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A B S T R A C T   

This paper analyses the impact of geopolitical risk on carbon dioxide (CO2) emissions inequality in the panel 
dataset of 38 developed and developing economies from 1990 to 2019. At this juncture, the empirical models 
control for the effects of globalisation, capital-labour ratio, and per capita income on CO2 emissions inequality. 
The panel cointegration tests show a significant long-run relationship among the related variables in the 
empirical models. The panel data regression estimations indicate that geopolitical risk, capital-labour ratio, and 
per capita income increase CO2 emissions inequality. However, globalisation negatively affects CO2 emissions 
inequality in the panel dataset of 38 developed and developing countries. The pairwise panel heterogeneous 
causality test results align with these benchmark results and indicate no reverse causality issue. Potential policy 
implications are also discussed.   

1. Introduction 

Climate change is one of today’s most pressing issues (Dow and 
Downing, 2016). The average global temperature is expected to rise by 
3–5 ◦C by 2100, which could have devastating consequences for the 
planet (Hansen et al., 2006). The leading cause of climate change is the 
emissions of greenhouse gases, such as CO2 emissions (Nordhaus, 2018). 
These gases trap heat in the atmosphere, which causes the planet to 
warm (May and Kidder, 2022). The main reason for the increase in CO2 
emissions is the consumption of fossil fuels (Lin and Xu, 2020). When 
fossil fuels are burned, they release CO2 into the atmosphere (Adebayo 
et al., 2023). This is why reducing our reliance on fossil fuels and 
transitioning to cleaner energy sources is vital (Gozgor and Paramati, 
2022). Therefore, the primary goal should be to reduce CO2 emissions to 
combat the adverse effects of climate change and global warming (Syed 
and Bouri, 2022). Overall, understanding the factors contributing to CO2 
emissions is essential for policymakers to develop effective strategies to 

mitigate climate change. 
The factors influencing CO2 emissions are complex and can vary 

from country to country. It is essential to analyse the drivers of CO2 
emissions across countries because each economy has a different level of 
economic development and various cultural, economic, political, and 
social factors. Countries’ sensitivity to environmental degradation also 
differs, and governments can implement different environmental pol-
icies (see, e.g., Chen et al., 2020; Fang et al., 2021; Fu et al., 2021; 
Gozgor et al., 2019; Lau et al., 2023; Li et al., 2021; Mardani et al., 2019; 
Sarker et al., 2023; Sun and Huang, 2020; Xie et al., 2021; Yu et al., 
2023; Zhang et al., 2022; Zheng et al., 2019). 

Previous empirical papers have focused on the total amount of CO2 
emissions, but this paper considers a new indicator: CO2 emissions 
inequality. This measure is calculated by considering people’s total 
(personal) per capita carbon footprint within a country’s top 10% in-
come threshold (Chancel, 2022). According to the data, wealthier peo-
ple emit more CO2 than poorer people. For example, the average per 
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capita carbon footprint of people in the top 10% income level is almost 
three times higher than that of a typical person in an advanced country 
with a median income (Chancel, 2022). We argue that it is essential to 
understand the average per capita CO2 emissions of more prosperous 
people (within the top 10% income threshold) because decreasing CO2 
emissions must begin with these people in society. This is because 
wealthy people have the financial sources to invest in less environ-
mentally intensive production and consumption practices, unlike poor 
households. 

At this juncture, this paper explores the factors driving CO2 emissions 
inequality across countries. For this purpose, the article uses the panel 
dataset of 38 developed and developing countries from 1990 to 2019. 
The paper also focuses on the roles of gross domestic product (GDP) per 
capita, capital-labour ratio, globalisation and geopolitical risk on CO2 
emissions inequality. Previous empirical works have concentrated 
mainly on the determinants of CO2 emissions. To put it differently, 
previous empirical papers have only considered the CO2 emissions 
measure for developed and developing economies. The analysis for a 
mix of developed and developing countries shows that CO2 emissions 
inequality is also a significant problem in these countries, which makes 
our study of CO2 emissions inequality more relevant. Our paper provides 
a more comprehensive understanding of the factors contributing to CO2 
emissions inequality. We suggest that the findings of our paper provide a 
strong foundation for developing essential policy implications for 
reducing CO2 emissions inequality. 

According to the literature review of Heinonen et al. (2020), there 
are several previous studies examined the determinants of CO2 emis-
sions inequality. Still, they have been limited to regional or national data 
in large economies, such as China and the United States. For instance, 
Wang et al. (2022a), Wiedenhofer et al. (2017), and Xu et al. (2016, 
2022) have investigated the cases in China, while Feng et al. (2021), 
Song et al. (2022), and Starr et al. (2023) have focused on the United 
States. These studies have obtained mixed findings on the determinants 
of CO2 emissions inequality in those related countries. 

Unlike previous papers, this paper argues several drivers of CO2 
emissions inequality across 38 developing and developed economies. 
First, CO2 emissions inequality should be affected by a country’s income 
level, typically measured by the GDP per capita. The Environmental 
Kuznets Curve (EKC) hypothesis proposed by Grossman and Krueger 
(1991, 1995) suggests a significant relationship between CO2 emissions 
and GDP per capita. Initially, as an economy grows, CO2 emissions in-
crease. However, at a certain point, known as the threshold level, GDP 
per capita begins to reduce CO2 emissions. This inverted U-shaped 
relationship between GDP per capita and CO2 emissions has been sup-
ported by some studies (Dinda, 2004). Nevertheless, following the EKC 
hypothesis, we consider GDP per capita to analyse its impact on CO2 
emissions inequality. Since we include several developing economies, 
we expect a positive effect of GDP per capita on CO2 emissions 
inequality. 

We also suggest that globalisation is the second factor to drive CO2 
emissions inequality. Globalisation can help to reduce CO2 emissions 
inequality by promoting the development and diffusion of new and more 
energy-efficient technologies (Gozgor et al., 2020; Liu et al., 2020; 
Rahman, 2020; Shahbaz et al., 2018; Yang et al., 2021; You and Lv, 
2018). These technologies can help to reduce the amount of CO2 emitted 
per unit of economic output, which can help to level the playing field 
between countries with different levels of economic development. 
Following previous findings, we also include the (overall) KOF globali-
sation index to control the role of globalisation in CO2 emissions 
inequality in the panel data of 38 developing and developed economies. 
We expect a negative impact of globalisation on CO2 emissions 
inequality. 

The third variable for determining CO2 emissions inequality is the 
capital-labour ratio. The capital-labour ratio is a measure of the amount 
of capital that is available for each worker in an open economy. A higher 
capital-labour ratio means more capital is available to each worker. We 

suggest that in countries with a higher capital-labour ratio, there is a 
greater tendency to use capital-intensive technologies (Krajewski and 
Mackiewicz, 2019; Lu et al., 2023). These technologies tend to be more 
in energy-intensive sectors (e.g., manufacturing and transportation), 
which should cause higher CO2 emissions inequality. A high 
capital-labour ratio can also lead to more unequal income distribution 
since wealthy people often own capital (Saez and Zucman, 2020). 
Indeed, in countries with a high capital-labour ratio, the rich hold more 
capital than the poor people. This means the wealthy are responsible for 
a disproportionate share of CO2 emissions. Following these arguments, 
we also consider the role of the capital-labour ratio and expect a positive 
impact of the capital-labour ratio on CO2 emissions inequality. 

The fourth is geopolitical risk, the primary variable of interest to 
drive CO2 emissions inequality. Previous findings have shown that 
geopolitical risk increases income inequality (e.g., Wu et al., 2022). 
Similarly, the higher geopolitical risk due to conflict and political 
instability can increase CO2 emissions inequality. As we have observed 
from the Russia-Ukraine war since February 2022, geopolitical risk in-
creases military spending. The geopolitical risk escalates CO2 emissions 
inequality since military spending often involves using fossil fuels like 
oil and natural gas (Wang et al., 2022b). Geopolitical risk related to 
conflict or political instability can also disrupt energy infrastructure, 
including renewables, thus increasing CO2 emissions inequality (Zhao 
et al., 2023; Shahbaz et al., 2023). In addition, geopolitical risk may hurt 
capital investments, and more energy-efficient production can be more 
costly with higher geopolitical risk (Gozgor et al., 2022). Geopolitical 
risk can also decrease imports and exports, leading to shortages or 
higher prices for goods and services. These issues can increase CO2 
emissions inequality. Therefore, we include the geopolitical risk index of 
Caldara and Iacoviello (2022) to control the impact of geopolitical risk 
on CO2 emissions inequality in the panel dataset of 38 developing and 
developed economies. 

To the best of our knowledge, this is the first empirical paper in the 
literature that examines the impact of geopolitical risk on CO2 emissions 
inequality across developing and developed economies. For this pur-
pose, we focus on the panel data set of 38 developed and developing 
economies from 1990 to 2019. In addition, we control for the effects of 
globalisation, capital-labour ratio, GDP per capita and geopolitical risk 
as the potential drivers of CO2 emissions inequality. According to the 
empirical findings, geopolitical risk, capital-labour ratio, and GDP per 
capita increase CO2 emissions inequality. However, globalisation de-
creases CO2 emissions inequality. The pairwise panel heterogeneous 
causality test results align with these benchmark results and indicate no 
reverse causality issue. In a given economy under specific GDP per 
capita level and capital-labour ratio, we suggest that increasing glob-
alisation and decreasing geopolitical risks are noteworthy to reduce CO2 
emissions inequality in leading developing and developed economies. 

The rest of the paper is organised as follows. Section 2 explains the 
details of data sources and the model specifications. This section also 
provides the details of diagnostics tests and econometric methods. Sec-
tion 3 discusses the empirical results, and Section 4 concludes. 

2. Data, model specifications, and econometric methodology 

2.1. Data sources and model specifications 

The empirical analyses focus on 38 developed and developing 
countries1 from 1990 to 2019. The paper uses CO2 emissions inequality 

1 Argentina, Australia, Belgium, Brazil, Canada, Chile, China, Colombia, 
Denmark, Finland, France, Germany, Hong Kong SAR (China), India, Indonesia, 
Israel, Italy, Japan, Korea Republic, Malaysia, Mexico, the Netherlands, Nor-
way, Peru, the Philippines, Portugal, Russia, Saudi Arabia, South Africa, Spain, 
Sweden, Switzerland, Thailand, Turkiye, Ukraine, the United Kingdom, the 
United States and Venezuela. 
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as the dependent variable. Specifically, we use the dependent variable of 
CO2 emissions inequality (i.e., total carbon footprint per capita by the 
wealthiest 10% of the population). It is calculated using the estimations 
of Chancel (2022) based on input tables, national accounts, surveys, and 
tax data combinations. 

Geopolitical risk is employed as the primary independent variable in 
the CO2 emissions inequality function, and the related data are obtained 
from Caldara and Iacoviello (2022). Besides, we use the overall glob-
alisation index, real GDP per capita, and capital-labour ratio as control 
variables. The overall globalisation index is obtained from Gygli et al. 
(2019). It captures the effects of economic integration, political inte-
gration, and technology on CO2 emissions inequality. GDP per capita 
and capital-labour ratio are downloaded from Feenstra et al. (2015). 
GDP per capita captures the income effect, and the capital-labour ratio 
refers to productivity differences among the countries. A complete 
description of the above variables is presented in Table 1. 

Based on the specification of the variables selected, we formulate the 
CO2 emissions inequality function as follows: 

CIit = f (GPRit,GIit,KLRit,GDPCit) (1) 

Before analysing the model, we compress the variability of the data 
by taking a logarithmic transformation of all the variables except the 
GPR index. A logarithmic transformation would reduce extreme values’ 
impact and linearise the non-linear relationship. This issue gives us a 
transformed model as follows: 

logCIit = α1 + β1GPRit + β2logGIit + β3logKLRit + β4logGDPCit + εit (2)  

Where logCI, logGI, logKLR, and logGDPC are the natural logarithm of 
CO2 emissions inequality, overall globalisation index, capital-labour 
ratio, and real GDP per capita, respectively. GPR is the index of 
geopolitical risk. Furthermore, α1 is the intercept of the model, and βi (i 
= 1,2,3,4) are the coefficients of the independent variables. In addition, 
εit is the stochastic disturbance term of the model that captures the in-
fluence of omitted variables on the dependent variable. Finally, the 
subscript i is for the cross-sectional units (i.e., countries), while t in-
dicates the study period (years). Following the previous paper, we 
expect the GDP per capita, GPR, and capital-labour ratio to increase CO2 
emissions inequality. However, globalisation should be negatively 
related to CO2 emissions inequality. Therefore, we expect β1 >0, β2 <0, 
β3 >0 and, β4 >0. 

2.2. Diagnostics tests and econometric methods 

2.2.1. Cross-sectional dependence tests 
Since panel data usually suffers from cross-sectional dependence, it is 

imperative to properly diagnose and address the cross-sectional depen-
dence to ensure the results’ validity and reliability. It occurs when the 
observations within the identical cross-sections (i.e., countries) are not 
independent. This issue is typically ascribed to the influence of some 

unobserved shared factors that impact all units, potentially in diverse 
manners. Keeping this in mind, we adopt the Breusch-Pagan Lagrange 
Multiplier (LM) (Breusch and Pagan, 1980) and Pesaran Scaled LM 
(Pesaran, 2021) tests to diagnose the cross-sectional dependence among 
the variables of the present study. The Breusch-Pagan LM test is robust to 
heteroscedasticity, which can be applied even when the error terms have 
different variances across the cross-sections (Baum, 2001). 

In addition, the Breusch-Pagan LM test does not impose strict as-
sumptions on the distribution of the error terms. It only requires that the 
errors are independent and identically distributed (i.i.d) and allows for 
arbitrary correlation structures. On the other hand, the Pesaran-Scaled 
LM test is consistent under weak cross-sectional dependence, which 
means it can detect even trim levels of spatial correlation. Similar to the 
Breusch-Pagan test, it can be applied even when the error terms vary 
across cross-sections or periods. Besides, it can be used for balanced and 
unbalanced panels (Pesaran, 2021). 

2.2.2. Heterogeneity test of Blomquist and Westerlund (2013) 
Panel heterogeneity refers to systematic differences or variations 

across individual entities or units in a panel dataset. It reflects the dif-
ferences in the cross-sectional units’ characteristics, behaviours, or re-
lationships. Heterogeneity arises from unobserved individual-specific 
factors or elements that affect the dependent variable. Therefore, we use 
the heterogeneity test of Blomquist and Westerlund (2013) for the pre-
sent analysis, which is robust to heteroscedasticity and autocorrelation. 
It does not assume homoscedasticity or the absence of serial correlation 
in the error terms, making it suitable for situations where these as-
sumptions may be violated. Besides, it is consistent, meaning the test 
statistic converges to its actual value as the sample size increases. The 
Blomquist-Westerlund test provides more reliable inference in panel 
data analysis by accounting for cross-sectional dependence and 
individual-specific effects. This issue helps the statistical analysis cap-
ture the underlying relationships while controlling for panel heteroge-
neity (Blomquist and Westerlund, 2013). 

2.2.3. Panel unit root tests 
Panel unit root tests are employed to assess the stationarity proper-

ties of variables in a panel data set. More specifically, these determine if 
the variables of interest exhibit a unit root. Unit root signals the presence 
of non-stationarity, leading to a stochastic trend and convergence to a 
fixed mean over time. For the present analysis, we use the cross-sectional 
augmented IPS (CIPS) and Cross-sectional Augmented Dickey-Fuller 
(CADF) tests of Pesaran (2007) for checking the unit root. The CIPS 
test incorporates cross-sectional information by extending the IPS test 
statistic with additional terms that capture the cross-sectional de-
pendency. It is considered superior to the Im, Pesaran, and Shin (IPS) 
test of Im et al. (2003), failing to account for cross-sectional dependence 
explicitly, leading to biased results. On the other hand, the CADF test, in 
addition to cross-sectional dependence, allows for individual-specific lag 
length selection and coefficient restrictions, accommodating the het-
erogeneity in unit root behaviour across units. These features make the 
CIPS and the CADF preferred for detecting unit roots in panel data. 

2.2.4. Panel cointegration tests of Kao (1999) and Pedroni (1999, 2004) 
Panel cointegration refers to the existence of long-run equilibrium 

relationships among variables in panel data. Cointegration implies that 
even though individual variables may be non-stationary, a stationary 
linear combination of these variables exists. This issue suggests that the 
variables have a stable long-term relationship unaffected by individual- 
specific characteristics. Therefore, we utilise the panel cointegration 
tests of Kao (1999) and Pedroni (1999, 2004) to understand this rela-
tionship. The Kao panel cointegration test is an extension of Engle and 
Granger’s (1987) cointegration test for time series data, adapted 
explicitly for panel data. It accounts for both cross-sectional and 
time-series dependence in the data. Like the Kao test, the Pedroni test 
considers both cross-sectional dependence and the time-series properties 

Table 1 
Specification of variables and data sources.  

Variable Type Label Specification of Variable Data Source 

Dependent 
Variable 

CI CO2 Emissions Inequality: Chancel (2022) 
Total CO2 Equivalent per Capita 
(CO2 Emissions per Capita of the 
Wealthiest 10% of the 
Population) 

Independent 
Variable 

GPR Geopolitical Risk Caldara and 
Iacoviello (2022) 

Control 
Variables 

GI (Overall) Globalisation Index Gygli et al. 
(2019) 

KLR Capital-labour Ratio Feenstra et al. 
(2015) 

GDPC Real GDP per Capita (Purchasing 
Power Parity Based) 

Feenstra et al. 
(2015)  
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of panel data. In addition, the Pedroni test allows for two types of 
cointegration: group-mean cointegration and individual-specific coin-
tegration. The group-mean cointegration implies that the cointegrating 
relationship holds for all individuals in the panel. In contrast, 
individual-specific cointegration suggests that each individual has a 
unique cointegrating relationship. The null hypothesis of both tests is 
that no cointegration exists among the variables. In contrast, the alter-
native theory suggests at least one cointegrating relationship. 

2.2.5. The PCSE, the FGLS, and the Driscoll-Kraay estimations 
Considering the heterogeneity of slope coefficients and cross- 

sectional dependence, the present study adopted the Panel-correlated 
Standard Errors (PCSE) regression method introduced by Beck and 
Katz (1995). The primary advantage of the PCSE regression method is its 
ability to address the issue of correlated errors within panels. Further-
more, it mitigates the variable bias by effectively controlling for unob-
served heterogeneity specific to individual panels. Additionally, the 
PCSE is ideal for panel data sets in which the cross-sections exceed the 
number of periods (Beck and Katz, 1995). 

We also use the Feasible Generalized Least Squares (FGLS) method of 
Hansen (2007) and Driscoll-Kraay standard error (Driscoll and Kraay, 
1998) regression methods for testing the robustness of the results ob-
tained from the PCSE estimations. Like the PCSE, the FGLS is an 
extension of the Ordinary Least Squares (OLS) method that accounts for 
the specific characteristics of panel data, such as serial correlation and 
heteroscedasticity. Besides, it controls for the individual-specific effects 
through a fixed-effects or random-effects model. On the other hand, the 
Driscoll-Kraay standard errors estimate standard errors in regression 
models when there is potential correlation or heteroscedasticity in the 
error terms. Besides, it provides consistent and unbiased estimates of the 
standard errors, even when there is correlation or heteroscedasticity in 
the error terms (Hoechle, 2007). 

Finally, to check the robustness of the findings, we utilise the pair-
wise panel heterogeneous causality test conducted by Dumitrescu and 
Hurlin (2012) to examine causality relationships between variables in a 
panel data set, considering heterogeneity among the individual units in 
the panel. 

3. Empirical results and discussion 

3.1. Descriptive statistics and pairwise correlations 

Table 2 reports the descriptive statistics of the selected variables with 
1140 observations. All the variables except the GI are positively skewed 
since their mean values are more significant than the median values. 
Furthermore, the mean values and the variance of the GDPC and the KLR 
are significantly higher than the mean values of other variables. All the 
variables, except the GPR, report higher deviations around the mean. 
Since this could give rise to significant variances, these variables have 
undergone a logarithmic transformation. 

Table 3 outlines the pairwise correlation matrix of the variables of 
the present analysis. As evident, all the explanatory variables are 

significantly and positively correlated with the dependent variable. On 
the other hand, all the explanatory variables are positively and signifi-
cantly correlated. Except for globalisation, the evidence aligns with the 
previous discussion from the earlier papers and the theoretical back-
ground in Eq. (1) and Eq. (2). 

3.2. Results of diagnostic tests 

Table 4 presents the results for the cross-sectional dependence be-
tween the variables of interest obtained by the Breusch-Pagan LM test of 
Breusch and Pagan (1980) and the Pesaran-Scaled LM test of Pesaran 
(2021). Both tests reject the null hypothesis that no cross-sectional 
dependence exists among the variables. In other words, both results 
confirm the presence of cross-sectional dependence in the model. Since 
the results from Table 4 confirm the presence of cross-sectional depen-
dence, it is essential to check for the heterogeneity and the unit-root 
properties of the variables of interest. 

Table 5 reports the results of the heterogeneity test of Blomquist and 
Westerlund (2013). The results reject the null hypothesis of homoge-
neity and confirm the presence of heterogeneity in the model. This en-
sures the diversity of 38 developed and developing countries and reflects 
the complex and dynamic nature of the phenomena under investigation. 

Table 6 presents the unit root results of the CIPS test of Im et al. 
(2003) and the CADF test of Pesaran (2007). The results reveal that the 
dependent variable possesses unit root (non-stationarity) at constant 
and trend levels. On the other hand, all the explanatory variables except 
the GDPC are stationary at the constant level under both tests. However, 
all the variables, except the KLR, are non-stationary at the trend level 
under the CADF test. Finally, all the variables are stationary at the first 
difference under both tests. This evidence means these variables exhibit 
first-order or I (1) integration. 

The results presented in Table 7 indicate the long-term relationship 
of the explanatory variables with the CO2 emissions inequality, ac-
cording to Kao’s (1999) panel cointegration test. On the other hand, 
seven out of eleven statistics are statistically significant under the 
Pedroni (1999, 2004) panel cointegration test. This issue makes us 
conclude that there exists a long-run relationship between the variables 
of the present model. 

Overall, we observe that CO2 emissions inequality maintains a long- 
term equilibrium relationship with the geopolitical risk in the presence 
of the control variables under consideration. 

Table 2 
Descriptive statistics.  

Variable: CI GPR GI KLR GDPC 

Mean 34.44 0.220 70.47 243,707 27,272 
Medium 30.75 0.065 71.01 237,450 26,972 
Maximum 117.5 4.679 91.14 703,734 94,650 
Minimum 3.269 0.004 32.01 7212 251.1 
Standard Deviation 20.72 0.481 13.06 156,899 17,565 
Skewness 1.113 5.143 − 0.413 0.448 0.584 
Kurtosis 4.389 33.58 2.414 2.354 2.963 
Jarque-Bera 326.7 49,465 48.66 57.96 64.96 
Observations 1140 1140 1140 1140 1140 

Source: The authors’ estimations. 

Table 3 
Pairwise correlations.  

Variable CI GPR GI KLR GDPC 

CI 1.000     
GPR 0.377*** 1.000    
GI 0.390*** 0.102*** 1.000   
KLR 0.583*** 0.157*** 0.760*** 1.000  
GDPC 0.702*** 0.212*** 0.752*** 0.869*** 1.000 

Note: ***p < 0.01. 
Source: The authors’ estimations. 

Table 4 
Results of the cross-sectional dependence tests.  

Variable Breusch–Pagan LM Pesaran–Scaled LM 

logCI 5408*** 125.4*** 
GPR 2278*** 42.02*** 
logGI 18,545*** 475.8*** 
logKLR 14,425*** 365.9*** 
logGDPC 15,419*** 392.4*** 

Note: ***p < 0.01. 
Source: The authors’ estimations. 
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3.3. Results of regressions estimations and discussion 

3.3.1. Geopolitical risk and CO2 emissions inequality 
Table 8 outlines the long-term coefficients of the model using the 

PCSE, the FGLS, and the Driscoll-Kraay regression techniques. These 
results confirm a significant positive impact of geopolitical risk on CO2 
emissions inequality. More specifically, the findings validate that the 
increasing geopolitical risk exacerbates the CO2 emissions inequality in 
38 developing and developed countries. Geopolitical risks can affect the 
availability and price of resources, including carbon and fossil fuels (Lau 
et al., 2023). In times of uncertainty and instability, the wealthy popu-
lation may respond by increasing their resource consumption to secure 
their positions or protect their assets. This issue can result in higher 
energy consumption, including using carbon-intensive sources, such as 
fossil-fuel-backed vehicles or large estates. 

In contrast, lower-income individuals may lack the means to increase 
their consumption levels or access more sustainable alternatives, thus 
widening the CO2 emissions gap. In the worst-case scenario, lower- 
income individuals may experience financial constraints and prioritise 
basic necessities, limiting their ability to invest in sustainable products 
or adopt low-carbon lifestyles. Furthermore, wealthier individuals often 
have more influence on policy decisions and regulations. As a result, 
they may lobby for policies that prioritise their interests and allow for 
more lenient environmental standards or exemptions, leading to higher 
CO2 emissions. This issue can result in unequal regulatory frameworks 
that benefit wealthy individuals and perpetuate CO2 emissions 
inequality. This issue allows them to continue high-emissions activities 
while disproportionately burdening lower-income individuals. 

Additionally, geopolitical instability may create opportunities for 
resource exploitation in regions with weaker environmental regulations, 
further encouraging investments that perpetuate carbon-intensive 
practices and widening the already existing CO2 emissions inequality 
in the related countries. 

Finally, increased geopolitical risk weakens the existing environ-
mental rules and delays the adoption of new approaches. This issue 
could further perpetuate CO2 emissions inequality if it allows the 
wealthy to continue emitting carbon while transferring the re-
sponsibility for CO2 emissions reduction onto lower-income individuals 
or communities. 

3.3.2. The roles of control variables in driving CO2 emissions inequality 
Table 8 further reveals that globalisation negatively and significantly 

affects CO2 emissions inequality. This evidence means that opening 38 
developed and developing economies leads to processes that promote 
sustainable environmental practices from the wealthiest, reducing their 
CO2 emissions and the existing CO2 emissions inequalities. This issue is 
possible since technology can promote sustainable consumption pat-
terns by providing access to eco-friendly products, raising awareness 
about the environmental impact of consumption, and supporting 
responsible business practices. As sustainability becomes more valued 
globally, the wealthiest individuals within countries may adopt greener 
lifestyles, reducing CO2 emissions. In addition, globalisation creates a 
global marketplace where consumer preferences and market forces 

Table 5 
Results of the heterogeneity test of Blom-
quist and Westerlund (2013).  

Adj. Delta 
22.47*** 
25.13*** 

Note: ***p < 0.01. 
Source: The authors’ estimations. 

Table 6 
Results of the CIPS and the CADF panel unit root tests.  

Panel A: Results of the CIPS Panel Unit Root Test 

Variable Constant Constant and Trend 

Levels Δ Level Δ 

LogCI − 2.053 − 5.302*** − 2.466 − 5.488*** 
GPR − 3.097*** − 5.744*** − 3.41*** − 5.858*** 
logGI − 2.888*** − 5.396*** − 2.897*** − 5.442*** 
logKLR − 2.716*** − 3.310*** − 2.879*** − 3.751*** 
logGDPC − 1.556 − 3.630*** − 2.071 − 3.961*** 

Panel B: Results of the CADF Panel Unit Root Test 
logCI − 1.495 − 2.648*** − 1.829 − 2.918*** 
GPR − 1.955*** − 3.423*** − 2.245 − 3.495*** 
logGI − 2.153*** − 3.233*** − 2.267 − 3.303*** 
logKLR − 2.592*** − 2.673*** − 2.923*** − 2.782*** 
logGDPC − 1.934 − 2.364*** − 2.230 − 2.620** 

Note: ***p < 0.01 and **p < 0.05, Δ = First difference. 
Source: The authors’ estimations. 

Table 7 
Results of the panel cointegration tests.  

Panel A: Residual Cointegration Test of Kao (1999) 

t-statistic Prob. ADF = 3.282*** 0.0005  

Residual Variance = 0.0019 HAC Variance = 0.0010  

Panel B: Residual Cointegration Test of Pedroni (1999, 2004) 
Null Hypothesis: No Cointegration 
Alternative Hypothesis: Common AR Coefficients (within–dimension)  

Statistic Prob. Weighted Statistic Prob. 

Panel v-statistic 0.559 0.287 0.062 0.475 
Panel rho-statistic − 5.870*** 0.000 − 0.586 0.278 
Panel PP-statistic − 21.26*** 0.000 − 6.572*** 0.000 
Panel ADF-statistic − 6.674*** 0.000 − 2.245** 0.012 

Alternative Hypothesis: Individual AR Coefficients (between–dimension)  

Statistic Prob. 

Group rho-statistic 1.461 0.928 
Group PP-statistic − 7.365*** 0.000 
Group ADF-statistic − 1.648** 0.049 

Note: ***p < 0.01 and **p < 0.05. 
Source: The authors’ estimations. 

Table 8 
Results of regression estimations.  

Method PCSE FGLS Driscoll-Kraay  

Coefficient Standard Error Coefficient Standard Error Coefficient Standard Error 

GPR 0.028*** 0.009 0.035*** 0.000 0.079*** 0.010 
logGI − 0.194* 0.116 − 0.651*** 0.004 − 1.069*** 0.117 
logKLR 0.169*** 0.043 0.046*** 0.001 0.289*** 0.078 
logGDPC 0.371*** 0.041 0.757*** 0.001 0.549*** 0.129 
Constant Term − 0.693*** 0.159 − 0.866*** 0.005 − 0.490** 0.235 

Note: ***p < 0.01, **p < 0.05 and * p < 0.10. 
Source: The authors’ estimations. 
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influence business practices. As sustainability becomes increasingly 
valued, there is a growing demand for eco-friendly products and ser-
vices. The wealthiest population can drive market demand for sustain-
able goods and services with greater purchasing power. In response, 
businesses may adopt greener practices, develop sustainable products, 
and invest in cleaner technologies to cater to this demand. This shift 
towards sustainable consumption can result in reduced CO2 emissions 
from the products consumed by the wealthiest individuals. Lastly, more 
affluent individuals often consume products that have complex and 
global supply chains. Promoting sustainable practices throughout the 
supply chain, such as responsible sourcing, energy-efficient 
manufacturing, and low-emissions transportation, reduces the carbon 
footprint of producing and distributing goods consumed by the 
wealthiest population. A reduction in CO2 emissions reflects immedi-
ately on the CO2 emissions inequality within 38 developed and devel-
oping countries. 

In addition, it is evident from Table 8 that the capital-labour ratio 
positively and significantly influences CO2 emissions inequality. 
Increasing capital intensity relative to labour worsens pre-existing im-
balances in the CO2 emissions between the wealthiest and the poorest. 
As the capital-labour ratio increases, industries adopt more capital- 
intensive technologies to enhance productivity and profitability. These 
technologies often rely on fossil fuels or energy-intensive processes, 
which can lead to higher CO2 emissions inequality. Furthermore, the 
rising capital-labour ratio often leads to the growth of high-income 
sectors such as manufacturing, construction, and transportation. These 
sectors typically have a higher carbon footprint due to their reliance on 
energy-intensive processes, fossil fuel consumption, and CO2 emissions 
from transportation activities. In addition, the wealthiest individuals 
within a country often have a higher representation and involvement in 
these sectors, either as business owners, investors, or high-income em-
ployees, thus contributing to their higher CO2 emissions inequality. 
Finally, the wealthiest individuals tend to have higher carbon-intensive 
lifestyles, with larger residences, multiple vehicles, air travel, and luxury 
goods. The rising capital-labour ratio can fuel economic growth, in-
crease income inequality, and exacerbate the carbon-intensive lifestyles 
of the rich, leading to higher CO2 emissions inequality. 

Finally, Table 8 reveals that economic growth positively and signif-
icantly affects CO2 emissions inequality within 38 developed and 
developing countries. It indicates that these countries are yet to reach 
the stage of economic growth that would initiate a decline in the overall 
CO2 emissions quantity and the resultant CO2 emissions inequality, as 
projected by the EKC hypothesis. In pursuit of economic growth, the 
focus often lies on maximising profits and expanding production, 
sometimes at the expense of ecological considerations. This issue can 
lead to the neglecance of sustainable practices and a reliance on carbon- 
intensive technologies. Moreover, the wealthiest population, with more 
significant influence and decision-making power, may prioritise eco-
nomic gains over environmental concerns, leading to higher CO2 emis-
sions inequality. Besides, economic growth fosters increased 
consumption, benefits carbon-intensive sectors, promotes energy- 
intensive lifestyles, neglects sustainability considerations, and some-
times even creates unequal access to clean technologies. All these factors 
potentially perpetuate the unequal CO2 emissions scenario. 

3.4. Robustness check: panel causality tests 

Finally, we examine the direction and strength of causality between 
the selected variables using the Pairwise Panel Heterogeneous Causality 
test developed by Dumitrescu and Hurlin (2012). These results are 
presented in Table 9. 

As expected, a significant causality runs from geopolitical risk to CO2 
emissions inequality. Similarly, unidirectional causality flows from per 
capita income to CO2 emissions inequality and from globalisation to CO2 
emissions inequality are also observed. In addition, a bidirectional 
causality exists between the capital-labour ratio and CO2 emissions 

inequality. These findings further validate our model and confirm a 
significant influence of the selected variables on the outcome variable, 
meaning that there is no reverse causality issue between the GPR and 
CO2 emissions inequality. 

4. Conclusion 

This paper investigated the impact of geopolitical risk on CO2 
emissions inequality in the panel dataset of 38 developed and devel-
oping economies from 1990 to 2019. We controlled for the effects of 
globalisation, capital-labour ratio, and per capita income on CO2 emis-
sions inequality. After checking various diagnostics, the panel cointe-
gration test of Kao (1999) and Pedroni (1999, 2004) indicated a 
significant long-run relationship among the related variables. The PCSE, 
the FGLS, and the Driscoll-Kraay estimations showed that geopolitical 
risk, capital-labour ratio, and per capita income increase CO2 emissions 
inequality. In contrast, globalisation is negatively associated with CO2 
emissions inequality in the panel dataset of 38 developed and devel-
oping countries. The pairwise panel heterogeneous causality test indi-
cated no reverse causality issue for the relationship between the GPR 
and CO2 emissions inequality. 

The findings suggest that addressing the CO2 emissions inequality 
resulting from rising geopolitical risk requires a combination of policy 
interventions, including progressive taxation, equitable regulation, and 
targeted support for low-income communities. In addition, encouraging 
sustainable consumption and production patterns, promoting renewable 
energy access, and strengthening environmental regulations can help 
reduce the CO2 emissions gap between rich and poor people. This paper 
highlights the importance of addressing the environmental implications 
of consumption patterns and promoting sustainable practices among 
affluent individuals to reduce CO2 emissions and foster higher equity in 
carbon footprints in the related countries. 

It is important to note that our findings are limited to the panel 
dataset of 38 developing and developed economies. Future papers on 
this subject can focus on other potential determinants of CO2 emissions 
inequality across more developing and developed countries. For 
instance, an important research question is how different institutions 
affect CO2 emissions inequality. Time-series analyses on the single 
country case (e.g., China and India) can also provide interesting 
findings. 
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