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A B S T R A C T

Marine structures are subjected to cyclic wave loads in ocean environments, leading to progressive forms
of structural degradation such as fatigue cracks. To ensure fitness-for-service of these critical assets, there
has been increasing interest in the application of digital twin-enabled virtual monitoring techniques. Whilst
numerous studies have focused on computational algorithms dedicated to virtual monitoring, little effort has
been devoted to establishing a practical digital-to-physical connection and decision-making based on virtually
monitored data. This paper bridges this research gap by proposing an approach for implementing digital twin-
enabled virtually monitored data in inspection planning for marine structures. The inspection of fatigue-prone
structural components plays a crucial role in structural integrity management. Reliability-informed inspection,
which employs a probabilistic approach that prioritises inspections based on probability of failure, offers a cost-
effective approach by avoiding unnecessary inspections and reducing life-cycle costs. However, conducting a
comprehensive structural reliability analysis requires thorough knowledge of the actual operational profile and
current state of a structure (e.g. consumed fatigue life) in order to accurately predict its future performance
(e.g. remaining fatigue life). Although design specifications and assumptions can serve as guidelines, a high
degree of uncertainty may arise due to the discrepancy between the actual operational profile and the design
assumptions. The approach developed in this paper consists of four main elements: virtual monitoring, data-
driven forecasting, fatigue reliability, and inspection planning. This provides a practical means for establishing
a connection between condition monitoring and assessment in the digital world and decision-making in the
physical world. An illustrative numerical example is then presented to demonstrate the application of the
proposed framework. Finally, avenues for future research and developments in this field are discussed.
1. Introduction

Structural integrity management is crucial for the safety and fitness-
for-service of marine structures throughout their service life. The typ-
ical phases of structural integrity management are data, evaluation,
strategy and programme (O’Connor et al., 2005). Structural monitoring
has become a prevalent approach for acquiring the condition data
of in-service structures, facilitating integrity analysis and supporting
decision-making. Within the field of structural monitoring, digital twin
is an emerging approach and has gained significant attention from
both academia and industry in the recent years (Wagg et al., 2020;
VanDerHorn and Mahadevan, 2021; Tuegel et al., 2011). A framework
of digital twin-enabled structural integrity management was proposed
by Li and Brennan (2024), an overview of which is shown in Fig. 1. In
principle, digital twin serves as the counterpart of physical structures
in a digital world by capturing parameters such as scantling, mate-
rial properties, and degradation at both macro and micro levels, and
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can accurately predict structural response and damage under a given
scenario. Twinning refers to the process of reducing the uncertainty
between the physical structures and its digital counterpart. This is
achieved by updating the digital counterpart using real-time monitored
data which effectively eliminates the modelling assumptions. There are
three key enabling techniques employed in digital twin: (1) digital
model updating, (2) virtual monitoring, (3) data-driven forecasting.
These, however, primarily focus on how real-time data and information
from the physical domain are fed into the digital domain; they do not
explicitly address the feedback from the digital domain to the physical
domain, particularly in the context of supporting decision-making.

This paper addresses this gap by proposing an approach for the
implementation of digital twin-enabled virtually monitored data in
inspection planning. While digital twin-enabled monitoring provides
valuable insights for structural integrity management, inspection re-
mains an essential approach for gathering integrity-related data and
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Fig. 1. Overview of digital twin-enabled structural integrity management.
complements the existing digital twin methodology. Given the high
costs incurred, it is important to plan the process of inspection in a
rational way. However, the stochastic nature of structural degradation
(e.g., fatigue) creates significant uncertainty regarding when and where
the degradation occurs. In view of this, leveraging the comprehen-
sive information provided by the digital twin has the potential to
enhance the prediction of the degradation process and subsequent
decision-making (Lotsberg and Sigurdsson, 2014).

The remainder of this paper is organised as follows. A review of
related works is presented in Section 2, followed by an overview of
the developed approach and the fundamentals of analysis methods in
Section 3. Thereafter, an illustrative example is given in Section 4 to
demonstrate the capability of the developed framework. Concluding
remarks are then presented in Section 5.

2. Related works

2.1. Digital twin-enabled virtual monitoring

The concept of twinning has its roots in the NASA’s Apollo program
where a physical twin rather than a digital twin, was built to allow
mirroring the in-service space vehicle (Rosen et al., 2015). This allowed
the engineers to test and assess recovery strategy on earth prior to
providing instruction to the crew. It is generally recognised that the
initial concept of the digital twin was introduced by Michael Grieves at
the University of Michigan during executive product life-cycle manage-
ment (PLM) courses (Fu, 2017). At that time, the concept was known
as ‘‘mirrored spaces model’’ (Grieves, 2005) but was later referred
as ‘‘information mirroring model’’ (Grieves, 2006). The concept was
further expanded by Grieves (2011), introducing the term ‘‘digital
twin’’.

In the field of marine structures, numerous studies have been re-
ported in open literature on the development and application of digital
twin to support structural integrity management for fatigue-prone com-
ponents (Thompson, 2020; Hageman and Thompson, 2022; Aarsnes
et al., 2019; Sireta and Storhaug, 2022; Henkel et al., 2020; Augustyn
et al., 2021; Sugimura et al., 2021). The methodologies proposed in
these studies principally focused on data assimilation; for instance, by
combining monitored data and numerical modelling using the finite el-
ement method (FEM). Two types of approaches have been investigated,
which are based on different fatigue evaluation methods, namely the
spectral-based approach (Wang, 2010) and time domain approach (Li
et al., 2013). In the spectral-based approach, research has mostly been
dedicated to the update of operational profile (e.g., wave spectrum).
For instance, Thompson (2020) and Hageman and Thompson (2022)
proposed a framework for virtual monitoring enabled by FEM-based
numerical twin and wave spectrum updated by hindcast wave data
or wave data retrieved from motion data of a floater (i.e., floater as
a buoy). A similar approach was adopted by Aarsnes et al. (2019)
who combined the structural and hydrodynamic design models with
2

the specific encountered wave information (which matched the Auto-
matic Identification System [AIS]) and global wave hind cast data to
allow real-time fatigue evaluation. In a similar vein, Sugimura et al.
(2021) adopted the same analytical principle and utilised the wave data
measured from a wave radar. Regarding the time domain approach
within digital twin framework, the main challenge lies in translating
limited measurements obtained from discrete locations to structural
members with high criticality. For example, Sireta and Storhaug (2022)
formulated a modal approach to reconstruct the structural response in
time domain based on measurements from a smaller number of strain
gauges. Henkel et al. (2020) adopted the modal decomposition and
expansion method to extrapolate the measured response time history
to locations of interests. Ziegler et al. (2019) explored the feasibility of
applying linear regression and 𝑘-nearest neighbour approach to extrap-
olate strain gauge measurements. A novel methodology based on radial
basis function to reconstruct strain field was proposed by Wang et al.
(2023), which yielded good results for a highly non-linear response.

Reviews by Li and Brennan (2024) and Chen et al. (2021) provide
a more comprehensive survey of the state-of-the-art regarding the use
of digital twin for marine structures. In general, the development of
digital twin for structural integrity management of marine structures
has made significant progress. Various methodologies have been pro-
posed to enable the virtual monitoring of structural members of high
criticality. However, an important aspect that remains unaddressed is
the practical interface between virtual monitoring and decision support.
Whilst digital twin technology provides valuable insights into structural
integrity, an effective mechanism for utilising this information in the
decision-making process is yet to be established.

2.2. Inspection planning

Guidance note and recommended practice with respect to inspec-
tion planning are issued by various certification authorities such as
DNV (Det Norske Veritas, 2021), BV (Bureau Veritas, 2017) and LR
(Lloyd’s Register, 2017). Qualitative and quantitative analyses are two
commonly applied approach, each serving different purposes. The for-
mer is typically used to provide an efficient criticality ranking among a
large number of structural systems/components (Ayyub et al., 2002;
Kamsu-Foguem, 2016). For instance, a rule-based scoring approach
was introduced by DeFranco et al. (1999) to assess the relative risk
of offshore platforms posed to the operators, which was applied also
by EI-Reedy (2006) and Potty and Akram (2011). In this approach,
descriptive criteria are developed, scored and weighted by subject
matter experts. The risk level is then categorised based on the total
score and presented in the form of a risk matrix.

When determining the inspection interval, a quantitative assess-
ment is normally required. This also allows an effective update of
risk/reliability when new inspection information becomes available
through reliability updating. Quantitative inspection planning was pre-
sented by Madsen (1985, 1987, 1997), Chen et al. (2011), Moan (2005),
Kim and Frangopol (2011), Lotsberg et al. (2000) and Onoufriou
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Fig. 2. Overview of implementation of digital twin-enabled virtually monitored data in inspection planning.
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(1999). One of the main features of these approaches is the probabilistic
fracture mechanics analysis. Using fracture mechanics rather than S-
N curve to assess fatigue is preferred because the limit state function
of fracture mechanics method contains the same parameter as the
inspection performance model (Straub and Faber, 2006). However,
the statistical information of input parameters to fracture mechan-
ics model is not well established for marine structures, whereas the
converse is the case for statistical information on the inputs for the
S-N model (Lassen and Recho, 2015; Lotsberg et al., 2016). Hence,
the parameters of the fracture mechanics model may require to be
calibrated by S-N curves. To this end, calibrated parameters were
recommended by Lotsberg and Sigurdsson (2014).

The challenge associated with quantitative risk/reliability-based as-
sessment is that intense and specialist knowledge of probabilistic anal-
ysis is required. Driven by the need to reduce the significant compu-
tational effort which had resulted in limited application in practice,
a generic approach for the risk/reliability-based inspection planning
was introduced by Straub and Faber (2005, 2006). The core of this
approach is to pre-establish inspection plans for generic hot spots which
are deemed representative of particular hot spots in the considered
structures. The inspection plan for individual hot spot is then obtained
through an interpolation procedure. In addition to improving computa-
tional efficiency, the use of a generic approach enables risk/reliability-
based inspection planning to be completed by non-specialist who may
be unfamiliar with the probabilistic modelling of fatigue crack and
reliability analysis.

3. Methodological considerations

3.1. Overview

The flow diagram in Fig. 2 presents an overview of the approach
developed in this work for implementing digital twin-enabled vir-
tually monitored data in inspection planning. It comprises four ele-
ments: virtual monitoring, data-driven forecasting, fatigue reliability
and inspection planning.

Virtual monitoring is one of the core functionalities of the digital
twin approach; it enables the monitoring of structural members with-
out physical instrumentation, which distinguishes it from conventional
structural monitoring. A modal decomposition and expansion method
is adopted. This converts the physically monitored data into responses
of any desired locations via a combination of structural mode shapes
(i.e., virtual monitoring). However, there is inherent uncertainty in
3

this process regarding measurements and selection of structural mode u
shape. Therefore, it is essential to perform an uncertainty assessment
at this stage to avoid propagating systematic error in subsequent stages
and ensuring accurate decision-making. The performance of a structural
system is forecast in both the design stage (e.g total fatigue life)
and in-service stage (e.g. remaining fatigue life). To facilitate this,
analytical assumptions such as long-term stress range distribution need
to be made. The objective of data-driven forecasting is to partially
replace the adopted analytical assumption with monitored data. The
Weibull distribution is a common model employed to describe the
long-term stress range distribution of marine structures. For the initial
design, the distribution parameters are determined empirically. In this
study, Bayesian updating with Marko Chain Monte Carlo simulation
is employed to update the distribution parameters using monitored
data, thereby improving the prediction of fatigue loads. An assessment
of fatigue reliability is then conducted to evaluate the time-variant
structural reliability. The probabilistic fracture mechanics model is
adopted, which can be combined with inspection quality assessment
based on the probability of detection curve for specific inspection tech-
niques. In addition, reliability updating is carried out when inspection
information is available. The relation between structural reliability
and in-service time provides the basis for inspection planning. Once
the acceptance criteria is established (i.e., target reliability), the time
interval of inspection can be determined (Lotsberg, 2016).

3.2. Digital twin enabled virtual monitoring

One of the notable advancements of digital twin-based technology
is its capability to monitor the all-over response using a virtual moni-
toring technique (Collette et al., 2022). To achieve this, the physically
monitored data are combined with the digital model using a modal
decomposition and expansion theory (Henkel et al., 2020; Augustyn
et al., 2021). It is assumed that the dynamics of a structure can be
decomposed into an infinite number of mode shapes with different
modal amplitudes:

𝐮(𝑥, 𝑡) = Φ(𝑥)𝐐(𝑡) (1)

here 𝐮(𝑥, 𝑡) is the dynamic structural response vector as a function of
he spatial and temporal coordinates, Φ(𝑥) ∈ R∞ is the mode shape
atrix and 𝐐(𝑡) ∈ R∞ is the time-varying modal amplitude vector.

et us consider the structural response of a finite number of discrete
ocations (𝑖 + 𝑗) within the structure and partition the response into
hysically monitored responses, 𝐮𝑝(𝑡) ∈ R𝑖 and virtually monitored
esponses, 𝐮𝑣(𝑡) ∈ R𝑗 . The aim of modal decomposition and expan-
ion is to convert the physically monitored response into responses at

nmonitored locations (which constitutes virtual monitoring).
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Assuming that the structural response is governed by 𝑘 structural
mode shapes, a modally truncated approximation of the structural
response reads:

𝐮(𝑥, 𝑡) =
{

𝐮𝑝(𝑡)
𝐮𝑣(𝑡)

}
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The modal amplitude, i.e., {𝑞1(𝑡), 𝑞2(𝑡),… , 𝑞𝑘(𝑡)}, is estimated using a
least-square approach as follow:
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The virtually monitored response is then estimated from the following
solution:
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The finite element method can be employed for solving the eigenvalue
problem. Nodal or elemental outputs corresponding to the desired
structural location are acquired from the finite element model to formu-
late the mode shape matrix given in Eq. (2). This approach is an inverse
problem solver, offering potential computational efficiency over direct
time-domain simulations.

3.3. Uncertainty assessment of monitored data

As discussed by Hageman et al. (2022), the use of monitored data
can reduce the epistemic uncertainty caused by a lack of knowledge
of the actual operational and environmental conditions. However, it
is equally important to recognised that uncertainty may arise from
the monitoring system. There is an inevitable discrepancy between the
virtually monitored response and the actual response of the physical
structure. To quantify this, four uncertainty indicators may be rel-
evant (Augustyn et al., 2021), namely the time response assurance
criterion (TRAC), coefficient of determination (CoD), bias (𝑏) and co-
efficient of variation (CoV). The TRAC is defined by the following
expression:

TRAC =
(𝐮𝑇 𝐮̃)2

(𝐮𝑇 𝐮)(𝐮̃𝑇 𝐮̃)
∈ [0, 1] (5)

where 𝐮 denotes the physically monitored response and 𝐮̃ denotes
the virtually monitored response. TRAC is a measure of the tempo-
ral correlation between physically and virtually monitored data with
TRAC = 1 indicating a perfect correlation and TRAC = 0 implying no
correlation. Because TRAC does not account for the amplitudes of the
4

f

signals, coefficient of determination (CoD) is introduced to capture the
potential amplitude errors:

CoD = 1 −
𝐸[(𝐮 − 𝐮̃)2]
𝑉 𝑎𝑟[𝐮]

∈ [−∞, 1] (6)

where 𝐸[⋅] denotes the expectation operator and 𝑉 𝑎𝑟[⋅] denotes the
variance operator. Two further metrics, bias (𝑏) and coefficient of varia-
tion (CoV), are introduced to evaluate the amplitude range uncertainty.
Bias is defined as the expected value of the cumulative amplitude range
ratios of the time series:

𝑏 = 𝐸
[𝛥𝐮
𝛥𝐮̃

]

(7)

where 𝛥𝐮 ∈ N𝑚 is the cumulative rainflow count over physically
monitored time series, 𝛥𝐮̃ ∈ N𝑚 is the cumulative rainflow count over
virtually monitored time series. 𝑚 is the number of rainflow count bins.
The coefficient of variation (CoV) is defined as the standard deviation
of the cumulative amplitude range ratios for all rainflow count bins
normalised to the bias:

CoV =

√

𝑉 𝑎𝑟
[

𝛥𝐮
𝛥𝐮̃

]

𝑏
(8)

3.4. Bayesian updating of stress range distribution

Forecasting the structural response (e.g., stress) and possible dam-
age (e.g., fatigue) to support the verification of structural design ade-
quacy and the long-term planning of inspection is an integral step in
the design of engineering structures. However, forecasting at an initial
design stage can only be performed by making certain assumptions such
as long-term stress range distribution, denoted as 𝑓 (𝛥𝜎; 𝜃). Regarding

arine structures, Weibull distribution is often adopted to model the
ong term stress range distribution. The derivation of parameters
ithin these design models (i.e., 𝜃) is usually based upon the historical
ata of structures with a similar configuration and operational profile.
igital twin offers an opportunity for utilising the monitored response
f the structure to partly remove the analysis assumption for a specific
ase. Bayesian updating is arguably one of the most suitable methods
or this objective (Ang and Tang, 1975).

In the Bayesian approach, the parameter to be estimated (𝜃) is
reated as a random variable and is described by a prior distribution
ased on prior knowledge (Lye et al., 2021), denoted as 𝑓 ′(𝜃). New in-
ormation obtained from the digital twin-based monitoring can be used
o formulate the likelihood function, as given, for example, by Okasha
t al. (2010):

(𝜃) =
𝑛
∏

𝑖=1
𝑓 (𝛥𝜎𝑖|𝜃) (9)

here 𝑓 (𝛥𝜎𝑖|𝜃) is the probability density function evaluated at moni-
ored data 𝑥𝑖, given that the distribution parameter is 𝜃. According to
he Bayesian theorem, the posterior distribution is proportional to the
roduct of the likelihood function and the prior distribution:
′′(𝜃) ∝ 𝐿(𝜃)𝑓 ′(𝜃) (10)

n the present study, a Markov Chain Monte Carlo Simulation using
etropolis-Hasting algorithm (Hastings, 1970) is employed to approx-

mate the posterior distribution. Alternative approach such as slice
ampling algorithm can also be applied, as demonstrated by Okasha
nd Frangopol (2012).

.5. Probabilistic fracture mechanics model

.5.1. Crack propagation law
The fracture mechanics approach assumes that a flaw can be ide-

lised as a sharp tipped crack which propagates in accordance with the
aw relating the crack growth rate (𝑑𝑎∕𝑑𝑁), and the stress intensity

actor range for the material containing the flaw (BS7910, 2019). The
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Fig. 3. Schematics of surface crack.

verall relationship between the crack growth rate and stress intensity
actor range is generally a sigmoidal curve in the logarithmic scale
n which the central portion may be assumed as linear such as Paris’
aw (Paris and Erdogan, 1963) or, for greater precision, represented
y two or more straight lines. Considering a semi-elliptic surface crack
ith constant crack aspect ratio (Fig. 3), the following differential
quation can be used to described the crack propagation:
𝑑𝑎
𝑑𝑁

= 𝐶(𝛥𝐾)𝑚 (11)

in which 𝑎 is the crack depth, 𝛥𝐾 is the stress intensity factor range, 𝐶
and 𝑚 are the crack growth parameters and 𝑑𝑎∕𝑑𝑁 is the crack growth
rate with respect to number of cycle (𝑁). 𝑑𝑎∕𝑑𝑁 = 0 if 𝛥𝐾 < 𝛥𝐾𝑡ℎ
while unstable crack will develop if the maximum stress intensity factor
is greater than the material fracture toughness. Integrating Eq. (11)
from the initial crack size (𝑎0) to critical crack size (𝑎𝑐) gives the total
number of cycles leading to failure (total fatigue life):

𝑁 = ∫

𝑎𝑐

𝑎0

𝑑𝑎
𝐶(𝛥𝐾)𝑚

(12)

n incremental approach may also be applied when it comes to variable
mplitude loading, in which the crack growth increment is estimated
s follows:

𝑎𝑖 = 𝐶(𝛥𝐾)𝑚𝛥𝑁 (13)

he cumulative crack size after 𝑁 cycles is then obtained as follows:

𝑁 = 𝑎0 +
𝑁
∑

𝑖=1
𝛥𝑎𝑖 (14)

lternatively, equivalent constant amplitude stress range can be de-
ived from the solution of following expression (Amirafshari et al.,
021):

𝜎𝑒𝑞 =
[

∫

∞

0
𝛥𝜎𝛽𝑓 (𝛥𝜎)𝑑𝛥𝜎

]1∕𝛽
(15)

here 𝑓 (𝛥𝜎) denotes the probability density function of stress range 𝛥𝜎,
is the contribution factor and often taken as the slope of crack growth

urve. Concerning a varying aspect ratio during crack growth, a two-
imensional analysis with both crack width and crack depth formulated
n the fracture mechanics model should be performed. In this case, a
oupled differential equation adapted from Eq. (11) is required (Straub
nd Faber, 2006), by which the incremental growths of crack width and
epth are computed.

.5.2. Stress intensity factor
The stress intensity factor is used to predict the stress state near the

ip of a crack or notch caused by a remote load and plays a vital role
n the application of linear elastic fracture mechanics (Newman and
aju, 1981). The general form of stress intensity factor solution reads
s follows:

√

𝜋𝑎 (16)
5

= (𝑌 𝜎)
where 𝜎 is the remote stress acting on the structural member and 𝑌
s the geometry function. For fatigue analysis, the corresponding stress
ntensity factor range is given as:

𝐾 = (𝑌 𝛥𝜎)
√

𝜋𝑎 (17)

Expression of (𝑌 𝛥𝜎) is given in BS7910 (2019) as follows:

(𝑌 𝛥𝜎) = 𝑀𝑓𝑤{𝑘𝑡𝑚𝑀𝑘𝑚𝑀𝑚𝛥𝜎𝑚 + 𝑘𝑡𝑏𝑀𝑘𝑏𝑀𝑏[𝛥𝜎𝑏 + (𝑘𝑚 − 1)𝛥𝜎𝑚]} (18)

in which 𝛥𝜎𝑚 is the membrane stress range, 𝛥𝜎𝑏 is the bending stress
range, 𝑀 is the bulging correction factor, 𝑓𝑤 is the finite width cor-
rection factor, 𝑀𝑘𝑚 is the stress intensity correction factor for the
membrane stress component, 𝑀𝑘𝑏 is the stress intensity correction
factor for the bending stress component, 𝑘𝑡𝑚 is the membrane stress
concentration factor, 𝑘𝑡𝑏 is the bending stress concentration factor, 𝑀𝑚
is the stress intensity magnification factor, 𝑘𝑚 is the stress concentration
factor due to misalignment. For simplicity, only membrane stress is
considered and a constant aspect ratio (𝑎∕𝑐 = 0.2) is assumed in the
illustrative example given in the following section. Hence, only the
formulae for 𝑀𝑚 and 𝑀𝑘𝑚 under these assumptions are provided herein
while interested readers may refer to BS7910 (2019) for the complete
set of expressions. The stress intensity magnification factor is given as:

𝑀𝑚 = [𝑀1 +𝑀2(𝑎∕𝑡)2 +𝑀3(𝑎∕𝑡)4]𝑔0𝑓𝜃∕𝛷 (19)

where

𝑀1 = 1.13 − 0.09(𝑎∕𝑐) (20)

𝑀2 = 0.89∕(0.2 + 𝑎∕𝑐) − 0.54 (21)

𝑀3 = 0.5 − 1∕(0.65 + 𝑎∕𝑐) + 14(1 − 𝑎∕𝑐)24 (22)

𝑔0 = 1 + [0.1 + 0.35(𝑎∕𝑡)2](1 − 𝑠𝑖𝑛𝜃)2 (23)

𝑓𝜃 = [(𝑎∕𝑐)2𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃]0.25 (24)

𝛷 =
√

1 + 1.464(𝑎∕𝑐)1.65 (25)

The stress intensity correction factor is given as:

𝑀𝑘𝑚 = 𝑓1 + 𝑓2 + 𝑓3 (26)

where

𝑓1 = 0.43358(𝑎∕𝑡)[𝑔1+(𝑔2𝑎∕𝑡)
𝑔3 ] + 0.93163𝑒[(𝑎∕𝑡)

−0.050966] + 𝑔4 (27)

𝑓2 = −0.21521(1 − 𝑎∕𝑡)176.4199 + 2.8141(𝑎∕𝑡)(−0.1074𝑎∕𝑡) (28)

𝑓3 = 0.33994(𝑎∕𝑡)𝑔5 + 1.9493(𝑎∕𝑡)0.23003 + 𝑔6(𝑎∕𝑡)2 + 𝑔7(𝑎∕𝑡) + 𝑔8 (29)

The parameters 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7 and 𝑔8 are estimated from the
following solutions:

𝑔1 = −1.0343(𝑎∕𝑐)2 − 0.15657(𝑎∕𝑐) + 1.3409 (30)

𝑔2 = 1.3218(𝑎∕𝑐)−0.61153 (31)

𝑔3 = −0.87238(𝑎∕𝑐) + 1.2788 (32)

𝑔4 = −0.4619(𝑎∕𝑐)3 − 0.6709(𝑎∕𝑐)2 − 0.37571(𝑎∕𝑐) + 4.6511 (33)

𝑔5 = −0.015647(𝐿∕𝑡)3 + 0.090889(𝐿∕𝑡)2 − 0.1718(𝐿∕𝑡) − 0.24587 (34)

𝑔6 = −0.20136(𝐿∕𝑡)2 + 0.93311(𝐿∕𝑡) − 0.41496 (35)

𝑔7 = 0.20188(𝐿∕𝑡)2 − 0.97857(𝐿∕𝑡) + 0.068225 (36)

𝑔8 = −0.027338(𝐿∕𝑡)2 + 0.12551(𝐿∕𝑡) − 11.218 (37)

𝐿 in above expressions refers to the weld attachment. Also, if 𝑀𝑘𝑚 < 1
is obtained from Eq. (26), 𝑀𝑘𝑚 = 1 will be assumed.

3.5.3. Limit state function
In structural reliability analysis, the limit state function is defined

to indicate the structural state (failure or not). In the present study, the
limit state function is defined as follows:

𝐺(𝑡) = 𝑁(𝐶,𝑚, 𝛥𝐾, 𝑎 ) − 𝜈𝑡 (38)
0
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Table 1
Summary of parameters of probability of detection curves (NDT).
NDT technique Description 𝑋0 b

UT – 0.410 0.642
EC, MPI, ACFM At ground welds or similar good working conditions above water 0.41 1.43
EC, MPI, ACFM Normal working conditions above water 0.45 0.90
EC, MPI, ACFM Underwater and less good working conditions above water 1.16 0.90
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where 𝑁 is the number of load cycles required for a crack to develop
from initial size to critical size, 𝜈 is the mean zero up-crossing frequency
nd 𝑡 is the time in service. 𝐺(𝑡) < 0 indicates that the crack has
eveloped to a critical size and hence failure occurs. The number of
oad cycles is to be determined through the approach introduced in
ections 3.5.1 and 3.5.2. To approximate the accumulated probability
f failure, i.e., 𝑃 [𝐺(𝑡) < 0], a first order reliability method is adopted in
his study (Melchers and Beck, 2017).

.6. Inspection quality

There is inherent uncertainty as to whether different types of in-
pection will be successful (Brennan and de Leeuw, 2008). The concept
f probability of detection is therefore introduced as a measure of the
uality of inspection. The following sections provides more details on
his concept and how it is applied in a probabilistic fracture mechanics
nalysis and inspection planning through reliability updating.

.6.1. Probability of detection
Probability of detection is expressed as a function of the crack size.

rials are performed on components with known cracks for different
ypes of Non-Destructive Testing (NDT) techniques (Dover et al., 2003).
ontinued efforts by ICON project towards assessing probability of
etection curves for offshore structures indicate that a mean detectable
epth of 1.4 to 1.8 mm if an exponential curve is assumed (Dover and
udlin, 1996):

(𝑎) = 1 − 𝑒−𝜆𝑎 (39)

here 𝜆 is the inverse of mean detectable crack depth. Moan et al.
1997) suggested an exponential probability of detection curve with a
ean detectable depth of 1.95 mm based on data from 3411 underwa-

er NDT inspections of tubular joints in jackets. Probability of detection
urves are also introduced by Det Norske Veritas (2021) for ultrasonic
esting (UT), eddy current (EC), magnetic particle inspection (MPI) and
lternating current field measurement (ACFM) under different working
onditions. The parametric form reads as follows:

(𝑎) = 1 − 1
1 + (𝑎∕𝑋0)𝑏

(40)

here parameters 𝑋0 and 𝑏 are curve fitted to the trail data. A sum-
ary of the two parameters for different NDT techniques are given in
able 1. Concerning visual inspection, there is little information related
o probability of detection based on test data. Summarised in Table 2
re the probability of detection curves provided in Det Norske Veritas
2021) for close visual inspection. However, these are developed based
n judgement rather than test data. Furthermore, while the parametric
orm is consistent with Eq. (40), crack width (2𝑐) rather than crack
epth (𝑎) is taken as the variable. Additionally, it should be noted that
he reliability of visual inspection is strongly dependent on cleaning
f the inspected area. The guidance assumes that a good cleaning
s performed. Thus the presented probability of detection curves for
isual inspection should be used together with engineering judgement
epending on actual inspection conditions such as cleaning and light
onditions etc. With a good cleaning high resolution image photos are
6

onsidered to qualify to the highest curve presented in Table 2.
Table 2
Summary of parameters of probability of detection curves (Visual inspection).

NDT technique 𝑋0 b

Easy access 15.78 1.079
Moderate access 37.15 0.954
Difficult access 83.03 1.079

3.6.2. Event margin
Event margin is defined as an indication of inspection outcome. Like

the limit state event, the event of detection may be formulated as:

𝐸(𝑡) = 𝑎(𝑡) − 𝑎𝑑 (41)

where 𝑎𝑑 is the detectable size of a crack, 𝑎(𝑡) is the crack size at
time 𝑡. If 𝐸(𝑡) < 0, the crack size is smaller than the detectable size

hich means the crack will be not detected, whereas if 𝐸(𝑡) > 0, the
rack size is larger than the detectable size and therefore the crack will
e detected. As a common approach in literature, the probability of
etection curve will be treated as the probability distribution of the de-
ectable crack size. However, Hong (1997) argued that the probability
f detection is uncertain in itself and this uncertainty is not addressed
y Eq. (41). To this end, the following formulation for the event of
etection:

(𝑡) = 𝛷−1{𝑃𝑜𝐷[𝑎(𝑡)]} −𝑍 (42)

here 𝑍 is a standard normally distributed variate and 𝛷−1(⋅) is the
nverse of the standard normal distribution function. This formulation
as extended by Straub and Faber (2006) to additionally consider the
robability of false indication, that is, the probability that a defect
s indicated where none is present. The concept of probability of
ndication was introduced:

𝑜𝐼(𝑎) = 𝑃𝑜𝐷(𝑎) + [1 − 𝑃𝑜𝐷(𝑎)]𝑃𝐹𝐼 (43)

he event margin is then defined as follows:

(𝑡) = 𝛷−1{𝑃𝑜𝐼[𝑎(𝑡)]} −𝑍 (44)

.6.3. Reliability updating
With respect to damage detection, there are two possible scenarios:

o detection (𝐸 < 0) and detection (𝐸 > 0). In this paper, only the first
vent will be considered. The probability of failure at time 𝑡 following
n inspection carried out at time 𝑡1, where no crack is detected, reads
s follows:

(𝑡) = 𝑃 [𝐺(𝑡) < 0|𝐸(𝑡1) < 0] (45)

s discussed by Jiao and Moan (1990), the probability of failure at time
conditioned on an event (e.g., inspection carried out at time 𝑡1 where
o crack is detected, 𝐸(𝑡1) < 0) can be expressed as:

(𝑡) = 𝑃 [𝐺(𝑡) < 0|𝐸(𝑡1) < 0] =
𝑃 [𝐺(𝑡) < 0 ∩ 𝐸(𝑡1) < 0]

𝑃 [𝐸(𝑡1) < 0]
= 𝛷(−𝛽𝑢𝑝) (46)

An approximation to the updated reliability index (𝛽𝑢𝑝) is proposed
y Terada and Takahashi (1988) as follows:

𝑢𝑝 =
𝛽𝐺 − 𝜌𝐴
√

1 − 𝜌2𝐵
(47)

where

𝜌 = 𝜶𝑇 𝜶 (48)
𝐺 𝐸



Applied Ocean Research 144 (2024) 103903S. Li and F. Brennan

𝐸
s

f

𝑃

T
t
f
G

𝑃

T

𝛽

T

𝑃

w

c
t
r
(
b

𝜶

d

Fig. 4. Schematics of the case study model.
𝐴 = 𝜙(−𝛽𝐸 )∕𝛷(−𝛽𝐸 ) (49)

𝐵 = 𝐴(𝐴 − 𝛽𝐸 ) (50)

In above expressions, 𝜌 is the correlation between events 𝐺 < 0 and
< 0, 𝜙(⋅) is the standard normal density function and 𝛷(⋅) is the

tandard normal distribution function.
For 𝑗 multiple inspections without crack detection, the following

ormulation is derived:

(𝑡) = 𝑃 [𝐺(𝑡) < 0|𝐸1(𝑡1) < 0 ∩ 𝐸2(𝑡2) < 0 ∩⋯ ∩ 𝐸𝑗 (𝑡𝑗 ) < 0] (51)

he concept of equivalent event margin can be introduced which yields
he same probability of failure as the original system and accounts
or the correlation structure of the system (Jiao and Moan, 1990;
ollwitzer and Rackwitz, 1983).

(𝐸 < 0) = 𝑃 [𝐸1 < 0 ∩ 𝐸2 < 0 ∩⋯ ∩ 𝐸𝑗 < 0] (52)

he equivalent reliability index is:

𝐸 = −𝛷−1[𝑃 (𝐸1 < 0 ∩ 𝐸2 < 0 ∩⋯ ∩ 𝐸𝑗 < 0)] (53)

he first order approximation of Eq. (52) is given as:

(𝐸 < 0) = 𝑃 [𝐸1 < 0 ∩ 𝐸2 < 0 ∩⋯ ∩ 𝐸𝑗 < 0] = 𝛷(−𝜷;𝝆) (54)

here 𝜷 = {𝛽1, 𝛽2,… , 𝛽𝑗}𝑇 is the reliability index vector and 𝝆 =
[𝜌𝑖𝑗 ] is the correlation matrix with 𝜌𝑖𝑗 = 𝜶𝑇

𝑖 𝜶𝑗 for 𝑖 ≠ 𝑗 being the
orrelation coefficient between event margins 𝐸𝑖 and 𝐸𝑗 , and 𝜶 being
he unit vector (vector of sensitivity factors) computed from first-order
eliability analysis. The unit vector of the equivalent event margin
𝜶𝐸) may be determined following the numerical procedure introduced
y Gollwitzer and Rackwitz (1983):

𝐸 =
𝜕𝛽𝐸∕𝜕𝑼

‖𝜕𝛽𝐸∕𝜕𝑼‖

(55)

where 𝛽𝐸 is the reliability index of the equivalent event margin, 𝜶𝐸
is the unit vector of the equivalent event margin, 𝑼 is the vector of
standardised normal variables converted from basic variables and ‖ ⋅ ‖
7

enotes the norm of a vector. To evaluate the partial derivatives, the
analytical expression based on chain rule proposed by Gong and Zhou
(2017) is adopted:

𝜕𝛽𝐸
𝜕𝑈𝑘

= 𝑒
𝛽2𝑖𝑗−𝛽

2
𝐸𝑖

2 𝛷

⎛

⎜

⎜

⎜

⎝

𝛽𝑗 − 𝜌𝑖𝑗𝛽𝑖
√

1 − 𝜌2𝑖𝑗

⎞

⎟

⎟

⎟

⎠

𝛼𝑘,𝑖 + 𝑒
𝛽2𝑖𝑗−𝛽

2
𝐸𝑗

2 𝛷

⎛

⎜

⎜

⎜

⎝

𝛽𝑖 − 𝜌𝑖𝑗𝛽𝑗
√

1 − 𝜌2𝑖𝑗

⎞

⎟

⎟

⎟

⎠

𝛼𝑘,𝑗 (56)

where 𝛽𝐸𝑖
and 𝛽𝐸𝑗

denote the two reliability indices to be combined.

4. Illustrative example

For illustration purpose, a cantilever perforated plate under time-
varying concentrated force is considered (Fig. 4). The central cutout
results in stress concentration and therefore may be regarded as fatigue-
prone areas with high criticality in relation to structural integrity. The
objective of developing digital twin is to enable a virtual monitoring for
this hot spot using the monitored data obtained from five strain gauges
as indicated in Fig. 4. Although the present example is kept simple,
the concepts and methodologies can be extended to the larger-scale
structures instrumented with more complex monitoring system.

Data is generated through finite element numerical simulation as
shown in Fig. 5. Because the data set is developed from simulation, it
is effectively ‘‘simulated physically monitored data’’. However, for sim-
plicity, it will be denoted as ‘‘physically monitored data’’ hereafter. A
sequence of concentrated force is generated to represent the wave force
imparted by an irregular wave train. The specific sea state under con-
sideration is simulated through JONSWAP wave spectrum with 0.5 m
significant wave height and 2.5 s peak period. For modal decomposition
and expansion, four mode shapes are utilised, which a preliminary
study revealed was sufficient for effective virtual monitoring.

4.1. Results

Because numerical simulation is conducted in this study for data
generation, the responses of the entire plate can be obtained. A com-
parison of the actual response of the defined hot spot area (denoted as
‘‘physical’’) and the response estimated from the modal decomposition
and expansion approach (denoted as ‘‘virtual’’) is presented in Fig. 6.
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Fig. 5. ‘‘Simulated’’ physically monitored data.
est case 1 refers to the use of first-order, third-order, fourth-order
nd sixth-order mode shapes, while test case 2 refers to the application
f first-order, second-order, third-order and fourth-order mode shapes.
easonable comparison of the time history is seen in both cases with

he test case 2 experiencing greater deviation. This is further quantified
hrough the four uncertainty indicators as illustrated in Fig. 7. Although
RAC and CoD are closed in both cases, there is appreciable differ-
nce in bias and CoV which are the uncertainty indicators related to
mplitude range. In the test case 1, the virtually monitored response
xhibits a higher correlation and smaller variation with the physically
onitored response in terms of amplitude range than it does in test

ase 2. As discussed in previous section, data quality check and uncer-
ainty assessment are essential to avoid significant errors propagating
8

nto the latter stage that will affect the decision-making (Michalak,
2023). Assuming that the uncertainty evaluation result is sufficiently
representative across all the hot spots under consideration, a plausible
procedure could be splitting the physically monitored dataset into a
training set and a testing set, where the former is used in the modal
decomposition and expansion approach and the latter is used to assess
the uncertainty embedded in the virtual monitoring.

Comparisons between the prior distribution of scale parameter of
Weibull distribution and its posterior estimated by MCMC are depicted
in Figs. 8 and 9. Additionally, Figs. 10 and 11 compares the prior
and posterior distributions of the Weibull distribution, which describes
the long-term stress range distributions. Virtually monitored data of
test case 1 is used in updating the scale parameter, for which normal
distributions with a mean of 20 and a coefficient of variation (CoV) of
15% (Scenario 1) and normal distributions with a mean of 10 and a
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Fig. 6. A comparison of physically and virtual monitored stress series for the hot spot under consideration.
Fig. 7. Comparison of uncertainty indicators.
coefficient of variation (CoV) of 15% (Scenario 2) are assumed as the
prior distribution. The two scenarios represent conservative and opti-
mistic prior assumption, respectively. Apart from a significant change
in the mean value, the uncertainty of scale parameter (characterised by
CoV) is also substantially reduced.

The updated long-term stress range distribution is used in conjunc-
tion with the probabilistic fracture mechanics model. For comparison,
computation is also performed using the initial design long-term stress
range distribution. A summary of the input parameters is given in
Table 3. The time-variant reliability indices are compared in Figs. 12
and 13 for evaluations based upon design assumption and digital twin-
enabled virtually monitored data. Regarding scenario 1, it is clear that
the evaluation based on design long term stress range distribution is
significantly more conservative than the evaluation using digital twin-
enabled virtually monitored data. For instance, to ensure reliability
9

index is greater than the target reliability which in this example is
assumed to be 𝛽 = 3, four inspection are required within the entire
design life time if the design assumption based evaluation is followed,
namely when 𝑡 = 2.3 year, 𝑡 = 4.2 year, 𝑡 = 5.8 year and 𝑡 =
14 year. Note that the reliability index is updated in accordance
with the approach introduced in previous section and because of the
no detection assumption, the reliability index is increased after each
inspection (Jiao and Moan, 1990). However, as shown by the digital
twin-based evaluation, the reliability index still satisfies the acceptance
criterion before 𝑡 = 6.4 year, and another two inspections are required
at 𝑡 = 11.7 year and 𝑡 = 16.5 year respectively. With regard to scenario
2, only one inspection is required when 𝑡 = 11.3 year (according
to design assumption based evaluation). Nevertheless, the evaluation
based on digital twin-enabled virtually monitored data indicates the
likely occurrence of fatigue failure.



Applied Ocean Research 144 (2024) 103903S. Li and F. Brennan
Table 3
Summary of input parameters for probabilistic linear elastic fracture mechanics analysis.

Variable Symbol Unit Distribution Mean Median CoV

Weibull scale parameter (Design 1) 𝑞 – Normal 20 0.15
Weibull scale parameter (Design 2) 𝑞 – Normal 10 0.15
Weibull scale parameter (Updated 1) 𝑞 – Normal 14.1 0.037
Weibull scale parameter (Updated 2) 𝑞 – Normal 13.6 0.048
Weibull shape parameter (Lotsberg and Sigurdsson, 2014) ℎ – Deterministic 1.0 –
Crack growth parameter (Lotsberg and Sigurdsson, 2014) 𝑚 – Deterministic 3 –
Crack growth parameter (Lotsberg and Sigurdsson, 2014) 𝐶 – Deterministic 1.83 × 10−13 –
Initial crack depth (Lotsberg and Sigurdsson, 2014) 𝑎0 mm Exponential 0.03 1.0
Crack aspect ratio (Fajuyigbe and Brennan, 2021) 𝑎0∕𝑐0 – Deterministic 0.2 –
Zero up-crossing frequency (Lotsberg, 2016) 𝜈 Hz Deterministic 0.159 –
Stress concentration factor 𝑘𝑚 – Normal 1 0.2
Detectable crack depth 𝑎𝑑 mm Exponential 0.2 1.0
Fig. 8. Prior and posterior distribution of the scale parameter of Weibull distribution
(Scenario 1).

Fig. 9. Prior and posterior distribution of the scale parameter of Weibull distribution
(Scenario 2).

A further comparison is depicted in Fig. 14 for the time-variant
reliability index evaluated by virtually monitored data of test case 1
and test case 2, highlighting the influence of uncertainty in monitored
data. As shown previously in Fig. 7, the virtually monitored data of test
case 2 exhibits a weaker correlation with the actual response, especially
in terms of amplitude range. Bayesian updating based on this series
of virtually monitored data yields an updated scale parameter with
mean of 11.2 and CoV of 8.19%. If this virtually monitored data is
implemented in inspection planning, the first inspection is required
when 𝑡 = 10.6 year. By contrast, the use of test case 1 data, which
10
Fig. 10. Prior and posterior distribution of the Weibull stress range (Scenario 1).

Fig. 11. Prior and posterior distribution of the Weibull stress range (Scenario 2).

exhibits a closer correlation with actual response, suggests that the first
inspection is required at 𝑡 = 6.4 year. Hence, significant damage or
catastrophic failures may take place if the data of test case 2 were to be
employed because it is likely that the structural reliability index would
be substantially overestimated.

In general, the present illustrative example demonstrates the po-
tential of digital twin-enabled virtual monitoring in optimising the
inspection planning and achieving a better decision-making. When the
design assumption is conservative, the use of digital twin may enable
significant cost-saving associated with inspection. When the design
assumption is optimistic, the use of monitoring enabled by digital twin
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Fig. 12. Comparison of time-variant reliability index evaluated with and without
digital twin enabled virtually monitored data (Scenario 1).

Fig. 13. Comparison of time-variant reliability index evaluated with and without
digital twin enabled virtually monitored data (Scenario 2).

Fig. 14. Comparison of time-variant reliability index evaluated by virtually monitored
data of test case 1 and 2.

represents a timely preventive intervention to avoid catastrophic failure
11

caused by underestimation of the environmental and operational loads.
4.2. Discussions

4.2.1. Decision-making support
The present study aims to establish an approach for connecting the

condition monitoring and assessment in digital domain with inspection
planning in physical domain in order to leverage the capability of
digital twin technology for informed decision-making. Whilst the pro-
posed framework enhances the traditional inspection planning scheme
through the implementation of digital twin-enabled virtually moni-
tored data, a fundamental question still exists regarding the basis for
decision-making support. Two scenarios are generally of relevance:
application on new-built structures and application on in-service struc-
tures. The most apparent application likely pertains to structures in
service, in which the monitored data can support the optimisation,
re-establishment of inspection plan and demonstrate a case for life
extension. The offshore wind operators are arguably the most typical
examples who require life extension evaluation for the assets they
manage. The recent seabed lease in Scotland for offshore wind devel-
opment has a lease length of 60 years. However, offshore structures
are generally designed for a much shorter service life. The introduction
of monitoring system serves as a provision for the life extension of
these offshore assets. Regarding new-built structures, although actual
operational data is unavailable, the potential of proposed framework
can be realised by using monitored data collected from prototype trials.
A recent work by Branlard et al. (2023) provides a useful illustration.

4.2.2. Future works
It should be noted that the methods of analysis adopted in this study

are only a subset of the various approaches available and several areas
of improvements are required in future studies. Noteworthy progress
has been made in data-driven forecasting (Tsai and Alipour, 2023),
fatigue reliability (Wang et al., 2022; Jimenez-Martinez, 2020) and
inspection planning (Yeter et al., 2020; Florian and Sørensen, 2017;
Montes-Iturrizaga et al., 2008). These can positively contribute to the
proposed approach.

Regarding the virtual monitoring through modal decomposition and
expansion, the sensitivity of input data and structural mode shapes
to the predicted responses are crucial aspects. Optimisation of sensor
placement is of relevance, for which, inter alia, the studies by Yang
et al. (2021), Pan et al. (2022) and Li et al. (2022) may be used as ref-
erence. Building on sensor placement optimisation, the structural mode
shape may also be incorporated as a variable. Additionally, the effect
of surrounding fluid on the derivation of structural mode shapes may
require careful evaluation, particularly for marine structures. Another
important element in the uncertainty assessment of monitored data
may be the identification of erroneous physically monitored data. One
viable approach is to develop a redundant setup of strain gauges that
take the advantage of correlated structural response, e.g., symmetrical
response (Ziegler et al., 2019). This also serves as contingency to
backup the malfunctioning sensors. Additionally, correlation with other
sensing units may be established; for instance SCADA data of wind
turbines. Furthermore, modal decomposition and expansion can be
applied within the training data set to examine their validity. With
reference to the present example, the measurements of SG1, SG2,
SG3 and SG4 may be utilised to predict the response at the location
where SG5 is mounted. The predicted response is then compared with
the physically monitored data. A significant difference may indicate a
potential error in the monitoring system.

In terms of inspection planning, the illustrative example presented
in this paper assumes that no crack is detected in all inspection.
Nonetheless, the event of crack detection could take place in real-world
inspection. To address this, a decision (event) tree approach can be
adopted to combine with the present modelling. Furthermore, a set of
decision rules should be specified for structural repairs when a crack
is detected, such as ‘‘when structural repair should be carried out’’ and

‘‘how should repaired elements be treated’’. With respect to the first
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question, a crack depth threshold which triggers the repair should be
prescribed. However, this also means that crack sizing is required in
addition to detection. Alternatively, decision rule can be specified in
the way that structural repair is to be carried out for all detected cracks.
Concerning the latter question, a possible approach is to treat the
repaired element as if no crack has been detected (Thoft-Christensen
and Sørensen, 1987; Straub, 2004). This allows the development of
an inspection plan for the entire or remaining lifetime of the struc-
tures, before actual inspections have been completed (i.e., pre-posterior
analysis). Hence, the analysis presented in this paper can be extended
to consider the events of crack detection by incorporating the desired
repair strategy. After an inspection has been conducted, the inspection
plan can be renewed and depending on the repair quality, a different
initial crack size may be considered in the new inspection planning and
pre-posterior analysis. A future study will be conducted to explore the
above considerations. Another consideration that may be worthwhile
to delve deeper into is the dependency between different inspections.
The present work assumes statistical independency between different
inspections. However, this may not hold true due to the common
characteristics of environmental conditions and inspector experiences.
Readers can refer to Straub and Faber (2003) for insights into the
dependency effects on inspection planning.

Finally, it is important to recall that numerically generated data set
is utilised in the present illustrative example. For future application in
which full-scale trial data is adopted, appropriate filtering is required to
reduce the impact of measurement noise. Additionally, the uncertainty
checks as illustrated by Fig. 7 are highly important.

5. Concluding remarks

Digital twin concept has emerged in the recent years as a promising
tool for structural integrity management. Numerous developments have
been reported, accompanied by a number of algorithms focusing on
data assimilation (physical-to-digital connection) However, little effort
is devoted to considering the feedback from digital domain to physical
domain. This paper addressed this gap by developing an approach for
the implementation of digital twin-enabled virtually monitored data in
inspection planning.

The developed approach incorporated four elements: virtual moni-
toring, data-driven forecasting, fatigue reliability and inspection plan-
ning. A modal decomposition and expansion method is adopted for
virtual monitoring, through which a limited amount of monitored
data taken from discrete locations can be translated to the desired
structural component. With respect to data-driven forecasting, Bayesian
updating based on Marko-Chain Monte Carlo is employed to facilitate
the update of long-term stress range distribution specified in initial
design. The fatigue reliability analysis employed a probabilistic fracture
mechanics formulation and, furthermore, incorporated the inspection
quality assessment through the probability of detection curve. Inspec-
tion plan was determined on the basis of the calculated time-variant
reliability index and the target reliability. An illustrative example using
a cantilever plate model was provided to demonstrate the fundamentals
and capabilities of each element within the proposed approach. This
approach thus represents a useful way to maximise the benefits of
virtual monitoring enabled by digital twin and provides a technical
reference for offshore asset operators with regard to the use of digital
twin in structural integrity management. In addition, the example also
illustrates the importance of uncertainty evaluation for the monitored
data. Nevertheless, it is important to reiterate that the analytical meth-
ods adopted in this study are only a subset of the various approaches
available. Further research and development will undoubtedly develop
additional methodologies and advance the applications of digital twin
technology in structural integrity management.
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