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Abstract

In multiscale modeling of subsurface fluid flow in heterogeneous porous media, standard
polynomial basis functions are replaced by multiscale basis functions, which are used to pre-
dict pressure distribution. To produce such functions in the mixed Generalized Multiscale
Finite Element Method (GMsFEM), a number of Partial Differential Equations (PDEs) must
be solved, leading to significant computational overhead. The main objective of the work
presented in this thesis was to investigate the efficiency of Machine Learning (ML)/Deep
Learning (DL) models in reconstructing the multiscale basis functions (Basis 2, 3, 4, and 5)
of the mixed GMsFEM. To achieve this, four standard models named SkiplessCNN models
were first developed to predict four different multiscale basis functions. These predictions
were based on two distinct datasets (initial and extended) generated, with the permeability
field being the sole input. Subsequently, focusing on the extended dataset, three distinct skip
connection schemes (FirstSkip, MidSkip, and DualSkip) were incorporated into the Skipless-
CNN architecture. Following this, the four developed models - SkiplessCNN, FirstSkipCNN,
MidSkipCNN, and DualSkipCNN - were separately combined using linear regression and
ridge regression within the framework of Deep Ensemble Learning (DEL). Furthermore,
the reliability of the DualSkipCNN model was examined using Monte Carlo (MC) dropout.
Ultimately, two Fourier Neural Operator (FNO) models, operating on infinite-dimensional
spaces, were developed based on a new dataset for directly predicting pressure distribution.
Based on the results, sufficient data for the validation and testing subsets could help decrease
overfitting. Additionally, all three skip connections were found to be effective in enhancing
the performance of SkiplessCNN, with DualSkip being the most effective among them. As
evaluated on the testing subset, the combined models using linear regression and ridge regres-
sion significantly outperformed the individual models for all basis functions. The results also
confirmed the robustness of MC dropout for DualSkipCNN in terms of epistemic uncertainty.
Regarding the FNO models, it was discovered that the inclusion of a MultiLayer Perceptron
(MLP) in the original Fourier layers significantly improved the prediction performance on
the testing subset. Looking at this work as an image (matrix)-to-image (matrix) problem,
the developed data-driven models through various techniques could find applications beyond
reservoir engineering.

Keywords: subsurface fluid flow, finite element method, applied machine learning/deep
learning, big data, reliability, neural operator.
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Chapter 1

Introduction

1.1 Overview
Modeling fluid flow in the Earth's subsurface is of interest to both engineers and scientists
with respect to, for example, the seepage of waste water through soil, the flow of oil and gas
to wells, and land subsidence as a consequence of groundwater extraction. Despite taking
serious steps toward renewable energy, the oil/gas industry still provides a high proportion
of the world's energy. In heterogeneous petroleum reservoirs, numerous fractures with vary-
ing lengths and widths may exist. These fractures can significantly impact the flow and
transport processes of fluids within the reservoir, as they create high-permeability paths for
fluid movement, which can lead to altered flow patterns, faster flow rates, changes in fluid
compositions, and other alterations to the behavior of the reservoir. As a result, it is crucial
to take into account the presence and properties of fractures when numerically modeling the
flow and transport processes in the reservoir.

For numerical simulations of problems involving small-scale fractures, adequately fine
grids are generally used to capture the details of these fractures. However, this can lead to
the discrete formulation of these problems producing a large system of equations, which in
turn increases the number of unknown parameters that must be solved for. The process of
computing a solution, therefore, becomes expensive. To mitigate this, techniques such as
reduced order modeling, upscaling, and multiscaling can considerably decrease computational
cost while maintaining the necessary level of accuracy.

In the context of multiscale methods, a new framework named the mixed Generalized
Multiscale Finite Element Method (GMsFEM) has been recently developed [1]. The model
approximates reservoir pressure in multiscale space by applying several multiscale basis func-
tions to a single coarse grid of the reservoir volume. The fluid velocity is directly estimated
across a fine grid space. The focus of this thesis is mainly on multiscale basis functions.

The rest of this chapter is structured as follows. In Section 1.2, the motivation for the
work contained in this thesis is stated. Section 1.3 presents the main research question along
with subsidiary questions that the thesis aims to investigate. Section 1.4 elaborates on the
research methodology employed to answer the questions mentioned in the previous section.
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Section 1.5 itemise the main contributions that arise from the research conducted in this
thesis. The publications related to the research are listed in Section 1.6. The structure of
the forthcoming chapters is described in Section 1.7, followed by a summary in Section 1.8.

1.2 Motivation
In multiscale modeling of subsurface fluid flow in heterogeneous porous media, standard poly-
nomial basis functions are replaced by multiscale basis functions. For instance, to produce
such functions in the mixed GMsFEM, a number of Partial Differential Equations (PDEs)
must be solved, leading to significant computational overhead. In recent years, data-driven
methods have shown great potential in addressing complex problems involving multiple non-
linear relationships in various fields. Thus, there is an opportunity to replace PDE solvers
with efficient data-driven methods. This involves developing Deep Learning (DL) models
to provide reliable approximations for multiscale basis functions. These models can then be
used to predict pressure distribution.

When conducting research, it is common for researchers to use existing datasets to apply
new techniques or methods. Even when supplemented with newly generated or additional
datasets, they may still face limitations such as restricted sample size or low dimensionality.
For the research conducted in this thesis, a large number of new data samples were generated
to train the developed DL models to ensure statistical confidence in the datasets evaluated
and improve prediction accuracy.

While DL algorithms can be configured to effectively provide supervised learning of clas-
sification and regression problems, previous research has focused more on developing DL
models to solve classification issues. The research conducted for this thesis addresses a
regression-type problem and has offered the opportunity to provide innovative DL configu-
rations that are tailored to be effective with regression datasets (i.e., those with continuous
dependent variable distributions).

The motivation for this research is also driven by the need to enhance the reliability
analysis of DL models. This is because DL models are highly complex, involving multiple
control variables, and are prone to biases and overfitting, which can limit their reliability
when deployed in real-world applications. Attention has been paid to the reliability of the DL
models developed for this thesis concerning subsurface fluid flow modeling, leading to trained
and tested models that have demonstrated reliable and consistent prediction performance
and generalizability when deployed in practical settings.

Classical Neural Networks (NNs) focus on learning mappings between finite-dimensional
spaces, which restricts the applicability of models trained in that way to a particular dis-
cretization. To overcome this limitation, a mesh-independent method that operates on
infinite-dimensional spaces is developed for this thesis to predict pressure distributions in
subsurface reservoirs without dimensional constraints.
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1.3 Research Questions
The main research question that this thesis seeks to address is:

To what extent can standard DL models effectively reconstruct the multiscale basis functions
of the mixed GMsFEM, and what steps can be taken to improve their performance and

reliability? Moreover, is the mesh-independent approach of Fourier Neural Operator (FNO)
able to accurately predict pressure distribution?

In order to comprehensively explore the above research question, it was broken down into
five subsidiary questions, each of which was thoroughly examined and answered in a distinct
chapter:

1. Is DL able to accurately reconstruct four distinct multiscale basis functions in the
mixed GMsFEM in terms of statistical-graphical investigation, given its impressive
performance with respect to datasets involving nonlinear relationships in recently pub-
lished research in a range of scientific and engineering fields?

2. Will skip connections significantly affect the performance of Deep Neural Networks
(DNNs) of low complexity or whether their inclusion has little or no effect?

3. Does combining multiple deep learners into an ensemble improve the accuracy of DL
algorithms?

4. How does incorporating Uncertainty Quantification (UQ) methods improve the relia-
bility of the CNN models in predicting new data points?

5. Can FNO models accurately perform on small-shape data problems to predict pressure
distribution?

It should be noted that subsidiary research questions 1 to 4 pertain to multiscale basis
functions, while subsidiary research question 5 is concerned with pressure distribution.

1.4 Research Methodology
This section describes the research methodology used in this thesis, which includes the
generation and preparation of data, the development of DL models, and the validation of
results.

To create a trustworthy DL-based model, it is important to take into account a broad
range of input (here permeability field)/output (here multiscale basis functions and pressure)
variables. A heterogeneous permeability field can be viewed as a realization of a random field
that follows a particular distribution with the corresponding covariance. In this study, the
Karhunen-Loeve (KL) expansion [2] was employed to parameterize the heterogeneous model.
By assigning different values to the permeability of the formation matrix (Km) and the
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permeability of the fractures (K f), a large number of datasets were separately generated for
multiscale basis functions and pressure. After data generation, some tasks such as removing
duplicates, scaling input/output, and changing the initial dimension of input/output were
performed.

Based on the way an algorithm processes data, there are four types of ML/DL algorithms:
supervised, unsupervised, semi-supervised, and reinforcement learning. Supervised learning
was used with respect to the work presented in this thesis. More specifically, a Convolutional
Neural Network (CNN) was used to predict multiscale basis functions. CNNs are specifically
designed for problems with 2D arrays like our regression case. CNNs enable us to use
2D convolutional filters while developing a model. Furthermore, there is a reasonable and
robust mathematical procedure behind convolutional filters. A CNN also automatically
and adaptively learns the spatial hierarchies of features. Finally, the use of a CNN can
decrease the number of parameters without reducing the quality of models. After developing
a standard CNN model, the next stage was to attempt to improve its accuracy (through
skip connections and Deep Ensemble Learning (DEL)) and its reliability (through Monte
Carlo (MC) dropout). Furthermore, FNO was used to predict pressure directly using the
permeability field as the input.

The results were validated statistically and graphically. Analysis using widely used pre-
diction error accuracy parameters provides great insight into the performance of different
models. The statistical error metrics considered were: coefficient of determination (R2) and
Mean Squared Error (MSE) for accuracy, and Standard Deviation (SD) for reliability. In
terms of the graphical investigation, several examples are visualized to show the multiscale
basis functions changes over a coarse grid, and pressure changes across the whole computa-
tional domain.

1.5 Contributions
The main contributions of this thesis can be summarized as follows:

1. Generation of three separate large datasets. Two datasets are for multiscale basis
functions and one is for pressure. The only input for both cases is the permeability field.
The generated datasets can be useful for researchers and practitioners working in the
field of (regression) supervised learning to apply their methods, as publicly available
datasets are mostly of the classification type.

2. Investigation of DL models for multiscale basis functions reconstruction.
The thesis investigates the effectiveness of standard DL models for reconstructing Basis
2 to 5 in the mixed GMsFEM. It resolves the issue of the high computational cost
associated with the mixed GMsFEM for obtaining multiscale basis functions.

3. Study of skip connections in DL models for multiscale basis functions recon-
struction. The thesis investigates the effect of skip connections on the performance
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of DNNs of low complexity. Three skip connection schemes were separately added to
the standard structure.

4. DEL for multiscale basis functions reconstruction. The thesis introduces a
DEL approach to improve the accuracy of DL models using linear regression and ridge
regression, separately.

5. Incorporation of UQ in DL models for multiscale basis functions reconstruc-
tion. The thesis investigates the use of MC dropout to improve the reliability of DL
models.

6. Development of FNO models for pressure prediction in small-shape data
problems. These models act on infinite-dimensional spaces, unlike classical NNs that
learn relationships between Euclidean spaces with finite dimensions.

1.6 Published Work
The findings of this thesis have resulted in five published journal papers and one book
chapter. Here are the details:

⋄ Choubineh, A., Chen, J., Coenen, F. and Ma, F., 2022. An Innovative Application of
Deep Learning in Multiscale Modeling of Subsurface Fluid Flow: Reconstructing the
Basis Functions of the Mixed GMsFEM. Journal of Petroleum Science and Engineering,
216, 110751.

⋄ Choubineh, A., Chen, J., Coenen, F. and Ma, F., 2023. A Quantitative Insight into the
Role of Skip Connections in Deep Neural Networks of Low Complexity: A Case Study
Directed at Fluid Flow Modeling. Journal of Computing and Information Science in
Engineering, 23(1), 014502.

⋄ Choubineh, A., Chen, J., Coenen, F. and Ma, F., 2023. Applying Monte Carlo Dropout
to Quantify the Uncertainty of Skip Connection-based Convolutional Neural Networks
Optimized by Big Data. Electronics, 12(6), 1453.

⋄ Choubineh, A., Chen, J., Wood, D.A., Coenen, F. and Ma, F., 2023. Fourier Neural
Operator for Fluid Flow in Small-shape 2D Simulated Porous Media Dataset. Algo-
rithms, 16(1), 24.

⋄ Choubineh, A., Chen, J., Wood, D.A., Coenen, F. and Ma, F., 2023. Deep Ensemble
Learning for High-dimensional Subsurface Fluid Flow Modeling. Engineering Applica-
tions of Artificial Intelligence, 126, 106968

⋆ Choubineh, A., Chen, J., Coenen, F., Ma, F. and Wood, D.A., 2022. Machine Learning
to Improve Natural Gas Reservoir Simulations. In Sustainable Natural Gas Reservoir
and Production Engineering (55-82). Gulf Professional Publishing, Elsevier.
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1.7 Thesis Outline
The structure of the rest of this thesis is as follows:

Chapter 2: Background and Related Work. This chapter begins with an overview
of fluid flow in petroleum reservoirs, focusing on heterogeneous porous media and the chal-
lenges associated with numerical modeling of fine grid systems. To address these challenges,
three methods of reduced order modeling, upscaling, and multiscaling are introduced, which
can meaningfully reduce computational cost while maintaining the necessary level of accu-
racy. Next, the chapter explains in detail the mixed GMsFEM as a multiscaling method.
It includes the mathematical idea behind the mixed GMsFEM, the fluid flow conditions
considered, and the general solution framework of this method. Then, a review of relevant
published research regarding the application of data-driven methods in the reduced order
modeling, upscaling, and multiscaling domains is provided. Overall, this chapter serves as
an important background and foundation for the research presented later in this thesis.

Chapter 3: Generation and Preparation of Data. For each randomly generated
porous medium in a Cartesian coordinate system over a unit square, pressure can be pre-
dicted in mixed GMsFEM, either directly or indirectly through multiscale basis functions.
Therefore, this chapter provides detail of three separate datasets: two for multiscale basis
functions and one for pressure. The only input for both cases is the permeability field. Basis
1 does not require training for DL modeling, while Basis 2 to 5 require training. The initial
data generated for multiscale basis functions included 249,375 samples, which increased to
376,250 samples for the extended dataset. However, generating data for pressure can be
challenging, resulting in 1700 samples, which is considerably lower than the number of sam-
ples for the basis functions. The chapter also outlines the necessary preparation involved in
generating the data, such as removing duplicates, scaling input/output, and changing the
initial dimension of input/output.

Chapter 4: SkiplessCNN for Basis 2, 3, 4, and 5. This chapter focuses on the
design and training of distinct CNN models based on initial and extended datasets for Basis 2
to 5, separately. It begins by considering the differences between Artificial Intelligence (AI),
Machine Learning (ML), and DL, as well as how a CNN architecture is designed. Then,
the characteristics of the developed DNN of low complexity named SkiplessCNN, along with
a parameter analysis are discussed. The SkiplessCNN architecture is then compared with
two advanced CNN architectures, namely AlexNet and VGGNet. The chapter also provides
information on the optimizers and loss functions used during the compilation and training
process.

Chapter 5: Role of Skip Connections in Deep Neural Networks of Low Com-
plexity. The focus of this chapter is on the problem of vanishing gradient in DNNs of low
complexity, and it explores how skip connections can help mitigate this issue. In fact, skip
connections enable the cost function gradient to be directly backpropagated to layers close
to the input layer of a CNN, as mathematically explained. The chapter highlights several ex-
amples that illustrate the importance of skip connections and presents three skip connection
schemes (FirstSkip, MidSkip, and DualSkip) that are added to the base CNN architecture.
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Ultimately, this provides insight into the effectiveness of skip connections in improving the
performance of DNNs of low complexity.

Chapter 6: Deep Ensemble Learning. The chapter starts by explaining the reducible
and irreducible errors of ML/DL algorithms. Then, three categories of ensemble systems -
boosting, bagging, and stacking - are presented, with examples to illustrate their application
in the geoscience domain. The main objective of this chapter is to explore the potential
prediction improvements that can be achieved by using DEL. This technique combines mul-
tiple deep base learners into a single ensemble model, eliminating the need for continuous
adjustments to the architecture of individual networks or the nature of the propagation.
The standard CNN (i.e., SkiplessCNN) and three skip connection-based CNNs (i.e., First-
SkipCNN, MidSkipCNN, and DualSkipCNN) are used as base learners. They are combined
using linear regression and ridge regression, separately, as part of the stacking technique.

Chapter 7: Reliability of the DualSkipCNN Model. In this chapter, the signifi-
cance of reliability analysis for DL models is explored, along with an investigation into how
incorporating UQ methods can improve the reliability of CNN models in predicting new
data points. It first provides an in-depth mathematical explanation demonstrating how MC
dropout can be considered as a Bayesian approximation of the probabilistic deep Gaussian
Process (GP), accompanied by several examples to show its application in subsurface fluid
flow modeling. Then, MC dropout is applied to quantify the epistemic uncertainty of the
DualSkipCNN model. The analysis is performed separately for each of the multiscale basis
functions.

Chapter 8: Fourier Neural Operator for Pressure. Unlike classical NNs that learn
relationships between Euclidean spaces with finite dimensions, the FNO algorithm aims to
learn mappings between functions, making it mesh-independent. This means that FNO can
be trained on one mesh and applied to another, providing greater flexibility and efficiency in
modeling. In this chapter, FNO is applied to predict pressure distribution on a small-shape
dataset using the permeability field as input. A CNN model is also developed based on the
same dataset for comparison purposes.

Chapter 9: Comparative Evaluation. This chapter provides a comparative eval-
uation of standard CNN(SkiplessCNN) and skip connection-based CNNs (FirstSkipCNN,
MidSkipCNN, and DualSkipCNN) for predicting multiscale basis function. The evaluation
is conducted using statistical measures and graphical trends in each coarse block. Addition-
ally, the effectiveness of DEL in improving the accuracy of the developed models for testing
data is examined. The reliability of the DualSkipCNN model is also explored using MC
dropout based on SD. Finally, the chapter presents the results of FNO and a novel CNN
model for predicting pressure distribution.

Chapter 10: Conclusion. This chapter concludes the thesis by presenting a summary
of the key findings in the context of the main research question and the relevant subsidiary
questions. Furthermore, it provides an outlook on potential future work and opportunities
for further exploration of the topic addressed in this thesis.
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1.8 Summary
This introductory chapter has provided an overview of the work presented in this thesis to-
gether with the motivation behind it, the main research question and five subsidiary research
questions that will be comprehensively examined and answered, and the adopted research
methodology whereby answers to these questions could be arrived at. Additionally, the main
research contributions of the work and publications arising from it were listed. The chapter
concluded with an overview of the structure of the remainder of the thesis. In the next
chapter, a literature review is presented to provide readers with an understanding of the
background and previous research efforts that underpin the work presented in this thesis.
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Chapter 2

Background and Related Work

2.1 Introduction
A wide range of phenomena/processes in science and engineering can be described using
measurable/estimable quantities that rely on independent variables. As an example, in
subsurface fluid flow, pressure and temperature are typically measured based on the time
and location variables. Given the available fundamental laws, it is feasible to determine
the relationships among the rates of change of these physical quantities. The mathematical
correlations typically used to do this are Ordinary and/or Partial Differential Equations
(ODEs/PDEs). In ODEs, the derivatives of the dependent variable(s) are taken with respect
to only one independent variable. The hydrostatic equation is an example of an ODE that
is written as follows:

dP

dx
= −ρg

β
, (2.1)

where P is the pressure, x is the depth below the surface, ρ is the density of the fluid, g is
the gravity acceleration, and β is the fluid compressibility.

On the other hand, partial derivatives are required in PDEs when there are two or more
independent variables involved. The heat equation is an example of a PDE:

∂T

∂t
= α

∂2T

∂x2
, (2.2)

where T is the temperature at the position x and time t, and α is the thermal diffusivity.
To solve the mathematical models described, it is necessary to specify Boundary Condi-

tions (BCs) and Initial Conditions (ICs). BCs exert a set of extra constraints to the problem
on prescribed boundaries. There are typically three types of BCs: Dirichlet (the first kind),
Neumann (the second kind), and Robin or Dankwerts (the mixed or third kind). In the first
type, a value is assigned to the dependent parameter(s) (for example, pressure) while the
derivative of the dependent variable(s) is known in Neumann's condition. Robin's BC is a
weighted combination of the first two BCs. An IC refers to a value of a parameter at t = 0
in the dynamic simulation models.
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Theories, methods, and tools available in scientific computing (also called computational
science) make it possible to solve mathematical models of physical phenomena described in
terms of ODEs and/or PDEs [3]. The collection of theories and methods used for this purpose
is called numerical analysis/numerical mathematics, while tools refer to computer systems
on which the codes are run. The more complex the mathematical models, the more advanced
the computational hardware requirements are to solve them. There are various numerical
methods available that can provide approximate solutions to such problems. These include
the finite difference method [4], Finite Element Method (FEM) [5], finite volume method [6],
spectral method [7], and meshless method [8]. It is worth mentioning that other techniques
such as analytical and semi-analytical methods [9, 10, 11, 12, 13] can also be applied, which
are usually not applicable in practice.

As mentioned earlier in this thesis, the new framework of the mixed GMsFEM is applied
to a fluid flow problem in petroleum engineering. This method places emphasis on local
mass conversation. Furthermore, it has been found to be effective in terms of computational
cost, without significantly sacrificing accuracy in approximating pressure and/or velocity.

This chapter continues with Section 2.2, which provides information about fluid flow in
petroleum reservoirs. To be more specific, it covers what a heterogeneous porous medium
is, how the permeability in the matrix and fracture differs, what problem is with numerical
modeling of fine grid systems, and eventually three methods of reduced order modeling, up-
scaling, and multiscaling are introduced to more efficiently solve subsurface flow problems.
A detailed overview of the mixed GMsFEM numerical method is presented in Section 2.3.
It first explains the idea behind the mixed GMsFEM. Then, the fluid flow conditions are
defined. In the end, the general solution framework of the mixed GMsFEM is given. Sec-
tion 2.4 gives relevant published research, with five examples related to the reduced order
modeling domain (2.4.1), five examples to the upscaling domain (2.4.2), and ten examples
to the multiscaling domain (2.4.3). The chapter concludes with a summary in Section 2.5.

2.2 Fluid Flow in Heterogeneous Porous Media
Modeling subsurface fluid flow in heterogeneous porous media has always been challeng-
ing, especially with real-world applications, such as the development of oil/gas fields and
groundwater resources management. A heterogeneous porous medium indicates that it is
not homogeneous; thus, formation-related properties can have multiple scales. For example,
in petroleum reservoirs, there may be numerous fractures (connected or disconnected) with
different lengths, whose width is much smaller than the domain size. Permeability is defined
as the ability of a rock to permit fluids to pass through it. The permeability of fractures can
be lower than that of the matrix in dissolved carbonate reservoirs. There are some examples
in the pre-salt carbonate reservoirs in Brazil [14]. However, the permeability in fractures is
generally much higher than that of the matrix. This is why the effect of fractures must be
considered when modeling flow and transport processes.

Mesh generation plays a significant role in numerical simulation. It involves dividing
the reservoir model into a grid of cells/elements that can be used to approximate the fluid
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flow equations at discrete locations within or on the boundaries of the reservoir. The size
of cells/elements must be chosen carefully to ensure that the solution obtained from the
numerical simulation is accurate and efficient. Generally, adequately fine grids are used
to resolve small-scale fractures. By doing so, the discrete formulation of such problems
produces a large system of equations, and consequently, the number of unknown parameters
increases. The computation of the solution, therefore, becomes expensive. Some techniques
such as reduced order modeling [15, 16], upscaling (homogenization) [17, 18], and multiscaling
[19, 20, 21, 22, 23, 24] are necessary to decrease the degrees of freedom. These methods can
considerably decrease computational cost while maintaining the necessary level of accuracy.

Reduced order modeling involves projecting the high-dimensional system of equations
onto a low-dimensional subspace using a set of basis functions (e.g., via Proper Orthogonal
Decomposition (POD)) that capture the dominant modes of the solution. For instance,
the researchers in [25] suggested a Trajectory Piecewise Linearization (TPwL) method for
two-phase flow problems. This Reduced Order Model (ROM) involved the representation
of new states based on linear expansions around states already simulated and saved during
pre-processing training runs. The computations were carried out in a low-dimensional space
obtained by POD of the pressure and saturation states encountered during the training
simulations. Two examples consisting of 24,000 and 79,200 grid blocks were selected as case
studies. The results confirmed the high accuracy of the TPwL model, especially in the range
of the pressures used in the training process. Furthermore, the runtime was meaningfully
decreased.

Upscaling is an averaging process in which the static (e.g., porosity) and/or dynamic
(e.g., fluid saturation) properties of a fine grid model are scaled up to equivalent charac-
teristics defined at a coarse grid level. This procedure should be performed in such a way
that the results of the coarse grid are broadly consistent with those generated by the fine
grid. For example, kernel bandwidth and wavelet transformation techniques were used to
simultaneously scale up the porosity and permeability of a synthetic reservoir model by the
researchers in [26]. Under the same circumstances, the simulation runs demonstrated that
the upscaling error of the bandwidth method was much smaller than that of the wavelet
method.

Multiscaling techniques, such as multiscale FEMs [19, 24], multiscale finite volume meth-
ods [20, 22] and mortar multiscale methods [21, 23] solve flow problems on coarse grids
through pre-calculated multiscale basis functions. These are developed locally on fine grids
to capture the local multiscale information of a medium. Researchers have always been
interested in enhancing the accuracy of multiscale solutions. For instance, a framework of
GMsFEM was proposed by three researchers in [27]. This model generalizes the multiscale
FEM [28] by including further basis functions that can provide more local multiscale details
to enrich the multiscale space.
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2.3 Mixed GMsFEM
Local mass conservation is of great importance for subsurface flow problems. The mixed
multiscale FEM is regarded as one of the most commonly used mass conservative multiscale
techniques. In this technique, the multiscale process is used on two coarse elements with
a common edge for the velocity, and piecewise constant basis functions are employed on a
single coarse block for the pressure.

Following the basic computational procedure of GMsFEM [27], a framework for the
mixed GMsFEM has recently been proposed to solve Darcy flow conditions (linear pressure
gradient versus velocity) considering single-phase fluids in a porous medium characterized
by heterogeneities in two dimensions (i.e., matrix composition and fracture distribution)
[1]. The model approximates reservoir pressure in multiscale space. It does so by applying
several multiscale basis functions to a single coarse grid of the reservoir volume. The fluid
velocity is directly estimated across a fine grid space.

The flow of fluids through porous media can be effectively described in terms of (i) the
Darcy (or momentum) law, (ii) mass conservation, (iii) energy drive, and(iv) case-specific
rock-fluid correlations including compressibility and saturation equations, where more than
one fluid is involved (e.g., gas, oil, and water) [29]. Energy conservation can in many cases be
disregarded if isothermal conditions are considered. However, for reservoir systems in which
temperature changes over time, such as for surface water injected into subsurface reservoirs,
energy conservation cannot be disregarded. For a single, incompressible fluid phase with
constant viscosity in a 2D linear and isothermal system, Darcy law, assuming steady-state
flow and ignoring gravitational effects, can be expressed as [29]:

k−1u+∇p = 0 in Ω , (2.3)

where k = permeability, u = Darcy velocity, ∇p = gradient pressure ( ∂p
∂x
, ∂p

∂y
), and Ω is the

computational domain.
The formulation for the mass conservation law (also known as the continuity equation)

is [29]:

∇.u = f in Ω , (2.4)

here, ∇.u = divergence velocity (∂ux

∂x
+ ∂uy

∂y
), and f = source term (here it is zero).

Heterogeneous BCs are included:

u.n = g on ∂Ω , (2.5)

in which n is the outward unit norm vector on the boundary, and g is normal to the Darcy
velocity prevailing at the reservoir boundary.

To illustrate the general solution framework of the mixed GMsFEM, τH is considered a
confirming partition of Ω into finite elements with a coarse block size H, and τh is the fine
grid partition with mesh size h. Assuming V = H(div,Ω) and W = L2(Ω), the mixed finite
element spaces become:

Vh =
{
vh ∈ V : vh (t) = (btx1 + at, dtx2 + ct) , at, bt, ct, dt ∈ R, t ∈ τh

}
,
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Wh =
{
wh ∈ W : wh is a constant on each element in τh

}
.

Considering that {Ψj} represents a set of multiscale base functions related to the coarse
element, the multiscale space relating to pressure (p) can then be expressed as the linear
extent of the local basis functions. This relationship is expressed as:

WH = ⊕{Ψi} in τH .

In that form, the mixed GMsFEM is configured to find (uH , pH) ∈ (Vh,WH) constrained
by: ∫

k−1uH .vH −
∫

div (vH) pH = 0 ∀ vH ∈ V 0
h , (2.6)

∫
div(uH)wH =

∫
fwH ∀ wH ∈ WH , (2.7)

in which uH .n = gH on ∂Ω is relating to the coarse edges at the boundaries, whereas gH is
the average of the function g at those coarse edges.

It is necessary to establish a multiscale space, WH , to approximate p. This is achieved
by solving local cell conditions for each coarse grid element by applying Dirichlet's BCs. If
Ti ∈ τH represents the coarse grid elements relating to Ω , the purpose is to find (u

(i)
j , p

(i)
j ) ∈

(Vh, Wh)|Ti
by solving the following problem on Ti:

k−1u
(i)
j +∇p(i)j = 0 in Ti, (2.8)

div(u
(i)
j ) = 0 in Ti, (2.9)

where (Vh, Wh)|Ti
is the restriction of (Vh, Wh) on Ti.

The coarse grid boundary element represents the junction of fine grid edges, i.e., ∂Ti =⋃Ji
j=1 ej in which Ji is the total number of fine grid edges at boundary Ti. δ

(i)
j represents a

piecewise constant related to ∂Ti and the fine grid and equals “one” for ej and “zero” for the
remaining fine grid edges. Therefore, the BC on the boundary of Ti is taken as the Dirichlet's
BC:

p
(i)
j = δ

(i)
j on ∂Ti. (2.10)

By combining the local problem solutions, a snapshot of spatial conditions is derived.
Assuming Ψi,snap

j := p
(i)
j defines the snapshot fields, then the snapshot space can be expressed:

Wsnap = span
{
Ψi,snap

j : 1 ≤ j ≤ J i , 1 ≤ i ≤ N t

}
. (2.11)

In the case of using the single-index notation:

Wsnap = span {Ψsnap
i : 1 ≤ i ≤ M snap} , (2.12)

where M snap =
∑Nt

i=1 Ji represents the total number of snapshot fields.
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The snapshot space can then be further reduced by solving local grid problems. The local
problem solutions are referred to as the offline space. The snapshot space corresponding to
Ti becomes:

W (i)
snap = span

{
Ψi,snap

j : 1 ≤ j ≤ J i

}
.

In a local grid problem, the real number λ ≥ 0 and the function p ∈ W
(i)
snap need to be

derived
ai (p, w) = si (p, w) ∀w ∈ W (i)

snap. (2.13)

For each Ti:

ai (p, w) =
∑
e

k [p] [w] and si (p, w) =

∫
kpw in Ti, (2.14)

in which [p] and [w] are the jump of functions p and w, respectively. Also, e represents the
fine edge interior of Ti.

The eigenvalues of Equation 2.13 are arranged in increasing order:

λ
(i)
1 < λ

(i)
2 < · · · < λ

(i)
Ji
, (2.15)

where λ
(i)
k denotes the kth eigenvalue for Ti. The corresponding eigenvectors are Z

(i)
k =

(Z
(i)
kj )

Ji

j=1
with Z

(i)
kj being the jth component of the vector Z(i)

k . Initial li eigenfunctions are
selected to represent the offline space. Offline basis functions are then defined as:

Ψi,off
k =

Ji∑
j=1

Z
(i)
kj Ψ

i,snap
j k = 1, 2, . . . , li.

Then, global offline space becomes:

Woff = span
{
Ψi,off

k : 1 ≤ k ≤ li , 1 ≤ i ≤ N t

}
.

Applying single-index notation, the global offline space can be defined as:

Woff = span
{
Ψoff

k : 1 ≤ k ≤ M off

}
,

where Moff =
∑Nt

i=1 li is the total number of offline basis functions.
Each Ψoff

k can be expressed by a vector ψoff
k which contains coefficients from Ψoff

k relating
to the fine grid basis functions. Thus:

Roff =
[
ψoff
1 , . . . , ψoff

Moff

]
.

The offline space is mapped using these functions to the fine grid space. The mixed
GMsFEM system (Equations 2.6 and 2.7) is expressed in matrix terms as:

MfineUH +BT
fineRoffPH = 0, (2.16)
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RT
offBfineUH = RT

offFH , (2.17)

Mfine constitutes a symmetric, positive definite, and sparse matrix. UH and PH are the
unknown fluid velocity and pressure vectors that describe grid spaces Vh and WH , respec-
tively. Execution of the mixed GMsFEM, therefore, requires two fine grid matrices to be
constructed (Mfine, Bfine) accompanied by one offline matrix (Roff).

Fluid velocity can be solved directly from the fine grid matrix combination. Considering
k as a diagonal tensor, Mfine is readily estimated with the diagonal matrix M̂fine, applying
the trapezoidal quadrature rule. The convergence rate of that easier-to-execute system is
essentially the same as the unmodified matrix system. Mfine can therefore be replaced by
that diagonal matrix M̂fine without compromising prediction accuracy. As M̂fine is easier to
invert, the system described by Equations 2.16 and 2.17 is solved as follows:

−RT
offBfineM̂fine

−1
BT

fineRoffPH = RT
offFH .

Taking this approach, an original mixed formulation is expressed approximately by a
positive-definite, sparse linear system. In that linear system, fewer pressure unknowns are
involved for each coarse-grid element.

Generally, the number of PDEs requiring solutions to enable multiscale basis functions to
be derived is dependent on the number of local cells and local eigenvalue problems involved.
The local cell problem relating to the coarse grid relates to the original system definition
but excludes the source function in Equation 2.4. A BC (delta) relates to the coarse grid
boundary; delta = 1 for fine grid edges and delta = 0 for coarse grid edges. Local cell
problems are therefore determined by the fine grid edges impacting the coarse grid boundary.
In the model configured for this study, the number of fine grid edges/coarse grid boundary
is 12.

2.4 Data-driven Methods for Model Reduction-based Nu-
merical Simulation

This section discusses the application of data-driven methods, including ML, DL, and sta-
tistical analysis in the context of model reduction-based numerical simulation. It consists of
three discrete subsections: 2.4.1, 2.4.2, and 2.4.3.

2.4.1 Reduced Order Modeling Domain

This subsection presents five cases that demonstrate the application of data-driven methods
in the reduced order modeling domain. The purpose of the work presented in [30] was to
combine deep residual recurrent neural network [31] with POD and Discrete Empirical In-
terpolation Method (DEIM) for UQ in subsurface porous media. The uncertainty parameter
was the permeability field, which followed a log-normal distribution. The simulations were
based on 2000 random permeability realizations. The results confirmed the accuracy of the
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developed framework with a much lower computational cost compared to the POD–Galerkin
reduced model joined with DEIM.

The authors in [32] implemented a POD-based Gauss–Newton with Approximated Ten-
sors (GNAT) framework for two-phase reservoir simulation. The dimension reduction of
state variables was performed using POD. The gappy POD technique was employed to ap-
proximate the nonlinear residuals using their values at a fraction of cells. Furthermore, the
least-squares Petrov–Galerkin projection was applied for constraint reduction, rather than
the Galerkin projection used in the POD-DEIM procedure. The study considered 576 var-
ious GNAT parameter combinations to assess the effect of parameter values on error. The
results showed that this method achieved high accuracy.

A model involving Smooth Orthogonal Decomposition (SOD) and DEIM was developed
in [33] to simulate fluid flow in two-phase reservoirs for both 2D and 3D cases. The main
reason for using SOD rather than POD was to build higher efficient basis vectors for state
parameters. The SOD-DEIM approach showed better performance than POD-DEIM in
reproducing the full order models.

Two non-intrusive ROMs were proposed in [34] to investigate fluid flow in gas reservoirs.
The first model, called POD-RBF, involved POD and Radial Basis Function (RBF), while
in the second framework, called POD-AE, an AutoEncoder (AE) was employed instead of
RBFs. Both frameworks were trained using data obtained from simulations of a real hetero-
geneous gas reservoir with time-varying production. The results showed that both models
were computationally much faster (between 0.22 and 300 times) than classical simulation.
Considering the simulation outputs as the reference, the POD-RBF performed better than
the other model.

The researchers in [35] aimed to create data driven ROMs for production forecasting
as an alternative to standard simulations. To do so, a black-oil reservoir simulation model
based on the production history of the Volve oil field was used to produce training data.
A long short-term memory topology was chosen for its ability to learn long-term depen-
dencies. Monthly oil production was predicted at the individual wells and full-field levels
and then validated against real-field data for production history to compare its predictive
accuracy against the simulation results. The results indicated that a univariate model with
a single time lag as input and a stateless configuration was the most accurate for predict-
ing monthly oil production. Using a walk-forward validation strategy, the single-well ROM
reduced prediction error by an average of 95

2.4.2 Upscaling Domain

Five examples are given to illustrate the application of data-driven techniques in the upscal-
ing domain. The researchers in [36] investigated the performance of ordinary least squares
and Kernel Ridge regression algorithms for the computation of upscaled permeability. For
this, 100 samples were generated, with a permeability field produced using the Gaussian
probability distribution and an upscaled permeability which was calculated using a finite
volume method. The results demonstrated that Kernel Ridge regression performed with a
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lower error to capture the upscaled behavior of the flow (i.e., the underlying physics of the
problem) compared to the other technique.

The authors in [37] automated permeability upscaling from the detailed geological charac-
terization of fractured reservoirs expressed by a Discrete-Fracture Model (DFM). A DL-based
design was developed to find a suitable relationship between DFM images (input) and the
equivalent continuum model (output), which contained the estimated equivalent permeability
of every grid block. The suggested upscaling workflow had three stages: (i) data generation,
(ii) model development, and (iii) validation. The 10,000 samples were generated to train a
model with 18 hidden layers. The performance of the model was tested in four cases, and it
was found to perform better than static and flow-based upscaling methodologies.

The Darcy Brinkman–Stokes model was combined with Decision Tree (DT) multivariate
regression, to upscale a microporous carbonate from the pore scale to the Darcy scale in
[38]. Using a limited number of training images, the developed model performed as well as
numerical upscaling to predict permeability. The main advantage was that the regression
model was around 80 times less computationally prohibitive than the numerical methods.

The purpose of the work presented in [39] was to obtain fine scale flow behavior in terms
of the reservoir saturation map for an upscaled model using the generative adversarial net-
work. This was done on a system of the two-phase, deal-oil, and heterogeneous oil reservoir.
The authors also showed how the network can be trained using dynamic coarse geological
properties at different resolutions. The results implied that even when coarse geological fea-
tures and with limited resolution, the super-resolution reconstructions can recreate missing
information that is close to the ground facts.

Given that existing equivalent permeability prediction models were only applicable to
reservoirs with a simple Discrete Fracture Network (DFN), the authors in [40] attempted
to propose CNN models to forecast the equivalent permeability of a complex multiscale
fracture network. The images and features of the DFN were considered as the input. The
developed models of ResNet-18, VGG-16, GoogLeNet, and MsNet-8-4 were validated with
the simulation results of the Lattice Boltzmann method. Then, these models were compared
with an existing model called CNN-4. The results confirmed the superiority of these models,
especially MsNet-8-4 to CNN-4.

2.4.3 Multiscaling Domain

These ten cases are related to assisting the data analysis in multiscaling methods on coarse
grids. The researchers in [41] concentrated on the multiscale finite volume method presented
in [42]. Generally, a series of local problems over dual-grid cells have to be solved to extract
coarse scale basis functions. The researchers used shallow NNs adjusted by a series of solution
samples for the computation of basis functions. The results of this data-driven method over
a computational domain [0, 1]2 were promising for elliptic problems.

When the permeability field is fixed, the main quantities of GMsFEM can be precom-
puted in an offline stage by solving local problems. Given several choices of permeability
fields, however, repetitively formulating and solving such local problems might be compu-
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tationally expensive. A DL-based approach was presented in [43] for the rapid prediction
of the GMsFEM ingredients for any online permeability fields. Deep structures were used
to illustrate non-linear mapping from the fine scale permeability field coefficients to the key
factors of the multiscale basis functions and the coarse scale variables. The results showed
that if samples of the GMsFEM discretizations were adequate, the developed models would
be able to provide exact approximations.

The researchers in [44] investigated a new deep network to a model reduction technique of
non-local multi-continuum upscaling developed in [45] for multiscale simulations. The input-
output maps were developed on a coarse block and trained by applying multilayer neural
network approaches. Soft thresholding operators were selected as an activation function.
By relating a soft-thresholding neural network and minimization of PDE solutions, multi-
scale features of coarse element solutions were extracted, establishing a ROM for solution
approximation. The numerical results confirmed the good performance of this method.

Various deep networks were used to approximate flow and transport formulae in [46].
Implementing the sparsity structures of the underlying discrete systems, these networks
had far fewer learnable parameters compared with Fully Connected (FC) models. DL was
used to approximate the map from the source terms to the velocity solution. The networks
were developed with convolutional and locally (not fully) connected layers to execute model
reductions. Furthermore, a custom loss function was defined to apply the local mass conser-
vation constraints. The achieved velocity fields were then fed into the saturation equation,
and a residual network served to approximate the dynamics. Numerical results of both the
single-phase and two-phase cases highlighted the huge potential of novel models to precisely
forecast the underlying physical system and make computational efficiency improvements.

A multi-agent Reinforcement Learning (RL) methodology was presented to hasten the
multi-level Monte Carlo Markov Chain (MCMC) sampling algorithms in [47]. The authors
confirmed their approach by solving an inverse, multiscale problem, which classical MCMC
techniques struggle with. The first issue was computing the posterior distribution, which
required a lot of time for heterogeneous media. To solve this, a GMsFEM was used as
the forward solver. Moreover, finding a function able to generate meaningful sampling was
not simple. For this, an RL policy was learned as a proposal generator. Experimentation
revealed that this approach was capable of considerably improving the sampling process.

A DL-based method within GMsFEM was presented in [48] to cluster (coarsen) the
uncertainty space. By doing so, the number of multiscale basis functions per coarse element
could decrease over the uncertainty space. CNNs were joined with some methods in adversary
NNs. Simulation runs were carried out based on almost 240,000 local spatial fields. The
numerical results confirmed an increase in the number of clusters from 5 to 11 could decrease
relative error.

A combination of DL techniques and local multiscale model reduction methods was used
in [49] to predict flow dynamics considering observed data and physics-based modeling con-
cepts. Flow dynamics can be viewed as a multilayer network. This means that the solution
(e.g. saturation) at the time instant “n+1” relies on the solution of “n” as well as input
parameters. Each layer is considered a nonlinear forward map, and the number of layers re-
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lates to the internal time steps. Multilayer NNs find a nonlinear mapping between the time
steps. ROMs provide important coarse grid parameters and some other information. Three
examples of numerical simulations demonstrated the efficacy of this hybrid methodology.

A Theory-guided Neural Network (TgNN) which incorporated scientific knowledge into
traditional NNs was developed for the simulation of subsurface flow in [50]. The KL expan-
sion was used to parameterize heterogeneous porous media. The potency of the suggested
framework was evaluated by multiple cases, such as predicting future responses, training
from noisy data, and transfer learning. In comparison with ordinary models, TgNN pro-
duced more precise outputs. For example, the R2 values were 0.484 for the artificial neural
network and 0.996 for the TgNN to predict future responses with changed BCs.

The researchers in [51] proposed a multi-stage DL-based method for multiscale problems.
Each stage shared a similar structure and estimated the same ROM of the problem with
multiscale features. The prediction of the first stage was quite imprecise. It was demon-
strated numerically that performance improvements could be achieved using several ROMs
as inputs at each stage. The proposed strategy yielded good outputs on two time dependent
linear and non-linear PDEs with the steady state condition based on 1600 samples.

An ensemble variable-separated multiscale method was presented in [52] for elasticity
problems in random media. This method was combined with the GMsFEM to achieve a
reduced model. In this regard, several local problems were solved for snapshots to obtain
the multiscale basis functions of GMsFEM. An ensemble method was applied to construct
stochastic basis functions shared by a series of elasticity equations, and a residual decom-
position was adopted to calculate the deterministic physical components for all ensemble
members. The ensemble variable-separation was used to solve the local problems of the mul-
tiscale basis functions and attained effective online computation for the basis. Then, under
the Galerkin projection of the generalized FEM, the solutions of stochastic elasticity prob-
lems were projected onto the low-dimensional space spanned by the online multiscale basis
functions. Multiple case studies confirmed the effectiveness of the suggested methodology.

2.5 Summary
This chapter provided a review of the background and previous work related to the research
presented in this thesis. The mixed GMsFEM is an effective numerical method capable
of approximating reservoir pressure in heterogeneous porous media. This is achieved by
applying several multiscale basis functions to a single coarse grid of the reservoir volume.
The related work was divided into three categories: (i) reduced order modeling domain (five
examples), (ii) upscaling domain (five examples), and (iii) multiscaling domain (ten exam-
ples). A description of the generated data using the MatLab software and their preparation
for developing models are given in the next chapter.
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Chapter 3

Generation and Preparation of Data

3.1 Introduction
To create a trustworthy ML/DL-based model, it is important to take into account a wide
range of the input (here permeability field)/output (here multiscale basis functions and
pressure) variables. A heterogeneous permeability field can be viewed as a realization of a
random field that follows a particular distribution with the corresponding covariance. In this
study, the KL expansion [2] was employed to parameterize the heterogeneous model. This
Gaussian random field generation method decomposes a random process into the eigenvalue
and eigenfunction of its covariance kernel. The general form of the KL expansion is given
by:

Z(x, y) = m(x, y) +
∞∑
i=1

√
λiϕi(x, y)ξi, (3.1)

where Z(x, y) is the random field, m(x, y) is the mean value of the random field, λi is the
corresponding eigenvalue, ϕi(x, y) is the eigenfunction of the covariance function of Z(x, y),
and ξi is the independent standard normal variable.

In practice, the expansion is truncated after a finite number of terms, resulting in an
approximation of the original random field. The truncated expansion takes the form:

Z(x, y) = m(x, y) +
n∑

i=1

√
λiϕi(x, y)ξi, (3.2)

where n is the number of terms used in the expansion.
To apply the KL expansion to permeability fields in petroleum engineering, it is first

needed to estimate the covariance function of the field. Once the covariance function is
known, the eigenvalues and eigenfunctions can be computed by solving some integral equa-
tions, and the expansion can be used to generate random permeability fields.

For every randomly produced porous medium in a Cartesian coordinate system over a
unit square, there are five basis functions (numbered Basis 1 to 5). Basis 1 is a piecewise
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constant, with binary values of −1 and 1. Basis 1 is defined as part of FEM, it, therefore,
requires no training for ML/DL modeling. On the other hand, Basis 2 to 5 take values
distributed across the range (−1, 1), and therefore require training for ML/DL modeling.

With regards to the other output i.e., pressure, Dirichlet's condition was applied on two
sides: p = 100 (left-side boundary) and p = 0 (right-side boundary) for each porous medium.
Neumann's condition was applied to the other two sides: ∂p = 0 (top and bottom sides).

Following on from this introduction, Section 3.2 provides an explanation of the compu-
tational domain, the fine grid system, and the coarse grid system for the multiscale basis
functions. Subsection 3.2.1 describes the initial data generated (249,375 samples) using the
MatLab software. The details of the extended data (376,250 samples) are given in the next
Subsection 3.2.2. With regards to the pressure distribution, there is only one dataset, 1400
samples for the training part and 300 samples for testing the model (3.3). This chapter is
finished with a summary in Section 3.4.

3.2 Multiscale Basis Functions
For the system analyzed here, the computational domain was defined as Ω = [0, 1]2, repre-
senting a square 2D domain. The fine grid system adopted involves a uniform 30× 30 mesh.
On the other hand, a sparser, uniform 10 × 10 mesh was applied to represent the coarse
grid network. This means that each coarse grid contains nine fine grids. A coarse grid may
contain fractures or not. If so, it can include partial or complete fractures. Also, a fracture
can pass another.

The ranges of permeability values applied to the formation matrix (Km) were 1, 2, 3, 4,
and 5 milliDarcies (mD), and to the fractures (K f) were 500, 750, 1000, 1250, 1500, 1750, and
2000 mD. The number of fractures (N f) available in a porous medium was varied between 1
and 25. The length of fractures was randomly distributed.

The format defined for the permeability field was as a vector (900 × 1), subsequently
adjusted to be expressed as a 2D tensor (100 × 9), in which, coarse grid units = 100 and
each coarse grid contains 9 fine grids. Each row in the array, therefore, represents a coarse
grid. Such a configuration enables the use of 2D CNN kernels. However, basis functions
remained in the format of a 900× 1 vector.

Figure 3.1 shows a permeability field of the fractured porous media with Km of 4 mD,
K f of 2000 mD, and the number of fractures is 15. Although multiscale basis functions are
defined on the coarse grids, their coordinates are also important. For example, coarse grids
no. 10 and no. 91 have the same permeability, but their corresponding basis functions may
have been different.

Multiscale basis functions are defined in a single coarse grid element. Here, the pattern
available in a coarse block is tracked for the graphical investigation, with an unfractured
case (Figure 3.2) and a fractured case (Figure 3.3). In the top section of these two figures,
fine grids in blue refer to the matrix and yellow to the fracture.
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Figure 3.1: Schematic description of the permeability field of a simulated fractured porous
reservoir formation. Km is assumed to be 4 mD. K f is assumed to be 2000 mD. Fine grid
squares represent the formation matrix (blue) in some cases and fractures (yellow) in other
cases (selected randomly). The red lines define the coarse grid. Each coarse grid square
contains nine fine grid squares. There are fifteen fractures assigned to this porous medium.

3.2.1 Initial Dataset

CNNs are developed using training, validation, and testing data all drawn from the same
data distribution. The training subset is utilized for training the model. To develop robust
CNN models, so that they are fit for purpose in the context of real-life settings, the data used
to train the model must be large. The model is evaluated during the training process using
the validation data. The testing data (unseen data) is only used to appraise the model's
performance once the training process has been completed.

For each of the 875 (equals to 5 × 7 × 25) cases, the MatLab code was run as many as
280 times for the training data, two times for validation, and three times for testing. So,
249,375 samples were generated with 245,000 examples for training, 1750 for validation, and
2625 for testing. The random generation of permeability fields involves the possibility that
some duplicate fields could be generated. Consequently, the generated dataset was filtered
to remove any duplicate data records. This is necessary to remove the risk of introducing
bias towards specific model configurations in the DL analysis. Overall, 6653 training, 8
validation, and 13 testing samples were excluded. This reduced the training, validation, and
testing samples to 238,347, 1742, and 2612, respectively.
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Figure 3.2: Pattern available in the coarse block no. 44 as an unfractured sample.
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Figure 3.3: Pattern available in the coarse block no. 13 as a fractured sample.

3.2.2 Extended Dataset

With more data, DL models can learn a more diverse and robust set of features, which can
help them generalize better to new data. In the initial dataset, the number of validation and
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testing samples was very low. To investigate the effect of the number of data samples, each of
the 875 cases was evaluated 350 times as part of model training. Additionally, 40 validation
runs and 40 independent testing runs were executed for each case. In other words, 376,250
data records were generated in total. 306,250 records were used for DL model training,
35,000 records for DL model validation, and 35,000 for independently testing the trained
and validated models. The data filtering step removed 1739 duplicate training data records,
579 duplicate validation data records, and 6121 duplicate testing data records. This pre-
processing step reduced the training subset to 304,511 data records, the validation subset to
34,421 data records, and the independent testing subset to 28,879 data records.

3.3 Pressure Distribution
To produce data for pressure distribution, Km andK f were assigned fixed values of 1 and 1000
mD, respectively. N f available in a porous medium was set to 5, and fractures are allowed
to intersect with each other. The length of individual fractures was randomly distributed. A
total of 1400 sample grids were generated in the MatLab software to constitute the training
dataset, and a further 300 sample grids were generated to constitute the testing dataset.
The testing data, therefore, made up 17.65% of the generated grids and the training data
82.35%. Duplicate fields were not allowed to exist in the training and/or testing datasets.
Only two of the generated grids were removed during pre-processing to avoid intruding bias
to specific permeability fields. In order to visualize the pressure changes occurring over the
defined shapes, a representative sample is illustrated in Figure 3.4.

3.4 Summary
Pressure can be predicted in the mixed GMsFEM, either directly or indirectly through
multiscale basis functions. The purpose of this chapter was to explain that data generation
and preparation were separately performed for each of the four different multiscale basis
functions and pressure using the MatLab software. The only input for both cases was
the permeability field, and preparation involved tasks such as removing duplicates, scaling
input/output, and changing the initial dimension of input/output. Generating data for
pressure was challenging, resulting in a lower number of data samples for pressure compared
to the basis functions. Chapters 4, 5, 6, and 7 focus on developing models based on the basis
functions, while Chapter 8 is solely dedicated to directly predicting pressure distribution.

25



Figure 3.4: Pressure distribution for a corresponding random permeability over a unit square
domain.
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Chapter 4

SkiplessCNN for Basis 2, 3, 4, and 5

4.1 Introduction
In Chapter 2, the mixed GMsFEM framework was presented in the context of numerical
approximation of subsurface fluid flow, emphasizing that numerous PDEs must be solved to
construct multiscale basis functions. Chapter 3 was devoted to describing the data generated
and prepared for a specific configuration. The work given in this chapter is directed at
deriving an answer to the subsidiary question one from Chapter 1:

1. Is DL able to accurately reconstruct four distinct multiscale basis functions in the
mixed GMsFEM in terms of statistical-graphical investigation, given its impressive per-
formance with respect to datasets involving nonlinear relationships in recently published
research in a range of scientific and engineering fields?

As the problem being studied is of a supervised type, there are several methods in DL to
address it, such as CNNs and Recurrent Neural Networks (RNNs). RNNs are usually used
while dealing with video, sound, or text data. On the other hand, CNNs are specifically
designed for problems with 2D arrays like my regression case, mapping an input of 100× 9
to an output of 900 × 1. CNNs enable us to use 2D convolutional filters while developing
a model. Furthermore, there is a reasonable and robust mathematical procedure behind
convolutional filters. A CNN also automatically and adaptively learns the spatial hierarchies
of features. Finally, it can decrease the number of parameters without reducing the quality
of models.

The remainder of this chapter is structured as follows. Section 4.2 explains the terms
AI, ML, and DL, describes how a CNN architecture is designed, and what characteristics
the best-performing network has. This network (i.e., SkiplessCNN) is then compared with
two advanced CNN architectures in Section 4.3. Section 4.4 presents a detailed parameter
analysis for the convolutional, Batch Normalization (BN), and FC layers. The network
optimization is explained in Section 4.5 to find out how CNN models are developed. The
chapter is concluded with a summary in Section 4.6.
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4.2 SkiplessCNN Architecture
The terms AI, ML, and DL are wrongly used interchangeably, causing some confusion about
the nuances between them. From a holistic perspective, DL is a subcategory of ML which,
in turn, is a subdivision of AI (Figure 4.1). AI is a far-reaching branch of computer science
in which a range of tools and techniques are used to make machines (namely computers and
robots) more intelligent and consequently more effective and efficient.

ML methods are widely employed to find and predict relevant patterns within datasets.
ML is now used to great advantage in various fields [53, 54, 55]. ML systems can be cat-
egorized in different ways [56, 57]. For instance, based on the way an algorithm processes
data, there are four types of ML algorithms: supervised, unsupervised, semi-supervised, and
reinforcement learning. The training process is performed using labeled data in supervised
learning, while unlabeled data is used in unsupervised learning. Semi-supervised learning
uses a limited amount of labeled data from which further labeled data is produced. The last
category allows an agent to learn in a model through trial and error using feedback received
from its own experience.

DL methods represent more complex extensions of classical ML methods, particularly
NNs, and have demonstrated improved performance [58, 59, 60]. There are various DL al-
gorithms, including CNN, deep AE, deep-belief network, RNN, and generative adversarial
network. There are some differences between ML and DL. For instance, manual feature engi-
neering tends to be performed with ML algorithms, sometimes requiring domain knowledge
about a given problem. To make the point clear, consider “filling missing values”. A dataset
can include missing values due to the difficulty of collecting complete data. Missing values
can be manually filled in based on expert knowledge, which is sometimes a tedious process.
However, with DL algorithms this is more often not required, being performed automatically.
In addition, because of the large amounts of data used and the complexity of computations,
more powerful computer systems are needed in the DL process compared to the hardware
requirements of traditional ML. For the same reasons, the training process often takes a
significant amount of time in DL.

A typical CNN architecture may contain three types of layers: (i) convolutional, (ii) pool-
ing, and (iii) FC. In mathematical sciences, convolution is a specialized linear operation on
two functions that gives a third modified function. In the context of CNN, the fundamental
idea is to consider an input (an array of numbers) as the first function and a convolutional
filter (kernel) as the second. A kernel is a relatively small array of randomly generated num-
bers. The kernel moves over the whole input. The dot product of the kernel and input is
calculated at each sub-region (with the same size as the kernel) of the input, obtaining an
output value in the corresponding location of the convolved input. This process produces a
feature map and is performed using different kernels. The outputs of the convolution process
are passed through an activation (transfer) function. Such functions typically transform a
linear operation into a nonlinear system [56, 57].

The key difference between a parameter and a hyperparameter is that a model's param-
eters are automatically updated during the training process, whereas hyperparameters are
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Figure 4.1: Disambiguating the terms: Deep Learning (DL) ⊂ Machine Learning (ML) ⊂
Artificial Intelligence (AI).

set manually before the model begins training like the size and number of kernels. Including
more convolutional layers in a CNN model increases the number of parameters. The more
parameters there are in a model, the more computationally expensive the learning process
is. This is where a subsampling operation can be useful. In DL, pooling layers use statistical
functions (maximum pooling and average pooling) to decrease the number of trainable pa-
rameters. This can decrease the computational complexity of mathematical operations and
sometimes improve the robustness of feature maps. Pooling layers come after convolutional
layers [56, 57].

When the output of the network is in the format of a vector, feature maps in the final
convolutional or pooling layer are first flattened to a 1D array, and then connected to FC
layers. In FC layers (dense layers), each neuron of a layer is connected to whole neurons in
the previous layer and the next layer. It is common to put a dropout layer after each FC
layer (except the output layer) at the end of a CNN model. Dropout omits a percentage of
neurons in the previous FC layer. This percentage, as a hyperparameter, is defined when
constructing a network. During the training process, some neurons may dominate, producing
errors. Dropout balances a network, checking that all neurons work equally to minimize the
cost function as much as possible [56, 57].

Distinct CNN model configurations, involving various combinations of convolutional,
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pooling, FC, BN, regularization, and dropout filtering were tested separately for each basis
function requiring training (i.e., Basis 2 to 5). In the regularization method, an extra element
is added to the loss function. This regularization term penalizes a model for using higher
values than needed in the weight matrix. A similar standard SkiplessCNN configuration
was obtained as the best model for each of these four basis functions (Figure 4.2). That
initial CNN architecture consists of five convolutional layers, and two FC layers but does
not include any pooling layers. Convolutional layers 1 to 5 (CONV1 to CONV5) consist of
5, 10, 15, 20, and 25 kernels, respectively. To determine the size of a convolution output for
an input with the size of Ih(height)× Iw(width) and a kernel with the size of Kh ×Kw, it is
possible to use Equation 4.1 if the padding is set to “valid”:

Output height = Oh = (Ih −Kh)/Sh + 1

Output width = Ow = (Iw −Kw)/Sw + 1,
(4.1)

where Sh and Sw are the vertical and horizontal strides.
When padding is set to “same”, the size does not change. The kernel size for all convo-

lutional layers is 3× 3, and Sh = Sw = 1. The padding was set to “valid” only for CONV5.
This means there was no padding for the first four convolutional layers. Therefore, CONV1,
CONV2, CONV3, CONV4, and CONV5 have the size of 98×7, 96×5, 94×3, 92×1, 92×1,
respectively.

Each convolutional layer is followed by a single BN layer of the same dimension. Typically,
neural network models are able to apply higher learning rates and converge more quickly
when the input to each layer is normalized; hence the value of adding the BN layers. In
other words, normalization helps in stabilizing and accelerating the training process. Each
FC layer contains 2000 neurons. For a given neuron or kernel, the inputs are multiplied by
weights, and the resulting products are summed together. A bias term is then applied to
that sum. Such rigid computations mean that only linear transformations are performed on
the layer inputs using the weights and biases to generate the layer outputs. Although this
operation makes the neural network simpler, it is less powerful and unable to learn complex
patterns in a dataset. This is where the activation function is beneficial. Mathematically,
this can be represented as shown in Equation 4.2 where wi represents the weight value,
zi is the input value, b is the bias, f refers to the activation function applied, and y is the
dependent variable prediction output. The developed models in this study used the “Rectified
Linear Unit (ReLU)” activation function for the convolutional layers, the “sigmoid” activation
function for the FC layers, and the “linear” activation function for the output.

y = f(
n∑

i=1

(wizi) + b). (4.2)
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Figure 4.2: Standard CNN architecture for constructing the basis functions of the mixed
GMsFEM.

4.3 Comparison of the SkiplessCNN Model with AlexNet
and VGGNet

In order to better understand the SkiplessCNN architecture developed in this study, it is
compared to structurally similar CNN architectures AlexNet [61] and VGGNet, also known
as VGG16 [62]. AlexNet has five convolutional layers, three of which are followed by max-
imum pooling layers to decrease the computational cost. The number of kernels in each
convolutional layer is 96, 256, 384, 384, and 256. There are two FC layers of 4096 neurons
and a 1000-neuron output layer at the end of the network. VGGNet contains thirteen convo-
lutional layers, five maximum pooling layers, two FC layers of 4096 neurons, and an output
layer with 1000 neurons. The number of kernels used in the convolutional sections is 64,
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128, 256, and 512. Each image has two basic elements: depth and size (height × width).
The depth of an input image refers to the color channel, where one and three are used for
grayscale and color images, respectively. For the later layers, the resulting feature maps indi-
cate how deep a convolutional layer is. Similar to common CNN architectures, going deeper
through the structure of developed models, the number of feature maps increases and their
size decreases. However, the number of feature maps (equals the filters number) defined in
this research is significantly less than that of common CNN models. In DL, pooling layers
are primarily used to decrease the number of trainable parameters, mostly when the input
shape is high, e.g., in AlexNet whose input shape is 224×224. However, the input dimension
in this research is 100×9. This is why there is no pooling layer in SkiplessCNN. BN, similar
to AlexNet, has helped to prevent over-fitting. As with AlexNet and VGGNet, the number
of neurons (units) remained constant in FC layers, but no drop out layer was used in the
proposed structure because it had a negative effect on the performance. The base structure
of this work is for a regression-type problem, while AlexNet and VGGNet were essentially
designed for a classification intent. Therefore, a linear activation function is used in our
model for the output layer, but a softmax in AlexNet and VGGNet. Considering the fact
that AlexNet and VGGNet are very complex, with many convolutional layers and filters, it
is reasonable to call the presented architecture here a “DNN of low complexity.”

4.4 Number of Parameters
There is no parameter for the input and flatten layers. The number of learnable parameters
in a convolutional layer is determined through (Equation 4.3):

Number of parameters in a convolutional layer = ((Kh ×Kw ×M) + 1)×N, (4.3)

where M and N are the filters number (depth) of the previous layer and the current layer.
The value of Kh × Kw is the size of the kernels used in the current layer. The added “1”
alludes to the bias term for each kernel.

Since pooling layers only calculate a specific number by applying statistical functions,
learnable parameters are not used.

Equation 4.4 is used to calculate the number of parameters in the first FC layer:

Number of parameters in the first FC layer = ((Oh ×Ow ×M) + 1)×Nc, (4.4)

where Oh(height) and Ow(width) and K (kernels number) are related to the size of the
convolutional layer placed before the first FC layer. Nc is the number of neurons in the
current FC layer. A bias is assigned to each neuron, indicated by the “1” included in the
above formula.

If the last layer before the FC part is a pooling layer, size and kernels number are replaced.
When there are two FC layers successively, then Equation 4.5 can be used:

Number of parameters in an FC layer (except the first FC) = (Np + 1)×Nc, (4.5)
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where Np and Nc are the number of neurons in the previous and the current layers, respec-
tively. Again, “1” is added because of the bias assigned to each neuron.

The detailed information of each layer is given in Table 4.1. There are as many as
10,414,170 trainable parameters, which are mostly related to the FC layers. BN layers
contain 300 (is equal to 4 × the filters number of the previous convolutional layer) parameters.
Half of these parameters are non-trainable, updated with the mean and variance, but not
trained with backpropagation. Furthermore, it is possible to keep some trainable parameters
constant when training a model.

Table 4.1: Detailed parameter analysis for the SkiplessCNN architecture.

Type of layer Output shape Number of parameters Type of parameters
input 100× 9× 1 0 -

CONV1 98× 7× 5 ((3× 3× 1) + 1)× 5 = 50 trainable

BN1 98× 7× 5 4× 5 = 20
trainable (10)

non-trainable (10)
CONV2 96× 5× 10 ((3× 3× 5) + 1)× 10 = 460 trainable

BN2 96× 5× 10 4× 10 = 40
trainable (20)

non-trainable (20)
CONV3 94× 3× 15 ((3× 3× 10) + 1)× 15 = 1365 trainable

BN3 94× 3× 15 4× 15 = 60
trainable (30)

non-trainable(30)
CONV4 92× 1× 20 ((3× 3× 15) + 1)× 20 = 2720 trainable

BN4 92× 1× 20 4× 20 = 80
trainable (40)

non-trainable (40)
CONV5 92× 1× 25 ((3× 3× 20) + 1)× 25 = 4525 trainable

BN5 92× 1× 25 4× 25 = 100
trainable (50)

non-trainable (50)
flatten 2300 0 −
FC1 2000 ((92× 1× 25) + 1)× 2000 = 4602000 trainable
FC2 2000 (2000 + 1)× 2000 = 4002000 trainable

output 900 (2000 + 1)× 900 = 1800900 trainable
trainable parameters = 10414170
non-trainable parameters = 150

total parameters = 10414170 + 150 = 10414320

4.5 Network Optimization
The CNN training process seeks to find optimum values for weights and biases applied to
kernels (convolutional layers) and neurons (FC layers). Such values generate the lowest col-
lective errors for all data records evaluated between actual and predicted dependent variable
values. The back-propagation algorithms are commonly applied to train many types of neu-
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ral network. In configuring back-propagation, three types of algorithms can be considered.
These are:

1. First-order iterative optimization algorithms: Minimization (or maximization)
of a loss function (F (x)) is performed using its gradient values based on a model’s
parameters. The first-order derivative indicates whether the loss function is increasing
or decreasing at a certain point. This type was used in this research.

2. Second-order iterative optimization algorithms: These algorithms use the second-
order derivative to minimize (or maximize) a loss function. The second-order deriva-
tive shows whether the first derivative is increasing or decreasing. Since this method
is computationally expensive, it is rarely used.

3. Derivative-free optimization algorithms: At times, it is difficult to calculate the
derivative of the loss function, or it might not exist. Such challenges can be overcome by
applying derivative-free algorithms, of which there are many, such as genetic algorithm
and particle swarm optimization. These are commonly referred to as evolutionary
algorithms to distinguish them from gradient-descent algorithms.

The first-order iterative (gradient descent) is the most common optimization method
used in DL (and also ML). When the loss function F (x) is differentiable near a point a,
then F (x) decreases fastest if a is moved in the direction of the negative gradient of the loss
function at a, ∇F (an). This can be expressed using Equation 4.6 where δ is the learning
rate, which is changeable in each iteration:

if an+1 = an − δ ∇F (an) then F (an) ≥ F (an+1). (4.6)

The gradient must decrease to move towards a local (or global) minimum point of the
loss function. That is why δ∇F (an) is subtracted from an. In the gradient descent method,
an initial guess x0 is randomly considered for a local minimum of F (x), and a sequence
x1, x2, . . . is generated such that xn+1 = xn − δ ∇F (xn) optimistically satisfies F (x0) ≥
F (x1) ≥ F (x2) ≥ ... and gradually converges to the optimal value of the loss function.

The different optimizers available all strive to achieve a minimum loss or cost value.
Multilayer NNs focus on the feed-forward sequence through its layered structure on to which
weights and biases are initialized. However, in training the backward pathway is used to
modify the layer weights and biases in each iteration. In that way back propagation acts to
improve a model's performance.

The learning rate is a key DL hyper-parameter. It states how quickly a model learns in
each epoch that parameters are updated. When it is too small, the training process takes a
long time. If too large, it results in sub-optimal CNN learning, locking into sets of weights
and biases too quickly, which can lead to a less stable training process that tends to converge
prematurely. Hence, setting the right value for the learning rate is crucial. Adaptive methods
such as Adam can be used to automatically resolve this issue. Adam applies distinctive
learning rates to each scalar variable. It progressively adapts those rates throughout the
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training iterations, with those adaptions being influenced by partial-derivative trends of
rates applied to each variable in previous model iterations. Adam is gradient based in its
calculations and benefits from a combination of its AdaGrad component to cope with sparse
gradients and an RMSProp function in its application. It is suitable for DL applications
to large datasets with many data records and/or multiple variables. In this study, default
values were used i.e., the initial global learning rate = 0.001, beta1 = 0.9, beta2 = 0.999,
and epsilon = 1e-7. The Adam learning rate can adjust at a finer scale as the optimum
values are approached, although in some cases such fine tuning can result in overfitting.
AMSGrad extends the performance of the Adam optimizer by converging in a more effective
and smoother manner, avoiding step changes. By storing the highest values of second-
momentum vectors generated in all previous model iterations, AMSGrad is able to normalize
the moving average gradient in each iteration.

The CNN models in this study were constructed using Keras with TensorFlow as a
backend on Python. The libraries of numpy, pandas, sklearn, and glob were also used in the
Spyder module of Anaconda Distribution. The models were compiled using MSE as the loss
(objective) function and Adam and AMSGrad separately as the optimizer and trained with
a batch size of 32 samples.

The flow diagram in Figure 4.3 illustrates the CNN analysis methodology applied to the
generated datasets. This step-by-step approach was separately done to develop a standard
model for each individual basis function. In this regard, a low number of epochs was initially
used to ensure that the model was still improving based on the obtained MSE. Hence,
the number of epochs increased up to 100 as a stopping criterion that makes an optimizer
terminate the process. If a predictive model fails to correctly capture the underlying trend
of the training (seen) dataset, it is considered to “under-fit” the data. This is usually the
result of designing an oversimplified model. To avoid under-fitting, including further layers
and increasing the number of input parameters may be helpful. Once the model performs
favorably on seen data, it can be applied to test (unseen) data to evaluate its generalizability.
Over-fitting is a fundamental problem in ML, especially in DL due to a large number of
trainable parameters. It happens when a model performs well with respect to the training
data but poorly on the test dataset. This may occur when the model attempts to learn the
noise patterns available in the unseen data.

4.6 Summary
The focus of this chapter was on designing and training distinct CNN models for Basis 2, 3,
4, and 5. A similar SkiplessCNN configuration was achieved as the best architecture for each
of the four basis functions, consisting of five convolutional and two FC layers. The number
of kernels in convolutional layers 1 to 5 was 5, 10, 15, 20, and 25, respectively. Each FC
layer contained 2000 neurons. With regards to compiling and training, Adam and AMSGrad
were separately used as the optimizer with MSE as the loss function. It is generally accepted
that adjusting the architecture can obtain better ML/DL accuracy. This is why three skip
connection schemes are added to the base structure in the next chapter.
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Figure 4.3: Graphical representation of different steps for reconstructing basis functions
using a CNN model.
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Chapter 5

Role of Skip Connections in Deep Neural
Networks of Low Complexity

5.1 Introduction
Deep feed-forward networks, with high complexity, backpropagate the gradient of the loss
function from the final layers to earlier layers. As a consequence, the gradient may descend
rapidly toward zero. This is known as the “vanishing gradient phenomenon” that prevents
earlier layers from benefiting from further training. One of the most efficient techniques to
solve this problem is using skip connection (shortcut) schemes that enable the gradient to
be directly backpropagated to earlier layers.

Despite much recent research directed at adopting skip connections in highly complex
deep networks, there is a lack of critical analysis of the nature and causes of the vanishing
gradient problem, and the comparative advantages gained when using skip connections in
DNNs of low complexity, such as the one developed in Chapter 4. Additionally, although
classification and regression algorithms are both categorized as supervised learning algo-
rithms, reported work on the utilization of skip connections has mostly been directed at
classification; there is much less reported work directed at regression. Hence, the work pre-
sented in this chapter is designed to address the second subsidiary research question from
Chapter 1:

2. Will skip connections significantly affect the performance of Deep Neural Networks
(DNNs) of low complexity or whether their inclusion has little or no effect?

There are two important motivations for doing so. First, the gradient in such networks
might descend so rapidly to zero, possibly causing early convergence. Second, it might
be the case that attempting to improve the performance of a CNN by simply adding more
convolution blocks into the network has zero effect because of the vanishing gradient problem.

The rest of this chapter is organized as follows. Section 5.2 first explores different ap-
proaches to resolving the vanishing gradient problem. Next, the idea behind the concept
of skip connection is given, with a particular focus on their mathematical underpinnings.
Eventually, several examples are provided to illustrate the importance of skip connection.
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Section 5.3 presents three skip connection schemes added to the SkiplessCNN architecture.
The chapter is finished with a summary in Section 5.4.

5.2 Skip Connection Idea: Intuitive and Mathematical
Explanation

Deep feed-forward networks are typically generated using some form of gradient-based train-
ing, such as backpropagation, whereby the gradient of the loss function (cost function) is
calculated using the values assigned to weights and biases. The loss function measures how
well the network is operating by considering the similarity between real and predicted out-
puts. There are various parameter optimizers that can be adopted to arrive at the minimum
loss value. Multilayer NNs typically include a feed-forward pathway in which different layers
are arranged, and parameters are initialized, as well as a backward pathway that progres-
sively modifies parameters, thus gradually improving a model's performance.

DNNs contain several hidden layers as opposed to shallow networks, which have only one
hidden layer. A significant advantage of deep networks with high complexity is that they can
represent complex functions and learning features at various levels of abstraction. However,
the disadvantage is the vanishing gradient phenomenon which may occur during the training
process. As the network backpropagates the error gradient from the final layers to layers
closer to the input layer, the gradient can descend rapidly to zero. This issue causes those
parameters associated with layers near the input layer not to change as much as they should.
In the worst case, the updating of these layers may cease to happen. This in turn is likely
to have an adverse effect on the operation of the network.

Several approaches have been suggested to mitigate the vanishing gradient problem, such
as: (i) applying multilevel hierarchies [63], (ii) employing long short-term memory units [64],
(iii) defining orthogonal constraints on the initialization of the parameters [65], (iv) using
regularization terms [66], (v) applying gated recurrent units [67], (vi) introducing extra layers
such as BN layers [68, 69], and (vii) modification of the activation functions [70, 71].

The concept of using a skip connection (shortcut) in a neural network was first proposed
in [72] as a way of mitigating the vanishing gradient problem in deep CNN models. The
shortcut enables the cost function gradient to be directly backpropagated to layers close to
the input layer. In traditional CNN architectures, the layers come one after another. Using
the skip connection idea, a shortcut is added to the main path in the network. Depending on
the dimensions of the input/output blocks, two main kinds of shortcuts can be defined: (i)
identity shortcuts (used in this study), and (ii) convolutional shortcuts. An identity shortcut
is employed where the input layer has the same size as the output layer. A convolutional
shortcut is used where the sizes of the input and output layers do not match. As the name
suggests, the convolutional shortcut comprises a convolutional layer, sometimes along with a
BN unit. Skip connections can also be categorized as either short or long connections. Short
skip connections typically exist in networks with consecutive convolutional layers, such as
the residual neural network. Long skip connections are used with symmetrical architectures,
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such as encoder-decoder sketches, where the spatial dimensionality decreases in the encoder
section and increases in the decoder section. A combination of the encoder-decoder and long
skip connections is referred to as U-Net [73].

The mathematical explanation of the identity skip connection concept is presented below.
Supposing the output of an earlier layer as x1 and the activation function as ReLU (Figure
5.1), a standard neural network carries out a series of operations in the next layers as follows:

z1 = w1 x1 + b1, (5.1)

x2 = ReLU(z1), (5.2)

z2 = w2 x2 + b2, (5.3)

x3 (without skip connection) = ReLU(z2), (5.4)

where w1 and w2 refer to weights, and b1 and b2 are bias.

Figure 5.1: General structure of NNs without skip connection.

In addition to the mathematical operations above, a skip connection makes x1 jump a
layer and re-join the output before applying the second activation function (here ReLU):

39



x3 (with skip connection) = ReLU(z2 + x1). (5.5)

All operations together form a residual block (Figure 5.2).

Figure 5.2: General structure of NNs with skip connection.

To better understand how skip connections address vanishing/degrading gradients, the
calculations in the residual block are given as a function. With substitution of z2 and x1 by
F(X) and X, it is necessary to define:

M(X) = F(X) +X. (5.6)

The neural network may lose the ability to properly learn a complex mapping when F(X)
becomes too small. With adding more layers to a network, this is more likely to happen.

By including X, the identity mapping of the input to F(X) is added. As a result, the
network has a kind of baseline for the function it has to learn.

The cost (lost) function is differentiated with respect to weights during backpropagation.
In order to reach the weights in the earlier layers, it is necessary to differentiate through all
the intermediate functions in the previous layers. If the final output is produced by the last
activation function in the residual block, then the cost function J is calculated immediately
thereafter.

40



To propagate the gradient to the earlier layers, the gradient of the cost function is com-
puted with respect to x, i.e., ∂J

∂x
. The chain rule makes the following for the full operation

with all the intermediate steps to be conducted without the skip connection:

∂J

∂x1
=

∂J

∂x3
× ∂x3
∂z2

× ∂z2
∂x2

× ∂x2
∂z1

× ∂z1
∂x1

. (5.7)

NNs are prone to vanishing and exploding gradients as a result of this series of multiplica-
tions. In case of replacing the intermediate calculations with F(X), the gradient calculation
changes to:

∂J

∂X
=

∂J

∂F(X)
× ∂F(X)

∂X
. (5.8)

With including the skip connections, the rate of change of the cost function with respect
to X in a neural network becomes:

∂J

∂X
=

∂J

∂M(X)
× ∂M(X)

∂X
. (5.9)

Substitution of M(X) with F(X) +X results in the expression below:

∂J

∂X
=

∂J

∂M(X)
×
(
∂(F(X) +X)

∂X

)
=

∂J

∂M(X)
×
(
∂F(X)

∂X
+ 1

)
=

(
∂J

∂M(X)
× ∂F(X)

∂X

)
+

∂J

∂M(X)
. (5.10)

The term ∂J
∂M(X)

i.e., the direct gradient of the cost function with respect to M(X) still
exists even if ∂F(X)

∂X
becomes vanishingly small as a result of many multiplications applied

during backpropagation through all the layers. This avoids the gradient from vanishing or
exploding.

At the end of this section, six examples are presented to highlight the significance of uti-
lizing skip connections in DNNs. The researchers in [74] investigated the impact of long and
short skip connections on fully convolutional networks for biomedical image segmentation.
To do so, the model was tested on electron microscopy data, with 25 images for training,
and 5 for validation. The results revealed that only short skip connections could solve the
vanishing gradient problem in their deep networks.

A DL model was presented to reconstruct super-resolution images in [75]. Using the
proposed technique, a CNN was separated into multiple layer groups, and shortcuts with
various multiplication factors were considered from the input data to these layer groups.
In comparison with the alternative techniques, the suggested model reached a higher peak
signal-to-noise ratio and better subjective quality given a similar amount of computation.

41



An attempt was made in [76] to develop a binary CNN with many skip connections
for “Fog Computing” applications where many peripheral devices are connected using a
cloud. The proposed binary CNN network featured decomposition convolution kernels and
concatenated feature maps. The proposed model was tested on two datasets: ImageNet and
CIFAR-10. Based on the results, this model was found to increase the classification accuracy
with respect to both datasets.

A deep and high complex convolutional AE with several skip connections was developed
in [77] to improve the colorization of grayscale images. Various numbers of kernels including
8, 32, 128, and 512 were used in this architecture. Additionally, there were two different kinds
of skip connections: 3-layer-1-skip connection and 6-layer-1-skip connection. The stride was
2× 2 in the former and 4× 4 in the latter. Experiments on multiple datasets confirmed the
effectiveness of the proposed model with the peak signal to noise ratio of 27.0595, root mean
square error of 0.1311, structural similarity index measure of 0.561, and Pearson correlation
coefficient of 0.9771.

The focus of the work present in [78] was on Densely Connected Convolutional Neural
Network (DCCNN) to identify plant diseases. In this context, three architectures were
developed: 6-block DCCNN (with 10 weight layers), 7-block DCCNN (11 weight layers),
and 8-block DCCNN (12 weight layers). Different numbers of kernels were used to develop
such models, such as 64, 128, 192, 256, 320, 384, 448, 512, and 576. The skip connections were
put in modified dense blocks. According to the results, the 8-block DCCNN outperformed
the other two models with an identification accuracy of 0.9823 – 0.9983 for different plants.

A novel mode namely Martian Crater UNet (MC-UNet) was developed in [79] to precisely
recognize Martian craters at semantic and instance levels from thermal-emission-imaging-
system daytime infrared images. This model had a depth of six, and the maximum number
of convolutional channels was 256. In order to enhance the performance, average pooling
was adopted and also channel attention was embedded into the skip-connection process
between the encoder and decoder layers at the same network depth. The experimental
results demonstrated that MC-UNet could recognize Martian craters with a maximum radius
of 31.28 km (136 pixels) with a recall of 0.7916 and an F1-score of 0.8355.

5.3 Three Skip Connection-based CNN Architectures
To address the central objective of this section, comparisons are conducted using three
different skip connection schemes as shown in Figure 5.3. How and where in the SkiplessCNN
structure the shortcuts are located differs from scheme to scheme:

1. FirstSkip: a single skip connection from the first convolutional layer to the last one.

2. MidSkip: a single skip connection from the middle convolutional layer to the last
layer.

3. DualSkip: two skip connections from the middle convolutional layer to the last and
the second-to-last layers.
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Figure 5.3: Structure of the CNN models with and without skip connections.
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FirstSkip adds a single shortcut from the output of the first convolution layer to the
last convolutional block. The input and output of this part have the same dimension of
98 × 7 because an identity type of shortcut is used. MidSkip is designed to discover how
much a shortcut from the middle layer to the final layer can improve the performance of a
model. Here, the input and output of this section with the shortcut have a dimension of
94 × 3. DualSkip was developed mainly to gain knowledge of the effect of involving the
raw input features along with MidSkip. In all three cases, the main path and the shortcut
meet each other before applying the activation function. For all three architectures, the FC
layers remain unchanged.

Adding the skip connections increases the complexity of the standard structure (i.e., Skip-
lessCNN), in terms of the number of parameters. As explained in the previous section, there
are as many as 10,414,170 trainable and 150 non-trainable parameters for the base structure,
without shortcuts. By adding FirstSkip, the number of trainable and non-trainable param-
eters increases to 12,670,510 and decreases to 110, respectively. For MidSkipCNN, there are
14,272,340 trainable and 130 non-trainable parameters. For DualSkipCNN, the number of
trainable and non-trainable parameters changes to 14,270,975 and 120, respectively. The
number of parameters for all models is summarized in Table 5.1.

Table 5.1: Number of parameters for the developed CNN models.

Model Number of trainable parameters Number of non-trainable parameters
SkiplessCNN 10,414,170 150
FirstSkipCNN 12,670,510 110
MidSkipCNN 14,272,340 130
DualSkipCNN 14,270,975 120

5.4 Summary
Skip connection can mitigate the problem of the vanishing gradient phenomenon in deep
feed-forward networks. The goal of this chapter was to investigate whether skip connections
meaningfully affect the performance of DNNs of low complexity or whether their inclusion
has little or no impact. In this sense, three different skip connection schemes were added
to the SkiplessCNN structure. The next chapter is dedicated to using ensemble learning
techniques to combine the models developed so far.
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Chapter 6

Deep Ensemble Learning

6.1 Introduction
Ensemble learning is a technique in which several models or base learners are combined into
an “ensemble”. This produces a single model with better predictive or classification accuracy
than the individual component base learners. Ensemble learning can be applied to various
types of ML models, such as DTs, NNs, or Support Vector Machines (SVMs). There are
several ways to combine the base learners in ensemble learning, including boosting, bagging,
and stacking.

The majority of published research directed toward ensemble learning has been founded
on traditional ML techniques. Such established mechanisms represent Shallow Ensemble
Learning (SEL). The alternative is DEL, which combines a number of deep learners into an
ensemble. Although DL algorithms tend to generate fewer prediction errors than traditional
ML methods when applied to many datasets, there is scope to further improve their accuracy.
Combining several deep learners into an ensemble is one way to potentially achieve this.
Moreover, in a set of deep models, the different strengths of each DL model may complement
one another, and weaknesses cancel each other out. Unlike SEL, DEL has received little
attention to date. This chapter attempts to investigate the subsidiary question three, which
was introduced in Chapter 1:

3. Does combining multiple deep learners into an ensemble improve the accuracy of DL
algorithms?

Among popular ensemble learning methods, stacking is used for several reasons. Stack-
ing improves predictive performance more effectively than boosting and bagging, particularly
when dealing with complex and noisy datasets. It is more flexible than boosting and bag-
ging since it allows for the use of different types of models, or even models with different
hyperparameters, to create a diverse set of base models. Stacking can also help to address
issues related to overfitting by providing a way to combine multiple models with different
strengths and weaknesses.

The standard CNN model (SkiplessCNN) developed in Chapter 4 and skip connection-
based CNN models (FirstSkipCNN, MidSkipCNN, and DualSkipCNN) developed in Chapter

45



5 are used as the base learners. These base learners are then combined using two regression
models (linear regression and ridge regression), separately.

Subsequent to this introduction, three other sections are given. Section 6.2 begins with
an explanation of reducible and irreducible errors of ML/DL algorithms, followed by the
presentation of three important categories of ensemble systems: boosting, bagging, and
stacking. Finally, a couple of examples are provided to demonstrate the application of
ensemble learning in the geoscience field. Section 6.3 explains the stacking CNN ensemble
model. The last section 6.4 mainly summarizes the key points expressed in this chapter.

6.2 Importance of Combining Models for Improved Pre-
dictive Performance

The wide range of ML/DL algorithms available all have to contend with reducible and ir-
reducible errors. The latter is typically a consequence of noise within the datasets being
evaluated and cannot be addressed by the ML/DL models themselves. On the other hand,
bias and variance combine to generate reducible errors, which can be effectively reduced by
the algorithmic actions of ML/DL. Bias errors are a consequence of the differences between
predicted and actual dependent variable values generated with a training subset of samples.
Variance errors result from small fluctuations in the training subsets actual values. Mathe-
matically, it is supposed that there is an input vector X (here the permeability field) that
influences an output vector Y (here the basis function). The function f(X) denotes the
correct relationship between the input and output, but it is accompanied by some noise that
can be represented by σϵ

2 that constitutes the irreducible error:

Y = f(X) + σϵ
2. (6.1)

ML/DL models strive to determine the best function f̂(X) that can predict the true
underlying function f(X) as precisely as possible. Given the Total Error (TE) as TE =
E[(Y − f̂(X))2]:

TE = [Ef̂(X)− f(X)]2 + E[f̂(X)− Ef̂(X)]2 + σϵ
2, (6.2)

TE = bias2 + variance + irreducible error. (6.3)

Simpler models tend to generate high bias accompanied by low variance. On the other
hand, more elaborate models tend to generate lower bias accompanied by higher variance.
Linear regression, for example, has a high bias since it tends to oversimplify and, therefore,
cannot accurately capture the relationship between input variables and output data. In con-
trast, NNs involving multiple hidden layers and many nodes tend to generate a substantial
variance, because they tend to overfit training datasets, making it difficult for the trained
models to be generalized and accurately predict unseen data. High bias is typically a conse-
quence of models underfitting a dataset, whereas high variance is typically a consequence of
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models overfitting a dataset. As a modeling strategy, it makes sense, therefore, to attempt
to trade off bias and variance errors to assist the trained models in being applied in a more
generalized way and more accurately predict data not seen during the training/validation
process.

Ensemble learning, whereby a number of base learners are combined into an “ensemble” to
produce a single model whose predictive or classification accuracy is better than that of the
individual component base learners, is a well-established technology [80, 81, 82, 83, 84, 85].
Ensemble systems can be categorised according to the method by which the ensemble learning
is achieved:

1. Boosting: Boosting [86, 87] is a sequential method. The different base learners are
dependent on each other. The aim is to fit models in steps such that model training
at each step is influenced by the models constructed in the previous steps. Each step
is focused on examples in the dataset that have been poorly predicted by the previous
steps.

Here is how boosting ensemble learning works:

(i) The algorithm starts by training a weak learner on the entire dataset.

(ii) The algorithm then looks at the instances that the first weak learner mispredicted,
and assigns a higher weight to these instances.

(iii) The algorithm trains a second weak learner on the same dataset but with the
weights adjusted to give more importance to the previously mispredicted in-
stances.

(iv) The process is repeated, with each subsequent weak learner focusing on the in-
stances that were mispredicted by the previous learners.

(v) Finally, the predictions of all the weak learners are combined to make a final
prediction. Typically, the final prediction is weighted by the accuracy of each
weak learner, so that the more accurate weak learners have a higher weight in the
final prediction.

There are several types of boosting algorithms, including Adaptive Boosting (Ad-
aBoost) and gradient boosting. Both algorithms work by iteratively adding weak
learners to the ensemble, but they differ in the way the weights of the instances are
adjusted and the way the weak learners are combined.

2. Bagging: Bagging (standing for bootstrap aggregating) [88, 89] is a parallel approach
to ensemble learning where multiple models are generated using the same ML/DL
algorithm but with different portions of the training data, which are then merged to
produce a single more robust model than the individual base models. Multiple training
subsets (bootstrap samples) are randomly selected from the initial training dataset with
replacement (a single row of the initial data might be chosen zero, one, two, or even
more times). Each model is developed from one subset, resulting in an ensemble of
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several models. The final prediction is obtained by averaging (or simply ranking) all
the predictions of the different learners.

Here are the steps involved in bagging:

(i) The training data is divided into multiple subsets (or bags) of equal size. These
subsets are created by randomly selecting samples from the original dataset, with
replacement (i.e., some samples may be selected more than once).

(ii) A model is trained on each of the bags. Typically, the same type of model is used
for each bag, but with different subsets of the data.

(iii) Once all the models are trained, their predictions are combined using a simple
average, weighted average, or majority voting method, depending on the type
of problem being solved. The final prediction is made based on the combined
predictions of all the models.

One of the most commonly used bagging algorithms is Random Forest (RF), which
combines the bagging algorithm with DTs. In RF, multiple DTs are trained on different
subsets of the data, and their predictions are combined using a weighted average or
majority voting method.

3. Stacking: Unlike boosting and bagging, stacking [90, 91] uses base learners generated
by different machine learners. The voting ensemble represents a simple stacking method
in which a statistical mechanism is used to combine different types of ML/DL models,
such as DTs and SVMs. No matter how well the individual ML models perform on the
training dataset, they all contribute equally to the merged model. One can consider
the simple average of the predictions from the underlying ML models. However, using
a weighted average ensemble makes the results more sensitive to the prediction errors
generated by each contributing ML/DL model. A further improvement can be made
through stacked generalization, which applies an ML/DL model to learn how to best
combine the predictions derived from the base learners. It does this by first developing
base models using the training dataset inputs. It then feeds the underlying ML/DL
models into a meta-learner, which attempts to make a new model using the predictions
of the weak learners based on new data.

Here is a step-by-step procedure of how stacking works:

(i) The initial data is divided into two (in some cases more) subsets. One subset is
used to train the individual base models, and the other subset is used to train the
meta-model.

(ii) Multiple base models are trained on one subset using different algorithms or model
architectures. These models can be of different types, such as DTs, RFs, NNs,
etc.

(iii) Once all the base models are trained, they are used to make predictions on the
other subset of the training data.
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(iv) The predictions of the base models are then used as input features for the meta-
model.

(v) A meta-model is trained on the second subset using the true labels of the validation
set as the target variable.

(vi) Once the meta-model is trained, it can be used to make predictions on the testing
data.

The meta-model can be any type of model, such as linear regression, logistic regression,
or neural network.

Ensemble ML/DL techniques are now quite widely applied in various engineering and
geoscience disciplines. For example, three models of Bayesian, functional, and meta-ensemble
were applied to Land Subsidence Susceptibility (LSS) mapping in [92]. The models split the
dataset 50:50 between training and testing subsets with errors measured in relation to the
operating-characteristic curve. The ensemble including the logit boost model delivered the
most accurate (91.44%) LSS maps.

Slope stability predictions were generated using a hybrid stacking ensemble method in
[93]. An artificial bee colony optimizer was applied to identify the optimal combination
of base classifiers (ensemble level 0). These were then used to develop an effective meta-
classifier (ensemble level 1), considering eleven separate tuned ML models. Finite element
analysis was employed to create a synthetic database (150 records) for training the models.
The trained models were then applied to predict 107 naturally occurring slope cases to test
model performances. The hybrid-stacking ensemble model generated less errors than each
ML model used in isolation.

Ensemble RF, ensemble Gradient Boosted Regression Tree (GBRT), and MultiLayer
Perceptron (MLP) neural network were applied to model the spatial extent of landslides
in Norway in [94]. Eleven landslide-influencing factors were considered related to geomor-
phologic, geologic, geo-environmental, and anthropogenic effects. 3,399 positive landslide
records and 6,798 non-landslide were considered. Seventy percent of the data records in each
of these two categories were selected for training the models. The remaining thirty percent
of the data records were used to test the trained models. The slope angle was confirmed by
the models to be the most important influencing factor. The ensemble GBRT model out-
performed the other ensemble models, achieving a 95% probability of detecting landslides in
that region.

SVM, MLP, RF, AdaBoost, and extreme gradient boosting were used to develop synthetic
geochemical logs for pre-salt reservoirs in Brazil in [95]. Seven petrophysical logs: natural
gamma-ray, gamma-ray spectroscopy, density, photoelectric factor, neutron porosity, nuclear
magnetic resonance, and sonic formed the input variables. The chemical element concen-
trations for Al, Ca, Fe, Mg, Na, Si, S, and Ti were the prediction objectives. In addition
to showing the best results, AdaBoost was found to be the most practical tree-ensemble
algorithm to apply as it involved simpler pre-processing and control variable optimization.

The researchers in [96] used stacking ensemble learning to filter and fuse multiple basic ML
models to further improve the regression effect of Minimum Miscibility Pressure (MMP) data.
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First, the correlation analysis and variance inflation factor of the MMP data in the dataset
were performed, and the duplicate data were excluded due to correlation and collinearity
problems. In total, 147 MMP data were then regressed using seven basic models, whose
results were preliminarily screened and combined with empirical formula data to form a new
dataset. Then, the final output result was achieved through a stacking model. Besides fitting
curves, the results of the stacking model also exhibited improvements in the prediction of
MMP, as evidenced by the reduction in mean absolute error, root mean square error, and
increase in R2.

A variety of models such as Light Gradient Boosting Machine [LightGBM], extreme
gradient boosting, categorical boosting, RF, MLP, linear regression, and CNN were utilized
to forecast porosity in a reservoir situated in Brazil in [97]. These models were trained
using porosity and elastic parameters from the smoothed and standardized logging data.
The trained models were applied to the inverted elastic properties to estimate the porosity
profile from seismic data. In the crosswell blind tests, LightGBM had the highest accuracy,
while also having the shortest runtime among the investigated models. Besides, the authors
discovered that the incorporation of clay content had the potential to enhance the accuracy
of porosity predictions, while oil saturation had less of an impact.

6.3 Stacking CNN Ensemble Model
A schematic of the proposed stacking CNN ensemble model is given in Figure 6.1. There
are four base learners: SkiplessCNN, FirstSkipCNN, MidSkipCNN, and DualSkipCNN. All
these models were constructed using 304,511 training data records, together with 34,421
validation data records. The SkiplessCNN architecture consists of seven weight/bias layers:
five convolutional and two FC layers without any pooling layer. Convolutional layers 1 to 5
consist of 5, 10, 15, 20, and 25 kernels, respectively. Each convolutional layer is followed by a
single BN layer of the same dimensions. Additionally, each FC layer contains 2000 neurons.
In FirstSkipCNN, a single shortcut is added from the output of the first convolution process
to the last convolutional block. In MidSkipCNN, there is a single skip connection from the
middle convolutional layer to the last layer. The fourth model, i.e., DualSkipCNN includes
two skip connections from the middle convolutional layer to the last and the second-to-last
layers. In all CNN models with skip connections, the main path and the shortcut meet
each other before applying the activation function. The structure of the FC layers remains
unchanged for all three architectures.

A new training dataset for the meta learner was established by providing all data records
from the validation subsets to each of the four sub-models and collecting the predictions they
generated i.e., PSkiplessCNN, PFirstSkipCNN, PMidSkipCNN, and PDualSkipCNN. These resulted in four
(referring to the number of base learners) arrays with the shape [34421, 900], the first element
referring to the number of validation data and the second to the output (basis function).
Thus, a 3D array was developed with the shape [34421, 4, 900], which was transformed into
a [34421, 3600] shaped array. This flattened input data, along with their output was used to
train a meta learner.
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Figure 6.1: The workflow diagram of the stacking CNN ensemble model. Four base learn-
ers of SkiplessCNN, FirstSkipCNN, MidSkipCNN, and DualSkipCNN are developed using
training/validation subsets. After being trained, they are used to make predictions on the
validation data (PSkiplessCNN, PFirstSkipCNN, PMidSkipCNN, and PDualSkipCNN). Then, two meta
models are separately developed using linear regression and ridge regression. Once the meta
models are trained, they can be used to make predictions on the testing data (28,879 sam-
ples).

As mentioned earlier, there are 875 cases that each need to be processed through the
sequence of training, validation, and testing. Given that the input/output dimensions are
so large, it did not make sense to apply boosting to focus on samples in the dataset that
have been predicted incorrectly by the previous models in the sequence. Bagging is usually
applied to relatively small datasets. Additionally, conducting bootstrap sampling incorpo-
rating all 875 cases was not feasible for addressing this large dataset. Therefore, stacking
was selected to establish the ensemble model. A stacked generalization method was chosen,
mainly because it is more flexible mathematically than voting or weighted average methods.
To be more specific, the four base learners were combined into an ensemble model using
linear and ridge regression, separately.

The linear regression is one of the most straightforward approaches to predicting output
via a linear function of input features. In the context of ML/DL, it refers to the most
usual least square linear regression method that attempts to minimize the cost function. A
drawback, however, is that it does not penalize high magnitude weights in its error function
and it assumes independence between its features. These characteristics can lead in some
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cases to certain features being assigned very high weights during the training. The cost
function for linear regression is typically expressed as:

cost function linear =
m∑
i=1

(Y − f̂(X))2. (6.4)

The ridge regression, as a modification of linear regression, involves a penalty (L2 reg-
ularization) to its error term, calculated as the sum of the squared value of the weights.
Giving a penalty in such a way results in a set of more evenly distributed weights. The cost
function for ridge regression becomes:

cost function ridge =
m∑
i=1

(Y − f̂(X))2 + α

p∑
j=1

(wj)
2, (6.5)

here, α is included as a coefficient to penalize weights. It can take different values. A ridge
model with α = 0 is the same as a simple linear regression. As the α value nears infinity, an
increasing number of coefficients of the model becomes zero until it is just a flat model with
an intercept. In this study, the default value of “one” was used for all cases.

Once the meta model is trained, it can be used to make predictions on the test data. For
each basis function, the 28,879 testing samples were separately used to assess the combined
model and determine if it could perform better than any of the individual base learners.

6.4 Summary
The accuracy of DL algorithms can be improved by combining several deep learners into
an ensemble. This eliminates the need for continuous adjustments to the architecture of
individual networks or the nature of the propagation. This chapter investigated the potential
prediction improvements achieved by using DEL to estimate four distinct multiscale basis
functions in the mixed GMsFEM. A standard CNN and three skip connection-based CNNs
were used for the base learners. For each basis function, these four CNNs were combined
into an ensemble model using linear regression and ridge regression, separately. While DL
models are effective prediction tools, they often neglect the issue of uncertainty. That is why
MC dropout is applied in the next chapter to investigate the reliability of DualSkipCNN.
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Chapter 7

Reliability of the DualSkipCNN Model

7.1 Introduction
ML/DL models have been introduced in various fields to make decisions using available
data and domain knowledge. It is crucial to consider both accuracy and reliability when
evaluating such models. These models are typically assessed based on their accuracy using
statistical error metrics such as: (i) for regression: R2, MSE, and relative error, and (ii) for
classification: precision, F1 score, and confusion matrix.

In terms of reliability, ML/DL models deal with two main types of uncertainty: (i)
aleatoric uncertainty (also called irreducible uncertainty/data uncertainty/inherent random-
ness) and (ii) epistemic uncertainty (also called knowledge uncertainty/subjective uncer-
tainty) [98]. Aleatoric uncertainty arises from an inherent property of the data and cannot
be reduced even with a higher volume of samples. The data used to develop a model can be
sourced from experimental measurements, collected from other resources, or produced via
simulation/programming (including our case). This data always contains noise, which refers
to the data distribution and errors made while measuring, collecting, or generating data. A
related problem is incomplete coverage of the domain. That is why most models are con-
structed based on a limited range of data and cannot be generalized. Epistemic uncertainty
is a property of a model caused by factors such as the selection of very simple or complex
structures, the stochastic nature of optimization algorithms, or the type of statistical error
metrics. This uncertainty is reducible by feeding enough training samples into the model.

UQ techniques are beneficial to limit the effect of uncertainties on decision-making pro-
cesses. According to [98], there are three main types of UQ: (i) Bayesian methods such as
MC dropout, Markov Chain Monte Carlo, variational inference, Bayesian active learning,
Bayes by backprop, variational AEs, Laplacian approximations, and UQ in RL like Bayes-
adaptive Markov decision process, (ii) ensemble techniques such as deep ensemble, deep
ensemble Bayesian/Bayesian deep ensemble, and uncertainty in Dirichlet deep networks like
information-aware Dirichlet networks, and (iii) other methods such as deep GP and UQ
in the traditional ML domain using ensemble techniques like SVM with Gaussian sample
uncertainty.
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Despite extensive research into the accuracy of DL models, their reliability analysis is
still not adequate. This is because DL models are highly complex and have a large number of
parameters, making it challenging to understand their decision-making process. Additionally,
these models are susceptible to biases and overfitting. Therefore, improving the reliability
analysis of DL models is necessary to ensure their trustworthy deployment in real-world
applications. This chapter is going to investigate the subsidiary question four introduced in
Chapter 1:

4. How does incorporating Uncertainty Quantification (UQ) methods improve the relia-
bility of the CNN models in predicting new data points?

In this sense, MC dropout, a computationally efficient approach, is applied to investigate
the reliability of DualSkipCNN model, with a focus on epistemic uncertainty. MC dropout
is a regularization technique for NNs that is inspired by Bayesian inference. It involves
randomly dropping out neurons at both training and test time.

The remainder of this chapter is organized in the following manner. Section 7.2 starts
with a mathematical explanation of the standard GP, deep GP, and Bayesian approxima-
tion. Then, it is concisely demonstrated that how MC dropout can be interpreted as a
Bayesian approximation of the probabilistic deep GP. Finally, four examples are provided to
demonstrate the application of MC dropout in subsurface fluid flow modeling. Section 7.3
explains the structure of the DualSkipCNN model with dropout. The chapter is summarized
in Section 7.4.

7.2 MC Dropout and its Related Work
Standard deterministic DNNs operate on a one-input-one-output basis. Unlike single-point
predictions of such models, Bayesian methods such as Bayesian Neural Networks (BNNs)
and (GPs) give predictive distributions. The weights of BNNs are incorporated with prior
distributions, whereas GPs introduce priors over functions. A drawback of BNNs and GPs
is the computational cost, which becomes prohibitive given a very large network, as in the
case of deep networks. BNNs need to be fed the posterior distribution across the network's
parameters, in which all possible events are obtained at the output. GPs require us to sample
prior functions from multivariate Gaussian distribution, wherein the dimension of Gaussian
distribution increases proportionally with the number of training points involving the whole
dataset during predictions.

For a standard GP, a collection of training input-output pairs, stored in matrices X ∈
RN×Q and Y ∈ RN×D is given in the traditional probabilistic inference framework. The goal
is to estimate the latent function f = f(x), which is responsible for generating Y based on
X. GPs can be used as nonparametric prior distributions over f in this context [99]. Each
datapoint yn is generated from the corresponding f (xn) by adding independent Gaussian
noise. In other words:

yn = f (xn) + ϵn, ϵ ∼ N
(
0, σ2

ϵ I
)
, (7.1)

in which f is drawn from a GP, i.e., f(x) ∼ GP (0, k (x, x′)).
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This (zero-mean) GP prior is solely dependent on the covariance function k operating
on the inputs X. In order to create a flexible model, a covariance function is chosen that
defines the characteristics of the mapping f , without imposing strong assumptions about
its structure. For instance, an exponentiated quadratic covariance function, k (xi,xj) =

(σse)
2 exp

(
− (xi−xj)

2

2l2

)
, results in infinitely smooth latent functions. Any covariance function

hyperparameters, such as (σse, l) of the aforementioned covariance function, are represented
by θ. The collection of latent function instantiations, represented by F = {fn}Nn , follows a
normal distribution. Then, the marginal likelihood can be analytically calculated:

p(Y | X) =

∫ N∏
n=1

p (yn | fn) p (fn | xn) dF

= N
(
Y | 0,KNN + σ2

ϵ I
)
,KNN = k(X,X).

(7.2)

The successful use of GP can extend to unsupervised learning scenarios, where the input
data X is not directly observed. In order to address this issue, the GP Latent Variable
Model (GP-LVM) proposed in [100] is utilized, which treats the unobserved inputs X as
latent variables. The model employs a product of D independent GPs as a prior for the
latent mapping, resulting in an elegant solution. The generative procedure is assumed to be
in the form: ynd = fd (xn)+ ϵnd, where ϵ is again Gaussian with variance σ2

ϵ and F = {fd}Dd=1

with fnd = fd (xn). Given a finite dataset, the GP priors can be expressed as:

p(F | X) =
D∏

d=1

N (fd | 0,KNN) . (7.3)

This form allows for general non-linear mappings to be marginalised out analytically to
obtain the likelihood p(Y | X) =

∏D
d=1 N (yd | 0,KNN + σ2

ϵ I), analogously to Equation 7.2.
Now, it is time to explain deep GP. The architecture of a deep GP can be represented as

a graphical model with three types of nodes: the leaf nodes Y ∈ RN×D which are observed,
the intermediate latent spaces Xh ∈ RN×Qh , where h ranges from 1 to H− 1 (the number of
hidden layers), and the parent latent node Z = XH ∈ RN×QZ . The parent node may not be
observed and can be subject to a prior of the available choices, such as a dynamical prior.
Alternatively, it can serve as input for a supervised learning task. For simplicity, here the
focus is on the unsupervised learning scenario. In this deep architecture, all intermediate
nodes Xh act as inputs for the layer below (including the leaves) and as outputs for the
layer above. To avoid complexity, a structure with only two hidden units is considered. The
generative process can be expressed as follows:

ynd = fY
d (xn) + ϵYnd, d = 1, . . . , D, xn ∈ RQ

xnq = fX
q (zn) + ϵXnq, q = 1, . . . , Q, zn ∈ RQZ .

(7.4)

The intermediate node is involved in two GPs, fY and fX , playing the role of an input and
an output respectively: fY ∼ GP

(
0, kY (X,X)

)
and fX ∼ GP

(
0, kX(Z,Z)

)
. This structure
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can be extended either vertically (i.e. deeper hierarchies) or horizontally (i.e. segmentation
of each layer into different partitions of the output space). However, adding more layers
increases the number of model parameters (Xh) and causes a regularization challenge, since
the size of each latent layer is crucial but has to be a priori defined. To address this, unlike
the procedure suggested in [101], it is attempted to variationally marginalise out the whole
latent space. By doing so, Occam's razor is automatically applied through Bayesian training
and significantly reduces the number of model parameters, as the variational procedure only
adds variational parameters. To achieve this, Automatic Relevance Determination (ARD)
covariance functions are first defined for the GPs:

k (xi,xj) = σ2
ARDe

− 1
2

∑Q
q=1 wq(xi,q−xj,q)

2

. (7.5)

This covariance function supposes a distinct weight wq for each latent dimension, which
can be utilized in Bayesian training to “switch off” unimportant dimensions by driving their
corresponding weight to zero. This helps in discovering the structure of intricate models
automatically. However, the nonlinearities introduced by this covariance function make it
difficult to apply Bayesian techniques to this model. Nonetheless, recent non-standard vari-
ational inference methods have enabled the definition of an approximate Bayesian training
procedure, as will be explained in the following.

A Bayesian training procedure requires optimisation of the model evidence:

log p(Y) = log

∫
X,Z

p(Y | X)p(X | Z)p(Z). (7.6)

If there is prior knowledge available about the observed data, such as their dynamic
nature, the prior distribution on the parent latent node can be chosen to restrict the entire
latent space by propagating the prior density through the cascade. Here, it may be feasible
to take the general case where p(Z) = N (Z | 0, I). However, calculating the integral of
Equation 7.6 is difficult because of the nonlinear treatment of X and Z through the GP
priors fY and fX . As a first step, Jensen's inequality is used to find a variational lower
bound Fv ≤ log p(Y), considering:

Fv =

∫
X,Z,FY ,FX

Q log
p
(
Y,FY ,FX ,X,Z

)
Q

. (7.7)

Including variational distribution Q, the joint distribution mentioned earlier can be ex-
pressed using the following expansion.

p
(
Y,FY ,FX ,X,Z

)
=

p
(
Y | FY

)
p
(
FY | X

)
p
(
X | FX

)
p
(
FX | Z

)
p(Z).

(7.8)

The integral of Equation 7.7 remains difficult to solve because X and Z still appear
nonlinearly in the p

(
FY | X

)
and p

(
FX | Z

)
terms respectively. A key result of the work

presented in [102] is that expanding the probability space of the GP prior p(F | X) with
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extra variables allows for priors on the latent space to be propagated through the nonlinear
mapping f . More precisely, it is possible to augment the probability space of Equation 7.3
with K auxiliary pseudo-inputs X̃ ∈ RK×Q and Z̃ ∈ RK×QZ that correspond to a set of
function values UY ∈ RK×D and UX ∈ RK×Q respectively. Following this method, the
augmented probability space is obtained: p

(
Y,FY ,FX ,X,Z,UY ,UX , X̃, Z̃

)
=

p
(
Y | FY

)
p
(
FY | UY ,X

)
p
(
UY | X̃

)
· p

(
X | FX

)
p
(
FX | UX ,Z

)
p
(
UX | X̃

)
p(Z),

(7.9)

where the pseudo-inputs X̃ and Z̃ are known as inducing points. For the sake of simplicity,
they are dropped from now on. It is important to note that FY and UY are draws from
the same GP so that p

(
UY

)
and p

(
FY | UY ,X

)
are also Gaussian distributions. The same

holds true for p
(
UX

)
, p

(
FX | UX ,Z

)
.

With the help of the new expressions for the augmented GP priors, it is sensible to define
a variational distribution Q that leads to a tractable variational bound. In other words:

Q =p
(
FY | UY ,X

)
q
(
UY

)
q(X)

· p
(
FX | UX ,Z

)
q
(
UX

)
q(Z).

(7.10)

The terms q
(
UY

)
and q

(
UX

)
are selected to be free-form variational distributions.

Additionally, q(X) and q(Z) are chosen to be Gaussian, factorised with respect to dimensions:

q(X) =

Q∏
q=1

N
(
µX

q ,S
X
q

)
, q(Z) =

QZ∏
q=1

N
(
µZ

q ,S
Z
q

)
. (7.11)

When Equation 7.10 is substituted back into Equation 7.7 and the original joint dis-
tribution is replaced with its augmented version in Equation 7.9, it can be observed that
the problematic terms p

(
FY | UY ,X

)
and p

(
FX | UX ,Z

)
are canceled out in the fraction,

resulting in a quantity that can be analytically computed:

Fv =

∫
Q log

p
(
Y | FY

)
p
(
UY

)
p
(
X | FX

)
p
(
UX

)
p(Z)

Q′ , (7.12)

where Q′ = q
(
UY

)
q(X)q

(
UX

)
q(Z) and the above integration is with respect to X, Z, FY ,

FX , UY , and UX .
To be more specific, it is possible to break the logarithm in Equation 7.12 by grouping

the variables of the fraction in such a way that the bound can be written as:

Fv = gY + rX +Hq(X) −KL(q(Z)∥p(Z)), (7.13)

where H refers to the entropy with respect to a distribution, KL represents the Kullback-
Leibler divergence and, ⟨·⟩ is used to denote expectations:
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gY = g
(
Y,FY ,UY ,X

)
=

〈
log p

(
Y | FY

)
+ log

p
(
UY

)
q (UY )

〉
p(FY |UY ,X)q(UY )q(X)

rX = r
(
X,FX ,UX ,Z

)
=

〈
log p

(
X | FX

)
+ log

p
(
UX

)
q (UX)

〉
p(FX |UX ,Z)q(UX)q(X)q(Z)

,

(7.14)

where the two terms gY and rX involve known Gaussian densities and are, therefore, tractable.
The gY term is only associated with the leaves and, thus, is the same as the bound found
for the Bayesian GP-LVM [102]. Furthermore, rX involve X, which is the outputs of the top
layer.

A computationally more efficient method called MC dropout has been recently developed
[103]. A NN with any depth and non-linearities accompanying dropout before weight layers
might be interpreted as a Bayesian approximation of the probabilistic deep GP. Additionally,
the dropout objective minimizes KL divergence between an approximate distribution and
the posterior of a deep GP.

Dropout basically serves as a regularization technique within the training process to
reduce over-fitting in NNs. For the testing samples, the dropout is not applied, but weights
are adjusted, e.g., multiplied by “1 − dropout ratio”. With regards to MC dropout, the
dropout is applied at both training and test time. So, the prediction is no longer deterministic
at test time.

Given that ŷ is an output of a NN model with hidden layers L. Also, w = {W1, . . . , WL}
represents the NN’s weight matrices, and y∗ is the observed output corresponding to input
x∗. By defining X = {x1, . . . , xN} and Y = {y1, . . . , yN} as the input and output sets, the
predictive distribution is expressed as:

p(y∗ | x∗, X, Y ) =

∫
p(y∗ | x∗, w)p(w | X, Y )dw, (7.15)

here, p(y∗ | x∗, w) and p(w | X, Y ) are the NN model's likelihood and the posterior over the
weights.

The predictive mean and variance are used in the predictive distribution to estimate un-
certainty. The posterior distribution is, however, analytically intractable. As a replacement,
an approximation of variational distribution q(w) can be obtained from the GP such that
it is as close to p(w | X, Y ) as possible, in which the optimization process happens through
the minimization of the KL divergence between the preceded distributions as shown below:

KL(q(w) | p(w | X, Y )). (7.16)

With variational inference, the predictive distribution can be described as follows:

q(y∗ | x∗) =
∫
p(y∗ | x∗, w)q(w)dw. (7.17)
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According to [103], q(w) is selected to be the matrices distribution whose columns are
randomly set to zero given a Bernoulli distribution, specified as:

Wi =Mi.diag([zi,j]
Ki
j=1), (7.18)

where zi,j ∼ Bernoulli(pi) for i = 1, . . . , L and j = 1, . . . , Ki−1 with Ki × Ki−1 as the
dimension of matrix Wi. Also, pi represents the probability of dropout and Mi is a matrix
of variational parameters. Therefore, drawing T sets of vectors of samples from Bernoulli
distribution gives (W t

1, . . . ,W
t
L)

T
t=1, and consequently, the predictive mean will be:

Eq(y∗|x∗)(y∗) ≈
1

T

T∑
t=1

ŷ∗(x∗,W t
1, . . . ,W

t
L) = pMC(y

∗ | x∗), (7.19)

where ŷ∗ is the output obtained by the given NN for input x∗, and pMC is the predictive mean
of MC dropout, equivalent to doing T stochastic forward passes over the network during the
testing process with dropout and then averaging the results.

It is useful to view this method as an ensemble of approximated functions with shared
parameters, which approximates the probabilistic Bayesian method known as deep GP. In
this method, there are several outputs (considered 30, 50, 100, and 200 in this research)
for a given input. Subsequently, uncertainty could be examined in terms of factors such as
variance, entropy, and mutual information.

In the following, four examples are given to show the application of MC dropout in mod-
eling subsurface fluid flow. The researchers in [104] investigated the uncertainty involved in
ML seismic image segmentation models. Salt body detection was considered as an example.
They used MC dropout and concluded the developed models were reliable.

The researchers in [105] used the dropout method for a classification problem to quantify
the fault model uncertainty of a reservoir in the Netherlands. The networks were trained
with dropout ratios of 0.25 and 0.5. The researchers concluded that the model variance
increased by increasing the dropout ratio. Also, they suggested training with more data is
needed.

The MC dropout approach and a bootstrap aggregating method were used to quantify
uncertainties of CO2 saturation based on seismic data in [106]. The researchers carried out
DL inversion experiments using noise-free and noisy data. The results showed that the model
can estimate 2D distributions of CO2 moderately well, and UQ can be done in real-time.

A semi-supervised learning workflow was used to effectively integrate seismic data and
well logs and simultaneously predict subsurface characteristics in [107]. It had three distinct
benefits: (i) using 3D seismic patterns for developing an optimal nonlinear mapping function
with 1D logs, (ii) being capable of automatically filling the gap of vertical resolution between
seismic and well logs, and (iii) having an MC dropout-based epistemic uncertainty analysis.
The results of the two examples showed robust estimation of properties like density and
porosity obtained by this procedure.
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7.3 DualSkipCNN Model with Dropout
As mentioned earlier, DualSkipCNN model consists of five convolutional layers and two FC
layers but does not include any pooling layers. Each convolutional layer is followed by a
single BN layer of the same dimensions. Furthermore, there are two shortcut schemes in this
structure: (i) from the middle to the last layer and (ii) from the middle to the second-to-last
layer. The two FC layers contain 2000 neurons, to which a dropout rate of 0.05 is added
to investigate the reliability. The model employs the activation function of ReLU for the
convolutional layers, “sigmoid” for the FC layers, and “linear” for the output (Figure 7.1).

When treated as a Bayesian approach, the model produces a different output each time it
is called with the same input. This is because each time a new set of weights is sampled from
the distributions to develop the network and produce an output. After examining various
cases, it was discovered that 30 outputs could be the ideal case for a given input, representing
the most efficient and effective solution.

7.4 Summary
This chapter focused on Bayesian methods to take a positive step toward the reliability
of DNNs of low complexity. BNNs are different from standard NNs in that they assign
probability distributions to their weights, rather than a single value or point estimate. These
probability distributions describe the uncertainty in weights and can be used to estimate
uncertainty in predictions. Taking advantage of its computational efficiency, MC dropout
was used to quantify the epistemic uncertainty of the DualSkipCNN model. A dropout ratio
of 0.05 was used for the FC layers, and the analysis was performed separately for each of the
multiscale basis functions (Basis 2, 3, 4, and 5). The suitability of FNO is investigated to
directly predict pressure distribution using the permeability field as input in the subsequent
chapter.
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Figure 7.1: Structure of the DualSkipCNN model with dropout developed in this study.
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Chapter 8

Fourier Neural Operator for Pressure

8.1 Introduction
There are different numerical methods such as FEM that can provide approximate solutions
to problems related to fluid flow in porous media. Such methods are usually time-consuming
to apply. One way to mitigate the problem of the high computational cost in numerical
calculations is to apply ML/DL techniques including NNs.

Classical NNs focus on learning mappings between finite-dimensional spaces. This makes
such networks, when configured, confined to a particular discretization (i.e., they are mesh-
dependent). Mesh-independent networks have been developed to reduce such constraints.
In this regard, FNO has recently been proposed to learn a continuous function via parame-
terizing the model in its function space [108]. This makes it possible for FNO to be trained
on one mesh and subsequently evaluated on another. Unlike standard feed-forward networks
that use activation functions (e.g., sigmoid and tanh), training an FNO model using the
Fourier transform to find optimum weights and biases is performed by employing sines and
cosines as activation functions [109, 110, 111].

Some research has been conducted applying FNO models to various existing datasets
[112, 113, 114]. However, much of that research addresses problems involving big-shape
data (e.g., 421 × 421 and 256 × 256). Thus, there is a critical lack of analysis regarding
the performance of FNO models on small-shape data. Consequently, this chapter tries to
investigate the fifth subsidiary question introduced in Chapter 1:

5. Can FNO models accurately perform on small-shape data problems to predict pressure
distribution?

A 30× 30 uniform mesh problem is considered to address this research question. In fact,
FNO is applied to predict pressure distribution using 1700 FEM generated samples, from
heterogeneous permeability fields as the input.

The remaining sections of this chapter are arranged as follows. Section 8.2 provides
a mathematical explanation of FNO using different assumptions, definitions, and function
approximations. Additionally, two FNO architectures developed for pressure prediction are
presented. Section 8.3 describes the configurations of the CNN model based on the same
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dataset. The chapter concludes with a summary in Section 8.4.

8.2 FNO: Mathematical Foundations and Architecture
Development

The FNO methodology learns a mapping between two infinite dimensional spaces using a
limited amount of input-output data. It is supposed that D ⊂ Rd is a bounded and open
set, and A = A

(
D;Rda

)
and U = U

(
D;Rdu

)
represent the separable Banach spaces of

function that take values in Rda and Rdu respectively. In addition, G† : A → U is supposed
to be a non-linear map. Here, maps G† are studied which arise as the solution operators of
parametric PDEs. Supposing there are samples {aj, uj}Nj=1 where aj ∼ µ is an i.i.d. sequence
from the probability measure µ supported on A and uj = G† (aj) may be corrupted with
noise. The purpose is to approximate G† by developing a parametric map for some finite-
dimensional parameter space Θ by selecting θ† ∈ Θ so that G

(
·, θ†

)
= Gθ† ≈ G†:

G : A×Θ → U or equivalently, Gθ : A → U , θ ∈ Θ. (8.1)

This is a natural framework for learning in infinite dimensions in which a cost functional
C : U × U → R can be defined. Then, it is possible to minimize the problem:

min
θ∈Θ

Ea∼µ

[
C
(
G(a, θ), G†(a)

)]
,

which directly parallels the classical finite-dimensional setting [115]. However, finding mini-
mizers in the infinite-dimensional context is still a difficult issue that needs to be addressed.
A solution is to adopt a test-train setting, where a data-driven empirical approximation is
used for the cost function that determines the optimal parameter θ. The accuracy of this ap-
proximation is then verified. This methodology is conceptualized in the infinite-dimensional
setting, ensuring all finite-dimensional approximations have the same set of parameters that
are consistent with infinite dimensions.

Approximating the operator G† is generally more challenging than finding a solution
u ∈ U of a PDE for a single instance of the parameter a ∈ A. Traditional techniques,
such as classical finite elements, finite differences, and finite volumes, as well as modern ML
methods including Physics-Informed Neural Networks (PINNs) [116], primarily focus on the
latter task, which can be computationally expensive. Therefore, these methods may not be
practical for scenarios that involve finding a PDE solution for many different instances of
the parameter. In contrast, FNO directly approximates the operator itself, making it much
faster and more cost effective than traditional solvers, resulting in substantial computational
savings.

In practice, when working with data aj and uj, which are typically functions, numerical
evaluations are used. To enable numerical computations, it is assumed that only point-wise
evaluations of these functions are available. Dj = {x1, . . . , xn} ⊂ D is defined as a n-point
discretization of the domain D and aj|Dj

∈ Rn×da , uj|Dj
∈ Rn×dv are observations for a
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finite set of input-output pairs indexed by j. It is crucial for the neural operator to be
discretization-invariant, enabling it to produce an output u(x) for any x ∈ D, even if x is
not part of the specific discretization Dj. This is significant because it facilitates the transfer
of solutions between different grid geometries and discretizations.

In the neural operator framework proposed in [117], the architecture is designed as an
iterative process v0 7→ v1 7→ . . . 7→ vT where vj for j = 0, 1, . . . , T − 1 is a sequence of
functions, each taking values in Rdv . As illustrated in Figure 8.1 a, the process starts by
lifting the input a ∈ A to a higher dimensional representation v0(x) = P (a(x)) using a
local transformation P , typically parameterized by a shallow FC neural network. After that,
several iterations of updates vt 7→ vt+1 (defined below) are performed. The output u(x) =
Q (vT (x)) is obtained by projecting vT by the local transformation Q : Rdv → Rdu . In each
iteration, the update vt 7→ vt+1 is defined as the composition of a non-local integral operator
K and a local, nonlinear activation function σ. The difference between the architectures
in Figure 8.1 b and c is the existence of an MLP after inverse Fourier transform (F−1).
MLP can be implemented using a CNN with a 1 × 1 kernel size. When used this way, the
CNN conducts pointwise multiplication on the channel dimension, functioning similarly to
an MLP.

The update to the representation vt 7→ vt+1 is defined by

vt+1(x) := σ (Wvt(x) + (K(a;ϕ)vt) (x)) , ∀x ∈ D, (8.2)

where K : A × ΘK → L
(
U
(
D;Rdv

)
,U

(
D;Rdv

))
maps to bounded linear operators on

U
(
D;Rdv

)
and is parameterized by ϕ ∈ ΘK,W : Rdv → Rdv is a linear transformation, and

σ : R → R is a non-linear activation function whose action is defined component-wise.
K(a;ϕ) is chosen to be a kernel integral transformation parameterized by a neural net-

work.
The kernel integral operator (K) mapping in 8.2 is defined by

(K(a;ϕ)vt) (x) :=

∫
D

κ(x, y, a(x), a(y);ϕ)vt(y)dy, ∀x ∈ D, (8.3)

where κϕ : R2(d+da) → Rdv×dv is a neural network parameterized by ϕ ∈ ΘK.
Indeed, κϕ serves as a kernel function that is learned from data. The definitions of 8.2

and 8.3 represent a generalization of NNs to infinite-dimensional spaces, which was initially
introduced in [117]. Despite the linearity of the integral operator, the neural operator can
learn highly non-linear operators by composing linear integral operators with non-linear
activation functions, similar to standard NNs.

By removing the dependency on the function a and imposing κϕ(x, y) = κϕ(x− y), it be-
comes a convolution operator, which is a natural choice based on fundamental solutions. This
characteristic is exploited by parameterizing κϕ directly in Fourier space and utilizing the
Fast Fourier Transform (FFT) to efficiently compute 8.3. This results in a fast architecture
that produces superior results for PDE problems.
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Figure 8.1: (a) Architecture of the neural operator: the input a(x) is first lifted to a higher-
dimension channel space v0(x), where v0(x) = P (a(x)). It does this by locally applying
the transform P . Then, four successive Fourier layers are applied to v0. Subsequently,
another transform is applied locally Q. This final transform projects v4(x) to the output
by u(x) = Q(v4(x))., (b) Architecture of a Fourier layer: v(x) passes through two routes
in the Fourier layers. In the top path, a Fourier transform F , a linear transform R on the
lower Fourier modes, and an F−1 are applied. v(x) undergoes only a local linear transform
W in the bottom path. Outputs of each path are added together and then subjected to an
activation function., and (c) Architecture of a Fourier layer with an MLP after the inverse
FFT.

A proposed approach involves replacing the kernel integral operator in 8.3 with a convo-
lution operator defined in Fourier space. The Fourier transform of a function f : D → Rdv

is represented as F , and its inverse as F−1. Then, the below is defined:

(Ff)j(k) =
∫
D

fj(x)e
−2iπ⟨x,k⟩dx,

(
F−1f

)
j
(x) =

∫
D

fj(k)e
2iπ⟨x,k⟩dk,

for j = 1, . . . , dv where i =
√
−1 is the imaginary unit. By putting κϕ(x, y, a(x), a(y)) =

κϕ(x− y) in 8.3 and utilizing the convolution theorem, it can be inferred that:

(K(a;ϕ)vt) (x) = F−1 (F (κϕ) · F (vt)) (x), ∀x ∈ D,

it would be preferable to directly parameterize κϕ in Fourier space.
The Fourier integral operator (K) is defined as:

(K(ϕ)vt) (x) = F−1 (Rϕ · (Fvt)) (x) ∀x ∈ D, (8.4)
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where Rϕ is the Fourier transform of a periodic function κ : D̄ → Rdv×dv parameterized by
ϕ ∈ ΘK. A visual representation can be seen in Figure 8.1 (b).

For a given frequency mode k ∈ D, there are (Fvt) (k) ∈ Cdv and Rϕ(k) ∈ Cdv×dv . Given
the periodicity of κ, it can be represented using a Fourier series expansion, working with the
discrete modes k ∈ Zd. A finite-dimensional parameterization is picked by truncating the
Fourier series at a maximal number of modes kmax = |Zkmax| =|

{
k ∈ Zd : |kj| ≤ kmax,j , for

j = 1, . . . , d} |. This allows directly parameterizing Rϕ as a complex-valued (kmax × dv × dv)-
tensor comprising a set of truncated Fourier modes. Therefore, ϕ is removed from notations.
Since κ is real-valued, conjugate symmetry can be imposed. It is worth noting that the
set Zkmax is not the canonical choice for the low frequency modes of vt. Typically, the low
frequency modes are defined by placing an upper-bound on the ℓ1-norm of k ∈ Zd. Here,
Zkmax is selected as mentioned above because it facilitates an efficient implementation.

Assuming that the domain D is discretized with n ∈ N points, there are vt ∈ Rn×dv and
F (vt) ∈ Cn×dv . Since vt is convolved with a function that only has kmax Fourier modes, it
is possible to simply truncate the higher modes and obtain F (vt) ∈ Ckmax×dv . Subsequently,
the multiplication by the weight tensor R ∈ Ckmax×dv×dv can be expressed as:

(R · (Fvt))k,l =
dv∑
j=1

Rk,l,j (Fvt)k,j , k = 1, . . . , kmax, j = 1, . . . , dv. (8.5)

If the discretization is uniform with resolution s1×· · ·× sd = n, FFT can replace F . For
f ∈ Rn×dv , k = (k1, . . . , kd) ∈ Zs1 × · · · × Zsd , and x = (x1, . . . , xd) ∈ D, the FFT F̂ and its
inverse F̂−1 can be defined as:

(F̂f)l(k) =
s1−1∑
x1=0

· · ·
sd−1∑
xd=0

fl (x1, . . . , xd) e
−2iπ

∑d
j=1

xjkj
sj ,

(
F̂−1f

)
l
(x) =

s1−1∑
k1=0

· · ·
sd−1∑
kd=0

fl (k1, . . . , kd) e
2iπ

∑d
j=1

xjkj
sj ,

for l = 1, . . . , dv. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) ∈ Zs1 × · · · × Zsd | kj ≤ kmax,j or sj − kj ≤ kmax,j, for j = 1, . . . , d} .

During implementation, R is considered as a (s1 × · · · × sd × dv × dv)-tensor. The above
definition of Zkmax corresponds to the corners of R, enabling convenient parallel implementa-
tion of 8.5 through matrix-vector multiplication. Empirically, it was determined that setting
kmax,j = 12 (resulting in kmax = 12d parameters per channel) proved to be adequate for all
the examined tasks.

Generally, R can be defined based on (Fa) in a way that parallels 8.3. Specifically,
Rϕ : Zd × Rdv → Rdv×dv can be defined as a parametric function that maps (k, (Fa)(k))
to the corresponding values of the relevant Fourier modes. When exploring both linear and
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neural network parameterizations of Rϕ, it was observed that the linear parameterization
yielded similar performance to the direct parameterization described earlier, whereas the NNs
performed less effectively. This outcome can likely be attributed to the discrete structure of
the space Zd.

The Fourier layers are discretization-invariant because they can effectively learn from and
evaluate functions that are discretized in any manner. By learning parameters directly in
Fourier space, the process of resolving functions in physical space is a projection onto the
basis e2πi⟨x,k⟩ which remains well-defined throughout Rd. This characteristic enables zero-
shot super-resolution. Additionally, the architecture had a consistent error regardless of the
resolution of the inputs and outputs.

The weight tensor R contains kmax < n modes, thus the inner multiplication has complex-
ity O (kmax). Therefore, the majority of the computational cost comes from computing the
Fourier transform F (vt) and its inverse. While general Fourier transforms have complexity
O (n2), the truncation of the series reduces the complexity to O (nkmax). The FFT provides
an efficient alternative with a complexity O(n log n) using a uniform discretization.

8.3 CNN-based Model for Pressure Distribution
In preparing a CNN simulation involving a unit square, a 30×30 uniform mesh was selected.
On the other hand, the input/output values were defined as a 900 × 1 1D tensor (vector).
The input shape was then changed to 30 × 30 × 1 for processing through 2D convolutional
filters. Regarding to the output in CNN, there were two options: keeping the initial shape
or reshaping to a 2D tensor. While reshaping to 30× 30, the accuracy achieved by the CNN
model became substantially impaired. On the other side, many fewer errors were generated
by CNN models that retained the initial 900 × 1 shape. Therefore, the CNN model was
developed and its computational layers were processed with the 900 × 1 shape and only
reshaped to the 30× 30 output size for final visualization purposes.

A standard CNN architecture was developed with five convolutional layers and two FC
layers (Figure 8.2). The kernel numbers in the convolutional layers (referred to as CONV1
to CONV5) were 5, 45, 85, 125, and 165, respectively. Padding was set to “same” only in
CONV5 to prevent the size from changing. A 3×3 kernel size and 1×1 stride were applied to
all convolutional layers, providing those layers with sizes 28×28, 26×26, 24×24, 22×22, and
22× 22, respectively. A BN layer (referred to as BN1 to BN5) followed CONV1 to CONV5,
without changing size. Normalization of the input layer makes the CNN converge more
quickly to outputs. The layers FC1 and FC2 contain 1500 neurons. The ReLU activation
function was applied to CONV1 to CONV5, whereas the sigmoid activation function was
applied to FC1 and FC2, with a linear transformation applied to generate the output layer.
The CNN was trained to apply a batch size of 16 samples and run with 500 epochs.
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8.4 Summary
Classical NNs attempt to learn mappings between finite-dimensional Euclidean spaces, which
confines them to a particular discretization. On the other hand, FNO is a mesh-independent
algorithm that tries to learn function-to-function mappings. This makes it possible for FNO
to be trained on one mesh and subsequently assessed on another. The purpose of this
chapter was to apply FNO to predict pressure distribution over a small, specified shape-data
problem using 1700 FEM generated samples, from heterogeneous permeability fields as the
input. Specifically, 1400 sample grids were generated to constitute the training dataset, and
a further 300 sample grids to constitute the testing dataset. A CNN model, as a classical NN,
was also developed based on the same dataset. The next chapter, the penultimate chapter
of this thesis, presents the comparative evaluation of the models proposed using different
techniques.
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Figure 8.2: Structure of the CNN model developed for pressure prediction.
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Chapter 9

Comparative Evaluation

9.1 Introduction
In Chapter 4, a DNN of low complexity called SkiplessCNN was developed to predict Basis 2
to 5 in the mixed GMsFEM. This network consisted of five convolutional layers and two FC
layers. The number of kernels in CONV1 to CONV5 was 5, 10, 15, 20, and 25, respectively.
Each FC layer contained 2000 neurons.

The purpose of Chapter 5 was to investigate the effect of skip connections on the per-
formance of DNNs of low complexity. In this sense, three different skip connection schemes
named FirstSkip, MidSkip, and DualSkip were added to SkiplessCNN, subsequently devel-
oping three skip connection-based models named FirstSkipCNN, MidSkipCNN, and Dual-
SkipCNN.

The potential prediction improvements achieved by using DEL to estimate the multiscale
basis functions were investigated in Chapter 6. Specifically, four models - SkiplessCNN,
FirstSkipCNN, MidSkipCNN, and DualSkipCNN - were combined into an ensemble model
using linear regression and ridge regression, separately.

The focus of Chapter 7 was on the reliability of the DualSkipCNN model. In this sense,
MC dropout, a computationally efficient approach, was applied with a focus on epistemic
uncertainty.

Two FNO-based models were developed to predict pressure distribution over a small,
specified shape-data problem in Chapter 8. Furthermore, a new CNN model was developed.

To evaluate the accuracy of the developed models, two statistical error metrics were
employed:

R2 = 1−
∑N

i=1(ŷi − yi)
2∑N

i=1(ŷi − ȳ)2
, (9.1)

MSE =
1

N

N∑
i=1

(ŷi − yi)
2, (9.2)
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where yi, ȳ, and ŷi are the actual basis function of the ith data point, the average of ac-
tual basis function for all samples, and the predicted basis function for the ith data point,
respectively. Also, N is the number of data points.

As mentioned earlier, each basis function is in the form of a 900× 1 1D tensor, and R2 of
all outputs are averaged, weighted by the variances of each individual output. The R2 value
lies between −∞ and 1. The closer this value is to 1, the more precise predictions a model
yields. Conversely, a negative or small positive R2 value indicates that the wrong model is
chosen. MSE measures the average of squares of errors (i.e., the difference between predicted
and real values). It is always non-negative and values close to zero indicate a more accurate
performance.

Depending on the input/output dimensions, type (classification/regression), and algo-
rithm/methodology employed for addressing a problem, the magnitude of uncertainty can
be analyzed statistically and graphically. SD measures the dispersion of a dataset relative to
its average. It is the square root of the variance. The closer the value of SD is to zero, the
values of the data are closer to the average. A high SD indicates that the values are spread
out over a broad range. Basically, the variance and SD are defined for a single-point dataset
(there is only one output). On the other hand, the output (basis functions) in this study is
in the form of a 900× 1 vector. While dealing with a vector, it is necessary to calculate the
variance of each element of the vector separately. Then, the obtained variances are averaged
to reach the total variance. Finally, the SD is obtained as the square root of the variance for
each case. Standard CNNs produce a single output per input, and therefore, the SD is not
defined for such models (it is always zero).

In terms of graphical investigation, the pattern available in a coarse block was tracked
for the multiscale basis functions. Regarding uncertainty, the dispersion of outputs obtained
by the MC dropout was illustrated over a coarse grid. The pressure changes were visualized
over the entire porous medium for the FNO models.

Following the introduction, Section 9.2 presents a performance comparison of two opti-
mizers, Adam and AMSGrad, for Basis 2 to 5 prediction based on the initial dataset. The
impact of dataset size (extended dataset versus initial dataset) on AMSGrad-based models'
performance is discussed in Section 9.3. Section 9.4 is dedicated to investigating the impact
of three skip connection schemes (i.e., FirstSkip, MidSkip, and DualSkip) on the Skipless-
CNN performance. Moving on to Section 9.5, the performance of DEL-based models and
CNN models based on the testing subset is analyzed. The reliability of DualSkipCNN using
MC dropout is investigated in Section 9.6. Section 9.7 presents the performance results of
the models developed for pressure distribution. The chapter concludes with a summary in
Section 9.8.
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9.2 Performance Comparison of the Adam and AMS-
Grad Optimizers for Basis Functions Prediction based
on the Initial Dataset

The performance of the constructed SkiplessCNN models by Adam in terms of R2 and MSE
for the training, validation, and testing subsets, and the total dataset is separately shown
in Figures 9.1 and 9.2. According to Figure 9.1, the models developed for Basis 2, 3, and
4 have an R2 of nearly 0.9. To be more specific, R2 is 0.8945, 0.9017, and 0.9054 for the
models developed for Basis 2, 3, and 4. Therefore, they are able to predict training samples
very well. The model designed for Basis 5 has an acceptable performance but is not as good
as the others. Furthermore, it reveals the superior performance of the CNN model for Basis
4, in validation and testing subsets in terms of the R2 error parameter. The performance of
the developed models based on the total dataset is the same as the training subset. This
is because a large proportion of the data generated in the MatLab software was designed
to train the model. Figure 9.2 also demonstrates that the MSE performance of the models
created for Basis 4 and 5 are better than those for Basis 2 and 3. In this regard, the CNN
model of Basis 5 is the best with an MSE of 0.0108, 0.0158, and 0.0154 for the training,
validation, and testing data subsets.

Figure 9.1: Performance of the models developed by the Adam algorithm on the initial
dataset based on R2.
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Figure 9.2: Performance of the models developed by the Adam algorithm on the initial
dataset based on MSE.

Table 9.1 is given to investigate if replacing the Adam optimizer with AMSGrad affects
the performance of the SkiplessCNN architecture. Comparing the R2 parameter, it is clear
that the performance of all models improves, especially for the training subset. For instance,
R2 increases from 0.8945 to 0.9079 for the Basis 2 model. The MSE error parameter decreases
as expected when using the AMSGrad optimizer. Across the total data, MSE decreases from
0.0261, 0.0214, 0.0142, and 0.0109 to 0.0206, 0.0167, 0.0103, and 0.0078 for the Basis 2, 3,
4, and 5 models, respectively.

The permeability field consists of a 30× 30 uniform mesh on a fine grid system. This is
equivalent to a 10 × 10 uniform mesh on a coarse grid system, so each coarse grid contains
nine fine grids. Multiscale basis functions, on the other hand, are defined in a single coarse
grid element, as mentioned earlier. Consequently, the pattern available in a coarse block is
tracked for the graphical investigation, with an unfractured case (Figure 9.3) and a fractured
case (Figure 9.4), as representative samples. In the top section of the figures, fine grids in
blue refer to the matrix and yellow to the fracture. In general, the patterns reconstructed by
AMSGrad follow the observed trend in each coarse block slightly better than those of Adam.
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Table 9.1: Performance comparison of Adam and AMSGrad in terms of R2 and MSE based
on the initial dataset.

Error statistic CNN model Training Validation Testing Total

R2

Basis 2 (Adam) 0.8945 0.8076 0.8083 0.8929

Basis 2 (AMSGrad) 0.9079 0.8141 0.8156 0.9062

Basis 3 (Adam) 0.9017 0.7911 0.6445 0.8981

Basis 3 (AMSGrad) 0.9142 0.7974 0.6503 0.9105

Basis 4 (Adam) 0.9054 0.8751 0.8762 0.9049

Basis 4 (AMSGrad) 0.9172 0.8777 0.8815 0.9165

Basis 5 (Adam) 0.8341 0.7569 0.7625 0.8328

Basis 5 (AMSGrad) 0.8449 0.7592 0.7671 0.8434

MSE

Basis 2 (Adam) 0.0257 0.0468 0.0466 0.0261

Basis 2 (AMSGrad) 0.0202 0.0441 0.0445 0.0206

Basis 3 (Adam) 0.0207 0.044 0.0743 0.0214

Basis 3 (AMSGrad) 0.0159 0.0401 0.0697 0.0167

Basis 4 (Adam) 0.0141 0.0186 0.0184 0.0142

Basis 4 (AMSGrad) 0.0102 0.0158 0.0169 0.0103

Basis 5 (Adam) 0.0108 0.0158 0.0154 0.0109

Basis 5 (AMSGrad) 0.0077 0.0137 0.0141 0.0078

9.3 Impact of Dataset Size on the AMSGrad-based Mod-
els' Performance

The previous section revealed that the AMSGrad optimization algorithm performed slightly
better than Adam. Its R2 ranged from 0.8434 to 0.9165 and its MSE ranged from 0.0078 to
0.0206, whereas Adam had an R2 of 0.8328–0.9049 and an MSE of 0.0109–0.0261. The results
were obtained using an initial dataset of 238,347 examples for training, 1742 for validation,
and 2612 for testing. To examine the impact of dataset size on the CNN models and increase
the number of samples for validation and testing subsets, an extended dataset was generated
consisting of 304,511 examples for training, 34,421 for validation, and 28,879 for testing, as
explained earlier in Chapter 3.

According to Table 9.2, extending the dataset leads to a decrease in model performance
for the training subset for Basis 2, 3, and 4. For example, the R2 value for the Basis 3 model
trained on the extended dataset (0.8952) is lower than that trained on the initial dataset
(0.9142). However, except for Basis 2, the models trained on the extended dataset tend
to perform better than those trained on the initial dataset for the validation subset. The
most significant effect of extending the dataset is related to the testing subset of the Basis 3
model, where R2 increases from 0.6503 to 0.8247, and MSE decreases from 0.0697 to 0.0369.
Overall, these findings indicate the importance of having a sufficient amount of data for the
validation and testing subsets, which can help decrease overfitting.
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Figure 9.3: Comparing actual and reconstructed patterns in an unfractured case.
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Figure 9.4: Comparing actual and reconstructed patterns in a fractured case.
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Table 9.2: Comparison of the AMSGrad-based models trained on the initial and extended
datasets.

Error statistic CNN model Training Validation Testing

R2

Basis 2 (initial dataset) 0.9079 0.8141 0.8156

Basis 2 (extended dataset) 0.8657 0.7770 0.7750

Basis 3 (initial dataset) 0.9142 0.7974 0.6503

Basis 3 (extended dataset) 0.8952 0.8237 0.8247

Basis 4 (initial dataset) 0.9172 0.8777 0.8815

Basis 4 (extended dataset) 0.9156 0.8777 0.8769

Basis 5 (initial dataset) 0.8449 0.7592 0.7671

Basis 5 (extended dataset) 0.8466 0.7816 0.7800

MSE

Basis 2 (initial dataset) 0.0202 0.0441 0.0445

Basis 2 (extended dataset) 0.0327 0.0544 0.0538

Basis 3 (initial dataset) 0.0159 0.0401 0.0697

Basis 3 (extended dataset) 0.0220 0.0371 0.0369

Basis 4 (initial dataset) 0.0102 0.0158 0.0169

Basis 4 (extended dataset) 0.0126 0.0182 0.0184

Basis 5 (initial dataset) 0.0077 0.0137 0.0141

Basis 5 (extended dataset) 0.0100 0.0142 0.0142

9.4 Impact of Skip Connection Schemes on the perfor-
mance of SkiplessCNN

The analysis presented here is based on the models developed using the extended dataset
and AMSGrad optimization algorithm as the optimizer. Figure 9.5 presents three bar charts
giving the R2 results of the developed models for the training, validation, and testing subsets,
respectively. Figure 9.5 a demonstrates that all three skip connection schemes produce an
improved performance over SkiplessCNN for all multiscale basis functions with respect to
the training subset. For example, MidSkip increases it from 0.8657 to 0.9083 for the Basis 2
model. Both MidSkip and DualSkip perform marginally better than FirstSkip.

From Figures 9.5 b and c, it is shown that FirstSkip has a marginally positive effect on
the validation and testing subsets with respect to the Basis 2, 4, and 5 models. For instance,
regarding Basis 5, the R2 value increases from 0.7816 and 0.7800 to 0.7974 and 0.7954 for
validation and testing, respectively. However, it has an adverse effect on the Basis 3 model.
Specifically, R2 decreases from 0.8237 and 0.8347 to 0.8160 and 0.8164 for validation and
testing, respectively. Compared to FirstSkip, MidSkip has a more positive effect on the Basis
2, 4, and 5 models. Furthermore, it has a negative effect on the Basis 3 model. DualSkip
is beneficial in all cases related to validation and testing, especially for Basis 3 and 5. For
example, for Basis 5, R2 increases from 0.7816 and 0.7800 to 0.8038 and 0.8044 for validation
and testing, respectively.
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Figure 9.5: R2 performance comparison of the CNN models with and without skip connec-
tions, for (a) the training dataset, (b) the validation dataset, and (c) the testing dataset.

Figure 9.6 presents three bar charts giving the MSE results obtained. The intuition
here was that the MSE results would reflect the R2 results (Figure 9.5). From Figure 9.6
a, it can be seen that for the training subset, all three skip connection schemes serve to
decrease the MSE of SkiplessCNN. Additionally, MidSkip and DualSkip produce a better
performance than FirstSkip. From Figures 9.6 b and c, it is shown that for the Basis 3 model
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MSE fractionally increases for the validation and testing subsets when including FirstSkip
or MidSkip. In other words, these two skip connection schemes do not favorably influence
the Basis 3 models. For instance, FirstSkipCNN increases MSE of SkiplessCNN from 0.0371
to 0.0387 in the case of the validation dataset. DualSkip decreases MSE of SkiplessCNN for
all multiscale basis functions.

Figure 9.6: MSE performance comparison of the CNN models with and without skip con-
nections, for (a) the training dataset, (b) the validation dataset, and (c) the testing dataset.
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In addition to the graphical comparisons presented in Figures 9.5 and 9.6, the R2 and
MSE values are listed in full in Table 9.3. For each subset and multiscale basis function, the
best result is highlighted.

Table 9.3: Prediction error analysis of the CNN models with and without skip connections
developed by AMSGrad applied to the extended dataset.

Subset Model
R2 MSE

Basis 2 Basis 3 Basis 4 Basis 5 Basis 2 Basis 3 Basis 4 Basis 5

Training

SkiplessCNN 0.8657 0.8952 0.9156 0.8466 0.0327 0.0220 0.0126 0.0100

FirstSkipCNN 0.8908 0.9219 0.9247 0.8844 0.0266 0.0164 0.0112 0.0075

MidSkipCNN 0.9083 0.9302 0.9372 0.9026 0.0224 0.0147 0.0093 0.0063

DualSkipCNN 0.9002 0.9327 0.9283 0.8847 0.0243 0.0141 0.0107 0.0075

Validation

SkiplessCNN 0.7770 0.8237 0.8777 0.7816 0.0544 0.0371 0.0182 0.0142

FirstSkipCNN 0.7814 0.8160 0.8798 0.7974 0.0529 0.0387 0.0181 0.0132

MidSkipCNN 0.7867 0.8139 0.8802 0.8160 0.0519 0.0391 0.0179 0.0120

DualSkipCNN 0.7900 0.8434 0.8811 0.8038 0.0512 0.0329 0.0176 0.0128

Testing

SkiplessCNN 0.775 0.8247 0.8769 0.78 0.0538 0.0369 0.0184 0.0142

FirstSkipCNN 0.7801 0.8164 0.8778 0.7954 0.0534 0.0387 0.0182 0.0132

MidSkipCNN 0.7829 0.8127 0.8791 0.8141 0.0519 0.0395 0.018 0.012

DualSkipCNN 0.7857 0.8422 0.8809 0.8044 0.0513 0.0332 0.0177 0.0126

The results obtained for FirstSkipCNN imply that transferring feature maps from earlier
convolutional layers to final ones has a very positive effect on the training dataset. This
architecture has a marginally positive impact on the validation and testing subsets for the
Basis 2, 4, and 5 models, but an adverse impact on the Basis 3 model. In other words, the
corresponding skip connection tends to make the predictive model focus more on capturing
the underlying trend of the training (seen) subset.

Compared to FirstSkip, flowing information from the middle convolutional layer to the
last layer via the MidSkip skip connection has a more positive impact on all basis functions
models of the training subset and the Basis 2, 4, and 5 models of the validation and testing
subsets. This suggests that the feature maps of the middle convolution process contain
important information.
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Adding two simultaneous skip connections (DualSkip) favorably affects all basis functions
with respect to the training, validation, and testing subsets. By comparing the architectures
and results produced using MidSkip and DualSkip, the positive role of transferring raw
feature maps is understandable. Therefore, enriching the last convolutional blocks with
information hidden in the neighboring layers is more efficient than enriching them using
earlier convolutional blocks near the input layer.

9.5 Performance Comparison of the DEL-based Models
and CNN Models based on the Testing Subset

It is apparent from Figures 9.7 and 9.8 that the ensemble models built by either linear
regression or ridge regression perform substantially better than the individual models on the
testing subset. In the case of applying linear regression, R2 and MSE lie in the range of
0.8456 to 0.9191, and 0.0092 to 0.0369, respectively. As expected, the results reveal that
ridge regression works marginally better than linear regression with an R2 ranging from
0.8539 to 0.9220, and ranging from MSE of 0.0090 to 0.0349, due to having more evenly
distributed weights.

Figure 9.7: Prediction error analysis of the DEL-based and CNN models applied to the
testing data subset, expressed in terms of R2.
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Figure 9.8: Prediction error analysis of the DEL-based and CNN models applied to the
testing data subset, expressed in terms of MSE.

9.6 Uncertainty Quantification of DualSkipCNN
In Section 9.4, it was found that among the three skip connection-based models defined,
DualSkipCNN was the most effective as it increased the R2 value by 0.0034–0.0381 and
decreased the MSE value by 0.0006–0.0084 compared to the standard structure i.e., Skip-
lessCNN. To be more specific, except for Basis 5, R2 of others is above 0.9 with regards to
the training subset. The values obtained for MSE lie within the range of 0.0075 to 0.0243.
The constructed models perform suitably for the validation subset, with an R2 of 0.7900 to
0.8811 and an MSE of 0.0128 to 0.0512. Because the validation and testing subsets were
selected from a similar distribution of data, it is anticipated to have almost the same results
over the testing samples: an R2 of 0.7857 to 0.8809, and MSE 0.0126 of to 0.0513.

According to Table 9.4, the dropout after two FC layers enhances performance over all
subsets for all multiscale basis functions. For the training subset, it has the maximum effect
on the model for Basis 3 and the minimum effect for Basis 4. For Basis 3, R2 increases from
0.9327 to 0.9584, and MSE decreases from 0.0141 to 0.0113. There is an R2 increase from
0.9283 to 0.9326 and an MSE decrease from 0.0107 to 0.0101 for Basis 4.

Adding dropout to the initial architecture has generally a marginally positive effect on
the validation and testing samples. The range of R2 and MSE is 0.7919-0.8858 and 0.0120-
0.0507 for validation. R2 and MSE lie in the range of 0.7881-0.8839 and 0.0121-0.0508 for
testing.

As a general result, it is evident that the use of dropout has a positive impact on the
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performance of the developed models across the training subset, regardless of the basis func-
tion used. Furthermore, it also demonstrates a similar positive impact over the validation
and testing subsets for the Basis 3 and Basis 5 models. However, for Basis 2 and Basis
4, there is only a marginal difference between the performance of the DualSkipCNNinitial

and DualSkipCNNdropout models. The probable reasons for this could be attributed to
the high-dimensional regression problem investigated in this study and the complexity and
non-linear nature of DL models. Nonetheless, even this slight improvement in the mod-
els' performance could help reduce overfitting and enhance generalization in the constructed
DualSkipCNNdropout models. Additionally, it can significantly affect the pressure distribution
obtained through the basis functions.

Table 9.4: Performance comparison of DualSkipCNNinitial and DualSkipCNNdropout models
in terms of R2 and MSE.

Subset Model
R2 MSE

Basis 2 Basis 3 Basis 4 Basis 5 Basis 2 Basis 3 Basis 4 Basis 5

Training
DualSkipCNNinitial 0.9002 0.9327 0.9283 0.8847 0.0243 0.0141 0.0107 0.0075

DualSkipCNNdropout 0.9113 0.9584 0.9326 0.9089 0.0211 0.0113 0.0101 0.0058

Validation
DualSkipCNNinitial 0.7900 0.8434 0.8811 0.8038 0.0512 0.0329 0.0176 0.0128

DualSkipCNNdropout 0.7919 0.8620 0.8858 0.8155 0.0507 0.0290 0.0170 0.0120

Testing
DualSkipCNNinitial 0.7857 0.8422 0.8809 0.8044 0.0513 0.0332 0.0177 0.0126

DualSkipCNNdropout 0.7881 0.8622 0.8839 0.8132 0.0508 0.0290 0.0173 0.0121

According to Table 9.5, the SD values lie within 0.0181-0.158, 0.0179-0.152, 0.0169-0.104,
and 0.0121-0.086 for the CNN models with dropout developed for Basis 2, 3, 4, and 5 based
on the training subset. The SD obtained for the Basis 4 and 5 models is lower than that
for the Basis 2 and 3 models. For all basis functions, most samples have an SD lower than
0.05. For instance, 221,006 out of 304,511 samples for Basis 3 are in the range of 0-0.05. In
general, SD exceeds 0.15 only for 547 samples.

With regards to the validation subset, the developed models for Basis 2, 3, 4, and 5
have an SD range of 0.0268-0.174, 0.0237-0.124, 0.019-0.171, and 0.012-0.097, respectively.
Generally, only 27 out of 34,421 samples have an SD higher than 0.15. The model built for
Basis 5 has the best performance in terms of uncertainty, with 24,276 samples having an SD
of lower than 0.05 and 10,145 samples with an SD of 0.05-0.1. Following this, the models
developed for Basis 4 and 3 perform well. The model designed for Basis 2 has the worst
performance, with only 2577 samples having an SD between 0 and 0.05.

The SD values for the testing subset lie within 0.025-0.169, 0.024-0.142, 0.020-0.113, and
0.012-0.098 for the CNN models with dropout developed for Basis 2, 3, 4, and 5. The trend
is consistent with that of the validation subset, whereby the model for Basis 5 performs the
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best, and the one for Basis 2 performs the worst. Additionally, except for 24 cases for Basis
2, there are no samples with an SD higher than 0.15.

Table 9.5: Reliability of the developed DualSkipCNNdropout models for Basis 2, 3, 4, and 5
using MC dropout in terms of SD.

Subset SD Basis 2 Basis 3 Basis 4 Basis 5

Training

[0-0.05) 197,572(0.649) 221,006(0.726) 238,107(0.782) 261,537(0.859)

[0.05-0.1) 99,364(0.326) 81,227(0.267) 63,189(0.208) 42,974(0.141)

[0.1-0.15) 7143(0.024) 2163(0.007) 3215(0.01) -

≥ 0.15 432(0.001) 115 - -

Validation

[0-0.05) 2577(0.075) 4679(0.136) 7475(0.217) 24,276(0.705)

[0.05-0.1) 19,296(0.561) 29,395(0.854) 26,937(0.783) 10,145(0.295)

[0.1-0.15) 12,522(0.364) 347(0.01) 8 -

≥ 0.15 26 - 1 -

Testing

[0-0.05) 2245(0.079) 3984(0.138) 6232(0.216) 20,725(0.718)

[0.05-0.1) 16,321(0.565) 24,599(0.852) 22,641(0.784) 8154(0.282)

[0.1-0.15) 10,289(0.356) 296(0.01) 6 -

≥ 0.15 24 - - -

As mentioned earlier, the output is in the form of a 900 × 1 vector, which is too big to
show in a graph. Additionally, basis functions in the mixed GMsFEM are defined in one
coarse grid element, which includes 9 fine grids. Figure 9.9 gives the 30 values obtained for
each of the nine points using MC dropout for a coarse grid with the matrix permeability of
1 mD (as a representative sample). The average of 30 outputs (for each point) is considered
the model's output. The figure demonstrates that the values are close to each other (some
overlap) and have a very low SD.
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Figure 9.9: Dispersion of values for a representative coarse grid for: (a) Basis 2, (b) Basis
3, (c) Basis 4, and (d) Basis 5.
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9.7 Performance Evaluation of the FNO Models
There are two main hyperparameters in FNO: the number of channels and modes. The
former defines the width of the FNO network, referring to the number of features learned in
each layer. The latter defines the number of lower Fourier modes retained when truncating
the Fourier series. The size of the grid space controls the maximum allowable number of
modes. In this research, five values were evaluated for the width: 20, 60, 100, 140, and 180,
and four cases were evaluated for the mode: 5, 10, 15, and 20.

Figure 9.10 a reveals that the FNO models generated very similar errors, based on MSE
when calculated based on initial pressure values (actual non-normalized values) for the train-
ing data when the number of modes is 10, 15, or 20. However, the errors increased slightly
for models configured with modes = 5. The R2 values for the training data varied from
0.9945 to 0.9971, according to Figure 9.10 b. As a general result, all models were able to
predict pressure with acceptable error levels for the training subset.

Figures 9.10 c,d display the FNO results for the testing subset. The model with modes
of 5 generated the poorest prediction performance, i.e., highest MSE and lowest R2. As
width increased (with modes held at 5), MSE decreased from 109.9231 to 86.3347 and R2

increased from 0.7661 to 0.8163. When the number of modes was increased to 10, the FNO
performance improved. Additionally, an increase in width had a positive effect on accuracy
when modes were held at 10. The model with modes = 15 performed better than models
with modes of 5 and 10, as it generated MSE and R2 displaying ranges of 42.1611–65.5664
and 0.8605–0.9103, respectively. In general, the prediction performance of the FNO model
with modes of 20 overlapped with that of modes of 15. Considering all twenty cases, the
model with modes = 15 and width = 100 generated the best performance with an MSE of
1.4087 and R2 of 0.997 for the training subset, and an MSE of 42.1611 and R2 of 0.9103 for
the testing subset. In addition to the graphical comparisons (Figure 9.10), the MSE and R2

values achieved by all FNO cases evaluated are listed in Table 9.6.
To assess whether downsampling has a positive or negative impact on the FNO model

performance with respect to small-shape data (in the dataset modeled: 30 × 30), a down-
sampling rate was set to 2. By applying that rate, the data shape was reduced to 15 × 15,
which led to poor prediction results. For example, with modes = 10 and width = 100, the
FNO model achieved pressure predictions with an MSE of 27.3128 and R2 of 0.9411 for the
training subset, and with an MSE of 410.7709 and R2 of 0.1259 for the testing subset. As to
be expected, further downsampling of the initial case caused prediction accuracy to deterio-
rate further. A likely explanation for this outcome is that the size of the grid space controls
the maximum allowable number of modes. This means that by downsampling, the allowable
number of FNO modes also decreases. Meantime, because CNN acts on discretized vectors,
downsampling with CNN is not reasonable.

The prediction performance is improved by adding only MLP to the original Fourier
layers while maintaining the previous hyperparameters such as the number of channels and
modes, number of Fourier layers, batch size, learning rate, number of epochs, and gamma.
MSE For the training subset decreases from 1.4087 to 0.7163, and the R2 value increases
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Figure 9.10: Prediction error graphical analysis of the developed FNO models applied to the
training/testing data subsets in terms of MSE and R2.
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Table 9.6: Performance of the developed FNO models with different modes and widths based
on MSE and R2.

mode width MSE (training) R2 (training) MSE (testing) R2 (testing)

5 20 2.5543 0.9945 109.9231 0.7661

5 60 2.0832 0.9955 92.2014 0.8038

5 100 2.0605 0.9956 89.8219 0.8089

5 140 1.943 0.9958 93.8539 0.8003

5 180 1.878 0.996 86.3347 0.8163

10 20 1.8483 0.996 78.7648 0.8324

10 60 1.4814 0.9968 65.4587 0.8607

10 100 1.4196 0.9969 60.6803 0.8709

10 140 1.5745 0.9966 60.8775 0.8705

10 180 1.3643 0.9971 59.8904 0.8726

15 20 1.7253 0.9963 65.5664 0.8605

15 60 1.4007 0.997 51.0625 0.8914

15 100 1.4087 0.997 42.1611 0.9103

15 140 1.505 0.9968 53.6779 0.8858

15 180 1.4966 0.9968 47.783 0.8983

20 20 1.5206 0.9967 60.3367 0.8716

20 60 1.6387 0.9965 43.8621 0.9067

20 100 1.6409 0.9965 46.167 0.9018

20 140 1.5687 0.9966 44.5223 0.9053

20 180 1.7145 0.9963 46.8985 0.9002

from 0.997 to 0.9985. With regards to the testing subset, MSE decreases from 42.1611 to
11.9111, and R2 increases from 0.9103 to 0.9747. Therefore, the new FNO architecture has a
significant effect on the testing subset, addressing the issue of overfitting observed with the
initial FNO architecture.

The prediction performance of the CNN model is similar to that of the FNO models in
terms of R2 with regard to the training subset (Table 9.7). MSE generated by the CNN
model (0.3074) is slightly less than that generated by the FNO models (0.7163 and 1.4087).
Nonetheless, the FNO models clearly provided superior results in terms of R2 and MSE when
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the trained models were applied to the testing data subset. The results (Table 9.7) suggest
that whereas the trained FNO model is well-fitted to the dataset, the trained CNN model is
somewhat over-fitted to the same dataset.

Table 9.7: Performance comparison of the best-performing FNO models and the CNN model
in terms of MSE and R2.

model MSE (training) R2 (training) MSE (testing) R2 (testing)

FNOstandard (mode = 15 and width = 100) 1.4087 0.997 42.1611 0.9103

FNOMLP (mode = 15 and width = 100) 0.7163 0.9985 11.9111 0.9747

CNN 0.3074 0.9993 86.1818 0.8166

In order to improve visualization of the pressure changes occurring over the defined
shapes, three examples are illustrated for selected training (Figure 9.11) and testing (Figure
9.12) subsets. The plots in the left-side columns display the permeability fields, for represen-
tative sample grids. The plots in the left-central columns display the pressure distribution
derived by FEM (considered to be true distribution). The plots in the right-central columns
display the predicted pressure distributions of the best-performing FNOMLP model devel-
oped. The plots in the right-side columns display the pressure difference between the FEM
and FNOMLP outputs [p(FNOMLP) − p(FEM)]. Generally, there was a very close match between
the true pressure distributions and those predicted by the FNOMLP model, especially for the
training dataset.

9.8 Summary
This chapter presented a statistical and graphical performance analysis of the developed
models. To assess the accuracy of the models in predicting the multiscale basis functions,
two statistical error metrics were employed: R2 and MSE. The pattern available in a coarse
block was tracked for graphical investigation. The models' uncertainty was quantified using
the measure of SD. R2 and MSE were utilized to evaluate the FNO-based models' ability
to predict pressure distribution. Moreover, a graphical investigation was carried out on the
entire porous medium. The next chapter provides an overview of the main findings of the
work presented in this thesis and offers some suggestions for future work.
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Figure 9.11: A comparison between the actual pressure distributions and those obtained by
FNOMLP for three representative training subset samples. The pressure difference is based
on a point-by-point absolute error. Outputs are displayed as rectangles rather than squares
due to a scaling issue.
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Figure 9.12: A comparison between the actual pressure distributions and those obtained by
FNOMLP for three representative testing subset samples. The pressure difference is based
on a point-by-point absolute error. Outputs are displayed as rectangles rather than squares
due to a scaling issue.
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Chapter 10

Conclusion

10.1 Introduction
This chapter presents the conclusion of the research presented in this thesis and is organized
as follows. In Section 10.2, a summary of the thesis is provided. The main findings and con-
tributions with respect to the main research question and the subsidiary research questions
are provided in Section 10.3. Finally, Section 10.4 offers some recommendations for potential
future work.

10.2 Summary of the Thesis
This thesis began with Chapter 1, discussing the importance of fractures in numerical mod-
eling of heterogeneous petroleum reservoirs. Numerous PDEs must be solved to produce
multiscale basis functions in the mixed GMsFEM. This leads to significant computational
overhead. Considering the widespread acceptance and effectiveness of DL models, the pri-
mary research question addressed in this thesis was how to most effectively replace PDE
solvers with DL models for predicting basis functions. Moreover, the suitability of FNO,
acting on infinite-dimensional spaces, was investigated to directly predict pressure distribu-
tion. To limit the scope of the research, the computational domain was defined as Ω = [0, 1]2.

As mentioned in Chapter 2, there are three common methods: (i) reduced order modeling,
(ii) upscaling, and (iii) multiscaling, to address computational challenges in modeling fine
grid systems. The chapter provided a detailed explanation of the mixed GMsFEM, a new
multiscaling method. Furthermore, the chapter surveyed published research on the use of
data-driven methods for reduced order modeling, upscaling, and multiscaling domains.

Chapter 3 provided details of three separate datasets: two for multiscale basis functions
(Basis 2, 3, 4, and 5) and another for pressure. In both cases, the only input required was
the permeability field. The initial data generated for multiscale basis functions comprised
249,375 samples, which increased to 376,250 samples for the extended dataset. However,
generating data for pressure was challenging, resulting in 1700 samples, which was consider-
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ably lower than the number of samples for the basis functions. The chapter also discussed
the necessary preparations involved in generating the data, such as removing duplicates,
scaling input/output, and changing the initial dimension of input/output.

In Chapter 4, a similar standard CNN configuration named SkiplessCNN, with five con-
volutional layers and two FC layers, was presented to predict each of the four basis functions
(Basis 2 to 5). The number of kernels in the convolutional layers 1 to 5 was 5, 10, 15, 20,
and 25, respectively. Each FC layer contained 2000 neurons. The input (permeability field)
was in the format of 100 × 9, and the output was in the format of 900 × 1. Statistical
analysis revealed that training the standard network with AMSGrad resulted in a slightly
better performance compared to Adam as an optimization algorithm based on the initial
dataset. In addition, it was found that having a sufficient amount of data for the validation
and testing subsets could help decrease overfitting, based on the results obtained from the
extended dataset.

Chapter 5 was dedicated to investigating the effectiveness of skip connections in DNNs
of low complexity, such as SkiplessCNN. To this end, three different skip connection schemes
were added to the base CNN structure: (i) FirstSkip, (ii) MidSkip, and (iii) DualSkip. First-
Skip added a single skip connection from the first convolutional layer to the last convolutional
block. MidSkip included a single skip connection from the middle convolutional layer to the
last layer. In DualSkip, two skip connections from the middle convolutional layer to the
last and the second-to-last layers were considered. The results showed that all three skip
connections were effective, with DualSkip being the most effective among them.

To avoid the continuous endeavor required to adjust the architecture of individual net-
works, or the nature of the propagation to improve the accuracy of DL models, DEL was
introduced and applied in Chapter 6. In this technique, four models - SkiplessCNN, First-
SkipCNN, MidSkipCNN, and DualSkipCNN - were used as the base learners and combined
separately using linear regression and ridge regression as part of the stacking technique. The
results demonstrated that the combined models meaningfully outperformed the individual
models for all basis functions based on the testing subset.

DL models are powerful prediction tools but often neglect the issue of uncertainty. On
the other hand, it was found that DualSkipCNN performed better than FirstSkipCNN and
MidSkipCNN. Therefore, MC dropout was applied in Chapter 7 to investigate the reliability
of DualSkipCNN. A dropout ratio of 0.05 was used for the FC layers, and the analysis was
performed separately for each of the multiscale basis functions (Basis 2 to 5). The obtained
SD range of 0.012–0.174 confirmed the robustness of MC dropout in terms of epistemic
uncertainty, in addition to the high degree of accuracy (R2 of 0.7881–0.9584 and MSE of
0.0113–0.0508).

Classical NNs are designed to learn mappings between finite-dimensional input and out-
put spaces. This makes them mesh-dependent and confined to a particular discretization.
To reduce these constraints, mesh-independent networks have been developed that learn
mappings between functions. In Chapter 8, two FNO models were developed to predict
pressure distribution on a 30 × 30 problem using 1700 generated samples. A CNN model
was also developed based on the same dataset. The results confirmed the superior prediction

93



performance of the FNO models to that of the CNN model.
Chapter 9 provided a detailed analysis of the statistical-graphical results obtained, ac-

companied by a discussion of them. The chapter addressed various topics related to the
multiscale basis functions, such as comparing the performance of Adam and AMSGrad based
on the initial dataset, investigating the impact of dataset size on AMSGrad-based models'
performance, exploring the influence of skip connections on the SkiplessCNN's performance,
comparing the performance of DEL-based and CNN models on the testing subset, and quan-
tifying the uncertainty of DualSkipCNN. Moreover, the chapter presented the performance
of two FNO models and a new type of CNN model designed to predict pressure distribution.

10.3 Main Findings
This section provides the main findings of the work presented in this thesis in the context of
the research questions. It commences by considering the subsidiary research questions and
then goes on to address the main research question:

1. Is DL able to accurately reconstruct four distinct multiscale basis func-
tions in the mixed GMsFEM in terms of statistical-graphical investigation,
given its impressive performance with respect to datasets involving nonlin-
ear relationships in recently published research in a range of scientific and
engineering fields?

As the problem being studied was of a supervised 2D type, four different CNN models
were developed for the multiscale basis functions (Basis 2 to 5) of the mixed GMsFEM.
A similar CNN configuration was achieved for each of Basis 2 to 5, consisting of five
convolutional and two FC layers. Graphically, all models precisely followed the ob-
served trend in each coarse block. The statistical results indicated that, based on the
total initial dataset, the AMSGrad optimizer with an R2 of 0.8434–0.9165 and MSE
of 0.0078–0.0206 performed slightly better than Adam with an R2 of 0.8328–0.9049
and MSE of 0.0109–0.0261. However, both optimization algorithms somewhat suffered
from overfitting, especially regarding Basis 3. Moreover, extending the dataset resulted
in a slight decrease in AMSGrad-based models' performance for the training subset.
However, it had a positive effect on the validation and testing subsets, which could
help decrease overfitting.

2. Will skip connections significantly affect the performance of Deep Neural
Networks (DNNs) of low complexity or whether their inclusion has little or
no effect?

The analysis was performed using three distinct skip connections named FirstSkip,
MidSkip, and DualSkip. The results obtained for the FirstSkipCNN architecture im-
plied that transferring feature maps from earlier convolutional layers to final ones had a
significantly positive effect on the training dataset. This architecture had a marginally
positive impact on the validation and testing subsets for Basis 2, 4, and 5 models,
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but adversely affected the Basis 3 model. Compared to FirstSkip, flowing information
from the middle convolutional layer to the last layer via the MidSkip skip connection
had a more positive impact on all basis functions models of the training subset and
the Basis 2, 4, and 5 models of the validation and testing subsets. However, it had a
negative effect on the Basis 3 model, similar to FirstSkip. Adding two simultaneous
skip connections (DualSkip) favorably affected all basis functions with respect to the
training, validation, and testing subsets. Therefore, enriching the last convolutional
blocks with information hidden in the neighboring layers was more efficient than using
earlier convolutional blocks close to the input layer to enrich them.

3. Does combining multiple deep learners into an ensemble improve the accu-
racy of DL algorithms?

Four models, SkiplessCNN, FirstSkipCNN, MidSkipCNN, and DualSkipCNN, were
used as base learners. These models were combined using linear regression and ridge
regression separately as part of the stacking technique. Based on the results, the
ensemble models built using either linear regression or ridge regression performed sub-
stantially better than the individual models on the testing subset. In the case of linear
regression, the R2 values ranged from 0.8456 to 0.9191, with corresponding MSE values
ranging from 0.0092 to 0.0369. As expected, the results revealed that ridge regression
worked marginally better than linear regression with an R2 ranging from 0.8539 to
0.9220, and a corresponding MSE ranging from 0.0090 to 0.0349, due to having more
evenly distributed weights.

4. How does incorporating Uncertainty Quantification (UQ) methods improve
the reliability of the CNN models in predicting new data points?

To investigate the reliability of the DualSkipCNN model in terms of epistemic uncer-
tainty, MC dropout was applied as a computationally efficient approach. A dropout
ratio of 0.05 was used for the FC layers, and the analysis was performed separately
for each of the multiscale basis functions (Basis 2 to 5). The SD range of 0.012–0.174
confirmed the robustness of MC dropout, in addition to the high degree of accuracy
(R2 of 0.7881–0.9584 and MSE of 0.0113–0.0508).

5. Can FNO models accurately perform on small-shape data problems to pre-
dict pressure distribution?

A 30 × 30 uniform mesh problem was considered with 1400 samples for the training
dataset and a further 300 samples for the testing dataset. Among all twenty cases, it
was found that the original FNO model with modes = 15 and width = 100 performed
the best with an MSE of 1.4087 and R2 of 0.997 for the training subset, and an MSE of
42.1611 and R2 of 0.9103 for the testing subset. Furthermore, downsampling was found
to have a negative impact on the FNO model performance. The addition of an MLP to
the original Fourier layers significantly improved the prediction performance. For the
training subset, MSE decreased from 1.4087 to 0.7163, and the R2 value increased from
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0.997 to 0.9985. With regards to the testing subset, the MSE decreased from 42.1611 to
11.9111, and R2 increased from 0.9103 to 0.9747. Therefore, the new FNO architecture
addressed the issue of overfitting observed with the initial FNO architecture. While
the prediction performance of the CNN model was similar to that of the FNO models
for the training subset, it was found to be somewhat over-fitted when applied to the
testing subset.

Returning to the main research question that this thesis sought to answer:

To what extent can standard DL models effectively reconstruct the multiscale basis functions
of the mixed GMsFEM, and what steps can be taken to improve their performance and

reliability? Moreover, is the mesh-independent approach of Fourier Neural Operator (FNO)
able to accurately predict pressure distribution?

While standard DL models demonstrated good performance on the training subset, they
encountered challenges in effectively reconstructing the multiscale basis functions of mixed
GMsFEM on the testing subset. To mitigate the issue of overfitting, various techniques
and methods were employed, such as allocating more samples to the validation and testing
subsets, incorporating skip connections, and combining deep learners. Additionally, the
reliability of the best skip connection-based model was assessed using a computationally
effective method. Finally, the mesh-independent approach of FNO yielded promising results
in accurately predicting pressure distribution, particularly by integrating an MLP with the
Fourier layers. Viewing this work as an image (matrix)-to-image (matrix) regression problem,
the constructed data-driven models may have applications beyond reservoir engineering, such
as hydrogeology and rock mechanics.

10.4 Future Work
While the current study presents a valuable contribution towards understanding the appli-
cation of data-driven methods in petroleum reservoirs, there are several avenues for future
research:

1. Evaluation of the models developed for the multiscale basis functions using
a new dataset: The models were trained, validated, and tested using consistent
permeability value ranges: specifically, Km = 1, 2, 3, 4, and 5 mD, and K f = 500, 750,
1000, 1250, 1500, 1750, and 2000 mD. It is advisable to test the models with varied
values. For instance, data samples might be generated based on Km values of 1.5,
2.5, 3.5, and 4.5 mD, and K f values of 625, 875, 1125, 1375, 1625, and 1875 mD. By
adopting this approach, the potential for overfitting can be more effectively examined.

2. Exploring various configurations for the computational domain: In this study,
a fine grid system with a uniform 30×30 mesh was employed. Also, a sparser, uniform
10 × 10 mesh represented the coarse grid network. With the mixed GMsFEM, there
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is potential to establish configurations utilizing a greater number of multiscale basis
functions. Hence, delving into larger systems, such as 100×100 and 500×500 fine grid
systems, could be intriguing. Considering the input/output dimensions, it is antici-
pated that more intricate models will be required, involving additional convolutional
layers and a higher number of kernels than those utilized in this study. Consequently,
the demand for more robust computing capabilities will arise.

3. Extension to 3D porous media with inclined fractures and a wider range of
permeability: The scope of the present study was restricted to 2D porous media with
vertical and horizontal fractures. It is recommended to extend it to 3D porous media
and incorporate inclined fractures. Moreover, it would be worthwhile to consider a
wider range of permeability values for both the matrix and fracture. These adjustments
would provide a more comprehensive representation of subsurface conditions.

4. Exploration of more advanced ensemble techniques: The effectiveness of the
stacked generalization method using linear regression and ridge regression was con-
firmed on the given task. However, there is still room for improvement in the testing
subset. To further enhance performance, exploring more advanced ensemble tech-
niques could be one direction to consider. Additionally, developing other types of skip
connection-based CNN models and using them as base learners could also provide
valuable insights for further improving the performance of the stacking ensemble.

5. Using more suitable indices for UQ: Several indices, such as entropy, Negative Log
Likelihood (NLL), and SD were defined to quantify epistemic uncertainty. However, the
values obtained for entropy and NLL were not particularly meaningful or informative.
Therefore, it would be beneficial to explore alternative statistical measures that are
more applicable and appropriate for conveying information about uncertainty more
accurately, which would ultimately improve the overall reliability of the models.

6. Interpretability and explainability of CNNs: CNNs are frequently criticized for
their lack of interpretability, which can make it difficult to understand how the model
arrives at its predictions. In contrast, explainability refers to the ability to provide
reasons or justifications for the model's decisions, effectively explaining why a certain
prediction was made for a given input. Prioritizing research and development efforts
towards increasing the interpretability and explainability of CNNs could improve the
ability to identify biases or errors in the model's predictions, build trust in the model's
decisions, and identify areas for optimization and improvement.

7. Incorporating PINN into FNO architecture: As opposed to data-driven NNs
such as FNO, which rely exclusively on the provided data points, PINNs use the
PDE itself as a data source. In PINNs, PDEs are explicitly encoded into the NN via
automatic differentiation algorithms. The weighted summation of MSE of the PDE
residuals, BCs, ICs, and possibly known solution points could then be minimized as a
loss function based on the NN parameters. Therefore, it could be beneficial to combine
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PINN and FNO to find out how the performance changes compared to a stand-alone
FNO. In this sense, the model uses available data and/or physics constraints to learn
the solution operator, conquering the limitations of purely data-driven and physics-
based techniques.

8. Generating more data for pressure distribution: Data generation for pressure
distribution was a challenging and time-consuming task. Consequently, the FNO mod-
els were developed using only 1700 samples with fixed values of Km = 1 md, K f = 1000
md, and N f = 5. Therefore, it is advisable to generate a more diverse and comprehen-
sive dataset by considering a wide range of Km, K f, and N f values.
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