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Abstract
1. Limited attention from the modelling community has been given to ecological ap-

proaches which aim to predict geographical patterns of malaria by accounting for 
the joint effects of different vectors and environmental drivers.

2. A hierarchical multivariate joint spatial Gaussian generalised linear model was de-
veloped to provide joint parameters inference and mapping of counts of Anopheles 
gambiae, An. funestus, An. nili and malaria incidence collected in an area of Cote 
d'Ivoire. Variable- selection methods were applied to select important predictors 
for each mosquito species and malaria incidence.

3. The proposed joint model led to a general reduction of the variance in the esti-
mates compared to independent modelling. There was high variability in the com-
position of Anopheles mosquito species in the villages with each species suitability 
only partly overlapping geographically.

4. Abundances of An. gambiae, An. funestus and An. nili were primarily determined 
by temperature. None of the species were found as a significant predictor for 
the others. Anopheles gambiae was the predominant species and only An. gam-
biae female abundance was an important variable (linear predictor) for malaria 
incidence. However, the geographic correlation analyses show that the rest of 
Anopheles species are likely playing a role in malaria suitability.

5. Residuals from the models of mosquito abundance and malaria cases are also cor-
related with each other and overlapping but in geographic patches, meaning that 
local drivers of vector- malaria suitability are still present and not represented by 
the predictors used in the model.

6. Synthesis and applications: Joint modelling improve predictive estimation com-
pared to individual modelling. The accurate predictions highlighted high diversity 
in the association between malaria and vector species, with most of the area hav-
ing more than one species suitability correlated with malaria suitability. These 
zones are unlikely to benefit from species- specific interventions. Areas with 
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1  |  INTRODUC TION

Despite a major decrease in malaria cases in the last two decades, 
the progress has stalled since 2015 (Noor & Alonso, 2022) and ma-
laria remains the most important vector- borne disease in Africa 
(World Health Organization, 2022). Malaria has a significant socio- 
economic impact in Côte d'Ivoire (Tchicaya et al., 2014); in fact, de-
spite more than 50% of the population having access to long- lasting 
insecticide- treated nets (LLINs) or indoor residual spraying (IRS; 
World Health Organization, 2020), approximately 8 million cases of 
malaria were reported in 2018 (the same year of this field study; 
World Health Organization, 2019). In Côte d'Ivoire, and West Africa 
generally the main malaria vectors are Anopheles arabiensis, An. colu-
zzii, An. funestus and An. gambiae though their relative importance 
varies in space and time (Adja et al., 2011).

Environmental factors are major drivers of mosquito and malaria 
distribution (Dossou- yovo et al., 1995). For this reason, differences 
and similarities in environmental effects for each vector and malaria 
can be implemented in joint models in which individual models for 
malaria and vectors are optimised together by defining statistical 
dependencies between the individual models rather than being op-
timised independently. One of these dependencies is the explicit 
spatial correlation, that is malaria and vectors have their own spatial 
variation, part of which may be considered shared between them. 
Understanding this shared variation is the focus of this study with 
the aim to improve targeted surveillance and control by delineating 
areas that can be prioritised for interventions based on the num-
ber of vectors involved and their relative risk, and areas in need of 
future sampling and investigation in terms of local factors (Finley 
et al., 2014; Liu et al., 2017) that were missed in the modelling but 
that contributes at the local malaria transmission. The identification 
of this shared component is mostly neglected in previous literature, 
but is key for detailed understanding of the spatial patterns in the in-
teractions between malaria and vectors. For this reason, we have de-
veloped a framework for joint Gaussian spatial processes (FJGS) as a 
hierarchical multivariate joint spatially- explicit Gaussian generalised 
linear model to capture and quantify shared spatial and individual 
risk factors effects (for mosquitoes species and malaria). This was 
followed by the co- regionalisation analyses of vectors and malaria 
suitabilities, to identify geographical clustering of common drivers 
and hidden local risk factors that can inform geographically targeted 

interventions (Attoumane et al., 2020; Handique et al., 2016; Russell 
et al., 2013; Zhou et al., 2007). Co- regionalisation between vectors 
and malaria predicted by both fixed effects (the proportion of vari-
ance explained by the environmental variables) and residuals has not 
been investigated before for malaria.

This analysis is applied to field data collected from the region of 
Agboville in Côte d'Ivoire, an endemic malaria area with different 
Anopheles vectors playing a role in the local malaria transmission al-
though poorly understood.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Agnéby- Tiassa region, southern Côte d'Ivoire, is divided into four 
departments: Agboville, Taabo, Tiassalé and Sikensi (Figure 1). This 
region is located in the evergreen forest zone with altitude between 
30 and 100 m above sea level. The climate is characterised by four 
seasons: a long rainy season (April–July), a short dry season (August–
September), a short rainy season (October–November) and a long 
dry season (December–March). Average temperature is around 27°C 
and average rainfall is 120 mm. Relative humidity ranges from 70% 
to 85%. The region is characterised by a diverse hydrographic net-
work dominated by the Bandama and N'zi rivers. The primary activ-
ity of the rural population is agriculture, focused on cocoa, rubber, 
vegetable and irrigated rice fields, usually with heavy use of pesti-
cides. Malaria transmission occurs mainly during the rainy seasons, 
between April and November.

2.2  |  Entomological collections

Entomological collections were carried out from September to 
November 2018 following an optimised ecological spatial sampling 
design described in Sedda et al. (2019). Within this framework, 30 
villages were selected within an area of 60 by 60 km (Figure 1). A 
total of 120 houses (four houses per village) were randomly selected 
for mosquito collection.

Mosquitoes were collected during four consecutive nights every 
2 weeks for 10 weeks (five collection rounds in total), using CDC light 

correlated malaria and vector species suitability residuals contain local informa-
tion, not included in the model, that requires further investigation. This will iden-
tify additional communal malaria and vectors factors that need to be considered 
for optimal malaria control and elimination strategies since these factors are ex-
pected to be linked to the local malaria transmission.

K E Y W O R D S
Anopheles, co- occurrence mapping, geostatistics, joint vector- disease modelling, malaria, 
remote sensing, targeted interventions
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traps (Model 512, John W. Hock Company, Gainesville, FL) making 
a total number of 600 collection records (4 houses × 30 villages × 5 
collection times; Kouame & Edi, 2023).

For each village, a member of the community was trained in the 
use of the traps and sampling protocol. The order of house collec-
tion was randomised before each collection to remove systematic 
biases. Traps were positioned at a height of 1.5 m in sleeping rooms 
and operated on 12- V battery power from 8:00 PM to 6:00 AM. Each 
morning, mosquitoes were collected, stored in ziplock bags contain-
ing silica gel and transported immediately to the laboratory of the 
Centre Swisse de Recherchers Scientifiques in Tiassalé for morpho-
logical identification using available keys in the literature (Becker 
et al., 2010; Gillies & Coetzee, 1987).

2.3  |  Malaria incidence collection

Malaria incidence, confirmed malaria cases and census population 
size of each sampled village were obtained from the regional public 
health centre of the department of Agboville. Malaria information 

for 2018 was available for 17 rural public health centres covering 25 
out of 30 villages.

2.4  |  Environmental variables

Environmental data were sourced from both satellite and weather 
stations at different spatial resolutions in order to account for dif-
ferent scale effects (see Table S1 in Supporting Information). For 
each village in the study, hourly climatic data were used to calcu-
late weekly averages, minima and maxima at 500- m resolution (see 
Table S1). We also included 30- m resolution global land cover clas-
sification (an alternative at higher spatial resolution is available at 
https:// 2016a frica landc over2 0m. esrin. esa. int/ ), satellite- detected 
elevation and bioclim precipitation. Moderate resolution imaging 
spectroradiometer (MODIS) satellite products monthly temperature, 
enhanced vegetation index (EVI) and the ratio of actual to potential 
evapotranspiration (ET) were included in the dataset. Finally, for all 
the variables with the exception of land cover, bioclim precipitation 
and elevation, amplitude and variance at their original spatial and 
temporal scales were calculated. Amplitude is a measure of the over-
all variability, therefore large values are associated with large fluctu-
ations. All these variables may have a direct or indirect link with the 
presence of malaria vectors (Lindsay & Bayoh, 2004) and with ma-
laria incidence in West Africa (Arab et al., 2014). Entomological and 
environmental predictors were employed in the variable selection 
step, and those found important were included in the main model.

2.5  |  Ethical approval and field study permissions

The malaria database provides aggregated counts only and not indi-
vidual data, and this did not require ethical approval. For the ento-
mological collections, households were informed about the purpose 
of the survey and a consent form was read and signed by the heads of 
each household before the entomological collection was conducted 
in their houses. The ethical approval for entomological collection 
was obtained from the Comité National d'Ethique des Sciences de la 
Vie et de la Santé (reference number 168- 18/MSHP/CNESVS-  km). 
Ethical approval for secondary data analyses was obtained from 
the Faculty of Health and Medicine Research Ethics Committee at 
Lancaster University (UK) with reference number FHMREC20173. 
This research did not involve animals or interviews with human par-
ticipants and therefore relevant ethical approvals were not neces-
sary. Field work did not need appropriate licences and/or permits, 
apart from the approved ethical application for the entomological 
collection described above.

2.6  |  Statistical analysis

The statistical model herein considers each of the three different 
Anopheles spp. (An. gambiae, An. funestus and An. nili) collected in this 

F I G U R E  1  Study area and survey locations. Each of the 30 
survey locations include four houses which are sampled for 
mosquito collection. Background from OpenStreetMap under the 
Open Database licence (https:// www. opens treet map. org/ copyr 
ight).

https://2016africalandcover20m.esrin.esa.int/
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
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study as a separate Gaussian generalised linear model, as well as ma-
laria incidence for a total of four models. These models are param-
eterised jointly assuming a common unknown spatial process, that 
is, all the models employ the same spatial autocorrelation function.

Predictors are identified by important variable selection (de-
scribed below) for each of the four models separately. Once import-
ant variables were found, the analysis carried on with joint modelling 
of the vectors and malaria models, followed by model evaluation, 
validation and analysis of co- regionalised vector and malaria distri-
butions and co- regionalised residuals. Two vectors or a vector and 
malaria are co- regionalised if their suitability (or residuals) overlap 
in a region. Overlapping is expressed as positive correlation in the 
suitability values.

Statistical analysis was performed in R- cran software (V.4.0.4) 
with packages MuMIn for model selection, bmstdr and spbayes for 
model inference and prediction and coda for convergence testing. 
Each statistical analysis is described in more detail below.

2.6.1  |  Variable selection

Collinearity is common among ecological variables and can lead to 
poor model selection through variable redundancy. Prior to vari-
able selection, we removed those variables with Pearson's corre-
lation coefficient with other predictors above an absolute value 
of 0.6 which is a conservative value compared to the value of 0.7 
usually applied in ecology and found to be a good approach for 
collinearity in ecological studies (Dormann et al., 2013). Of the 60 
predictors, six were found collinear with other variables and then 
removed, keeping those with higher significance in the predictor's 
coefficient and explained variance, and lowest AIC in univariate 
general linear models. For each model, we conducted a variable 
selection analysis by testing all the possible combinations of the 
remaining 54 predictors (36 environmental variables, 2 Anopheles 
and 16 other mosquito species and sex) within a spatial Gaussian 
generalised linear model (statistical form described in the next 
section). The model with the lowest Watanabe–Akaike informa-
tion criterion value (WAIC) is considered to be the best fitting 
(Gelman et al., 2014). WAIC is designed for Bayesian analyses and 
averages over the posterior distribution rather than conditioning 
on a point estimate as in other measures (Ploton et al., 2020). The 
variable selection method used in this work is based on a model 
type that is also employed in the joint modelling to maintain con-
sistent results between the variable selection step and the joint 
modelling. Alternative methods include the use of machine learn-
ing with spatial cross validation to account for spatial autocorrela-
tion in the outcome (Meyer et al., 2019).

2.6.2  |  Joint modelling

The FJGS was implemented within a Bayesian hierarchical multi-
variate joint spatially- explicit Gaussian generalised linear model 

(Sedda, 2023). FJGS was used to model each of the three Anopheles 
species' log counts and malaria incidence as four spatially depend-
ent processes (in other words, mosquito species and malaria are 
dependent on the distance between sampling locations) with com-
mon spatial structure. Using vectorised notation for a spatial model 
with nugget effects (as in section 6.5 of Sahu, 2022), the multivariate 
model can be expressed as

where X is the design matrix containing the values of the covariates, β 
are unknown regression coefficients, ω is a zero mean Gaussian pro-
cess with exponential covariance function (H) with unknown param-
eters common to all models, σ2 is the spatially dependent variance, ε 
is the pure error term or nugget effect, common to all models, which 
follow an independent zero mean normal distribution with variance τ2, 
and I is the identity matrix. The correlation matrix H has elements ob-
tained from the exponential function:

where δ is the distance separating two locations and φ the spatial range 
also known as spatial decay parameter (the distance at which the vari-
ance or autocorrelation between two locations is no longer dependent 
on the distance between the two locations (Cressie, 2015), or in other 
words, the distance at which the spatially dependent variance is equal 
to the sample variance).

The full Bayesian model specification has vague priors for all pa-
rameters, including the spatial term:

where β follows a multivariate normal distribution with mean β0 and 
precision matrix M−1, the precisions for the variances τ2 and σ2, �2
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with subscripts j:
j = 1 for Anopheles gambiae; j = 2 for Anopheles funestus; j = 3 for 

Anopheles nili; j = 4 for malaria incidence in humans.
s the spatial location (i.e. longitude and latitude). Time is an offset 

term expressed in week of survey (Time = 1, …, 5).
Posterior distributions were generated from an adaptive Markov 

Chain Monte Carlo (AMCMC) algorithm (Finley et al., 2015) that up-
dates tuning parameters as it runs. The AMCMC algorithm preserves 
ergodicity and returns valid and effective results (Rosenthal, 2007). 
The AMCMC runs within a Metropolis- Hastings framework 
(Sahu, 2022). Joint modelling is obtained through the ω specifica-
tion, forced to be common to all four models and optimised using 
a metabayes approach (AlShammari et al., 2021; Figure 2), where 
the priors of the ω and ε distributions and β0 parameters are up-
dated every t MCMC chain block (fixed to t = 1000). Acceptance is 
constrained to maximisation of the likelihood in at least three out 
four models, in order to avoid being stuck in a local optimum. The 
AMCMC were run for 100,000 iterations after a burn- in of 20,000 
iterations. Convergence was assessed via Gelman and Rubin's po-
tential scale reduction factor convergence diagnostics, as well as the 
Geweke time series statistic (Plummer et al., 2006). We calculated 
95% credible intervals for each parameter estimate (equal- tailed 
intervals).

The prior specifications, some of them based on cross- 
validation and acceptance rate tests, are: M−1 is a diagonal ma-
trix with diagonal values equal to 0.1, β0 are initially fixed as 

coefficients obtained from a non- spatial generalised linear model 
and later updated during the inference, a = 2 and b = 1 allow for 
finite mean and not- finite variance to have a vague gamma distri-
bution (Sahu, 2022), similarly for p = 2 and q = 0.1. a, b, p and q are 
updated during the inference. u and v are initially selected as the 
2.5% (u) and 97.5% (v) quantile of the distances among all loca-
tions. u and v are updated during the inference.

2.6.3  |  Model evaluation

Model evaluation was performed with the analysis of observed 
versus predicted values for each model via mean error and mean 
squared error. In addition, robustness of the model was assessed 
using cross- validation by leaving out 15% of the data (Vehtari 
et al., 2017) with similar spatial dependence (Roberts et al., 2017). 
In addition, we performed a leave–one–village- out cross valida-
tion repeated for all villages (Meyer et al., 2018). In other words, at 
each cross validation, the data from one village were left- out, the 
model was trained with the other 29 villages and the predictive 
performance of the model was assessed on the left- out village. 
Cross validation assessment was carried out by measuring the root 
mean square error and coverage. Coverage does not measure dis-
crepancy but estimates the proportion of cross- validation left- out 
values that follow within the predicted MCMC samples. As sug-
gested by Sahu (Sahu, 2022), an ideal value of coverage is 95%; 

F I G U R E  2  Metabayes approach used 
to optimise joint parameters.
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higher values may be due to an excessively wide MCMC prediction 
sample interval. In addition, we used the same validation statis-
tics to compare the joint model with the independent models, to 
evaluate if a joint approach is better than running four independ-
ent models.

2.6.4  |  Co- regionalisation analysis

Local correlation between estimated suitability of each vector and 
malaria, and between their residuals, was obtained from moving 
window correlation analyses. Around each grid node, a 5 by 5 km 
window (yielding a total of 10 by 10 cells within the grid resolution 
of 500 m) was superimposed to extract the estimated values of suit-
ability or residuals for the vector and malaria. Once the two datasets 
(suitability or residuals values for vector and suitability or residuals 
values for malaria) were created, the Pearson's correlation was cal-
culated and mapped.

In addition, we delineate areas of high risk as those with suitabil-
ity greater than 0.25 for both the vector and malaria and a correla-
tion larger than 0.1.

3  |  RESULTS

3.1  |  Summary statistics

The mosquito genera trapped during the surveillance were Anopheles 
(45.51%), Culex (29.04%), Mansonia (22.68%) and Aedes (2.76%). 
Species identified were An. gambiae, An. nili, An. funestus, C. nebulo-
sus, C. quinquefasciatus, C. weschei, M. uniformis, M. Africana, A. palpa-
lis, A. vitatus and A. aegypti. All identified mosquitoes are included in 
the analysis as predictors, and only Anopheles are considered as re-
sponse variables. For Anopheles, only female counts are used owing 
to very few males being trapped (Table 1). Anopheles gambiae was 
present in 90% of the villages, An. nili in 27% and An. funestus in 17% 
of the villages (see Table S2).

Anopheles gambiae was caught in 69% of houses, with An. funes-
tus and An. nili being trapped in 8.5% and 12% of houses, respec-
tively. The three species were never collected together at the same 

time in the same house; 52% of the house collections yielded one 
Anopheles species, 18% two species and 30% did not collect any spe-
cies. A high degree of spatial heterogeneity for mosquito species and 
their counts was found across the area and even at short distances 
(Figure 3b–d), while malaria incidence is homogeneously distrib-
uted but not in the centre- west of the region (Figure 3a). Anopheles 
gambiae had the largest collection which increased over time (see 
Figure S1).

3.2  |  Important environmental predictors

Out of the 54 predictors used in the variable selection, four were 
selected for An. gambiae, two for An. funestus, one for An. nili and 
three for malaria incidence (Table 2). Temperature is the predictor 
(risk factor) common to both vectors and malaria (although differ-
ent in nature since some of the temperature predictors are satellite- 
based, and others are from weather stations; Table 2). Apart from 
temperature, the four models show different important variables 
which reflect their different spatial patterns. Other risk factors for 
An. gambiae included land cover, with grassland (lands covered by 
natural grass with cover density over 10%) increasing the number of 
mosquitoes trapped when compared to forest (lands covered with 
trees, the top density of which covers over 10%), while wind speed 
and elevation decreased An. gambiae catches. Female Mansonia uni-
formis mosquito counts were a predictor for female An. funestus; 
while the number of female An. gambiae and vegetation biomass 
amplitude (i.e. variability in vegetation, which may be a proxy for 
land cover changes) for malaria incidence. Therefore, for malaria in-
cidence, the only mosquito species predictor selected by the model 
is An. gambiae female counts (Table 2). In general, none of the vari-
ables are shared between mosquito species. Malaria incidence and 
An. gambiae female share the same temperature variable.

Three predictors show wide credible intervals while keeping 
their statistical significance: land cover, wind speed and An. gambiae 
female counts. This means a higher uncertainty in the contribution 
of these variables to their relative outcome (land cover and wind 
speed for An. gambiae, and An. gambiae female counts for malaria in-
cidence) since their credible intervals contain values that can double 
or halve the outcome.

Min. Median Mean Max
Sum (total 
trapping)

An. gambiae ♀ 0 0 6.472 418 3883

An. gambiae ♂ 0 0 0.010 1 6

An. funestus ♀ 0 0 0.028 3 17

An. funestus ♂ 0 0 0 0 0

An. nili ♀ 0 0 0.085 9 51

An. nili ♂ 0 0 0 0 0

Human malaria (incidence) 0.000 0.128 0.164 0.542 - 

Human malaria (counts) 494 1341 1469 2893 24,978

TA B L E  1  Summary statistics of the 
study populations. For Anopheles, the 
values are per trapping collection. For 
malaria, the values are for the whole year 
2018. ♂ Males and ♀ females.
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3.3  |  The common spatial process for 
vectors and malaria

As described in the methods, the four models had common spatial 
and pure error effects. Their inference was obtained via maximum 
likelihood estimation (Figure 2). The common spatial component 
had a range (defined as the limit for the decay function to control 
the local variance) of 0.125 (Table 2) equivalent to approximately 
14 km. The strong spatial autocorrelation (in other words the vari-
ance that is spatially dependent) can be deduced from the nugget 
to sill ratio (Cressie, 2015). Here, the proportion of the pure error 
(nugget effect) of the total variance (partial sill + nugget effect) is 

6%; therefore, 94% of the variance (not explained by the predictors 
or fixed effects) depends on the location.

3.4  |  Model evaluation and validation

The spatial variance explained a large part of the variation for An. 
nili, almost 48% of the sample variance, but not for malaria inci-
dence, which is only 8% given the common 6% of nugget (Tables 2 
and 3).

The left- out 15% of the data had the vector species and malaria 
incidence spatial dependences within the 95% confidence interval of 

F I G U R E  3  Total number of mosquitoes (female) collected in each house during the survey for An. gambiae (b), An. nili (c) and An. funestus 
(d). Top- left map (a) shows malaria incidence in the villages (not for all the villages the malaria information was available).
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the ones of the entire data (see Figure S2). Therefore, the data used 
for cross validation are representative of the real data.

The model with most uncertainty was the one for An. gambiae 
(highest ME, MSE and RMSE, and largest discrepancy of coverage to 
an ideal 95% for both 15% left- out and leave- one- village- out cross 
validation data) while the one with lowest uncertainty was An. nili 
(Table 3).

In the comparison between the joint modelling and four inde-
pendent models, the latter presents larger increases in the RMSE 
from 10% for An. gambiae to 66% for malaria incidence (Table 4), 
which means that independent models are characterised by larger 
uncertainties at the point estimates. However, when considering 
predictions at village level (leave- one- village- out cross validation 
equivalent to an area block cross validation), the improvement is 
larger for An. gambiae and An. nili than for malaria incidence, for 
which improvement was 16% compared to 66% obtained from a ran-
dom but spatially representative cross validation (Table 4).

3.5  |  Suitability maps and co- regionalisation

Anopheles gambiae suitability is widespread compared to the other 
two Anopheles species (Figure 4b vs. Figure 4c,d), with most areas 
coincident with suitability for malaria incidence (Figure 4a). As ex-
pected, residuals (see Figure S3) have larger values in areas with 
close proximity between high and low mosquito counts and malaria 
incidence values (or vice versa).

Maps of positive correlation between suitability of malaria and 
Anopheles cover most of the region (Figure 5a). Most of the areas 
show significant correlation between two vectors and malaria in-
cidence suitabilities. There is a band crossing south- west- centre to 
north which is highly suitable to all three vectors and correlated to 
malaria incidence suitability (Figure 5a). Mosquito residuals are also 
correlated with malaria but less geographically extended than the 
fitted values (Figure 5a vs. Figure 5b, and see Figure S4). The areas 
where large residuals from mosquito and malaria models correlate 

Process Model parameter 2.50% Mean 97.50%

An. gambiae Intercept 35.871 41.873 48.185

Land cover = forest Ref. Ref. Ref.

Land cover = grassland 0.012 0.048 0.094

MODIS_Ta 0.004 0.005 0.006

Wind speed −0.444 −0.226 −0.008

Elevation −0.024 −0.020 −0.017

An. funestus Intercept 0.012 0.031 0.054

ws_Tmin 0.064 0.069 0.074

MU 0.009 0.011 0.013

An. nili Intercept 0.052 0.155 0.356

ws_Tmax 0.044 0.059 0.074

Malaria incidence Intercept −13.011 −9.305 −5.570

Modis_Ta 0.011 0.015 0.023

Modis_EVIa 0.013 0.015 0.019

AG 0.007 0.301 0.506

Joint parameters Spatial range 0.121 0.125 0.128

Nugget effect 0.177 0.348 0.405

Partial sill 4.940 5.353 5.425

TA B L E  2  Model parameters' inference 
results. Mean and 95% credible interval 
are shown for each model parameter. 
Legend: MODIS land surface temperature 
amplitude (Modis_Ta), weekly weather 
station wind speed (Wind speed), weekly 
weather station minimum temperature 
(ws_Tmin), female Mansonia uniformis (MU) 
counts, weekly weather station maximum 
temperature (ws_Tmax), MODIS enhanced 
vegetation index amplitude (Modis_EVIa) 
and female An. gambiae (AG) counts.

TA B L E  3  Model evaluation (ME and MSE) and validation (Coverage and RMSE) statistics. Explained variance from the fixed effects 
(predictors) component is shown in the last column.

Process ME MSE COV (%)a COV (%)b RMSEa RMSEb
Explained variance by 
the fixed effect (%)

An. gambiae 0.292 1.173 83.33 90.59 1.086 0.910 53.385

An. funestus −0.034 0.134 93.33 97.35 0.278 0.100 70.936

An. nili 0.002 0.087 100 98.82 0.009 0.048 46.299

Malaria incidence 0.183 0.744 100 97.50 0.003 0.914 86.604

aStatistics based on out- of- sample cross validation.
bStatistics based on leave- one- village- out cross validation.
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positively can likely be attributed to factors not considered in the 
analysis.

4  |  DISCUSSION

The proposed modelling framework has three advantages: (i) pro-
duction of malaria and mosquito suitability maps simultaneously 
including within sampled area and nearby areas where information 
is not currently available, and for which covariances between out-
puts are estimated; (ii) identification of the common spatial effects 
in environmental suitability for mosquitoes and malaria; and (iii) esti-
mation of the geographic shared and correlated components (fitted 
and residuals) between mosquito species and malaria suitabilities 
(co- regionalisation), which allows spatial identification of important, 
but unquantified, sources of variation.

In this analysis, we have shown that by joint modelling vectors 
and malaria it is possible to delineate regions where one or more 
vector suitability correlated with malaria suitability implicating 
the risk of unsuccessful species- specific interventions (Deredec 
et al., 2016), and regions where their residuals correlated—indicating 
the presence of shared risk factors not included in the study but 
that if found, can contribute to the interventions aimed to break the 
malaria transmission pathway. The estimated correlations between 
outcomes from the joint model are unbiased compared to those ob-
tained by simple correlation of outputs from individual modelling 
(Efthimiou et al., 2014; Ishak et al., 2008). In addition, the joint model 
was able to reduce the variance in the estimates compared to indi-
vidual and independent models, stressing the importance of consid-
ering common components (the spatial correlation component ω in 
this study) within the joint model.

The spatially correlated suitabilities between vectors and malaria 
covered most of the region (Figure 5a) supporting the malaria en-
demism in the area. This has important consequences for malaria 
control. First, the heterogeneous distribution of the suitabilities indi-
cates that broadly targeted interventions may produce different re-
sults (more effective where the transmission is weak—e.g. areas with 
low suitability for both malaria and vectors, and relatively less for 
areas with strong transmission). This suggests that geographically 

targeted interventions may be better suited for this region (Canelas 
et al., 2021). Second, intervening in areas where only one species 
suitability is associated with malaria suitability or where in general 
the suitability is low may be the priority for progressive elimination. 
Current results indicate that interventions progressing east to west 
and/or west to east, from the periphery to the centre as in a ‘fried 
egg’ design (Manrique- Saide et al., 2020), may provide better re-
sults than those along the axes south–north, or allocated randomly 
or uniformly. Third, and more importantly, the area is dominated by 
correlated suitabilities between malaria and more than one vector, 
which could lead to failure of any species- specific interventions 
(Deredec et al., 2016).

The mapping of co- regionalised residuals (regions where suit-
ability residuals from a vector and suitability residuals from malaria 
overlap and correlate) is highly intense in several spots of the area. 
These areas are likely to be the results of model- correlated uncer-
tainties or predictors not considered in this study and that act at 
both vector and malaria level but also to factors indirectly related to 
the distribution of the mosquitoes (human behaviour, human mobil-
ity, house construction, etc.; Guerra et al., 2019; Sedda et al., 2022). 
Investigating the areas with large vector- malaria- correlated residu-
als is necessary not only to target additional surveillance (in order 
to improve distribution maps) but also to identify hidden predictors 
of malaria and mosquito suitability that can improve knowledge 
in malaria transmission risk factors (Handique et al., 2016; Zhou 
et al., 2007) and inform the future direction for malaria prevention, 
control and elimination. To identify these factors, areas of high ma-
laria suitability and highly correlated vector- malaria suitability resid-
uals must be prioritised for investigation (Cavany et al., 2023; Cohen 
et al., 2017).

Our study allowed for model- specific environmental effects 
between mosquitoes, and between mosquitoes and malaria in-
cidence, revealing shared and unshared risk factors between the 
vectors and malaria typical for Côte d'Ivoire (M'Bra et al., 2018; 
Zogo et al., 2019; Zoh et al., 2020). Results support other studies 
that describe the key role of temperature upon the suitability of 
Anopheles species (Afrane et al., 2012; Beck- Johnson et al., 2013). 
Contrary to previous studies, rainfall was not found important, a 
result that can be found elsewhere (Darkoh et al., 2017; Gilioli & 

TA B L E  4  Model validation (Coverage and RMSE) statistics for the independent models.

Process
COV (%) independent 
models

RMSE independent 
models

COV (%) independent 
modelsa

RMSE independent 
modelsa

Difference in RMSE 
compared to joint model

An. gambiae 83.33 1.196 90.00 1.111 +10%
+22%a

An. funestus 93.33 0.277 97.36 0.096 −0.4%
−4%a

An. nili 100 0.014 98.82 0.068 +55%
+41%a

Malaria incidence 100 0.005 83.33 1.064 +66%
+16%a

aStatistics based on leave- one- village- out cross validation.
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Mariani, 2011). Although rainfall has a significant role in mosquito 
development via creation of breeding sites, it is possible that the 
spatial resolution for the rain variable was not sufficient to describe 
the spatial variation of mosquito abundance (Obsomer et al., 2013) 
due to sampling carried out over the wet season, and therefore 
lacking in variation.

As we found, An. gambiae has been determined to be the major 
risk factor for malaria incidence elsewhere (Zoh et al., 2020). The 
strong spatial association between An. gambiae and malaria and less 
spatial association between An. funestus and malaria have also been 
previously documented in Côte d'Ivoire (Nzeyimana et al., 2002).

There are several caveats to be noted when interpreting this 
study. When predicting at village level, while An. gambiae, An. nili and 
malaria incidence improved the RMSE, the two mosquito species 
had larger improvements in accuracy from the joint model compared 
to the malaria incidence, potentially indicating the lack of contribu-
tion of the small- scale effects at village level. In fact, these two spe-
cies show shorter individual spatial scales than the malaria one (see 
Figure S2), that is still larger than the one estimated and accounted 
by the joint space modelling (Maurer & Taper, 2002). The same 
reason can be attributed to the slight loss of improvement for An. 
funestus during the leave- one- village- out cross validation. Despite 

F I G U R E  4  Suitability maps for malaria incidence (a), An. gambiae (b), An. nili (c) and An. funestus (d). Suitability maps overlayed over 
Figure 3 showing total counts. Plot created with function image.plot from the ‘fields’ package of R- cran software. Maps standard errors are 
provided in Figure S3.
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this trade- off, in general the joint modelling improved the accuracy 
of the estimation compared to individual modelling. Although other 
hierarchical models can provide a better estimate of the individual 
spatial autocorrelation parameters (König et al., 2021), this was not 
the scope of this work which was targeting the common spatial ef-
fects that enabled the improvement of the joint model performance. 
The short period of collection may have contributed to the high spa-
tial heterogeneity and affected the robustness of the variable selec-
tion process. In addition, malaria incidence was not available for all 
the locations for which we had entomological data, and it was pro-
vided for the full year rather than for the exact period of mosquito 
surveillance. The absence of information for some locations is ac-
counted for by the spatial modelling approach (estimation of missing 
data is performed by the model). The use of the annual malaria inci-
dence data, due to the absence of weekly and monthly information, 
relies on the assumption that malaria incidence is representative of 
the relative malaria intensity in the area. Under this assumption, it 
is expected that the differences in malaria incidence between two 
villages should not change during the year given the relatively small 
spatial scale of the study.

Public health centres can be biased towards the local malaria 
burden due to the accessibility of the centres for their neighbour-
ing populations (N'goran Kone et al., 2019), causing uncertainty on 
the true denominator used to calculate the incidence rates. There 
is no information about village- level biases in malaria reporting for 
Côte d'Ivoire that can be included in the model, therefore the sta-
tistical analyses were carried out in accordance with the methodol-
ogy advised for the use of routine health information system data  

(Ashton et al., 2017), including the use of confirmed malaria cases in-
stead of suspected cases. It is also important to stress that this study 
focusses on estimating the common variance between the models, 
and biases affecting the variance can be reduced by considering co-
variates (environmental, climatic, etc.) at higher resolution than the 
outcomes (mosquito counts and malaria incidence) (Paciorek, 2010), 
as done in this study. The model choice and assumptions (including 
priors), especially with limited data, can influence model inference—
that is level of smoothness and uncertainty. While the spatial extent 
is relatively small (60 by 60 km), the ecological and malaria conditions 
are typical for the south- centre Côte d'Ivoire, which is dominated 
by tropical and subtropical moist broadleaf forests biome (Schapira 
& Boutsika, 2012). The dominant malaria vectors are typical of the 
wider Afrotropical region (Schapira & Boutsika, 2012), meaning 
the potential to extend the predictions beyond south- central Côte 
d'Ivoire. However, spatial analyses have the disadvantage that their 
scales are influenced by local factors (human behaviour and move-
ments, landscape fragmentation, public health interventions, to 
name a few) limiting their generalizability beyond areas with similar 
ecological and epidemiological conditions. A likely indicator of the 
presence of these local factors not included in this study is the range 
of 14 km, a spatial scale much larger than common mosquito flight 
distances (Sedda et al., 2022).

Finally, we used only a restricted set of environmental variables 
which may cause over- estimation of the random effects. Based on 
these limitations, follow- up studies with longer repeated measure-
ments over time and with larger spatial scales are needed. Despite 
these limitations, this work serves as an example procedure to 

F I G U R E  5  Co- regionalisation analysis for model estimations (a) and residuals (b). Different colours indicate areas where one or more 
Anopheles species (AG, An. Gambiae; AF, An. Funestus; and AN, An. nili) and malaria suitability are above 0.25, with correlation between 
the single species and malaria above 0.1. Map was created with ‘ggmap’ and ‘ggsn’ packages in R- cran software; basemap and data from 
OpenStreetMap under the Open Database licence (https:// www. opens treet map. org/ copyr ight).

https://www.openstreetmap.org/copyright
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identify areas and risk factors associated with the shared spatial 
effects and correlated residuals and that can inform the scale and 
intensity of the allocation of vector interventions (e.g. prioritising 
areas; Odhiambo et al., 2020; Poggiato et al., 2021). The need for 
these models is twofold: from a statistical point of view to improve 
prediction at local scales and identify unexplained variation for fur-
ther investigation; and on the policy side, to support community- 
based malaria case management.
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