained on pharmacoge-
nomic data of cancer cell lines. The motivation behind using

Fig. 7 Association of drugs sensitivity with neoplastic to inflammatory cell count ratio (INCCR) and mitotic counts. Plots showing the
association of compound sensitivity with a inflammatory to neoplastic cell counts ratio (INCCR) and b mitotic counts. Compounds are shown
along x-axis, while the distribution of INCCR/Mitotic count is shown long y-axis. Red and blue colours represent the high- and low-sensitive
groups, respectively. Compounds with * next to their name show statistically significant differences (two-sided Wilcoxon rank-sum test,
p � 0:05) in INCCR (in case of a) and mitotic counts (in case of b) between patches indicative of high and low sensitivity.
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cancer cell line for ground-truth sensitivity estimates is that it
allows virtual screening of patients for a large number of
compounds in a relatively short time and with minimal cost. We
analysed the effectiveness of the proposed method on breast
cancer data only, but it can be extended to other cancer types,
subtype or patient populations examined by the investigator.
Finally, the proposed pipeline allows virtual screening of cellular
response of biological specimens to lead compounds studied
during drug discovery.
The employed image-based sensitivity prediction approach

allows mapping patient WSI-level drug sensitivity to localised
cellular and histological phenotypes using model node-level
prediction scores. An illustration of this can be seen in Fig. 3.
For example, for paclitaxel-sensitive tumours, the model has
assigned high score to regions of WSI with relatively high
proportions of tumour cells as well as lymphocytes, which aligns
with previous research demonstrating that tumour infiltrating
lymphocytes (TILs) can act as an independent predictor of a
patient tumour’s sensitivity to chemotherapy drugs44. In contrast,
for paclitaxel insensitive tumours the model has assigned high
score to regions of WSI that exhibit a significant myxoid stromal
alteration, a characteristic previously found associated with
unfavourable overall survival (OS) and relapse-free survival (RFS)
in triple-negative breast cancer45. Similarly, for tamoxifen, a
hormonal therapy drug, the model has associated regions of the
tumour characterised by low nuclear pleomorphism to sensitivity,
whereas areas of tumour with the presence of necrosis and
increased mitotic activity to insensitivity. This is in line with
previous studies that have found a correlation of necrosis with
larger tumour size and higher cancer grade, and hence it may be
postulated that highly necrotic regions may contribute to
relatively low sensitivity to tamoxifen46. This analysis shows that
the proposed approach has associated relevant histological
features in the WSIs with the sensitivity and insensitivity of drugs.
Despite the promising results, the proposed approach has

several limitations. Similar to other studies aimed at analysing
response to drugs19,47,48, the ground-truth sensitivity estimates
used by our method are obtained based on gene expression data.
While other studies48,49 have shown that drug sensitivity estimates
based on gene expression profile are accurate and useful,
extensive validation is still needed as gene expression may not
be the only factor responsible for drug sensitivity. For example,
epigenetic factors and proteomic expression changes can impact
drug sensitivity without having any direct gene expression
change. Another fundamental limitation stems from the use of
ground-truth sensitivity estimates inferred from cancer cell lines
which, while being low cost and high throughput, lack the
microenvironment components that are known to influence
response to therapy50.
Besides this, while we have demonstrated that the proposed

approach can accurately predict patients’ sensitivity to several
compounds from WSIs, it is important to highlight that the model
is still not able to predict the sensitivity of all compound classes.
For example, the model predictions for HER2-inhibitors such as
Lapatinib, Erlotinib, Afatinib, Canertinib, and Neratinib consistently
show low median Spearman correlation values of 0.20, 0.18, 0.33,
0.31, and 0.29, respectively. This could potentially be attributed to
the poor predictability of HER2 status from WSIs of H&E-stained
tissue section shown by the previous study35. This limitation could
also explain the weak association between image-based predicted
sensitivity of compounds and HER2 status (Fig. 5), even though
gene expression-based imputed sensitivities of compounds show
an association with HER2 status (Supplementary Fig. 3).
Deep learning has been proven valuable in predicting cancer

subtypes23,24, patient survival26, mitosis detection27, DNA methy-
lation patterns28, cellular composition29, and tumour mutation
burden31 from WSIs of H&E-stained tissue sections. Taking a step
forward, this proof of principle study has demonstrated that deep

learning can predict patients’ sensitivity to a number of
compounds from routine histology images. We validated the
proposed approach extensively through site-independent valida-
tion (Supplementary Fig. 1d), associating our model-predicted
sensitivities with pathologist-assigned histological phenotypes
and IHC-evaluated receptor status, and hypoxia scores. However,
the proposed approach still needs a more stringent validation on a
large multi-centric independent cohort from a randomised control
trial (RCT) before going to clinical implementation.

METHODS
Ethics statement
All samples used in the study were obtained with research
consent and ethics approvals as indicated in the consent and
ethics statements for the Cancer Genome Atlas (TCGA)51,52, CCLE9

and CTRP11.

Acquisition of whole slide images and drug-response data
We collected 1133 WSIs of Formalin-Fixed Paraffin-Embedded
(FFPE) H&E-stained tissue section of 1084 breast cancer patients
from the Cancer Genome Atlas (TCGA)51,52. The gene expression
profile-based drug sensitivity estimates of 936 TCGA breast cancer
patients for 427 compounds were obtained from the work of
Gruener et al.15. To limit the impact of various artefacts, we
excluded WSIs that met any of the following criteria: (1) containing
extensive blurry areas; (2) having abnormal staining with minimal
informative tissue regions; or (3) lacking baseline resolution
information. After filtering, in total we used WSIs of 551 patients
along with their imputed sensitivity to 427 drugs in our analyses.

Pre-processing
For each WSI, we first identify the viable tissue areas and exclude
regions with artefacts (such as pen-marking or tissue folding) by
applying a U-Net-based segmentation model from the TIATool-
box53. The output tissue mask from the model highlights viable
tissue regions with non-zero-valued pixels, whereas background
and regions with artefacts are represented by zero-valued pixels.
Based on these tissue masks, we extract patches of size 512 ´ 512
pixels at a spatial resolution of 0.25 microns-per-pixel (MPP) from
each WSI. We only keep patches (both tumour and benign) that
have more than 40% of viable tissue in terms of proportion of
pixels in a patch. We analysed both tumour and non-tumour
patches based on the hypothesis that patients sensitivity to
compounds can be influenced by interactions among different cell
types (including stromal cells) in the TME54–56.
The target drug sensitivity data are converted into z-score prior

to prediction with high sensitivity corresponding to lower AUC-
DRC for that compound and vice versa.

Graph modelling of whole slide image
A graph is defined by a set of nodes or vertices V , and an edge set
E. In the context of this application, the set V ¼ viji ¼ 1; ¼Nf g
consists of set of patches contained in the WSIs. Each node vi ¼
gi;hið Þ encodes the spatial location (gi) and feature representation
(hi) of a patch, where hi 2R1024 is 1024-dimensional feature
representation of a patch extracted from ShuffleNet57 pretrained
on ImageNet58. The edge set E is obtained by linking each node
with their neighbouring nodes (within 4000 pixels) using Delaunay
triangulation. An edge eij 2 E exists in the set E if two nodes vi and
vj are connected.
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Prediction of drug sensitivity using Graph Neural
Network (GNN)
We utilise a GNN to predict node-level and WSI-level sensitivity of
patients to a set of drugs D from their corresponding WSI-graphs.
More specifically, we used SlideGraph1 with slightly modified
architecture37. The multi-output GNN model predicts patch-level
and WSI-level sensitivity of patients to D different drugs in an end-
to-end manner. Node-level representation (feature embedding of
a patch) undergoes a series of EdgeConv layers L ¼ 1; 2; 3f g. In
each EdgeConv layer59, the representation of each node in the
graph is updated by gathering information from its neighbouring
nodes using message passing. This aggregation process generates
embeddings that are utilised in the subsequent layers. The output
embedding of an EdgeConv for a node at index m in layer l can be
mathematically written as follows:

hl
m ¼

X

k2N mð Þ
Hl hl�1

m khl�1
k � hl�1

m

� �

In the above equation, the term h0
m is the initial embedding of

node m which is equivalent to hm. The symbol N mð Þ represents
the neighbouring nodes of m and Hl denotes a multi-layer
perceptron at layer l. The EdgeConv operation updates the feature
representation of a node hl

m by aggregating information from its
neighbouring nodes N mð Þ. In the case of Lj j ¼ 3, each node is
expected to gather information from the neighbouring nodes that
are 4-hops apart in the WSI-level graph.
The node-level embedding hl

m of a node vm ¼ gj;hj

� �
2 V is

passed as input to a multi-layer perceptron f l vmð Þ ¼ f hl
m

� �
for

generating node-level prediction score. The patch-level prediction
score of patient sensitivity to different drugs can be obtained by
aggregating node-level prediction score across all layers
f vmð Þ ¼ PL

l¼0 f l vmð Þ. WSI-level prediction score FðGÞ is then
obtained by pooling and aggregating node-level prediction score
F Gð Þ ¼ P

8m2V f vmð Þ.
The trainable parameters of both EdgeConv layers and node-

level regressor are learned in an end-to-end manner using
backpropagation. During training, for a batch of size N ¼ 16
patients, the predicted sensitivity values for d ¼ f1¼Dg drugs
are compared with ground-truth values using pairwise ranking
loss, mathematically formulated as follows:

L ¼
X

d

X

ða;bÞ2Pd
max 0; 1� Fd Gað Þ � Fd Gbð Þ� �� �

In the above formulation, Pd ¼ a; bð Þjyda > ydb; a; b ¼ 1¼ :N
� �

represents all pairs (a, b) where the ground-truth sensitivity
estimate of patient a is greater than patient b for drug d.
Minimising the loss function will enforce the model to rank highly
sensitive patients higher than the low-sensitive ones for all drugs.

Model training and evaluation
We trained and evaluated the performance of the proposed
method using 5-fold cross-validation in which the data were
partitioned into non-overlapping 80/20 training and test splits. For
validation, we randomly selected 20% data from the training set
and use it for parameter tuning and optimisation. We trained the
model for 300 epochs using adaptive momentum-based optimi-
ser60 with a learning rate of 0.001 and weight decay of 0.0001 on
the training set using a batch size of 16. We stopped the model
training if the validation loss was not minimising over 20
consecutive epochs. During training, we used a queue of size 10
and put the best model in the queue based on its performance
over the validation set. For the test set, we aggregated the scores
of the 10 best models from the queue to obtain a final prediction
score. To evaluate the model performance for a given drug on the
test set, we computed SCC value between the ground-truth and
predicted sensitivity values with its associated p value. For a given

drug, the p value associated with SSC values across multiple cross-
validation runs was combined by calculating twice the median p
value (p50) as a conservative estimate for statistical significance61.
For predictive performance evaluation, we used the p value and
mean SCC as performance metrics.

Identification of histological patterns associated with drug
sensitivity
To identify histological patterns associated with high and low
sensitivity of a certain drug, we divided patients into two classes
(high sensitivity and low sensitivity). For each class, we selected
top 50 patients based on absolute difference between imputed
sensitivities and model-predicted sensitivities. From the WSIs of
patients belonging to highly sensitive groups we extracted the
highest-scoring (based on node-level score) 1% patches, while for
low-sensitive cases, we extracted the lowest-scoring 1% patches.
Within each class, we then clustered the patches to uncover visual
patterns associated with high and low sensitivity using 25-medoid
clustering62. After clustering, we obtained 25 visual patterns
representative of high and low sensitivity of a certain drug.

Cellular composition and statistical analysis
We analysed the cellular composition of high and low-scoring
patches in their respective high- and low-sensitive group using
our in-house state-of-the-art cellular composition predictor
ALBRT29. For a given patch, ALBRT generated a four-dimensional
vector representing the counts of neoplastic, inflammatory,
connective, and epithelial cells present in a patch. ALBRT was
originally trained on patches of size 256 ´ 256 pixels at a spatial
resolution of 0.25 MPP, so we tiled each patch of size 512 ´ 512
pixels into four subpatches and aggregated the ALBRT predicted
cellular composition. The patch-level inflammatory to neoplastic
cell ratio was computed based on the cellular composition. This
was done by dividing the count of inflammatory cells by the sum
of neoplastic and inflammatory cell counts.

Estimation of mitotic counts
The mitosis detection was done using the state-of-the-art mitosis
detection method called MDFS (mitosis detection: fast and slow)63.
The MDFS method follows a two-stage approach to detect mitotic
candidates. It first detects the mitotic candidates using a
convolutional neural network (CNN) and then subsequently
refines the prediction by training a CNN classifier. For more
details, interested user is referred to MIDOG challenge paper27.
After detecting the mitotic figures, we estimated the patch-level
mitotic counts by counting all the detected mitoses in the patch.

Multivariate regression analysis of mitotic counts/INCCR and
compounds sensitivity
We analysed the combined effect of patch-level interaction of
mitotic counts and INCCR on compounds sensitivity using a
logistic regression model. Specifically, for each compound we
extracted the top 1% highest-scoring patches (based on node-
level scores) from WSIs of highly sensitive cases, and the bottom
1% lowest-scoring patches from WSIs of low-sensitivity cases. We
then employed a logistic regression model that uses patch-level
mitotic counts, INCCR, and their interaction (INCCR × mitotic
count) as features, and the class label of patch as target (i.e., 1 for
highly scoring patches of sensitivity, while 0 for insensitivity). For
each compound, the combined effect of mitotic counts and INCCR
on sensitivity was subsequently deduced from the regression
coefficients learned by the model.
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Predicting drug sensitivity exclusively based on tumour
regions within WSIs
We assessed the predictability of drugs sensitivity using only
tumour tiles of the WSIs as an ablation experiment. The tumour
tiles were selected using ALBRT patch-level neoplastic-epithelial
cell proportion as proxy. Specifically, a patch is labelled as a
tumour patch if the proportion of neoplastic cells within a patch is
above 5%. Following this criterion, we stratified the tissue content
into tumour and non-tumour regions, and subsequently analysed
the predictive performance of SlideGraph1 using the same
experimental setup and evaluation protocol as employed for the
model trained on both tumour and non-tumour patches.

Predicting drug sensitivity using latent representation from
model pretrained on histology images
Self-supervised learning (SSL) is emerging as a promising method
for extracting robust representation from WSI. A recent study64

has shown that using latent representation from a model trained
on histology images in a self-supervised manner can predict the
mutation status of a number of genes with higher accuracy
compared to using representation from a model pre-train on
natural images (i.e., ImageNet). Inspired from this, as an ablation
study, we assessed the predictability of sensitivity of different
drugs using latent representation from RetCCL, a model trained on
histology images65. As RetCCL was originally trained on patches of
size 1024 ´ 1024 pixels at a spatial resolution of 0.50 MPP,
therefore, for obtaining patch-level embedding we extracted the
WSI patches at the same dimensions and magnification. We then
used same experimental setup and evaluation protocol, as
employed for ShuffleNet representation57,58.

Analysis of batch effects
A reason for batch effects that are introduced in the WSIs is
domain shift. As WSIs in the TCGA-BRCA cohort are from different
source site, and each site is likely to use different staining protocol
and scanner, resulting in different staining characteristics which
can be exploited by the deep learning model. A common
approach to remove the stain variability is stain normalization.
However, in our recent study, we have shown that the majority of
stain normalization methods fail to remove site-specific signa-
ture66. Consequently, to determine the effect of variations in WSIs
across sites on the predictive accuracy of the model, as an ablation
study, we trained and evaluated the model performance using
leave one site out (LOSO) cross-validation. Specifically, we selected
the top 8 sites with at least 5% samples in the dataset belonging
to that site. We then assessed the model performance by training
the model on data of all sites and left one site out for testing. As a
performance metric, for each drug, we reported the mean
Spearman correlation across all testing sites.

Analysing the predictability of sensitivity of drugs sensitivity
without filtering WSIs
Apart from analysing the predictability of compounds’ sensitivity
using high-quality WSIs from the previous study67, as an ablation
study, we also analysed the model performance on the whole
TCGA-BRCA cohort of 936 patients. We hypothesise that if the
model is robust, it would still be able to map relevant histological
patterns in patients’ WSIs and their sensitivity to compounds,
potentially avoiding a significant drop in model predictive
performance.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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