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Figure 1: Full neural model. Vector concatenation is indicated by “+”.

When rendering homogeneous media, the log transmittance is the product

of the extinction coefficient and the path length. Therefore, a reduction

in path length can be offset by an increase in the extinction coefficient to

maintain the same transmittance. We refer to this increased extinction co-

efficient as the equivalent optical parameter. However in heterogeneous

structures, depending on the incident angle and position, the path may

encounter varying optical parameters. Therefore, an equivalent optical

parameter can no longer be expressed as a single scalar value; instead it

must be represented as a function of material composition, incident angle,

and incident position. Existing work on heterogeneous voxelised struc-

tures retains the full voxel grid in feature space [3], while other research

on neural network-based rendering of translucent media relies on hand-

crafted volume representations [1]. In contrast, we learn a single vector

representation by progressively aggregating latent optical parameter rep-

resentations of a voxelised structure and train a neural rendering pipeline

to convert these representations into throughput values.

Specifically, we individually encode raw optical parameters in a 3D

structure zσ = fσ (σt) ∈ R
N×N×N×D, which are then aggregated with a

learned function gw, implemented as a 3D convolutional kernel:

wn = gw(wn−1) w0 := zσ (1)

Once the volume has been fully aggregated, the resulting latent vec-

tor can be conditioned on an encoded position value to produce both a

throughput prediction τ̂ and an occlusion prediction M̂:

τ̂ = fτ (zτ ,zx)0 M̂ = fτ (zτ ,zx)1 (2)

where zτ = gτ (zω ,wn) is the latent volume representation conditioned

on the angle of illumination zω = fω (φ ,θ), and zx = fx(x) is a vector

representing the query location on the surface of the volume. The oc-

clusion prediction indicates whether the incident illumination has passed

cleanly through the volume without intersecting any voxels. Model accu-

racy is evaluated with the Concordance Correlation Coefficient ρc [2] and

Weighted Mean Absolute Percentage Error (wMAPE), the latter given by

the ratio ∑
n
i=1|Ai−Fi|/∑

n
i=1|Ai|.

Our dataset consists of a set of voxel grids with varying occupancy,

where an increase in voxel count is matched with a decrease in extinction

coefficient to give overall identical throughput. Our motivation is to en-

sure that structures with equivalent properties are present in the dataset

so that this regularity can be learned. Morphological operations are then

applied, thus leading to structures with greater complexity.

To render the different configurations, we ray trace a single voxel and

query the throughput by hit location on voxel layouts of increasing scale

(see Fig 2 for some examples). The model performs well in predicting oc-

clusion and transparency relative to the ground truth for cube sizes of 1,

2, and 4, each of which are present in the training data. On unseen larger

volumes the wMAPE score begins to deteriorate, and the model appears

to produce output for a lower frequency version of the input volume, re-

sulting in correct overall shape but a loss of detail.

(a) Cube size 4, ρc=0.961, wMAPE=0.049 (b) Cube size 8, ρc=0.920, wMAPE=0.093

Figure 2: Neural renders of voxel structures at various scales.

Figure 3: Neural rendering of a voxelized Stanford bunny. From left to

right: full volume rendering with one feature vector, then progressively

splitting the volume in half and using a feature vector per sub-volume.

To render larger and more complex volumes, we divide the volume

into sub-volumes, render them separately, and then composite them into a

final volume, as shown in Fig 3. In the rightmost image, we split the full

volume into 2× 2× 2 sub-volumes, resulting in only 104 unique latent

vectors that can be queried in parallel for throughput values, rather than

processing the full 643 individual voxels.

Learning equivalence across different structures. We generate a

set of optically equivalent structures and visualise the latent vector zτ us-

ing t-SNE [4]. The output for an example configuration is shown in Fig

4. As the structures are equivalent per-angle, we expect that they clus-

ter by illumination angle in high-dimensional space. As the figure shows

(top row), this is indeed the case for the three volume sizes in the training

dataset. While larger volumes are mapped to a different cluster (bottom

row), each equivalent structure for these larger volumes does show similar

clustering. Therefore, the latent space exhibits learned periodicity.
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Figure 4: t-SNE plots of zτ for optically equivalent structures. Different

colours correspond to different conditioning illumination angles.


