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Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory

and motor disabilities by both decoding motor intentions expressed by neural activity,

and by encoding artificially sensed information into patterns of neural activity elicited by

causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small

amounts of information with the brain. This problem has proved difficult to overcome by

simply increasing the number of recording or stimulating electrodes, because trial-to-trial

variability of neural activity partly arises from intrinsic factors (collectively known as the

network state) that include ongoing spontaneous activity and neuromodulation, and so

is shared among neurons. Here we review recent progress in characterizing the state

dependence of neural responses, and in particular of how neural responses depend

on endogenous slow fluctuations of network excitability. We then elaborate on how this

knowledge may be used to increase the amount of information that BMIs exchange with

brain. Knowledge of network state can be used to fine-tune the stimulation pattern that

should reliably elicit a target neural response used to encode information in the brain,

and to discount part of the trial-by-trial variability of neural responses, so that they can

be decoded more accurately.

Keywords: brain-machine interfaces, neuromodulation, neural coding, state dependence, neural response

variability

INTRODUCTION

Brain-machine interfaces (BMIs) are devices mediating the dialogue between a brain and the
external world. These devices hold the potential to restore motor or sensory functions to people
who lost them due to illness or injury. Depending on their direction of communication with the
brain, BMIs can be divided into various categories (Donoghue, 2002; Mussa-Ivaldi and Miller,
2003).

Efferent or motor BMIs use sensors to record neural activity—such as single-unit (SUA)
or Multi-unit (MUA) activity, Local Field Potentials (LFPs), electrocorticograms (ECoG), or
electroencephalograms (EEGs)—and decode this activity to infer the motor intent of the subject
and command an artificial actuator (a robotic arm, a motorized wheelchair, or a computer
cursor). These systems can have a considerable clinical impact for the treatment of patients with
neurological diseases such as stroke, spinal cord injury, or Parkinson’s disease.
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FIGURE 1 | Schematic of a bidirectional brain-machine interface. A bidirectional BMI has two pathways of communication with the brain: an afferent pathway

from some sensors to the brain and an efferent pathway from the brain to a device controlled by it. The decoder—or motor interface—transforms the recorded activity

into motor commands for the device. The encoder—or sensory interface—transmits the information about the external world or about the state of the device to the

brain by delivering electrical stimulation patterns to it.

Afferent or sensory BMIs sense physical quantities from
the environment (i.e., sound, light, temperature) and use an
encoding interface to translate these sensory signals into patterns
of neural activity elicited using causal interventions on the brain
(for example, electrical or optogenetic microstimulation) with
the goal of provoking the desired sensation (Fitzsimmons et al.,
2007). Examples include cochlear implants (Loeb, 1990; Clark,
2006) and retinal prostheses (Zrenner, 2002; Nirenberg and
Pandarinath, 2012). Sensory interfaces have obvious implications
for curing the loss of sensory function.

Researchers have also developed bidirectional BMIs (Figure 1)
in which both a decoder of motor intention and an encoder
of sensory information exchange information with the brain
in a closed-loop (Reger et al., 2000; Nicolelis, 2003; Lebedev
and Nicolelis, 2006; Nicolelis and Lebedev, 2009; O’Doherty
et al., 2009, 2011; Mussa-Ivaldi et al., 2010; Lebedev et al.,
2011; Carmena, 2013; Moxon and Foffani, 2015). Such systems
may have important clinical applications because (unlike motor
BMIs) they can provide the brain with non-visual feedback
information (such as tactile or proprioceptive information) that
is important for compliant task execution. Bidirectional BMIs
may also help to automatically execute tasks without focusing
attention on each single motor command. Recently we proposed
to achieve this goal through a class of bidirectional BMIs,
implemented both in anesthetized and awake rodents (Vato et al.,
2012, 2014; Boi et al., 2015), in which the decoding and encoding
interfaces generated a motor program similar to the force fields
generated by the spinal cord when combining motor and sensory
information (Shadmehr et al., 1993; Mussa-Ivaldi et al., 1994).

Despite all this progress, several aspects of current
unidirectional and bidirectional BMIs remain to be improved

(Bensmaia and Miller, 2014; Shenoy and Carmena, 2014). One
key challenge is that the large trial-to-trial variability of neural
responses (Faisal et al., 2008; Quiroga and Panzeri, 2009) strongly
limits BMIs. Improving sensory interfaces requires converting
more reliably a sensory signal into desired patterns of neural
activity that can be robustly perceived as the appropriate sensory
signal. Improving motor interfaces requires better decoding
the motor intention despite the trial-to-trial variability of the
neurons that express it. Variability of neural activity cannot
be easily reduced simply by improving technology to record

and stimulate from ever increasing numbers of electrodes
(Baranauskas, 2014; Lebedev, 2014), because some of the main
sources of variability are generated at the network level and
are shared across neurons (Goris et al., 2014; Lin et al., 2015;
Schölvinck et al., 2015). This can be conceptualized by thinking
of neural activity as state-dependent: neural activity does not
depend only on external task-related variables but also on
internal network variables. In this Perspective article, we will
discuss recent findings about state dependence of neural activity,
and we will reason on how taking state dependence of neural
activity into account can help us to build better sensory, motor,
and bidirectional BMIs.

STATE DEPENDENCE OF NEURAL
RESPONSES

Neural responses to a sensory stimulus do not only depend on
the feedforward extrinsic sensory inputs but also on intrinsic
network variables that can be collectively defined as the “neural
state” (Buonomano and Maass, 2009). This state dependence is
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generated by strong recurrent and feedback connectivity that
creates endogenous ongoing activity and modulates how afferent
information is processed (Harris and Thiele, 2011). Similarly,
firing of neurons in motor areas reflects not only the tuning to
the movement being expressed but also other factors including
ongoing network dynamics (Rule et al., 2015). In addition,
neuromodulatory inputs from brainstem nuclei canmodulate the
dynamics of cortical networks (Moxon et al., 2007; Edeline, 2012;
Eschenko et al., 2012; Lee and Dan, 2012).

That neural firing is state-dependent has been known for
many years (Arieli et al., 1996). Recent years, however, have
witnessed important progress in themathematical understanding
of how the single-trial neural responses to a particular stimulus or
external event depend on network state. Biophysical models can
predict the contribution to single-trial responses of individual
neurons to electrical or optical stimulations arising from intrinsic
neural mechanisms (such as adaptation) that can be inferred
from the previous spiking history of that neuron (Ahmadian
et al., 2011). These methods can in principle be extended to
predict in real-time the optimal stimulation intensity needed
to elicit a target pattern of neural activity while minimizing
stimulation power (Ahmadian et al., 2011). Other theoretical
work concentrated on mathematically predicting single-trial
cortical activity elicited by a sensory stimulus by using a
dynamical system to model the interaction between the feed-
forward stimulus drive and the ongoing fluctuations of the
circuit’s state (Curto et al., 2009). This prediction worked well
both when the interaction between ongoing state dynamics and
stimulus drive is linear and when it is non-linear. Further work
has shown that the prediction of single-trial cortical responses to
stimuli can be greatly enhanced when knowledge of the state of
neuromodulatory brainstem nuclei (in particular of the nucleus
releasing norepinephrine) is used to improve the prediction
of the ongoing cortical state dynamics (Safaai et al., 2015).
A number of other recent studies clarified that the variability
induced by state changes can be, to a first approximation,
described simply. In some cases state dependence is described
with an additive term of background activity to the trial-averaged
response to the stimulus (Arieli et al., 1996; Ecker et al., 2014;
Schölvinck et al., 2015). In other cases, state dependence can
be described as multiplicative (i.e., it rescales the gain of the
stimulus-response function, see Goris et al., 2014) or as a mixture
of additive and multiplicative effects (Kayser et al., 2015; Lin
et al., 2015). Importantly, the trial-to-trial variations of neural
responses due to state changes are shared across neurons (Lin
et al., 2015), likely because they arise as “network effects” (Harris
and Thiele, 2011). Because it is shared, the variability due to state
changes cannot be easily eliminated simply recording from more
neurons.

Recent studies have begun individuating which variables
describing intrinsic brain activity can be used as effective
“neural state” variables. Several studies have suggested that
cortex undergoes periodic endogenous slow periodic variations
in excitability that can be captured by the phase of low-frequency
activity of mass signals such as LFPs or MUA. For example, both
in anesthetized (Kayser et al., 2015) and awake animals (Lakatos
et al., 2005) certain phases of low-frequency LFP oscillations

correspond to higher firing rate and other phases correspond
to lower firing rate of single neurons. A recent study (Kayser
et al., 2015) in anesthetized animals showed that the phase of
low-frequency (delta, theta, and alpha) LFP oscillations at which
a stimulus is presented rescales both the stimulus-response gain
and the background firing of auditory cortical neurons. Similarly,
the gain of visual cortical neurons of awake attentive macaques is
modulated by intrinsic state variables varying on time scales of
few hundreds ms (Rabinowitz et al., 2015). These low-frequency
oscillations also correlate with perception: the phase of low-
frequency (delta, theta bands) EEGs at which a near-threshold
sensory stimulus is presented to human subjects impacts on
whether the subject reports the perception of the stimulus (Busch
et al., 2009; Ng et al., 2012). Moreover, the perception elicited by
non-invasive transcranial stimulation of sensory cortices depends
on the endogenous alpha EEG rhythm at the time of stimulation
(Romei et al., 2008) suggesting that both the neural activity
and the perceptual effect elicited by causal intervention in the
awake brain depends on the ongoing endogenous low-frequency
activity.

HOW CAN STATE DEPENDENCE OF
NEURAL RESPONSES BE USED TO
IMPROVE BMIs?

Here we discuss how taking state dependence into account
could increase the information bandwidth by which BMIs
communicate with the brain.

To discuss this, we will suppose for simplicity that, as in
auditory cortex (Kayser et al., 2015), the response r of a neuron
to a stimulus s in a single trial tr depends on a state variable θ (in
this example, the phase of a low-frequency LFP at which stimulus
s is applied in trial tr) with an additive-multiplicative model.
The gain g and the background b both depend on the phase
of a low-frequency network oscillation at which the stimulus is
applied

r (s, tr) = g (θ) f (s) + b (θ) (1)

where state θ is function of the trial and f(s) is the trial-averaged
responses to all trials to stimulus s [in other words, f(s) is the
neuron tuning’s curve]. We assume that, again as in Kayser et al.
(2015), if the stimulus was presented in the phases of the low-
frequency LFP that corresponded to LFP troughs (respectively,
peaks) then it elicited a larger (respectively, smaller) response
because both the gain and the background activity were larger
(respectively, smaller), see Figure 2A.

Knowledge of state dependence can improve the encoding
stage of BMIs. If (as illustrated in Figure 2B) trial-to-trial
variations of stimulus-evoked responses can be to some extent
predicted from models of state dependence such as those in
Equation (1), these model predictions can lead to design a “state-
dependent” causal intervention onto the neural tissue to achieve
more reliably the desired neural response (Figure 2C). Suppose
that we want to achieve a target firing rate r∗ on a given trial
and that we estimate the network state at that time to be θ . Using
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FIGURE 2 | How knowledge of state dependence may be used to improve reliability of elicited patterns and to enhance decoding of neural activity.

This figure uses cartoons of neural responses to illustrate how taking into account state dependence of neural responses may improve BMIs. (A) The panel illustrates

the responses of a cartoon neuron to two different stimuli presented at different phases of LFP. Green and pink arrows represent the application times of stimulus s =

1 and s = 2, respectively. Stimuli applied at the trough of the LFP (a more excitable network state phase) elicit a stronger response than stimuli applied at the peak of

the LFP (a less excitable network state phase). (B) We plot the time course of cartoon neural activity shortly after a stimulus is applied at time t = 0. Different lines

represent single-trial responses to the same stimulus that were elicited in trials that differed by the value of the state variable (in this case, the LFP phase) in each trial.

Each line representing the single-trial responses is color-coded by the value of the state variable in that trial. The response to the same stimulus has large trial-to-trial

variability because of the difference in the state at which the stimulus is presented. (C) In a particular network state, the real response (dashed black line) and the

state-dependent model prediction (pink line) of the response are shown. If the model of state dependence is accurate, it will help the experimenter to predict which

response will be elicited in that trial given the stimulation parameters and the neural state, thereby narrowing down the uncertainty about which response will be

elicited. The gray area shows the range of possible responses that could be obtained for a given stimulus because of state variations. (D) A scatter plot showing the

variations around the mean of single-trial responses plotted against the single-trial response variations around the mean estimated from a state-dependent model of

the responses in a hypothetical case. Each point represents one trial. This scatter plot indicates how well a state dependence model can predict the single-trial neural

responses to a given stimulus. (E) How to discount state-induced trial-to-trial variability is exemplified for a single trial. Stimulus 1 was presented in this cartoon trial,

and the response in this trial (full black line) is plotted against the trial-averaged response of stimulus 1 (green line) and of stimulus 2 (pink line). The state dependence

model predicts that the response variation around the trial-average in this trial was negative. The black arrows show the model-predicted state-induced variation

around the trial-average for this particular single trial. The addition of the model predicted variability gives a “discounted” response (dashed black line) that will be much

closer to the averaged response to stimulus 1 (the stimulus actually presented in this trial) that the original response. (F) The distributions of the responses to stimulus

1 (green full line) and stimulus 2 (pink full line) and the distributions of the discounted responses for stimulus 1 (dashed green line) and stimulus 2 (dashed pink line)

obtained after subtracting the model predicted state-induced variability are shown. The distributions of the discounted responses are narrower and allow better

discrimination between the two stimuli.
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Equation (1), the optimal value of the stimulation strength f ∗ (s)
that we need to apply to achieve the target response is:

f ∗ (s) =
r∗ − b (θ)

g (θ)
(2)

The potential advantage of using knowledge of the state
at which the stimulus is applied to better predict the
responses that will be elicited has been tested in vivo.
Brugger et al. (2011) successfully used the low-frequency (<20
Hz) components of pre-stimulus LFPs to better predict the
intensity of electrical microstimulation needed to achieve a
target value of cortical firing in response to the stimulation.
The algorithm was particularly successful at increasing the
reliability of responses to low-intensity stimulation (Brugger
et al., 2011). This suggests that using knowledge of state to fine-
tune the stimulation parameters could achieve reliable injection
of information into the nervous system using less damaging
interventions.

Knowledge of state dependence (expressed as ability to
predict single-trial variations around the stimulus mean from
mathematical knowledge of state dependence, Figure 2D) can
also greatly improve the decoding stage of a BMI. Indeed,
more information about the external variables could be obtained
by simply subtracting out the estimated state-induced trial-
to-trial variations of these responses. This idea is illustrated
in Figure 2E, which shows the trial-averaged stimulus-evoked
firing rate of a cartoon neuron to two different stimuli, as
well as a single-trial response. This trial elicited a firing rate
that was in-between the mean rates of these two stimuli.
This intermediate-strength response could have arisen either
in response to the weakest stimulus when the network was
in excitable state or in response from the strongest stimulus
when the network was less excitable. This ambiguity can be
resolved after computing and then subtracting out the trial-to-
trial variability predicted by the network state. In this example,
the predicted variability was negative (indicating that the network
was in a less excitable state). The subtraction of the predicted
variability from the single-trial response (black upward arrows
in Figure 2E) produces a “variability-discounted” response much
closer to the trial-averaged response of stimulus presented in
that trial (and thus much easier to decode) than the original
response.Within the state dependencemodel of Equation (1), the
state-induced variability of the responses could be discounted as
follows:

rdiscounted (s, tr) =
r (s, tr) − b (θ)

g (θ)
(3)

The subtraction of state-induced variability leads to a reduction
of variability of responses at fixed stimuli (Figure 2F) of the
discounted responses with respect to the original ones. Reducing
variability at fixed stimulus increases stimulus discriminability
(and thus information) of neural responses. Importantly,
this increase of information after discounting state variability
happens because taking into account the state variable reveals
more tightly the relationship between stimulus and response at

fixed state, and it can happen even if the state variable does not
carry any information about the stimulus per se.

How substantial may this information gain be in real
data? Safaai et al. (2015) quantified the network state as the
parameters of a dynamical system (a Fitzhugh-Nagumo model,
see FitzHugh, 1955) that best described the low-frequency (<15
Hz) synchronized variations of cortical excitability before the
application of a somatosensory stimulus. They subtracted from
the original cortical MUA responses to the stimulus in each trial
the prediction of the trial-to-trial variations of cortical firing
due to state variations obtained from their dynamical system
model. They found that, although the variables describing pre-
stimulus state did not carry any stimulus information, the gain
of sensory information obtained from the neural responses after
discounting was large: it was 40% when estimating state only
based on cortical ongoing activity alone, and it reached 70%when
taking into account also the state of neuromodulatory nuclei
releasing norepinephrine (Safaai et al., 2015). This suggests that
state dependence could potentially double current information
rates of decoding BMIs without increasing the size of invasive
electrode arrays.

These considerations on state dependence could be
incorporated into existing research directions in BMIs.
Several decoding schemes, including those based on Wiener-
Kolmogorov or Kalman filters non linear recurrent systems
and other kinds of dynamical systems (Carmena et al.,
2003; Hatsopoulos et al., 2004; Hochberg et al., 2006, 2012;
Fitzsimmons et al., 2009; Sussillo et al., 2012; Kao et al., 2015) can
incorporate in decoding—besides information about the “state”
of the external devices to be commanded (not to be confounded
with the neural state considered here) and besides other kinds
of contextual modulations of neural activity such as influence
of movement on sensory responses (Saleem et al., 2013; Zagha
et al., 2013)—also the history of neural activity over long times
scales. Thus, in principle these algorithms are well suited to be
extended to include the knowledge of the state of the neural
circuit. However, these studies typically included in the neural
history mainly neural response components that directly carried
information about the task-relevant variables to be decoded.
Recent progress about state dependence of neural responses
(Curto et al., 2009; Kayser et al., 2015; Safaai et al., 2015) suggests
that also neural variables that represent only internal state
information (such as the ongoing cortical activity or the activity
of neuromodulatory nuclei) but do not directly carry information
about the variables to be decoded can nevertheless greatly
enhance decoding performance of BMIs, because they may
allow to discount and subtract out a major source of variability.
Given that activity of nuclei such as the Locus Coeruleous may
be partly estimated non-invasively (Aston-Jones and Cohen,
2005), including an estimate of the activity of neuromodulatory
nuclei in BMI may become useful and be feasible also in clinical
applications.

It is likely that the advantage of considering state dependence
may be particularly important for bidirectional BMIs when
sensory and decoding operations work in a closed-loop. The
ability to inject more accurate sensory feedback can lead the
subject to express a more accurate motor intention, which in
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turn can be better decoded by discounting the state-induced
variability. Similarly, brain-to-brain interfaces (Rao et al., 2014)
might benefit from including state dependence as well.

PRACTICAL CHALLENGES FOR
EXPLOITING STATE DEPENDENCE FOR
BMIs

The most promising candidate “neural state” variables that
emerge from recent work typically relate to slow fluctuations of
neural activity at frequencies lower than 20 Hz and that need few
to several hundreds ms to be measured (Curto et al., 2009; Kayser
et al., 2015; Safaai et al., 2015).

Although in some cases these low frequencies may directly
carrry information about sensory or motor variables of interest—
for example information about low-frequency components of
dynamical natural stimuli (Rickert et al., 2005; Luo and Poeppel,
2007; Kayser et al., 2009; Belitski et al., 2010; Hall et al., 2014)—
sensory or motor information in neural responses is often
carried by neural firing in short time scales of few tens of ms
(Panzeri et al., 2010). The potential difference of time scales for
detecting task- or stimulus-informative neural variables and for
detecting neural state variables poses important technological
challenges for implementing state dependence in a closed-loop.
In particular, electrical microstimulation produces artifacts that
may mask the recorded neural signals for few ms. This issue
may be addressed (O’Doherty et al., 2011) by multiplexing the
recording and the electrical stimulation. The need to detect state
variables operating at longer time scales calls for optimizing the
time multiplexing strategy for the readout of signals at multiple
time scales. The ability of the state-dependent stimulations
to achieve reliable patterns even at lower current intensity

(Ahmadian et al., 2011; Brugger et al., 2011) may become key to
optimally integrate in real-time electrical stimulation, recoding
of the neural activity and a state detector in a closed-loop
bidirectional system.

If inserting knowledge of low-frequency variations in network
states proves a successful strategy to improve BMIs, causal
intervention of such states may become an important part of
bidirectional BMIs. Thus, an interesting question is how to
integrate in a close loop systems state-dependent algorithms and
causal manipulation of low frequency cortical fluctuations (Thut
et al., 2011; Beltramo et al., 2013).
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