
A Semantic Testing Approach for Deep Neural
Networks Using Bayesian Network Abstraction

Thesis submitted in accordance with the requirements of the University of Liverpool for
the degree of Doctor in Philosophy by

Amany Alshareef

November 2023

Dedication

To my faithful mother, Joman Alqasimi
Who has always been the epitome of strength, love, and sacrifice. Throughout my life,
she has been my guiding light and unwavering support. Her lifelong belief in my abilities
inspired me to pursue this PhD journey of knowledge and to reach this significant accom-
plishment.

To my gentle father, Dr Fahad Alshareef
Who has been my pillar of wisdom and encouragement since the beginning. His guidance,
patience, and perseverance have shaped me into the person I am today.

To my beloved husband, Dr Mohammad Alabbasi
Who has stood by my side through thick and thin. His love, encouragement, and under-
standing have been my driving force throughout this challenging academic journey.

To my dearest parents-in-law, Hamza and Awatif
Who have embraced me as their own child and provided unwavering love and support.

To my precious children Lana, Dana , and Hamza
Who have been patient throughout this tough academic pursuit and through the late nights
I spent on my computer completing this research.

To my siblings: Eman, Somaya, Yasir, Samah, Abdulrahman, Fatima, Amal,
Duaa, and Ahmad
Who have been my cheerleaders, my sounding boards, and my inspiration. Their constant
presence and belief in my capabilities have pushed me to strive for excellence.

i

Amany Alshareef
A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network

Abstraction

ii

Acknowledgements

I would like to express my deepest gratitude and appreciation to all those who have con-
tributed to the completion of this PhD thesis. This work would not have been possible
without the support, guidance, and encouragement of numerous individuals and institu-
tions. First and foremost, I am immensely grateful to my primary supervisor, Prof. Xiaowei
Huang, for his invaluable mentorship, constructive criticism, thought-provoking discussions,
and suggestions, which have immensely enriched my research and strengthened the quality
of this thesis. Prof. Xiaowei supports me through challenging periods in my PhD, during
my pregnancy, and Covid-19. There are no words that express my deep gratitude for his
unlimited support. I would also like to express my profound gratitude to my second super-
visor, Prof. Sven Schewe, for his expertise, dedication, and insightful feedback, which have
been instrumental in shaping my research and academic growth.
I would also like to extend my heartfelt thanks to Dr. Nicolas Berthier, who was a great
supervisor for two years of my PhD, and a professional advisor after he finished his post-
doctoral period at the University of Liverpool. Thanks for his time, expertise, valuable
cooperation, and all that I have learned under his guidance. I am truly fortunate to have
had the opportunity to work under the guidance of such supervisors.
I am grateful to my family and friends for their unwavering love, encouragement, and faith in
me, which have given me the strength to overcome obstacles and strive for greatness. Their
belief in me and their constant motivation have been my driving forces during stressful PhD
moments. Special thanks to the Liverpool’s friends: Leena Abu Hussein, Khadija Alawfi,
Wdha Alshayul, Futun Alhamidi, Mariah Hafez, Nawal Almutairi, Souad Alotaibi, Hanaa
Khan, Amal Alzahrani, Nora Bakhsh, Hasna Halika, and Nouf Basha. Last but not least,
I gratefully acknowledge the generous funding provided by the Saudi Arabian government
since the beginning and until I achieved this milestone. Thanks to the Saudi Arabian
Cultural Bureau in London for their financial support throughout my PhD journey.

iii

Amany Alshareef
A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network

Abstraction

iv

A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network
Abstraction Amany Alshareef

Abstract

The studies presented in this thesis are directed at investigating the internal decision process
of Deep Neural Networks (DNNs) and testing their performance based on feature impor-
tance weights. Deep learning models have achieved state-of-the-art performance in a variety
of machine learning tasks, which has led to their integration into safety-critical domains
such as autonomous vehicles. The susceptibility of deep learning models to adversarial
examples raises serious concerns about their application in safety-critical contexts. Most
existing testing methodologies have failed to consider the interactions between neurons and
the semantic representations formed in the DNN during the training process. This thesis
designed weight-based semantic testing metrics that first modelled the internal behaviour
of the DNNs into Bayesian networks and the contribution of the hidden features to their
decisions into importance weight. Moreover, it measured the test data coverage according
to the weight of the features. These approaches were followed to answer the main research
question, "Is it a better measure of trustworthiness to measure the coverage of the semantic
aspect of deep neural networks and treat each internal component according to its contribu-
tion value to the decision when testing these learning models’ performance than relying on
traditional structural unweighted measures?".

This thesis makes three main contributions to the field of machine learning. First,
the thesis proposes a novel technique for estimating the importance of a neural network’s
latent features through its abstracted behaviour into a Bayesian Network (BN). The algo-
rithm analysed the sensitivity of each extracted feature to distributional shifts by observing
changes in BN distribution. The experimental results showed that computing the distance
between two BN probability distributions, clean as well as perturbed by interval-shifts or
adversarial attacks, can detect the distribution shift wherever it exists. The hidden features
were assigned weight scores according to the computed sensitivity distances. Secondly, to
further justify the contribution of each latent feature to the classification decision, the ab-
stract scheme of the BN was extended to perform a prediction. The performance of the
BN in predicting input classification labels was shown to be a decent approximator of the
original DNN. Moreover, feature perturbation on the BN classifier demonstrated that each
feature influenced prediction accuracy differently, thereby validating the presented feature
importance assumption. Lastly, the developed feature importance measure was used to
assess the extent to which a given test dataset exercises high-level features that have been

v

Amany Alshareef
A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network

Abstraction

learned by hidden layers of the DNN, taking into account significant representations as
a priority when generating new test inputs. The evaluation was conducted to compare
the initial and final coverage of the proposed weighting approach with normal BN-based
feature coverage. The testing coverage experiments indicated that the proposed weight
metrics achieved higher coverage compared to the original feature metrics while maintain-
ing the effectiveness of finding adversarial samples during the test case generation process.
Furthermore, the weight metrics guaranteed that the achieved testing percent covered the
most crucial components, where the test generation algorithm was directed to synthesise
new input targeting features with higher importance scores. Hence, the evidence of DNNs’
trustworthy behaviour is subsequently furthered through this study.

vi

Contents

Dedication i

Acknowledgements iii

Abstract v

Contents ix

List of Figures xiii

List of Tables xvi

Notations xvii

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 3
1.3 Research Questions . 4
1.4 Research Methodology . 4
1.5 Contributions . 7
1.6 Thesis Structure . 7
1.7 Publications . 9
1.8 Summary . 10

2 Deep Neural Networks Testing: Background and Related Work 12
2.1 Introduction . 12
2.2 Challenges and Concerns . 14
2.3 DNN Properties to Be Tested . 17
2.4 Trustworthiness of Deep Learning Models 18
2.5 Existing DNN Testing Techniques . 18

2.5.1 Testing Metrics and Coverage Criteria 19
2.5.2 Test Cases Generation Algorithms 22

vii

Amany Alshareef
A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network

Abstraction

2.5.3 Test Case Evaluation . 24
2.6 Methods for Exploring the DNN’s Inner Decisions 24
2.7 Summary . 26

3 Bayesian Network Abstraction: Definition and Preliminaries 28
3.1 Introduction . 28
3.2 Utilisation of Bayesian Networks within Neural Networks 29
3.3 Bayesian Network (BN) Abstraction Model 31

3.3.1 DNN Hidden Feature Extraction . 32
3.3.2 Discretisation Techniques . 36
3.3.3 Bayesian Network Construction . 37
3.3.4 Bayesian Network-based Coverage Metrics 40

3.4 Summary . 42

4 BN-based Features Sensitivity Analysis 43
4.1 Introduction . 43
4.2 Background and Related Work . 46
4.3 Preliminaries . 49

4.3.1 Data Abstraction Through a Bayesian Network 49
4.3.2 Perturbation of Latent Features . 49

4.4 BN-based Latent Feature Analysis . 50
4.4.1 Pairwise Comparison . 50
4.4.2 Feature Sensitivity Analysis . 52
4.4.3 Feature Importance . 54

4.5 Experiments . 56
4.5.1 Datasets and Experimental Setup . 56
4.5.2 Sensitivity to Perturbation . 57
4.5.3 Sensitivity to Adversarial Distribution Shift 62

4.6 Discussions . 65
4.7 Conclusions . 66

5 Bayesian Network Prediction 67
5.1 Introduction . 67
5.2 Related Work . 70

5.2.1 DNN Abstractions . 70
5.2.2 DNN Approximators . 71

5.3 Preliminaries . 72
5.4 Probabilistic Inference using the BN . 74

5.4.1 Abstracting the Training Data . 74
5.4.2 Adding an Auxiliary Node . 75
5.4.3 Performing Prediction . 77

viii

A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network
Abstraction Amany Alshareef

5.5 Extracting Feature Weights using the BN Prediction 79
5.6 Experiments . 80

5.6.1 Experiment 1: Connecting Deepest Nodes Only 81
5.6.2 Experiment 2: Connecting All Nodes 83
5.6.3 Experiment 3: Feature Weights . 86

5.7 Discussion . 88
5.8 Conclusion . 89

6 Weight-based Testing Metrics 90
6.1 Introduction . 90
6.2 The BN Weighted Feature Model . 93
6.3 Weight-based Semantic Testing . 94

6.3.1 Weighted Feature Coverage . 95
6.3.2 Weighted Feature Dependence Coverage 96
6.3.3 Generalised Weighted Feature Coverage 98
6.3.4 Coverage Criteria . 99

6.4 Concolic Test Generation . 99
6.5 Evaluation . 102

6.5.1 Datasets and Models . 102
6.5.2 Experimental Setup . 103
6.5.3 Experimental Results and Analysis 103
6.5.4 Further Results . 108

6.6 Trustworthy Performance With the Weight Metrics 114
6.7 Related Work . 115
6.8 Conclusion . 116

7 Conclusion and Future Work 117
7.1 Introduction . 117
7.2 Summary of the Thesis . 117
7.3 Main Findings and Contributions . 119
7.4 Limitations and Future Work . 123

A Detailed Structures of the Trained Deep Neural Networks 127

B Detailed Results for Sensitivity to Adversarial Shift Experiments 130

C Detailed Report of the Test Case Generation Process 137

References 146

ix

List of Figures

1.1 The outline of the proposed approach explains the overall framework for
the weight-based test dataset generation. The methodology involves three
phases; each dashed rectangle is a contribution presented in a separate chap-
ter. The number on the top of each rectangle indicates the chapter in which
each contribution is addressed. Number three represents the Bayesian Net-
work construction step that is discussed in Chapter 3. 6

2.1 An example of an adversarial perturbation that results in predicting the
traffic light input image with a lipstick. Adapted from Sun et al. [88] 15

2.2 Overfitting . 16
2.3 Optimum . 16
2.4 A deep neural network shows its structural components and the internal

semantic representations that the network learned from a given data. 20
2.5 Examples of the produced saliency maps using a single back-propagation

pass through a ConvNet classification neural network [86]. 25
2.6 Examples of the computed heatmaps using the Layer-wise Relevance Prop-

agation (LRP) [6]. 25
2.7 Visualisation of DNN intermediate feature layers [100]. 26

3.1 Example of the Principle Component Analysis in 2D. Blue points show a data
distribution. Black and red lines show first and second principle component,
respectively. 33

3.2 Projection onto two hidden feature components Fdense,0 and Fdense,1 of neu-
ron values induced by a sample of training data Xtrain, associated density
estimates (solid lines), and interval boundaries for discretisation (dashed
vertical lines). 37

3.3 Structure of the Bayesian Network abstraction after reducing each h1, h2, h3
into two features λi,1◦ĥi and λi,2◦ĥi with two intervals each. The conditional
probability tables are shown for features λ3,1 and λ3,2. 38

3.4 Illustration of probability tables and feature intervals with a Bayesian net-
work node. 39

x

A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network
Abstraction Amany Alshareef

4.1 Illustration of the proposed BN analysis technique to compute the sensitivity
of extracted latent features. 45

4.2 A visualisation of three extracted features using PCA from one CNN layer. 47
4.3 A toy example, with only three intervals for each feature, illustrates the con-

ditional probability table for the first extracted feature from layer dense_1,
named (3, 0), before and after shifting intervals of feature (2, 0) in the dataset
used to fit the BN. 51

4.4 Density of probability distributions for each perturbed feature P ′
f (coloured

blue) overlapped with the BN reference probabilities Pref . Each plot shows
various distance measures between the two distributions. 55

4.5 Probabilities distributions of nine perturbed features from the MNIST model.
The probability in the last row is the clean Pref probability. 58

4.6 Distributions of probabilities for each perturbed feature obtained from the
BN abstraction of the MNIST model. Each plot shows respective distance
measures w.r.t. the probabilities obtained from the BN for the clean unper-
turbed features Pref -shown in the last row. 59

4.7 Distributions of probabilities for each perturbed feature obtained from the
BN abstraction of the CIFAR10 model. 60

4.8 Correlation distance between Pref and P ′
f for 10, 20, and 30 iteration of

perturbation. Hue indicates each perturbed feature f with specific colour. . 62
4.9 Selected distances (vertical axes) between probability vectors obtained for

the validation dataset (Pr(Xtest ∈ B)) and probability vectors (Pr(Xattack ∈ B))
obtained for datasets generated by selected adversarial attacks (shown on
each column), for a range of BN abstractions B. The top (resp. bottom)
three rows show results for the MNIST (resp. CIFAR10) model. Hue in-
dicates the discretisation strategy and the number of intervals. The grey
vertical lines show confidence intervals. 64

5.1 Schematic view of the proposed approach. Given a Bayesian Network B con-
structed from selected layers of a trained DNN model, a prediction node is
added at the end of the B to allow it predicts an input’s label. The predic-
tion node probability is calculated using its parent nodes distribution and
sample data transformed from the training dataset into a lower-dimensional,
discretised representation through the discretisation function Discr♯ and cou-
pled with their labels. Next, the test data is converted into observations by
applying Discr♯ process, which returns a vector of elements referring to the
BN’s node values. The inference engine then takes these observations values
of the B’s nodes distribution and infer the probability of the output label.
The adversarial attack indicates the abstracted BN’s robustness evaluation
step. 69

xi

Amany Alshareef
A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network

Abstraction

5.2 Illustration of Bayesian network structures before (a) and after adding the
prediction node (b & c). Two ways of connecting predictions to the rest of
the hidden features (BN’s nodes) are - (b) connecting deepest nodes only or
(c) connecting all nodes. 73

5.3 A simple illustration of the prediction node Y and its parents. Construction
of the probability P (y|r) includes not only representations from the parent
nodes πY 1 and πY 2, but all other nodes in the BN as well. 79

5.4 Confusion matrix for the BN actual vs. predicted values for a 10000 MNIST
test data. The pairwise digits with the high confusion are shown in light blue. 80

5.5 Evaluation results under the FGSM attack on the MNIST and Fashion-
MNIST datasets. The chart shows that the CNN accuracy is constant, while
the BN prediction accuracy is growing with the increased number of nodes.
(Plots correspond to Table 5.2) . 82

5.6 Prediction accuracy of the testing (clean) dataset dt for neural network mod-
els shown with the dark green bar and their Bayesian networks with the dif-
ferent number of node’s intervals shown with the rest of the shades of green.
The charts also presented the accuracy percentage for adversarial dataset
dattack generated by CNN with selected attacks (FGSM, PGD, and Deep-
Fool -shown on each column). Each chart clarified the total number of the
BN’s nodes at the top. Note that the CNN accuracies are similar across the
horizontal charts, where the number of nodes only benefits the BN models.
The top row shows results for the MNIST and the bottom for the CIFAR-10
model. Hue indicates the number of intervals used to discretise the BN’s
nodes. 85

5.7 Number of the testing samples that are changed their classification labels
after the perturbation for each considered feature. 87

6.1 Example of a computed distances from the feature sensitivity weighting
method shown in the first table annotated with the used distance metrics
at the header. The second small table is the supportive normalised weights
calculated via the BN prediction and sorted in descending order. The red
rectangles indicate the correlation with the BN prediction weights. The di-
agram also shows the used structure of the Bayesian Network created from
three selected CNN’s layers and three extracted features from each layer. . 95

6.2 An abstracted Bayesian network from three DNN’s selected hidden layers.
Two features are extracted from each layer and discretised into three inter-
vals. The features f1,0 and f1,1 have marginal tables. Features f3,0 and
f3,1 are illustrated with a complete conditional probability table, while other
CPTs have the same length (mp number of intervals to the number of par-
ents), but are shortened in the diagram. The weight column shows per-node
probability. 97

xii

A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network
Abstraction Amany Alshareef

6.3 BN-based feature coverage plots show the overall distribution of initial and
the respective final coverage of up to 100 iterations of Concolic test case
generation. X-axis indicates the run time in seconds (initial and run time).
The horizontal line on the coverage is the median. 106

6.4 Weight-based feature coverage plots show the overall distribution of initial
and the respective final coverage of up to 100 iterations of Concolic test case
generation. X-axis indicates the run time in seconds (initial and run time). 107

6.5 Summary of the new produced test inputs of up to 100 iterations of test
case generation by DeepConcolic targeting BN-based coverage and weight-
based coverage for the Fashion-MNIST model, for two sizes of initial test
sets |X0| ∈ {10, 100}. Each row specifies the used criterion: bfc, bfdc, wfc,
and wfdc. Green and blue lines respectively indicate runs with ICA and
PCA-based feature extractions. 113

6.6 Some adversarial examples found by achieving WFCov and WFdCov testing
criteria for the Fashion-MNIST model (above) and CIFAR-10 model (below). 114

B.1 Distances (vertical axes) between probability vectors obtained for the MNIST
validation dataset (Pr(Xtest ∈ B)) and probability vectors (Pr(Xattack ∈ B))
obtained for datasets generated by selected adversarial attacks (attack, shown
on the horizontal axes), for a range of BN abstractions B. Every abstraction
involves 3 layers for which 3 features have been extracted using PCA (left-
hand side column), ICA (middle), or radial basis functions (RBF) kernel-
PCA (right). Plotted data aggregates five independent runs, and shows
confidence intervals. 131

B.2 See Figure B.1. 132
B.3 See Figure B.1. 133
B.4 Distances (vertical axes) between probabilities obtained for the CIFAR10

validation dataset and datasets generated by selected adversarial attacks
(horizontal axes). See Figure B.1 for further details. 134

B.5 See Figure B.4. 135
B.6 See Figure B.4. 136

xiii

List of Tables

4.1 Pairwise comparison matrix for six extracted features. Each cell describes
the extent to which a feature (rows) affects the others (columns). 52

4.2 Example distance measures. 56

4.3 Calculated weights from the sensitivity distances using various measures, for
the MNIST model on top and CIFAR-10 in the bottom. The headers show
the considered distances: dL1 , dL2 , dL∞ , dJS , dcorr , dcos , dMSE , dRMSE ,
dMAE , and dAF . The first column in each table indicates the perturbed
feature that is under investigation. 61

5.1 Example of the conditional probability table for the BN node "dense.0",
which represents a conditional probability P (dense.0|act.0, act.1, act.2). . . . 73

5.2 Prediction accuracy of the CNNs models and their abstracted BNs classifiers
based on 10000 raw test data and 10000 adversarial samples from the MNIST
and Fashion-MNIST datasets. The number of BN nodes is indicated per
CNN layer. 82

5.3 Comparison of prediction accuracies between CNN models (MNIST and CI-
FAR) and their abstracted BN classifiers based on 10,000 adversarial sam-
ples generated for three types of attacks. Significant results are highlighted
in bold font. 84

5.4 calculated weight for each BN’s feature. First column indicates the perturbed
feature name, the second and third column show each perturbed feature
estimated weight for MNIST and CIFAR-10 models, respectively. 87

xiv

A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network
Abstraction Amany Alshareef

6.1 Improvement of testing coverage (up to 100 iterations) for various BN spec-
ification scenarios (X10 and X100 indicate X0’ size, N3, N4 and N5 are the
number of extracted features per DNN’s layer, U5 is the uniform discretisa-
tion with five bins and KDE is the Kernel Density Estimation discretisation
method. Four criteria are compared: bfc, bfdc, wfc, and wfdc for the Fashion-
MNIST model. The hit_interval specifies exactly what interval is triggered
and causes the coverage to increase; "l" donates the CNN’s layer, "f" is the
number of features, "v" is the interval, and "c" is the combination of feature
intervals from the previous layer. 111

6.2 Assigned feature weights for three testing scenarios: PCA-X10-N3-U5, PCA-
X10-N4-KDE, and PCA-X100-N5-U5, calculated for WFCov and WFdCov
metrics based on the Fashion-MNIST model. These abbreviations denote
the BN specification: pca indicates the feature extraction method, X10 and
X100 represent the size of the initial test sets |X0| ∈ {10, 100}, N3, N4 and
N5 are the number of extracted features per DNN’s layer (three, four and
five), and U5 and KDE are the discretisation strategies (uniform with five
bins and Kernel Density Estimation). 112

A.1 Structure of the small CNN model Nsm trained on the MNIST dataset with
98.00% test accuracy. 127

A.2 Structure of the small CNN model Nsm−max trained on the MNIST dataset
with 97.78% test accuracy. 128

A.3 Structure of the CNN model Nmnist trained on the MNIST dataset with
99.38% test accuracy. 128

A.4 Structure of the CNN model Nfm trained on the Fashion-MNIST dataset
with 89.03% test accuracy. 129

A.5 Structure of the CNN model Nci trained on the CIFAR-10 dataset with
81.00% test accuracy. 129

C.1 Testing coverage of the Fashion-MNIST model for the bfc criterion con-
ducted with |X0| = 10 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5, init_tests: 10 100. 138

C.2 Testing coverage of the Fashion-MNIST model for the bfc criterion con-
ducted with |X0| = 100 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. 139

C.3 Testing coverage of the Fashion-MNIST model for the bfdc criterion con-
ducted with |X0| = 10 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage
measure calculated here is the one defined in Eq. 3.13 140

xv

Amany Alshareef
A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network

Abstraction

C.4 Testing coverage of the Fashion-MNIST model for the bfdc criterion con-
ducted with |X0| = 100 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage
measure calculated here is the one defined in Eq. 3.13 141

C.5 Testing coverage of the Fashion-MNIST model for the wfc criterion con-
ducted with |X0| = 10 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. 142

C.6 Testing coverage of the Fashion-MNIST model for the wfc criterion con-
ducted with |X0| = 100 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. 143

C.7 Testing coverage of the Fashion-MNIST model for the wfdc criterion con-
ducted with |X0| = 10 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage
measure calculated here is the one defined in Eq. 6.5 144

C.8 Testing coverage of the Fashion-MNIST model for the wfdc criterion con-
ducted with |X0| = 100 initial tests. Header possible values are: tech: pca
ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage
measure calculated here is the one defined in Eq. 6.5 145

xvi

Notations

The following notations of abbreviations and symbols are found throughout the thesis:

List of abbreviations:

DNNs Deep Neural Networks
CNNs Convolutional Neural Networks
NNs Neural Networks
FI Feature Importance
BNs Bayesian Networks
DAG Directed Acyclic Graph
CPT Conditional Probability Table
PCA Principal Component Analysis
ICA Independent Component Analysis
KDE Kernel Density Estimation
BFCov BN Feature Coverage
BFdCov BN Feature Dependence Coverage
BFxCov BFCov + BFdCov
WFCov Weighted Feature Coverage
WFdCov Weighted Feature Dependence Coverage
WFCovTot WFCov + WFdCov

xvii

Amany Alshareef
A Semantic Testing Approach for Deep Neural Networks Using Bayesian Network

Abstraction

List of symbols:

N neural network
B Bayesian network
DX input domain
DY output domain
fN (x) predicted label of x according to the network N
li the i-th layer
ni,j the j-th neuron on the i-th layer
n̂ the neuron activation
hi the set of neurons on the i-th layer
ĥi the set of neurons activation on the i-th layer
Λ the feature mapping
Discr♯ the discretisation function
Pi the unconditional probability
CP i the conditional probability
random_shift the feature’s intervals shifting
dp a given distance metric
Pref the BN reference probabilities
P ′
f the BN probabilities after perturbing feature f

r the discretised representation of input x
Y the prediction node
πY the parent nodes of Y

xviii

Chapter 1

Introduction

1.1 Overview

Machine Learning (ML) systems have shown impressive performance, which has led to them
being broadly applied to various domains. Recent advances in deep learning have involved
Deep Neural Networks (DNNs), which facilitate a variety of innovative applications of ma-
chine learning. DNNs have become highly expressive models that have achieved close to
human-level capability on a wide range of tasks, including speech and visual recognition,
natural language processing, and game playing. With this promising performance, DNNs
are indeed increasingly integrated into safety-critical applications such as autonomous driv-
ing vehicles, disease diagnostics, and secure authentication. As they are being executed on
these critical types of programs, the software employing them must be systematically tested
and certified to ensure their reliability and safety.

Despite their tremendous capabilities, neuronal networks are, however, complex mod-
els working as black boxes where they learn their decision rule through training on a large
dataset by gradually optimising parameters until they achieve the required accuracy. There-
fore, they do not have a specific control-flow structure, which makes it difficult to analyse
their behaviours and define suitable test criteria. Moreover, neural networks designed for
regression and classification tasks do not capture model uncertainty, which means that they
cannot provide information about the reliability of their predictions. This lack of reliable
confidence estimates and other robustness issues can make them vulnerable to adversarial
attacks.

Various DNN’s testing techniques have been established, inspired by the notion of soft-

1

2 Amany Alshareef

ware testing in traditional software engineering. Neuron activation [73], which is equivalent
to the code coverage in traditional testing, and other structural coverage techniques, such
as Modified Condition/Decision Coverage (MC/DC) [90], that are defined based on the syn-
tactic model components have proven to be less effective in validating the safety behaviour
of these intelligent systems [93]. Neural networks have different components that need to be
considered when testing them including, neurons, syntactic connections between neurons,
activation functions, and relationship between layers. Consequently, structural coverage
such as the activation patterns of individual neurons may not be sufficient to capture the
full range of behaviours and interactions between neurons that occur in the DNN. More-
over, DNNs have been criticised for their vulnerability to input perturbation, which leads
to misclassified results with high confidence. This critical shortcoming of DNNs makes
their prediction accuracy scores drop significantly when there is an adversarial shift in data
distributions. Small perturbations, including adversarial perturbations, random noise, and
geometric transformations, applied to the input samples should not cause significant losses
in the classifier’s performance.

As Bayesian Networks (BNs) present a principled way to capture relationships between
variables that are explicitly represented using a directed graph, Bayesian probabilistic mod-
els gain more perspective and insights into their utility within ML. A recent approach com-
bining neural network models and the Bayesian paradigm introduced by Berthier et al.
[9] performs a dimensionality reduction technique using feature extraction algorithms to
abstract the behaviour of a neural network into a Bayesian Network (BN). The authors
identified hidden features learned by hidden layers of the DNN and associated each feature
with a node of the BN. The BN is therefore defined based on high-level features, rather
than on low-level neurons. This probabilistic abstraction of deep neural networks gives an
ideal framework for investigating the DNNs internal representation through analysing the
extracted hidden features.

The remainder of this introductory chapter is structured as follows. Section 1.2 explains
the motivation for conducting this research. The main research question and its associated
research issues are discussed in Section 1.3. In Section 1.4, the adopted research method-
ology to address the research questions is presented. Section 1.5 summarises the research
contributions followed, in Section 1.6, the structure of the rest of the thesis is outlined.

Chapter 1. Introduction 3

1.2 Motivation

To address the aforementioned concerns, the main motivation for the work discussed in this
thesis is defining a testing approach that uses semantic aspects of neural networks. The
majority of existing testing methods are directed at the syntactic component of the neural
networks, in particular, the testing adequacy is measured based on neuron-level properties.
Intuitively, when statement coverage is achieved through traditional program testing, it
implies new functionality is exercised. However, a neuron being activated does not have
the same implication. It is possible that a model’s semantics lies in the distribution of the
entire activation vector instead of a set of discrete events. The fundamental idea presented
in this thesis is to design advanced high-level testing metrics that are compatible with the
working mechanism of neural networks and their behaviour in decision-making.

During the training process, DNNs learn to represent the input data in a lower-dimensional
latent feature space, which captures the input’s essential features in a more abstract and
general form [33]. The core concept to be integrated into the suggested metrics is the Fea-
ture Importance (FI) measure. The notion of feature importance exists in explainable AI,
which uses the relative importance of features in an input test sample to explain learning
models’ predictions. The method assigns to each feature an importance value which rep-
resents how much that particular feature was important for the prediction under analysis.
A variety of methods have been developed to interpret neural network predictions by pro-
viding feature importance maps, such as Local Interpretable Model-agnostic Explanations
(LIME) [78], Deep Learning Important FeaTures (DeepLIFT) [85], Integrated Gradients
[91], and SHapley Additive exPlanation (SHAP) [61]. In contrast to these methodologies,
the proposed importance scores are derived from latent features extracted from a neural
network’s layers.

After performing the interior analysis on the network’s internal representation, the se-
mantic mechanism can be modelled as a quantity of weights. The suggested testing criteria
are based on the hypothesis that the contributions of features to a model’s classification
decision represent the most reasonable basis to measure the test data coverage and report
the quality of the model performance.

4 Amany Alshareef

1.3 Research Questions

Given the previous motivations, this thesis seeks to address the following primary research
question:

"Is it a better measure of trustworthiness to measure the coverage of the semantic as-
pect of deep neural networks and treat each internal component according to its contribution
value to the decision when testing these learning models’ performance than relying on tra-
ditional structural unweighted measures?"

Providing an answer to this research question involves resolving the following Subsidiary
Research Questions (SRQs):

1. SRQ1: Is a Bayesian abstraction of a neural network able to systematically analyse
a DNN’s interior decisions?

2. SRQ2: How can the importance of the latent features of a deep neural network be
quantified using an abstracted Bayesian Network?

3. SRQ3: How to demonstrate the impact of the feature importance measure on the
classification decisions based on the abstraction?

4. SRQ4: Do existing testing metrics guarantee the coverage of a model’s critical in-
ternal regions, as well as direct the test case generation algorithm to target the most
relevant features?

5. SRQ5: Do the proposed coverage metrics deliver a reliable testing measurement in
terms of reporting the coverage that prioritises the important internal representation
of the model?

6. SRQ6: Does the generated test dataset from the feature weight directed concolic
testing provide a trustworthy measure of a model’s performance?

1.4 Research Methodology

To provide answers to the research questions listed above, the place to start was to review
existing work related testing deep neural networks where coverage criteria and test case

Chapter 1. Introduction 5

generation are applied. Identifying their shortcomings and limitations is the first step in
the search for a solution. Since my aim is to investigate a high-level testing strategy for deep
learning models, Bayesian principles were the first option to address this issue. The reason
for choosing Bayesian networks as a framework to analyse the DNNs’ internal representation
is its clear characterisation of the connection between the variables, which gives it the
strength to model and abstract the internal behaviour of the DNNs. Moreover, Bayesian
networks allow probabilistic inference, which can contribute to identifying uncertainties
in the model or potential areas where further refinement is needed. These capabilities
make it a robust tool for analysing complex systems, such as deep learning models. Hence,
the Bayesian network scheme was intensively studied to identify an appropriate method
of analysing the DNN’s features, which are represented with BN’s nodes, sensitivity to
perturbation.

Figure 1.1 outlines the proposed methodology to design a weight-based semantic testing
metrics for neural networks using the Bayesian network abstraction model of Berthier et al.
[9]. The testing framework illustrates three main phases (four, five, and six), each explored
in a specific chapter corresponding to the marked number. The first phase is calculating the
DNN’s latent features importance weights based on the distance between two probability
distributions represented by the abstracted BN. The suggested method involves measuring
the DNN’s features sensitivity to perturbations, which may capture the actual contribution
made by each feature to the decision. This process results in a matrix of various computed
weights according to given distance metrics. The second step is performing BN-based
inference to extract supportive feature weights by observing the change in BN prediction
after perturbing the latent features. This BN prediction weight is then compared with
the weights produced from different distance metrics in the first phase, which are highly
correlated with it, to be passed on to the next stage. Finally, developing weight-based
feature coverage metrics that measure the test data’s adequacy, taking into account the
feature weight. The primary testing objective is ensuring that maximum test coverage
is obtained from the presence of important features that have a dominating influence on
the classification decision. Thereafter, the test generation algorithm will be guided by the
importance scores to synthesise new test cases targeting the highest-weight feature. Each
iteration of the concolic testing either generates a new test input that passes the test oracle,
an adversarial input that has the wrong classification label, or the attempt fails and the
algorithm moves on to the next iteration. The coverage is updated properly according to
the outcome of each iteration.

6
A

m
any

A
lshareef

Figure 1.1: The outline of the proposed approach explains the overall framework for the weight-based test dataset
generation. The methodology involves three phases; each dashed rectangle is a contribution presented in a separate
chapter. The number on the top of each rectangle indicates the chapter in which each contribution is addressed.
Number three represents the Bayesian Network construction step that is discussed in Chapter 3.

Chapter 1. Introduction 7

1.5 Contributions

The work presented in this thesis makes the following contributions to the neural network
and Bayesian network fields. The corresponding chapter in which each contribution is
addressed is indicated in parentheses.

1. Introducing a method to quantify the importance of latent features in neural networks
by implementing the Bayesian network sensitivity analysis algorithm (Chapter 4).

2. Detecting adversarial distribution shift using the developed BN-based feature sensi-
tivity analysis technique (Chapter 4).

3. Advancing the Bayesian network abstraction model with the ability to perform the
original neural network classification task (Chapter 5).

4. Demonstrating that the constructed BN predictor is a good approximator of the orig-
inal DNN and exhibits a smaller gap between accuracy over clean data and accuracy
of perturbed data (Chapter 5).

5. Extracting supportive feature weights through perturbing each feature and observing
the effect on the classification output (Chapter 5).

6. Designing new BN-based feature coverage metrics that use the developed importance
weights (Chapter 6).

7. Generating test inputs targeting uncovered feature with the highest weight using the
concolic test case generation algorithm (Chapter 6).

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2: Deep Neural Networks: Background and Related Work. This chap-
ter provides background and relevant literature to the work presented in this thesis. The
chapter presents the deep neural networks definitions and their formal notations. It then
discusses related safety concerns and some other issues, emphasising the adversarial per-
turbations in further detail. This is followed by a review of existing testing techniques

8 Amany Alshareef

and their limitations. The chapter closes with general approaches designed to explore the
DNN’s internal decisions.

Chapter 3: Bayesian Network Abstraction: Definition and Preliminaries. The
fundamentals and preliminary concepts of Bayesian networks are presented in this chapter.
The chapter discusses how researchers utilised Bayesian network modelling to deal with
neural networks’ issues. It then introduces the abstracted Bayesian network schemes, which
will be the basis for algorithms, models, and coverage metrics presented later in the thesis.

Chapter 4: Features Sensitivity Analysis. This chapter quantifies the importance of
latent features in neural networks and defines the feature importance measure. It develops
the BN sensitivity analysis algorithm to estimate the importance of a neural network’s
latent features by analysing an associated Bayesian network’s sensitivity to distributional
shifts. The work related to this chapter is published at the AAAI Workshop on Artificial
Intelligence Safety (SafeAI 2022), as a technical paper entitled "Quantifying the Importance
of Latent Features in Neural Networks", see Alshareef et al. [2].

Chapter 5: Bayesian Network Prediction. This chapter extends the abstracted
Bayesian network to act as a classifier and perform prediction through probabilistic infer-
ence. The approach was adding an auxiliary prediction node at the end of the Bayesian
network and calculating its conditional probability table according to the BN nodes’ distri-
bution. The BN prediction is used to compute features weights by perturbing the intervals
of each feature for every sample in the test set and measure how many outputs have changed
their value. The work related to this chapter is published at the International Conference
on Machine Learning and Cybernetics (ICMLC) 2023, see Alshareef et al. [3].

Chapter 6: Weight-based Testing Metrics. This chapter designs weighted-based
testing metrics using the developed feature importance weights to evaluate the coverage of
a test set. Two main metrics are defined, with a third combining both. The chapter also
presents the Concolic test cases generation algorithm that produce additional test inputs
prioritising the higher weighted feature. The results from an extensive evaluation using
the Fashion-MNIST and CIFAR-10 datasets and four testing metrics are presented. The
work related to this chapter is published at the IJCAI Workshop on Artificial Intelligence

Chapter 1. Introduction 9

Safety 2023 (AISafety 2023), as a technical paper entitled "Weight-based Semantic Testing
Approach for Deep Neural Networks", see Alshareef et al. [4].

Chapter 7: Conclusion and Future Work. The last chapter concludes the thesis
with a summary of the discussed materials and the main findings with respect to the main
research question and its subsidiary questions. The chapter closes with a discussion of
potential future research directions.

Appendices: The appendices section contains further supplementary materials that sup-
port the experiments presented in the thesis. It includes the structure of the used DNNs
models, additional figures, and resulting data tables.

References: This section contains a list of the references cited throughout the thesis.

1.7 Publications

A number of academic publications have cited the work provided in this thesis. The pub-
lished and submitted papers are listed below, with a brief description of each publication
that highlights its relevance in relation to this thesis.

1. Nicolas Berthier, Amany Alshareef, James Sharp, Sven Schewe, and Xiaowei Huang.
Abstraction and symbolic execution of deep neural networks with Bayesian approx-
imation of hidden features. arXiv preprint arXiv:2103.03704, 2021. This paper
presents a novel abstraction method that abstracts a DNN and a dataset into a
Bayesian network (BN). This suggested dimensionality reduction on the DNN’s hid-
den features can improve its scalability and the size of the dataset as well, which
allow feather analysis on its behaviour. I contributed to this paper through the first
couple years of my PhD study as a co-author. The content of this paper is presented
in Chapter 3, and it will be used as the foundation for the work investigated in the
next chapters.

2. Amany Alshareef, Nicolas Berthier, Sven Schewe, and Xiaowei Huang. Quantifying
the importance of latent features in neural networks. In the AAAI Workshop on
Artificial Intelligence Safety Proceedings, volume 3087, 2022. This technical paper
investigates how the distribution of a neural network features in their latent space

10 Amany Alshareef

changes in the presence of distortions. This achieved through abstracting the neural
network into a Bayesian Network introduced in the paper 1. The method estimates
the importance of each feature by analysing the sensitivity of the abstraction to
targeted perturbations. The work conducted in this paper and the evaluation results
are included in Chapter 4.

3. Amany Alshareef, Nicolas Berthier, Sven Schewe, and Xiaowei Huang. Robust
Bayesian abstraction of neural networks. In proceedings of the International Confer-
ence on Machine Learning and Cybernetics (ICMLC), 2023. This conference paper
extends the BN model to make predictions, and it argues that the designed BN classi-
fier is a good approximator of the original DNN. The paper demonstrated that the BN
inference approximates the deep neural network prediction performance while outper-
forming it in an adversarial setting. The content of Chapter 5 is derived from this
paper, where the BN classifier is used to examine the extent to which a perturbation
on a DNN hidden feature may affect the classification decisions.

4. Amany Alshareef, Nicolas Berthier, Sven Schewe, and Xiaowei Huang. Weight-
based semantic testing approach for deep neural networks. In the IJCAI Workshop
on Artificial Intelligence Safety, volume 3505, 2023. This technical paper proposes
weight-based testing metrics that use feature importance weights to measure the
coverage of the test set and facilitate the generation of additional test cases targeting
higher weights’ features. The suggested semantic metrics addressed the limitations of
the current DNN’s testing methodologies, which focus on structural testing coverage
and ignore the semantic representation that forms in a DNN during the training
process. The published outcomes of the weight testing metrics experiments were part
of Chapter 6 content.

1.8 Summary

This chapter has introduced a background overview of the essential ideas of this thesis.
The chapter discussed the motivation to carry out this research, the research questions,
the proposed research methodology, and the main contributions made through this thesis.
It then closes with the publication papers that have been published from the delivered
contribution. The following chapter presents the background of the DNNs and a literature

Chapter 1. Introduction 11

review investigated to provide more detail regarding their current testing methods and their
limitations.

Chapter 2

Deep Neural Networks Testing:
Background and Related Work

2.1 Introduction

The widespread adoption of deep neural networks (DNNs) has led to significant break-
throughs in various fields such as computer vision, speech recognition, and natural language
processing. However, the complexity and non-linearity of DNNs make them challenging to
debug, and validate. In particular, the lack of robustness in DNNs under adversarial attacks
and the difficulty of measuring their prediction uncertainty are limit their applicability in
safety-critical applications and areas where explainability is essential.

Artificial Neural Networks are a set of algorithms modelled loosely to adopt the notion
of a human brain that is designed to cluster, classify, and recognise patterns [69]. Deep
Neural Networks, denoted as DNNs, consist of multiple simple, connected computing units
named neurons

{
ni,1, . . . , ni,|li|

}
organised in interconnected layers. Each neuron performs

two main tasks: the computation of a weighted sum of its inputs and the execution of an
activation function. The weighted sum is computed by multiplying the input values by
corresponding weights and adding them together. The activation function introduces non-
linearity to the neuron’s output, enabling the network to capture complex relationships
and learn non-linear mappings. The commonly used activation functions are Sigmoid,
Tanh, and Rectified linear unit (ReLu), which are the most popular activation functions.
Mathematically, the computation within a neuron can be described as follows:

12

Chapter 2. Deep Neural Networks Testing: Background and Related Work 13

1. The weighted sum: n̂i,j = Wi,j

(
ni−1,1, . . . , ni−1,|li−1|

)
+ bi.

2. The activation function: ReLU(n̂) = max {0, n̂}.

The weight Wi,j of the connection between neurons and the bias bi are learned and ad-
justed during the training process by minimising a cost function over the training data.
The majority of the current DNNs are trained with a gradient descent algorithm using
backpropagation process, which used to compute the partial derivatives of the gradient.
The process of training a DNN involves feeding it with a large amount of labeled data,
allowing it to learn from the input-output patterns and adjust its internal parameters ac-
cordingly. Thus, the DNN’s layers are responsible for transforming input data through a
series of mathematical operations, gradually extracting and abstracting relevant features
from raw data.

A Convolutional Neural Network (CNN) is a specialised type of DNN primarily designed
for processing and analysing visual data such as images. Unlike traditional fully connected
networks, CNNs are consist of layers that detect local patterns via convolution operations
[36]. These layers are designed to automatically and adaptively learn spatial hierarchies
from the input image, which allows the network to recognize complex visual features ranging
from simple edges to sophisticated patterns. CNNs often comprise convolutional layers,
pooling layers, and fully connected layers.

By leveraging the power of deep architectures and the ability to automatically learn
representations, DNNs have achieved state-of-the-art performance in numerous domains
and have gained popularity in critical applications, which means ensuring their reliability
and trustworthiness becomes paramount [45]. Testing plays a crucial role in assessing
the performance, robustness, and generalisability of DNNs [88]. It enables vulnerability
detection at an early stage. The objective of testing techniques is to provide assurance
by exposing the system to a comprehensive set of test cases; particularly, coverage-guided
testing generates test cases based on a predefined set of coverage metrics. Intuitively, high
coverage indicates that the majority of the DNN’s behaviours have been tested, reducing
the chance that the DNN contains undiscovered bugs.

The remainder of this chapter is structured as follows. The challenges and concerns
associated with neural networks are discussed in Section 2.2. This includes issues such as
the black box nature of DNNs, uncertainty, overfitting, overconfidence and adversarial at-
tacks. Section 2.3 highlights the DNN properties that need to be tested before deployment,
including accuracy, robustness, fairness, interpretability, and trustworthiness. Section 2.4

14 Amany Alshareef

explains the concept of trustworthiness of DNNs in further details and the factors that con-
tribute to it. Section 2.5 reviews the current DNNs testing metrics and test case generation
algorithms. Last section 2.6 discussed several methods to explore the internal represen-
tation of the DNN models. Finally, the chapter is concluded, in Section 2.7, with a brief
summary.

2.2 Challenges and Concerns

As stated earlier, several challenges and concerns associated with DNNs need to be carefully
addressed. This section discusses specific issues that raise serious safety considerations.

Adversarial Perturbations. A key safety property of neural networks relates to the
robustness of a model with respect to noise. The robustness property states that all inputs
within some region of the input space have to be given the same class label. This means that
small perturbations applied to an input sample should not cause significant losses to the
network’s performance. However, it is well-known that deep neural networks are vulnerable
to adversarial examples, which are carefully perturbed inputs that confuse the deep learning
models so they provide entirely different predictions. The mechanism of adversarial attacks
is applicable by performing input-space gradient descent that maximises the loss of random
samples at testing time. A variety of techniques for generating adversarial images have
appeared in recent years. Here is a brief review of three typical state-of-the-art adversarial
attacks that are utilised throughout the thesis experiments:

• The Fast Gradient Sign Method (FGSM) of Goodfellow et al. [35] is a one-step at-
tack method seeking to craft the adversarial perturbation by moving in the opposite
direction to the gradient of the loss function w.r.t. a given input image;

• The Projected Gradient Descent (PGD) of Madry et al. [65] is a multiple-step pertur-
bation attack projecting an initial point that maximises the loss back into the ε-ball
around the original input until it finds an adversarial example;

• The DeepFool algorithm of Moosavi-Dezfooli et al. [68] performs an iterative search
for the minimal norm perturbation that can change the decision of the classifier. It
uses geometry theory to direct the search.

Example 1. An example of adversarial perturbations is shown in Figure 2.1 [88]. Suppose
an image of a traffic light is attacked by making subtle, imperceptible changes using one of

Chapter 2. Deep Neural Networks Testing: Background and Related Work 15

the methods above (adding a small amount of carefully crafted noise). These perturbations
can force the model to misclassify it as a completely different object, like lipstick in the
figure. This highlights the vulnerability of DNNs to adversarial inputs.

Figure 2.1: An example of an adversarial perturbation that results in predicting the traffic
light input image with a lipstick. Adapted from Sun et al. [88]

Out-of-Distribution Inputs. DNNs struggle to handle inputs that lie outside the train-
ing data’s distribution. When faced with unfamiliar inputs, DNNs may produce unreliable
or erroneous outputs. This poses risks in situations where the model encounters novel or
rare scenarios and can lead to poor decision-making and potential safety hazards. It is
crucial to guarantee a DNN’s safety by estimating whether a given input sample is drawn
from the same data distribution for which the DNN was trained. Many Out-of-distribution
detection methods have been developed to determine if the behavior of an input is similar
to the behavior of the training samples of the DNN under investigation [25, 58].

Example 2. In autonomous vehicles, DNNs are used for object detection and recognition.
When faced with unusual road conditions that fall outside the scope of the classes the network
has been trained to recognise, e.g., heavy fog, extreme weather, or objects not present in
training data, the DNN may struggle to correctly identify objects or make safe driving
decisions. This situation is considered an out-of-distribution input for the model.

Uncertainty. As DNNs are not probabilistic in nature, they are incapable of providing
confident predictions, which makes it difficult to grasp the uncertainty of their predictions.
Providing an uncertainty estimate is crucial for reliable decision-making, risk assessment,
and model deployment in real-world applications. Several approaches have been developed
to capture and quantify uncertainty in DNNs, including Bayesian neural networks [75, 53],
Monte Carlo dropout [29], and ensemble methods [66].

16 Amany Alshareef

Non-interpretable logic. DNNs are considered black-box models that hide their logic
in their internal processes, making it difficult to understand how they arrive at their predic-
tions or decisions. Lack of interpretability and explainability may hinder the system’s trust,
especially if it is installed within a safety-critical application and cannot clarify the model’s
decision-making process. This has led to the emergence of a considerable number of studies
and experiments to enhance the deep learning models interpretability. Popular methods are
gradients explanation technique [86], the Local Interpretable Model-agnostic Explanations
(LIME) method [78], the Class Activation Maps (CAMs) [108] and its extension versions
Grad-CAM and Grad-CAM++.

Overfitting and Generalisation. Another issue that may occur during neural network
training is overfitting. The model has learned the training set features exceptionally well,
so that the loss metric is driven to a minimal value. However, when provided with new
data that slightly deviates from the exact data used during training, the model will fail
to generalise and accurately predict the output. In other words, overfitting occurs when
the model performs better in the training data than in the test data. That primarily
happens when the training data set is not sufficient or the model is too complicated for the
data, so it also fits the noise, which are irrelevant features, of the training data. Different
approaches may be applied to reduce the overfitting, such as data augmentation and dropout
regularisation techniques [41, 55].

Example 3. The two trained models in the figures below illustrate overfitting (Figure 2.2)
and the optimal balanced fit (Figure 2.3). In the overfitting case, the DNN becomes increas-
ingly specialised in memorising the training data rather than generalising from it.

Figure 2.2: Overfitting Figure 2.3: Optimum

Chapter 2. Deep Neural Networks Testing: Background and Related Work 17

2.3 DNN Properties to Be Tested

Deep neural networks are complex models that require thorough testing to ensure their
effectiveness and reliability. The testing properties refer to the "what" function to be
tested. They comprise both primary functional requirements, such as correctness and
model relevance, as well as non-functional requirements, including efficiency, reliability,
robustness, fairness and interpretability. By evaluating these properties, a comprehensive
understanding of the DNN’s performance can be gained, ensuring its suitability for the
intended application.

Testing for correctness involves validating that the DNN produces accurate and reli-
able outputs for a given set of inputs. This includes determining whether the model’s
predictions align with the ground truth labels or expected outcomes. Techniques such as
cross-validation, model accuracy measurement, and precision-recall evaluation can be em-
ployed to assess the correctness of a DNN. Regarding model relevance evaluation, it focuses
on assessing whether the DNN is capturing and utilising the relevant features in the data
and ensuring that the adopted machine learning algorithm is not over-complex than is
needed. Poor model relevance often leads to overfitting or underfitting issues [51].

Model robustness is defined as how well a learning system is able to function correctly
in the presence of invalid inputs or a hostile environment [1]. Ensuring the robustness of
a DNN model is particularly vital in safety-critical applications, where the failure of the
model might cause serious consequences. Adversarial robustness testing such as CLEVER
score [94] is a popular method for evaluating the neural networks’ robustness. Reliability is
the probability that a model will achieve its required functions in the provided environments
without failure for a specified period of time with a specified level of confidence. Further-
more, machine learning learns from data provided by humans. Therefore, checking the
fairness and mitigating any biases or discriminatory behaviour exhibited by these models
are necessary, especially in decision-making such as income prediction. Lastly, testing the
ability of the model to produce explainable and interpretable predictions. Systems whose
decisions cannot be well explained are hard to integrate into critical fields. Eventually,
the trustworthiness of deep learning models became a crucial property for their widespread
adoption and integration into various real-world applications. It refers to the ability of
these models to produce reliable and consistent results while maintaining transparency and
interpretability. The next section provides a further explanation of it, highlighting key
factors and considerations that contribute to the overall trustworthiness of deep learning

18 Amany Alshareef

models.

2.4 Trustworthiness of Deep Learning Models

One can trust intelligent systems if they have proven to function correctly and safely and
if any of their behaviours can be clearly explained [46]. In safety-critical applications, the
provision of safety evidence for the embedded learning systems’ trustworthiness is required,
where the consequences of errors can be severe [12].

The first process to address the model trustworthiness is related to verification, testing,
adversarial attack and defence. Deep learning models requires comprehensive evaluation
and testing methodologies to verify their performance, assess their vulnerabilities, and
develop defenses against potential attacks. Testing, which is the main focus of this thesis,
considers the primary instruments for evaluating the quality of the model’s performance
and providing safety assurance for its trustworthy and robust behaviour. Measuring the
model’s predictive capabilities on test datasets using evaluating metrics such as accuracy,
precision, recall, and F1-score is insufficient and cannot provide the required assurance. In
safety domains, it is necessary to systematically test the learning models and synthesise a
new set of test inputs to prove the model’s generalisability and robustness across different
scenarios and input distributions.

Overall, addressing the vulnerability of the learning-enabled systems to adversarial at-
tacks, ensuring the quality and representativeness of the training data, forcing higher testing
coverage of testing data, and enhancing the interpretability of deep learning models are es-
sential steps towards ensuring the trustworthiness of these models and increasing confidence
about their behaviour.

2.5 Existing DNN Testing Techniques

Deep Neural Networks testing is an active research area where the safety-critical applica-
tions being deployed with them. This section reviews the literature of the current DNN’s
testing techniques. Software testing is one of the most commonly used validation tech-
niques to detect software defects that cause unexpected behaviour. Deep learning systems
are tested through generating a set of well-studied test cases and then feeding these test
data to them. The intention of that is to validate their run-time behaviour’s accuracy by
conducting a comparison between expected outputs and actual outputs. Hence, the per-

Chapter 2. Deep Neural Networks Testing: Background and Related Work 19

formance of a developed DNN can be more reliable when it passes the test cases. Usually,
the generation of test cases and evaluation of test adequacy is guided by coverage metrics,
which defined a set of requirements to be satisfied. Numerous testing approaches are pro-
posed to address the issues associated with these learning models, including test coverage
criteria, test generation, and test oracles.

2.5.1 Testing Metrics and Coverage Criteria

Testing metrics are methods that test neural networks by measuring the extent to which
the test inputs cover different regions of the input space. Coverage metrics are used to
measure the adequacy of testing by providing a quantitative evaluation of how thoroughly
a deep neural network has been tested according to specific criteria.

Definition 2.5.1 (Testing Coverage Metric). A test coverage metric for a deep neural
network N , is a function Cov:N × T × C → [0,1], that quantifies the degree of adequacy,
ranges over 0 to 1, to which a network N is tested by a test suite T with respect to a
coverage criteria C [87].

Intuitively, the coverage percentage denotes the ratio of test criteria that have been satisfied
over a set of test cases.

Coverage-guided deep neural network testing techniques are a class of testing methods
that aim to increase the coverage of the network during testing, with the goal of covering
different regions of the input space and revealing as many potential bugs and unexpected
behaviours as possible. Enforcing higher coverage during the testing process makes the
network under investigation more likely to be robust and reliable. The existing related
research work in the literature are divided into two categories:

(i) Structural coverage metrics that are defined based on the syntactic characteristics
of the neural networks. Syntactic characteristics refer to the architectural aspects of
a neural network, such as its neurons, connections between neurons, layers, and the
mathematical operations executed within the network. These aspects are concerned
with how the network is physically organised and how data flows through it. Thus,
structural coverage, measures how much of this physical architecture is exercised or
covered during testing.

(ii) High-level semantic coverage metrics that are concentrated on the semantic rep-
resentations created by neural networks. It is concerned with the high-level features

20 Amany Alshareef

Figure 2.4: A deep neural network shows its structural components and the internal se-
mantic representations that the network learned from a given data.

or patterns that the network extracts and understands from the data.

Example 4. Consider a deep neural network in Figure 2.4. Structural coverage testing
would ensure that each neuron, or at least a significant proportion of neurons in the network
are activated during testing. It also could involve evaluating whether different combinations
of layers and architectures are thoroughly tested to guarantee that the network’s structural
components are well covered. For semantic coverage, instead of just examining whether
neurons are activated, the semantic coverage is concerned with whether the test images span
a wide range of learned features that the network is supposed to recognise. For instance, if
the network is trained to distinguish between cats and dogs, the test may cover various breeds,
colours, sizes, and postures of cats and dogs. Doing so ensures that the network’s learned
representation of cats and dogs is being thoroughly tested. In simpler terms, structural
coverage is concerned with HOW the network is built and connected (the top part of the
diagram), while semantic coverage is concerned with WHAT the network understands or
learns from data (the bottom part of the diagram).

Most proposed testing approaches have been focused on the structural testing coverage
to measure the coverage of the dataset relied on the individual neuron activation. These
techniques are based on the idea of activating as many neurons in the network as possible

Chapter 2. Deep Neural Networks Testing: Background and Related Work 21

during the testing phase. The more neurons that are activated with a specific value, the
more complete the testing of the network is considered to be.

Neuron activation was first introduced by Pei et al. [73] as a systematic metric which
calculates the number of activated neurons (w.r.t. ReLU activation function) during the
testing. They proposed DeepXplore, which is a white box differential testing algorithm for
generating test inputs that can discover inconsistencies between multiple DNNs. It employs
a technique called mutual exclusiveness, which guarantees the test inputs do not activate
the same neurons as previously generated inputs, further increasing the diversity of the
test inputs. Tian et al. [92] proposed DeepTest, a testing tool that automatically generates
test cases relying on neuron coverage as a guidance mechanism for exploring different parts
of the DNN logic. They concentrated on detecting erroneous behaviours of DNN-driven
autonomous vehicles. Guo et al. [38] improve the neuron coverage by combining the fuzzing
testing into the deep learning systems. Although neuron coverage has been shown to be
effective at finding hidden bugs and been used to test real-world deep neural networks,
investigates by Sun et al. [87] were demonstrated that neuron coverage is too coarse and
easy to achieve.

Further approaches have been developed to extend neuron coverage with a focus on
various activation value factors. Ma et al. [62] presented DeepGauge, a set of five coverage
criteria based on layer-level and multi-granularity coverage. Their method followed a similar
principal as neuron coverage, however, they intended to identify specific values of neuron
activation for their metric such as neuron boundary. Sun et al. [87] introduced several
coverage criteria inspired by Modified Condition/Decision Coverage (MC/DC) that are
captured the causal changes in the test data by observing a sign, value, or distance change
of a neuron activation value. They implemented the DeepCover tool that generates test
cases based on linear programming.

The quantitative projection coverage, suggested by Cheng et al. [19], considered differ-
ent criteria, each with its own weight, that described the operation conditions. They then
partitioned the input domain according to these criteria and weighted each distinct class
based on its relative importance. More testing metrics, i.e., safety coverage [95] and sur-
prise coverage [50], have been designed based on the activation functions and the syntactic
connections between neurons in successive layers.

Unfortunately, neuron activation and other structural coverage techniques, that are
defined based on the syntactic model components have proven to be less effective in val-
idating the safety behaviour of the intelligent systems. A study by Li et al. [60] showed

22 Amany Alshareef

that there is no correlation between the number of misclassified natural input tests and
their structural coverage on the corresponding neural networks. There is still considerable
ambiguity on how such coverage criteria directly relates to the decision logic of black-box
machine learning systems. Especially given that the semantic relationship between layers
is ignored. The semantics of DNN models differ significantly from the semantics of the
traditional programs. Simply because learning model behaviours are continuous, whereas
program behaviours are discrete. Additionally, structural coverage has a limited correlation
with network robustness, where high neuron coverage does not imply the network is robust
to all possible inputs or it will behave well on unseen data [27, 98].

There are relatively few testing strategies that address the semantic aspects of DNN’s
internal representation. One recent effort is the Bayesian network-based feature coverage
that will be studied in Chapter 3. Those higher-level testing criteria [9] are defined based on
a combination of a dimensionality reduction technique, and the construction of a Bayesian
Network, which capture how a given test dataset exercises high-level features that have
been learned by hidden layers of the DNN.

2.5.2 Test Cases Generation Algorithms

Generating effective test cases for DNNs is a crucial process in order to report reliable
testing accuracy. The existing set of test case generation algorithms for DNNs can be
categorised according to the techniques utilised as follows:

1. Input-based Techniques, which rely on manipulating the input data to create test
cases. These techniques are sub-divided into:

• Mutation-based Methods, that modify specific characteristics of existing inputs
to generate new test cases.

• Randomised Testing (Fuzzing), that focuses on feeding random inputs to a DNN
to explore its behaviour.

2. Formal Methods, which include techniques that have roots in formal verification:

• Symbolic Execution, that evaluates the programme paths with symbolic values.

• Concolic Testing, which is a hybrid approach that combines both concrete and
symbolic execution.

A detailed description of each test input generation approach is provided below.

Chapter 2. Deep Neural Networks Testing: Background and Related Work 23

Input Mutation Test Input Synthesis. Input mutation methods generate new test
inputs, either natural or adversarial, by altering the original data using transformation
rules. The DeepXplore search algorithm in [73] used a gradient search to find a modified
input that aims to discover inconsistent behaviours between multiple DNNs models. They
introduced neuron coverage as a systematic metric to drive test generation under domain-
specific constraints. Following that, DeepTest [92] applied greedy search to automatically
generate test cases through implementing various transformations on seed images. On
the other hand, the adversarial inputs using Generative Adversarial Networks (GANs) are
widely used, i.e., [50, 62] to produce new test input.

Fuzzing Test Input Generation. Fuzz testing is an automated testing technique that
generates random input data to detect faults and vulnerabilities in a model. The DLFuzz
[38] uses a combination of coverage-guided fuzzing and differential testing to generate test
cases for deep neural networks. In TensorFuzz [71], the inputs are randomly mutated based
on user-specified constraints, and the guided coverage is measured by a fast approximate
nearest neighbour algorithm.

Symbolic Execution Test Input Generation. Symbolic execution is an analysis tech-
nique that treats software variables as symbolic values to test whether specific inputs cause
each part of a system to be executed. The work in [77] discusses an approach for testing
intelligent systems that combines symbolic reasoning and statistical methods. The authors
used decision procedures to generate test cases and statistical hypothesis testing to analyze
the results. The paper provides examples of how this approach can be applied to testing
image classification systems and autonomous vehicles. The results suggest that the pro-
posed testing methodology can improve testing coverage and the accuracy of identifying
errors in intelligent systems.

Concolic Testing is a testing technique in which concrete execution directs the symbolic
analysis to generate a high coverage test suite. The DeepConcolic approach introduced
in [89] is the first proposed concolic testing approach for DNNs that combines program
execution and symbolic analysis to explore different execution paths in the network. The
DeepConcolic algorithm alternates between:

• Concrete executions that evaluate a given coverage requirement’s satisfaction of a
test input within a test suite to be selected as a concrete input and encoded symbol-

24 Amany Alshareef

ically in the next stage.

• Symbolic analyses, which synthesise new test inputs based on the chosen concrete
test target, the process of finding a new input is equivalent to finding a new activation
pattern. Therefore, the symbolic analysis method involves linear programming that
encodes the activation value of each neuron of the concrete input as a linear constraint,
which produces a set of inputs that exhibit the same ReLU behaviour as encoded. To
check the usefulness of the obtained test case, an optimisation objective is added to
the LP problem that minimises the distance between the two tests.

2.5.3 Test Case Evaluation

A Test oracle is a reference or ground truth used to evaluate the performance of the DNNs
and ensure they behave correctly for a test case. The test oracle provides the expected out-
put for a given input and is used to compare the output of the system to determine its
accuracy. In the context of deep neural networks, the test oracle can be human-generated
labels or ground truth data. In other cases, it can be the output of a simpler or more
well-established model that serves as a reference for evaluating the performance of the new
model.

Overall, structural coverage criteria, such as neuron coverage, focuses on the patterns that
appear in the outputs of ReLU activation functions; while semantic coverage is a higher-level
criteria that focuses on the features that have been learned by hidden layers of the DNN.
The proposed semantic testing metrics are based on the model-internal representations and
their roles in the input/output behaviour. Therefore, it is essential to first analyse and
identify the features or factors that drive the model’s decision and then build the testing
metric based on the analysis results. The following section discusses prevalent techniques
for exploring the DNN’s interior decision-making mechanism.

2.6 Methods for Exploring the DNN’s Inner Decisions

Since the proposed testing metrics target the semantic aspect of DNNs, understanding
their decision-making processes is crucial for gaining insights into their inner workings.
Exploring the inner decisions of DNNs involves identifying the factors, features, or patterns
that influence the model’s output and obtaining knowledge into the learned representations.

Chapter 2. Deep Neural Networks Testing: Background and Related Work 25

Backpropagation techniques analyse the gradients of the model’s output and backprop-
agating them into the input data domain to obtain the regions of the input that have the
most influence on the model’s prediction. Popular methods are gradient-based methods
[86], Gradient-weighted Class Activation Mapping (Grad-CAM) [84], Deconvnet [100], and
Layer-wise Relevance Propagation (LRP) [6], etc. These methods either modify the algo-
rithm of the gradient computation or the neural network architecture to produce saliency
maps or heatmaps. By achieving this, they can visualise the gradients, which means iden-
tifying the important features or regions of an input that contribute to the decision.

Figure 2.5: Examples of the produced saliency maps using a single back-propagation pass
through a ConvNet classification neural network [86].

Figure 2.6: Examples of the computed heatmaps using the Layer-wise Relevance Propaga-
tion (LRP) [6].

Example 5. In Figure 2.5, a visualisation of three saliency maps is extracted from input
images using the gradient-based method. The gradients illustrate how much each pixel in
an input image needs to change to impact the model’s prediction. In the figure, the com-
puted gradient in each aliency map indicates which pixels in the image were essential for
the model to make its decision. Another example of interpreting classification decisions is

26 Amany Alshareef

Figure 2.7: Visualisation of DNN intermediate feature layers [100].

illustrated in Figure 2.6, which visualises the pixel-wise decomposition process as heatmaps
using layer-wise relevance propagation. The figure shows the pixel-wise predictions overlaid
with prominent edges derived from an input image. This process involves using the image’s
feature vector representation and calculating relevance scores.

Perturbation-based methods such as Occlusion [100], LIME [78], RISE [74], and Ex-
tremal perturbations [28] that investigate the properties of DNN models by perturbing
their input and observing output changes.

Example 6. Figure 2.7 exemplifies intermediate features of different DNN’s layers. To ex-
plore how discriminative these features are in each layer, an analysis is conducted through
occlusion sensitivity experiments [100] . The method involves systematically occluding dif-
ferent portions of the input image with a grey square and observing the classifier’s output.

These methods are most frequently used in model interpretability, where they provide
visual explanations of the DNN’s important input elements. Nevertheless, these methods
cannot be easily adapted to the purpose of the proposed semantic testing. For example,
the perturbation methods modify pixels in an image or words in a text, which cannot
be directly applied to modify the latent features. Quantifying the DNN’s latent features
importance is the first essential step to explore the DNN’s inner workings.

2.7 Summary

This chapter has provided the essential background about issues concerning DNN and
current testing techniques. The chapter commenced by presenting the DNN terminologies
and mathematical notations used to construct them. It then highlighted various concerns
that arise due to the complexity, ambiguity and inexplicability of DNNs. The chapter then

Chapter 2. Deep Neural Networks Testing: Background and Related Work 27

discussed different DNN aspects that need to be tested, emphasising the Trustworthiness
property. Finally, a comprehensive review of the DNN existing testing techniques was
presented, highlighting their limitations. Testing the behavior of DNN is a critical stage to
ensure their effectiveness, reliability, and safety. The following chapter discusses Bayesian
principles and how they became an integral part of machine-learning models.

Chapter 3

Bayesian Network Abstraction:
Definition and Preliminaries

3.1 Introduction

There is an increasing adoption of Bayesian principles for addressing complex issues in
neural networks [72]. This chapter provides a brief introduction to Bayesian networks,
which are widely used for modelling complex systems. It begins by defining the basic
concepts of Bayesian networks, such as nodes, edges, conditional probability tables, and
Bayesian inference. It then reviews a number of BN modelling strategies for solving several
issues of neural networks. The last section introduces the Bayesian Network abstraction
model and the designed feature coverage metrics, which are essential parts for understanding
the rest of the thesis.

A Bayesian network is a probabilistic graphical model that represents the relationships
between variables and a set of Conditional Probability Tables (CPTs) that specify the
probabilities of each variable given its parents in the graph.

Definition 3.1.1 (Bayesian Network). A Bayesian network over a set of random variables
{X1, X2, ..., Xn} is a pair (G,P), where G is a directed acyclic graph (DAG) G = (V, E)
with n nodes V = {X1, X2, ..., Xn} representing discrete variables and edges E ⊆ V × V

representing the dependencies between the variables. P is a set of conditional probability
distributions, P = {P1(X1|πX1), ..., Pn(Xn|πXn)} gives the probabilities of Xi ∈ V , given
the values of the variables in its parent set πXi [21]. The joint probability distribution is

28

Chapter 3. Bayesian Network Abstraction: Definition and Preliminaries 29

factorised according to the chain rule of probability as:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|πXi) (3.1)

where πXi denotes the set of parent nodes of Xi in the DAG. This factorisation al-
lows efficient computation of the posterior distribution of the variables given evidence or
observations.

Inference in Bayesian networks involves calculating the joint probability distribution
of the variables using the network structure and CPTs, and then computing the posterior
probability distribution of a set of variables given evidence or observations.

The Bayesian view of statistics treats the latent parameters as random variables and
seeks to learn a distribution of these parameters conditional on what is observed in the
training data. The Bayesian theory, therefore, is concerned with the parameter posterior
instead of a point estimate which often leads to overconfident predictions as in DNNs.
Converting a neural network from a graphical function representation to a graphical prob-
ability representation in the form of a Bayesian network can bring numerous improvements
to DNNs. Bayesian networks provide an interpretable model, allowing users to understand
how the model makes predictions and identify the most important features. They can also
provide uncertainty estimates for predictions, which is useful in decision-making processes.
Moreover, Bayesian networks are more robust to noisy and incomplete data than neural
networks.

3.2 Utilisation of Bayesian Networks within Neural Networks

Bayesian theories have the capability of solving machine learning concerns as discussed by
[72]. Bayesian networks are now widely used in deep neural networks for the purpose of
Explainable AI (XAI) [106], DNN robustness and causality [52, 101], uncertainty quantifi-
cation [24], DNN structure learning [80], and dimensionality reduction [70]. This section
presents a short overview of recent work in this area.

The current field of deep learning systems focuses on constructing learning models whose
behaviour is understandable and explainable. Zhao et al. [106] introduced the BayLIME
method (Bayesian Local Interpretable Model-Agnostic Explanations) that can be used to
improve the transparency and interpretability of machine learning models. They inte-

30 Amany Alshareef

grated the Bayesian weighted sum into the LIME framework, one of the most widely used
approaches to XAI, to obtain prior knowledge about the behaviour of the learning model.
The results of the paper show that BayLIME outperforms the state-of-the-art XAI methods,
such as LIME, SHAP, and Grad-CAM, in terms of consistency, robustness, and explanation
fidelity.

For the problem of robustness of deep learning models, Zhang et al. [101] used Bayesian
networks to build NNs robust against input manipulations. For this, the authors propose
the deep CAusal Manipulation Augmented model (deep CAMA). The method exploits the
idea that any input data is caused by its label, latent variables (e.g. writing styles) and
interventions (e.g. rotations, adversarial attacks etc.). One then trains the distribution
described with such a causal Bayesian network, and uses it as a robust classifier. The pa-
per shows that the model outperforms discriminative NNs in terms of robustness against
unseen manipulations, and argues that this is due to the lack of causal reasoning in discrim-
inative NNs. Such a procedure is useful in various applications where robustness against
input manipulations is important, such as image classification, speech recognition, and
medical diagnosis. Similarly, Kristiadi et al. [52] discussed the overconfidence problem in
ReLU classification NNs and how approximate Bayesian inference can improve predictive
uncertainty. The authors theoretically analyse approximate Gaussian distributions on the
weights of ReLU NNs and show that even a simplistic Bayesian approximation can fix these
issues. Point estimates of ReLU classification NNs can yield arbitrarily high confidence far
away from the training data, making the architecture neither calibrated nor robust. “Being
Bayesian, Even Just a Bit” can be a sufficient condition for calibrated uncertainty in ReLU
NNs.

In many other areas, Bayesian networks proved to be a successful approach. Daxberger
et al. [24] proposed subnetwork inference in the task of Bayesian deep learning, tackling
the high computational cost of Bayesian inference with neural networks. The framework
involves performing inference over a small subset of neural network weights while keeping
the other weights as point estimates. The proposed method compares favourably to en-
sembles and less expressive posterior approximations over full networks, resulting in better
uncertainty calibration and robustness to distribution shift. Rohekar et al. [80] tackled the
problem of neural network structure learning as a problem of Bayesian network structure
learning. They did this by constructing a Bayesian network as a hierarchy of independent
features in the input distribution. The proposed algorithm learns the structure of NNs in
an unsupervised manner at a low computational cost. Thus, the method proves useful for

Chapter 3. Bayesian Network Abstraction: Definition and Preliminaries 31

applications with limited computational resources or where the interpretability of the net-
work structure is important. Njah et al. [70] employed Bayesian networks for the purpose of
data dimensionality reduction as an antidote to the curse of dimensionality. They developed
the Interpretable Bayesian Network Abstraction (IBNA) framework, which describes high-
dimensional data features as a set of latent variables. They first partitioned the data into
clusters, such that every cluster was described with one latent variable connected with orig-
inal data features in a Bayesian network. The method shows good performance compared
to categorical PCA, Multiple Correspondence Analysis, and other compression algorithms.
Finally, the authors argued that IBNA can be generalised for continuous variables as well.

Considering the aforementioned recent studies, the Bayesian paradigm in deep learn-
ing has been shown to be crucial for building robust, explainable, safe, and efficient ML.
Bayesian networks, with their causal structure, fit a wide range of applications, and thus
their influence will certainly grow in the future. The following section provides a com-
prehensive review of the BN abstraction model that serves as an underlying basis for the
investigations of the next chapters.

3.3 Bayesian Network (BN) Abstraction Model

This section introduces the terminology of the Bayesian Network abstraction model, do-
nated as BN, that will be used as the foundational framework of the following analysis. Due
to the scalability problem that arises when analysing neural networks, Berthier et al. [9]
used a statistical analysis of activations at network layers, and abstracted the behaviours of
the DNN using a Bayesian Network. The abstraction method identified the hidden features
that had been learned by hidden layers of the DNN, and associated each feature with a node
of the BN. This abstraction scheme is defined as a probabilistic model based on high-level
features rather than low-level neurons. Hence, these extracted latent features considered
the minimal semantic components that can be analysed to understand the behaviour of the
feature space and the internal logic of the analysed DNN.
The process of constructing the BN from a trained DNN involves three main stages:

1. Extraction of hidden features. This stage constructs a mapping from a high-
dimensional space into a feature space. Here, the hidden features learned by the
DNN layers are identified by using feature extraction techniques on neuron activation
values induced by a given training set. The authors implemented two linear feature
extraction approaches: Principal Component Analysis (PCA) and Independent Com-

32 Amany Alshareef

ponent Analysis (ICA), and one non-linear technique: radial basis functions (RBF)
kernel-PCA;

2. Feature space discretisation. Since the extracted features range over a continuous
space, each feature component is discretised into a finite set of feature intervals ac-
cording to different strategies, i.e., Kernel Density Estimation (KDE), uniform-based
and quantile-based discretisation;

3. Bayesian network construction. This consists of representing the probabilistic
distribution of each extracted feature with a node in the BN. Each node is associated
with either a marginal probability table for hidden features of the first (shallowest)
layer, or a conditional probability table (CPT) for hidden or output layers. A simple
CPT representation is possible due to the previous discretisation step.

The remainder of the section comprises four sub-sections. Sub-section 3.3.1 commences
with a brief explanation of the DNN latent features. It then describes the mechanism
for performing the DNN dimensionality reduction using two feature extraction algorithms.
Sub-section 3.3.2 discusses the discretisation techniques employed to divide the extracted
features into specific number of intervals. The process of construction the Bayesian Network
model is considered in Sub-section 3.3.3. Lastly, Sub-section 3.3.4 presents the Bayesian
network feature coverage metrics, which are defined in accordance with the BN model.

3.3.1 DNN Hidden Feature Extraction

A significant factor contributing to the DNN’s effectiveness is its ability to autonomously
learn relevant features from raw data. These autonomously learned features are referred to
as hidden, latent features because they are not directly provided as input or explicitly
taught to the network. Instead, they emerge as a result of the network’s attempt to model
and generalise the data’s underlying patterns and structures [37, 56]. Latent features are the
intermediate and learned non-explicit representations of data within a DNN. These features
capture the essential and often hidden structures and patterns within the input data. Yu
et al. [99] demonstrates that DNNs transform raw input features into more invariant and
discriminative representations through multiple layers of nonlinear processing. As raw
input data is transformed layer-by-layer through the network, the DNN learns hierarchical
representations: simpler features in earlier layers like edges in images, and more complex
high-level features in deeper layers like the shape of an object or even its semantic meaning.

Dimensionality reduction approaches leverage the DNN latent features to extract and

Chapter 3. Bayesian Network Abstraction: Definition and Preliminaries 33

represent the hidden and essential structures of high-dimensional data. The purpose of
dimensionality reduction techniques is to compute a mapping from a high-dimensional
space into a much lower-dimensional space, called the feature space. Computing meth-
ods for such mappings usually rely on statistical principles and operate on a given sample
of high-dimensional data. This section describes the mechanism of two well-known fea-
ture extraction algorithms called Principal Component Analysis (PCA) and Independent
Component Analysis (ICA).

PCA is a widely used dimensionality reduction technique that can be applied to DNNs
to reduce the input space dimensionality. PCA aims to find the orthogonal directions,
called principal components, that capture the maximum variance in the data by projecting
it onto a lower-dimensional subspace. To demonstrate its functioning and assumptions, a
simple example is given in Figure 3.1 which shows a 2D data distribution in (x1, x2) space,
with blue samples representing draws from the distribution. The distributions are clearly
elongated in one particular direction, marked with a black line. The idea of reducing the
dimensionality of this dataset is that the variance in the direction of the red line is not
large and might be negligible. With this illustration, the core of the PCA can be stated

3 2 1 0 1 2 3 4 5

x1

3

2

1

0

1

2

3

4

5

x 2

PC1
PC2

Figure 3.1: Example of the Principle Component Analysis in 2D. Blue points show a data
distribution. Black and red lines show first and second principle component, respectively.

34 Amany Alshareef

as the following: find N directions in the data that have the largest dispersion, and ignore
others by projecting all points on these N dimensions. In the case of Figure 3.1, we want
to lower the dimensionality of the data from 2D to 1D. In order to do that, we calculate
with the PCA black and red directions (i.e. principal components, PCs). Finally, all the
data on the first PC (the black line) is projected, ignoring dispersion in the second PC.

It’s important to keep in mind that the main assumption of the algorithm is that the
data is relatively Gaussian-distributed, and that principal components can be calculated
with a simple linear transformation of the data. To calculate such compression of the data,
firstly, the mean and covariance matrix is estimated:

µ =
1

M

∑
i

xi , (3.2)

Σmn =
1

M − 1

∑
i

(xim − µm)(xin − µn) . (3.3)

Here, xi labels i-th sample of the full vector of data, while xim and xin represent its m-
th and n-th component. In the matrix form, if one writes mean-removed data as (D,M)

matrix X, where D is the dimensionality of the data, and M number of samples, covariance
matrix is then simply

Σ =
1

M − 1
XXT . (3.4)

By writing the Singular Value Decomposition (SVD) of the matrix

X = U S V T , (3.5)

covariance matrix follows as:

Σ = U
S2

M − 1
UT . (3.6)

Here U contains all Eigenvectors, and can be viewed as a rotation matrix. S2/(M − 1)

contains variances in principal components, i.e. their Eigenvalues. By picking N Eigen-
vectors in the directions of the largest eigenvalues, the Ũ is constructed and used for PCA
dimensionality reduction. Compression is then simply obtained as Y = ŨTX, with Y being
a compressed "projected" data.

ICA is another effective method for extracting features from DNN activation. PCA
and ICA are both linear transformation techniques, but they are grounded in different

Chapter 3. Bayesian Network Abstraction: Definition and Preliminaries 35

mathematical concepts and objectives. ICA seeks to find a linear representation of the
data such that the transformed components are statistically independent from each other
by maximising the non-Gaussianity of the data [47]. The primary objective of using ICA
in conjunction with DNNs is to transform the high-dimensional activation vectors from
the network into a set of statistically independent components, which are referred to as
features. These features are intended to represent the most relevant and non-redundant
information present in the original activations.

To compute the ICA, the data should have a zero mean, and then it can be transformed
such that it has an identity covariance matrix:

xcentered = x− µ , (3.7)

C = EΛET . (3.8)

Here, C is the covariance matrix, E contains the Eigenvectors, and Λ is a diagonal matrix
of Eigenvalues. The processed data x can be expressed as:

x = Λ− 1
2ETxcentered. (3.9)

The ICA decomposition goal is to find a matrix W such that y = Wx yields components
y that are statistically independent. Since the objective of ICA is to maximize the non-
Gaussianity of the transformed components, measures like kurtosis or approximations such
as negentropy are used to quantify non-Gaussianity. The optimization problem can be
posed as:

W∗ = argmaxWnegentropy(y) (3.10)

After obtaining the independent components using ICA, the top k components (out of
the total n components) can be chosen to reduce dimensionality. If S is the matrix of
independent components, the reduced data Sreduced can be derived by selecting the top k
components.

Example 7. This example demonstrates how the PCA algorithm is utilised to extract latent
features from DNN’s layers. A set of input data is passed through a pre-trained DNN
model, i.e., Nsm from Appendix A, to obtain the activations from the desired layers. These
activations are then flattened into a 2D matrix and the data is standardised/scaled by making
the mean of the data 0 and standard deviation as 1 using StandardScaler() function. PCA

36 Amany Alshareef

algorithm is implemented on the scikit-learn library, therefore, the decomposition.PCA() is
used to decompose the standardised activation matrix into its principal components. Finally,
the fit function calculates matrix Ũ to obtain the transformed data that contains principal
vectors.

Two extracted principal components from the Nsm layer dense are shown below (the
example shows the first 10 elements for each PC):
1 [[−0.013956366 , −0.00208691 , −0.030311087 , −0.004051855 , −0.004236995 ,

−0.0021598344 , −0.00056796166 , −0.0094258245 , 0 .009113272 ,
0 .01830883 , . . .]

2 [0 .008219812 , −0.000732703 , 0 .028722573 , −0.0017270423 , −0.0041757757 ,
−0.0008947816 , −0.0003945681 , 0 .0045744264 , 0 .029157056 ,
0 .02091162 , . . .]]

Here, each principal component represents a hidden feature, which is donated as F in the
next step that performs the discretisation process.

3.3.2 Discretisation Techniques

Feature extraction techniques result in mappings that range over a continuous and poten-
tially infinite domain. However, the BN-based abstraction technique relies on the construc-
tion of probability tables, where each entry associates a set of distinct hidden feature values
with a probability. For this construction to be relevant, each hidden feature component is
therefore discretise into a finite set of sub-spaces called intervals.

The BN approach employs predefined strategies for both; extracting hidden features
using feature extraction algorithms to identify a number of mappings that correspond to
relevant hidden features, and constructing a discretisation for each of them. One standard
technique to perform the discretisation is the density-based discretisation that is empirically
approximating a probability distribution over a given domain; thus, F component. The
density estimates given in Figure 3.2 are obtained using Kernel Density Estimation (KED).
The plots will be explained in the next example. Another useful approach is a partitioning-
based discretisation that includes:

k-bins-uniform: The set of intervals partitions a given distribution into a specified positive
number k of bins, all of the same width;

k-bins-quantile: The set of intervals is created as above, except that their respective width
is calculated so that every interval holds a similar amount of individual projections
from the F elements.

Chapter 3. Bayesian Network Abstraction: Definition and Preliminaries 37

Example 8. Continuing Example 7, Figure 3.2 illustrates what the discretisation process
is produced. The two plots show the respective distribution values of the two hidden feature
components Fdense,0 and Fdense,1 of the layer dense (the clouds of dots). Given such a
component F, the discussed discretisation strategies can be used to find a partition of its
distribution. In the plots, the discretisation process partitions each horizontal axis into a
set of distinct regions using the KED.

Figure 3.2: Projection onto two hidden feature components Fdense,0 and Fdense,1 of neuron
values induced by a sample of training data Xtrain, associated density estimates (solid lines),
and interval boundaries for discretisation (dashed vertical lines).

3.3.3 Bayesian Network Construction

Preliminaries. Let N be a DNN of a given architecture. For a learning model, the
pair (X,Y) is used to denote the training data, where X is a set of inputs and Y is a
corresponding set of outputs such that |X| = |Y |. Let DX be the input domain and DY

be the output domain, i.e. a set of labels. Hence, X ⊂ DX . The network N consists of
a sequence of layers Layers = (l1, . . . , lK), where every layer li ∈ Layers contains a set of
|li| neurons hi = {ni,1, . . . , ni,|li|}. Each neuron ni,j in hi computes a value n̂i,j in some
domain that is usually assumed to be the set of Real numbers R, and this value is typically
computed as a function of the outputs of neurons in layer li−1. The valuation of all neuron
values n̂i,1, . . . , n̂i,|li| builds up the valuation space Li of all neurons for layer li. The feature

38 Amany Alshareef

Figure 3.3: Structure of the Bayesian Network abstraction after reducing each h1, h2, h3
into two features λi,1 ◦ ĥi and λi,2 ◦ ĥi with two intervals each. The conditional probability
tables are shown for features λ3,1 and λ3,2.

extraction technique, namely PCA, is then used to analyse these neurons values and produce
a set of feature mappings Λi = {λi,j}j∈{1,...,|Λi|}, where each λi,j :Li → Fi,j maps the neuron
valuation space Li into the j-th component of the feature space Fi for layer li. Further, the
value range of each feature, i.e., F ♯

i,j = {f
♯1
i,j , . . . , f

♯m
i,j }, the j-th extracted feature from layer

li, is partitioned into a finite set of m intervals. The ♯ exponents is denoted the discrete
spaces.

As an abstract model of N and its training dataset X, a Bayesian Network (BN) is
a directed acyclic graph BN ,X = (V,E, P), where V are nodes, E are edges that indicate
dependencies between features in successive layers, and P maps each node in V to a prob-
ability table representing the conditional probability of the current feature over its parent
features w.r.t. X.

Example 9. Figure 3.3 gives a simple neural network of 2 hidden layers and its Bayesian
Network abstraction. ĥi is a function that gives the neuron activations at layer li from any

Chapter 3. Bayesian Network Abstraction: Definition and Preliminaries 39

given input sample, and λi,j is a feature mapping from the set Λi = {λi,j}j∈{1,...,|Λi|}. Each
random variable λi,j ◦ ĥi in the BN represents the j-th component of the value obtained
after mapping ĥi into the latent feature space. Since each function λi,j ◦ ĥi ranges over
a continuous space, the respective feature components—which are the codomains of the
λi,j’s—are discretised into a finite set of feature intervals.

Each node in BN abstractions represents an extracted feature: VN ,X =
{

Lf ♯
i,jM

∣∣∣F♯
i,j ∈ F♯

N

}
.

Each node is associated with either a marginal probability table for hidden features of
layer l1, or a conditional probability table for hidden or output layers. In Figure 3.3, the
conditional probability table for the feature component λ3,1 is defined for each feature
interval {(−∞, 3[, [3,+∞)} for layer l3, w.r.t. each combination of the parent feature
intervals from previous layer l2.

Figure 3.4: Illustration of probability tables and feature intervals with a Bayesian network
node.

Example 10. Figure 3.4 illustrates an example node in a BN, which corresponds to the
second extracted feature from the first NN layer, i.e., i = 1, j = 2. The set F ♯

1,2 contains
two intervals, f ♯1

1,2 and f ♯2
1,2, which partition the real line. The node is denoted as a random

variable named λ1,2 ◦ ĥ1, which is associated with a probability table. The probability table
is a marginal probability table because the features on the first layer do not have parent
features. The table says that this feature has probability 0.7 to have a value smaller than 2
and probability 0.3 to have a value no less than 2.

Notation. This part summaries the mathematical notations of constructing the BN in
simple steps to make the developments in the next chapters clearer.

• At first, take a data input x ∈ DX , where DX is the input space.

• Pass the x into a neural network N , the ĥi(x) computes the neurons activation at
layer li: (n̂i,1, . . . , n̂i,|li|) ∈ Li where Li is the valuation space of the i-th layer.

40 Amany Alshareef

• Perform a feature mapping Λi = {λi,j}j∈{1,...,|Λi|}, where each λi,j :Li → Fi,j maps

the valuation space into j-th component of the feature space Fi
def
=

∏
j∈{1,...,|Λi|} Fi,j .

• Discretise each component of the feature space Fi into finite number of intervals
to get F♯

i =
∏

j∈{1,...,|Λi|} F♯
i,j . Here, F♯

i,j is the discretised j-th component of the
feature space for layer i. All in all, a full discretised feature space amounts to
F♯
N =

{
F♯
1,1,F

♯
1,2, . . . ,F

♯
K,|ΛK |

}
. Note that, in the next chapters, the creation of the

representation elements r = Discr♯(Λ(ĥ(x))) ∈ F♯
N goes through all three previous

processes, where ĥ gives the activation values of all layers of the neural network, Λ is
a feature space extraction and Discr♯ is a discretisation process,

• Calculate the probability distribution of the BN

PN ,X

(
f ♯
i,j

)
def
=

P1
(
f ♯k
1,j

)
if i = 1

CPi
(
f ♯k
i,j | F

♯
i−1

)
otherwise

where the unconditional probability and conditional probability table are defined as:

Pi
(
f ♯k
i,j

)
def
= Pr

(
x⇝ f ♯k

i,j

)
,

CP i

(
f ♯k
i,j | F

♯
i−1

)
def
= Pr

(
x⇝ f ♯k

i,j | x⇝ F♯
i−1

)
.

Here x ⇝ f ♯k
i,j denotes that the input x exercises the interval f ♯k

i,j . In practice, this
amounts to iterating over the training set Dtrain:

Pi
(
f ♯k
i,j

)
=

∑
x∈Dtrain

1
(
x⇝ f ♯k

i,j

)
|Dtrain|

,

CP i

(
f ♯k
i,j | F

♯
i−1

)
=

∑
x∈Dtrain

1
(
x⇝ f ♯k

i,j ∧ x⇝ F♯
i−1

)
∑

x∈Dtrain
1
(
x⇝ F♯

i−1

) .

Here, 1 returns 1 if the condition holds, or 0 otherwise.

3.3.4 Bayesian Network-based Coverage Metrics

Two testing coverage metrics are defined based on the above BN abstraction: the BN-based
feature coverage (BFCov) and the BN-based feature-dependence coverage (BFdCov). These

Chapter 3. Bayesian Network Abstraction: Definition and Preliminaries 41

metrics give the proportion of features or causal relationships between features that are
adequately exercised by a set of inputs.

Definition 3.3.1 (BN-based Feature Coverage). Given a trained DNN N , the BN-based
feature coverage of a non-empty set of inputs X ⊂ DX is obtained via the BN abstraction
BN ,X as

BFCov (BN ,X)
def
=

1∣∣∣VN ,X

∣∣∣
∑

Lf♯
i,jM∈VN ,X

∣∣∣{f ♯k
i,j ∈ F♯

i,j

∣∣∣Pi(f ♯k
i,j

)
≥ ε

}∣∣∣∣∣∣F♯
i,j

∣∣∣ . (3.11)

Informally, BFCov (BN ,X) ranges over [0, 1], and gives the percentage of features that
are adequately exercised by X. The interpretation is that the coverage metric accounts for
the number of marginal probabilities for every interval f ♯k

i,j ∈ F♯
i,j in the BN’s node appear

with a probability bigger than ε.

Definition 3.3.2 (BN-based Feature-dependence Coverage). Given a trained DNN N , the
BN-based feature-dependence coverage of a non-empty set of inputs X ⊂ DX is obtained
via the BN abstraction BN ,X as

BFdCov (BN ,X)
def
=

1∣∣∣V +
N ,X

∣∣∣
∑

Lf♯
i,jM∈V

+
N ,X

∣∣∣∣∣∣
(f ♯k

i,j , F
♯
i−1) ∈

F♯
i,j × F♯

i−1

∣∣∣∣∣∣
CPi

(
f ♯k
i,j

∣∣∣F ♯
i−1

)
≥ ε

∨ Pi
(
f ♯k
i,j

)
< ε

∣∣∣∣∣∣∣∣∣F♯

i,j × F♯
i−1

∣∣∣ (3.12)

where V +
N ,X

def
=

{
Lf ♯

i,jM ∈ VN ,X

∣∣∣ i > 1
}

are all nodes in BN ,X with conditional probabilities
tables. The BFdCov (BN ,X) gives the percentage of assumed causal relationships between
features of successive layers that are adequately exercised by X.

Intuitively, a test dataset X satisfies the high-level BN-based criterion if all node values
in the BN appear with a high probability. In other words, if there is no hidden feature
interval is rare w.r.t. the BN, and each combination of intervals is exhibited by X. This
indicates that the DNN’s behaviours represented by the BN are well tested by X. Moreover,
the two above metrics can be combined to deliver a coverage that is consistent and based
on all probability entries of the BN (marginal and conditional distributions) as following:

BFxCov (BN ,X)
def
= BFCov (BN ,X)× BFdCov (BN ,X) . (3.13)

42 Amany Alshareef

In practise, however, these coverage metrics do not achieve 100% coverage, especially
in complex DNN models. This reduces the reliability of the testing, as a fatal error may
hide in a trivial untested regions. Yet, these metrics do not consider the contribution role
of each feature and treat them with equal importance.

3.4 Summary

The fundamental knowledge required for understanding the Bayesian network abstraction
model has been presented in this chapter. The chapter commenced by defining the Bayesian
Network’s main notions, which integrate graph and probability theory to provide a proba-
bilistic approach to making an inference. Numerous investigations conducted over the past
few years have demonstrated the effectiveness of Bayesian networks in resolving existing is-
sues in deep neural networks. These studies have concentrated on different DNNs’ concerns;
however, testing issues are not considered in the context of the Bayesian perspectives, ex-
cept in the detailed feature coverage discussed in the last section. These BN-based feature
metrics are defined based on the abstraction of neural network behaviours subject to a given
dataset. Further analysis is needed to explore the contribution of these identified features
to the DNN’s decision and enhance the testing metrics using the outcome information.

Chapter 4

BN-based Features Sensitivity
Analysis

4.1 Introduction

As discussed in the previous chapters, the level of understanding of a DNN’s underlying
decision processes often lies far below what can reasonably be accepted for standard safety
assurance. Thus, the primary objective of this chapter is to acquire insight into the high-
level representations learnt by neural networks and their semantic mechanisms of decision
making. The study presented in this chapter is primarily concerned with answering the
subsidiary research questions SRQ1 and SRQ2, which were posed in Chapter 1:

1. SRQ1: Is a Bayesian abstraction of a neural network able to systematically analyse
a DNN’s interior decisions?

2. SRQ2: How can the importance of the latent features of a deep neural network be
quantified using an abstracted Bayesian Network?

The current trend of investigating the internal logic of a DNN model in the context
of (for example), eXplainable Artificial Intelligence (XAI) [67], semantic-level robustness
[39, 97], and exhibiting their internal working mechanism through test cases [43], is con-
centrating on the learnt features as a start point. These learnt features are representations
of the data that the DNN has discovered through its training process, and they are used to
make predictions or classifications. Since the BN model presented in Chapter 3 abstracts

43

44 Amany Alshareef

the latent representations of a DNN as a Bayesian network, it can be utilised to study the
behaviour of the extracted features. The general aim ofthe work presented in this chapter
is to evaluate the performance of DNNs by developing weight-based test metrics that are
similar to those described in Subsection 3.3.4 of Chapter 3. However, instead of directly
using the extracted hidden features to measure test coverage, the idea is to first compute a
weight value, wi, for the i-th latent feature, by analysing the BN’s sensitivity to controlled
noise applied to this feature. The test coverage will then be reported based on the weight
of the hidden features.

The weighted scoring mechanism is commonly applied in statistics when certain selected
criteria are assigned more importance than others. In the machine learning context, Fea-
ture Importance (FI) is a measure that describes how much each feature influences the
classifier’s decision, which in turn indicates the importance of the feature for the classifi-
cation. Contrary to the existing notion of feature importance in explanation models [10],
where importance values are assigned to the features that belong to the input space, e.g.,
age, sex, education. Instead, the proposed approach targets the learning models’ latent
feature space and examines how much their deep representation relies on a specific hidden
features to affect their prediction. Applying changes to a vector in the latent space are
semantic (high-level) in terms of the original representation [13]. Therefore, the introduced
FI measure would provide rich characterizations of model-internal representations and their
roles in input/output behavior.

Contribution. The key contribution of this chapter is proposing a method that estimates
the importance of a neural network’s latent features by analysing an associated Bayesian
network’s sensitivity to distributional shifts. This then allows for the definition of semantic
testing metrics and the identification of distributional shifts in the feature space through
the effect a latent feature has on the random variables in BNs.

The chapter also reports on a number of analyses conducted using BN abstraction to
estimate the relative impacts and sensitivity of the latent features. The first analysis, pre-
sented in Section 4.4, was directed at measuring the relative impact one feature has on
another for all feature pairs by estimating how a controlled noise impacts the BN’s proba-
bility distributions. As an advanced approach, the next analysis estimated the sensitivity
of a given latent feature by comparing the probability distributions of training samples
before and after the feature has been perturbed. Figure 4.1 outlines the proposed feature
sensitivity analysis approach.

Chapter 4. BN-based Features Sensitivity Analysis 45

Figure 4.1: Illustration of the proposed BN analysis technique to compute the sensitivity
of extracted latent features.

The structure of the BN in Figure 4.1, is built based on a parameterisable abstraction
scheme that defines a series of DNN layers to consider (conv2d, dense and dense_1 in the
Figure), a feature extraction technique to identify a given number of latent features for
each one of these layers (2 in the example), and a discretisation strategy that determines
the granularity at which values of latent features are aggregated into distinct intervals of
indistinguishable values. Combined with the considered feed-forward nature of the DNNs,
this scheme allows derivation of the structure of a BN, as shown in Figure 4.1. The BN in
Figure 4.1 is constructed from the MNIST CNN modelNsm whose structure is demonstrated
in Appendix A.

In addition, this scheme provides a discretisation function Discr♯, that transforms a set
of inputs X into a low-dimensional, discretised representation RX . In the Figure, the vector
of inputs X is transformed into RX , which associates each input x ∈ X with six feature
intervals, one for each latent feature represented by the BN. e.g., Discr♯(x) may produce
RX = [1, 2, 1, 1, 0, 2]. The six values in the vector are the computed feature intervals
w.r.t. the input x resulting from the feature mapping and discretisation step. As the BN
assigns a probability to an input sample that belongs to the distribution it represents, the
probabilities of a sample under a given BN before and after a perturbation can be observed.
To do so, an interior analysis on RX is conducted by calculating the probability of each
sample under the BN B. After that, the process iterates over all considered latent feature
f , and shift the associated intervals in RX to produce a modified R′

Xf
w.r.t. the feature

46 Amany Alshareef

f , and calculates its probability belonging to the BN B distribution. The term intervals
shifting refers to a technique used to artificially simulate a controlled distribution shift
by randomly shifting intervals in the selected feature space. To identify the impact of a
perturbation, a distance between the original probability vector and the probability vector
obtained from the perturbed features is computed.

The rest of this chapter is organised as follows. Section 4.2 gives a brief background on
the core concepts needed to understand the work presented in this chapter. Next, Section
4.3 introduces the preliminaries operations required to proceed with the next sections.
This is followed in Section 4.4 by a detailed description of the proposed Bayesian network
features sensitivity analysis algorithm, which is based on the BN abstraction scheme and is
designed to analyse the internal representation of a DNN. A feature importance measure is
introduced at the end of the section. In Section 4.5 the results of an extensive evaluation
concerning latent features sensitivity to perturbation and adversarial distribution shift are
presented. The final two sections of this chapter raise some discussion about the used
methodology and conclude the work presented.

4.2 Background and Related Work

This section provides fundamental background details concerning DNN latent features in-
tended for analysis in this chapter. First part explains the concept of a DNN latent feature
space and provides a visualisation of what latent features look like within that space. The
second part discusses the robustness of DNN internal representations, referred to as latent
features. Finally, the third part reviews related work on performing BN sensitivity analysis,
highlighting the benefits of sensitivity analysis and the different approaches employed to
execute it.

Latent Feature Space. The neural networks’ latent feature space refers to the internal,
hidden representations learned by the network. These representations are not directly
observable, but rather are formed as a result of the network processing training data and
capture their important patterns [8]. It is considered compressed data, in which similar
data points are closer together in the representation space. This fundamental aspect of
DNNs, where they capture complex relationships and higher-level abstractions in the data,
are difficult or impossible to model with traditional machine learning algorithms. The term
"latent" implies the fact that these features are not explicitly defined or labeled in the input

Chapter 4. BN-based Features Sensitivity Analysis 47

Figure 4.2: A visualisation of three extracted features using PCA from one CNN layer.

data, but rather emerge through the learning process of the network. For example, in a DNN
for image classification, the latent features in the hidden layers might represent abstract
concepts such as edges, corners, or textures that are relevant to distinguishing between
different classes of images. Figure 4.2 illustrates three features components extracted from a
convolutional neural network’s dense layer using a Principal Component Analysis algorithm.

The latent feature space is a critical component to be investigated when analysing ma-
chine learning decision systems because it encodes the meaningful internal representation of
the observed data. Since it is a lower-dimensional space that captures the essential features
of the input data, it is often used as a starting point for further analysis or processing.

Robustness of Neural Network Latent Features. Features play an essential role
in the field of image processing and classification. They are considered to be the basic
conceptual components of the semantics of an image. Similar to this feature behaviour
study, there are recent researches concentrated on the feature space to study the hidden
semantic representation of intelligent models. Ilyas et al. [48] categorised useful features
in the input-space into robust and non-robust features. They demonstrate that adversarial
perturbation can arise from flipping non-robust features in the data that are useful for

48 Amany Alshareef

the classification of regular inputs in the standard setting. They further argue that ML
models are highly vulnerable to adversarial examples due to the presence of these useful
non-robust features. This was further emphasised by Madaan et al. [63], who showed that
the factor causing the adversarial vulnerability is the distortion in the latent feature space.
They therefore concluded that properly learning the compact low-dimensional space, that
captures the underlying structure and patterns of the input data makes DNNs achieve
high levels of accuracy and generalisation of performance on a wide range of tasks. Going
beyond this existing work, which justify the need for considering features (instead of pixels
or neurons), the next section study the causality relation between features by constructing
a formal model, namely a Bayesian network.

Bayesian Networks Sensitivity Analysis. Sensitivity analysis in Bayesian networks
is concerned with understanding how a small change in the network parameter values may
affect the final results drawn based on the network. Through sensitivity analysis, one can
obtain essential insights into the model’s behaviour and its response to varying inputs [11].
The key aspect of performing a sensitivity analysis on a Bayesian network can be listed as
follows:

• Quantify the impact of different nodes on a target node;

• Discover important features that have significant influence on the classifier decision;

• Determine sensitive parts of the network that might cause network vulnerability.

Several Bayesian network sensitivity analysis techniques have been developed to assess
the impact of changes in input variables on the model’s outputs or predictions. Castillo
et al. [16] studied the sensitivity of the conditional probabilities of a Bayesian network to
small changes in parameter values using symbolic probabilistic inference. Their aim was to
examin the algebraic and dependency structures of the BN probabilities of a target node
given an evidence. Castillo and Kjærulff [15] analysed sensitivity in Gaussian Bayesian
networks using symbolic propagation. They demonstrated how changes in parameter and
evidence values affected marginal and conditional probabilities. The authors in [34] also
addressed the sensitivity in Gaussian Bayesian networks, however, their method was based
on the Kullback–Leibler divergence. While these Bayesian network sensitivity methods
are focused on varying one of the network’s parameter probabilities and keeping all other
parameters fixed, [17] considered multiple parameter changes.

Chapter 4. BN-based Features Sensitivity Analysis 49

Nevertheless, sensitivity analysis cannot be directly applied in the traditional sense us-
ing abstracted BNs, where the sensitivity is performed on a BN with parametric probability
distributions by changing the BN parameter from the input space and observing how that
influences the final decision. Instead, since the proposed BN analysis targets the latent
features in the low-dimensional space with discrete BN distributions, the method measures
how sensitive are the BN probability distributions to changes in the values of hidden fea-
tures. This process gives insight into how such perturbations impact the inner Bayesian
network distribution and hence reflect the ground truth of the neural networks’ behaviour
in the presence of adversarial inputs.

Throughout this chapter, the Bayesian Network probability distribution is used to study
neural networks latent features and analyse their deep representations.

4.3 Preliminaries

At the core of the approach lies the proposed BN-based latent feature analysis algorithm,
the preliminaries presented in this section introduce how the BNs that have been discussed
in Chapter 3 are utilised as an explainable abstraction of DNNs’ latent features.

4.3.1 Data Abstraction Through a Bayesian Network

A set of probability tables can be fitted in a BN abstraction B by using a training sample X.
This process first transforms X by means of the discretisation function to obtain a vector
of elements from the discretised latent feature space RX = Discr♯(X). It then updates the
probability tables in B in such a way that the joint probability distribution it represents
fits the distribution of RX . The fitted BN B can then be queried for the probabilities of the
discretised input sample RX′ . This query operation is denoted as Pr(RX′ ∈ B), and may
abuse this notation by defining Pr(X ′ ∈ B) = Pr

(
Discr♯(X ′) ∈ B

)
.

4.3.2 Perturbation of Latent Features

A feature is formally defined as a pair (i, j), where i indexes a layer li ∈ L, and j identifies
a component of the extracted feature space for layer li, i.e., j ∈ {1, . . . , |Λi|}. Note that, the
layer index i can be replaced with the explicit layer name for some experiment clarification.
The developments in the next Section rely on the application of a controlled change of
a feature (i, j) in an element Rx of the latent feature space. This operation simulates

50 Amany Alshareef

a distortion in single targeted component of the latent feature space by substituting its
associated interval with an adjacent one, it is assumed that each latent feature component
is partitioned into at least two intervals. When an interval has two neighbours, the function
chooses uniformly at random between them. This operation is denoted with the function
random_shift(Rx, i, j), which replaces the feature interval f ♯k

i,j of Rx with either f ♯k−1
i,j or

f ♯k+1
i,j . For instance, assuming two hidden feature components extracted from activations

at two layers of a DNN, each component being discretised into small-enough intervals, i.e.,
10 intervals, random_shift((f ♯4

0,0, f
♯7
0,1, f

♯1
1,0, f

♯9
1,1), 1, 0) returns either (f ♯4

0,0, f
♯7
0,1, f

♯0
1,0, f

♯9
1,1) or

(f ♯4
0,0, f

♯7
0,1, f

♯2
1,0, f

♯9
1,1).

4.4 BN-based Latent Feature Analysis

This section develops several BN-based analysis approaches employed to gain insights on
latent features. The first approach produces a pairwise comparison matrix that exhibits the
relative impact the latent features have on each other. Next, the BN is leveraged to estimate
the sensitivity of an individual feature to a controlled distribution shift. It then describes
how the sensitivity analysis technique can be applied to define feature importance based
on a generic definition of weights on features. Finally, the last part formalises a concrete
definition of weights based on the BN-based feature sensitivity. Each is discussed in further
detail in the following three Sub-sections.

4.4.1 Pairwise Comparison

The pairwise comparison was designed to assess the degree to which the extracted features
can affect each other by comparing the parallelised Conditional Probability Tables (CPTs)
of a sample, under a BN, with the CPTs of the same sample after perturbing the features
intervals of the BN. The pairwise comparison method is created to make a recursive com-
parison. It begins by extracting a set of inputs X from training data, and computing its
feature intervals with Discr♯. This produces a sample RX of intervals w.r.t. X. To generate
the probability tables, the Bayesian network is fitted with RX , which gives the clean refer-
ence probability tables CPTs(RX). Figure 4.3-(a) shows the CPT for feature (3, 0), which
is the first extracted feature from the third NN layer, named dense_1 in the BN drawn in
Figure 4.1.

To extract knowledge about a given feature’s independence and robustness, a controlled

Chapter 4. BN-based Features Sensitivity Analysis 51

Figure 4.3: A toy example, with only three intervals for each feature, illustrates the con-
ditional probability table for the first extracted feature from layer dense_1, named (3, 0),
before and after shifting intervals of feature (2, 0) in the dataset used to fit the BN.

change is applied to the targeted feature f , by using the random_shift operation to shift
f ’s intervals in RX to obtain R′

X . Then the BN’s probabilities are re-fitted with R′
X , which

gives the modified probability tables CPTs(R′
X) w.r.t. the perturbed feature f , examplified

in Figure 4.3-(b). To identify the impact, we use the Mean Squared Error (MSE) between
each corresponding table in the reference CPTs(RX) and generated CPTs(R′

X).

Example 11. The results of pairwise comparison of latent features perturbation are illus-
trated in the following example. The investigation concentrates on the BN given in the
Figure 4.1.

Table 4.1 reports a pairwise comparison matrix outcome, where the perturbed features
are arranged in the first column and compute their impact on each feature (i, j)’s probability
tables. The numbers reported in this matrix represent the change in the probability values.
For instance, the controlled perturbation of feature (2, 0) intervals has an impact on features
(3, 0) and (3, 1) values. More specifically, the MSE between the (3, 0) probability tables
for feature (3, 0), given in Figure 4.3 (a) before and (b) after perturbing feature (2, 0), is
0.011 291.

52 Amany Alshareef

(1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1)
perturbed feature

(1, 0) 0.003012 0.000000 0.008584 0.008075 0.000000 0.000000
(1, 1) 0.000000 0.002569 0.007831 0.008654 0.000000 0.000000
(2, 0) 0.000000 0.000000 0.014261 0.000000 0.011291 0.008066
(2, 1) 0.000000 0.000000 0.000000 0.010236 0.008892 0.011429
(3, 0) 0.000000 0.000000 0.000000 0.000000 0.022857 0.000000
(3, 1) 0.000000 0.000000 0.000000 0.000000 0.000000 0.016100

Table 4.1: Pairwise comparison matrix for six extracted features. Each cell describes the
extent to which a feature (rows) affects the others (columns).

Discussion. Suppose the diagonal line of the pairwise matrix is set to zeros since the
change is made from the feature itself. In that case, one can observe that the perturbations
are not affecting the probability of features from the previous layer (parent features) or the
same layer as expected. On the other hand, random shifting only influenced the immediate
features in the next layer. The largest difference occurred on feature (3, 1) when perturbing
feature (2, 1). Although this impact is relatively small, can be observed (as expected) the
dependencies between latent feature values of the BN model. Note that, the perturbations
do not change the features’ probability for deeper layers, e.g., features of Layer 3 are not
affected by the perturbation made on features of Layer 1. This is because of the inherent
structure of the original DNN, from which the Bayesian Network is built, where features
from the DNN layer li are influenced only by features in layer li−1.

4.4.2 Feature Sensitivity Analysis

The core benefit of relying on a Bayesian network is to have a model that exhibits the
relevant theoretical aspects of Bayesian analysis. And, as stated, Bayesian Sensitivity
analysis helps identify influential variables and quantify their effects. To estimate the
sensitivity of the abstraction scheme on a given latent feature, we measure the impact
of artificially perturbing the intervals representing the selected feature on the probability
distribution represented by the BN. In this algorithm, the BN is already fitted using a
training dataset, and the distribution it represents does not change.

The feature sensitivity analysis is given in Algorithm 1. This procedure receives an
input sample X, taken from the training dataset, and first performs the feature projection
and discretisation step with Discr♯ to obtain the associated feature intervals RX . Not that;
the number of features and intervals were specified in the BN construction phase. It then

Chapter 4. BN-based Features Sensitivity Analysis 53

Algorithm 1 BN-based Feature Sensitivity Analysis
Input: Bayesian network B and associated feature mapping & discretisation function
Discr♯, training dataset X, distance metric dp.
Output: Mapping associating a distance measure with each considered latent fea-
ture
1: Compute the feature intervals w.r.t. X:

RX = Discr♯(X)
2: Compute the reference probabilities of RX w.r.t. B:

Pref = Pr(RX ∈ B)
3: for each considered feature f = (i, j) do
4: P ′

f = ⟨Pr(random_shift(Rx, i, j) ∈ B)⟩Rx∈RX

5: df = dp

(
Pref , P

′
f

)
6: end for
7: return distances df , for all f

calculates the probability of each element of RX w.r.t. the BN B; this gives the vector
of reference probabilities Pref , that associates a probability with each set of abstracted
latent features that are elicited by each x in X. Then, for each extracted feature f , a
random perturbation is performed in RX via the random_shift function introduced in the
preceding Sub-Section 4.3.2. This leads to a second vector, that holds the probabilities of
the resulting R′

Xf
w.r.t. the BN B. The given distance dp between these two probability

vectors for the perturbed feature f is eventually computed.
The author chooses to make the feature sensitivity analysis algorithm parametric in the

distance metric p for the purposes of easing further experimental use of the FI measure.
The considered distances are:

• Lp’s with different norms, typically 0, 1, 2, or ∞;

• corr is the correlation distance;

• cos is the cosine distance;

• KL is the Kullback-Leibler divergence;

• JS is the Jensen-Shannon distance, that is a metric that measures the similarity
between two probability distributions based on entropy computations;

• W1 is the first Wasserstein distance between two probability distributions;

54 Amany Alshareef

• MSE is the mean squared error ;

• RMSE is the root mean squared error ;

• MAE is the mean absolute error ;

• AF is a special purpose anti-fit divergence, which we define based on the coefficient of
determination R2. R2 is a score that is typically used as a “goodness-of-fit” measure
for regression models, and we refer to it as scoreR2 . While the maximal score is
1 (indicating a perfect fit), the score decreases with the amount of variance in P

that is not in Q and can take negative values. With this we define dAF(P,Q) =

1− scoreR2(P,Q).

The rationale of using scoreR2 as a basis for measuring the divergence is that we can
view the probability vectors for perturbed features as output by a model. Divergence
will be large when the effect of the perturbation is significant, and small when the
model is not (very) sensitive to the perturbation.

Example 12. The plot in Figure 4.4 gives an example distributions of probabilities in
vectors obtained from the BN abstraction of the MNIST model with two extracted features
per layer and five discretised intervals (the BN in Figure 4.1). Each one of these plots is
annotated with various measures of distances between the reference probabilities Pref that is
generated using a sample from the training data set, and the respective six perturbed features
probabilities P ′

f . The shown difference between these two probability distributions illustrates
the internal change in the distribution represented by the BN. For instance, when applying
the random_shift on the first feature that is extracted from the first selected layer i.e.,
perturbed feature (1,0), the calculated probability distribution P ′(1, 0), coloured with blue,
shows a change on probabilistic causal relation that implies the change on the probability
represented by the BN.

4.4.3 Feature Importance

Each extracted feature fi,j ∈ F ♯ is associated with a weight wfi,j based on the set of
measured sensitivity distances as follows:

wfi,j =
dfi,j∑

fi,j∈F ♯ dfi,j
(4.1)

Chapter 4. BN-based Features Sensitivity Analysis 55

Figure 4.4: Density of probability distributions for each perturbed feature P ′
f (coloured

blue) overlapped with the BN reference probabilities Pref . Each plot shows various distance
measures between the two distributions.

where F ♯ is the set of considered latent features. The weighting Equation (4.1) acts as a
normalisation function, i.e., it ensures the sum of the feature components’ weights equals
one. The normalised importance weight for each feature is usually positively correlated
with the respective probabilities distances.

Example 13. Continuing Example 12, the computed sensitivity distances for each perturbed
feature are summarised in the Table 4.2. Assuming the dcorr distance is chosen to determine
feature importance, the Equation 4.1 produces the following scores: feature (1, 1) is assigned
the largest weight at 0.191 915 22, followed by feature (2, 1) at 0.182 008 56. The remaining
weights are as follows: wf2,0 = 0.17089575, wf3,1 = 0.16851988, wf3,0 = 0.14533679, and
lastly, wf1,0 = 0.1413238 which consider a less important feature that has a miner impact
on the network internal representation.

The importance weight for an extracted latent feature of a DNN’s layer reflects some

56 Amany Alshareef

distance dL1 dL2 dL∞ dJS dcorr dcos dMSE dRMSE dMAE dAF

perturbed feature

(1, 0) 150 0.73 0.00956 0.224 0.142 0.114 0.000000879 0.000937 0.000249 0.278
(1, 1) 340 1.18 0.00989 0.353 0.448 0.361 0.00000232 0.00152 0.000567 0.735
(2, 0) 325 1.09 0.00946 0.365 0.332 0.267 0.00000198 0.00141 0.000541 0.625
(2, 1) 360 1.16 0.0103 0.393 0.395 0.323 0.00000224 0.00150 0.000600 0.710
(3, 0) 276 0.88 0.00889 0.258 0.170 0.137 0.00000129 0.00114 0.000460 0.408
(3, 1) 315 1.07 0.00960 0.324 0.318 0.264 0.00000192 0.00139 0.000525 0.608

Table 4.2: Example distance measures.

relevant amount of information/variance that the abstracted DNN uses at the considered
layer. Although the current abstraction scheme does not relate latent features with the
DNNs’ decisions, which is explored in the next chapter, perturbing a specific part of the
latent space and observing the implicit changes of the learning models’ distribution con-
tributes to understanding their internal decisions.

4.5 Experiments

This section presents the results of a set of experiments designed to assess the effectiveness
of the BN sensitivity analysis method in examining the behaviour of the latent features
under perturbation. First, the sensitivity distance was calculated, and weight was assigned
in accordance with these calculations. Next, an empirical evaluation of the sensitivity
of BN abstractions at detecting distribution shifts induced by adversarial examples was
conducted. The section is divided into three Sub-Sections. Sub-Section 4.5.1 provides a
description of the datasets and models utilised to conduct the experiments and the specified
setup to construct the BNs. The evaluation of the sensitivity analysis given in Algorithm 1
was conducted in Sub-Section 4.5.2 to quantify the impact of perturbations in latent fea-
tures on the BN distribution. In Sub-Section 4.5.3, the objective was to examine the BN
sensitivity measure in the presence of adversarial distribution shifts instead of the designed
random_shift. The outcomes from the adversarial shift detection experiments were pre-
sented and discussed in the results paragraph.

4.5.1 Datasets and Experimental Setup

Two trained Convolutional Neural Network (CNN) models were trained for the experiments:
the first one targeted the MNIST classification problem (layers are listed in Table A.3

Chapter 4. BN-based Features Sensitivity Analysis 57

in Appendix A) with 99.38% validation accuracy, and the second model targeted the
CIFAR-10 dataset (Table A.5) with 81.00% validation accuracy. The models are reasonably
sized, with more than 15 layers including blocks of convolutional and max-pooling layers,
followed by a series of dense layers. They have 312 202 and 890 410 trainable parameters,
respectively.

The Bayesian Network abstraction scheme accepts a wide range of feature extraction
techniques and discretisation strategies. To explore their impact on the presented approach,
a wide set of the BN abstractions were considered. Two linear feature extraction techniques
were examined: Principal Component Analysis (PCA) and Independent Component Anal-
ysis (ICA); and one non-linear technique: radial basis functions (RBF) kernel-PCA. The
author decided to fix the number of extracted features at three features per layer; this choice
of a relatively small number of hidden features enables the use of many intervals (5 or 10) for
their discretisation while still obtaining reasonably-sized probability tables. Both uniform-
and quantile-based discretisation strategies were applied, with or without the addition of
two left- and right-most intervals that do not contain any element of the training sample.
Finally, three hidden layers are considered to construct the BN abstractions: for the two
models, the first two selected layers directly follow a block of convolutions, while the last
is a dense ReLU layer that is situated few layers before the NN’s output layer. Namely,
’max_pooling2d’, ’max_pooling2d_1’, and ’activation_4’ (see Tables A.3 and A.5). The
layers chosen criteria is based on a belief that the activation values at these layers capture
relevant patterns w.r.t the NN decisions.

4.5.2 Sensitivity to Perturbation

The experiments reported in this section were designed to evaluate the proposed features
sensitivity to a designed perturbation through the random_shift. The algorithm generates
the RX from training data Xtrain and calculate their probability distribution w.r.t. to the
BN. It then iterates over all nine latent features for both models and shifts their intervals
and re-calculate their probabilities under the BN. The plot in Figure 4.5 illustrates the
probabilities distributions for the original Pref probability vector and the probability vector
for each perturbed feature obtained from the BN abstraction of the MNIST model.

Figures 4.6 and 4.7 quantify the difference between the original distribution represented
by the BN and the resulting distribution after each perturbation for both the MNIST and
CIFAR10 models, respectively. Various metrics of distance between the reference probabil-

58 Amany Alshareef

Figure 4.5: Probabilities distributions of nine perturbed features from the MNIST model.
The probability in the last row is the clean Pref probability.

Chapter 4. BN-based Features Sensitivity Analysis 59

Figure 4.6: Distributions of probabilities for each perturbed feature obtained from the BN
abstraction of the MNIST model. Each plot shows respective distance measures w.r.t. the
probabilities obtained from the BN for the clean unperturbed features Pref -shown in the
last row.

60 Amany Alshareef

Figure 4.7: Distributions of probabilities for each perturbed feature obtained from the BN
abstraction of the CIFAR10 model.

Chapter 4. BN-based Features Sensitivity Analysis 61

ities Pref and the respective nine perturbed feature probabilities P ′
f are annotated on plots.

The computed difference between these two probability distributions illustrates the internal
change of the BN distribution. Consequently, we can determine the safety violation risk by
comparing an input probability belonging to the BN probability distribution.

Assigning features weights. The computed sensitivity distances for both models are
normalised to produce the importance weights presented in Table 4.3. As can be seen, each
distance metric produced different weights according to its definition. A specific method will
be discussed in the next chapters to determine the best distance measure to be considered
for assigning weights through the testing process.

distance: dL1 dL2 dL∞ dJS dcorr dcos dMSE dRMSE dMAE dAF

pert_feat

(1, 0) 0.116 0.118 0.119 0.125 0.154 0.146 0.125 0.118 0.116 0.125
(1, 1) 0.114 0.106 0.093 0.107 0.088 0.085 0.100 0.106 0.114 0.100
(1, 2) 0.114 0.111 0.105 0.111 0.101 0.101 0.110 0.111 0.114 0.110
(2, 0) 0.113 0.112 0.114 0.101 0.109 0.106 0.113 0.112 0.113 0.113
(2, 1) 0.117 0.118 0.119 0.126 0.132 0.136 0.125 0.118 0.117 0.125
(2, 2) 0.114 0.116 0.119 0.117 0.113 0.121 0.121 0.116 0.114 0.121
(3, 0) 0.110 0.117 0.119 0.127 0.141 0.142 0.124 0.117 0.110 0.124
(3, 1) 0.102 0.101 0.097 0.094 0.080 0.082 0.091 0.101 0.102 0.091
(3, 2) 0.099 0.101 0.115 0.093 0.081 0.081 0.091 0.101 0.099 0.091

distance: dL1 dL2 dL∞ dJS dcorr dcos dMSE dRMSE dMAE dAF

pert_feat

(1, 0) 0.103 0.103 0.095 0.086 0.099 0.094 0.094 0.103 0.103 0.094
(1, 1) 0.096 0.091 0.109 0.088 0.062 0.059 0.074 0.091 0.096 0.074
(1, 2) 0.128 0.130 0.115 0.142 0.148 0.152 0.150 0.130 0.128 0.150
(2, 0) 0.114 0.118 0.115 0.120 0.141 0.142 0.123 0.118 0.114 0.123
(2, 1) 0.110 0.110 0.109 0.113 0.116 0.114 0.107 0.110 0.110 0.107
(2, 2) 0.109 0.104 0.110 0.098 0.096 0.091 0.096 0.104 0.109 0.096
(3, 0) 0.115 0.117 0.113 0.092 0.097 0.092 0.121 0.117 0.115 0.121
(3, 1) 0.124 0.123 0.116 0.145 0.146 0.156 0.134 0.123 0.124 0.134
(3, 2) 0.101 0.105 0.117 0.116 0.095 0.100 0.099 0.105 0.101 0.099

Table 4.3: Calculated weights from the sensitivity distances using various measures, for
the MNIST model on top and CIFAR-10 in the bottom. The headers show the considered
distances: dL1 , dL2 , dL∞ , dJS , dcorr , dcos , dMSE , dRMSE , dMAE , and dAF . The first column
in each table indicates the perturbed feature that is under investigation.

62 Amany Alshareef

10 20 30
Itrations

0.0

0.2

0.4

0.6

0.8

1.0

Cor
rela

tion
 dis

tan
ce perturbed feature

(max_pooling2d, 0)
(max_pooling2d, 1)
(max_pooling2d, 2)
(max_pooling2d_1, 0)
(max_pooling2d_1, 1)
(max_pooling2d_1, 2)
(activation_4, 0)
(activation_4, 1)
(activation_4, 2)

Figure 4.8: Correlation distance between Pref and P ′
f for 10, 20, and 30 iteration of per-

turbation. Hue indicates each perturbed feature f with specific colour.

Further details. In the process of calculating BN probabilities, we can grow the vector
of these probabilities, i.e., Pref and P ′

f , with duplicates whatever much we desire to obtain
statistically significant results. This is implemented by tiling the Pref vector i-th times,
and perform random_shift on each feature i-th iterations, i.e., Perturbing feature 0 of layer
activation_4 (iteration 3/10). Figure 4.8 shows a selected distance (Correlation) calculated
between Pref and P ′

f vectors of 10, 20, and 30 iteration of tiling and perturbation. The
chart in Figure 4.8 exhibits consistency distance for all iterations, suggesting the iteration
of 10 serves the purpose of making internal changes in the BN distribution. Furthermore,
as a preliminary assessment, we have checked the distance between the first and second half
of P ′ is close to 0. This specific examination is to ensure that the distance is meaningful
and the 10 iterations was sufficient.

4.5.3 Sensitivity to Adversarial Distribution Shift

A set of experiments were carried out to assess whether the set of three features extracted
for each considered hidden layer allowed for the capture of relevant properties of the learnt
representations. In particular, to check whether the BN abstraction would detect the shift
in the distribution of inputs that occurs when the NN is subject to adversarial examples.
In other words, the experiments were aimed at discovering whether some distance measures
indicated that the BN abstractions capture relevant latent features (and their dependencies)
with sufficient precision to associate diverging probabilities between “legitimate” inputs

Chapter 4. BN-based Features Sensitivity Analysis 63

and adversarially perturbed ones. If such is the case, the results should conclude that
the abstraction scheme and the associated BN are sufficiently precise to capture relevant
dependencies in latent feature values that may not be matched (or matched too well,
depending on the sign of the actual difference in probabilities) by some adversarial inputs.

To carry out these experiments, the following adversarial attacks were selected:

fgsm is the Fast Gradient Sign Method of Goodfellow et al. [35];

pgdlinf and pgdl2 are the Projected Gradient Descent approach of Madry et al. [65] with
L∞ and L2 norm, respectively;

cwlinf and cwl2 are Carlini and Wagner [14]’s attack with L∞ and L2 norm, respectively,
both targeting 0.1 confidence;

deepfool is the DeepFool attack by Moosavi-Dezfooli et al. [68].

Attacks involving the L∞ norm target a maximum of ε = 0.1 perturbation in the input
images, whereas pgdl2 targets a maximum perturbation ε = 10.

For each attack, an adversarial dataset Xattack was generated from the validation dataset
Xtest for both the MNIST and CIFAR10 models, where each dataset consisted of 10 000
inputs. Then, for each attack and BN abstraction B built and fitted using 20 000 elements
drawn from the respective training datasets, a set of distances p were measured between
the vectors of probabilities Pr(Xtest ∈ B) and Pr(Xattack ∈ B), denoted:
dp(Pr(Xtest ∈ B) ,Pr(Xattack ∈ B)).

Results

Figure 4.9 shows the results for three selected distances L2, cos, and AF . More detailed
results are given in Appendix B. Each chart in the figure illustrates the calculated distances
with four colours according to the discretisation method and the number of intervals in the
vertical axis, using three sets of feature extraction techniques (pca, ica, and rbf.kpca) in
the horizontal axis. The used distance metric and attack type are shown at each chart’s
top. First of all, it can be observed that some combinations of abstractions and distance
measures exhibit notable differences between the validation dataset and the adversarial
one for some attacks. For instance, every distance shown allows us to measure a shift
in input distribution for every attack, except Carlini and Wagner [14]’s in some cases.
Next, although the feature extraction technique does not have a noticeable impact on any

64 Amany Alshareef

0.00

0.25

0.50

p = L2 | fgsm p = L2 | pgdlinf p = L2 | pgdl2 p = L2 | cwlinf

uniform5
quantile5
uniform10
quantile10

p = L2 | cwl2 p = L2 | deepfool

0.0

0.5

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

p = cos | fgsm p = cos | pgdlinf p = cos | pgdl2 p = cos | cwlinf p = cos | cwl2 p = cos | deepfool

pca ica rbf_kpca
0.0

0.5

1.0

p = AF | fgsm

pca ica rbf_kpca

p = AF | pgdlinf

pca ica rbf_kpca

p = AF | pgdl2

pca ica rbf_kpca

p = AF | cwlinf

pca ica rbf_kpca

p = AF | cwl2

pca ica rbf_kpca

p = AF | deepfool

0

2

p = L2 | fgsm p = L2 | pgdlinf p = L2 | pgdl2 p = L2 | cwlinf p = L2 | cwl2 p = L2 | deepfool

0.0

0.5

1.0

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

p = cos | fgsm p = cos | pgdlinf p = cos | pgdl2 p = cos | cwlinf p = cos | cwl2 p = cos | deepfool

pca ica rbf_kpca
feature extraction

0

10

p = AF | fgsm

pca ica rbf_kpca
feature extraction

p = AF | pgdlinf

pca ica rbf_kpca
feature extraction

p = AF | pgdl2

pca ica rbf_kpca
feature extraction

p = AF | cwlinf

pca ica rbf_kpca
feature extraction

p = AF | cwl2

pca ica rbf_kpca
feature extraction

p = AF | deepfool

Figure 4.9: Selected distances (vertical axes) between probability vectors obtained for the val-
idation dataset (Pr(Xtest ∈ B)) and probability vectors (Pr(Xattack ∈ B)) obtained for datasets
generated by selected adversarial attacks (shown on each column), for a range of BN abstractions
B. The top (resp. bottom) three rows show results for the MNIST (resp. CIFAR10) model. Hue
indicates the discretisation strategy and the number of intervals. The grey vertical lines show
confidence intervals.

measured distance, the discretisation strategy certainly plays a role in the ability of the BN
to model each abstracted latent feature and their dependencies with sufficient precision.

Chapter 4. BN-based Features Sensitivity Analysis 65

For example, in the first row of the CIFAR-10 experiment (L2 distance), the distribution
shift is detected when using the uniform-based discretisation method with five intervals
(distance with blue color).

Overall, the experimental results demonstrated that computing distances between two
BN probability distributions, clean and perturbed by intervals-shift or adversarial attacks,
can detect the distribution shift where it exists. It should be noted that, in the case of
adversarial shift, this is measured based on the latent features only. Given this empirically
confirmed property, BN-based computation of feature importance appears to be one tool,
which adds to the growing set of useful techniques for the detection of important features as
well as of adversarial examples. What is more, it adds a semantic twist to this analysis and
allows for explaining in which way the changes in the features contribute to the distribution
shift.

4.6 Discussions

A further discussion of a few aspects related to either the used method or the potential
applications of the method is addressed in this section.

Hyper-parameters in BN Construction. The parametric nature of the scheme ad-
vanced by Berthier et al. [9] enables the exploration of a wide range of DNN abstractions.
For instance, in the previous experiments, the sensitivity to adversarial distribution shift
relied most on the linear dimensionality reduction techniques to extract latent features.
Further experiments with more non-linear feature extraction techniques, like manifold learn-
ing [57], are desirable to assess the properties of extracted features in extended cases. The
effect of more advanced discretisation strategies can also be explored, for instance by rely-
ing on kernel density estimations to partition each latent feature component into intervals
that span across ranges of the real line that are either densely or non-densely exercised by
the training sample.

Hyper-parameters in Weight Quantification. There are a number of building blocks
in the weight quantification method (Algorithm 1), including: the perturbation made to
generate new CPTs, the random shifting function, and the distance metrics for probabilities
(Pref) and (P ′

f). This chapter has explored several different options of the use of distance

66 Amany Alshareef

metrics for comparison. It would also be useful to study if and how the other hyper-
parameters may affect the overall results.

Utility of Feature Weights. Quantifying the importance of the hidden features provides
three advantages. First, visualising the most important features provides insight into
the model’s internal decisions by highlighting dominating regions in the feature space.
Second, the importance measurement can be used to design high-level testing metrics
that evaluate the robustness of the DNN. Some attempts have been made in Berthier et al.
[9], where no feature weight is taken into consideration. Third, with feature importance
as a defence, one can utilise the obtained importance in the training process and force
the DNN to adjust its parameters according to the features that are most relevant for
the prediction. Using extracted weights for training purposes is the most widely adopted
direction. For example, Zhang et al. [102] propose a hierarchical feature alignment method
that computes the difference between clean and adversarial feature representations and
utilises it as a loss function when optimising network parameters, while Bai et al. [7] suggest
that different channels of a DNN’s intermediate layers contribute differently to a specific
class prediction and propose a Channel-wise Activation Suppressing training technique that
learns the channel importance, and leverages them to suppress the channel activation while
training the network.

4.7 Conclusions

This chapter has advanced a novel technique that employs a BN abstraction to investigate
how to measure the importance of high level features when they are used by the neural
network to make classification decisions. The proposed algorithm estimates the importance
of each feature by analysing the sensitivity of the abstraction to targeted perturbations.
The derived weight values reflect the role of the corresponding feature in the underlying
decision process. In addition, the sensitivity analysis method proves its ability to detect
the distribution shifts before and after perturbation, which will open many doors for future
exploration.

Chapter 5

Bayesian Network Prediction

5.1 Introduction

In the previous chapter, feature importance weights were introduced based on the DNN
internal representations. However, as stated, the BN abstraction itself does not make any
link with the actual DNN decisions. Since the proposed importance values from chapter 4
are defined according to how much each feature influences the classifier’s decision, the justi-
fication there is about the final classification decision. Therefore, providing the abstracted
BN model with the ability to perform prediction is a critical step in measuring the influence
of the feature perturbation on the classification decisions based on the abstraction. This
chapter is directed at providing an answer to the third subsidiary research question SRQ3,
which were presented in Chapter 1:

• SRQ3: How to demonstrate the impact of the feature importance measure on the
classification decisions based on the abstraction?

The work presented in this chapter reports on how the Bayesian Network model, pre-
sented in Chapter 3, can be transformed into a classifier that performs predictions via
probabilistic inference. Achieving this allowed for investigating the degree to which the
internal neural network representation contributed to the final prediction. Inference is the
process of computing a probability value of selected nodes of a Bayesian network according
to a given query that provides evidence of other variables’ values. Bayesian networks do not
directly support computing the probability of arbitrary pieces of evidence or unconsidered
variables, i.e., input’s labels, when they are constructed. However, such probabilities can

67

68 Amany Alshareef

be computed indirectly by adding an auxiliary node to the network [23]. In this work, the
methodology followed the auxiliary node method that adds a node at the end the abstract
BN, which will be a random discrete variable that takes its values in the set of labels.

The overall technique used to enable the BN to predict new input labels is illustrated
in Figure 5.1. To construct the BN predictor, an auxiliary prediction node is added at
the end of the BN and its conditional probability table (CPT) is calculated based on the
BN’s nodes distributions. A major question raised is: what should be the prediction node’s
predecessor nodes? Would connecting it with the previous layer’s nodes only achieve a
good prediction task and keep cheaper computational complexity? Or would it be better
to ignore the computational side and make the extra node conditionally depend on every
node of the original BN to acquire a higher precision?

After connecting the extra node in either way and generating its CPT using sample
data from the training dataset, a new Bayesian network structure is created. To predict an
input’s label, it first transformed into observations suitable for the abstract BN to obtain
a vector of evidence that refers to the BN’s nodes values. Finally, the inference engine
applies the Bayes principle to estimate the maximum posterior distributions of the output
label. Further, to examine the robustness of the abstraction, the original DNN model is
attacked to generate adversary perturbed input data from the test set. It is then converted
into observations and passed into the Bayesian inference to evaluate the BN robustness
accuracy.

To summarise, the main contributions of this chapter are:
• An advanced Bayesian network constructed from all, or chosen layers, of a neural

network with the ability to perform the original classification task;
• A comparison of how a crafted perturbation on a test dataset affects the classification

accuracy of a neural network on the one side, and its Bayesian network abstraction
on the other side;

• An empirically evaluation showing that the BN predictor is a good approximator of
the original DNN and exhibits a smaller gap between accuracy over clean data and
accuracy over perturbed data.

• A mechanism to calculate feature weights based on the change in the Bayesian network
predictions.

The remainder of the chapter is organized as follows. Section 5.2 reviews the methodolog-
ical approaches proposed to extract simple deterministic models from neural networks to
analyse their internal representation and understand their decisions. Section 5.3 provides

Chapter 5. Bayesian Network Prediction 69

Figure 5.1: Schematic view of the proposed approach. Given a Bayesian Network B con-
structed from selected layers of a trained DNN model, a prediction node is added at the
end of the B to allow it predicts an input’s label. The prediction node probability is cal-
culated using its parent nodes distribution and sample data transformed from the training
dataset into a lower-dimensional, discretised representation through the discretisation func-
tion Discr♯ and coupled with their labels. Next, the test data is converted into observations
by applying Discr♯ process, which returns a vector of elements referring to the BN’s node
values. The inference engine then takes these observations values of the B’s nodes distri-
bution and infer the probability of the output label. The adversarial attack indicates the
abstracted BN’s robustness evaluation step.

70 Amany Alshareef

a brief preliminary explanation concerning the BN’s conditional probability table. In Sec-
tion 5.4, the method to construct a classifier based on the abstract BN is presented. The
primary objective of this chapter, which is directed at extracting feature weights using the
BN prediction, is described in Section 5.5. Section 5.6 evaluates the accuracy of the result-
ing BN approximator model and analyses its robustness using a test dataset with crafted
perturbations. This section also presents the results from an experiment to calculate the
DNN feature weights by observing a change in the BN prediction. The last two Sections of
this chapter highlight significant findings, compare the BN predictor model to others, and
then conclude the presented work.

5.2 Related Work

Since this chapter constructs a classifier based on an abstract Bayesian network form a
neural network, the literature will emphasise the current neural network abstractions and
approximation research. Many recent studies have focused on extracting simpler models
of complex, high-dimensional deep neural networks, with the expectation that the abstrac-
tions are as close as possible to the original neural network while being interpretable and
preservative of key properties. The existing related work is divided into two categories:
(i) abstraction methods that generate a smaller model of a neural network with similar be-
haviour; and (ii) approximation techniques that approximate the neural network behaviour
using transparent models to obtain an approximator with a prediction accuracy that is
close to that of the original DNN.

5.2.1 DNN Abstractions

The methods that are used to construct abstraction models from neural networks can
be categorised as Boolean, Causal, Clustering, Probabilistic, and Box abstractions. The
categorisation is based on the algorithm used to abstract the internal representations of the
network, or based on the abstraction structure used to store the network internal activation
patterns.

Abstracting neural networks for verification purposes was first proposed by Pulina and
Tacchella [76], who transform the networks into Boolean combinations of linear arithmetic
constraints. Further, Boolean abstracting was recently applied by Cheng et al. [20] to store
the neuron activation patterns in abstract form, and use it as a monitor. With Causal

Chapter 5. Bayesian Network Prediction 71

abstraction theory [42, 31], neural representation values are aligned with variables in struc-
tural causal models providing causal explanations of neural network behaviours. Neural
network abstractions through Clustering, as in DeepAbstract [5], is performed by merging
neurons that behave similarly on some inputs to obtain an abstract network that simu-
lates the behaviour of the original network. Dong et al. [26] developed an algorithm that
combines probabilistic learning and abstraction through clustering to extract probabilistic
finite-state automata from recurrent neural networks. Finally, Box abstraction is applied
by Henzinger et al. [40] and Cheng [18] to compute bounds (boxes) over neuron valuations
that have been seen during the training process, use them to build a run-time monitor.

The purpose of these abstraction approaches was either the verification of neural net-
works [76, 5], monitoring [20, 40], or abstract interpretation based methods [59, 42]. None
of these abstraction models was employed to make a classification decision.

5.2.2 DNN Approximators

The transparent models used to approximate neural networks have the following character-
istics. They have (i) simple and compact structure that is a human-level understandable,
(ii) ability to break down a model into parts that can be explained separately, and (iii)
a clear procedure to generate the output. These characteristics exist in models such as
logistic regression, decision trees, and Bayesian networks that are inherently considered
transparent.

The approaches adopted by Sato and Tsukimoto [82], Dancey et al. [22] involves extract-
ing decision trees from neural networks. The trees approximate their predictive behavior
and are utilised in explaining the NN’s decisions. Other attempts are approximating the
posterior distribution of neural networks to construct approximators that estimate the
DNN’s uncertainty. Ritter et al. [79] developed a Kronecker factored Laplace approxima-
tion model by optimising the posterior over the weights of a trained neural network to
obtain uncertainty estimates. They further tested the robustness of their Kronecker fac-
tored prediction using untargeted and targeted adversarial attacks. Their experimental
results suggested that their approximator model leads to better uncertainty estimates and
is more robust to simple adversarial examples. Maddox et al. [64] proposed the SWA-
Gaussian, that approximates posterior distribution over neural network weights to model
Bayesian inference and estimate uncertainty.

The work in this chapter combines abstraction and approximation techniques which

72 Amany Alshareef

approximates an abstracted Bayesian network from a trained neural network to acquire a
unique model. Since the presented BN is not designed to make classification decisions,
author suggests to optimise the posterior of the training labels over the BN parameters
to create an approximator, and test its prediction robustness versus the original DNN
model. Observe that, all uncertain variables are modelled as probability distributions in
Bayesian data analysis, and inference is carried out by constructing the posterior condi-
tional probabilities for the desired variables given the observed data and prior assumptions.
Therefore, the Bayesian theory is concerned with the parameter posterior instead of a point
estimate that often leads to overconfident predictions as in DNNs. Thus, Bayesian infer-
ence is suspected to have a higher opportunity to predict robustly against imperceptible
perturbations.

5.3 Preliminaries

The terminology of the Bayesian Network abstraction model was introduced in Chapter 3.
As explained, the abstraction process results in a Directed Acyclic Graph (DAG), where
each node contains an associated conditional probability table (CPT) or marginal proba-
bility table for input nodes. Since the aim of this chapter is to construct the prediction
node’s CPT, the preliminaries will emphasis on the BN conditional probability table. First,
the main components of building the Bayesian network abstraction are reviewed. Followed
with a simple illustrative example of the CPT.

Let N be a trained deep neural network with sequential layers L = (l1, . . . , lK), and
let X be a training dataset. As an abstract model of N and X, a Bayesian Network
(BN) is a directed acyclic graph BN ,X = (V,E, P), where V are nodes, E are edges that
indicate dependencies between features in successive layers, and P maps each node in V to
a probability table representing the conditional probability of the current feature over its
parent features according to N ’s behaviors when it is subject to X.

Notice that in the description above, the focus is the input and hidden features of the
DNN only, i.e. the output prediction layer is not considered; BN ,X is not designed to
include output nodes that would allow classification. A more detailed description of how to
create such a prediction node is given in the next Section. The BN conditional probability
table is defined for each feature interval f ♯k

i,j ∈ F♯
i,j for layer li, w.r.t. each combination of

Chapter 5. Bayesian Network Prediction 73

Figure 5.2: Illustration of Bayesian network structures before (a) and after adding the
prediction node (b & c). Two ways of connecting predictions to the rest of the hidden
features (BN’s nodes) are - (b) connecting deepest nodes only or (c) connecting all nodes.

act.0 act.1 act.2 dense.0

0 0 0 0 0.30492
0 0 0 1 0.02006
0 0 0 2 0.67502
0 0 1 0 0.49985
...
1 2 1 1 0.77721
1 2 1 2 0.01373
...
2 2 2 1 0.34444
2 2 2 2 0.32777

Table 5.1: Example of the conditional probability table for the BN node "dense.0", which
represents a conditional probability P (dense.0|act.0, act.1, act.2).

feature intervals F ♯
i−1 for layer li−1, as

CPi
(
f ♯k
i,j

∣∣∣F ♯
i−1

)
def
= Pr

(
x⇝ f ♯k

i,j

∣∣∣x⇝ F ♯
i−1

)
. (5.1)

Intuitively, CPi
(
f ♯k
i,j

∣∣∣F ♯
i−1

)
gives the probability that any input x ∈ X chosen uniformly

exhibits feature interval f ♯k
i,j , knowing that it exhibits intervals F ♯

i−1 for all extracted features
at layer li−1. To make the procedure clearer, the steps are sketched in the following example.

Example 14. Figure 5.2-(a) is a Bayesian Network constructed from three selected layers
of the CNN model Nsm: conv2d, activation, and dense. Three features are extracted from
each layer using a Principal Component Analysis. Then, each feature is discretised into

74 Amany Alshareef

three intervals that partition its value range; for extracted features, each interval is denoted
with a distinct integer. Table 5.1 shows the conditional probability table for the node dense.0
which represents a first extracted feature from the third DNN’s layer. The table assigns a
probability to each dense.0 feature interval w.r.t. each combination of the parent feature
intervals from the previous layer (activation.0, activation.1, and activation.2). As an ex-
ample, the first three rows of the table imply that when all dense.0 feature’s parents exhibit
intervals 0, the dense.0 will have a 0.30 probability of exhibiting interval 0, 0.02 probability
of exhibiting interval 1, and 0.67 probability of exhibiting interval 2. In other words,

P (dense.0 = 0 | act.0 = 0, act.1 = 0, act.2 = 0) = 0.30,

P (dense.0 = 1 | act.0 = 0, act.1 = 0, act.2 = 0) = 0.02, and

P (dense.0 = 2 | act.0 = 0, act.1 = 0, act.2 = 0) = 0.67.

5.4 Probabilistic Inference using the BN

This section discusses how to solve a classification task on unseen inputs by using Bayesian
inference on the BN abstraction model. As mentioned previously, some additional steps
are needed to enable the BN to perform predictions. The two main steps are:

1. Transform input samples into a representation that is suitable for the BN;

2. Add an auxiliary prediction node at the end of the BN, and calculate its conditional
probability table.

5.4.1 Abstracting the Training Data

The first step in inferring a label is to transform the input data that suits the DNN into a
representation that allows to perform inference using the BN. For a sample of training input
data xtrain ∈ DX , where DX is the input space, its corresponding DNN activation x̂train

is first calculated. Then, the feature extraction and discretisation function Discr♯(x̂train)

is used to obtain a lower-dimensional and discretised representation rtrain ∈ F♯, where F♯

is the discretised feature space. Here, components of the vector r are valuations for each
node/variable in the BN.

Example 15. Consider the BN in Figure 5.2-(a). Transforming an input x for the DNN
into representation values r = Discr♯(x) may give, e.g., r = [1, 2, 1, 1, 1, 2, 0, 2, 1]. The nine

Chapter 5. Bayesian Network Prediction 75

values in the vector refer to the abstract intervals of highest probability for each one of the
nine nodes of the BN, when the DNN is subject to x. For example, the first node conv2d.0
in Figure 5.2-(a) has evidence interval equal 1, and the second node conv2d.1 has evident
evidence interval equal 2, and so on.

5.4.2 Adding an Auxiliary Node

The previous step described how to adapt input data suitable for the DNN into data suitable
to the BN. Such a transition is possible for all layers of the DNN, except for the prediction
itself. Indeed, the general mechanism by which prediction is done in a DNN is to take the
output of the last hidden layer lK , make a linear transformation and compute a softmax
activation. The output is then interpreted as a maximum probability of a particular class.

The way to approach prediction in BN scenario is to add an auxiliary sink node to the
DAG, as illustrated in Figure 5.2. This additional discrete categorical prediction variable
takes its values in the range of classes defined by the dataset used to train the original
DNN. Assuming the CPT associated with this additional node has been calculated, the
traditional inference procedure may be applied on the new BN to estimate the probably of
the class associated with given abstract intervals. Similarly to the DNN case, the predicted
class is then the class that is given maximal probability.

In this framework, the structure of the new BN differs according to how the new variable
is connected to the original DAG. In the following, two options are presented: (1) Direct
dependence to all features extracted from the deepest layer of the considered DNN; (2) Di-
rect dependence to every feature extracted from the DNN. In the first case, the prediction’s
parent nodes are defined as only the ones originating from the last hidden DNN layer
(Figure 5.2-(b)). In the second case, the prediction node is connected to all other nodes
(Figure 5.2-(c)). The latter choice is expected to improve the accuracy of the BN, at the
cost of computational and memory overhead.

Generating the Conditional Probability Table. Let label the prediction node with
Y and its parent nodes with πY ∈ F♯

K , where K-th layer is the deepest abstracted layer of
the DNN N . Given a BN B, the node Y is placed as a sink and connected with its parent
nodes πY . The probability distribution associated with Y is estimated through iterating
over xtrain = {xt1, . . . ,xtN}, take true training labels ytrain = {yt1, . . . , ytN} and compute
a CPT as:

76 Amany Alshareef

CPY

(
y | F♯

K

)
= Pr

(
y | x⇝ F♯

K

)
. (5.2)

=

∑N
i=1 1

(
y = yti ∧ xti ⇝ F♯

K

)
∑N

i=1 1
(
xti ⇝ F♯

K

) . (5.3)

Here, y is the label of interest, x⇝ F♯
K implicitly calculates representation {rt1, . . . rtN} =

Discr♯({xt1, . . . , xtN}) and it denotes that the input x exercises/triggers the abstracted in-
terval with discretised representation rπY . 1 gives 1 if the condition is satisfied and 0

otherwise.
The probability estimate given by the previous equation 5.3 is calculated for the full

probability space (all possible values of y and rπY). For example, the CPT for the prediction
node in Figure 5.2-(b) gives a probability for each label (e.g. y ∈ [0, . . . , 9] on MNIST),
w.r.t. all parent combinations — in the example m3 of them in total, where m is the
number of intervals and 3 is the number of parents. The necessary condition for such a
procedure to produce precise results is that the dataset is large enough. This assures that
even low probability values are accurately estimated.

In the case where the node Y is connected to all of the previous nodes, one can simply
substitute F♯

K with F♯
N which includes all the discretised representations of the abstracted

layers of N . In a formal way:

CPY

(
y | F♯

N

)
= Pr

(
y | x⇝ F♯

N

)
. (5.4)

=

∑N
i=1 1

(
y = yti ∧ xti ⇝ F♯

N

)
∑N

i=1 1
(
xti ⇝ F♯

N

) . (5.5)

Reasoning with Bayesian networks. Once the BN is fully constructed, it represents
a full distribution of the label and representation space: P (y, r). With this distribution in
hand, it is possible to reason with the BN. The following is a short summary of the key
elements required to solve the inference in the BN classification problem.

• Prior - For general parameters θ, prior distribution P (theta) defines the prior
understanding/knowledge of the parameters. Very often, when there is no previous
analyses to determine what the parameter values should be, one chooses a "flat prior".

Chapter 5. Bayesian Network Prediction 77

For a continuous distribution, this is a constant value in some expected parameter
range, for a discrete distribution it is the same constant for every class. In our case,
θ consists of all parameters of the CPTs in the Bayesian Network plus classification
variable at the very end.

• Likelihood - For a general data space d, likelihood is a distribution of the data given
the parameters P (d|θ). For a fixed data point, likelihood can be seen as a function
in θ. In our case, two likelihood functions can be considered. Firstly, for images
of a given class, we can say that there exists a distribution of them in image space
P (d|y). Secondly, we can think of BN representation r and a likelihood function
P (r|θ), where now we have additional parameters of the BN in the likelihood.

• MLE - The Maximum Likelihood Estimator is a set of parameter values that max-
imise the likelihood function. For instance for some fixed data d:

θ̂MLE(d) = argmaxθ P (d|θ) . (5.6)

• Posterior - Posterior distribution is the main result of Bayesian inference. Using
inversion of conditional probabilities, one can write:

P (θ|d) = P (d|θ)P (θ)

P (d)
, (5.7)

where P (θ|d) is posterior P (d|θ) likelihood, P (θ) prior and P (d) evidence. Evidence
is mostly considered as a normalisation constant.

• MAP - The Maximum Aposteriori Estimator is a set of parameter values that max-
imise the posterior distribution. Similarly as for the MLE, for some fixed data d, The
MAP is given by:

θ̂MAP (d) = argmaxθ P (θ|d) . (5.8)

The following section uses that introduced concepts for making a prediction with BN.

5.4.3 Performing Prediction

The way one can think of the setup in a predictive sense is as the following: the starting
point is a set of images, which are samples from the likelihood function P (d|y), where d

78 Amany Alshareef

is the data space (i.e. each pixel is one dimension in d) and y is an image class. The
main goal of the machine learning is to invert this distribution in order to get a posterior
P (y|d). Then for every image in the test set, posterior distribution can be recovered and
decided which class the image belongs to by computing the maximum aposteriori (MAP)
class ŷ = argmaxP (y|d).

In the BN prediction setup, one additional step is performed where the process starts
with an image in data space d ∈ DX and compresses it into the BN representation r ∈ F♯.
Then the developed CPTs during the construction of the BN, can be used to obtain a
posterior P (y|r) and take a MAP estimate for the class. However, during fitting the BN
with a prediction node distribution, the prediction node’s CPT recorded its classification
parameters, which were trained as a maximum likelihood estimator over a training set.
Moreover, a prior of the classes P (y) is inherently imprinted in the prediction of the BN
from the training set. If all classes are expected to be equal (i.e. to have a "flat" prior),
then the training set should be balanced between classes. To summarize, BN-base inference
can be defined as following

Definition 5.4.1 (BN-based Inference). Given the BN representation vector r, a prior
over classes y as P (y), and a likelihood function P (r|y), we can infer the posterior of our
parameters as:

P (y|r) = P (r|y) · P (y)

P (r)
=

P (r, y)

P (r)
, (5.9)

where distribution P (r, y) is given by the BN appended with a prediction node, with other
parameters of the BN CPTs fixed to their MLE estimates. Evidence P (r) is not important
for our case. Finally, calculating the MAP estimate gives us an inferred class estimation

ŷ = argmaxP (y|r) . (5.10)

It is necessary to be careful when constructing the full conditional distribution P (y|r).
In the case where the prediction node is connected just to the deepest nodes, then the total
posterior will be given with multiplication of different CPT across the BN. This is illustrated
in Figure 5.3, which shows the sink node Y and its parents. In this case, rπY = (rπY 1 , rπY 2),
while the full representation vector also includes representations from upper nodes, here
marked with dots.

Example 16. The BN in Figure 5.2-(b) is used to predict the MNIST test dataset output

Chapter 5. Bayesian Network Prediction 79

Y

.. .

πY 1 πY 2

Figure 5.3: A simple illustration of the prediction node Y and its parents. Construction
of the probability P (y|r) includes not only representations from the parent nodes πY 1 and
πY 2, but all other nodes in the BN as well.

labels. The results of the first fifteen predicted images’ digits are:

true_labels: ([7, 2, 1, 0, 4, 1, 4, 9, 5, 9, 8, 0, 3, 2, 9])

pred_labels: ([7, 2, 1, 6, 4, 1, 4, 9, 8, 9, 8, 0, 8, 2, 3])

A full classification diagnostic can be done through calculating the confusion matrix,
which is a table used to evaluate the performance of a classification model by comparing the
predicted outputs with the actual labels of a set of test data. The confusion matrix counts
true predicted labels and the misclassified labels on a per-label basis. The plot in Figure 5.4
visualises the BN prediction confusion matrix.

5.5 Extracting Feature Weights using the BN Prediction

The fundamental purpose for using a BN abstraction model to predict a new input’s label
was to determine which hidden features influence the classification decision the most by
generating feature weights. The method for extracting feature weights using the BN prob-
abilistic inference is perturbing the value of each feature for every sample in the training
data by applying the random shift presented in Sub-Section 4.3.2. And then calculating
how many input had changed their predicted output after the perturbation. In formula,
this amounts to:

Wi,j =
1

|Dtest|
∑

x∈Dtest

1
[
PBN(x) ̸= PBN

(
x ∧ pert(f ♯

i,j)
)]

, (5.11)

where Wi,j represents the importance weight of the feature f ♯
i,j , PBN(x) is the original

80 Amany Alshareef

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

851 4 41 28 1 29 198 2 143 5

301,10688 5 2 1 4 9 7 1

37 3 811 19 0 1 0 2 54 0

3 0 19 830 0 13 0 20 159 23

19 5 5 1 868 49 11 13 9 45

0 0 0 2 0 534 3 0 16 20

48 4 35 0 19 7 730 0 8 1

1 13 26 65 2 0 0 840 4 13

41 0 6 56 0 152 2 0 630 3

0 0 1 4 90 6 0 142 4 898

Predicted

A
ct

ua
l

0

200

400

600

800

1,000

Figure 5.4: Confusion matrix for the BN actual vs. predicted values for a 10000 MNIST
test data. The pairwise digits with the high confusion are shown in light blue.

prediction of the Bayesian network for input x, PBN

(
x ∧ pert(f ♯

i,j)
)

is the BN prediction

for input x after perturbing feature f ♯
i,j , Dtest is the set of testing data, and function

1 returns 1 if the prediction changed or 0 otherwise. The previous equation represents
unnormalised weights, which are further normalised, so that

∑
i,j Wi,j = 1.

In Equation 5.11, the assigned importance score for each feature is positively correlated
with the respective number of smaples that changed their decision values. That means if a
large number of the predictive samples have been misclassified, then the feature contributes
much to the classification decision and will be deemed an important feature.

5.6 Experiments

In this section, the results of three experiments are presented: Experiment 1, Experiment
2, and Experiment 3. Experiments 1 and 2 are meant to test how well different built-
in BN prediction models work on both clean and messed-up test data, and to see how
well they compare to the performance of the original DNN models. Both approaches to
connecting the prediction node to the BN are implemented and examined. Experiment 1
conducted in Sub-Section 5.6.1 is concerned with examining the first method of connecting
the prediction node with the BN deepest nodes only. Experiment 2, which is presented in

Chapter 5. Bayesian Network Prediction 81

Sub-Section 5.6.2, assessed the second method of connecting the prediction node with all
nodes in the BN. In Experiment 3, shown in Sub-Section 5.6.3, the outcomes of the feature
weighting mechanism were demonstrated. This mechanism utilised the Equation 5.11,
which was formulated based on the variation in the BN prediction output. The BN classifier
model was implemented in the DeepConcolic tool1.

5.6.1 Experiment 1: Connecting Deepest Nodes Only

The purpose of Experiment 1 was to assess the performance of the BN prediction model
in approximating DNN accuracy. The main challenge is to keep the approximator models
simple and flexible enough to approximate the complex NN model accurately. Therefore,
medium-size DNN models were trained to construct BN classifiers from as many layers
as possible, so their respective accuracies could be compared. The CPT of the prediction
node was also kept relatively small, as the prediction node was connected to the deepest
BN nodes only (see Figure 5.2-(b)).

Datasets and Experimental Setup. To evaluate the approach of the BN prediction,
we used two trained CNN models that target the MNIST and Fashion-MNIST classification
problems with 97.78% and 89.03% test accuracy, respectively. The MNIST model comprises
8 layers and the F-MNIST model comprises 11 layers, both including convolutional, max-
pooling and dense layers. A detailed description of the models are provided in Appendix A,
see Tables A.2 and A.4.

To setup the Bayesian Network parameters, linear features were extracted using a Prin-
cipal Component Analysis. The number of extracted features per layer ranged from 3 to
5. For the discretisation, the number of intervals was fixed to 5. Finally, three hidden
layers were selected to construct the BN abstractions The considered hidden layers to be
abstracted were the convolution ReLU, 2d max pooling, and dense ReLU situated at the
second, third, and fifth layers of the MNIST model and the fifth, sixth, and ninth layers
for the F-MNIST model.

Results and Discussion. Three distinct BNs were constructed from each CNN model,
resulting in BN classifiers with 10, 13 and 16 nodes in total. Proceeding with the exper-
iment, a 10,000 clean test data dt ∈ Dtest was passed to the CNN models and their BNs

1The code is available at https://github.com/AmanyAlshareef/DeepConcolic.

https://github.com/AmanyAlshareef/DeepConcolic

82 Amany Alshareef

Nodes per CNN layer Raw data Adversarial
CNN MNIST – 97.78% 60.45%

Bayesian
Networks

3 82.91% 56.70%
4 91.66% 61.53%
5 97.67% 63.83%

CNN F-MNIST – 89.03% 45.13%

Bayesian
Networks

3 71.49% 44.34%
4 78.16% 46.65%
5 87.98% 47.89%

Table 5.2: Prediction accuracy of the CNNs models and their abstracted BNs classifiers
based on 10000 raw test data and 10000 adversarial samples from the MNIST and Fashion-
MNIST datasets. The number of BN nodes is indicated per CNN layer.

Figure 5.5: Evaluation results under the FGSM attack on the MNIST and Fashion-MNIST
datasets. The chart shows that the CNN accuracy is constant, while the BN prediction
accuracy is growing with the increased number of nodes. (Plots correspond to Table 5.2)

Chapter 5. Bayesian Network Prediction 83

approximator to measure their accuracy on the test set. The obtained BN prediction ac-
curacy almost reached the CNN accuracy at five extracted features from three CNN layers
only. Figure 5.5 illustrates that the BN prediction accuracy grew when the number of nodes
increased. The green dashed lines showed the BN prediction accuracy started at 82.91%

for MNIST and at 71.49% for Fashion-MNIST with three nodes/features per CNN layer
and increased to 97.67% and 87.98% with five nodes, respectively. With these outcomes,
the abstracted BN was able to achieve almost the same accuracy as the original neural
network.

To further assess the robustness of the DNN abestraction using the BN classifier, the
Fast Gradient Sign Method with a maximum of ε = 0.1 perturbation in the input images
was selected to craft adversarial samples from the test data dt. A 10,000 perturbed input
data was generated with dattack,t = FGSM(dt) by attacking the CNN models, and then
the corresponding projected and discretised activations rattack were fed to the BN. Table 5.2
summarises the accuracy results for both CNN and their approximator BN models in both
clean and adversarial settings. The BN with five nodes’ performance exceeded the CNN
robustness accuracy. Although some of the information was lost in the dimensionality
reduction and discretisation steps, these empirical results suggested that the abstraction
scheme was more robust to attacks performed against the original CNN.

5.6.2 Experiment 2: Connecting All Nodes

Experiment 2 was directed at comparing the accuracy robustness for both a CNN and
its abstract BN classifier when fully connecting the prediction node with all BN nodes
and calculate its CPT accordingly (see Figure 5.2-(c)). This analysis required the CNN
models to be complicated and the BN abstraction to be built from three CNN layers only,
to investigate the extent to which the complex deep learning models could be expressed
(abstracted) with a simpler model that provided a reasonably similar performance.

Datasets and Experimental Setup. To carry out the experiment, two standard vision
benchmark datasets were employed: the MNIST and the CIFAR-10. The identical two
trained CNN models from Chapter 4 experiment were used.

To create the BN abstraction, the linear feature extraction technique (PCA) was used
along with the uniform discretisation strategy. For the selected CNN layers to be analysed,
the same criteria from the previous chapter’s experiment were followed. Three hidden

84 Amany Alshareef

Tot # of nodes # Intervals Clean data Attack Type
FGSM PGDl2 Deepfool

CNN MNIST – – 99.38% 92.67% 91.87% 89.39%

Bayesian
Networks

6 3 74.78% 70.88% 72.17% 69.08%
4 82.55% 71.86% 77.59% 77.86%

9 3 84.45% 76.92% 78.96% 79.27%
4 93.08% 84.51% 87.32% 87.60%

CNN CIFAR – – 81.04% 22.02% 19.8% 22.95%

Bayesian
Networks

6 3 39.59% 23.87% 28.47% 29.14%
4 49.16% 24.55% 30.04% 33.26%

9 3 51.92% 27.10% 35.46% 38.22%
4 63.02% 30.50% 39.07% 40.25%

Table 5.3: Comparison of prediction accuracies between CNN models (MNIST and CIFAR)
and their abstracted BN classifiers based on 10,000 adversarial samples generated for three
types of attacks. Significant results are highlighted in bold font.

layers to construct the BN abstractions were considered; for the two models, the first two
selected layers directly follow a block of convolutions, while the last was a dense ReLU
layer that is situated a few layers before the NN’s output layer. In particular, layers named
max_pooling2d, max_pooling2d_1, and activation_4 in Table A.3 and A.5.

Results and Discussion. The experiments were conducted by creating various BN com-
binations from two and three extracted features with three and four intervals for both
MNIST and CIFAR-10 models. The prediction accuracy was measured on 10,000 clean
test data for all models. In the following text, author will refer to the BN’s number of
nodes in total (not per CNN’s layer) as the prediction node is connected to all of them.
Table 5.3 summarised the obtained accuracy outcomes. The BN classifier for the MNIST
dataset achieved the highest accuracy 93.08% at nine nodes and four intervals, and for the
CIFAR-10, the accuracy was relatively lower at 63.02%. However, considering the number
of the un-selected CNN layers (around 12 layers) and their non analysed representation,
the performance of the BN with three DNN abstracted layers is deemed reasonable. More-
over, with the exponentially growing of the prediction node’s CPT when considering all
BN nodes as its predecessor, the largest BN the experiment reached is 9+1 nodes with 4
intervals each. Therefore, the computational cost for any larger BN is too expensive to be
run by a CPU.

The robustness of these models was evaluated on more types of adversarial attacks:
FGSM, PGD, and DeepFool. The prediction accuracy results are based on 10,000 perturbed

Chapter 5. Bayesian Network Prediction 85

Figure 5.6: Prediction accuracy of the testing (clean) dataset dt for neural network models
shown with the dark green bar and their Bayesian networks with the different number of
node’s intervals shown with the rest of the shades of green. The charts also presented the
accuracy percentage for adversarial dataset dattack generated by CNN with selected attacks
(FGSM, PGD, and DeepFool -shown on each column). Each chart clarified the total number
of the BN’s nodes at the top. Note that the CNN accuracies are similar across the horizontal
charts, where the number of nodes only benefits the BN models. The top row shows results
for the MNIST and the bottom for the CIFAR-10 model. Hue indicates the number of
intervals used to discretise the BN’s nodes.

86 Amany Alshareef

samples generated for each attack type by attacking the original CNN model. Figure 5.6
demonstrates the drop in accuracy for both BN and CNN models. The performance of a
very accurate MNIST CNN model was decreased from 99.38% to an average of 90.78% on
three attacks - see the dark green bars, while the average dropping in the BN accuracy
was 6.5% for the largest constructed BN with nine nodes (plus prediction node) and four
intervals - see the lighter green on the top right chart. Moreover, for the CIFAR-10 model,
the CNN’s accuracy dramatically dropped from 81.04% to 20.00% on average. And even
though the BN accuracy on clean images was 63.02% with nine BN nodes, its performance
on adversarial attacks was 37.28% on average. Compared to the worst-case CNN prediction
with pgdl2 at 19.80%, the BN achieved much better accuracy, reaching 39.07% - see the
dark and lighter green on the bottom right chart. Therefore, the results concluded that even
in a small BN case, the performance was highly robust to adversarial examples generated
by CNN than the CNN itself.

5.6.3 Experiment 3: Feature Weights

The focus of Experiment 3 was centred on determining the impact of perturbing DNN
latent features on the BN classification output. This was achieved by using the weighting
Equation 5.11 that computed the number of outputs that changed their prediction after
the perturbation. The process of calculating feature weights through the utilisation of
the BN prediction was conducted on the same two CNN models as used for Experiment 2
above using fully connected BN classifiers. in this experiment, the applied perturbation was
generated from the random shift (introduced in Sub-Section 4.3.2), where the concern here
was concentrated on each individual feature. For each CNN model, the BN classifier was
built using the three identical CNN layers. Two features were extracted from each layer and
partitioned into five intervals, and the prediction node connected with all BN nodes. Using
Equation 5.11, the resulting feature weights are shown in Table 5.4. Looking at the mnist
weights, feature (activation_4, 0) was responsible for the largest number of misclassified
samples that were correctly classified by the BN. Followed by feature (max_pooling2d, 0),
which ranked as the second-most important feature for the mnist model. While the feature
(activation_4, 1) was assigned the highest importance weight of 0.208465 for the cifar-10
model. Figure 5.7 shows the number of the changed decision labels for each feature after
the perturbation.

The feature perturbation experiment asserted that each distinct feature had different

Chapter 5. Bayesian Network Prediction 87

perturbed feature mnist weight cifar10 weight

(max_pooling2d, 0) 0.213669 0.173404
(max_pooling2d, 1) 0.067358 0.145740
(max_pooling2d_1, 0) 0.159750 0.135429
(max_pooling2d_1, 1) 0.123518 0.132581
(activation_4, 0) 0.246509 0.204380
(activation_4, 1) 0.189196 0.208465

Table 5.4: calculated weight for each BN’s feature. First column indicates the perturbed
feature name, the second and third column show each perturbed feature estimated weight
for MNIST and CIFAR-10 models, respectively.

0 2000 4000 6000 8000 10000
Number of changed labels

(max_pooling2d, 0)

(max_pooling2d, 1)

(max_pooling2d_1, 0)

(max_pooling2d_1, 1)

(activation_4, 0)

(activation_4, 1)

Pe
rtu

rb
ed

 F
ea

tu
re

0 2000 4000 6000 8000 10000
Number of changed labels

Figure 5.7: Number of the testing samples that are changed their classification labels after
the perturbation for each considered feature.

impacts on the classification decision. This supported the definition of the obtained weights
from the BN-based feature sensitivity analysis in Chapter 4. The usage of these obtained
weights will be discussed in the next chapter.

Note that, when applying perturbation on the BN classifier scheme with the prediction
node connected to the deepest nodes only, all nodes not connected with the prediction node
did not change the classification decision when exposed to interval-shift. For instance, one
example of the experiment output was: Perturbing feature 0 of layer max_pooling2d_1 ...
0 input sample have changed their label, the BN prediction accuracy changed from 73.9% to
73.9%. This is consistent with the pairwise comparison experiment conducted in Section 4.4,
where features’ dependence is determined with an edge between them.

88 Amany Alshareef

5.7 Discussion

The experimental results presented in this chapter demonstrated that the abstracted BN
performance in the adversarial setting is more robust than DNN models. It showed that
including more nodes in the BN and more fine-grained discretising led to higher BN pre-
cision. The repeated experiments also suggested that BN approximates the DNN perfor-
mance when they are comparable in size (means constructing the BN from most DNN
layers), which ensures the BN prediction values robustness is not at the cost of some accu-
racy loss. On the other hand, scaling the Bayesian prediction model to be fully connected
by making the probability tables for the prediction node conditionally dependent on all
BN’s node distribution seems computationally inefficient. Moreover, the author expects
that by enlarging the Bayesian model complexity, one might lose robustness as the model
will behave more and more like a DNN. Regardless, the findings emphasised connecting
the new node with the deepest BN’s nodes and identifying the right level of abstraction by
encoding more layers and more components as needed without sacrificing computational
complexity or test accuracy. Hence, an optimal complexity which balances performance
and robustness can be guaranteed.

Comparing Abstractions The abstraction models discussed in Section 5.2 explored the
internal structure of the "black box" learning models with different intentions. The closest
method to the proposed approach is the DeepAbstract [5], where the proposed clustering-
based model is used to verify the robustness of the original neural network. However, the
abstraction itself does not make a prediction. They essentially compute an absolute error
produced due to the abstraction and the perturbation of input and then a local robustness
verification is performed by checking if an output neuron with a lower or upper bounded
value exists. For the monitoring intention, the abstracted BN classifier model can be used
as a safety monitor when the DNN is under attack since the BN abstraction is considered
more robust and is harder to attack due to its discrete nature, where the discretisation
function is not trivially differentiable.

Regarding the approximator models, they are designed to approximate an opaque
model’s accuracy and make prediction decisions. The KF Laplace approximation model in
[79] is tested under the Fast Gradient Sign method attack on the MNIST dataset to asses its
prediction robustness. The authors demonstrated that their approximator model happens
to be highly robust to that sort of attack. However, their investigation of the robustness of

Chapter 5. Bayesian Network Prediction 89

their approximator was a minor matter where the main concern was uncertainty estimates
obtained from dropouts.

5.8 Conclusion

This chapter presented a method for constructing a classifier based on an abstract Bayesian
network from a neural network to make predictions. The BN prediction with feature pertur-
bation experiments demonstrated that each feature changed the classification decision by
a different percent, which validates the feature importance assumption. In addition, com-
paring the accuracy of both models DNN and BN confirmed that the abstracted Bayesian
network classifier is a good approximator of the DNN. Since the created classifiers are ab-
stractions of the original neural network, the results enable the construction of meaningful
abstractions with respect to the acceptable requirement on the accuracy and robustness.

Chapter 6

Weight-based Testing Metrics

6.1 Introduction

The high-level goals of software testing are to provide evidence that a system meets its
requirements and proving that it is error-free. The fact that deep learning models are data-
driven, not requirements-driven, makes defining their testing criteria challenging. Tech-
nically, the accuracy of the learning models is reported based on the test dataset. This
standard metric for measuring the model’s overall performance can not be sufficient or
trustworthy in safety-related domains, where most testing scenarios are randomly chosen
from the entire dataset. Besides, the provided test data may not have good coverage of the
data distribution the model is trained on, and may not represent the data obtained in the
real world. In that case, the quality of the test data is the essential factor influencing the
acceptance of the accuracy metric of the evaluated model.

Furthermore, most of the current proposed DNN’s testing techniques rely on neuron
activation as a metric to measure the test data coverage, which corresponds to the code
coverage of traditional systems. Such criterion does not prove a correlation to the system’s
decision logic. Moreover, these methods aim to transform the input data space to generate
more test input and completely ignore the model-internal representations and their roles in
the output decision. Knowing that real-world high-dimensional data usually lie on much
lower-dimensional manifolds motivates investigating where the data is located and modeling
it instead of narrowing in the input domain. There is little attempt to understand the
machine learning’s hidden representations and generate additional test cases based on that.
The majority of feature relevance studies were presented for explainable machine learning

90

Chapter 6. Weight-based Testing Metrics 91

and interpretability.
In this chapter, the traditional binary coverage approach is transformed into a weighted

probability problem that defines the coverage metric based on latent features importance.
The Subsidiary Research Questions (SRQs) that this chapter seeks to address are:

1. SRQ4: Do existing testing metrics guarantee the coverage of a model’s critical in-
ternal regions, as well as direct the test case generation algorithm to target the most
relevant features?

2. SRQ5: Do the proposed coverage metrics deliver a reliable testing measurement in
terms of reporting the coverage that prioritises the important internal representation
of the model?

3. SRQ6: Does the generated test dataset from the feature weight directed concolic
testing provide a trustworthy measure of a model’s performance?

To retrieve the broad perspective and draw lines between preceding chapters, here is a
synopsis of the main principles. The work explained in chapter 4 quantified the importance
of latent features in neural networks. It defined the Feature Importance (FI) measure as
the degree to which the internal representation contributes to the output prediction. The
importance of a neural network’s latent features is estimated by analysing the associated
Bayesian network’s sensitivity to distributional shifts. Various metrics were utilised to
compute the difference between the original and perturbed BN probabilities. Each feature
was assigned a weight value based on the measured sensitivity distance. To further justify
the importance weights and demonstrate their roles in the classification decision, the BN
model was enhanced to predict a new input’s label. In Chapter 5, a methodology was
introduced that extends the capabilities of the Bayesian Network by enabling it to func-
tion as a classifier, facilitating prediction through the use of probabilistic inference. The
adopted approach was to add an auxiliary prediction node at the end of the Bayesian net-
work and calculate its conditional probability table based on the BN nodes’ distribution.
With the BN’s prediction ability, the described importance weights calculated based on the
sensitivity distances between two BN’s probability distribution showed their impact on the
classification decision. The obtained weight scores provide insight into what region of the
data set should be well represented in the test data set for a given model.

This chapter presents a testing approach that leverages the learned representations and
feature weights to evaluate the coverage of a test dataset. The coverage criteria are based

92 Amany Alshareef

on the hypothesis that the contributions of latent features to a model’s classification task
represent the most reasonable basis for informing the model’s performance, where these
are considered high-risk features that should be tested thoroughly. Examining the feature
weights reveals the network’s internal decision mechanism and how it processes the input
data. This provides valuable information for identifying the responsible feature contributing
to incorrect predictions and any biases or limitations in the network’s representation. From
that perspective, the weight-based testing criterion emphasises that maximum test coverage
will be obtained from the presence of important features that have a dominating influence
on other features and the output decision. Furthermore, the acquired weights will be used
as guidance for the generation of test samples from the feature space. It is argued in this
chapter that a semantic testing method, based on a model’s behaviour, provides assurance
evidence for the trustworthy and robust behaviour of the model. To summarise, the main
contributions of this chapter are:

• A number of semantic testing metrics that measure a test dataset’s coverage quality
according to the calculated feature weights.

• A guided systematic approach to sample additional test cases targeting the most
important features.

• An empirical study regarding the quality of the proposed weight-based coverage com-
pared with the original BN-based coverage.

The structure of the remainder of this chapter is as follows. Section 6.2 presents the
process for constructing the weighted feature model, where the three preceding chapters
are linked together to build a BN abstracted model with associated weight for each node.
In the following section, Section 6.3, a definition and detailed description of the proposed
semantic testing metrics are presented. The test case generation algorithm using Concolic
testing is detailed in Section 6.4. An evaluation of BN feature coverage and the proposed
weight feature coverage metrics is presented in Section 6.5. Section 6.6 provides a discussion
on how the proposed weight testing metrics can improve the overall model reliability and
trustworthiness. In Section 6.7, a recent work introduced a related concept of importance
based testing coverage for DNN is discussed and compared to the weight testing metrics.
The last section, Section 6.8, concludes the work presented in this chapter.

Chapter 6. Weight-based Testing Metrics 93

6.2 The BN Weighted Feature Model

Preliminaries. The goal of the weighted features model is to construct an abstracted
Bayesian network that includes the importance weight for each node of the BN.

As previously stated, the Bayesian Network BN ,X = (V,E, P) is an abstracted model
from the DNN N and training dataset X. The V are nodes containing the extracted
latent features from the N , each feature is defined as a pair fi,j . The E are directed edges
indicating dependencies between features in successive layers, and P maps each node in V

to a probability table representing the conditional probability of the current feature over
its parent features w.r.t. X. The reason to construct such a layered structure of a Bayesian
network is to simulate the structure of DNN, where features from layer li are influenced
only by features in layer li−1. In other words, an assumption of connecting layer li directly,
with some weights, to layer li−1 only is taken into account (there are no skip connections,
or similar). Therefore, to represent a DNN fully, it is enough to connect the BN nodes
between features of the two consecutive DNN layers.

The feature sensitivity analysis process introduced in Chapter 4 (refer to Figure 1.1-
step1 for an overview), was calculated based on the change in the BN’s probability distri-
bution as follows:

Si,j =
δ(Pref , P

′
f)∑

f∈F♯ δ(Pref , P
′
f)

(6.1)

Where Sij is the sensitivity weight of the feature f ♯
i,j , Pref is the original (reference) prob-

ability distribution represented by the BN, P ′
f is the probability after perturbing fi,j , and

δ is a function returning the distance between two probabilities distribution according to a
given metric dp. F♯ is the set of considered latent features.

The method for extracting features weights in the BN probabilistic inference, presented
in Chapter 5 (refer to Figure 1.1-step2 for an overview), was computed based on the change
in the BN prediction outputs as follows:

Wi,j =
1

|Dtest|
∑

x∈Dtest

1
[
PBN(x) ̸= PBN

(
x ∧ pert(f ♯

i,j)
)]

, (6.2)

Where Wi,j represents the importance weight of the feature f ♯
i,j , PBN(x) is the original

prediction of the Bayesian network for input x, PBN

(
x ∧ pert(f ♯

i,j)
)

is the BN prediction

for input x after perturbing feature f ♯
i,j , Dtest is the set of testing data, and function

94 Amany Alshareef

1 returns 1 if the prediction changed or 0 otherwise. The previous equation represents
unnormalised weights, which is further normalised so that

∑
i,j Wi,j = 1.

The idea to combine the two weights is to use the BN prediction weight from Equation
6.2 to decide the best distance metric that produces a sensitivity weight in Equation 6.1
highly correlated with it. The reliance will be on the sensitivity weights, because the pro-
posed testing metrics are essentially working with the feature space, so it is more reasonable
to use the weights calculated based on the BN distribution rather than the BN prediction.
Thus, the Wf is obtained, which is a vector of the correlated normalised weights for the
extracted latent features from the DNN.

Definition 6.2.1 (Weighted Feature Model). A weighted feature model over a hidden
DNN’s features F♯ is a function f :F♯

i,j → R≥0 that maps features into their importance
values according to the firstly matched sensitivity weights.

The function iterates over each considered distance metric, sorts its calculated distances,
and then compares their rankings to the BN prediction weights rank. By computing the
weighted average over features, we make an assumption that the features can be de-couple
one from another. This assumption is possible since the BN-based weight feature coverage
metric concentrates on each individual hidden feature interval in isolation.

Example 17. Figure 6.1 shows a Bayesian Network constructed from three selected lay-
ers of a CNN: max_pooling2d_1, activation_6, and dense_3. The activation values are
computed for each considered layer, then the dimensionality reduction is applied, and three
feature components are produced that are discretised into five intervals. The figure illus-
trates sensitivity weights of the latent features obtained using various distance metrics. The
features are sorted for each distance metric and their importance rank compared with the
calculated weights from the BN prediction step. The comparison results demonstrate that
the BN prediction weights correlated with d_L2, d_corr, d_RMSE, d_MSE, and d_AF
distances shown with red rectangles. The example suggests that the third extracted feature
from layer activation 6 has the highest importance score.

6.3 Weight-based Semantic Testing

This section provides a detailed technical description of the proposed weight-based se-
mantic testing metrics and algorithm. The section introduces three testing metrics. In

Chapter 6. Weight-based Testing Metrics 95

Figure 6.1: Example of a computed distances from the feature sensitivity weighting method
shown in the first table annotated with the used distance metrics at the header. The second
small table is the supportive normalised weights calculated via the BN prediction and sorted
in descending order. The red rectangles indicate the correlation with the BN prediction
weights. The diagram also shows the used structure of the Bayesian Network created from
three selected CNN’s layers and three extracted features from each layer.

Sub-Section 6.3.1, the Weight-based Feature Coverage metric is defined; an equation is
formalised and an example is given. The second metric, named Weight-based Feature De-
pendence Coverage, is described in Sub-Section 6.3.2, with an example. Sub-Section 6.3.3
explains how the two previous metrics are combined to deliver the third testing metric
called Generalised Weight Feature Coverage. The final subsection, Sub-Section 6.3.4, pro-
vides definitions of the coverage criteria for the suggested testing metrics.

6.3.1 Weighted Feature Coverage

The BN abstraction and its hidden feature weights are utilised to develop new coverage
metrics that assess the quality of a test dataset in terms of reporting the coverage based
on the non-uniform contribution theory. That is, the metrics focus on the semantic values
of the neuron activation instead of the syntactic values of the adjusted weights, which is a
very local and less decisive criterion. The weight-based metrics indicate that a more critical
feature can take up more coverage share than a less important feature.

Definition 6.3.1 (Weight-based Feature Coverage). Given a trained DNN N , the weight-
based feature coverage of a non-empty set of inputs X ⊂ DX is obtained via the BN

96 Amany Alshareef

abstraction BN ,X as

WFCov(BN ,X)
def
=

∑
Lf♯

i,jM∈VN ,X

wLf♯
i,jM
·

∣∣∣{f ♯k
i,j ∈ F♯

i,j | Pi
(
f ♯k
i,j

)
≥ ε

}∣∣∣∣∣∣F♯
i,j

∣∣∣ , (6.3)

where
∑

Lf♯
i,jM∈VN ,X

wLf♯
i,jM

= 1.

The coverage metric in the equation above ranges over [0, 1], and gives the weighted
proportion of feature intervals that are adequately exercised by X. The WFCov(BN ,X)

is similar to the basic feature coverage in Equation 3.3.1, where the factor 1/ |VN ,X | that
acts as an equals weight for all features is replaced with the computed importance weight.
Note that, since the feature coverage metrics concentrate on each individual hidden feature
interval, and the weights are computed per feature, the weights are implicitly divided
equally between their intervals. The WFCov measure cannot be null if ε is sufficiently
small, since the sum of all the entries of the probability tables is always one.

Example 18. Consider the Bayesian Network shown in Figure 6.2. For layer l3, we
can compute the following marginals based on the given conditional probability table for
the node f3,0 as: Pr (f3,0 < 3) ≈ 0.453, Pr (3 ≤ f3,0 ≤ 5) ≈ 0.323, Pr (f3,0 > 5) ≈ 0.224.
Then the sum of intervals’ marginals is multiplied with the node weight which results in
1 × 0.173 = 0.173. Assuming similar non-negligible marginal probabilities for the nodes
pertained to layers l1 and l2, then we obtain each node coverage 3/3 and then multiply it
with its per-node weight to obtain the coverage of the test set with the WFCov(BN ,X) = 1.

6.3.2 Weighted Feature Dependence Coverage

The causal relationships exercised by a dataset X, that the BN’s conditional probabilities
define, are used to develop the following coverage metric:

Definition 6.3.2 (Weight-based Feature Dependence Coverage). Given a trained DNN
N , the weight-based feature dependence coverage of a non-empty set of inputs X ⊂ DX is

Chapter 6. Weight-based Testing Metrics 97

Figure 6.2: An abstracted Bayesian network from three DNN’s selected hidden layers. Two
features are extracted from each layer and discretised into three intervals. The features f1,0
and f1,1 have marginal tables. Features f3,0 and f3,1 are illustrated with a complete con-
ditional probability table, while other CPTs have the same length (mp number of intervals
to the number of parents), but are shortened in the diagram. The weight column shows
per-node probability.

obtained via the BN abstraction BN ,X as

WFdCov (BN ,X) =
∑

Lf♯
i,jM∈V

+
N ,X

wLf♯
i,jM
·

∣∣∣∣∣∣(f
♯k
i,j , F

♯
i−1) ∈

F♯
i,j × F♯

i−1

∣∣∣∣∣CP i

(
f ♯k
i,j |F

♯
i−1

)
≥ ε

∨ Pi
(
f ♯k
i,j

)
< ε

∣∣∣∣∣∣∣∣∣F♯
i,j × F♯

i−1

∣∣∣ . (6.4)

where
∑

Lf♯
i,jM∈V

+
N ,X

wLf♯
i,jM

= 1.

Here, V +
N ,X represents a set of nodes excluding the first abstracted layer, for which

a conditional probability table does not exist. The WFdCov (BN ,X) gives the weighted
percentage of assumed causal relationships between features of successive layers that are
adequately exercised by X. Intuitively, the metric iterates over all nodes in V +

N ,X and
calculates a weighted coverage. For each node, it looks at its CPT which lives in the space

98 Amany Alshareef

F♯
i,j × F♯

i−1, and checks all the values larger than ε. In other words, CP i(f
♯k
i,j |F

♯
i−1) ≥ ε.

Further, for the metric to be independent from the previous feature coverage, it includes the
conditional probability entries pertaining to hidden feature intervals that are not elicited by
X, i.e., for which Pi(f ♯k

i,j) < ε. Consequently, the impact of feature coverage is eliminated
on feature-dependence coverage, so that the WFdCov (BN ,X) only captures the causal
relationships between hidden features that are not exercised by X,

Example 19. Continuing Example 18, the weighted feature dependence coverage is now
considered. The function iterates over the last 4 of the 6 nodes for which the CPT exists.
For this example, let the calculated coverage for the node f3,0, ε = 0.01. Taking a look into
its CPT, there are 26 out of 27 items with probabilities larger than 0.01. Furthermore, all
marginal probabilities are also larger than 0.01, which means that the coverage is 26/27.
Now, we calculate how much the node amount to the total weighted feature dependence
coverage. Because the weights in Figure 6.2 are normalised to sum to 1 for all nodes, they
have to be firstly renormalised, so that only weights of nodes with CPT sum of 1. Thus,
the normalisation constant is the sum of all nodes’ weights except for the first layer’s node
weights. This amounts to 0.8687. Finally, the contribution of the node f3,0 to the total
coverage amounts to 0.1730/0.8687 · 26/27 = 0.1917. Similarly, for the node f3,1, there are
25 out of 27 values with a probability larger than 0.01, which means the node will contribute
to the total coverage as 0.2697/0.8687 · 25/27 = 0.2875. Summing up the contribution from
all 4 nodes with CPT assuming there is one probability less than 0.01 for each f2,0 and f2,1,
the final weighted feature dependence coverage amounts to 0.2190+0.2532+0.1917+0.2875 =

0.9514.

6.3.3 Generalised Weighted Feature Coverage

To deliver a consistent coverage measure that is based on every probability entry in the BN,
the two feature metrics 6.3.1 and 6.3.2 can be combined to produce the generalised weight
feature coverage. This generalised weighted feature metric gives a single, unified coverage.
The capability of the BN abstraction can consider coverage that takes into account higher-
order distributions as well. The following is a short description of the possibilities in this
respect. In the simplest approach, one can consider two coverages decoupled from each
other, and simply multiply them: WFCovTot = WFCov×WFdCov. This is in most

Chapter 6. Weight-based Testing Metrics 99

situations sufficient, however the other possibility is to average them on per-node level:

WFCovTot (BN ,X) =
∑

Lf♯
i,jM∈VN ,X

wLf♯
i,jM
·

 WFCovLf♯
i,jM

if i = 1 ,

1
2

(
WFCovLf♯

i,jM
+WFdCovLf♯

i,jM

)
otherwise .

(6.5)
Here the WFCovLf♯

i,jM
and WFdCovLf♯

i,jM
are labelled with per-node coverages.

Further coverage metric. In the realm of probabilistic modelling, we can consider the
coverage for the full probability distribution. Where the metric does not take into account
only marginal and first-order conditional distributions, but also higher order correlations
set by the BN. For example, we can calculate a joint probability as

P (f ♯
1,1, f

♯
1,2, . . . f

♯
1,|λ1|, . . . f

♯
i,j , . . . f

♯
K,|λK |) , (6.6)

iterate over all probability space and define the coverage as the fraction of them larger than
some threshold ε. Since the per-node weights in such a case cannot be trivially introduced,
this theoretical metric will be left for future work.

6.3.4 Coverage Criteria

The following test criteria are trivially derived from the coverage metrics given in Defini-
tion 6.3.1 and 6.3.2:

Definition 6.3.3 (Weight-based Feature Coverage Criterion). A non-empty set of inputs
X ⊂ DX satisfies the Weight-based feature coverage criterion that is obtained via the BN
abstraction BN ,X iff WFCov(BN ,X) = 1.

Definition 6.3.4 (Weight-based Feature-dependence Coverage Criterion). A non-empty
set of inputs X ⊂ DX satisfies the Weight-based feature-dependence coverage criterion that
is obtained via the BN abstraction BN ,X iff WFdCov(BN ,X) = 1.

6.4 Concolic Test Generation

The weight-based feature metrics are implemented on the DeepConcolic tool and the fea-
tures weights are used as criteria to direct the concolic testing algorithm. A detailed
description of the test generation procedure is provided in Algorithm 2.

100 Amany Alshareef

For a given trained DNN N on a dataset X and the associated abstract Bayesian
Network BN ,X , the features weights Wf are calculated for all extracted features. We
assume that suitable feature extraction and discretisation have been applied on a training
sample Xtrain to obtain the structure of the BN ,X . The test generation procedure starts by
randomly sampling an initial seed set of test inputs X0 from Xtest data set that is correctly
classified by N , and initialising the probability tables in the BN to produce BN ,X0 . Next,
the algorithm identifies the test target intervals Tar_invals = {f ♯

i,j} through analysing the
non-epsilon probabilities of the marginal or conditional probability tables in BN ,X0 . The
non-epsilon is the probabilities that are less than ε and not yet met by the current set of
input test cases in X0. Thus, the Tar_invals consist a set of hidden feature interval(s)
that should be elicited by the test input to be generated.

The test case generation algorithm then iterates i times according to the following:
First, identify the t ∈ Tar_invals with the highest importance weight in Wf , and select
a test input s ∈ X0 based on some heuristics, such as closeness to the targeted interval
t. Then, constructing a Linear Programming (LP) problem based on t and solve the
optimisation objective that seeks to minimise the distance between activation of input
neurons and s. This problem is formulated as:

Minimise: ∥(n̂1,1, . . . , n̂1,|l1|)− (s1,1, . . . , s1,|l1|)∥∞ (6.7)

Where n1,1, . . . , n1,|l1| is the set of all input neurons in N .

After solving the LP problem and extracting the newly generated test input s′ from
values of input neurons: s′ = (n1,1, . . . , n1,|l1|), the algorithm will check two properties of
the new input s′. Does the s′ pass the oracle, i.e., is it structurally close enough to s w.r.t
the L∞ norm? If yes, then, does the s′ output the same classification label of s, in other
words, is fN (s′) == fN (s)? If yes, then, the s′ is considered a valid input and added
to the test input X0 = X0∪ {s′}. Otherwise, the s′ is considered adversarial for N , as
s′ is both deemed close enough to s from which it is derived, and it is not assigned the
same classification label as s by N . Accordingly, the probabilities in BN ,X0 are updated
to account for the new test s′ and then recalculate the coverage. The test case generation
continues if the test criteria obtained via the new BN ,X0 is not yet satisfied.

Note that, the new test s′ may not actually improve reported coverage if it is just
"closer" to the target interval than s but does not hit it. The expectation is that, s′ will
later be selected to generate a new input s′′ according to the same process, and eventually

Chapter 6. Weight-based Testing Metrics 101

Algorithm 2 Test Dataset Generation
Input:
N ← DNN under test
X ← data set
BN ,Xtrain ← abstract Bayesian network
Wf ← features sensitivity weights
Output: test inputs X0, coverage
1: X0 ← sampling initial seed test inputs from Xtest

2: BN ,X0 ← initialising the BN probability tables with X0

3: Tar_invals← intervals with prob ≤ ε
4: for i = 1 to max iterations do
5: t← Tar_invals with highest weight in Wf

6: select a test input s ∈ X0

7: construct an LP problem based on t
8: solve the optimisation objective: min ∥(n̂1,1, . . . , n̂1,|l1|)− (s1,1, . . . , s1,|l1|)∥∞
9: s′ = (n1,1, . . . , n1,|l1|)

10: if s′ passes the oracle then
11: s′ ← newly generated test input
12: if fN (s′) = fN (s) then
13: X0 ← X0∪ {s′}
14: update BN ,X0 probabilities
15: update coverage
16: else
17: s′ ← adversarial input
18: end if
19: end if
20: end for

the target interval might be reached. Further detail is provided for the main steps from the
algorithm above, as follows:

• Selection of a test input. Finding a candidate test input s is implemented through
searching for an input s ∈ X0 whose feature value λi,j◦ĥi is close to the target interval
boundaries f

[k
i,j or f

k[
i,j . This assumption gives a simple heuristic for finding a good-

enough candidate test input.

• Construction of the LP problem and the set of constraints. The problem that
is solved at each symbolic analysis iteration of DeepConcolic is a Linear Programme
(LP) as described in Concolic testing in Section 2.5.2. The construction of the LP

102 Amany Alshareef

problem comprises a set of constraints to find a set of inputs s′ that exhibit the same
activation pattern behaviour as s, and an optimisation objective to find the optimal
s′, if one exists, using Chebyshev distance L∞. The concolic test generation with
weight guidance enhancement reuses the constraints suggested by Sun et al. [90] to
construct a symbolic encoding of the DNN’s layer behaviours and construct a set of
constraints to encode ReLU operations.

• Evaluation of the generated test cases. To fulfil the BN-based criteria that
is linearly encoding non-linear behaviours, the concolic algorithm uses a practical
measure beside the test oracle that decides whether a test case passes or fails. The
creation of this measurement is to counter a consequence of the loss of precision that
is induced by dimensionality reduction. The decision mechanism to keep or reject any
newly generated input is that, even if the resulting LP solution of a candidate test
input s leads to a hidden feature valuation λi,j ◦ ĥi(x′) that does not belong to f ♯k

i,j ,
due to the approximations induced by the feature mapping λi,j , the input s considers
a legitimate new test cases. As stated before, even though such inputs do not improve
coverage, they help populating the set of potential candidate tests inputs, which they
indeed help further explorations of the input space.

6.5 Evaluation

This section reports on the experimental analysis conducted to evaluate the performance
of the suggested coverage metrics and the usability of the weight in guiding the adapted
concolic test case generation. The first set of analyses examined the quality of the existing
BN-based feature metrics discussed in Section 2.5. Then, the efficiency of the developed
features weights was tested and compared to the previous coverage results. The answers
are provided for the first two investigated research questions and justified.

6.5.1 Datasets and Models

Two popular datasets, Fashion-MNIST [96] and CIFAR-10 [54], were chosen for the ex-
periments. A medium-sized Fashion-MNIST model (named Nfm whose layers are listed in
Table A.4) is trained with 89.03% validation accuracy. Three different layers with various
functionality are chosen for the testing to fairly cover all types of the layers. The chosen lay-
ers are max_pooling2d_1, activation_2 and dense_1. For further exploration, the testing

Chapter 6. Weight-based Testing Metrics 103

criteria are also evaluated on a more complicated CNN model Nci trained on the CIFAR-10
dataset with 81.00% validation accuracy, the model is illustrated in Table A.5. The se-
lected layers to be covered with the experiments are: max_pooling2d_1, activation_4 and
dense_1.

6.5.2 Experimental Setup

In the following experiments, the high-level criteria are used to investigate how a test
dataset exercises a set of hidden features that has been learned from the training dataset
and internally represented by any layer of the CNNs. Therefore, the reliance will be placed
on the hidden features learned by the two trained CNN models (the Fashion-MNIST model
and the CIFAR-10 model). The computation of the Bayesian Network abstraction relied
on 20,000 classified training samples. Multiple strategies for linear dimensionality reduc-
tion and discretisation of each feature component were applied to construct various BN
abstraction schemes. Two linear feature extraction techniques were selected: Principal
Component Analysis (PCA) and Independent Component Analysis (ICA), with varying
numbers of components to be extracted from the set of neuron activations at each chosen
layer. Particularly, the extracted features range from two to five per layer. The Density-
based (KDE) and uniform-based discretisation strategies were considered, with varying
numbers of the uniform partitions bins that are: one, three, and five. The KDE density es-
timation was restricted to partitioning the features into three minimum and five maximum
intervals. Finally, the extended Concolic testing tool was run on both DNN models with
a maximum of 100 iterations per run. Each run was initialised with uniformly drawn test
sets X0 of 10 and 100 correctly classified inputs. The chosen epsilon value to compute the
feature coverage was ε = 10−8. Regarding the weight coverage experiments, the procedure
for determining a distance metric to calculate the sensitivity weights through comparison
with the BN prediction weights is executed once during the first iteration. Thereafter, the
sensitivity analysis algorithm will rely on the same distance metric to compute the feature
weights for the remaining iterations.

6.5.3 Experimental Results and Analysis

The experiment results obtained from the testing analysis conducted to evaluate the perfor-
mance of the proposed weight metrics are presented. There were two evaluation objectives,
as follows: The purpose of the first experiment was to evaluate the coverage quality of the

104 Amany Alshareef

existing BN-based metrics so that a comparison with the proposed weight metrics could be
made and improvements could be recognised. The second experiment aimed to determine
the enhancements of the proposed weight feature coverage. In particular, demonstrating
the efficiency of targeting the most important features throughout the process of generating
new test cases.

SRQ4: Coverage Quality Analysis Using Existing Metrics. The aim of the SRQ4
experiment was to assess the extent to which the existing BN-based feature metrics dis-
cussed in Sub-Section 3.3.4 could improve the initial coverage with the test generation
within a maximum 100 iterations. To analyse the testing outcomes, it was necessary to
carefully select and decide how to split different categories. Since the objective of the exper-
iment was to demonstrate the increase in coverage over the run time, the primary variables
will be the initial coverage, the final coverage, and the time it takes to obtain the final
coverage. So, there were two numerical parameters: run-time and coverage. Other param-
eters were categorical: initial or final; ICA or PCA; initial test sizes. Therefore, plotting
the result in space of run-time vs. coverage, and having one error point representing each
categorical class - initial PCA, initial ICA, final PCA and final ICA, would illustrate the
desired intention. For each of those variables, the errors were calculated in the following
way:

• For the run-time, standard normal error is expected, so the mean and one standard
deviation are calculated. This amounts to 68% interval around the mean.

• For coverage, however, distribution is neither normal nor symmetric. Therefore, me-
dian and 68% interval around it is computed, equivalent to the previous case.

The plots in Figure 6.3 show the results of a standard test generation process, for
two of our datasets. First and second rows show BFCov 3.11 and BFxCov 3.13 metrics
respectively. Every column differs in the initial test size X0 ∈ {10, 100}. Each individual
plot shows initial and final coverage distributions (their medians and 68% regions), for PCA
and ICA methods. The interpretation is that higher median line on coverage, better the
median coverage; smaller the errors, and more precise is the metric. The smaller and longer
median line represents the spread in the runtime.

The analysed outcomes illustrate that test generation process consistently enlarges the
median of the coverage, which is expected. However, the spread of a distribution stays

Chapter 6. Weight-based Testing Metrics 105

similar, with a few exceptions. Larger number of runs could improve the precision of results,
however, we believe the main reason for such a spread is that only runs with higher initial
coverage managed to improve. The ones with low initial coverage were hard to improve
and stayed the same. It can be observed that the constant 0.33333333 initial coverage that
appeared frequently in many testing situations, did not increase in most cases (Note the
minimum coverage -initial and final for all charts is 0.33), see the tables in Appendix C for
the testing summary results.

Considering the initial test size, one can see that larger initial test size, i.e., X0 =

100 consistently results in larger (sometime comparable) coverage. A larger X0 gives the
synthesis algorithm more leeway to find candidates from which to derive new inputs that
hit target intervals that are not exercised by any test in X0. For the PCA and ICA,
there’s no apparent difference between two methods, one exception for the Fashion-MNIST,
X0 = 100, BFCov metric, where PCA results in much tighter distribution. As the same is
not visible in the BFxCov metric, the significance of this result cannot be assessed. Both
BFCov and BFxCov metric generally agree with the level of improvement during the testing.
Considering runtime, the charts express that ICA method is slightly more expensive in all
situations.

A further analysis of the obtained final coverage of all testing traces inspected via
an inquiry about 1.00 achieved coverage revealed that the testing criteria satisfied only
twice with the bfc criterion on the CIFAR-10 dataset. Both situations occurred with a
100 initial test size using the ICA with two and three extracted features per layer and
the KDE discretisation method. This implied a total of 254 combination traces out of
256 (64 per testing criteria per CNN model) did not satisfy BFCov(BN ,X) = 1 neither
BFxCov(BN ,X) = 1, after 100 iterations. Observing the final coverage in Figure 6.3, with
red and yellow colours, the average median final coverage is around 0.87%, which mean
there are 0.13% of the networks remain untested. What if the not covered features are
the vital element of the neural network? There are neither guarantees nor any information
about the untested elements. This issue will be evidenced in the following experiments.
Thus, the experiment’s outcomes indicated that the BN-based feature metrics DO NOT
guarantee the coverage of a model’s critical internal regions.

SRQ5: Weight Features Coverage using Proposed Metrics. This experiment was
directed to assess whether the weight-based approach, which weights the features according
to their importance scores when calculating the coverage, exhibited advantages in improving

106 Amany Alshareef

Figure 6.3: BN-based feature coverage plots show the overall distribution of initial and the
respective final coverage of up to 100 iterations of Concolic test case generation. X-axis
indicates the run time in seconds (initial and run time). The horizontal line on the coverage
is the median.

the BN-based feature coverage. In particular, the study examined whether the weight-based
feature metrics would achieve higher coverage with less run time than the original metrics.

Figure 6.4 shows the results of the weight coverage measures WFCov which was defined
in Equation 6.3 and WFCovTot that was formalised in Equation 6.5, in equivalent arrange-
ment as the previous Figure 6.3. Comparing the two figures, it can be seen that the lowest
initial coverage in the majority of the plots are greater than the constant value of 0.33,
which occurred often in the previous experiment. This expected raise of the initial cover-
age comes from the difference in the coverage definitions - one being weighted and the other
not. This small growth in the initial coverage gives a greater opportunity for the coverage
to be improved during the testing. An example from the weight coverage testing experi-
ment (see Table C.8 in Appendix C) which gave 0.38950211 that increased to 0.72610162
final coverage with 51 new generated inputs. This is evident from the preceding finding,
which reported that starting testing with a higher initial coverage has a better chance of
increasing. Furthermore, the initial coverages in all plots, except for the CIFAR-10 with
X0 = 100, are consistent with initial coverages in Figure 6.3. This indicate that most of
the features with higher weights are not covered yet.

Chapter 6. Weight-based Testing Metrics 107

Figure 6.4: Weight-based feature coverage plots show the overall distribution of initial and
the respective final coverage of up to 100 iterations of Concolic test case generation. X-axis
indicates the run time in seconds (initial and run time).

Considering the final coverage, the charts show significant improvement in the coverage
for the WFCovTot compared to BFxCov, for both datasets and PCA/ICA methods. The
reason for this is that the generation process is led by the most important parts of the
BN, which have larger weights. A notable observation is that the minimum final cover-
age increased considerably, which indicates the higher-importance intervals were covered
with the new input first. This trend is the same for all coverages except for the F-MNIST
model with X0 = 10. Finally, considering runtime, weighted coverage takes more time for
the initial computation, which spent additional time calculating feature weights. However,
convergence is reached slightly faster compared to the non-weighted case. Improvement is
of a few percent, thus not so significant. The results for WFCov with respect to BFCov
give better improvements in coverage, for both datasets and methods. From the preceding
outcomes, it can be concluded that the proposed weight coverage metrics DO provide a re-
liable testing measurement in terms of reporting the coverage that prioritises the important
internal representation of the model.

108 Amany Alshareef

6.5.4 Further Results

The above experiments clearly demonstrated the effectiveness of the weighted coverage
compared with the basic coverage. Both metrics were able to generate new sets of inputs
that achieved high coverage. However, the WFCov and WFCovTot enforced the higher
coverage on the more relevant training dataset features. In addition, the weight feature
metrics generate a comparable number of adversarial inputs. Further details are discussed
below.

Quantitative improvement of coverage. In this part, a specific quantitative enhance-
ment of weight-based feature coverage over BN-based feature coverage is presented. A de-
tailed comparison of different testing scenarios is discussed, including the initial measured
coverage, which interval is triggered, the coverage progress made through each passed test
case and the total number of new generated test cases. These detailed testing cases focus
on the Fashion-MNIST model with several BN specification combinations of the PCA fea-
ture extraction technique. These combinations are chosen by picking almost all available
BN specifications; however, they are still not representative of the rest of the scenarios, see
tables in Appendix C for the full test traces. The purpose of this illustration is to show the
testing process in detail with specific increment numbers.

Table 6.1 demonstrates three testing scenarios: PCA-X10-N3-U5, PCA-X10-N4-KDE,
and PCA-X100-N5-U5. As mentioned earlier, the PCA is used to extract the features in all
situations. X10 and X100 indicate the initial test size |X0|. N is the number of extracted
features per CNN layer, in the selected specifications, it is three, four, and five. The last
abbreviations represent the discretisation methods that are 5-bin-uniform intervals and
KDE. In the first scenario (PCA-X10-N3-U5), the BFCov initial coverage was 0.8095 and
then increased to 0.8254 by successfully generating a new input that hit the second interval
of the first extracted feature from the max_pooling2d_1 layer. One more produced test
input succeeded in improving the coverage to 0.8413 before the 100 iterations were over.
The total number of generated tests is 26; one of them is adversarial input. On the other
hand, the WFCov initial coverage was 0.8409 and increased through three newly generated
tests that exhibit intervals from (max_pooling2d_1, 2) and (activation_2, 0) features. The
coverage increased each time according to the interval weight into 0.8957, as illustrated in
Table 6.2 that shows the calculated weights for all three scenarios for both WFCov and
WFdCov metrics. The total number of generated tests is 30; three of them are adversarial

Chapter 6. Weight-based Testing Metrics 109

input.

Regarding the BFxCov and WFCovTot metrics, the scenarios only illustrate the calcu-
lation of the feature dependency coverage for the features of the activation_2 and dense_1
layers. For the features of the max_pooling2d_1 layer and the rest layers, the feature
coverage will be calculated as above to obtain the total coverage as presented in the Ap-
pendix C’s tables. The weight normalisation factor is adjusted accordingly in Table 6.2.
The BFdCov initial coverage started at 0.8258 and increased to 0.8393 by targeting in-
terval 3 of feature 0 in layer activation_2, subject to feature intervals (1, 1, 3) in layer
max_pooling2d_1. It then reached the 0.8433 final coverage by generating a test input
whose valuation value belongs to the second interval of feature 2 in layer activation_2,
subject to feature intervals (3, 4, 4) in layer max_pooling2d_1. Moreover, although the
WFdCov initial coverage, 0.7944, was lower than the BFdCov, it reached 0.8617 through
two test cases as well. Thus, both metrics increased the coverage; however, the weight
metric reported its coverage based on the importance feature scores.

In regard to the second BN specification instance (PCA-X10-N4-KDE), since the KDE
computes feature intervals based on their associated density distribution, each feature is
partitioned into a different number of intervals; see the example below. Here, we emphasise
that the intervals are sorted in descending order in the test target Tar_invals set according
to their feature weight. The rest of the two testing scenarios in the Table 6.1 are translated
into the same first explained case.

Example 20. The example shows part of the executed testing code output of the PCA-X10-
N4-KDE specification:
Abstracted layers: max_pooling2d_1, activation_2, dense_1
Computing Bayesian Network abstraction...
| Given 20000 classified training sample
| Extracting features for layer max_pooling2d_1... Extracted 4 features
| Discretising features for layer max_pooling2d_1...
| Discretisation of feature 0 involves 5 intervals
| Discretisation of feature 1 involves 4 intervals
| Discretisation of feature 2 involves 3 intervals
| Discretisation of feature 3 involves 3 intervals
| Extracting features for layer activation_2... Extracted 4 features
| Discretising features for layer activation_2...

110 Amany Alshareef

| Discretisation of feature 0 involves 5 intervals
| Discretisation of feature 1 involves 5 intervals
| Discretisation of feature 2 involves 3 intervals
| Discretisation of feature 3 involves 4 intervals
| Extracting features for layer dense_1... Extracted 4 features
| Discretising features for layer dense_1...
| Discretization of feature 0 involves 4 intervals
| Discretisation of feature 1 involves 3 intervals
| Discretisation of feature 2 involves 3 intervals
| Discretisation of feature 3 involves 3 intervals

Chapter 6. Weight-based Testing Metrics 111

BN specification criterion init_cov hit_interval progs_cov #gen_tests

X10-N3-U5

bfc 0.8095 l:max f:0 v:2 0.8254 25 + 1 adv.
l:max f:1 v:3 0.8413

wfc 0.8409 l:max f:2 v:4 0.8646 27 + 3 adv.
l:act f:0 v:0 0.88
l:act f:0 v:2 0.8957

bfdc 0.8258 l:act f:0 v:3 c:(1,1,3) 0.8393 45 + 0 adv.
l:act f:2 v:2 c:(3,4,4) 0.8433

wfdc 0.7944 l:act f:0 v:5 c:(1,2,2) 0.8281 40 + 1 adv.
l:act f:0 v:5 c:(3,2,3) 0.8617

X10-N4-KDE

bfc 0.6639 l:dense f:3 v:0 0.7194 32 + 0 adv.
l:act f:2 v:0 0.7719
l:act f:0 v:4 0.8369

wfc 0.7942 l:max f:0 v:5 0.8167 29 + 0 adv.
l:dense f:0 v:1 0.9063

bfdc 0.8138 l:dense f:0 v:3 c:(2,1,1,1) 0.8203 33 + 0 adv.
wfdc 0.8002 l:dense f:2 v:3 c:(1,3,1,1) 0.8292 32 + 0 adv.

X100-N5-U5

bfc 0.8952 l:max f:3 v:5 0.9048 17 + 0 adv.
wfc 0.8804 l:max f:1 v:7 0.8923 24 + 0 adv.

l:max f:2 v:2 0.9036
l:max f:2 v:6 0.9149
l:dense f:0 v:2 0.9260

bfdc 0.8947 l:act f:1 v:3 c:(1,1,2,2,2) 0.8953 12 + 0 adv.
wfdc 0.8798 l:act f:2 v:4 c:(1,3,2,4,3) 0.8943 30 + 0 adv.

Table 6.1: Improvement of testing coverage (up to 100 iterations) for various BN specifica-
tion scenarios (X10 and X100 indicate X0’ size, N3, N4 and N5 are the number of extracted
features per DNN’s layer, U5 is the uniform discretisation with five bins and KDE is the
Kernel Density Estimation discretisation method. Four criteria are compared: bfc, bfdc,
wfc, and wfdc for the Fashion-MNIST model. The hit_interval specifies exactly what in-
terval is triggered and causes the coverage to increase; "l" donates the CNN’s layer, "f" is
the number of features, "v" is the interval, and "c" is the combination of feature intervals
from the previous layer.

112
A

m
any

A
lshareef

Features
BN specification BN specification- wfdc

PCA-X10-N3-U5 PCA-X10-N4-KDE PCA-X100-N5-U5 PCA-X10-N3-U5 PCA-X10-N4-KDE PCA-X100-N5-U5
dcorr dcorr dcorr dL2 dL2 dL2

(max_pooling2d_1, 0) 0.105467 0.112420 0.060254 0.112859 0.060395 0.056223
(max_pooling2d_1, 1) 0.101796 0.088920 0.083430 0.109274 0.084177 0.070053
(max_pooling2d_1, 2) 0.166113 0.096506 0.078934 0.111754 0.108896 0.073193
(max_pooling2d_1, 3) — 0.078087 0.058197 — 0.088021 0.073698
(max_pooling2d_1, 4) — — 0.068820 — — 0.076609
(activation_2, 0) 0.111107 0.079128 0.072504 0.120855 0.096951 0.062478
(activation_2, 1) 0.115871 0.032070 0.063710 0.119946 0.094191 0.069944
(activation_2, 2) 0.091184 0.081935 0.067060 0.101161 0.093914 0.081423
(activation_2, 3) — 0.082476 0.050955 — 0.075684 0.052693
(activation_2, 4) — — 0.074110 — — 0.063848
(dense_1, 0) 0.108244 0.089610 0.077759 0.115761 0.064766 0.062478
(dense_1, 1) 0.093658 0.085508 0.058747 0.101130 0.067194 0.049025
(dense_1, 2) 0.106560 0.085203 0.069006 0.107261 0.100158 0.072783
(dense_1, 3) — 0.088138 0.047495 — 0.065654 0.052024
(dense_1, 4) — — 0.069020 — — 0.072748

Table 6.2: Assigned feature weights for three testing scenarios: PCA-X10-N3-U5, PCA-X10-N4-KDE, and PCA-X100-N5-
U5, calculated for WFCov and WFdCov metrics based on the Fashion-MNIST model. These abbreviations denote the BN
specification: pca indicates the feature extraction method, X10 and X100 represent the size of the initial test sets |X0| ∈
{10, 100}, N3, N4 and N5 are the number of extracted features per DNN’s layer (three, four and five), and U5 and KDE are
the discretisation strategies (uniform with five bins and Kernel Density Estimation).

Chapter 6. Weight-based Testing Metrics 113

Figure 6.5: Summary of the new produced test inputs of up to 100 iterations of test case
generation by DeepConcolic targeting BN-based coverage and weight-based coverage for
the Fashion-MNIST model, for two sizes of initial test sets |X0| ∈ {10, 100}. Each row
specifies the used criterion: bfc, bfdc, wfc, and wfdc. Green and blue lines respectively
indicate runs with ICA and PCA-based feature extractions.

Newly produced test inputs. The plot in Figure 6.5 shows the growth of the generated
test set with respect to the testing iterations. Each of the four charts illustrates a specific
criterion’s (bfc, bfdc, wfc, and wfdc) ability to generate new sets of inputs. Overall, between
10% to 60% of iterations produce new test cases. Looking at the X0 = 10 instance, there
is a steady increase in the number of test samples, for both PCA and ICA. On the other
hand, for the case of X0 = 100, there is a significant fraction of realisations that do not
change too much in the test suite size. The reason for this difference is in 10 being a very
small sample, while 100 being much better. This is also evident from the previous section,
with X0 = 100 giving much larger initial coverage, as well as final coverage compared to
X0 = 10.

Generated adversarial examples. The directed Concolic test case generation with
feature weights was able to generate adversarial samples. As stated earlier, the newly syn-
thesised inputs were considered adversarial when they do not have the correct classification
label. Figure 6.6 shows some adversarial examples that were found during the testing ex-
periments running on Nfm and Nci models and targeting the weight-based feature coverage
and the weight-based feature dependence coverage criteria.

114 Amany Alshareef

Figure 6.6: Some adversarial examples found by achieving WFCov and WFdCov testing
criteria for the Fashion-MNIST model (above) and CIFAR-10 model (below).

6.6 Trustworthy Performance With the Weight Metrics

The reliability and trustworthiness of deep neural networks have become increasingly im-
portant as they are being used in safety-critical applications such as autonomous vehicles
and medical diagnosis. One aspect of reporting the trustworthy performance of DNNs
is to ensure they behave correctly by measuring how well they have been tested during
the evaluation process. The below discussion is to answer the third subsidiary research
question (SRQ6) considered in this chapter, which inquires whether the proposed weighted
testing coverage provides trustworthiness in the learning systems’ performance. Providing
guarantees for the DNN’s safety has been thoroughly investigated in recent years through
the abstraction process. Gehr et al. [30] presented the AI2 analyser that utilises abstract
interpretation to verify the safety propriety of the CNN. In [76], The authors suggested em-
ploying abstractions of Boolean combinations of linear arithmetic constraints as a means
for verifying the safety behaviour of learning models. On the other hand, the feature im-
portance concept is used in explainable AI to determine the parts of the network that are
responsible for the output decision. That helps in identifying potential vulnerabilities, im-
proving overall transparency, and thus increasing trust in the model. By integrating these

Chapter 6. Weight-based Testing Metrics 115

two approaches, researchers can not only ensure the safety of DNNs but also gain a deeper
understanding of how they work and make decisions.

The presented semantic metrics combined the two theories, Bayesian abstraction and
identification of the DNN’s high-level features importance, to provide a comprehensive
evaluation of the model’s performance. The weight-based testing metrics assign weights to
different features of the internal representation based on their sensitivity importance. The
weights are then used to prioritise the testing of those features, with the aim of enforcing
higher coverage on the critical decision regions. This approach allows for a more efficient
and effective testing process, as it focuses on the features that are most likely to impact the
overall performance of the model. Thus, the presented methodology for selecting the test
cases ensures the DNN has been properly tested on critical features and provides further
evidence that the model is trustworthy.

From the preceding discussion, the answer to the SRQ6 is that the proposed method-
ology for selecting test cases, concentrating on features that have a significant impact on a
model’s performance, improves the reliability and trustworthiness of the DNN models.

6.7 Related Work

The majority of the existing research in the DNN area adapts testing methodologies that
concern test adequacy criteria based on the neuron-level aspect, as discussed in Chapter 2.
Regardless, a closely related work to the concept of importance-based semantic testing is
the DeepImportance approach presented in [32]. This paper introduces a systematic testing
approach that is developed based on the Importance-Driven (IDC) test adequacy criterion.
Their approach is similar to the presented idea of analysing the model behaviour to identify
the important high-level features first and then measuring the test set coverage based on
that; however, their aim was to find the important neurons that are primary contributors
in decision-making. Also, their method differs in the phrase of coverage adequacy, where
the paper’s goal is to test all generated combinations of important neuron clusters while
ignoring the unimportant network’s neurons. In comparison, the weight-based approach
prioritises the higher-weight features but does not ignore the less important ones. The
DeepImportance method employs the layer-wise relevance propagation technique from the
explainable AI mentioned in Section 2.6 to develop a layer-wise functional understanding of
the neuron’s internal behaviour. The algorithm computes the relevance contribution scores
for each neuron for all input samples and then produces clusters of the most important

116 Amany Alshareef

neurons using iterative unsupervised learning. The authors then evaluated the semantic
adequacy of a test set by targeting different combinations of important neurons’ behaviours.
The DeepImportance’s test adequacy criterion is satisfied when all combinations of impor-
tant neuron clusters are exercised.

6.8 Conclusion

This chapter has introduced a weight-based semantic testing approach that measures how
well the DNN is tested by focusing on the importance features using its abstracted Bayesian
Network. The conducted experiments empirically validate the applicability and effective-
ness of the proposed weight metrics. The evaluation results demonstrated that the basic
BN-based testing metrics do not guarantee coverage of a model’s critical internal regions,
where the test case generation algorithm was not designed to target the most relevant
features. The developed weight-based feature coverage metrics achieved higher testing
coverage than the original metrics, with an emphasis on covering the important learned
representation, where the test generation algorithm is directed to synthesise new input
targeting features with higher importance scores. This guarantees that the high-risk re-
gions with the most influential features are tested thoroughly and the reported coverage
was measured based on the important internal representation of the DNN model. This
serves as a strong argument in favour of increasing the trustworthy performance of DNNs
in safety-critical applications.

Chapter 7

Conclusion and Future Work

7.1 Introduction

This concluding chapter provides a summary of the work presented in this thesis, as well
as the key findings and recommendations for future research. The chapter begins with a
summary of the content that has been covered in this thesis in Section 7.2. Section 7.3
outlines the contributions that have been made and highlights the main findings of the
conducted experiments in terms of the primary and subsidiary research questions to the
thesis sought to address as presented in Chapter 1. Lastly, Section 7.4 wraps up the chapter
by discussing possible directions for future study that may expand upon the work described
in the thesis.

7.2 Summary of the Thesis

This thesis proposed weight-based semantic testing metrics that use developed feature im-
portance weights to measure the coverage of a test set, and generate additional test cases
guided by the priority weights to guarantee a more "trustworthy" measure of the model’s
performance. The thesis commenced with an introductory chapter, Chapter 1, that dis-
cussed the motivations behind the conducted studies. The motivation was bridging the
gap of the usage of the testing approaches and the learned driven behaviour of neural net-
works. This is in line with the increased integration of machine learning into safety-critical
applications. The chapter then presented the main research question to be investigated
and the related subsidiary research questions. It proceeded with presenting the research

117

118 Amany Alshareef

methodology to solve the current lack of testing strategies. The proposed solution was to
utilise the semantic representation that is formed in the DNN through the training process
to focus on in the testing phase. The contributions that have been made to achieve the
desired goals are discussed at the end of the chapter.

Chapter 2 presented the concept of deep neural networks and their related challenges
and concerns. It discussed the properties of DNNs that need to be tested to guarantee their
reliability and safety. This chapter then provided a comprehensive review of the existing
testing approaches concerning the DNNs. The literature review established that testing
metrics and test input generation algorithms have made significant progress in improving
the coverage of deep learning models, however, achieving guarantees for complete coverage
of their behaviour and optimal targeting of critical features is still an active research area.
The chapter closes with possible methods for exploring the internal logic of DNN models.
In Chapter 3, Bayesian theory was explored. An overview of the idea of Bayesian Network
(BN) was given, along with a discussion on how recent research has utilised Bayesian Net-
works to address common issues in DNNs. The chapter then presented the BN abstraction
model that was used as a foundation model to construct the proposed weight metrics. The
main phases of constructing a BN were discussed and a detailed explanation of how the
DNN’s layer features were extracted through the PCA and ICA algorithms. It also de-
scribed the mathematical notations of constructing the BN and the implemented BN-based
feature coverage metrics.

The following two chapters studied the significance and relevance of the DNN’s latent
representations to the model’s behaviour and decision-making process. Chapter 4 explored
the learned latent features of DNNs through the lens of the BN. It combined the sensitivity
analysis and perturbation techniques to create a feature importance measure. This im-
portance score expresses the causal relationship between the internal representations and
the DNN behaviour, since more influential features have a stronger causal relationship to
influence decision-making. In this chapter, the concept of random_shift was presented,
and a proposed feature sensitivity analysis algorithm evaluated for detecting adversarial
distribution shift. The analysis focus of this chapter relied on the BN probability distribu-
tion. Furthermore, in Chapter 5, a more concrete sense of the degree to which the hidden
features contribute to the output decision was considered. The chapter presented a method
for deriving an abstract BN model from a neural network to make a classification decision.
The strategy involved adding an auxiliary prediction node to the BN and calculating its
conditional probability table. The degree of change in the classification output for per-

Chapter 7. Conclusion and Future Work 119

turbed features was correlated with several distance metrics used to compute the difference
between two probability distributions. This correlation was clarified by constructing a BN
weighted feature model discussed in Chapter 6 that assigns importance scores to each node
of the BN. Thus, the BN weighted feature model is constructed from a DNN to establish
weight-based testing metrics.

Chapter 6 puts together the preceding analyses to design high-level testing criteria for
neural networks, defined based on a BN abstraction. The first presented metric was the
weight-based feature coverage that concentrates on each individual hidden feature inter-
val and measures the weighted ratio of intervals that are adequately exercised by a given
dataset. It simply checks the marginal probabilities for every interval in the BN’s node
that has a bigger probability than a predefined ε value. The second metric was the weight-
based feature dependence coverage that concentrated on the causal relationships between
hidden feature intervals in successive layers and measures the weighted ratio of intervals
combinations that are exercised enough in the test dataset. This metric targets the con-
ditional probabilities of the BN’s node, which means the extracted features from the first
DNN’s selected layer are not taken into account. Therefore, a third metric was developed
to consider the coverage of the first metric for the first layer’s features and the average
converge of both metrics for the rest of the features. Finally, the results from an extensive
evaluation of the proposed testing metrics wad presented; evaluation that used two CNN
models trained on two state-of-the-art classification data sets, Fashion-MNIST and CIFAR-
10. The experimental results indicated that the weight metrics achieved higher coverage
than the BN-based metrics by targeting the higher importance weight intervals in the test
case generation process. To sum up, this study contributes to the development of effective
techniques for testing and improving the trustworthiness and reliability of deep learning
models.

7.3 Main Findings and Contributions

In this section, the main findings and contributions of the work presented in this thesis are
discussed. The section begins by addressing each subsidiary research question separately
and then answering the primary research question that this thesis seeks to resolve, as
stated in Chapter 1, based on the given sub-answers. The following are the answers to the
subsidiary research questions:

120 Amany Alshareef

1. SRQ1: Is a Bayesian abstraction of a neural network able to systematically analyse
a DNN’s interior decisions?
Bayesian theories are considered a standard principal for analysing deep learning
models, as demonstrated in Chapter 3. In addition, as discussed in Chapter 2, learning
important features either through propagation or perturbation is a main technique to
explain the DNN’s underlying behaviour and decision-making. Extracting a DNN’s
features, structuring their relationships in a Bayesian abstraction scheme, and then
identifying their importance values serve to combine the best of decision analysis
methods. The presented BN-based feature sensitivity analysis in Chapter 4 was able
to give insight into the internal behaviour through the distribution change, which was
able to detect an adversarial distribution shift. It was thus concluded that the chosen
BN model was able to systematically analyse interior DNN’s decisions.

2. SRQ2: How can the importance of the latent features of a deep neural network be
quantified using an abstracted Bayesian Network?
Bayesian sensitivity analysis offers valuable insights into model behaviour and the
identification of influential factors as discussed in Chapter 4. Moreover, sensitivity to
perturbations is a common method employed to explore the DNN’s internal decision
machinery. The presented BN-based feature sensitivity analysis algorithm provided
a principled framework for quantifying the DNNs’ latent features. The importance
of the perturbed feature was estimated by comparing the BN’s probability distribu-
tions before and after the applied perturbation. Therefore, the importance of the
latent features was quantified through the abstracted Bayesian Network sensitivity
distances.

3. SRQ3: How to demonstrate the impact of the feature importance measure on the
classification decisions based on the abstraction?
The impact of the feature perturbations on the classification decisions is assessed by
enhancing the BN abstraction with prediction capability. Chapter 5 described how
a BN classifier, based on a DNN abstraction, can be constructed. The interval shift
procedure, presented in Section 4.3.2 could be then applied to each feature to observe
the change in the classification label. This provided a quantitative assessment of the
relevance of each feature to the classification decisions made by the BN. Afterward,
the relationship between the feature importance scores and the number of misclassified
input samples was analysed (Chapter 6).

Chapter 7. Conclusion and Future Work 121

4. SRQ4: Do existing testing metrics guarantee the coverage of a model’s critical in-
ternal regions, as well as direct the test case generation algorithm to target the most
relevant features?
The existing DNN testing metrics, including structural coverage, do not provide an
entire testing solution for the DNN models. In particular, they do not guarantee
complete coverage of the semantically critical parts of the model or even prioritise
the most relevant features. As discussed in Chapter 2, there are limitations associated
with the structural coverage criteria where they do not explicitly address the high-
dimensional and complex nature of DNNs and their underlying decision logic. These
metrics may provide a certain amount of coverage information at a low level, such as
neuron activation, but they may not effectively capture the actual contribution made
by the internal representation of the deep learning model. Moreover, the BN-based
testing metrics do not concentrate on the most critical features, which remain a weak
point if they do not achieve 100% coverage, as shown by the experiments reported on
Chapter 6.

5. SRQ5: Do the proposed coverage metrics deliver a reliable testing measurement in
terms of reporting the coverage that prioritises the important internal representation
of the model?
The proposed weight-based testing metrics deliver a reliable testing measure in that
they report the model coverage based on the important weights that reflect the core
contributor features to the model decision. This in turn provides assurance evi-
dence of its behaviour. The designed test generation algorithm targets the most
relevant features to be covered first with the new test case. As it is difficult to reach
the 100% coverage within a reasonable time, i.e., 100 iterations, this prioritising of
higher-weight features approach can guarantee that important regions of the model’s
behaviour are tested. The experiments reported on in Section 6.5 demonstrate how
the weight coverage grows faster when a new test input is passed. This indicates
that important features with higher weights are first selected to be tested. Thus, it
is argued that the proposed coverage metrics do deliver a reliable testing measure.

6. SRQ6: Does the generated test dataset from the feature weight directed concolic test-
ing provide a trustworthy measure of a model’s performance?
The assumption underpinning the weight-based semantic testing approach is that the
latent feature space encodes internal and hidden representations learned by the DNN

122 Amany Alshareef

model, and a good testing criterion should emphasise the important latent space
to estimate the test set coverage. In real-world DNN testing scenarios, especially
a complicated one, it is impossible to test all the deep learning model’s behaviour
combinations as there will be an extremely large number of configuration spaces. A
coverage is driven by the fact that the critical behaviours of a learning system are
identified through its latent features attitude; imposing a higher coverage on them
would give safety assurance even if the final coverage is below 100%. Thus the weight
testing approach makes them far more reliable and trustworthy for real-world appli-
cations than structural and unweighted testing methods.

Returning to the main research question of the thesis:

"Is it a better measure of trustworthiness to measure the coverage of the semantic aspect of
deep neural networks and treat each internal component according to its contribution value
to the decision when testing these learning models’ performance than relying on traditional
structural unweighted measures?"

Given the preceding discussion, it can be concluded that trustworthiness is enhanced if
deep neural network coverage is reported based on its semantic level, which measures cov-
erage with respect to the most influential latent representations. Thus, the semantic and
weighted metrics increase reliability and confidence in the neural network’s correct be-
haviours compared to the structure and unweighted metrics.

For further emphasis on the contributions made throughout this thesis, this section is
concluded with a listing and an elaboration of the contributions:

1. The idea of importance weight within DNN testing metrics that integrate a BN ab-
straction scheme with the concept of feature importance from the explainable AI
field. Therefore providing a solution to exploring the internal representation of a
DNN and enforcing higher coverage on the features that are core contributors in the
decision-making process.

2. A novel technique that utilises a BN model to estimate the importance of a neural
network’s latent features by analysing the BN’s node sensitivity to distributional
shifts. This method can then be used to compute the distance between the probability
distributions represented by the abstracted BN and the distributions of inputs under

Chapter 7. Conclusion and Future Work 123

adversarial attacks, thus indicating the differences between the original and perturbed
distributions.

3. An approximator classifier based on an abstract BN extracted from a neural net-
work that was able to approximate the original DNN’s prediction performance while
outperforming it in an adversarial setting.

4. A method to calculate a DNN’s latent feature weights based on the change in the BN
predictions. The underlying assumption was that features that contribute the most
to decision-making cause significant misclassification when they are perturbed.

5. A weighted feature model that assigns the BN feature nodes their importance values,
according to the correlated sensitivity weights with a BN prediction weight.

6. Three semantic testing metrics based on BN abstraction and importance weights,
namely (i) Weight-based feature coverage, (ii) Weight-based feature dependence cover-
age, and (iii) Generalised weighted feature coverage, and then enhancing the concolic
test case generation to target the most influential features that have been identified
as high-risk components that must be tested thoroughly.

7. An analysis of the weight metrics using two popular datasets: Fashion-MNIST and
CIFAR-10. The analysis comprised a variety of BN specification scenarios, including
different combinations of PCA, ICA, N2-N5, U1, U3, U5, KDE, and |X0| = {10, 100}.
The aim was to compare the coverage improvement of the weight-based metrics with
respect to the BN-based metrics.

7.4 Limitations and Future Work

BN-based Feature Importance for DNN explanation. Bayesian networks can pro-
vide explanations for their predictions or inferences, which is important in many appli-
cations where the model’s decision-making process needs to be understood or justified.
A common method is tracing the probability calculations through the network to iden-
tify the factors that influenced the final prediction or inference. Using the proposed BN
classifier and importance weights may offer an advanced method to interpret the DNN’s
decision-making process. It is certainly interesting for a future investigation to explore if
the generated importance values can support the explanation of black-box learning models.

124 Amany Alshareef

Markov blanket for the BN prediction. Further improvement can be implemented
to the BN classifier model presented in Section 5.4. Not all information of the BN is needed
to make a prediction. For instance, in the case where a prediction node is connected only
to the last layer of the initially constructed BN (see Figure 5.3), the specification of the
parent nodes will give full information about the output prediction P (y|r). This concept
is called a Markov blanket - which "covers" all other nodes as unnecessary.

A similar situation holds for the case where all of the nodes are connected to the last
one. In this case, however, all of the nodes will play a role in the prediction of the final
node, but only the final CPT will be necessary, while intermediate CPT distributions can
be ignored. Both procedures can highly simplify the necessary BN and make inference
significantly faster and more accurate. Implementation of them is left for future work.

Further Utility of the BN Classifier. The BN classifier model can be used as a safety
monitor for DNNs since its discrete nature is harder to attack where the discretisation
function is not trivially differentiable. This can be implemented by designing a classifier
that combines the classification results from the original DNN and the BN. The combined
classifier (safety monitor), outputs the decision label if they are agreed in both DNN and
BN. This combination might be investigated and tested in future work.

Alternative Testing Algorithm. Berthier et al. [9] proposed test metrics over a BN
by extending the MC/DC metrics proposed by Sun et al. [90]; and extending the Concolic
test case generation method [89], based on symbolic computation [87], is extended to work
with BNs. Therefore, weight-based metrics were also implemented in the concolic testing
algorithm. However, there is still a wide range of test case generation algorithms, e.g.
Fuzzing based, that can be explored for BNs, and future research can focus on comparing
the effectiveness of different testing methods. Moreover, it will be useful to examine if the
generated test cases can be more natural and diverse when compared with those generated
directly on DNNs, as done in [43].

Importance Weight Computation. The presented method for computing the impor-
tance weight per feature was sufficient for the weight feature coverage approach, as illus-
trated from experiments. However, for the weight feature dependence coverage, it seems
that computing the weight per interval would make the weight metric more reasonable
since the metric seeks to capture the causal relationships between hidden features. In such

Chapter 7. Conclusion and Future Work 125

a case, the process of identifying the target interval can consider the weights of the fea-
ture intervals’ combinations from the previous layer. Thus, if the importance weight was
calculated at the interval level, the eliciting function from the Tar_invals set would rely
on the feature weights as a prerequisite to giving priority to selecting their intervals. To
decide which feature’s interval to choose, the function sums up the weights of their combi-
nation intervals from the previous layer, and the higher sum is chosen. Thus, computing an
importance value per feature’s interval can be considered in future studies. Moreover, the
perturbation of feature importance quantification in Algorithm 1 has relied primarily on
the random shifting function presented in Subsection 4.3.2. Further perturbation methods
can be explored in terms of perturbing the latent features.

Hyper-parameters in Overall Experiments The experiments conducted throughout
the thesis have relied on a wide combination of parameters. Further investigation with
advanced cases, for instance, using non-linear feature extraction techniques like Kernel-
PCA [83] or manifold learning [57] can be explored in the future to assess the properties of
extracted features in extended cases.

Real World Application. The material presented in this thesis has focused on creating
a well-designed testing approach for the DNNs. Developing an assurance case study based
on real-world scenarios, such as a self-driving car, can be considered in the context of future
work.

Further Use of the Abstracted Bayesian Network. As suggested, a BN can be seen
as an abstraction of the original DNN. It is therefore imperative to understand how this
abstraction may further help in analysing or enhancing the original DNN. In addition to
testing, it would also be interesting to explore if such abstraction may bring any benefit
with respect to: verification [44], interpretation of DNN training [49], explainable AI [107],
and safety case [103]. For example, scalability is the key obstacle of DNN verification due
to its complexity [81]. Considering that an abstracted BN is significantly smaller than the
original DNN, it will be interesting to understand if the BN can be used to alleviate the
problem without losing the provable guarantee. A potential difficulty may be whether and
how the verification result on the BN can be transferred to the DNN. Similar as the above
discussion for testing and verification, the potential for the BN to be used as an intermediate
step for the reliability assessment [104] and safety case [105] is worthy of exploration. This

126 Amany Alshareef

may probably require a quantification of the error, or the loss of information, when using
BN as an abstraction of the DNN.

Appendix A

Detailed Structures of the Trained
Deep Neural Networks

This Appendix presents the structure of the trained deep neural network models used
throughout the thesis experiments. Five models are considered: Nsm, Nsm−max, Nmnist,
Nfm, and Nci whose layers are listed in the four tables below. Layers are including blocks
of convolutional and max-pooling layers, followed by a series of dense layers. The model
incorporate ReLU activation functions except the activation output layer which involves a
classical Softmax to output the predicted label. The first small MNIST model Nsm is often
used to construct a BN utilised in the explanation examples.

Layer Name (Function) Output Shape #Parameters
conv2d (Conv2D) (26, 26, 8) 80
activation (Activation) (26, 26, 8) 0
flatten (Flatten) (5408) 0
dense (Dense) (42) 227178
activation_1 (Activation) (42) 0
dense_1 (Dense) (10) 430
activation_2 (Activation) (10) 0

Table A.1: Structure of the small CNN model Nsm trained on the MNIST dataset with
98.00% test accuracy.

127

Appendix A. DNNs Structures Amany Alshareef

Layer Name (Function) Output Shape #Parameters
conv2d (Conv2D) (26, 26, 8) 80
activation (Activation) (26, 26, 8) 0
max_pooling2d (MaxPooling2) (13, 13, 8) 0
flatten (Flatten) (1352) 0
dense (Dense) (42) 56826
activation_1 (Activation) (42) 0
dense_1 (Dense) (10) 430
activation_2 (Activation) (10) 0

Table A.2: Structure of the small CNN model Nsm−max trained on the MNIST dataset
with 97.78% test accuracy.

Layer Name (Function) Output Shape #Parameters
conv2d (Conv2D) (26, 26, 32) 320
activation (Activation) (26, 26, 32) 0
conv2d_1 (Conv2D) (24, 24, 32) 9248
activation_1 (Activation) (24, 24, 32) 0
max_pooling2d (MaxPooling2) (12, 12, 32) 0
conv2d_2 (Conv2D) (10, 10, 64) 18496
activation_2 (Activation) (10, 10, 64) 0
conv2d_3 (Conv2D) (8 , 8, 64) 36928
activation_3 (Activation) (8 , 8, 64) 0
max_pooling2d_1 (MaxPooling2) (4, 4, 64) 0
flatten (Flatten) (1024) 0
dense (Dense) (200) 205000
activation_4 (Activation) (200) 0
dense_1 (Dense) (200) 40200
activation_5 (Activation) (200) 0
dense_2 (Dense) (10) 2010
activation_6 (Activation) (10) 0

Table A.3: Structure of the CNN model Nmnist trained on the MNIST dataset with 99.38%
test accuracy.

Appendix A. DNNs Structures 129

Layer Name (Function) Output Shape #Parameters
conv2d (Conv2D) (26, 26, 32) 320
activation (Activation) (26, 26, 32) 0
max_pooling2d (MaxPooling2D) (13, 13, 32) 0
conv2d_1 (Conv2D) (9, 9, 64) 51264
activation_1 (Activation) (9, 9, 64) 0
max_pooling2d_1 (MaxPooling2D) (4, 4, 64) 0
flatten (Flatten) (1024) 0
dense (Dense) (100) 102500
activation_2 (Activation) (100) 0
dense_1 (Dense) (10) 1010
activation_3 (Activation) (10) 0

Table A.4: Structure of the CNN model Nfm trained on the Fashion-MNIST dataset with
89.03% test accuracy.

Layer Name (Function) Output Shape #Parameters
conv2d (Conv2D) (30, 30, 32) 896
activation (Activation) (30, 30, 32) 0
conv2d_1 (Conv2D) (28, 28, 32) 9248
activation_1 (Activation) (28, 28, 32) 0
max_pooling2d (MaxPooling2) (14, 14, 32) 0
conv2d_2 (Conv2D) (12, 12, 64) 18496
activation_2 (Activation) (12, 12, 64) 0
conv2d_3 (Conv2D) (10, 10, 64) 36928
activation_3 (Activation) (10, 10, 64) 0
max_pooling2d_1 (MaxPooling2 (5, 5, 64) 0
flatten (Flatten) (1600) 0
dense (Dense) (512) 819712
activation_4 (Activation) (512) 0
dense_1 (Dense) (10) 5130
activation_5 (Activation) (10) 0

Table A.5: Structure of the CNN model Nci trained on the CIFAR-10 dataset with 81.00%
test accuracy.

Appendix B

Detailed Results for Sensitivity to
Adversarial Shift Experiments

The plots in Figure 4.9 illustrated some statistics for a subset of the considered distances
for comparing probability vectors. Figures B.1, B.2, and B.3 show the distances computed
for the MNIST model, and Figures B.4, B.5, and B.6 show the results for the CIFAR10
model. In these plots, hue still indicates the discretisation strategy. However, it have
discriminated between extended and non-extended strategies: the prefix ‘-X’ denotes that
latent features are discretised in such a way that left- and right-most intervals do not contain
any (projected) training sample.

130

Appendix B. More Results for Sensitivity to Adversarial Shift 131

0

10

20

30

40
d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = L1 | feat. extr.: pca

discretization
uniform5
uniform5-X
quantile5
quantile5-X
uniform10
uniform10-X
quantile10
quantile10-X

measure p = L1 | feat. extr.: ica measure p = L1 | feat. extr.: rbf_kpca

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = L2 | feat. extr.: pca measure p = L2 | feat. extr.: ica measure p = L2 | feat. extr.: rbf_kpca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = L∞ | feat. extr.: pca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = L∞ | feat. extr.: ica

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = L∞ | feat. extr.: rbf_kpca

Figure B.1: Distances (vertical axes) between probability vectors obtained for the MNIST
validation dataset (Pr(Xtest ∈ B)) and probability vectors (Pr(Xattack ∈ B)) obtained for
datasets generated by selected adversarial attacks (attack, shown on the horizontal axes),
for a range of BN abstractions B. Every abstraction involves 3 layers for which 3 features
have been extracted using PCA (left-hand side column), ICA (middle), or radial basis
functions (RBF) kernel-PCA (right). Plotted data aggregates five independent runs, and
shows confidence intervals.

Appendix B. More Results for Sensitivity to Adversarial Shift Amany Alshareef

0.0

0.2

0.4

0.6

0.8

1.0

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = corr | feat. extr.: pca

discretization
uniform5
uniform5-X
quantile5
quantile5-X
uniform10
uniform10-X
quantile10
quantile10-X

measure p = corr | feat. extr.: ica measure p = corr | feat. extr.: rbf_kpca

0.0

0.2

0.4

0.6

0.8

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = cos | feat. extr.: pca measure p = cos | feat. extr.: ica measure p = cos | feat. extr.: rbf_kpca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = JS | feat. extr.: pca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = JS | feat. extr.: ica
fg

sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = JS | feat. extr.: rbf_kpca

Figure B.2: See Figure B.1.

Appendix B. More Results for Sensitivity to Adversarial Shift 133

0

1

2

3

4

5

6

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

×10
−5measure p = MSE | feat. extr.: pca

discretization
uniform5
uniform5-X
quantile5
quantile5-X
uniform10
uniform10-X
quantile10
quantile10-X

measure p = MSE | feat. extr.: ica measure p = MSE | feat. extr.: rbf_kpca

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = RMSE | feat. extr.: pca measure p = RMSE | feat. extr.: ica measure p = RMSE | feat. extr.: rbf_kpca

0.000

0.001

0.002

0.003

0.004

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = MAE | feat. extr.: pca measure p = MAE | feat. extr.: ica measure p = MAE | feat. extr.: rbf_kpca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = AF | feat. extr.: pca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = AF | feat. extr.: ica

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = AF | feat. extr.: rbf_kpca

Figure B.3: See Figure B.1.

Appendix B. More Results for Sensitivity to Adversarial Shift Amany Alshareef

0

50

100

150

200

250

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = L1 | feat. extr.: pca

discretization
uniform5
uniform5-X
quantile5
quantile5-X
uniform10-X
uniform10
quantile10
quantile10-X

measure p = L1 | feat. extr.: ica measure p = L1 | feat. extr.: rbf_kpca

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = L2 | feat. extr.: pca measure p = L2 | feat. extr.: ica measure p = L2 | feat. extr.: rbf_kpca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = L∞ | feat. extr.: pca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = L∞ | feat. extr.: ica
fg

sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = L∞ | feat. extr.: rbf_kpca

Figure B.4: Distances (vertical axes) between probabilities obtained for the CIFAR10 val-
idation dataset and datasets generated by selected adversarial attacks (horizontal axes).
See Figure B.1 for further details.

Appendix B. More Results for Sensitivity to Adversarial Shift 135

0.0

0.2

0.4

0.6

0.8

1.0

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = corr | feat. extr.: pca

discretization
uniform5
uniform5-X
quantile5
quantile5-X
uniform10-X
uniform10
quantile10
quantile10-X

measure p = corr | feat. extr.: ica measure p = corr | feat. extr.: rbf_kpca

0.0

0.2

0.4

0.6

0.8

1.0

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = cos | feat. extr.: pca measure p = cos | feat. extr.: ica measure p = cos | feat. extr.: rbf_kpca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = JS | feat. extr.: pca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = JS | feat. extr.: ica

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = JS | feat. extr.: rbf_kpca

Figure B.5: See Figure B.4.

Appendix B. More Results for Sensitivity to Adversarial Shift Amany Alshareef

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = MSE | feat. extr.: pca

discretization
uniform5
uniform5-X
quantile5
quantile5-X
uniform10-X
uniform10
quantile10
quantile10-X

measure p = MSE | feat. extr.: ica measure p = MSE | feat. extr.: rbf_kpca

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = RMSE | feat. extr.: pca measure p = RMSE | feat. extr.: ica measure p = RMSE | feat. extr.: rbf_kpca

0.000

0.005

0.010

0.015

0.020

0.025

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = MAE | feat. extr.: pca measure p = MAE | feat. extr.: ica measure p = MAE | feat. extr.: rbf_kpca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

0

5

10

15

20

d
p
(P

r(
X

te
st

∈
B
)
,
P
r(
X

a
tt
a
ck

∈
B
))

measure p = AF | feat. extr.: pca

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = AF | feat. extr.: ica

fg
sm

pg
dl

in
f

pg
dl

2

cw
lin

f

cw
l2

de
ep

fo
ol

attack

measure p = AF | feat. extr.: rbf_kpca

Figure B.6: See Figure B.4.

Appendix C

Detailed Report of the Test Case
Generation Process

Sample run traces of the Concolic testing results from experiments in 6.5 for the Fashion-
MNIST model.

137

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
A

m
any

A
lshareef

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

bfc pca 2 kde 0 10 100 42.9451 1421.8849 0.6889 0.8222 27 7
bfc pca 2 uniform 1 10 100 35.1480 1437.1459 0.3333 0.3333 31 0
bfc pca 2 uniform 3 10 100 37.2607 1459.0378 0.8667 0.8667 23 0
bfc pca 2 uniform 5 10 100 35.4834 1460.0572 0.8571 0.8810 28 0
bfc pca 3 kde 0 10 100 53.6450 1414.9115 0.6222 0.8074 23 0
bfc pca 3 uniform 1 10 100 35.3554 1447.3732 0.3333 0.3333 46 0
bfc pca 3 uniform 3 10 100 34.4621 1448.5533 0.8667 0.8667 25 0
bfc pca 3 uniform 5 10 100 35.8400 1443.3160 0.8095 0.8413 26 1
bfc pca 4 kde 0 10 100 54.6701 1560.0553 0.6639 0.8370 32 0
bfc pca 4 uniform 1 10 100 42.2838 1887.5911 0.3333 0.3333 37 0
bfc pca 4 uniform 3 10 100 36.0109 1435.6444 0.8333 0.8333 29 0
bfc pca 4 uniform 5 10 100 39.4033 1447.1066 0.8333 0.8452 20 0
bfc pca 5 kde 0 10 100 60.2695 1474.1696 0.8178 0.8178 30 0
bfc pca 5 uniform 1 10 100 36.6983 1475.1917 0.3333 0.3333 35 1
bfc pca 5 uniform 3 10 100 41.9029 1681.0971 0.8400 0.8400 31 0
bfc pca 5 uniform 5 10 100 85.1116 3391.7663 0.8286 0.8476 43 0
bfc ica 2 kde 0 10 100 52.2359 1485.5166 0.6556 0.8222 28 0
bfc ica 2 uniform 1 10 100 41.0524 1474.3457 0.3333 0.3333 32 0
bfc ica 2 uniform 3 10 100 40.5774 1458.5520 0.8333 0.8333 29 0
bfc ica 2 uniform 5 10 100 40.5958 1489.8313 0.8333 0.8333 45 1
bfc ica 3 kde 0 10 100 56.5854 1436.1970 0.8056 0.8056 50 0
bfc ica 3 uniform 1 10 100 56.5722 1743.5538 0.3333 0.3333 32 0
bfc ica 3 uniform 3 10 100 58.2087 1958.5377 0.8667 0.8667 21 0
bfc ica 3 uniform 5 10 100 38.8829 1524.1769 0.8413 0.8413 28 0
bfc ica 4 kde 0 10 100 61.4400 1479.6287 0.8333 0.8333 27 0
bfc ica 4 uniform 1 10 100 40.5249 1671.6204 0.3333 0.3333 39 0
bfc ica 4 uniform 3 10 100 57.8474 1899.1035 0.8333 0.8333 39 0
bfc ica 4 uniform 5 10 100 43.4968 1566.5456 0.8452 0.8452 38 1
bfc ica 5 kde 0 10 100 66.2342 1554.2865 0.8333 0.8333 35 0
bfc ica 5 uniform 1 10 100 42.3174 1474.9113 0.3333 0.3333 39 2
bfc ica 5 uniform 3 10 100 46.9393 1655.6087 0.8533 0.8533 32 0
bfc ica 5 uniform 5 10 100 90.3024 3243.4972 0.8381 0.8381 41 9

Table C.1: Testing coverage of the Fashion-MNIST model for the bfc criterion conducted with |X0| = 10 initial tests. Header
possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5, init_tests: 10 100.

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
139

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

bfc pca 2 kde 0 100 100 46.7662 1446.6068 0.8778 0.8778 3 0
bfc pca 2 uniform 1 100 100 35.3350 1517.5484 0.3333 0.8333 12 1
bfc pca 2 uniform 3 100 100 35.2596 1434.7129 0.8667 0.8667 45 0
bfc pca 2 uniform 5 100 100 38.3315 1428.6853 0.9048 0.9048 9 0
bfc pca 3 kde 0 100 100 53.6741 1471.3466 0.9185 0.9185 8 0
bfc pca 3 uniform 1 100 100 37.2173 1535.4706 0.3333 0.8519 21 1
bfc pca 3 uniform 3 100 100 36.4960 1462.0410 0.8667 0.8667 13 0
bfc pca 3 uniform 5 100 100 36.8323 1483.4661 0.9048 0.9048 6 0
bfc pca 4 kde 0 100 100 57.5008 1464.0187 0.9111 0.9111 1 0
bfc pca 4 uniform 1 100 100 35.9408 1582.6597 0.3333 0.3333 34 0
bfc pca 4 uniform 3 100 100 37.9154 1479.3794 0.8667 0.8667 12 0
bfc pca 4 uniform 5 100 100 41.3874 1595.8074 0.8810 0.8810 27 2
bfc pca 5 kde 0 100 100 63.9144 1517.8523 0.8400 0.8400 28 0
bfc pca 5 uniform 1 100 100 36.8912 1553.1489 0.3333 0.8000 37 0
bfc pca 5 uniform 3 100 100 44.2986 1477.7786 0.8667 0.8667 5 0
bfc pca 5 uniform 5 100 100 93.5451 1732.5798 0.8952 0.9048 7 0
bfc ica 2 kde 0 100 100 51.1289 1400.9177 0.6972 0.8556 30 0
bfc ica 2 uniform 1 100 100 40.0092 1407.5578 0.3333 0.3333 45 0
bfc ica 2 uniform 3 100 100 39.4629 1424.6443 0.8667 0.8667 24 1
bfc ica 2 uniform 5 100 100 41.1890 1422.8675 0.9048 0.9048 26 0
bfc ica 3 kde 0 100 100 54.2018 1435.5329 0.8333 0.8333 20 0
bfc ica 3 uniform 1 100 100 42.3377 1497.5697 0.3333 0.3333 33 0
bfc ica 3 uniform 3 100 100 39.4257 1488.7183 0.8667 0.8667 19 0
bfc ica 3 uniform 5 100 100 43.0618 1491.6955 0.9048 0.9048 26 0
bfc ica 4 kde 0 100 100 64.9012 1466.4144 0.9097 0.9097 42 0
bfc ica 4 uniform 1 100 100 41.8670 1478.8399 0.3333 0.3333 27 0
bfc ica 4 uniform 3 100 100 41.3283 1510.3829 0.8667 0.8833 45 0
bfc ica 4 uniform 5 100 100 46.4161 1607.6889 0.9048 0.9048 32 1
bfc ica 5 kde 0 100 100 69.8413 1530.5924 0.8889 0.9000 35 0
bfc ica 5 uniform 1 100 100 41.3580 1518.5604 0.3333 0.3333 58 4
bfc ica 5 uniform 3 100 100 48.7790 1689.1757 0.8667 0.8667 39 0
bfc ica 5 uniform 5 100 100 99.1542 3505.7239 0.8952 0.9048 46 0

Table C.2: Testing coverage of the Fashion-MNIST model for the bfc criterion conducted with |X0| = 100 initial tests.
Header possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5.

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
A

m
any

A
lshareef

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

bfdc pca 2 kde 0 10 100 47.6531 1449.4794 0.7212 0.8778 48 0
bfdc pca 2 uniform 1 10 100 36.6878 1418.9644 0.3333 0.3333 24 0
bfdc pca 2 uniform 3 10 100 37.2643 1461.6637 0.7367 0.8667 28 1
bfdc pca 2 uniform 5 10 100 37.8916 1495.3261 0.7276 0.8571 31 0
bfdc pca 3 kde 0 10 100 53.5896 1495.8031 0.6563 0.8074 55 5
bfdc pca 3 uniform 1 10 100 37.1217 1827.8893 0.3333 0.3333 27 1
bfdc pca 3 uniform 3 10 100 58.8029 2315.7853 0.7889 0.8222 27 2
bfdc pca 3 uniform 5 10 100 37.3438 1539.8429 0.8167 0.8355 45 0
bfdc pca 4 kde 0 10 100 59.1374 1476.9927 0.8202 0.8393 33 0
bfdc pca 4 uniform 1 10 100 37.5844 1502.7604 0.3333 0.3333 39 0
bfdc pca 4 uniform 3 10 100 39.4870 1558.8701 0.8265 0.8333 38 0
bfdc pca 4 uniform 5 10 100 40.8073 1593.5740 0.8308 0.8333 35 2
bfdc pca 5 kde 0 10 100 70.2425 1524.0801 0.8130 0.8178 23 0
bfdc pca 5 uniform 1 10 100 38.8336 1503.7606 0.3333 0.3333 33 0
bfdc pca 5 uniform 3 10 100 45.6559 1706.4096 0.8248 0.8267 29 0
bfdc pca 5 uniform 5 10 100 86.5898 3215.6987 0.7997 0.8095 27 0
bfdc ica 2 kde 0 10 100 55.3190 1520.1307 0.4159 0.8222 38 0
bfdc ica 2 uniform 1 10 100 41.2882 1488.9691 0.3333 0.3333 47 0
bfdc ica 2 uniform 3 10 100 41.8589 1544.9271 0.7233 0.8333 31 0
bfdc ica 2 uniform 5 10 100 40.7891 1461.2797 0.7349 0.8333 27 0
bfdc ica 3 kde 0 10 100 57.4653 1462.7800 0.7914 0.8333 38 0
bfdc ica 3 uniform 1 10 100 40.1330 1516.2741 0.3333 0.3333 53 0
bfdc ica 3 uniform 3 10 100 42.2171 1514.0768 0.8129 0.8444 23 0
bfdc ica 3 uniform 5 10 100 42.9990 1509.4027 0.8246 0.8413 53 3
bfdc ica 4 kde 0 10 100 64.2046 1520.2412 0.7947 0.8056 40 0
bfdc ica 4 uniform 1 10 100 43.2260 1559.5174 0.3333 0.3333 45 0
bfdc ica 4 uniform 3 10 100 42.5949 1560.0383 0.8243 0.8333 30 2
bfdc ica 4 uniform 5 10 100 46.1146 1626.4510 0.8189 0.8333 31 0
bfdc ica 5 kde 0 10 100 70.2647 1560.1238 0.7973 0.8000 32 0
bfdc ica 5 uniform 1 10 100 43.4275 1531.6755 0.3333 0.3333 52 0
bfdc ica 5 uniform 3 10 100 49.2259 1772.8203 0.8381 0.8400 43 0
bfdc ica 5 uniform 5 10 100 92.7534 3912.7070 0.8472 0.8476 51 1

Table C.3: Testing coverage of the Fashion-MNIST model for the bfdc criterion conducted with |X0| = 10 initial tests.
Header possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage measure
calculated here is the one defined in Eq. 3.13

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
141

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

bfdc pca 2 kde 0 100 100 51.5480 1519.9664 0.7933 0.9333 19 0
bfdc pca 2 uniform 1 100 100 35.6062 1513.4178 0.3889 0.3889 30 0
bfdc pca 2 uniform 3 100 100 39.0140 1450.7343 0.7055 0.8667 12 0
bfdc pca 2 uniform 5 100 100 38.3916 1493.9801 0.7326 0.9048 29 0
bfdc pca 3 kde 0 100 100 54.4793 1524.6849 0.9247 0.9778 28 0
bfdc pca 3 uniform 1 100 100 38.6926 1512.6250 0.3704 0.3704 41 0
bfdc pca 3 uniform 3 100 100 37.9216 1505.4127 0.8177 0.8667 8 0
bfdc pca 3 uniform 5 100 100 38.5802 1514.9469 0.8742 0.9048 22 2
bfdc pca 4 kde 0 100 100 60.4336 1521.8947 0.9111 0.9556 16 0
bfdc pca 4 uniform 1 100 100 43.7112 1571.6940 0.3333 0.3333 38 2
bfdc pca 4 uniform 3 100 100 39.6744 1516.9576 0.8534 0.8667 9 2
bfdc pca 4 uniform 5 100 100 42.6184 1583.5776 0.8880 0.8929 24 0
bfdc pca 5 kde 0 100 100 65.6434 1537.0091 0.8549 0.8756 21 1
bfdc pca 5 uniform 1 100 100 39.0387 1538.0626 0.3556 0.3556 26 0
bfdc pca 5 uniform 3 100 100 45.4213 1631.9692 0.8635 0.8667 18 0
bfdc pca 5 uniform 5 100 100 98.2440 2155.3066 0.8999 0.9023 12 0
bfdc ica 2 kde 0 100 100 52.8003 1554.4054 0.6337 0.8222 19 0
bfdc ica 2 uniform 1 100 100 40.1206 1513.7268 0.3333 0.3333 42 0
bfdc ica 2 uniform 3 100 100 42.0035 1490.0996 0.7401 0.8667 25 0
bfdc ica 2 0uniform 5 100 100 40.4906 1482.1536 0.7412 0.9048 34 0
bfdc ica 3 kde 0 100 100 58.9102 1486.1128 0.8486 0.8889 23 0
bfdc ica 3 uniform 1 100 100 42.5440 1523.4632 0.3333 0.3333 45 0
bfdc ica 3 uniform 3 100 100 40.9721 1835.4897 0.8262 0.8667 21 1
bfdc ica 3 uniform 5 100 100 43.0884 1554.6687 0.8748 0.9048 34 0
bfdc ica 4 kde 0 100 100 64.2071 1539.2974 0.8652 0.8819 36 1
bfdc ica 4 uniform 1 100 100 41.9546 1548.7468 0.3333 0.3333 48 3
bfdc ica 4 uniform 3 100 100 44.4082 1506.0188 0.8522 0.8667 29 0
bfdc ica 4 uniform 5 100 100 48.4263 1620.7155 0.8994 0.9048 34 1
bfdc ica 5 kde 0 100 100 70.6241 1658.0050 0.8966 0.9000 48 1
bfdc ica 5 uniform 1 100 100 41.7154 1504.0362 0.3333 0.3333 69 1
bfdc ica 5 uniform 3 100 100 48.3277 1736.8599 0.8773 0.8800 44 0
bfdc ica 5 uniform 5 100 100 101.1713 3461.1105 0.9042 0.9048 42 0

Table C.4: Testing coverage of the Fashion-MNIST model for the bfdc criterion conducted with |X0| = 100 initial tests.
Header possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage measure
calculated here is the one defined in Eq. 3.13

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
A

m
any

A
lshareef

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

wfc pca 2 kde 0 10 100 71.6723 1022.1930 0.8155 0.8664 45 0
wfc pca 2 uniform 1 10 100 65.7569 1310.6860 0.3333 0.3333 26 0
wfc pca 2 uniform 3 10 100 60.7207 1264.1704 0.6283 0.8162 37 2
wfc pca 2 uniform 5 10 100 73.9942 1265.7471 0.8412 0.8964 26 0
wfc pca 3 kde 0 10 100 56.2461 1416.1383 0.7951 0.8551 36 0
wfc pca 3 uniform 1 10 100 74.3095 1402.7631 0.3333 0.3333 32 0
wfc pca 3 uniform 3 10 100 82.0052 1424.3509 0.8261 0.8761 36 0
wfc pca 3 uniform 5 10 100 91.7244 1441.0070 0.8410 0.8957 30 3
wfc pca 4 kde 0 10 100 94.6159 1400.6081 0.7942 0.9063 29 0
wfc pca 4 uniform 1 10 100 81.1268 1520.1569 0.3361 0.5006 30 0
wfc pca 4 uniform 3 10 100 103.3624 1513.8222 0.7912 0.9042 52 1
wfc pca 4 uniform 5 10 100 93.6512 1525.7589 0.8133 0.8249 35 5
wfc pca 5 kde 0 10 100 100.7937 1413.8517 0.8465 0.8465 48 1
wfc pca 5 uniform 1 10 100 89.4304 1541.0355 0.5633 0.6733 29 0
wfc pca 5 uniform 3 10 100 97.6989 1524.6447 0.8235 0.8235 45 0
wfc pca 5 uniform 5 10 100 101.0189 1882.1538 0.8206 0.8419 53 0
wfc ica 2 kde 0 10 100 86.6773 1313.5587 0.6447 0.8208 33 0
wfc ica 2 uniform 1 10 100 79.2832 1402.8811 0.3333 0.3333 30 0
wfc ica 2 uniform 3 10 100 75.1059 1412.3651 0.7739 0.7739 44 0
wfc ica 2 uniform 5 10 100 78.5539 1457.9834 0.8232 0.8232 23 0
wfc ica 3 kde 0 10 100 95.1058 1415.2290 0.6135 0.8115 35 0
wfc ica 3 uniform 1 10 100 91.1368 1431.4768 0.3733 0.6006 41 0
wfc ica 3 uniform 3 10 100 81.9869 1507.4976 0.8985 0.9185 28 0
wfc ica 3 uniform 5 10 100 83.6709 1501.1748 0.8771 0.8771 26 0
wfc ica 4 kde 0 10 100 97.6331 1431.1476 0.3780 0.7905 31 0
wfc ica 4 uniform 1 10 100 96.1033 1400.0087 0.3543 0.6331 34 0
wfc ica 4 uniform 3 10 100 109.5934 1474.2480 0.8763 0.8763 27 0
wfc ica 4 uniform 5 10 100 102.6772 1560.9641 0.8342 0.8342 49 0
wfc ica 5 kde 0 10 100 117.9092 1403.2288 0.5842 0.8062 45 0
wfc ica 5 uniform 1 10 100 111.0023 1478.4274 0.3533 0.3667 31 0
wfc ica 5 uniform 3 10 100 113.3586 1173.4413 0.8217 0.8717 37 0
wfc ica 5 uniform 5 10 100 108.4664 1352.8543 0.8541 0.9041 32 0

Table C.5: Testing coverage of the Fashion-MNIST model for the wfc criterion conducted with |X0| = 10 initial tests.
Header possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5.

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
143

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

wfc pca 2 kde 0 100 100 89.5749 1479.1873 0.8620 0.8620 13 2
wfc pca 2 uniform 1 100 100 80.4553 1502.1501 0.3431 0.4237 46 0
wfc pca 2 uniform 3 100 100 96.4745 1162.0738 0.8550 0.8550 19 1
wfc pca 2 uniform 5 100 100 80.4457 1337.2828 0.9080 0.9397 38 0
wfc pca 3 kde 0 100 100 93.8532 1411.3970 0.8380 0.9280 30 1
wfc pca 3 uniform 1 100 100 94.1073 1414.1066 0.3733 0.3733 31 1
wfc pca 3 uniform 3 100 100 91.2665 1476.9056 0.8547 0.8667 24 0
wfc pca 3 uniform 5 100 100 89.7237 1530.5902 0.9046 0.9046 14 0
wfc pca 4 kde 0 100 100 96.3938 1474.7704 0.8746 0.8746 31 0
wfc pca 4 uniform 1 100 100 100.3782 1403.3856 0.3333 0.3333 38 0
wfc pca 4 uniform 3 100 100 99.9520 1399.0190 0.8629 0.8629 12 0
wfc pca 4 uniform 5 100 100 98.4018 1327.8989 0.8955 0.8955 5 0
wfc pca 5 kde 0 100 100 105.4235 1139.1993 0.9052 0.9052 9 1
wfc pca 5 uniform 1 100 100 106.7322 1420.4718 0.4633 0.6016 30 5
wfc pca 5 uniform 3 100 100 99.2986 1477.7786 0.8667 0.8867 7 0
wfc pca 5 uniform 5 100 100 97.5451 1532.5798 0.8804 0.9260 24 0
wfc ica 2 kde 0 100 100 81.1289 1300.9177 0.6972 0.8900 30 0
wfc ica 2 uniform 1 100 100 97.0092 1307.5578 0.3333 0.3333 45 0
wfc ica 2 uniform 3 100 100 91.4629 1324.6443 0.8667 0.8667 29 1
wfc ica 2 uniform 5 100 100 78.1890 1332.8675 0.9048 0.9348 25 0
wfc ica 3 kde 0 100 100 99.2018 1406.5329 0.8333 0.8333 20 0
wfc ica 3 uniform 1 100 100 97.3377 1357.5697 0.3957 0.7706 43 0
wfc ica 3 uniform 3 100 100 98.4257 1388.7183 0.8667 0.9248 17 0
wfc ica 3 uniform 5 100 100 96.0618 1488.6955 0.9048 0.9048 26 0
wfc ica 4 kde 0 100 100 98.9012 1405.4144 0.9097 0.9197 42 0
wfc ica 4 uniform 1 100 100 99.8670 1378.8399 0.3295 0.5132 27 3
wfc ica 4 uniform 3 100 100 101.3283 1450.3829 0.8667 0.8914 22 0
wfc ica 4 uniform 5 100 100 102.4161 1407.6889 0.9048 0.9048 65 0
wfc ica 5 kde 0 100 100 100.8413 1330.5924 0.8889 0.9000 35 0
wfc ica 5 uniform 1 100 100 104.3580 1418.5604 0.3332 0.3946 34 2
wfc ica 5 uniform 3 100 100 99.7790 1529.1757 0.8667 0.8821 31 0
wfc ica 5 uniform 5 100 100 101.1542 2005.7239 0.8952 0.9048 48 1

Table C.6: Testing coverage of the Fashion-MNIST model for the wfc criterion conducted with |X0| = 100 initial tests.
Header possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5.

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
A

m
any

A
lshareef

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

wfdc pca 2 kde 0 10 100 91.6185 1405.2280 0.7088 0.8669 22 0
wfdc pca 2 uniform 1 10 100 86.4695 1384.5034 0.3333 0.3333 38 15
wfdc pca 2 uniform 3 10 100 76.5983 1400.2942 0.7177 0.9162 28 0
wfdc pca 2 uniform 5 10 100 96.1450 1375.8432 0.7228 0.7952 33 6
wfdc pca 3 kde 0 10 100 89.6857 1421.9675 0.7736 0.9253 31 0
wfdc pca 3 uniform 1 10 100 99.2423 1430.5642 0.4333 0.6306 42 0
wfdc pca 3 uniform 3 10 100 84.7547 1408.7683 0.7970 0.8736 25 0
wfdc pca 3 uniform 5 10 100 80.5137 1412.7958 0.8256 0.8713 41 1
wfdc pca 4 kde 0 10 100 75.8682 1292.8947 0.7936 0.9142 32 0
wfdc pca 4 uniform 1 10 100 88.0218 1406.9535 0.7426 0.9050 27 0
wfdc pca 4 uniform 3 10 100 95.1104 1440.7451 0.8538 0.8829 21 2
wfdc pca 4 uniform 5 10 100 121.9802 1505.5630 0.8113 0.9287 21 0
wfdc pca 5 kde 0 10 100 101.0295 1413.8691 0.7917 0.8977 21 0
wfdc pca 5 uniform 1 10 100 92.4942 1422.8142 0.3875 0.4137 37 0
wfdc pca 5 uniform 3 10 100 98.2813 1101.0252 0.8220 0.9238 41 0
wfdc pca 5 uniform 5 10 100 96.2866 1133.0642 0.7917 0.8920 39 0
wfdc ica 2 kde 0 10 100 97.8444 1192.9527 0.5945 0.8708 39 0
wfdc ica 2 uniform 1 10 100 87.4824 1138.6497 0.3633 0.3633 39 0
wfdc ica 2 uniform 3 10 100 89.9641 1121.0669 0.6897 0.9104 32 0
wfdc ica 2 uniform 5 10 100 80.1775 1175.8846 0.7105 0.8612 32 0
wfdc ica 3 kde 0 10 100 87.1131 1386.3698 0.3725 0.8415 39 1
wfdc ica 3 uniform 1 10 100 83.0666 1017.6566 0.5632 0.6633 42 1
wfdc ica 3 uniform 3 10 100 97.7907 1132.7667 0.8190 0.8862 35 0
wfdc ica 3 uniform 5 10 100 101.0065 1114.1877 0.8609 0.9694 52 1
wfdc ica 4 kde 0 10 100 107.6131 1534.2199 0.3915 0.7905 42 0
wfdc ica 4 uniform 1 10 100 97.4008 1502.2667 0.7099 0.9146 36 0
wfdc ica 4 uniform 3 10 100 99.9568 1606.8881 0.8793 0.8860 26 2
wfdc ica 4 uniform 5 10 100 83.8189 1092.7179 0.8381 0.8754 34 0
wfdc ica 5 kde 0 10 100 100.3748 1522.0686 0.5644 0.9655 38 0
wfdc ica 5 uniform 1 10 100 94.4318 1470.3590 0.3333 0.3333 48 6
wfdc ica 5 uniform 3 10 100 114.8881 1027.4694 0.8199 0.8674 32 3
wfdc ica 5 uniform 5 10 100 107.0260 1172.6079 0.8288 0.9292 22 0

Table C.7: Testing coverage of the Fashion-MNIST model for the wfdc criterion conducted with |X0| = 10 initial tests.
Header possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage measure
calculated here is the one defined in Eq. 6.5

A
ppendix

C
.R

esults
for

the
T
est

C
ase

G
eneration

E
xperim

ents
145

crit tech n_feat discr n_bins X0 iters init_time run_time init_cov final_cov n_tests n_advs

wfdc pca 2 kde 0 100 100 100.5799 1287.3795 0.8546 0.8620 35 0
wfdc pca 2 uniform 1 100 100 88.6599 1048.6327 0.4834 0.5648 40 0
wfdc pca 2 uniform 3 100 100 96.2278 1130.3268 0.8178 0.8750 22 1
wfdc pca 2 uniform 5 100 100 98.8459 1106.9342 0.7572 0.9380 6 2
wfdc pca 3 kde 0 100 100 92.0546 1421.9111 0.8841 0.9597 22 1
wfdc pca 3 uniform 1 100 100 77.4343 1408.5405 0.8633 0.9047 32 1
wfdc pca 3 uniform 3 100 100 97.0313 1350.2098 0.8033 0.8547 33 0
wfdc pca 3 uniform 5 100 100 84.7304 1108.4397 0.8743 0.9146 23 1
wfdc pca 4 kde 0 100 100 94.9381 1100.4921 0.9121 0.9628 34 0
wfdc pca 4 uniform 1 100 100 90.7781 1472.9081 0.3333 0.3333 38 0
wfdc pca 4 uniform 3 100 100 107.8601 1505.0698 0.8490 0.8929 8 0
wfdc pca 4 uniform 5 100 100 100.9209 1531.0027 0.8905 0.9872 12 0
wfdc pca 5 kde 0 100 100 109.7964 1510.2603 0.9220 0.9779 9 1
wfdc pca 5 uniform 1 100 100 97.8863 1102.3763 0.3931 0.5633 41 0
wfdc pca 5 uniform 3 100 100 102.8431 1113.3482 0.8522 0.9450 11 0
wfdc pca 5 uniform 5 100 100 99.2440 1655.3066 0.8747 0.9052 30 0
wfdc ica 2 kde 0 100 100 90.8003 1354.4054 0.6337 0.9222 19 0
wfdc ica 2 uniform 1 100 100 90.1206 1413.7268 0.5333 0.8767 42 4
wfdc ica 2 uniform 3 100 100 92.0035 1470.0996 0.7401 0.8667 25 0
wfdc ica 2 uniform 5 100 100 88.4906 1482.1536 0.7412 0.9048 34 0
wfdc ica 3 kde 0 100 100 98.9102 1486.1128 0.8486 0.8889 23 0
wfdc ica 3 uniform 1 100 100 95.5440 1523.4632 0.3333 0.3333 45 0
wfdc ica 3 uniform 3 100 100 104.9721 1435.4897 0.8262 0.8667 21 1
wfdc ica 3 uniform 5 100 100 83.0884 1554.6687 0.8748 0.9648 34 0
wfdc ica 4 kde 0 100 100 114.2071 1519.2974 0.8652 0.8819 36 1
wfdc ica 4 uniform 1 100 100 91.9546 1130.7468 0.3333 0.3333 48 3
wfdc ica 4 uniform 3 100 100 94.4082 1106.0188 0.8722 0.9667 29 0
wfdc ica 4 uniform 5 100 100 98.4263 1120.7155 0.8994 0.9048 34 1
wfdc ica 5 kde 0 100 100 103.6241 1458.0050 0.8966 0.9001 48 1
wfdc ica 5 uniform 1 100 100 98.7154 1504.0362 0.3895 0.7261 51 5
wfdc ica 5 uniform 3 100 100 109.3277 1616.8599 0.8773 0.9700 44 0
wfdc ica 5 uniform 5 100 100 111.1713 1261.1105 0.9042 0.9248 42 0

Table C.8: Testing coverage of the Fashion-MNIST model for the wfdc criterion conducted with |X0| = 100 initial tests.
Header possible values are: tech: pca ica, num_feats: 2 3 4 5, discr: KDE U1 U3 U5. Note that the coverage measure
calculated here is the one defined in Eq. 6.5

Bibliography

[1] IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminol-
ogy. Technical Report 610.12, IEEE, 1990.

[2] Amany Alshareef, Nicolas Berthier, Sven Schewe, and Xiaowei Huang. Quantifying
the importance of latent features in neural networks. In CEUR Workshop Proceedings,
volume 3087, 2022.

[3] Amany Alshareef, Nicolas Berthier, Sven Schewe, and Xiaowei Huang. Robust
bayesian abstraction of neural networks. In proceedings of the ICMLC 2023, 2023.

[4] Amany Alshareef, Nicolas Berthier, Sven Schewe, and Xiaowei Huang. Weight-based
semantic testing approach for deep neural networks. In The IJCAI Workshop on
Artificial Intelligence Safety 2023, volume 3505, 2023.

[5] Pranav Ashok, Vahid Hashemi, Jan Křetínskỳ, and Stefanie Mohr. Deepabstract:
neural network abstraction for accelerating verification. In International Symposium
on Automated Technology for Verification and Analysis, pages 92–107. Springer, 2020.

[6] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

[7] Yang Bai, Yuyuan Zeng, Yong Jiang, Shu-Tao Xia, Xingjun Ma, and Yisen Wang.
Improving adversarial robustness via channel-wise activation suppressing. In Inter-
national Conference on Learning Representations, 2021. URL https://openreview.

net/forum?id=zQTezqCCtNx.

[8] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. MIT
press Cambridge, MA, USA, 2017.

146

https://openreview.net/forum?id=zQTezqCCtNx
https://openreview.net/forum?id=zQTezqCCtNx

Bibliography 147

[9] Nicolas Berthier, Amany Alshareef, James Sharp, Sven Schewe, and Xiaowei Huang.
Abstraction and symbolic execution of deep neural networks with bayesian approxi-
mation of hidden features. arXiv preprint arXiv:2103.03704, 2021.

[10] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pe-
dreschi, and Salvatore Rinzivillo. Benchmarking and survey of explanation methods
for black box models. arXiv preprint arXiv:2102.13076, 2021.

[11] Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review of recent
advances. European Journal of Operational Research, 248(3):869–887, 2016.

[12] Simon Burton, Lydia Gauerhof, and Christian Heinzemann. Making the case for
safety of machine learning in highly automated driving. In Computer Safety, Reli-
ability, and Security: SAFECOMP 2017 Workshops, ASSURE, DECSoS, SASSUR,
TELERISE, and TIPS, Trento, Italy, September 12, 2017, Proceedings 36, pages
5–16. Springer, 2017.

[13] Igor Buzhinsky, Arseny Nerinovsky, and Stavros Tripakis. Metrics and methods for
robustness evaluation of neural networks with generative models. Machine Learning,
pages 1–36, 2021.

[14] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57.
IEEE Computer Society, 2017.

[15] Enrique Castillo and Uffe Kjærulff. Sensitivity analysis in gaussian bayesian networks
using a symbolic-numerical technique. Reliability Engineering & System Safety, 79
(2):139–148, 2003.

[16] Enrique Castillo, José Manuel Gutiérrez, and Ali S Hadi. Sensitivity analysis in
discrete bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 27(4):412–423, 1997.

[17] Hei Chan and Adnan Darwiche. Sensitivity analysis in bayesian networks: From
single to multiple parameters. arXiv preprint arXiv:1207.4124, 2012.

[18] Chih-Hong Cheng. Provably-robust runtime monitoring of neuron activation patterns.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1310–1313. IEEE, 2021.

Bibliography Amany Alshareef

[19] Chih-Hong Cheng, Chung-Hao Huang, and Hirotoshi Yasuoka. Quantitative projec-
tion coverage for testing ml-enabled autonomous systems. In Automated Technology
for Verification and Analysis: 16th International Symposium, ATVA 2018, Los An-
geles, CA, USA, October 7-10, 2018, Proceedings 16, pages 126–142. Springer, 2018.

[20] Chih-Hong Cheng, Georg Nührenberg, and Hirotoshi Yasuoka. Runtime monitoring
neuron activation patterns. In 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 300–303. IEEE, 2019.

[21] Federica Cugnata, Ron S Kenett, and Silvia Salini. Bayesian networks in survey data:
Robustness and sensitivity issues. Journal of Quality Technology, 48(3):253–264, 2016.

[22] Darren Dancey, David A McLean, and Zuhair A Bandar. Decision tree extraction
from trained neural networks. American Association for Artificial Intelligence, 2004.

[23] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge uni-
versity press, 2009.

[24] Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel
Hernández-Lobato. Bayesian deep learning via subnetwork inference. In International
Conference on Machine Learning, pages 2510–2521. PMLR, 2021.

[25] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution
detection in neural networks. arXiv preprint arXiv:1802.04865, 2018.

[26] Guoliang Dong, Jingyi Wang, Jun Sun, Yang Zhang, Xinyu Wang, Ting Dai, Jin Song
Dong, and Xingen Wang. Towards interpreting recurrent neural networks through
probabilistic abstraction. In 2020 35th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 499–510. IEEE, 2020.

[27] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu
Wang, Li Wang, Jin Song Dong, and Dai Ting. There is limited correlation between
coverage and robustness for deep neural networks. arXiv preprint arXiv:1911.05904,
2019.

[28] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks
via extremal perturbations and smooth masks. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 2950–2958, 2019.

Bibliography 149

[29] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059. PMLR, 2016.

[30] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. Ai2: Safety and robustness certification of neu-
ral networks with abstract interpretation. In 2018 IEEE symposium on security and
privacy (SP), pages 3–18. IEEE, 2018.

[31] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstrac-
tions of neural networks. Advances in Neural Information Processing Systems, 34:
9574–9586, 2021.

[32] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. Importance-
driven deep learning system testing. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, pages 702–713, 2020.

[33] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow. " O’Reilly Media, Inc.", 2022.

[34] Miguel A Gómez-Villegas, Paloma Maín, and Rosario Susi. Sensitivity analysis in
gaussian bayesian networks using a divergence measure. Communications in Statis-
tics—Theory and Methods, 36(3):523–539, 2007.

[35] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples, 2015.

[36] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing
Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in
convolutional neural networks. Pattern recognition, 77:354–377, 2018.

[37] Riccardo Guidotti, Anna Monreale, Stan Matwin, and Dino Pedreschi. Black box ex-
planation by learning image exemplars in the latent feature space. In Machine Learn-
ing and Knowledge Discovery in Databases: European Conference, ECML PKDD
2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part I, pages 189–
205. Springer, 2020.

Bibliography Amany Alshareef

[38] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. Dlfuzz: Differen-
tial fuzzing testing of deep learning systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 739–743, 2018.

[39] Abdullah Hamdi and Bernard Ghanem. Towards analyzing semantic robustness of
deep neural networks. In European Conference on Computer Vision, pages 22–38.
Springer, 2020.

[40] Thomas A Henzinger, Anna Lukina, and Christian Schilling. Outside the box:
Abstraction-based monitoring of neural networks. arXiv preprint arXiv:1911.09032,
2019.

[41] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[42] Yaojie Hu and Jin Tian. Neuron dependency graphs: A causal abstraction of neu-
ral networks. In International Conference on Machine Learning, pages 9020–9040.
PMLR, 2022.

[43] Wei Huang, Youcheng Sun, Xingyu Zhao, James Sharp, Wenjie Ruan, Jie Meng,
and Xiaowei Huang. Coverage-guided testing for recurrent neural networks. IEEE
Transactions on Reliability, pages 1–16, 2021. doi: 10.1109/TR.2021.3080664.

[44] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification
of deep neural networks. In Computer Aided Verification: 29th International Con-
ference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30,
pages 3–29. Springer, 2017.

[45] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese
Thamo, Min Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neu-
ral networks: Verification, testing, adversarial attack and defence, and interpretabil-
ity. Computer Science Review, 37, 2020. ISSN 1574-0137.

[46] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese
Thamo, Min Wu, and Xinping Yi. A survey of safety and trustworthiness of deep
neural networks. Computer Science Survey, 2020.

Bibliography 151

[47] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and
applications. Neural networks, 13(4-5):411–430, 2000.

[48] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. Adversarial examples are not bugs, they are features. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf.

[49] Gaojie Jin, Xinping Yi, Liang Zhang, Lijun Zhang, Sven Schewe, and Xiaowei Huang.
How does weight correlation affect generalisation ability of deep neural networks?
Advances in Neural Information Processing Systems, 33:21346–21356, 2020.

[50] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using
surprise adequacy. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 1039–1049. IEEE, 2019.

[51] Matthew Kirk. Thoughtful machine learning: A test-driven approach. " O’Reilly
Media, Inc.", 2014.

[52] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just
a bit, fixes overconfidence in relu networks. In International conference on machine
learning, pages 5436–5446. PMLR, 2020.

[53] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Learnable uncertainty un-
der laplace approximations. In Uncertainty in Artificial Intelligence, pages 344–353.
PMLR, 2021.

[54] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for
advanced research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

[55] Alex Labach, Hojjat Salehinejad, and Shahrokh Valaee. Survey of dropout methods
for deep neural networks. arXiv preprint arXiv:1904.13310, 2019.

[56] Carlos Lassance, Vincent Gripon, and Antonio Ortega. Representing deep neural
networks latent space geometries with graphs. Algorithms, 14(2):39, 2021.

https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
http://www.cs.toronto.edu/~kriz/cifar.html

Bibliography Amany Alshareef

[57] JA Lee. A global geometric framework for non-linear dimensionality reduction. In
Proceedings of the 8th European symposium on artificial neural networks, 2000, vol-
ume 1, pages 13–20, 2000.

[58] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework
for detecting out-of-distribution samples and adversarial attacks. Advances in neural
information processing systems, 31, 2018.

[59] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun
Zhang. Analyzing deep neural networks with symbolic propagation: Towards higher
precision and faster verification. In International static analysis symposium, pages
296–319. Springer, 2019.

[60] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. Structural coverage criteria
for neural networks could be misleading. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),
pages 89–92. IEEE, 2019.

[61] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. Advances in neural information processing systems, 30, 2017.

[62] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-granularity testing crite-
ria for deep learning systems. In Proceedings of the 33rd ACM/IEEE international
conference on automated software engineering, pages 120–131, 2018.

[63] Divyam Madaan, Jinwoo Shin, and Sung Ju Hwang. Adversarial neural pruning with
latent vulnerability suppression. In International Conference on Machine Learning,
pages 6575–6585. PMLR, 2020.

[64] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and An-
drew Gordon Wilson. A simple baseline for bayesian uncertainty in deep learning.
Advances in Neural Information Processing Systems, 32, 2019.

[65] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks, 2017.

Bibliography 153

[66] Tanwi Mallick, Prasanna Balaprakash, and Jane Macfarlane. Deep-ensemble-based
uncertainty quantification in spatiotemporal graph neural networks for traffic fore-
casting. arXiv preprint arXiv:2204.01618, 2022.

[67] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267:1–38, 2019.

[68] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[69] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination
press San Francisco, CA, USA, 2015.

[70] Hasna Njah, Salma Jamoussi, and Walid Mahdi. Interpretable bayesian network
abstraction for dimension reduction. Neural Computing and Applications, pages 1–
19, 2022.

[71] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. Tensor-
fuzz: Debugging neural networks with coverage-guided fuzzing. In International Con-
ference on Machine Learning, pages 4901–4911. PMLR, 2019.

[72] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E Khan, Anirudh Jain,
Runa Eschenhagen, Richard E Turner, and Rio Yokota. Practical deep learning with
bayesian principles. Advances in neural information processing systems, 32, 2019.

[73] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In proceedings of the 26th Symposium on
Operating Systems Principles, pages 1–18, 2017.

[74] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for
explanation of black-box models. arXiv preprint arXiv:1806.07421, 2018.

[75] Konstantin Posch, Jan Steinbrener, and Jürgen Pilz. Variational inference to measure
model uncertainty in deep neural networks. arXiv preprint arXiv:1902.10189, 2019.

[76] Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verifi-
cation of artificial neural networks. In International Conference on Computer Aided
Verification, pages 243–257. Springer, 2010.

Bibliography Amany Alshareef

[77] Arvind Ramanathan, Laura L Pullum, Faraz Hussain, Dwaipayan Chakrabarty, and
Sumit Kumar Jha. Integrating symbolic and statistical methods for testing intelligent
systems: Applications to machine learning and computer vision. In 2016 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pages 786–791. IEEE,
2016.

[78] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144,
2016.

[79] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approxi-
mation for neural networks. In 6th International Conference on Learning Representa-
tions, ICLR 2018-Conference Track Proceedings, volume 6. International Conference
on Representation Learning, 2018.

[80] Raanan Y Rohekar, Shami Nisimov, Yaniv Gurwicz, Guy Koren, and Gal Novik.
Constructing deep neural networks by bayesian network structure learning. Advances
in Neural Information Processing Systems, 31, 2018.

[81] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep
neural networks with provable guarantees. arXiv preprint arXiv:1805.02242, 2018.

[82] Makoto Sato and Hiroshi Tsukimoto. Rule extraction from neural networks via de-
cision tree induction. In IJCNN’01. International Joint Conference on Neural Net-
works. Proceedings (Cat. No. 01CH37222), volume 3, pages 1870–1875. IEEE, 2001.

[83] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal
component analysis. In International conference on artificial neural networks, pages
583–588. Springer, 1997.

[84] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE international conference
on computer vision, pages 618–626, 2017.

Bibliography 155

[85] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important fea-
tures through propagating activation differences. In International conference on ma-
chine learning, pages 3145–3153. PMLR, 2017.

[86] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[87] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. Testing deep neural networks.
CoRR, abs/1803.04792, 2018. URL http://arxiv.org/abs/1803.04792.

[88] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. Testing deep neural networks. arXiv preprint arXiv:1803.04792, 2018.

[89] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. Concolic testing for deep neural networks. In ASE, page 109–119,
2018.

[90] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. Structural test coverage criteria for deep neural networks. ACM Trans.
Embed. Comput. Syst., 18(5s), October 2019. ISSN 1539-9087. doi: 10.1145/3358233.
URL https://doi.org/10.1145/3358233.

[91] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In International conference on machine learning, pages 3319–3328. PMLR,
2017.

[92] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the 40th
international conference on software engineering, pages 303–314, 2018.

[93] Muhammad Usman, Youcheng Sun, Divya Gopinath, Rishi Dange, Luca Manolache,
and Corina S Păsăreanu. An overview of structural coverage metrics for testing
neural networks. International Journal on Software Tools for Technology Transfer,
pages 1–13, 2022.

[94] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-
Jui Hsieh, and Luca Daniel. Evaluating the robustness of neural networks: An ex-
treme value theory approach. arXiv preprint arXiv:1801.10578, 2018.

http://arxiv.org/abs/1803.04792
https://doi.org/10.1145/3358233

Bibliography Amany Alshareef

[95] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. Feature-guided black-box
safety testing of deep neural networks. In Tools and Algorithms for the Construc-
tion and Analysis of Systems: 24th International Conference, TACAS 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I 24, pages 408–426.
Springer, 2018.

[96] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

[97] Qiuling Xu, Guanhong Tao, Siyuan Cheng, and Xiangyu Zhang. Towards feature
space adversarial attack by style perturbation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 10523–10531, 2021.

[98] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xi-
angyu Zhang. Correlations between deep neural network model coverage criteria and
model quality. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 775–787, 2020.

[99] Dong Yu, Li Deng, Dong Yu, and Li Deng. Feature representation learning in deep
neural networks. Automatic Speech Recognition: A Deep Learning Approach, pages
157–175, 2015.

[100] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer, 2014.

[101] Cheng Zhang, Kun Zhang, and Yingzhen Li. A causal view on robustness of neural
networks. Advances in Neural Information Processing Systems, 33:289–301, 2020.

[102] Xiaoqin Zhang, Jinxin Wang, Tao Wang, Runhua Jiang, Jiawei Xu, and Li Zhao.
Robust feature learning for adversarial defense via hierarchical feature alignment.
Information Sciences, 560:256–270, 2021.

[103] Xingyu Zhao, Alec Banks, James Sharp, Valentin Robu, David Flynn, Michael Fisher,
and Xiaowei Huang. A safety framework for critical systems utilising deep neural net-

Bibliography 157

works. In Computer Safety, Reliability, and Security: 39th International Conference,
SAFECOMP 2020, Lisbon, Portugal, September 16–18, 2020, Proceedings 39, pages
244–259. Springer, 2020.

[104] Xingyu Zhao, Wei Huang, Alec Banks, Victoria Cox, David Flynn, Sven Schewe, and
Xiaowei Huang. Assessing the reliability of deep learning classifiers through robust-
ness evaluation and operational profiles. arXiv preprint arXiv:2106.01258, 2021.

[105] Xingyu Zhao, Wei Huang, Vibhav Bharti, Yi Dong, Victoria Cox, Alec Banks, Sen
Wang, Sven Schewe, and Xiaowei Huang. Reliability assessment and safety arguments
for machine learning components in assuring learning-enabled autonomous systems,
2021.

[106] Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu, and David Flynn. Baylime:
Bayesian local interpretable model-agnostic explanations. In Uncertainty in artificial
intelligence, pages 887–896. PMLR, 2021.

[107] Xingyu Zhao, Xiaowei Huang, Valentin Robu, and David Flynn. BayLIME: Bayesian
Local Interpretable Model-Agnostic Explanations. In UAI, 2021.

[108] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2921–2929, 2016.

	Dedication
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Notations
	Introduction
	Overview
	Motivation
	Research Questions
	Research Methodology
	Contributions
	Thesis Structure
	Publications
	Summary

	Deep Neural Networks Testing: Background and Related Work
	Introduction
	Challenges and Concerns
	DNN Properties to Be Tested
	Trustworthiness of Deep Learning Models
	Existing DNN Testing Techniques
	Testing Metrics and Coverage Criteria
	Test Cases Generation Algorithms
	Test Case Evaluation

	Methods for Exploring the DNN's Inner Decisions
	Summary

	Bayesian Network Abstraction: Definition and Preliminaries
	Introduction
	Utilisation of Bayesian Networks within Neural Networks
	Bayesian Network (BN) Abstraction Model
	DNN Hidden Feature Extraction
	Discretisation Techniques
	Bayesian Network Construction
	Bayesian Network-based Coverage Metrics

	Summary

	BN-based Features Sensitivity Analysis
	Introduction
	Background and Related Work
	Preliminaries
	Data Abstraction Through a Bayesian Network
	Perturbation of Latent Features

	BN-based Latent Feature Analysis
	Pairwise Comparison
	Feature Sensitivity Analysis
	Feature Importance

	Experiments
	Datasets and Experimental Setup
	Sensitivity to Perturbation
	Sensitivity to Adversarial Distribution Shift

	Discussions
	Conclusions

	Bayesian Network Prediction
	Introduction
	Related Work
	DNN Abstractions
	DNN Approximators

	Preliminaries
	Probabilistic Inference using the BN
	Abstracting the Training Data
	Adding an Auxiliary Node
	Performing Prediction

	Extracting Feature Weights using the BN Prediction
	Experiments
	Experiment 1: Connecting Deepest Nodes Only
	Experiment 2: Connecting All Nodes
	Experiment 3: Feature Weights

	Discussion
	Conclusion

	Weight-based Testing Metrics
	Introduction
	The BN Weighted Feature Model
	Weight-based Semantic Testing
	Weighted Feature Coverage
	Weighted Feature Dependence Coverage
	Generalised Weighted Feature Coverage
	Coverage Criteria

	Concolic Test Generation
	Evaluation
	Datasets and Models
	Experimental Setup
	Experimental Results and Analysis
	Further Results

	Trustworthy Performance With the Weight Metrics
	Related Work
	Conclusion

	Conclusion and Future Work
	Introduction
	Summary of the Thesis
	Main Findings and Contributions
	Limitations and Future Work

	Detailed Structures of the Trained Deep Neural Networks
	Detailed Results for Sensitivity to Adversarial Shift Experiments
	Detailed Report of the Test Case Generation Process
	References

