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A B S T R A C T   

Studies on understanding the regional seismological differences based on the variations in the characteristics of 
the ground motion waves recorded during seismic events have provided independent insights into the different 
seismic environments of the world. This study aims to showcase the differences between three of the major 
seismic environments of the world including Japanese subduction, Chilean subduction, and Californian crustal. 
The study is based on developing deep learning (DL)-based surrogate generalized ground motion models 
(GGMMs) and analyzing them to understand the patterns between the earthquake source parameters and the 
resulting ground motion waveforms’ engineering characteristics. The GGMMs are developed using long short- 
term memory (LSTM) based recurrent neural networks (RNNs), which are trained using six earthquake source 
and site parameters as the inputs and a 25 × 1 vector of amplitude-, duration-, and energy-based ground motion 
intensity measures (IMs). The GGMMs are trained and evaluated using carefully selected large datasets of ground 
motion records from the Japanese subduction, Chilean subduction, and Californian crustal sources (~2000 re-
cords from each source). The models are developed in two settings: i) three independent GGMMs using the three 
datasets of each source, ii) one combined GGMM using the combined dataset. While the former provides indi-
vidual surrogate models of the regional seismic environments and allows relative comparison among the three 
environments, the latter acts as a global seismic surrogate model and allows comparison in absolute terms. The 
seismic environments are investigated by analyzing the two types of GGMMs using explainable artificial intel-
ligence (XAI) and game theory based Shapley explanations (SHAP). As the direct physical study of the seismic 
environments is not generally feasible/practical, the proposed GGMMs surrogating the process becomes a source 
of knowledge. By interpreting them, inferences about the seismic environments are derived. Results indicate the 
peculiar nature of the earthquakes arising from the three seismic backgrounds, further emphasizing the 
importance of conducting independent regional seismic hazard and risk analysis. In particular, the role of 
magnitude and rupture distance is observed to have a significantly different impact on the different IMs of the 
three different environments. The study further sets a novel basis to utilize advanced DL and XAI methods in 
understanding convoluted physics and engineering phenomena.   

1. Introduction 

During the last few decades, seismological and earthquake engi-
neering methods and research have evolved considerably in hazard, 
design, and risk analyses. Understanding the seismological mechanisms 
and environments lays the foundation of a detailed hazard analysis 
which is then used to conduct design and risk analysis. Furthermore, 
from the engineering community’s and stakeholders’ perspective, the 
seismological phenomena for different regions can be quantified based 
on the intensity measures (IMs) of the resulting ground motions. 

Source parameters like moment magnitude (Mw) quantify the energy 
released at the source; however, during the propagation of the seismic 
waves from the source to the site, the energy does not stay constant 
based on the type of medium. The engineering and stakeholder interest 
relies on the shaking observed at the site. One of the most extensively 
used ground-motion IM is the acceleration response spectrum (also 
called spectral acceleration spectrum, Sa(T)) (Bazzurro et al., 1998; 
Vamvatsikos and Cornell, 2002). Sa(T) represents the acceleration 
response of a single-degree-of-freedom system (SDoF) corresponding to 
a given natural period and damping ratio analyzed under a ground- 
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motion time history. Hence, Sa(T) can effectively integrate the charac-
teristics of the ground motion waveform (such as amplitude, frequency 
content, etc.) with the dynamic behavior of a structural system idealized 
as a SDoF. In simple terms, Sa(T) is the response of an idealized structure 
(characterized by its natural period and damping) under a given ground 
motion. 

Within this setting, to improve the efficiency of engineering assess-
ments, previous studies (Baker & Cornell, 2005; Chandramohan, Baker, 
& Deierlein, 2016; Eads, Miranda, & Lignos, 2016) have shown that 
spectral shapes, frequency content, and ground motion significant 
duration (D5− 95), are particularly relevant to assessing the expected 
structural responses when subjected to high-intensity ground motions. 
Similarly, other IMs such as the peak ground velocity (PGV), Arias In-
tensity (Ia), and cumulative absolute velocity (CAV) are observed to be 
highly correlated with estimating seismically induced slope displace-
ments and landslides or assessing liquefaction triggering (Kayen & 
Mitchell, 1997; Macedo et al., 2018; Macedo, Abrahamson, & Bray, 
2019). 

While these IMs can be easily computed using the seismogram re-
cords of the ground shaking in the aftermath, the IMs need to be pre-
dicted for the future in a probabilistic scheme for the design and risk 
assessment. This is done through a probabilistic seismic hazard analysis 
(PSHA), where pre-calibrated empirical or physics-based ground motion 
models (GMM) are utilized to estimate IMs using the causal source and 
site parameters such as Mw, fault rupture type (F), closest rupture dis-
tance (Rrup), Joyner and Boore distance (RJB), the site’s average shear- 
wave velocity of the soil for the upper 30 m depth (Vs30), hypocentral 
depth (Zhyp), etc. More often than not, these GMMs are statistically 
derived using the past records (e.g., Abrahamson, Silva, & Kamai, 2014; 
Campbell & Bozorgnia, 2014; Chiou & Youngs, 2014). Nonetheless, due 
to the lack of usable records for different regions and seismic environ-
ments, the GMMs calibrated for one case/region is often used for others. 
However, due to the complexity and nature of ruptures, many research 
works have indicated non-extension of the results across various regions 
and seismic environments. In particular, two of the well-known seismic 
environments: i) shallow crustal (mainly found in California) and ii) 
subduction (mainly found in Chile and Japan), have been studied to 
showcase the need for independent analysis (Chandramohan et al., 
2016; Fayaz, Medalla, & Zareian, 2020a; Kayen & Mitchell, 1997; Kayen 
& Mitchell, 1997). While the general differences between the two types 
of seismic environments have been known for some time (Kayen & 
Mitchell, 1997; Kayen & Mitchell, 1997), recent data-driven attempts 
have tried to quantify the differences from the aspect of structural 
response (Chandramohan, Baker, & Deierlein, 2016; Fayaz, Medalla, & 
Zareian, 2020a). 

Given the complexity, the computational cost, and the lack of deep 
information to generate robust physics-based models, differences be-
tween the seismic conditions can be studied through data-driven GMMs, 
and inferences about the ruptures can be drawn. Within this setting, this 
study aims to provide insights into the relations between causal source 
features and the resulting ground motion IMs in different seismic envi-
ronments (i.e., subduction and crustal environments) for three of the 
major earthquake zones in the world. The selected zones include Chilean 
subduction, Japanese subduction, and crustal controlled west coast of 
California, United States (US). For each region/seismic environment, 
databases of around 2000 ground motions are statistically selected. 

It is of significance to acknowledge that historically, GMMs have 
been formulated through regression analysis, employing simplistic 
functional forms. However, these conventional models might not always 
adequately account for the diverse characteristics inherent in actual 
ground motions. Consequently, there has been a growing interest in 
developing alternative GMMs based on machine-learning (ML) tech-
niques in recent years. Notably, several researchers have put consider-
able efforts to propose GMMs using ML learning approaches. For 
instance, Hong et al. (2012), Pozos-Estrada et al. (2014), and Sreejaya 

et al. (2021) utilized artificial neural networks (ANN) to predict the 
Sa(T) of ground motions in Californian, Mexican, and Indian regions, 
respectively. They compared the predictive capabilities of their ANN- 
based models with the conventional regression-derived equations. 
Similarly, Derras et al. (2014) and Khosravikia et al. (2019) employed 
ANN to develop predictive models for various ground motion parame-
ters, such as PGA, PGV, and Sa(T). Derras focused on shallow earth-
quakes in Europe, while Khosravikia addressed natural and induced 
earthquakes in Oklahoma, Kansas, and Texas. Furthermore, Dhanya and 
Raghukanth (2018) conducted a comparable study using the next gen-
eration attenuation (NGA)-West 2 database (Ancheta et al. 2014). 
Trugman and Shearer (2018) proposed a GMM based on random forest 
for predicting PGA recorded during moderate earthquakes in the San 
Francisco Bay Area. Derakhshani and Foruzan (2019) explored the 
application of deep neural networks to predict PGA, PGV, and PGD using 
the NGA-West2 database. Withers et al. (2020) utilized synthetic ground 
motions from the Southern California CyberShake dataset in conjunction 
with ANN to propose GMMs. Recently, Mohammadi et al. (2023) 
employed ANN and extreme gradient boosting (XGBoost) to predict 
PGA, PGV, and Sa(T) for Turkish earthquakes. Meenakshi et al. (2023) 
proposed GMMs for peninsular India, utilizing ANN coupled with ge-
netic algorithms. For a more comprehensive understanding of the use of 
ML models for ground motion prediction, interested readers can find 
additional information in the works of Kong et al. (2019), Khosravikia 
and Clayton (2021). 

In contrast to the regular GMMs, which provide independent statis-
tical estimates of ground motion IMs (thereby not accounting for the 
internal IM cross-correlations), this study uses the novel generalized 
ground motion models (GGMMs) as proposed by Fayaz, Xiang, and 
Zareian (2021) and Fayaz, Medalla, Torres-Rodas, and Galasso (2023). 
The proposed GGMMs are based on deep learning (DL) and machine 
learning (ML) framework of long short-term memory (LSTM) reurrent 
neural networks (RNN) and hierarchical mixed-effects regression which 
uses the causal features (including Mw, Rrup, Vs30, and Zhyp) to output a 
cross-dependent vector of 25 ground-motion IMs (denoted as IM) 
including amplitude-, duration-, and energy-based IMs (including Ia, 
CAV, PGV, and RotD50 Sa(T) (Boore et al., 2006)). Note, for brevity, 
RotD50 Sa(T) is written as Sa(T) in this paper henceforth. Due to the 
comprehensive ground motion databases used in this study for the three 
selected seismic zones, four different types of GGMMs are developed. 
Three models are developed independently using specific datasets for 
each seismic environment, and one combined model is constructed using 
the combined dataset. The independent GGMMs act as regional surro-
gates and provide a framework to compare the three environments in a 
relative sense. In contrast, the combined GGMM acts as a surrogate of 
the earth’s seismicity to allow comparison in an absolute sense. 

After developing the GGMM-based surrogate models, the analyses of 
the seismic environments are compared by conducting a cause-effect 
analysis of the inputs (i.e., source and site features) and outputs (IM 
vector) of the GGMMs. This is done using explainable artificial intelli-
gence (XAI) based using Shapley additive explanations (SHAP). The 
SHAP is based on game theory principles and conducts a sensitivity 
analysis between each input feature and output target. SHAP analysis is 
used to derive inferences from the GGMMs, and the results are used to 
develop a detailed comparative study between the three seismic envi-
ronments. The results obtained from SHAP analysis are finally con-
trasted with the physical evidence from the different environments and 
rupture characteristics of the studied zones and with field observations 
obtained after large earthquakes occurred in each area of interest. The 
novelty of this study relies mainly in the conceptualization of the 
problem using DL methods and inferring the trends in the seismic 
characteristics of the three seismic environments based on the XAI 
concepts. This critical analysis of the three seismic environments paves 
the way to understanding the earthquake mechanisms using data-driven 
and DL-based methods, thereby supplementing robust physical models. 
The study also promotes interpretation of the DL and ML models in 

J. Fayaz et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 238 (2024) 121731

3

physics and engineering domains. 

2. Seismotectonic in Chile, Japan, and California 

To conduct a critical comparative analysis of the three seismic en-
vironments and their GGMMs, a brief description of the seismic plate 
activity for the three environments is discussed in this section. This 
background information is further useful to characterize the comparison 
made between the GGMMs in further sections. The seismic plate activ-
ities of the three environments (i.e., Chilean and Japanese subduction 
and Californian shallow crustal) are conceptualized in Fig. 1 which are 
discussed in the sections below. 

2.1. Chilean seismic environment 

Defined as one of the most active tectonic regions in the world, with 
an annual convergence velocity of 63 mm/year (Khazaradze & Klotz, 

2003). As presented in Fig. 1a, the Chilean seismicity is caused primarily 
by the contact of the Nazca oceanic plate subducting under the South 
American continental plate (shown in Fig. 1a). This contact starts from 
the northern part of Chile until the Antarctic plate where the Taitao 
transform fault begins (Ruso et al. 2010). This tectonic plate activity 
frequently leads to large-magnitude earthquake events. For instance, in 
the last fifteen years, three megathrust earthquakes (Mw ≥ 8.0) have 
occurred on the western coast of Chile (i.e., Maule 2010 Mw = 8.8; 
Iquique 2014 Mw = 8.2; and 2015 Illapel Mw = 8.4). The two most 
common earthquake mechanisms that dominate the seismic hazard in 
Chile are interface and intraslab earthquakes. Interface earthquakes, 
which occur along the contact of the plates, are characterized by hy-
pocenters in the coastal zone with focal depths not exceeding about 50 
km (CSN, 2023). Most of the large earthquakes recorded in Chile orig-
inate from the interface mechanisms. Some of the most notable events in 
the last 150 years include Valparaíso 1906 (Mw = 8.2), Valdivia 1960 
(Mw = 9.5), Valparaíso 1985 (Mw = 7.9), Antofagasta 1995 (Mw = 8.0), 

Fig. 1. Seismic environment sketches: (a) Chilean subduction, (b) Japanese subduction, (c) Californian shallow crustal.  
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Maule 2010 (Mw = 8.8), Iquique 2014 (Mw = 8.2), and Illapel 2015 (Mw 
= 8.3). The intraslab based earthquakes originate from the Nazca plate 
with hypocenters under the continent. The intraslab events are charac-
terized by the focal depths between 60 km and 700 km and have been 
observed as destructive events but less frequent than interface earth-
quakes (CSN, 2023). Some of the most prominent intraslab earthquakes 
recorded in the last 150 years are: Chillan 1939 (Mw = 7.8), Santiago 
1945 (Mw = 7.1), La Ligua 1965 (Mw = 7.1), Punitaqui 1997 (Mw = 7.1), 
and Tarapacá 2005 (Mw = 7.8). As a standard feature, interface and 
intraslab Chilean large-magnitude earthquakes are defined by large 
rupture areas (i.e., rupture lengths of hundreds of kilometers), large 
durations, and high energy release (Ruiz & Madariaga, 2018). Thus, 
such events can affect large areas and cause major changes to the geo-
morphology of the continental plates. 

2.2. Japanese seismic environment 

The tectonic ecosystem of Japan is well known to be one of the most 
active and complex seismic environments in the world. In particular, this 
is due to the subduction contact of the Pacific and Philippine plates 
under the Eurasian plate and the North American plate, as presented in 
Fig. 1b. In contrast to the Chilean seismic environment, it can be 
observed from Fig. 1b that Japan is in an island arc instead of the con-
tinental crust. Though the seismic environment is highly similar to 
Chile, Japan’s seismicity is produced not only by a subduction or 
convergent plate boundary contact but also by divergent and transform 
plate boundaries, primarily caused by the interaction of Eurasian and 
Yangtze plates. This intricate interaction between the different tectonic 
plates lead to the occurrence of different types of earthquakes within the 
Japanese territory, such as shallow crustal earthquakes or deeper sub-
duction earthquakes with large rupture areas. Although, the region is 
highly dominated by the large megathrust subduction earthquakes, the 
interference with other type of earthquakes makes this a unique seismic 
environment to study. The tremendous potential of the region to pro-
duce huge ground motions can be observed from the megathrust 
earthquakes produced in the last 20 years including: Hokkaido 2003 
(Mw = 8.3), Kuril Island 2006 (Mw = 8.3), Kuril Island 2007 (Mw = 8.1), 
and Tohoku 2011 (Mw = 9.1). Due to the damage observed during the 
past large-magnitude subduction earthquakes recorded in Japan (Gak-
kai, 2012; Hatayama, 2008) and their potential to cause tsunamis (due 
to the elastic rebound (Reid, 1910) of the continental crust), this study 
only uses the subduction ground motions of Japan. 

2.3. Californian seismic environment 

As a comparison to the two subduction environments, the third 
seismic environment of this study is based on crustal zone from west 
coast of the US in California. Unlike the previous Chilean and Japanese 
seismic environments, the US west coast specifically California, is seis-
mically governed by a transform plate boundary, as schematically 
shown in Fig. 1c. This type of contact is developed by the rupture of the 
superficial crust due to the relative horizontal displacement that occurs 
between the different plates. This transform fault is called the San 
Andreas fault and is formed by the interaction of the North American 
and Pacific plates. More than 500 active faults (California Earthquake 
Authority, 2023) have been detected within this tectonic plate contact 
which characterize the seismic hazard in California. Given this tectonic 
environment, earthquakes in California correspond, almost exclusively, 
to shallow crustal events. These earthquakes generally occur at shallow 
depths (i.e., less than 30 km) and reach magnitudes that typically do not 
exceedMw = 7.5 as observed in robust crustal ground motions databases 
(Ancheta et al., 2014) and based on the historical evidence (USGS 2023). 
Furthermore, the ground motions recorded during these earthquakes 
have short durations as compared to subduction-based ground motions 
and release energy though high-amplitude strong pulse actions (Chan-
dramohan et al., 2016). Although the amplitude and intensity of these 

earthquakes tend to attenuate faster with increase in distance, they can 
be very destructive in structural systems close to the source. Some ex-
amples of high-magnitude crustal earthquakes in California, which have 
caused significant economic and human losses include the events of San 
Fernando 1971 (Mw = 6.6), Loma Prieta 1989 (Mw = 6.9), Landers 1992 
(Mw = 7.3), Northridge 1994 (Mw = 6.7), and Hector Mine 1999(Mw =

7.1). 

3. Conceptualization 

The general goal of science is to learn about the different physical 
mechanisms. However, in many convoluted and complex processes, 
such as earthquake ruptures, the direct study of the underlying phe-
nomenon is impossible, too complicated, or expensive. In such cases, 
data-driven- and ML-based models have proven to provide robust so-
lutions for modeling the general behavior of the phenomenon (Amez-
quita-Sanchez, Valtierra-Rodriguez, & Adeli, 2020; Fayaz, Azar, 
Dabaghi, & Zareian, 2021; Fayaz, Torres-Rodas, Medalla, & Naeim, 
2023; Kang & Khattak, 2022; Mangalathu & Burton, 2019; Singaravel, 
Suykens, & Geyer, 2018; Thaler, Stoffel, Markert, & Bamer, 2021; Fayaz, 
Dabaghi, & Zareian, 2020b). Furthermore, as a direct physical study is 
not feasible, accurate and robust ML models representing the process 
can become sources of knowledge and provide insights into the phe-
nomenon’s nature. Specifically, the proper interpretability and 
explainability of these ML models make it possible to extract the 
knowledge captured by the model. While the DL-based models are 
notoriously known to act as black boxes, research in the field of XAI has 
grown to provide appropriate methods that can be used to obtain a deep 
understanding and interpretability of the models through game theory 
and cause-effect principles (Roth, 1988). 

This study is based on the utilization of XAI concepts to provide in-
sights into the seismic environments of California (crustal), Japan 
(subduction), and Chile (subduction). In particular, the relation between 
the causal earthquake source and site parameters and the resulting 
amplitude-, duration-, energy-, and frequency-based vector of 25 IMs are 
comparatively studied for the three cases. The premise is based on 
inferential analysis of surrogate GGMMs that can effectively replicate 
the behavior observed in the different seismic environments. This in-
volves training and developing advanced DL-based GGMMs for the three 
seismic conditions. The GGMMs are developed using LSTM-RNNs with 
the source and site parameters as the inputs and the vector of IMs as the 
outputs. The GGMMs are trained carefully, so they lead to good pre-
diction power while maintaining the cross dependencies between the IM 
components and serve as good surrogate models for the earthquake 
source-to-site path characteristics as done by Fayaz, Xiang, and Zareian 
(2021) and Fayaz, Medalla, Torres-Rodas, & Galasso (2023). Hence, any 
inferences conducted on the developed GGMMs can provide insights 
into the causal seismic environments and their source-to-site path 
characteristics. 

Finally, the environments are studied by interpreting the developed 
GGMM surrogate models using game-theory principles-based SHAP 
analysis. SHAP analysis conducts data-driven sensitivity analysis by 
examining the cause-and-effect trends between the inputs (i.e., source 
and site parameters) and outputs (i.e., IM vector) of the DL/ML models 
(i.e., GGMMs). Using SHAP analysis, inferences are derived for the 
GGMMs, and the results are used to develop a detailed comparative 
study between the three seismic environments. 

4. Ground motion datasets 

A comprehensive database of ground motions from three of the 
major earthquake zones worldwide is employed in this study. The da-
tabases from the NGA-West2 project (Ancheta et al., 2014), the SIBER- 
RISK database (Castro et al., 2022), and the strong motion seismo-
graph networks K-NET and KiK-net (National Research Institute for 
Earth Science and Disaster Resilience, NIED, 2019) are used to select the 
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records representative of seismic environments of California, Chile, and 
Japan, respectively. The epicenters of the earthquake events from the 
three regions are presented in Fig. 2. 

Initially, 2046, 4129, and 2001 ground motions with PGA ≥ 0.01 g 
from 113, 41, and 40 seismic events recorded at the NGA-West2, SIBER- 
RISK, and NIED databases, respectively, were considered. In addition, 
data satisfying the conditions Rrup ≤ 90 km for crustal California data-
base and Rrup ≤ 200 km for Chile and Japan subduction zones were 
selected. Fig. 3 shows a description of the ground motion database in 
terms of Mw, Rrup, Vs30, and Zhyp (see Fig. 3a–d). It should be noted that 
the three-ground motion database slightly differs in processing tech-
niques. In the case of NGA-West2, data are downloaded and processed 
following the recommendations of Boore and Bommer (2005). SIBER- 
RISK ground motions are processed using a third-order band-pass But-
terworth filter and baseline correction by subtracting a piecewise-linear 
function (Candia et al., 2020; Castro et al., 2022). Finally, the ground 
motions from NIED were detrended and filtered using a band-pass 
infinite impulse response (IIR) 4th order Butterworth filter with cut- 
off frequencies at 0.05 and 50 Hz. These different processing ap-
proaches are not expected to significantly influence the performance of 
the predictive models developed in this study and their corresponding 
interpretation, mainly due to the capabilities of ANNs to adjust to noise 
and deviations with the availability of sufficient data for training (Bor-
odinov et al., 2019). 

Due to the imbalances observed in the Chilean ground motions, 
particularly with respect to Mw and Vs30 (as can be observed in Fig. 3a 
and c), the databases were undersampled (Lemaitre, Nogueira, and 
Aridas, 2017). Another purpose of undersampling the databases was to 
ensure that the number of records across the three seismic environments 
is similar to prevent any data biases in the training process of neural 
networks. After undersampling, the total ground motions considered in 
this study are 2046, 1887, and 1887 for Californian, Chilean, and Jap-
anese seismic regions, respectively. The distributions of Mw, Rrup, Vs30, 
and Zhyp of the final undersampled strong-motion databases used in the 

study are depicted in Fig. 3b and d. As observed, data for California 
events are characterized by shallow hypocentral depths (i.e., low Zhyp) 
and lower Rrup and Mw than those for the Chilean and Japanese datasets. 
Similar distributions for Vs30 are observed to be generally consistent 
with certain peaks observed for some higher Vs30 for the Chilean data-
base. Fig. 4 shows the Sa(T) spectra for the final sets of ground motions 
in natural logarithmic domain. The bold red line shows the median 
spectrum, while the dashed red line shows the median ± 1 standard 
deviation spectra. In terms of PGA, ground motions from Japan and 
Chile exhibit the largest and lowest median values, respectively, while 
similar values of median Sa(T) are observed for California and Japan 
ground motions for periods lower than or equal to 3 s. It is noted that for 
T > 0.5s, significantly lower median spectral accelerations are reached 
for Chilean ground motions. Finally, it is worth noting that similar 
variability (i.e., standard deviation) is observed for spectral accelera-
tions for Chile and Japan ground motions, and more significant vari-
ability is obtained for California ground motions. 

5. Model development 

This study uses the concept of LSTM-RNN-based GGMMs as proposed 
by Fayaz, Xiang, and Zareian (2021) and Fayaz, Medalla, Torres-Rodas, 
& Galasso (2023). Unlike common GMMs, which are independently 
developed considering individual ground-motion IMs such as PGA and 
Sa(T) at a given structural period, the proposed GGMMs coherently use 
LSTM-based RNNs and hierarchical mixed-effects regression to output a 
cross-dependent vector of ground motion IM. The IM vector comprises 
different amplitude-, duration-, energy-, and frequency-based IMs. This 
includes two component geometric means of Arias intensity (Ia,geom), 
peak ground velocity (PGVgeom), significant duration (D5− 95,geom), peak 
ground acceleration (PGAgeom), and RotD50 Sa(T) at 20 periods between 
0.01 secs and 5 secs. These are the current state of art IMs used for 
ground motion modelling (Campbell and Bozorgnia 2014, 2019). 
Similar to conventional GMMs, the inputs to the GGMMs include causal 

Fig. 2. Epicentral locations of the earthquake events from the three regions.  
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seismic source and site parameters, including F, Mw, Rrup, RJB, Vs30, and 
Zhyp. F represents the type of faulting; Mw is the moment magnitude of 
the earthquake event; Rrup signifies the closest distance between the 
rupture surface and the site; RJB takes into account both the geometric 
effects (distance) and the location of the fault rupture. It is typically 
measured as the shortest horizontal distance between the site of interest 
and the fault rupture, considering the fault’s geometry; Vs30 is the 

average shear velocity in the topmost 30 m of the soil, and Zhyp is the 
depth to the hypocenter of the event. The inputs except F are stan-
dardized by the classical practice of removing the mean and dividing by 
the respective standard deviation. DL networks, such as RNNs used in 
this study, possess the ability to automatically learn and extract relevant 
features from raw data during the training process (LeCun, Bengio, and 
Hinton, 2015; Goodfellow, Bengio, & Courville, 2016). This character-
istic alleviates the need for explicit feature engineering and selection, as 

Fig. 3. Description of ground motion database: M vs. Rrup (a) original and (b) undersampled database, and Vs30 vs. Zhyp (c) original and (d) undersampled database.  

Fig. 4. RotD50 Sa(T) spectra for the undersampled ground motion databases: (a) California, (b) Chile, and (c) Japan.  
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the network learns to extract meaningful representations directly from 
the input data. Hence no further feature engineering is conducted here. 
The statistical evaluation of the proposed GGMMs in the studies, as 
mentioned earlier, has demonstrated a high prediction power for most 
IMs while maintaining the cross-IM dependencies. Hence, such data- 
driven GGMMs can serve as sufficient and efficient surrogate models 
to represent the natural conditions, recreate the source-to-site path, and 
provide reasonable estimates of the IM vector. 

The GGMMs are developed in two settings: i) one GGMM using the 
combined dataset from the three sources is denoted as GGMMComb, and 
ii) three GGMMs using the independent datasets from the three sources 
are denoted as GGMMCA, GGMMJP, and GGMMCH for California crustal, 
Japan subduction, and Chile subduction, respectively. The only 
distinction between the combined GGMM and the independent GGMMs 
is that the combined GGMM is trained with the joint dataset with one 
additional input Sr which indicates the earthquake source mechanism. 
The Sr variable is inputted as a one-hot encoded vector where [1,0,0], 
[0,1,0], and [0,0,1] represent California crustal, Japan subduction, or 
Chile subduction, respectively. Whereas in the case of independent 
GGMMs (i.e., GGMMCA, GGMMJP, and GGMMCH), the Sr input variable 
is dropped since the models are trained with separated datasets of their 
respective seismic environments. Hence, the GGMMComb acts as a 
generalized ground motion surrogate model representing the earth’s 
seismicity in a global model where each region’s seismicity can be 
convoluted. Similarly, GGMMCA, GGMMJP, and GGMMCH are general-
ized ground motion surrogate models that represent regional seismicity 
independently. Hence one region’s seismicity does not affect the other. 

For both cases of GGMMs, after hyperparameter tuning (Bergstra, Ca, 
and Ca, 2012), 17-layered neural networks are developed with a hy-
perbolic tangent (tanh) and rectified linear unit (relu) activation func-
tions using Adam optimizer (Kingma and Ba, 2014) and index of 
agreement (IA) as the objective function (Willmott et al., 1985). The 
neural networks are trained through cross-validation using a randomly 
selected 80 % of the undersampled events (validation split of 10 % was 
used) of each seismic environment, while the remaining 20 % is used as 
the test set (kept separate during the training). The training is conducted 
with the output vector in the natural logarithmic domain and using IA as 
the objective function because it can lower the information loss for time 
series/vector matching (Willmott et al., 1985). Since the IA value of 1 
indicates a perfect match and 0 indicates no agreement between the 
actual and predicted IM vectors, the gradient descent is conducted using 
IA negatively, implying a value of − 1 for the perfect match. The pre-
diction power of the four GGMMs is shown in Fig. 5 in terms of the 
coefficient of determination (R2). It is observed that the prediction 
power for all the four GGMMs is highly good, with values around ~0.8 

going as high as 0.95 for a more extended period Sa(T), Ia,geom, CAVgeom, 
and PGVgeom. The drop in the prediction power for a short period Sa(T)
and D5− 95,geom is fairly common in the GMMs due to the high-frequency 
content of ground motions and associated stochasticity (Du & Ning, 
2021; Fayaz, Azar, Dabaghi, & Zareian, 2021; Fayaz & Galasso, 2022; 
Fayaz, Xiang, & Zareian, 2021; Fayaz et al., 2021). However, previous 
studies by Fayaz, Xiang, and Zareian (2021) and Fayaz, Medalla, Torres- 
Rodas, and Galasso (2023) have shown that even with such drops in the 
prediction power, the proposed GGMMs perform much better than the 
most state-of-art GMMs and are more reliable in the prediction of ground 
motion behavior in terms of the cross-dependencies within the IM vec-
tor. Hence, it can be concluded that such highly accurate GGMMs can be 
assumed to be a good representation of the source and source-to-site 
path characteristics, thereby can be used as the surrogate for earth’s 
seismicity and the study of the GGMMs can be used to infer details about 
seismic environments. 

Furthermore, due to the hierarchical structure of the ground motions 
arising from multiple recordings of the same event at different stations 
and recordings from various events at the same stations, the residuals 
between the true log-scaled IMij vector and LSTM-RNN-predicted log- 
scaled ÎMij vector are used to compute 25 values of between-event and 
within-event variabilities for the ith event and jth recording. This is done 
by fitting a mixed-effects regression model (Demidenko 2013) to the 
residuals as given in Eq. (1), where ηi represents between-event vari-
ability with T2 variance matrix for the 35 IMs (with τ2

k for kth IM in the 
IM vector),εij represents within-event variability with Φ2 variance ma-
trix for the 35 IMs (with ϕ2

k for kth IM in the IM vector), and c0 repre-
sents any pending bias in the residuals for the 25 IMs. c0 was observed to 
be very close to zero for all IMs (failing the regression hypothesis t-test at 
a 5 % significance level and hence dropped in the overall analysis. Also, 
empirical Pearson correlations are computed for the residuals of IM 
vector, which are then used to convert the between-event and within- 
event variance matrices into their respective covariance matrices. In 
summary, the neural networks are developed for log-scaled mean pre-
dictions, and the residuals are used to construct between-event and 
within-event covariance matrices. 

IMij − ÎMij = c0 + ηi
(
0,T2)+ εij

(
0,Φ2) (1)  

6. Interpretation of GGMMs and discussions 

Due to the versatility of the DL models, they have been widely used in 
engineering applications. However, due to the “black box” nature of 
these models, there is a general reluctance in the research community to 
propose and utilize such models. Hence it is critical to provide sufficient 
analytics for model interpretability and its response in terms of pre-
dictions based on variability in the input features. With the onset of XAI, 
various algorithms have been developed that provide different methods 
that allow interpretability of these “black-box” models and step towards 
a “grey-box” and even “white-box” nature (such as linear regression, 
decision trees, etc.). Furthermore, such interpretability processes extract 
knowledge from data in many complex problems, as in such cases, the 
model becomes the source of learning instead of the data. In this study, 
the interpretability analysis of the GGMMs serves two purposes: 1) 
obtaining insights about the decision-making process of the GGMMs, 
and 2) inferring trends between the seismic source and site parameters 
and the IM using GGMM as the surrogate model. 

Recently, SHAP (Lundberg and Lee, 2017; Roth, 1988) has been 
widely used to explain and interpret the proposed DL and ML models in 
engineering applications (Fayaz, Torres-Rodas, Medalla, & Naeim, 
2023; Kang & Khattak, 2022; Movsessian, Cava, & Tcherniak, 2022). 
SHAP is a model-agnostic procedure that provides insights to explain 
individual predictions of the model based on the game’s theoretically 
optimal Shapley values (called SHAP values) to estimate the contribu-
tion of each feature towards the final prediction. SHAP is a widely used Fig. 5. R2 of the four GGMMs for different IMs.  
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approach from cooperative game theory with desirable properties. First, 
the feature values of a data instance act as players in a coalition. The 
SHAP value is the average marginal contribution of a feature value 
across all possible alliances. SHAP values are the only interpretability 
solution that satisfies the properties of efficiency, symmetry, dummy, 
and additivity (Lundberg and Lee, 2017). 

SHAP belongs to the class of models called “additive feature attri-
bution methods,” where the explanation is expressed as a linear function 
of features, as described by Eq. (2). In this equation, g(z) represents a 
local surrogate model of the original model f(x) (in this case f(x) is the 
LSTM-RNN models), M is the number of input features of the model f(x)
(i.e., source and site parameters), θ0 denotes the bias term, which rep-
resents the base value of the predictions made by the model f(x), θi is the 
contribution of the ith feature towards the final output (i.e., IMs in the IM 
vector), and zi is a binary variable that takes a value of 1 for the feature 
corresponding to θi contribution and 0 otherwise. θi evaluates the 

difference to the final predictions made by the model f(x) by including 
the ith feature for all combinations of features other than i. This is 
expressed in Eq. (3), where S represents a subset of features among all N 
features except the ith feature (denoted as S ⊆ N\{i}), 

[
fx(S ∪ {i} ) −

fx(S)
]

is the difference in the outputs made by the ith feature, and 
|S|!(M− |S|− 1 )!

M!
is the weighing factor counting the number of permutations 

of the subset S. fx(S) in the different part of the equation represents the 
expected output given the subset of features S, which is similar to the 
marginal average on all features other than the subset S. Hence, in a 
nutshell, SHAP values explain the contribution of the features to the 
respective outputs in a quantitative manner, thereby allowing inter-
pretation. These are analogically similar to the coefficients of a regres-
sion model, which provide the impact of the corresponding feature on 
the target variable. Due to the computational complexity of computing 
Eq. (4), SHAP values are approximated using various types of explainers 

Fig. 6. SHAP summary plots using GGMMComb for: (a) D5− 95,geom, (b) Ia,geom, (c) CAVgeom, (d) PGVgeom, (e) PGAgeom, and (f) Sa(T = 2.0s).  
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such as kernel-explainer, tree-explainer, deep-explainer, etc. (Molnar, 
Casalicchio, & Bischl, 2020). In this study, kernel-explainer uses a spe-
cial weighted linear regression to compute the importance of each 
feature. The computed importance values are SHAP values from game 
theory and coefficients from a local linear regression (Molnar et al., 
2020). 

g(z) = θ0 +
∑M

i=1
θizi (2)  

θi =
∑

S⊆N\{i}

|S|!(M − |S| − 1 )!
M!

[fx(S ∪ {i} ) − fx(S) ] (3)  

fx(S) = E[f (x)|xS] (4)  

The SHAP analysis of the two types of GGMMs is discussed in the 
following sections. The SHAP analysis of the GGMMComb details the 
cause-effect relationship of the three seismic environments in an abso-
lute manner where the sensitivity of each input parameter towards the 
output vector can be directly compared. Whereas SHAP analysis of 
GGMMCA, GGMMJP, and GGMMCH only provides the cause-effect rela-
tionship for each seismic region independently (as the models are 
developed mainly for the specific region), the comparisons can only be 
made in a relative sense. 

6.1. Analysis of combined GGMM 

The test dataset is utilized as the input to the GGMMComb surrogate 
model for the three seismic environments, and the respective SHAP 
values for the source and site parameters are computed. The SHAP 
values for six IMs in the IM vector are presented in Fig. 6, where the 
color of the data points represents the scale of the feature values, e.g., 
‘low’ refers to values close to 3, and 0 km and ‘high’ refers to values close 
to 9 and 200 km for Mw and Rrup, respectively. As described in the above 
section, the sign of SHAP indicates the direction of feature contribution 
(i.e., whether the particular feature increases or decreases the mean 
output of the neural networks), and the absolute value of SHAP indicates 
the magnitude of the feature contribution towards final output (higher 
absolute value means higher feature contribution). Hence negative 
SHAP values indicate that the corresponding feature lowers the final 
target prediction, while positive SHAP suggests an increase in the final 
output of the model, and the absolute value of SHAP indicates the 
magnitude of increase or decrease. 

From Fig. 6, in general, it is observed that the SHAP values for the Sr 
one-hot vector (CA = [1,0,0], JP = [0,1,0], and CH = [0,0,1]) possess 
the more variability as compared to other features. This means that for 
most IMs, the type of seismic environment plays an essential role in their 
prediction using the GGMMComb; hence the three environments need 
regional examination for seismological and hazard analysis. It can be 
further observed that the SHAP values for JP and CH are relatively 
similar as compared to the SHAP values for CA, thereby indicating that 
California crustal ground motions are significantly different from the 
Japanese and Chilean subduction ground motions. This further affirms 
that the subduction and crustal seismic environments need independent 
analysis, and reading results across seismic environments may not be 
valid for engineering and seismological purposes. These results are 
consistent with the previous observations made by Chandramohan et al. 
(2016), Fayaz, Medalla & Zareian (2020a), and Raghunandan, Liel, and 
Luco (2015). 

Fig. 6 further shows that Mw and Rrup leads to maximum variation in 
SHAP values, meaning that changes in these two features lead to 
maximum alteration in the IMs of the causal ground motions for the 
three seismic environments. It is noticed that Mw has a linear trend with 
all IMs in the IM vector (i.e., an increase in Mw leads to an increase in 
SHAP contribution, thereby leading to larger output values); however, 
the trends in Rrup are opposite for all IMs except D5− 95 (i.e., an increase in 

Rrup This leads to a decrease in SHAP contribution, leading to smaller 
output values). This is consistent with the nature of the earthquake 
ground motions where the increase in Mw means higher energy release 
and thereby for the same Rrup lead to higher amplitude-, energy-, and 
duration-based IMs. Contrary to this, for the same level of Mw, larger Rrup 

means farther from the rupture source, thereby attenuating amplitude- 
and energy-based IMs at sites far from the fault. In the case of duration- 
based IMs, such as D5− 95,geom, since the sites far from the fault rupture 
receive waves from various reflections and refractions within the soil 
medium, the ground shaking lasts longer than the site closer to the fault. 
Also, higher surface waves lead to increased shaking duration at faraway 
sites. Therefore, unlike other IMs, D5− 95,geom is known to have a linear 
relationship with the Rrup. Source feature Zhyp and site feature Vs30 are 
observed to have comparatively lower variability in the respective SHAP 
values (thereby lower contribution). In general, it is observed increase in 
Zhyp leads to an increase in SHAP values meaning an increase in the IMs. 
An increase in Vs30 leads to a decrease in SHAP values, indicating a 
decrease in the IMs, which is expected because larger values of Vs30 
imply lower amplification of the seismic waves Zhyp is observed to 
impact the energy- and duration-based IMs of the ground motions while 
Vs30 is seen to impact CAVgeom the most among all IMs. Finally, Rjb is 
observed to lead to a minimal contribution to the IM compared to the 
other features. 

To compare the SHAP values of the features for the three seismic 
environments, boxplots are developed in Fig. 7 using the SHAP values 
for each feature, seismic environment, and IM. This figure provides an 
alternate view of Fig. 6 with separated boxplots of the SHAP values 
obtained using the GGMMComb for the three seismic environments. It can 
be observed that the SHAP values of Californian sources have the largest 
variation as compared to the Japanese and Chilean sources, thereby 
further indicating the differences in the crustal and subduction ground 
motions. Both Mw and Rrup tend to have a more extensive range of 
contributions (i.e., higher variability of SHAP values) in the California 
crustal cases compared to the Japanese and Chilean subduction cases. 
The underlying physical reasoning can be attributed to the fact that the 
shallow crustal events undergo quicker attenuation and release the 
seismic energy as point-like sources close to the earth’s surface, there-
fore high sensitivity of different IMs with respect to Mw and Rrup is ex-
pected in the influenced zone. However, in general, it is observed that 
the Japanese ground motions lead to positive SHAP values for Mw and 
Californian ground motions lead to positive SHAP values for Rrup indi-
cating a positive contribution to the final outputs. This signifies that an 
increase in Mw leads to a higher rate of increase in the IMs of Japanese 
ground motions compared to the other two sources. Similarly, a decrease 
in Rrup leads to a higher rate of increase in the IMs (except D5− 95,geom) of 
Crustal ground motions as compared to the other two sources. Notice-
ably, Zhyp is observed to have negative SHAP values for Californian 
crustal sources and positive SHAP values for Japanese and Chilean 
subduction sources for all IMs except D5− 95,geom. However, the trend is 
observed to be the opposite in the case of the D5− 95,geom with a lower 
range of SHAP values. These results can be correlated with previous 
observations on the subduction environment (Macedo et al., 2019), 
where Zhyp is defined as a relevant causal parameter, particularly for the 
in-slab wave attenuation. 

Fig. 8 presents the relative absolute mean SHAP values for each type 
of seismic environment and feature. This is done by computing the ab-
solute mean SHAP value for each ith environment type (i.e., 
mean(

⃒
⃒SHAPTypei

⃒
⃒)) for each feature and IM, and then dividing this value 

by the sum across the three environments (i.e., 
∑

imean(|SHAPTypei |)). In 
most cases, the differences between the relative mean absolute SHAP 
values for each type of seismic environment are around 0.1 to 0.15 (i.e., 
10 % to 15 %). For all IMs, Japanese ground motions tend to have the 
lowest absolute mean contribution to the final IM output. Corollary to 
the observations made in Fig. 7, in general, it is observed that the 
Chilean and Californian ground motions lead to the highest relative 
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SHAP contribution for Mw and Rrup, respectively. On average, relative 
mean absolute SHAP values of Japanese, Chilean, and Californian 
ground motions are observed to be ~0.2, ~0.42, and ~0.38, respec-
tively, for the five features. This is similar to the observations made in 
Fig. 7 regarding the median values. However, it should be noted that this 
figure only compares the absolute mean SHAP values of the three 
seismic environments and does not account for the variability and di-
rection of contribution (i.e., sign), which can be observed in Figs. 6 and 
7. Thus, based on Figs. 6–8, it can be concluded that Californian source 
and site features lead to the highest variability in the IM, and Japanese 
source and site features lead to a maximum mean contribution to the 
final output IM. 

Based on the observations made in Figs. 6–8, for each IM, the feature 
leading to one of the highest SHAP values is selected and plotted against 
the respective IM values in Fig. 9. For each sub-figure, the title specifies 
the selected feature, the abscissa (x-axis) indicates the IM, and the 

ordinate (y-axis) indicates the obtained SHAP values for the corre-
sponding IM and feature for all three seismic environments. For each 
subfigure, regressions are conducted independently for each case, and 
the regression equations are mentioned in the legends along with the 
Pearson correlations (ρ). In general, it can be observed that the data 
points of the California-based crustal ground motions lie separate from 
the Japan and Chile-based subduction ground motions. Furthermore, in 
most cases (especially for Mw), a strong positive correlation is observed 
between the IMs and corresponding SHAP values, indicating that higher 
IM values are based on higher feature contribution. In contrast for Rrup, 
in general, weaker correlations are observed between the SHAP and IMs. 
In particular, the regressions and correlations indicate significantly 
different regression and correlation coefficient values between Califor-
nia crustal and Japan and Chile subduction. This further points out the 
inefficiency of using results across different regional seismic environ-
ments and the need for in-depth investigations to understand the 

Fig. 7. SHAP box plots using GGMMComb for: (a) D5− 95,geom, (b) Ia,geom, (c) CAVgeom, (d) PGVgeom, (e) PGAgeom, and (f) Sa(T = 2.0s).  
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seismicity more granularly. Hence, independent GGMMs are developed 
for each seismic environment and studied separately. 

6.2. Analysis of independent GGMMs 

While the SHAP analysis of GGMMComb allows a comparison of the 
three environments in an absolute setting, it is also essential to analyze 
the individual GGMMs (i.e., GGMMCA, GGMMCH, and GGMMJP) to 
employ the local source effects for the seismic mechanisms. However, as 
mentioned in Section 5, the SHAP values for the three independent 
GGMMs cannot be compared directly and need to be made in relative 
terms (since the functioning of each GGMM is for the specific environ-
ment). Within this backdrop, the SHAP values for each GGMM are 
computed for the five features, and then their mean absolute SHAP 
values are used to calculate the relative SHAP values for each feature. 

This is done by computing the mean absolute SHAP value for each 
feature (mean(|SHAPFeaturei |)) and dividing it with the total sum of mean 
absolute SHAP values for all features for each GGMM (i.e., 
∑

imean(|SHAPFeaturei |)). The results are presented in Fig. 10. 
Similar to the GGMMComb, among all the features, Mw and Rrup are 

observed to be the highest contributors to the prediction process of IMs. 
However, the California crustal ground motions Mw and Rrup lead to 
similar contribution levels as observed in the relative mean absolute 
SHAP values. In contrast, for Japanese and Chilean subduction ground 
motions Mw is observed to be the dominant contributor among all fea-
tures and the difference between the relative mean absolute SHAP 
values of Mw and Rrup is much higher as compared to the California 
crustal case. Along the same conclusion, it is observed that except 
CAVgeom the relative SHAP contributions of Mw and Rrup are almost the 
same in the California crustal ground motions. This is in line with the 

Fig. 8. Relative SHAP ratio plots using GGMMComb for: (a) D5− 95,geom, (b) Ia,geom, (c) CAVgeom, (d) PGVgeom, (e) PGAgeom, and (f). Sa(T = 2.0s).  
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previous studies and the mechanics of subduction zone ruptures where 
due to the large magnitudes, the energy release is exponential, and 
attenuation due to the distance is not as strong as the crustal zone 
ground motions since the slip distribution and asperities in large sub-
duction events might be spatially distributed in the fault zone (Astroza, 
Ruiz, & Astroza, 2012). Overall, the SHAP analysis elucidates the role of 
each seismic source and site parameters in the predictions carried out for 
the seismic environments’ IMs. Notably, it allows an in-depth charac-
terization of Californian sources compared to the Japanese and Chilean 
sources, unraveling similarities and differences in the roles of each 
feature within crustal and subduction ground motions. 

7. Conclusions 

The differences observed in the rupture mechanisms and ground 
shaking in the aftermath of various earthquakes worldwide have 
attracted significant attention from the research community. Due to this, 
the study of the regional and seismological differences between various 
earthquake faults and source environments around the globe has been 
the center of investigation in the fields of earthquake engineering and 
engineering seismology. However, though the studies generally suggest 
that the earthquake environments are different and should be analyzed 
independently (especially the subduction and crustal environments), the 

Fig. 9. Feature SHAP values vs. (a) D5− 95,geom (for Rrup), (b) Ia,geom (for Mw), (c) CAVgeom (for Rrup), (d) PGVgeom(for Mw), (e) PGAgeom (for Rrup), and (f) Sa(T = 2.0s) (for 
Mw) using GGMMComb. 
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differences are not quantified in engineering terms, and the impact of 
the differences has not been investigated thoroughly. 

This study presents a novel approach to analyze different seismic 
environments using DL-based surrogate modeling techniques and 
interpreting the DL models using the concepts of XAI. In particular, three 
seismic environments of i) Californian crustal, ii) Japanese subduction, 
and iii) Chilean subduction, with carefully selected ~ 2000 ground 
motion records for each of them, are used to train LSTM-RNN based 
surrogate GGMMs under two settings: i) three independent GGMMs for 
the three environments and ii) one combined GGMM using the com-
bined dataset. The GGMMs aim to act as surrogate models for the seismic 
wave path from the rupture source to the site of interest. This is done by 
developing the GGMMs for regression using the earthquake source and 
site parameters (such as Mw, Rrup, Vs30, and Zhyp) as the inputs and 
resulting amplitude-, duration-, and energy-based ground motion IMs 

(IM vector) as the outputs (such as Ia,geom, CAVgeom, PGVgeom, D5− 95,geom,

PGAgeom, and Sa(T)). The GGMMs are trained with optimized hyper-
parameter tuning to obtain robust surrogate models with high accuracy 
and prediction power. While the goal of this study is not to use the 
prediction capacity of the GGMMs, high prediction power indicates the 
sufficiency and efficiency of surrogate models. 

The trained GGMMs are explored for a cause-effect relationship be-
tween the inputs and outputs using the XAI concept of SHAP analysis. 
SHAP is based on game theory principles and conducts a sensitivity 
analysis between each input feature and output target. The SHAP 
analysis elucidates the role of each seismic source and site parameter in 
predicting each IM in the IM vector and thereby provides inferences to 
the relationship between each input and output. The SHAP analysis is 
used to investigate the GGMMs developed for the different settings, 

Fig. 10. Relative SHAP ratio plots using GGMMCA, GGMMCH, and GGMMJP for: (a) D5− 95,geom, (b) Ia,geom, (c) CAVgeom, (d) PGVgeom, (e) PGAgeom, and (f) Sa(T = 2.0s).  
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thereby it allows an in-depth characterization of the Californian sources 
compared to the Japanese and Chilean sources, unraveling similarities 
and differences in the roles of each feature within crustal and subduction 
ground motions. Results showcase the significantly different effects of 
Mw and Rrup on the different types of IMs within the IM vector for the 
three seismic environments. Specifically for the analysis of GGMMComb, 
SHAP indicates the prominent role of the Sr feature that represents each 
seismic environment. This further suggests the need for a more in-depth 
seismological assessment of each seismic environment and postulates 
that the results cannot be extended across the regions and environments. 
Moreover, this study provides a novel approach to utilizing DL tech-
niques and XAI concepts to decipher black box models routinely used for 
analyzing physical phenomena and engineering problems. 
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