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A B S T R A C T   

The growing complexity of systems and problems that stakeholders from the private and public sectors have 
sought advice on has led systems modellers to increasingly use multimethodology and to combine multiple OR/ 
MS methods. This includes hybrid simulation that combines two or more of the following methods: system 
dynamics (SD), discrete-event simulation, and agent-based models (ABM). Although a significant number of 
studies describe the application of hybrid simulation across different domains, research on the theoretical and 
practical aspects of combining simulation modelling methods, particularly the combining of SD and ABM, is still 
limited. Existing frameworks for combining simulation methods are high-level and lack methodological clarity 
and practical guidance on modelling decisions and elements specific to hybrid simulation that modellers need to 
consider. This paper proposes a practical framework for developing a conceptual hybrid simulation model that is 
built on reviews and reflections of theoretical and application literature on combining methods. The framework 
is then used to inform and guide the process of conceptual model building for a case study in controlling the 
spread of COVID-19 in care homes. In addition, reflection on the use of the framework for the case study led to 
refining the framework itself. This case study is also used to demonstrate how the framework informs the 
structural design of a hybrid simulation model and relevant modelling decisions during the conceptualisation 
phase.   

1. Introduction 

Researchers/practitioners using single simulation modelling ap-
proaches (i.e., system dynamics (SD), discrete-event simulation (DES), 
and agent-based models (ABM)) face challenges representing the multi- 
dimensional nature of complex systems composed of interactive and 
interconnected constituents with dynamic behaviours (Brailsford et al., 
2013; Eldabi et al., 2016). Hybrid simulation that combines different 
simulation methods continues to have a strong appeal to the Operational 
Research (OR)/Management Science community as it offers an oppor-
tunity to overcome these challenges and capture important character-
istics and behaviours of such systems (Mustafee et al., 2017; Nguyen 
et al., 2020a, 2020b, 2020c). The divergent philosophical approaches of 
SD and ABM possess strong and unique explanatory capabilities to 
address various dimensions of system complexity. Hybrid simulation 
helps encompass micro, meso, and macro perspectives, strategic, 
tactical, and operational levels, as well as detail and dynamic complexity 
(Bobashev et al., 2007; Morel & Ramanujam, 1999; Phelan, 1999). SD, a 
top-down continuous simulation method, represents complex system 

structures using stocks, flows, feedback, and time delays to study their 
behaviour over time (Sterman, 2000). While SD does not directly 
address emergence due to the fixed nature of system structures, it cap-
tures learning through changes in loop dominance caused by 
non-linearities. In contrast, ABM, a bottom-up simulation method, 
models autonomous, dynamic, and adaptive systems by simulating the 
behaviour of individual-level entities known as agents and the interac-
tion between agents and their environment (Wilensky & Rand, 2015). 
These interactions give rise to emergent system-level outcomes, which 
can, in turn, influence subsequent behaviours and interactions and lead 
to self-organization. The aggregate-level behaviour and individual-level 
interactions captured by SD and ABM respectively mean that combining 
them in a hybrid model provides an opportunity to gain a more 
comprehensive understanding of complex systems. Kazakov et al. 
(2021) provide support for this complementarity through proposing a 
problem-structuring approach that combines resource-feedback and 
agent-based perspectives and incorporates several theories that align 
with SD and ABM. 

Various works have outlined the key activities involved in the 

* Corresponding author. 
E-mail address: nguyen-le-khanh-ngan@strath.ac.uk (L.K.N. Nguyen).  

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

https://doi.org/10.1016/j.ejor.2024.01.027 
Received 15 February 2023; Accepted 19 January 2024   

mailto:nguyen-le-khanh-ngan@strath.ac.uk
www.sciencedirect.com/science/journal/03772217
https://www.elsevier.com/locate/ejor
https://doi.org/10.1016/j.ejor.2024.01.027
https://doi.org/10.1016/j.ejor.2024.01.027
https://doi.org/10.1016/j.ejor.2024.01.027
http://creativecommons.org/licenses/by/4.0/


European Journal of Operational Research xxx (xxxx) xxx

2

modelling process for single simulation methods, including conceptual 
modelling for SD (Sterman, 2000), ABM (Railsback & Grimm, 2019), 
DES (Banks et al., 2005; Hoover & Perry, 1989; Robinson, 2014), and 
generic modelling described in MS/OR (Hillier & Lieberman, 1995; Law 
et al., 2007). However, the modelling processes for single simulation 
methods do not offer sufficient support for dealing with the increased 
complexity of hybrid simulation models and additional decisions on 
when, why, and how to combine the methods. In addition, despite the 
growing interest and popularity in this approach (Brailsford et al., 2019; 
Howick & Ackermann, 2011), guidance for designing and utilising 
hybrid models, especially for those combining SD and ABM, is still at a 
high level and therefore, not sufficiently practical. The application of 
hybrid simulation described in the existing literature is also ad-hoc 
without explicit rationalisation on why and how the methods are com-
bined. To address the methodological gap of combining SD and ABM, 
this paper proposes a practical framework for developing a conceptual 
hybrid SD-ABM model. 

The framework aims to assist modellers in making decisions on 
when, why, and how to combine simulation methods in future studies, 
which will facilitate the process of developing hybrid models in addition 
to improving the models’ usefulness. It also suggests an approach for 
describing the conceptual presentation of the overall hybrid model to i) 
communicate the model design effectively to stakeholders and the wider 
research communities for confidence building and ii) facilitate verifi-
cation and the development of computerized simulation models. 

The next section provides a literature review of existing methodo-
logical guidance for combining simulation methods. Section 3 presents a 
proposed hybrid simulation modelling framework for combining SD and 
ABM. Section 4 describes its application to a case study that investigates 
the transmission dynamics of COVID-19 across networks of care homes 
by sharing bank/agency staff. The framework in Section 3 makes rele-
vant reference to different parts of the case study in Section 4. The paper 
concludes by discussing the contributions and implications of this work 
in practice, its limitations, and future research. 

2. Literature review 

A literature review was undertaken to identify practical or method-
ological guidance for combining SD and ABM. This sought to explore 
why, when, and how modellers should combine SD and ABM and 
identify the limitations of existing guidance in informing practice. Ap-
pendix 1 details the search terms used for this review. We included two 
types of publications in this review: i) theoretical papers (including 
those providing case studies to support the theoretical discussion) which 
describe frameworks to aid the combining of SD and ABM models or 
multi-method approaches more generally (Appendix 1) and ii) case 
studies that discuss the application of hybrid SD-ABM models in various 
application contexts (Appendix 2). Theoretical papers provided an 
overview of existing methodology for combining simulation methods 
and both types of studies revealed gaps in the methodological clarity and 
practice of combining simulation methods. The methodology overview 
and gaps are discussed in the remainder of this section. Case studies also 
served as a basis to collate, elaborate, and extend the discussion on 
combining SD and ABM in Section 3. 

While the early works on hybrid simulation focus on using one 
simulation method to validate outputs generated by another and trian-
gulating outputs (Phelan, 2004; Rahmandad & Sterman, 2008; Scholl, 
2001), hybrid simulation applications have evolved to diverse ap-
proaches for combining methods. Akkermans (2001) and Schieritz and 
GroBler (2003) employed SD to model the internal decision logic or 
cognitive structure of individual agents within ABM. However, these 
studies did not specify how the agents interact with each other nor did 
they explicitly explain the role of SD in facilitating such interactions. 
Borshchev and Filippov (2004) suggested two ways to combine SD and 
ABM. First, SD is used to represent the internal processes inside 
discretely communicating agents, a design frequently adopted in hybrid 

simulation models within supply network studies (Schieritz & GroBler, 
2003). Second, agents, such as people and households, live in an envi-
ronment, such as housing, jobs and infrastructure, whose dynamics is 
modelled using SD. Lorenz and Jost (2006) highlighted the use of SD in 
creating an active, dynamic environment for agents of an ABM. In 
addition, Martinez-Moyano et al. (2007) and Swinerd and McNaught 
(2012 and 2014) focused on elucidating input-output interactions and 
running sequences between SD and ABM sub-models in hybrid models. 
While most studies delineate static designs of hybrid SD-ABM models, a 
number of studies in epidemiology and ecology modelling propose a 
dynamically adaptive design. In this design, a hybrid model switches 
between SD and ABM representations based on a predetermined 
threshold (Bobashev et al., 2007; Vincenot et al., 2011; Wallentin & 
Neuwirth, 2017). The concept of this design originates from the appli-
cation of the law of large numbers and the central limit theorem when 
the number of active agents in an ABM is large and reaches a threshold. 
In this case, aggregating the behaviour of similar agents and modelling 
their behaviour through mean-field approximations should be possible. 
Conversely, when the number of agents becomes small, the SD model is 
switched back to the ABM to avoid artifacts possibly caused by the SD. 
Appendix 1 includes further details on the theoretical underpinnings of 
combining SD and ABM. 

From the papers included in Appendix 1, six high-level designs were 
identified that summarise the existing theoretical guidance on ap-
proaches to combining simulation methods as follows (Borshchev & 
Filippov, 2004; Chahal & Eldabi, 2008; Morgan et al., 2017; Mustafee 
et al., 2018; Swinerd & McNaught, 2012; Wallentin & Neuwirth, 2017):  

i) Parallel: Independent single-method models are developed either 
to address different aspects of the same problem or to represent 
the same problem for direct comparison.  

ii) Sequential: Two or more sub-models embedded in different 
simulation modelling methods run sequentially once and the 
output of one sub-model becomes the input to another sub-model.  

iii) Interaction: Distinct single-method sub-models interact cyclically 
multiple times during run time. A sequential design can be 
considered as a special case of the interaction design.  

iv) Enrichment: Single simulation methods are combined to form one 
unified hybrid model in which one method dominates and is 
enhanced by elements of another.  

v) Integration: One seamless hybrid model in which it is impossible 
to identify where one simulation approach ends and the other 
begins. Swinerd and McNaught (2012) describe three different 
integrated designs of combining SD and ABM, including agents 
with rich internal structure, stocked agents, and parameters with 
emergent behaviour.  

vi) Dynamically switching: The model dynamically alters among 
different SD-ABM configurations. The switching point is informed 
by a threshold at which the size of the population of interest is 
small or large enough, making the impact of heterogeneity among 
individuals of each entity type on the model’s outcomes become 
more or less significant, respectively. The rationalised use of this 
design is to optimize the trade-off between the predictive and 
computational modelling performance. 

Existing literature on hybrid simulation reveals four major limita-
tions. Firstly, the literature lacks clarity on the processes and aspects that 
modellers should take into account when reaching a decision on the 
design of a hybrid model. This lack of clarity obfuscates the reasons for 
and benefits of applying hybrid simulation in the existing literature and 
the choice of a specific hybrid simulation design. Eldabi et al. (2016) 
asserted that existing hybrid simulations tend to be “ad hoc and prag-
matic with no clear methodology” (p1389). Secondly, the guidance 
reviewed describes hybrid simulation designs at a high level and em-
phasises their differences based on the direction of interaction and fre-
quency of interaction over a time window. Although enrichment, 
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interaction, and integration designs share many similarities, they differ 
in the separability of single-method sub-models, which refers to the 
extent to which the sub-models can function independently without 
significant interdependence. They also differ in method dominance, 
which is the emphasis placed on each method within the hybrid model. 
The relative nature of these characteristics leads to the difficulty in 
selecting an appropriate design for a hybrid model. Thirdly, although 
there is some evidence of conceptual models in the existing literature 
(Jo et al., 2015; Kolominsky-Rabas et al., 2015; Páez-Pérez & 
Sánchez-Silva, 2016), it is far from comprehensive. Whilst sub-models 
are often described, the linkages between them are not explained. 
Conceptual modelling, especially for hybrid simulation, has been the 
most under-researched area in the simulation modelling lifecycle 
(Brailsford et al., 2019; Tako et al., 2019). This gap leads to difficulty in 
communicating the modelling design and its rationale, and poor 
communication is a challenge for confidence-building, reproducibility, 
and the development of generic lessons about when, why, and how to 
develop hybrid models. Finally, most of the existing hybrid simulation 
modelling studies focus on dealing with issues in particular domains 
rather than improving the methodological clarity of combining SD and 
ABM (i.e., application studies in Appendix 2 outnumbered theoretical 
studies in Appendix 1). 

The remainder of this paper will focus on the above key gaps 
revealed by the literature review, which highlight the lack of compre-
hensive and practical guidance for designing and developing a hybrid 
SD-AB model, including the lack of a detailed presentation of a con-
ceptual hybrid simulation model. In particular, the focus of the frame-
work discussed in this paper is the technical design aspects of the 
conceptual modelling of a hybrid simulation. 

3. A hybrid simulation modelling framework for combining SD 
and ABM in a hybrid model 

This section presents a theoretical framework that guides the con-
ceptual modelling phase of a hybrid SD-AB simulation study. The 
framework provides practical instructions that specify steps modellers 
should take to build a conceptual hybrid SD-AB simulation model. It also 
suggests the elements that modellers should describe to provide an 
overarching representation of a conceptual hybrid model for other 
modellers and stakeholders. These elements include i) modules – self- 
contained single-simulation-method components constituting a hybrid 
model, ii) abstraction level, modelling method rationale, and content for 
each module, and iii) their linkages (i.e., flows of information, in-
terfaces, and updating rules). Each of these elements is defined in this 
section. The framework includes stages and steps that align with key 
activities from existing conceptual modelling processes for single 
simulation methods. These are as follows: i) define the problem of in-
terest (stage 1) and ii) formulate the conceptual model to represent the 
problem (Steps 3.2 and 3.3 of stage 3) (Banks et al., 2005; Hillier & 
Lieberman, 1995; Hoover & Perry, 1989; Law et al., 2007; Railsback & 
Grimm, 2019; Robinson, 2014; Sterman, 2000). Stage 2, step 3.1 of stage 
3, and stage 4 are specific to hybrid simulation to assist the decision on 
the appropriateness of combining methods, determining single-method 
modules with hybrid models, and designing links between the mod-
ules, respectively. Therefore, they do not correspond with activities from 
any existing conceptual modelling processes for single simulation 
methods. Stages 3 and 4 provide detailed activities for hybrid simula-
tion, referring to relevant frameworks from the literature when 
necessary. 

The proposed framework offers clearer and more detailed guidance 
on developing a conceptual hybrid simulation model, emphasising 
practical aspects compared to existing guidance. It also includes new 
insights into modelling practice beyond what is currently discussed in 
the literature. The framework builds on an earlier version presented in a 
conference paper by Nguyen et al., (2020a, 2020b, 2020c). The earlier 
version was solely based on the synthesis of existing guidance on 

combining different simulation modelling methods and only described 
the conceptual modelling process for hybrid simulation at a high level. It 
touched on the definition of different elements of a hybrid simulation 
model but did not provide sufficient detail to inform practice. For 
example, it defined interfaces but did not explain different interface 
designs and how modules exchange information at their interfaces. Also, 
the clarity of the conceptual model design steps and iterations between 
them were improved from this version, rendering it more practical and 
user-friendly. The existing guidance typically discusses the high-level 
benefits of hybrid simulation to justify its use, such as complemen-
tarity and the ability to capture various system levels. By contrast, the 
updated version of the framework, which is based on further analysis 
and synthesis of hybrid SD-ABM studies across different application 
domains (Appendix 2), provides greater insights into different applica-
tion contexts for hybrid simulation, the rationale of hybrid simulation 
uses for each context, and designs of linkages between SD and ABM 
modules. This nuanced perspective facilitates the ease with which 
modellers can relate these application contexts to the specific problems 
they aim to address. The framework was also enhanced and refined 
through reflections on the process of building the case study hybrid 
model described in Section 4. For example, we recognised that selecting 
the high-level hybrid simulation modelling design (e.g., interaction, 
enrichment, and integration) described in existing guidance before 
defining the linkages between modules was not practical, and the former 
did not inform the latter; thus, we removed this step from the process. 
Our framework incorporates confidence-building approaches to specific 
stages and steps, an aspect absent from existing guidance. We iterated 
between developing the model and developing the framework. 

Fig. 1 shows the framework for conceptualising a hybrid simulation 
model, consisting of four main stages. In stage 1, modellers explore the 
problem of interest by defining the modelling objectives, scoping the 
problem, and specifying its characteristics as would normally be done in 
simulation modelling studies using single methods (for example, this is 
referred to as understanding the problem situation and determining the 
modelling objectives in Robinson (2008) and problem formulation in 
Balci (2012)). In stage 2, modellers determine whether an individual 
simulation method or a hybrid simulation method is most appropriate to 
model the problem of interest based on the exploration in stage 1. We 
considered only SD and ABM in this framework, but it is extendable to 
include DES. Modellers would follow and adhere to the same principles 
described within the stages and steps of the framework to build a hybrid 
simulation model that contains DES modules. Pertinent guidance related 
to DES will be integrated at each relevant stage and step. Stage 3 consists 
of activities to design the modules comprising the hybrid model, and 
stage 4 comprises activities to link the modules. The stages are explained 
in more detail in the following sub-sections. It is noted that modellers 
may have to iterate between these stages and steps several times to reach 
a design that fits their modelling purposes. Throughout the description 
of the framework, the confidence-building activities that modellers 
should implement are also discussed. This includes both black-box and 
white-box validation. Although black-box validation, which considers 
whether the overall behaviour of the model represents the behaviour of 
the real system with sufficient accuracy for its purpose (Kleijnen & Wan, 
2007; Robinson, 1997), requires a completed simulation model, mod-
ellers should plan for this activity at the model conceptualisation phase. 
Therefore, planning for black-box validation is discussed within the 
framework. 

3.1. Stage 1: exploring the problem 

The first stage is to explicitly define the nature of a problem under 
investigation and the modelling objectives, similar to what is normally 
done in a single modelling method study. This stage is vital to help 
identify the model scope and the level of detail required and, thus, the 
selection of appropriate simulation modelling methods (Randers, 1980; 
Roberts et al., 2012; Robinson, 2014; Wilensky & Rand, 2015). 
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Identifying the model outcomes is also useful to inform the content of 
the model. 

In this stage, modellers need to gain a detailed understanding of the 
problem as it guides modelling decisions. Identifying the problem 
characteristics that are important to include in the modelling study is 
domain-specific and requires input from the problem owners and other 
relevant stakeholders. For example, building a simulation model to 
explore a public health policy or a health promotion program usually 
involves defining problem characteristics such as the target population 
(e.g., age, gender, and risk factors), the target settings, potential in-
terventions, the health outcomes, and the time horizon adequate to 
capture differences in outcomes across interventions. Gaining an un-
derstanding of the problem characteristics builds on a combination of 
expert knowledge, literature review, and data from sources such as in-
terviews with stakeholders, surveys, focus group discussions, partici-
patory processes, observations, laboratory experiments, or network 
analyses. 

In addition, modellers consulting with the problem owners and 
relevant stakeholders need to identify and justify the modelling as-
sumptions and simplifications arising from scoping the model. They also 
need to discuss constraints such as the timeline of the modelling study, 
difficulties associated with data collection, access to applicable data, 
and cost constraints (Mykoniatis & Angelopoulou, 2020). If these con-
straints cannot be reasonably addressed, the objectives and the scope of 
the model need to be revised. 

3.2. Stage 2: assessing the appropriateness of combining SD and ABM 

Once the problem is articulated, modellers need to establish that 
simulation is appropriate to tackle the problem and then whether a 
hybrid simulation modelling approach is more appropriate compared to 
a single simulation method. Each simulation modelling method has 
strengths and limitations, making it more or less suited for specific 
problems at different levels of decision-making (Nguyen et al., 2020a, 
2020b, 2020c; Scholl, 2001). Therefore, the problem characteristics 
explored in stage 1 and stakeholders’ decision-making perspectives (e. 
g., operational, tactical, and strategic) should drive the selection of 
simulation modelling methods. Modellers will choose a hybrid simula-
tion modelling approach that combines the strengths of SD and ABM if 
one simulation paradigm has difficulty capturing the complexity of the 
problem on its own. Table 1 presents contexts that motivate the 

application of SD-ABM combinations based on a literature review of 
hybrid simulation modelling studies (Appendix 2). This context-based 
approach was inspired from the classification of problem situations in 
Lättilä et al. (2010). Examples are selected from the studies included in 
Appendix 2 to demonstrate each contextual application. 

It is worth noting that, as Fig. 1 indicates, assessing the appropri-
ateness of combining SD and ABM is likely to be iterative. For example, 
while modellers implement their choice for a hybrid SD-ABM simulation 
model in stage 3, they may learn new characteristics that lead them to 
redefine the problem addressed in stage 1 and reassess the method(s) 
selected in stage 2. Another example is that if a modeller initially selects 
SD in stage 2 and then finds it difficult to formulate the casual re-
lationships for a highly uncertain variable, they may decide to return to 
step 1 to explore the variable and then reassess the method selected in 
stage 2. 

In selecting the appropriate simulation modelling approach, mod-
ellers also need to consider practical issues that may constrain hybrid 
simulation modelling work. Building a hybrid simulation model is likely 
to take more time, especially if modellers lack knowledge and experi-
ence in both SD and ABM (Mingers, 2001). Furthermore, modellers may 
lack access to potentially high-cost software that combines different 
simulation method modules. Modellers may also lack the skills to code 
from scratch and combine these modules. 

Modellers should plan for black-box validation to facilitate its 
implementation when a completed simulation model is built. Modellers 
can utilise the pattern-oriented modelling approach which is used to 
uncover the internal organisation of entities and mechanisms in agent- 
based complex systems. This approach provides a framework for 
comparing models with qualitative and quantitative empirical patterns 
observed at various system levels (Grimm et al., 2005). It enables the 
identification of essential system elements necessary to capture the 
processes aligned with the model’s purpose. Part of the aim is to strike a 
balance between simplicity and inclusiveness, avoiding a narrow set of 
assumptions and parameter sets that only coincidentally reproduce 
specific empirical outputs. These patterns can also help rationalise 
critical design decisions of the model (see black box validation in Sec-
tion 4.5). Since pattern-oriented modelling occurs at different system 
levels, it is essential to consider the patterns reproduced by the overall 
hybrid models at this stage and those reproduced by the ABM compo-
nents within the hybrid models, as described in stage 3. 

Fig. 1. The conceptualisation stages of the hybrid SD-ABM simulation modelling framework.  
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3.3. Stage 3: designing the modules 

A model can consist of several components called “modules”. A 
module should principally be self-contained and bounded with pre-
defined interfaces (input and output) to the external world, including 
other modules. In a hybrid simulation model, we find it useful to 
consider a module as one logical component of a hybrid model devel-
oped using one of the simulation modelling methods (Onggo, 2014). It is 
noted that the term ‘module’ as used in the context of hybrid simulation 
does not refer to the ‘module’ within the software design technique of 
modular programming. In an integrated hybrid model, the boundary 
between modules is not explicit because the interfaces between modules 
are intertwined. In this case, it is more challenging to define the modules 
but still doable. For example, we can identify the single-method modules 
and their interfaces in four hybrid models that Brailsford et al. (2019) 
suggested as truly integrated (Alzraiee et al., 2015; Bergman et al., 2008; 
Chatfield & Pritchard, 2013; Varol & Gunal, 2015). Appendix 3 details 
these models’ designs. 

In this stage, modellers will determine and describe constituent 
modules of the model, levels of abstraction, and the simulation model-
ling method used to build each module. Stages 3 and 4 assist in white- 
box validation, which determines that the constituent parts of the 
model represent the corresponding parts of the real system with 
adequate accuracy for its purpose (Kleijnen & Wan, 2007). These stages 
offer a plausible design of the hybrid model’s structure for presenting to 
stakeholders and experts for face validation and interface validation (see 
white-box validation in Section 4.5). 

3.3.1. Step 3.1: determining modules 
Several approaches are appropriate for determining modules. Dja-

natliev and German (2015) suggested defining independent problem 
areas within a specific domain scope and modelling each area using one 
of the simulation methods. For example, Kolominsky-Rabas et al. (2015) 
developed a model for assessing innovative health technologies prior to 
their launch that involves interdisciplinary processes and is divided into 
modules by these disciplines, including population dynamics, disease 

Table 1 
Description of context that motivates the application of hybrid SD-ABM models.  

Typical context of application of 
hybrid simulation (When?) 

Example Module design Method often 
used in 
previous 
studiesa 

Benefits of hybrid simulation models 
compared with single modelling methods 
(Why?) 

Strategic policy decisions with 
consideration of a wide range of 
operational/local circumstances 

Capacity planning of solar energy resources by 
modelling the electricity system with a flexible 
structure that captures energy demand in a 
region characterized by different households 
(e.g., singles, couples, families with children) 
and their electricity consumption during 
weekdays, weekends, different times of the 
day and different seasons (Mazhari et al., 
2009) 

Using ABM to zoom in 
on one part of the system 
modelled in SD 

SD Provide richer insight into the 
interdependences between the behaviours of 
a system at a macro level and the behaviours 
of multiple agents involved at the micro 
level 
Contribute to explaining why a strategic 
policy may fail to improve operational 
performance 
Offer flexibility to model different 
operational circumstances or intervention 
scenarios explicitly 

Focusing on causal relationships in 
a system with stochastic and/or 
highly uncertain elements 

Causal relationships between risk metrics and 
variables, including risk perception, value 
perception, and risk preference, in modelling 
technological innovation risks that involve 
uncertainties caused by multiple agents with 
conflicting information and objectives and 
that are subject to limited perception and 
behavioural capacity (Wu et al., 2010) 

Using ABM to model 
uncertain/stochastic 
elements in the system 
modelled in SD 

Stochastic SD Help model stochastic/uncertain elements in 
casual relationships explicitly by entering 
variation into the appropriate sources/ 
decision levels of the model 
Provide richer insight by capturing 
parameters with emergent behaviours 

Involving interdisciplinary 
processes, several 
organisational factors (e.g., 
social, economic, 
epidemiological, and political) 

The assessment of innovative health 
technologies prior to their launch involving 
interdisciplinary processes: population 
dynamics, disease dynamics, healthcare 
financing, and healthcare (Kolominsky-Rabas 
et al., 2015) 

SD and ABM modules 
represent different 
disciplines 

Both SD and 
ABM 

Model the system in a more natural way 
Harmonize interdisciplinary expertise of 
experts whose views may be rooted in either 
SD or ABM 
Optimize trade-off between the 
computational and the predictive 
performance of the model 

Comprising multiple 
interconnected subsystems 

The problem of large infrastructure systems 
development comprising interconnected sub- 
systems and involving the partnership of 
public and private entities with conflicting 
goals and information asymmetry (Glock 
et al., 2016; Páez-Pérez & Sánchez-Silva, 
2016) 

SD and ABM modules 
represent different sub- 
systems 

Both SD and 
ABM 

Model the system in a more natural way 
Address and satisfy different views of 
stakeholders on the system 

Social and/or spatial interactions 
between entities affecting and/ 
or affected by the dynamic 
global environment 

Social-spatial fragmentation and segregation 
affected by cause-effect chains of urban 
shrinkage (Haase et al., 2012) 

Agents live in an 
environment 
represented by an SD 
module 

ABM The active, dynamic urban environment, 
where a spatial, social structure of agents 
live, is characterized by casual relationships 
and, thus, difficult to model using state 
variables representing the environment 
Provide richer insights into relationships 
between agents’ behaviours and external 
environment 

Social and/or spatial interactions 
between entities affecting and/ 
or affected by their internal 
dynamics 

Modelling the complex safety behaviours (e.g., 
resting decision) of truck drivers in interaction 
with co-workers (Goh & Askar Ali, 2016) 

Embedding an SD 
module in each agent to 
represent its internal 
structure 

ABM Internal dynamics are complex and, thus, 
difficult to model using state variables 
Provide richer insights into relationships 
between agents’ internal dynamics and their 
behaviours  

a This column shows the simulation methods that are often used in previous studies to address similar questions. This is based on the literature review provided in the 
example studies. 
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dynamics, healthcare financing, and healthcare operation. Alterna-
tively, modellers can use a hierarchical breakdown. For example, in the 
context of healthcare, modules can describe global, national, regional, 
institutional, individual person, and internal levels (e.g., internal body 
processes and disease progression). Modellers can also define modules 
based on the application contexts described in Table 1 (for an example, 
see the case study in Section 4.1). 

3.3.2. Step 3.2: selecting simulation modelling methods for each module 
After identifying the modules of a problem, modellers need to 

determine the level of abstraction and justify the selection of a particular 
simulation modelling method used for each module (Brailsford et al., 
2013) (for an example, see the case study in Section 4.2). Modellers may 
need to iterate between step 3.1 and step 3.2, splitting or merging 
modules. While rationalizing the choice of a simulation modelling 
method for each module, modellers may decide to partition a module if 
they cannot build it using one single modelling method. They may also 
consider combining modules with the same modelling method to 
simplify the model structural design while maintaining the “module” 
principle definition. 

3.3.3. Step 3.3: determine the content of each module 
Having identified the simulation method for each module, modellers 

determine the content of each module. SD modules will contain key 
variables, influencing factors, and feedback interrelations. For ABM 
modules, modellers identify key agents, their characteristics and 
behavioural rules, and their interactions. Modellers can adopt Section 2 
(Entities, state variables, and scales) and Section 4 (Design concepts) of 
the Overview, Design concepts, and Details (ODD) protocol to develop 
the content for each ABM module (Grimm et al., 2017) (e.g., the ODD 
protocol in Nguyen et al. (2022a, 2022b)). These sections cover types of 
agents and their characteristics, and they provide an overview of their 
interactions and behavioural rules and what the model’s time steps 
represent in reality. SD and ABM modules can be described using their 
own conceptual modelling tools, such as Stock-and-flow Diagrams and 
Causal Loop Diagrams (Coyle, 1997; Maani & Cavana, 2000; Richard-
son, 1991; Richardson & Pugh, 1997; Roberts et al., 1997; Sterman, 
2001) for SD and State-chart diagrams, Agent-Object-Relationship dia-
grams for ABM (Scheidegger et al., 2018; Wagner, 2003). In the STRESS 
guideline for strengthening the reporting of empirical simulation 
studies, Monks et al. (2019) suggested three checklists for describing the 
basic conceptual building blocks of SD, ABM, and DES models. In 
designing the content for each module, modellers must also keep in 
mind the modelling objectives to justify why they include or exclude 
particular elements. Additionally, modellers should record any as-
sumptions and simplifications made during this step and present them to 
the problem owner and any relevant stakeholders to ensure the validity 
and credibility of the model. At this step, modellers should plan 
confidence-building approaches for individual modules using the exist-
ing standard approaches for single-method models. 

3.4. Stage 4: designing the links between modules 

In this stage, modellers need to define elements to link the modules 
comprising the hybrid model, including information flows, interfaces, 
and updating rules. Performing this stage also provides learning about 
stage 3. The modules’ scope and content determined in stage 3 must be 
sufficient to provide the links between the modules and define their 
interfaces. This approach of defining modules, interfaces, and flows 
shares similarities with the Discrete EVent System specification (DEVS) 
formalism, where DES models are broken down into atomic or coupled 
components, each having well-defined input and output ports, state 
transitions, and time advancements (Vangheluwe, 2000; Zeigler & 
Vahie, 1993). 

3.4.1. Step 4.1: defining the flows of information between modules 
In this step, modellers decide what information modules should ex-

change and the direction of this information’s flow between modules 
(see Fig. 3 of the case study in Section 4 for an example of information 
flows between modules). Modellers explicitly define whether informa-
tion flows between two modules in one or both directions. This will 
inform the design of interfaces between modules in step 4.2. Modellers 
also need to describe the frequency of information flows that inform the 
detailed design of updating rules in step 4.3 (e.g., once a day, twice a 
week). 

3.4.2. Step 4.2: defining interfaces 
In this step, modellers need to define clear and logical interfaces for 

each pair of modules. An interface between the two modules defines 
how the information is passed from the generating module to the 

Table 2 
Interfaces between SD and ABM modules in a hybrid model (A detailed 
description, visual presentations, and examples for each design are provided in 
Nguyen et al. (2022a, 2022b)).  

Interface Description 

Information flows from SD module to ABM module 

(1a) Stock levels define agent- 
specific state variables 

The level of a stock in an SD module embedded in 
each agent of an ABM module can determine a 
characteristic (i.e., state variable) of that agent. 

(1b) Generating agents from 
stocks 

Small crowds of individual agents with specific 
characteristics can be generated from stocks 
representing large population numbers. 
Individual agents can be generated using 
distribution functions based on existing empirical 
data or theories to represent the necessary 
heterogeneity of these agents. 

(2) Stock levels define 
behaviours of individual 
agents 

Stock levels in an SD module determine the 
corresponding behaviours that individual agents 
in an ABM module will execute. 

(3) Stock levels bound 
aggregate measures of agents 

A stock level in an SD module bounds an 
aggregated measure of agents in an ABM module. 
The aggregated measure of agents must not 
exceed the level of a particular stock. Aggregate 
measures of agents can be the sum of values for an 
agent-specific state variable or the size of the 
agent population with a specific characteristic. 
While a stock level directly affects the behaviour 
of individual agents in interface design (2), in this 
design, it indirectly affects behaviour based on 
the collective measure of agents, summing up 
their state variables. 

(4) Stock levels define agents’ 
network topologies 

The levels of stocks in the SD module determine 
the corresponding spatial relationship and/or 
interacting network topology among agents in the 
ABM module. 

Information flows from ABM module to SD module 

(5) Agents’ state variables affect 
flows 

Agents’ state variables may evolve during a 
simulation as they execute a behaviour or interact 
with other agents and/or the environment. 
Changes in agents’ state variables can affect flows 
in an SD module. 

(6) Behaviours of agents affect 
flows 

Behaviours of agents in an ABM module can 
influence flows in an SD module by increasing/ 
decreasing parameters used in equations for 
flows. 

(7) Aggregated measures of 
agents affect flows 

An aggregated measure of agents in an ABM can 
influence a flow in an SD module. When SD and 
ABM modules represent different parts of a 
system and agents physically move from the ABM 
module to the SD module, they are removed from 
the ABM module and aggregated into a stock in 
the SD module. This movement is represented as 
an inflow of the stock. 

(8) Network topologies affect 
flows 

The spatial/social relationship and/or network 
topologies of agents in an ABM module can affect 
the flows in an SD module.  
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receiving module during the running time of the hybrid model. Table 2 
provides an overview of information flows between components of an 
SD module (i.e., stocks and flows) and an ABM module (i.e., agent- 
specific state variables, agents’ behaviours, aggregated measures of 
agents, and network topology). A detailed discussion of categories of 
information flows can be found in Nguyen et al. (2022a, 2022b). These 
categorisations emerged from a literature review of hybrid SD-ABM 
models across various domains and were based on reflection from the 
modelling process in the case study described in Section 4. The complete 
description of hybrid modelling studies and information flows can be 
found in Appendix 2. 

While the interface designs 1–3 and 6–8 have been used in hybrid SD- 
ABM models discussed in the literature, interface designs 4 and 5 
emerged during the modelling process of the case study discussed in 
Section 4. The interfaces described in the reviewed studies were ana-
lysed and grouped into categories. Simultaneously, potential interface 
designs for the case study model and the key elements of SD and ABM 
that can interact were considered. This iterative process led to the 
emergence of designs 4 and 5. Below are hypothetical examples of these 
two newly proposed interface designs for demonstration purposes. 

Stock levels define agents’ network topology: This interface design 
would be useful to capture the coordinated actions of agents in response 
to changes in the internal/external environment. A hypothetical 
example is a hybrid model for a pandemic that consists of an SD module 
that simulates the transmission dynamics in the community. The ABM 
module simulates healthcare facility agents interconnected by the 
patient-transfer pathways defined by a network topology. When the 
infected population (a stock in the SD module) increases to a certain 
threshold that the current network topology could no longer cope with, 
such transferring pathways may need to reform to handle this increasing 
demand (network topology changes). 

Agents’ state variables affect flows: An example of this interface design 
is a hybrid model that comprises an ABM module simulating trans-
missions between individual staff and resident agents in a care home and 
an SD module representing its connected hospitals. Resident agents have 
a state variable characterising their state of infection (e.g., susceptible 
and infected). Infected residents are assumed to require acute medical 
care and are, therefore, admitted to hospitals. This implies that a change 
in resident agents’ state of infection will affect the admission inflow to a 
patient stock in the hospital SD module. 

3.4.3. Step 4.3: defining updating rules 
Updating rules define when information is sent from one module to 

another and how new information is handled by the receiving module to 
maintain the logical consistency of the hybrid model (Onggo, 2014). 
Modellers specifically need to address the following issues when 
defining updating rules: i) SD and ABM modules in a hybrid simulation 
model may use different time advancement methods. SD is compatible 
with both the continuous and the discrete concept of time (Sterman, 
2000); the latter allows SD to advance using fixed-time increments. ABM 
typically advances using fixed-time increments but can adopt 
variable-time increments; ii) although the modules in a hybrid SD-ABM 
model may use the same time advancement method, they may use 
different time units; iii) modellers need to consider how updating rules 
would impact the modelling results and what implications there are for 
interpreting the model findings; iv) it is crucial to determine the logical 
order of several updates occurring at a pre-defined point in time as such 
order could affect the modelling results; v) modules use different 
simulation modelling software which has its own internal time man-
agement; and vi) modellers need to consider the run-time of a model 
when defining updating rules. We will discuss the first two issues con-
cerning the synchronisation of time advancement methods and time 
units of modules in the next two paragraphs. This discussion implicitly 
assumes that the modules are run on a multi-method simulation soft-
ware, such as AnyLogic. If the modules are executed using different 
software, synchronisation needs to employ the synchronisation 

algorithms from parallel and distributed simulation to avoid causality 
errors. The last two paragraphs of this section will explore the third and 
fourth issues. The fifth and sixth issues are out of the scope of this 
framework as the framework focuses on building a conceptual model. 

Red triangle: Fixed-time increments advancement; Cyan triangle: 
Variable-time increment advancement. 

If the modules in a hybrid SD-ABM model use fixed-time increment 
advancements with the same unit of time, updates can be easily done 
when the hybrid model advances its simulation time. If the modules use 
fixed-time increments but different units of time, updates can occur 
synchronously or asynchronously. Synchronously, all modules in a 
hybrid model will pass their information to other recipient modules at 
predefined simulation points, which can be, for example, the time step of 
one of the modules (Fig. 2A). Asynchronously, every time a module 
advances its simulation time, the module’s status may alter and it will 
send new information to recipient modules which the interfaces define 
(Fig. 2B). 

Additionally, information exchanges and updates can occur at 
variable-time increments in one module or both modules. The updating 
points can be triggered by stock levels or rates of an SD module reaching 
particular thresholds, agents of an ABM module executing specific be-
haviours, or specific properties of an ABM module emerging. Updates 
can occur synchronously when all modules in a hybrid model pass their 
information to other recipient modules at triggered variable-time in-
crements in one module (Fig. 2C). Asynchronously, one module can send 
its information to the recipient module at its predefined simulation 
points (e.g., end of its time step) whilst the other module passes its in-
formation at triggered variable-time increments (Fig. 2D). All modules 
can also send their information to other recipient modules at their own 
triggered variable-time increments (Fig. 2E). 

As a model is an abstraction of reality used for a specific objective, 
updating is unlikely to occur at the same frequency as in a real system. 
Therefore, modellers need to assess how the timing of updating rules 
would affect the modelling results and their interpretations. For 
example, components of a system may exchange information and update 
their status every second in reality; however, the modules of a hybrid 
model representing these components may be defined to update every 
hour or every day. Less frequent updates, in this case, are chosen as they 
are sufficient to meet the modelling objective and reduce the runtime. 
For another example, infectious disease models that update too infre-
quently (e.g., weekly rather than daily) could affect the transmission 
dynamics and thus potentially levels of infection. 

At a pre-defined point of time, several modules of the hybrid model 
may need to exchange information and update their status. Determining 
the order of these updates is important to support the logic underlying 
the model and, thus, has implications on the modelling results. A tabular 
summary of updating rules is helpful for communicating the hybrid 
model design and facilitates face validation and computerised model 
building. Such a table can include when updates occur, the order of the 
updates at each updating point of time, the modules that send and 
receive information, and what information is exchanged between the 
modules (e.g., Table 3 in Section 4.4). 

4. The hybrid SD-ABM model case study: the impact of sharing 
temporary bank/agency staff on COVID-19 transmission across 
care homes 

In this section, the applicability of the framework presented in Sec-
tion 3 will be demonstrated through a case study. 

Modellers have used both SD and ABM to study the transmission 
dynamics of infectious diseases and interventions, which have contrib-
uted to informing policy decisions on infection prevention and control. 
On the one hand, SD models of infection control have simulated the 
population as aggregates of sub-populations representing different states 
of infection rather than individuals with distinct characteristics and 
behaviours (Keeling & Rohani, 2008). Therefore, these SD models 
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provide a holistic, cross-sectional view, patterns, and trends of the sys-
tem over time to support policymakers’ strategic decisions that impact a 
large population rather than longitudinally tracking specific individuals. 
On the other hand, ABM has expanded on the infectious disease epide-
miological research primarily established by SD or compartmental 
models (Miksch et al., 2019; Willem et al., 2017). By simulating complex 
individual interactions and behaviours and spatial heterogeneity in the 
healthcare system, ABM has provided more details about the underlying 
mechanism and nature of the pathogen transmission (Megiddo et al., 
2018; Miksch et al., 2019; Perez & Dragicevic, 2009; Stephenson et al., 
2020). The method has also enabled the explicit testing of various 

infection control strategies such as cohorting, contact tracing, and social 
distancing (Enanoria et al., 2016; Farthing & Lanzas, 2021; Ferguson 
et al., 2005; Hotchkiss et al., 2005). In contrast to SD, capturing sto-
chastic effects resulting from heterogeneous populations is a key feature 
of ABM. Accordingly, it has significantly enhanced our understanding of 
epidemics. As each simulation method has pros and cons, combining 
them in a hybrid simulation model can help address interconnected and 
intricate problems relating to infection control and generate richer 
insight (Nguyen et al., 2020a, 2020b, 2020c). 

In this section, we demonstrate how the framework presented in 
Section 3 has informed the design of a hybrid SD-ABM model developed 
to investigate the impacts of bank/agency staff working across different 
care homes on COVID-19 spread patterns as well as targeted in-
terventions to mitigate these impacts. It is noted that bank/agency staff 
in the UK are temporary or flexible workers hired through specialised 
external agencies or staff banks to provide care and support in health-
care settings. The detailed description of the modelling case study is 
beyond the scope of this paper and can be found in Nguyen et al. (2022a, 
2022b). 

4.1. Stage 1: exploring the problem 

The model has been used to assist policymakers from the UK 
Department of Health and Social Care who considered effective in-
terventions targeting bank/agency staff. According to evidence, staff 
working across different care homes are at a greater risk of COVID-19 
infection than those working in a single care home, and using these 
staff significantly increases the risk of outbreaks among residents 
(Ladhani et al., 2020; Shallcross et al., 2021). However, knowledge is 
limited on the extent to which staff work in multiple care homes and 
contribute to spreading infection, which interventions effectively target 
this group, and how interventions interact to undermine or enhance 
each other when implemented concurrently. 

The modellers worked closely with the stakeholders (care homes, 
health and social care partnerships, and policymakers) throughout the 
modelling process. In the problem articulation phase, discussions with 
the stakeholders were critical to gaining insights, scoping the problem, 
and determining the modelling objectives. Issues such as the study 
timeline, availability and access to data, and challenges in data collec-
tion were also addressed in this phase. The primary data collected 
through interviews and discussions with the stakeholders and secondary 
data available at public databases and provided by care homes, 

Fig. 2. Synchronisation between modules in a hybrid SD-ABM model.  

Table 3 
Updating rules at each time step (daily).  

Execution 
order 

Sending 
module 

Receiving 
module 

Information 

At the beginning of each time step 

1 Network 
(ABM) 

Temporary 
Staff (ABM) 

Request bank/agency staff 
based on the daily demand 

2 Temporary 
Staff (ABM) 

Network 
(ABM) 

Schedule job – Allocate bank/ 
agency staff into care home 
agents 

3 Network 
(ABM) 

Intra-facility 
(SD) 

Daily staffing level affects the 
number of contacts with 
residents per staff member.  

Temporary 
Staff (ABM) 

Intra-facility 
(SD) 

Ingress of virus – The number of 
infectious bank/agency staff 
members (an aggregated 
measure) allocated to a care 
home agent affect the force of 
infection for susceptible 
residents and staff (flows) in 
that facility. 

At the end of each time step 

4 Intra-facility 
(SD) 

Temporary 
Staff (ABM) 

Bank/agency staff acquire 
infection from infectious 
residents and other staff 
members.  

Intra-facility 
(SD) 

Network 
(ABM) 

The number of permanent staff 
members self-isolating due to 
COVID-19 determine the need 
of additional bank/agency staff 
in the next time step.  
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Lanarkshire Health and Social Care Partnerships contributed to 
informing the conceptual model’s structure. Regular consultation with 
stakeholders helped justify the modelling assumptions and simplifica-
tions emerging from the first three phases of the modelling process, 
contributing to building confidence in the model. Engaging stakeholders 
in the modelling process increased the model’s credibility and their buy- 
in, which ensured the implementation of the model’s recommendations. 

During the development of the model amidst the COVID-19 
pandemic, stakeholder engagement was primarily conducted through 
virtual meetings and interviews due to practical constraints. The adop-
tion of a more comprehensive stakeholder participation approach (i.e., 
facilitated modelling) (Franco & Montibeller, 2010), presented chal-
lenges in this context. Ideally, under different circumstances, 
stakeholder-oriented workshops for model building could have been 
facilitated using established OR methods, such as soft systems method-
ology (SSM) (Checkland & Scholes, 1999), group model building (GMB) 
(Richardson & Andersen, 1995), strategic options development and 
analysis (SODA) (Ackermann & Eden, 2010), multi-criteria decision 
analysis (MCDA) (Köksalan et al., 2011), and PartiSim (Tako & Kotiadis, 
2015). 

4.2. Stage 2: assessing the appropriateness of combining SD and ABM 

The complexity and multi-scale characteristics of the problem, which 
involves interactions between intra-facility transmissions and inter- 
facility transmissions, pose a challenge to the use of SD or ABM alone, 
the two commonly used simulation methods in infectious disease 
modelling. However, a benefit of combining SD and ABM was that a 
hybrid model could achieve a comprehensive representation of such 
complexity by modelling multiple levels of aggregation. This makes it 
well-suited to stakeholders operating across these different levels (i.e., 
governments, health and social care partnerships, care homes). Hybrid 
simulation offers the flexibility to direct stakeholder’s attention to the 
appropriate level of detail in different parts of the system, allowing 

stakeholders to gain a deeper understanding of the system and, there-
fore, leading to increased confidence in the model. Also, by combining 
SD and ABM, the model can demonstrate how interactions between 
agents and the overall system impacts outcomes, providing stakeholders 
with a more lucid understanding of the system’s behaviours and the 
underlying mechanisms driving those behaviours. This enhanced un-
derstanding empowers stakeholders to grasp the dynamics of the system, 
leading to more effective communication and informed decision-making 
processes. 

4.3. Stage 3: designing the modules 

4.3.1. Step 3.1: determining modules 
Fig. 3 shows the architectural design of the integrated hybrid SD- 

ABM model. Each of the modules and their linkages are described in 
stages 3 and 4 respectively. The hybrid model contained three modules 
built using either SD or ABM: Network (of Care Homes) (ABM), Tem-
porary Staff (ABM), and Intra-facility (transmission in individual care 
homes) (stochastic SD). The concept of a network consisting of several 
agents representing sub-populations/healthcare facilities with a rich 
internal structure built using SD is similar to Vincenot and Moriya 
(2011) and Barnes et al. (2011). In these models, persons/patients move 
between sub-population/facility agents and spread the epidemics across 
a network. Their movement was modelled implicitly via behavioural 
rules of agents (i.e., how sub-population/facility agents exchange their 
persons/patients) in the network. These exchanged persons/patients 
were still considered homogeneous. However, the nature of such 
movement is different from the movement of bank/agency staff across 
care homes. Therefore, it was essential to consider bank/agency staff in 
a separate module (i.e., Temporary Staff Module). The choice of an 
appropriate simulation modelling method for each module is explained 
in the following subsections. 

Fig. 3. Architectural design of the integrated hybrid SD-AB model comprising three modules.  
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4.3.2. Step 3.2: selecting simulation methods for each module 
Network module: The Network module comprises care home agents 

connected via shared bank/agency staff. The state variables, including 
staffing levels, resident population sizes, levels of bank/agency staff use, 
and intra-facility transmission rates, characterise the care home agents. 
We selected ABM for this module as it is important for our research 
questions to capture the heterogeneity of care homes in terms of ingress 
risk and intra-facility transmission dynamics, which impact the facil-
ities’ risk of experiencing outbreaks. Shared bank/agency staff can 
spread SARS-CoV-2 from one care home with a current outbreak to other 
care homes with no infected case, triggering new outbreaks. The flexi-
bility of ABM compared with SD allows for easy and quick modifications 
in network composition and modelling certain interventions explicitly, 
such as grouping care homes into ‘bubbles’. Network composition and 
interventions that alter such composition can affect how the virus 
spreads across constituent care homes. 

Network Module (ABM) shows a network of heterogeneous care 
home agents, each containing an SD Intra-facility Module representing 
the dynamics of within-home transmission (Note: S: Susceptible, E: 
Exposed, I: Infectious, R: Recovered, Q: Staff in isolation). Bank/Agency 
staff agents (Temporary Staff Module) shared between the care homes 
can spread the virus across the network. Arrows show the information 
flows between modules with the information content they exchange. 
Reproduced from “Hybrid simulation modelling of networks of hetero-
geneous care homes and the inter-facility spread of COVID-19 by sharing 
staff”, by Nguyen et al. (2022a, 2022b), PLoS Computational Biology, 18 
(1): e1009780. Copyright 2022 by Elsevier B.V. Reprinted with 
permission.) 

Temporary Staff module: The Temporary Staff module models bank/ 
agency staff as agents whose state variables characterise their infection 
state, testing and isolation status, and record of movement across care 
homes. The working schedules of bank/agency staff change daily, 
depending on their decisions and care homes’ demands and preferences. 
This feature results in the stochasticity of their movement across care 
homes which is important to account for at the individual level. The 
collective movement actions of bank/agency staff agents can also lead to 
the emergence of events, such as several concurrent outbreaks across 
care homes with low community infection prevalence. While previous 
models discussed in Section 4.1 did not study interventions targeting 
persons/patients moving between sub-populations/facilities, the flexi-
bility of ABM enables the explicit modelling of interventions that restrict 
the movement of bank/agency staff within a bubble of care homes. 

Intra-facility module: Each care home agent of the Network module 
comprises a stochastic SD module that represents its intra-facility 
transmission of COVID-19. The aggregation of individuals was based 
on their roles (i.e., staff members or residents), state of infection, and 
testing and isolation status. SD is used as it is difficult to represent the 
intra-facility transmission dynamics using agents’ state variables 
without making several further modelling assumptions about the be-
haviours of these variables over time. Stakeholders and modellers would 
have needed persuading about the validity and credibility of such as-
sumptions and this level of abstraction. The stakeholders included teams 
from the Scottish Government and the UK Government, which consisted 
of infectious disease modellers external to the project and decision- 
makers, and they were familiar with and accepted the well-established 
epidemiological SD model (Anderson, 1991; Daley & Gani, 2001). In 
addition, as the impact of heterogeneous individual characteristics and 
behaviours and micro operational structures within care homes on 
intra-facility transmission is not the objective of this hybrid model and 
has been investigated in previous ABM models (Nguyen et al., 2020a, 
2020b, 2020c; Nguyen et al., 2021), SD is preferable for this module to 
keep the model simple and with lower computational intensity. Addi-
tionally, as the studied problem focuses on inter-facility transmissions in 
a network mediated by bank/agency staff, each care home is viewed as a 
sub-system from a holistic perspective. The macro characteristics and 
behaviours of care homes, rather than the micro characteristics and 

behaviours of individuals within each care home, are of concern to 
decision-makers at a regional/national level whose decisions this model 
aims to support. Employing ABM to simulate the interactions within care 
homes could have been counterproductive, potentially diverting the 
attention of decision-makers from the core problem by delving into 
unnecessary levels of detail. We also used stochastic SD instead of 
traditional deterministic SD to capture the stochasticity of intra-facility 
transmission dynamics and the extinction of the virus which affect the 
risk of outbreaks in each care home. As part of the confidence-building 
process, we compared the stochastic SD Intra-Facility module with 
parallel deterministic SD and ABM models offering complementary 
representations of the same system at a different level of abstraction 
(details in Nguyen et al. (2022a, 2022b)). This approach helped gain 
insights into any differences in outcomes generated by different simu-
lation modelling methods, from that obtaining plausible explanations of 
the system behaviour. 

4.3.3. Step 3.3: determining the content of each module 
As developing the content of single-method modules is not the focus 

of this paper, readers can refer to Nguyen et al. (2022a, 2022b) for 
details. 

4.4. Stage 4: designing the links between modules 

4.4.1. Step 4.1: defining the flows of information between modules 
Fig. 3 describes the information flows between the modules. 

4.4.2. Step 4.2: defining interfaces  

• Interface between Network module (ABM) and Temporary Staff 
module (ABM) 

Care homes seek to recruit a specific number of bank/agency staff 
daily, based on their current bank/agency staff usage and shortages due 
to COVID-related isolation. The allocation of bank/agency staff to care 
homes follows rules established through stakeholder discussions with 
care homes, supplying agencies, and bank/agency staff. For each care 
home agent, unallocated and non-isolating bank/agency staff members 
are randomly assigned or chosen based on their work history. These 
rules encourage the consistent utilisation of bank/agency staff within 
the same care home. In the event of an insufficient number of available 
bank/agency staff, the care homes may face understaffing for that day.  

• Interface between Network module (ABM) and Intra-facility module 
(SD) 

Agents’ state variables affect flows: Care home agents’ daily staffing 
level determined by their state variables, including the desired number 
of staff members on duty, the daily number of unfilled staff positions, 
and the number of residents, affect the transmission rates (in the SD 
module) within care homes. As it is implicitly assumed that the overall 
care home workload does not change regardless of daily staffing level, 
staff on duty will have to carry out extra workloads to maintain the 
quality of care delivered to residents if there is a staff shortage. There-
fore, the daily number of contacts with residents per staff member at 
work used in the transmission rates of the SD Intra-facility module is 
dependent on daily staffing levels. 

Stock levels affect agents’ state variables: The number of permanent 
staff members self-isolating due to COVID-19 in a care home (i.e., a stock 
in Intra-facility module) affect the demand for bank/agency staff to 
cover absent staff on a given day during the pandemic (i.e., a state 
variable of care home agents in Network module).  

• Interface between Temporary Staff module (ABM) and Intra-facility 
module (SD) 
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Aggregate measures of agents affect flows: The daily number of infec-
tious bank/agency staff members increase the forces of infection for 
susceptible residents and susceptible permanent staff in the Intra-facility 
module. 

Stock levels affect agents’ state variables: The levels of stocks repre-
senting the number of infectious staff and residents in the Intra-facility 
module affect bank/agency staff agents’ state variable representing 
their state of infection. Susceptible bank/agency staff acquire infection 
via interactions with infectious residents and other staff members at a 
rate that is equal to the force of infection in staff in the care home where 
they have worked. 

4.4.3. Step 4.3: defining updating rules 
Table 3 shows the updating rules between the modules. As the time 

unit commonly used to report epidemiological data and describe clinical 
characteristics of COVID-19 in the literature is daily, the ABM modules 
Network and Temporary Staff use a daily time step. The stochastic SD 
module Intra-facility is theoretically in continuous time, with the time 
step dt representing an infinitesimally small interval (Allen, 2008; 
Ossimitz & Mrotzek, 2008). In practical implementation, the module 
operates with a finite time step dt of ½7 days to ensure that numerical 
outcomes are as close as possible to those of a continuous model without 
the burden of carrying out too many calculations. The modules also 
exchange daily data as bank/agency staff are scheduled daily, and their 
infection states affect the states of SD modules in the care homes where 
they work on this time scale. The execution order was specified when 
multiple updates occur at the same point in time as described in Table 3 
since this order would affect the results. For example, if update 2 occurs 
before update 1, bank/agency staff would be allocated based on the 
demand of care homes in the previous day. The model ran for 90-day and 
180-day time steps as the former covered the period for which the client 
planned response strategies to contain the spread of COVID-19, and the 
latter was to examine the robustness of the findings in a longer term. 

4.5. Model confidence-building relevant to the conceptual modelling 
phase 

As part of the white-box validation, the model as described above 
was presented explicitly to and challenged by care home stakeholders, 
including representatives from Health and Social Care Partnership, 
Public Health, and staff and managers of care homes in Lanarkshire, 
Department of Health and Social Care, the Scottish Government Data 
Analysis Research Group, and the UK Social Care Working Group. The 
clear presentation of the model structure, including its constituent 
modules and interfaces between modules, helped to facilitate discus-
sions with stakeholders and experts with various degrees of knowledge 
and experience in simulation modelling. This supported gaining stake-
holders’ trust in the model’s validity, by demonstrating that it suffi-
ciently represents the investigated system and that model assumptions 
are appropriate for the model’s purposes. Harper et al. (2021) suggest 
that trust between the stakeholder and the model is one of the trust 
facets essential in model acceptability and confidence to implement 
results. 

In addition to the confidence-building purpose, the pattern-oriented 
modelling approach (Grimm et al., 2005) that was adopted in the 
black-box validation helped inform some of the conceptual model de-
signs. Patterns of the risk of infection for staff and residents and the risk 
of outbreak occurrence observed in care homes in the UK were identified 
at the problem exploring stage (i.e., stage 1 in the framework) and these 
were taken into account when designing the model. For example, as the 
risk of outbreak occurrence in care homes is dependent on their size and 
staff-to-resident ratio (Burton et al., 2020; Green et al., 2021; Scottish 
Government, 2020), it implies that care homes need to be considered at 
the individual level and that their resident population size and staffing 
level are important characteristics for capturing transmission dynamics. 

5. Discussion 

This paper contributes to the field of modelling and simulation from 
a methodological perspective by proposing a stepwise, detailed, and 
practical framework for developing a conceptual hybrid simulation 
model. The framework addresses a lack of methodological clarity on 
combining simulation methods, specifically combinations of SD and 
ABM, that was revealed in the literature review. It is developed based on 
a review of existing guidance for combining SD and ABM and reflection 
upon the process of building a hybrid simulation model. It focuses on the 
conceptual modelling process for hybrid models, which has been iden-
tified as “the least developed stage in the modelling cycle, despite its 
importance” (Brailsford et al., 2019). Conceptual modelling also helps 
the structural modelling and validation processes and is considered an 
important tool for model confidence building in healthcare (Roberts 
et al., 2012). In particular, the contribution of this paper to hybrid 
simulation is through addressing the following issues: i) a description of 
when SD and ABM should be combined, ii) an explanation of why SD 
and ABM combinations are required, iii) an explanation of how infor-
mation is exchanged between SD and ABM modules at their interfaces, 
iv) a description of the elements including modules, their interfaces, and 
updating rules that are essential for reporting a conceptual hybrid 
model, and v) a description of how modellers can plan the 
confidence-building process for the individual modules and the over-
arching hybrid model at different stages of the framework. The modules 
constituting a hybrid model, justification for the selected simulation 
method for each module, interfaces, and updating rules are character-
istics of the hybrid model. Reporting these characteristics provides a 
comprehensive overarching presentation of a conceptual hybrid model 
that facilitates communications of the model design and enables other 
modellers to take forward general lessons. 

The paper also discusses new practices for modelling interfaces be-
tween SD and ABM modules in a hybrid simulation model. Previous 
frameworks for hybrid simulation have described different modes of 
interaction between simulation methods, focusing on the system view, 
method dominance, and direction and frequency of interaction. Exam-
ples include the Hierarchical, Process Environment, and Integrated 
modes in Chahal and Eldabi (2008) and the Sequential, Enriching, 
Interaction, and Integration models in Morgan et al. (2017), Swinerd 
and McNaught (2012), and Martinez-Moyano et al. (2007). Swinerd and 
McNaught (2012) expand the concept of the Integration mode into three 
generic designs of combining SD and ABM, namely agents with rich 
internal structure, stocked agents, and parameters with emerging be-
haviours. However, the description of these interaction modes is still 
abstract and has not explicitly explained how the information is passed 
between different simulations. This paper addresses this issue by cate-
gorizing the designs of an interface between SD and ABM modules and 
defining how SD/ABM modules generate the information and how the 
receiving ABM/SD modules handle such information for each design. 
These interface designs also explain other forms of feedback that go 
beyond what has been generally discussed in previous hybrid models: i) 
the SD module generates information that shapes the agents’ environ-
ment or affects their decision-making and ii) the aggregation of the 
agents’ characteristics or actions represents a stock or parameter in the 
SD module. The research also proposes two new interface designs: i) a 
stock level defines the agents’ network topology and ii) the agents’ state 
variables affect flows. 

The framework is intended to guide modellers in thinking through 
different aspects and issues critical for developing a hybrid model. 
Whilst it presents choices for linking modules, the framework does not 
provide an exhaustive list of options. This is particularly due to the ‘art’ 
of modelling. Different modellers may choose to represent a situation in 
different ways. However, the framework provides a guiding structure 
which future research can further develop as the literature using hybrid 
models expands. At this point, the framework requires further use in 
practice beyond the application in Section 4 to build confidence in its 
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validity and practicality. 
Following the extensive review and synthesis of hybrid models in 

various application areas that contribute to the development of the 
hybrid simulation modelling framework, the remaining contribution is 
from the reflection of a single modeller/researcher bound by a health-
care context, and its application is only demonstrated in a single case 
study. This impacts the generalizability of the decisions on whether to 
choose SD or ABM and the practicability of the framework. Further 
testing of the framework is necessary through applications in other 
contexts. 

An extension of this research could explore the values of the pro-
posed interface designs between SD and ABM modules which have not 
been applied in the existing hybrid models. Future research can also 
consider how to combine three simulation methods (i.e., SD, ABM, and 
DES) in a hybrid simulation model and whether the framework can be 
extended to support the development of hybrid models that include 
other types of Operational Research/Management Science methods. 
This may include exploring further designs of interfaces between mod-
ules depending on the methods selected for combination. 

This research has discussed different scenarios where hybrid simu-
lation models are preferred compared to using single simulation 
methods and explained the benefits of using hybrid simulation for each 
application scenario based on reviewing and analysing existing models. 
However, it remains unclear how individual modellers or modelling 
teams decide on the use of hybrid simulation and what key factors affect 
their decision, as there is little discussion on the decision-making process 
in the literature. Therefore, analysing existing models is not sufficient to 
address these issues, and other research methods, such as in-depth in-
terviews, can be used to explore the practice of combining multiple 
methods (Ackermann & Howick, 2022). This can help provide richer 
insights into the decision-making process of selecting hybrid simula-
tions. Understanding this decision-making process would be helpful to 
draw generic lessons to aid the selection of appropriate methods. 
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