
This is a repository copy of Laws of Timed State Machines.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208533/

Version: Published Version

Article:

Cavalcanti, Ana Lucia Caneca orcid.org/0000-0002-0831-1976, Filho, Madiel Conserva,
De Oliveira Salazar Ribeiro, Pedro Fernando orcid.org/0000-0003-4319-4872 et al. (1
more author) (2023) Laws of Timed State Machines. The Computer Journal. bxad124.
ISSN 1460-2067

https://doi.org/10.1093/comjnl/bxad124

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Received: September 30, 2023. Revised: August 15, 2023. Accepted: November 27, 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of The British Computer Society.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

The Computer Journal, 2023, 1–42

https://doi.org/10.1093/comjnl/bxad124

Original Article

Laws of Timed State Machines
Ana Cavalcanti1,*, Madiel Conserva Filho2, Pedro Ribeiro1 and Augusto Sampaio2

1University of York, UK
2Centro de Informática, Universidade Federal de Pernambuco, Brazil

*Corresponding author: Ana.Cavalcanti@york.ac.uk

State machines are widely used in industry and academia to capture behavioural models of control. They are included in popular
notations, such as UML and its variants, and used (sometimes informally) to describe computational artefacts. In this paper, we present
laws for state machines that we prove sound with respect to a process algebraic semantics for refinement, and complete, in that they
are sufficient to reduce an arbitrary model to a normal form that isolates basic (action and control) elements.We consider two variants
of UML-like state machines, both enriched with facilities to deal with time budgets, timeouts and deadlines over triggers and actions.
In the first variant, machines are self-contained components, declaring all the variables, events and operations that they require or
define. In contrast, in the second variant, machines are open, like in UML for instance. Laws for open state machines do not depend on
a specific context of variables, events and operations, and normalization uses a novel operator for open-machine (de)composition. Our
laws can be used in behaviour-preservation transformation techniques. Their applications are automated by a model-transformation
engine.

Keywords: UML; robotics; verification; normalization; CSP; refinement

1. INTRODUCTION

In both the industrial and research communities, state machines

are widely used [1–3] to record and convey designs and simu-

lations of (embedded) control software [4]. For long now, state

machines have also been incorporated in more general modelling

notations, notably, the very popular UML [5] and SysML [6].

In this paper, we present laws of state machines. We consider

two different notations: one for self-contained components that

define behavioural models in the context of identified variables,

events and operations, and one for openmachines,whose context

is defined in other components of the models, such as (active)

classes. Self-contained components can be analysed in isolation,

and are convenient for compositional verification.Openmachines

are akin to those adopted in UML, and support a flexible approach

to modelling. Verification of an open machine typically needs to

be in context, rather than compositional.

For decades, laws [7] have been recognized as useful results

to support reasoning about programs [8], designing correct com-

pilers [9–11] and, when interpreted as program transformations,

supporting informal programming practices such as refactoring

[12–14]. Laws of Occam [15] capture useful properties of con-

currency and communication. Laws of functional programming

are elegantly addressed in [16]. Laws of logic programming are

presented in [17]. Laws of object orientation can be found in [18],

and for a variant of Java for safety-critical systems in [19]. Laws of

hardware synthesis are the subject of [20].

In all these works, a normal form is used to attest the expres-

siveness of a proposed set of laws by establishing a relative

notion of completeness via an associated strategy for normaliza-

tion. For example, a (relative) notion of completeness for laws of

concurrent operators can be established by showing that the laws

are powerful enough to reduce arbitrary concurrent programs to

a sequential program that uses a restricted subset of the language

constructs, that is, a normal form. This is done, for instance, for

Occam [15]. Similarly, the purpose of the laws in [18] is to capture

algebraic properties of object-oriented constructs. By showing

that an arbitrary program in an object-oriented language like Java

can be reduced, using the laws, to an imperative subset, that is, to

a normal form, a measure of the comprehensiveness of the laws

is provided.

For state machines, there are numerous formal semantics. We

can find formalizations using tailored semantic domains [21–23],

graph transformations [24], programs [25] and process algebra [26,

27]. Besides UML machines, there are semantics for SysML [28]

and Stateflow [29]. For a very specific notion of state machine,

used to represent data structures and types in a program context,

there is a seminal calculus [30]. We are, however, not aware of a

set of algebraic laws for a state-machine notation that includes

constructs to define time properties, and that have been proved

sound using an independent denotational model.

Both our self-contained and open machines define behaviour

in terms of variables, events and operations. Events represent

interactions (via sensors and actuators, for example). Operations

represent computational mechanisms potentially defined by fur-

ther machines. In both notations, state machines can be hierar-

chical, and the action language is well-defined, including extra

time constructs, not available in UML, for modelling of temporal

properties: budgets, timeouts and deadlines. Well-formedness

conditions rule out inter-level transitions following accepted good

practice [31].

A self-contained state machine encapsulates a declaration of

a context of variables (local and required), events and required

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

2 | A. Cavalcanti et al.

operations that can be used in its definition. In concrete terms,

we consider the state-machine notation adopted in a domain-

specific language for robotics called RoboChart [32]. In particular,

we consider the RoboChart constructs to specify time budgets,

timeouts and deadlines, over triggers and actions, and also use

of clocks, to capture time properties of control designs.

A number of domain-specific languages have been proposed

[33]. RoboChart is distinctive in its semantics, and support for

(automatic) verification of design properties [34]. The semantics

is defined in a timed variant tock-CSP of the process algebra for

refinement CSP [35].We use this semantics in the work presented

here to prove soundness of our laws.

An open state machine can be used in any context where their

elements are, or can be regarded to be, in scope. In this respect,

they are similar to UML state machines, but we retain a well-

defined action language, timed constructs, and rule out inter-level

transitions. For open machines, we define in this paper a tock-CSP

semantics to support the proof of soundness of the laws.

Our primary contribution here is two sets of laws, for

RoboChart and for open machines. The notion of equality is

that embedded in the notion of refinement in tock-CSP. Precisely,

equality indicates that the processes for the equated terms refine

each other, so that the diagrams define the same behaviour

in terms of possible timed interactions and deadlocks. Here,

an interaction corresponds to a required variable access, event

occurrence or operation call. Formachines that define operations,

equality considers all contexts in which the operation can be

called.

Additional contributions are a compositional account of

RoboChart semantics, a novel semantics for open state machines,

proof of soundness of the laws and notions of completeness for

the two sets of laws. In each case, we define a normal form that

characterizes a machine whose control structure embedded in

(hierarchical) states, and actions, including those involving timed

statements, is revealed. For that, we use operation calls to replace

actions, and, in the case of open state machines, a novel machine

combinator.

These normal forms do not flatten the structure of a model (as

usual in works on algebraic semantics). Instead, they isolate the

action and control flow constructs, so that amachine is expressed

using a small number of primitive patterns. This means that

model transformation techniques (for refactoring or translation

to other notations, for instance) can be significantly simplified to

consider just these patterns. A normalization strategy establishes

that our laws are enough to normalize any RoboChart or open

machine.

Next, we give an overview of our notations for RoboChart and

open state machines. Our normal forms are defined in Section 3.

The laws are presented in Section 4 as part of the description of

normalization procedures. Evaluation of our work comes in three

forms: in Section 5 we present examples and a tool that mecha-

nizes our laws and normalization strategies, and in Section 6 we

describe our proofs of the soundness of the laws. We conclude in

Section 7.

2. OUR MACHINE NOTATIONS

The core notation for the state machines considered here is, by

far and large, standard. To illustrate the constructs, we present a

model for the system in [36]: an efficient robot to harvest apples

in an orchard in which the tree branches are trained along a

trellis. We capture the algorithm in [36]. It seems to have some

limitations, but given the use of an informal notation for its

description, there may be ambiguities in the description rather

than in the actual implemented algorithm. It is not our objective,

however, to redesign the algorithm; to illustrate the use of our

notations and laws, a faithful account of the work in [36] is more

interesting. (We leave it as future work to analyse the application

and possibly produce a modified design.)

The robotic platform for the harvester is an arm, with a cus-

tom manipulator and end-effector with six degrees of freedom.

To define a self-contained component that models its control

software, we define in Fig. 1 some interfaces. First, the interface

ArmOperations declares operations that represent facilities of the

platform to move the arm to various positions and to manipulate

the apples. The system also includes a camera; it is represented

by an event takePic in the interface Camera. This (input) event

communicates an image, represented here as an element of a type

Image, whose definition (omitted in Fig. 1) simply gives its name.

The complete RoboChart model is available1 .

Additional interfaces in Fig. 1 define variables, events and

operations that are not provided by the platform. These extra

variables are either local to machines or shared amongmachines.

The extra events are used for communication between machines,

rather than with the platform. Finally, the extra operations are

implemented for the application, rather than embedded in the

platform. In the example, the extra interface GlobalVariables in

Fig. 1 declares two variables. We have a record of the set of apples

found in the current image via their coordinates in 3D. For each of

them,we also record a tuplewith three positions: these are the joint

positions (of type JointPos) for the arm to approach, pick and store

the apple. The values of these variables are defined with the help

of an operation CHTBA(), which models a Vision algorithm that

uses Circular Hough Transformation (CHT) and blob analysis to

identify the apples. Using positions, a TravellingSalesman algorithm

defines the NearestNeighbour() apple.

The interfaces SolverControl and GoHomeControl declare events

used to control the flow of execution. Populating positions using

an inverse kinematic solver, and manoeuvring the arm to a home

position occur in parallel. The events control the forking.

Finally, the interfaces TimeConstants and Locations declare con-

stants used to specify time properties of the control software, and

the home and store positions of the arm (homePos and storagePos).

Figure 2 shows a RoboChart state machine AppleHarvestControl

for the harvester control software. This component uses the inter-

faces in Fig. 1 to declare its required () variables and operations,

and the events and local constants that it defines (). In addition,

AppleHarvestControl declares three local variables img, localized and

nextApple. In what follows, we describe how the machine uses all

the elements in this context.

A state machine has a unique initial junction (represented by

a black circle with an i). In AppleHarvestControl, it has a single

transition out of it into the state Prepare. States have entry, during

and exit actions, executed when the state is entered, while it is

active, and when it is exited. In Prepare, the entry action first calls

the platform operation hideArm() to take the arm out of the way

of the camera.

In sequence (;), we have a wait statement, which can be used to

define a time budget: an amount of time to wait, that is, pause,

before proceeding. In this case, this is an amount of time between

0 and hideTime time units, which, in an implementation, is used

to allow the effect of the call hideArm() to take place, and the arm

to position itself out of the way. The nondeterminism in the time

budget indicates that an implementationmay allow for almost no

1 robostar.cs.york.ac.uk/case_studies/

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 3

Figure 1. Data model for the apple harvester.

Figure 2. Main state machine for the apple harvester.

time, if the arm is very fast, or is already hidden, for example, or

take up to hideTime time units. Here, hideTime is a constant whose

value is not defined in themodel, and depends on the specific arm

and environment design.

Once a state is entered, the transitions out of it become avail-

able if their guards, if any, hold and their trigger events, if any, can

occur. For Prepare, its single transition has a trigger: takePic. Events

take place when a communication via the connection with this

event is available. For takePic, the connection is ultimatelywith the

platform to receive an image from the camera. Since connections

with a platform are normally asynchronous, it is expected that

an image is immediately available. This is recorded by a deadline

0 (<{0}) on the trigger. The input image is recorded in the local

variable img.

The transition from Prepare leads to a composite state

LocalizeFruit. It has an entry action that calls the software operation

CHTBA(), which updates the global variable apples. The entry

action also assigns false to a local variable localized that records

whether the localization effort is concluded.

A composite state has itself a state machine that defines

behaviour that takes place while the composite state is active. If

the composite state has a during action, it takes place in parallel

with the behaviour of the machine. In our example, localization

involves defining the positions of the joints to deal with the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

4 | A. Cavalcanti et al.

Figure 3. IK solver of the apple harvester.

apples found, and moving the arm to the home position. This is

achieved by the machine in LocalizeFruit. Its initial junction leads

to a state Start, with a transition that has no guard or trigger,

and so is immediately taken. This transition has an event action,

startIKSolver, which takes place immediately. This event (declared

in the interface SolverControl) is used to communicate with the

machine IKSolver in Fig. 3.

The behaviour defined by IKSolver is initiated upon occurrence

of the event startIKSolver. This machine provides an inverse kine-

matics solver to obtain joint solutions for three positions: the

approach, the fruit and the storage positions, which are recorded

in the variable positions (declared in the interface GlobalVariables).

Once startIKSolver happens, IKSolver goes to a state Loop. If the

set of apples is not empty (apples != {}), a transition to the state

Solve takes place. The action of this transition assigns to a local

variable apple a value chosen from apples, defined by a function

chosen (whose definition is omitted here).

In Solve, three functions, jointApproach, jointFruit and jointStor-

age, are used to calculate joint positions and assign them to

local variables p1, p2 and p3. The apple is removed from apples

(using the set difference operator) and then control moves back

to Loop. In the transition back, the action is a conditional. It

checks if the joint positions are all feasible (in the limits of the

joint abilities and of the workspace). If so, they are added to

positions using a tailored (omitted) function addApple. Otherwise,

nothing is done, as defined by the action skip. So, the positions are

discarded.

When there are no more apples (apples == {}), control moves

back from Loop to the state Ready, where the machine IKSolver

waits for the next startIKSolver event. In moving to Ready, IKSolver

communicates with AppleHarvestControl using the event endIK-

Solver, to indicate that it has finished its work.

In AppleHarvestControl, in the composite state LocalizeFruit, after

the communication via startIKSolver, in the state Solving, another

transition communicates with a machine GoHome via the event

startGoHome. That machine, omitted here, uses the platform oper-

ation goHome to move the arm to the home position. Now in

the state SolvingAndMoving, end signals endIKSolver and endGoHome

from IKSolver and GoHome are accepted in either order.When both

occur, localized is set to true. Now, the transition out of LocalizeFruit

is enabled and the state Next is entered.

The behaviour of AppleHarvestControl after entering Next is

defined using constructs already explained.

There are two forms of open machine. A basic open state

machine can be just like a RoboChart machine, but it does not

have declarations. For example, by removing the declarations of

the RoboChart machines in Figs 2 and 3, we obtain basic open

state machines. As already mentioned, that context is defined

elsewhere in a complete model. Open machines, however, can

also be defined by a combination of other open machines. In this

case, the composed machines are fragments of a state machine

that refer to other fragments, and composing all those fragments

produces a basic open state machine. In this way, control flow,

besides being embedded in actions and transitions, is also defined

at the machine level. Such an operator facilitates transformation

of machines, by allowing us to decompose a machine into smaller

components that can be rearranged in a stepwise fashion.

We do not necessarily suggest that behavioural models are

defined in this way. The combinator for open state machines,

however, is useful in defining a normal form with a small number

of machine patterns as described in Section 3. Equally, it can be

useful to combine models for components of larger granularity.

Figure 4 presents an alternative model for the inverse kine-

matic solver that is defined by the combination of two open

machines. The first, on the top, has a transition to a connecting

node indicated by <Solve>. This is a reference to a node (state

or junction) that, in a complete model, is defined in another

machine. Connection nodes in open state machines resemble

connection point references of UML, but connect different state

machines.

In the second machine, the connecting state Solve is defined

as an entry point, as indicated by the [] inside its block. This

machine also has a connecting node, <Loop>, that refers back to

an entry point of the first machine. The machines are combined

via the ⊙ operator, which matches the connecting nodes of one

machine to the entry points of the other.

A connecting node cannot be the source of a transition, just the

target. Junctions, however, can be an entry point for a connecting

node, and, therefore, in open machines, they are named. In addi-

tion, a connecting node does not need to be defined as an entry

point in the other machine. For example, the second machine

in Fig. 4 did not need to have a definition for Solve. If this were

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 5

Figure 4. Open machine for the IK solver.

the case, however, combination with other machines would be

required to define a complete model, where all connecting nodes

have one definition.

We next describe our normal forms (and normalized versions

of AppleHarvestControl and IKSolver).

3. NORMAL FORMS

To structure the presentation of our laws, and to equip them with

a notion of completeness, we define in this section normal forms

for RoboChart self-contained state machines (in Section 3.1) and

open machines (in Section 3.2). In Section 4 we present our laws

and their use in strategies to normalize models.

3.1. RoboChart normal form
A RoboChart model is normalized if every state machine in that

model is in normal form, whether it is used to define behaviour

for a controller, such as AppleHarvestControl, IKSolver and GoHome

(omitted here) in our example, or to define operations, such as

CHTBA and NearestNeighbour (omitted).

In Fig. 5, we provide the definition of the RoboChart meta-

model for state machines. Classes depicted in grey are abstract;

attributes whose names are written in italics are inherited; and

those in bold face are compulsory. We are here concerned with

a StateMachineBody, which can be a StateMachineDefinition or an

OperationDefinition. AppleHarvestControl and IKSolver are examples

of StateMachineDefinitions. An instance of OperationDef specifies

an operation that may be called from a machine; that specifica-

tion can itself be a state machine. As shown in Fig. 5, however,

in contrast with a StateMachineDefinition, an OperationDefinition

can have parameters. In our example, CHTBA, for instance, has a

parameter of type Image.

A StateMachineBody is a NodeContainer with nodes, that is, States

and Junctions, and transitions. A State can be Final, and a Junction

can be Initial. Like in UML, a Junction is a decision point, where, in

contrast with a State, the control flow does not pause. An Initial

state is a Junction because, at the start, a transition from the Initial

state to a proper State is immediately taken.

A StateMachineBody defines also a Context, which is a self-

contained component. For that it records the variableList, events,

and clocks local to the state machine, and its required opera-

tions. Variables, events and operations can also be declared via

interfaces: with required variables and operations (rinterfaces) or

defined (local) variables and events (interfaces).

States may have actions: EntryActions, DuringActions and ExitAc-

tions. A State is also a NodeContainer, since a composite state con-

tains nodes and transitions of its own.Transitions connect two nodes:

a source and a target. They may be triggered by a Communication,

guarded by a condition, and contain an action that is executed

when the transition is taken. We can also specify a deadline for a

transition and reset a clock when the transition is taken. The clock

is reset when the trigger occurs and the condition is true.

A ClockReset is a Statement. Every Action also has a statement.

Themetamodel for Statements is presented in Fig. 6. These include

the usual Assignment, operation Call, sequence (SeqStatement) and

conditional (IfStmt) statements.We also haveWait statements, and

TimedStatements, which impose a deadline for the termination of a

statement (stmt). They are both illustrated in Fig. 2. A communica-

tion statement (CommunicationStmt) identifies a communication via

an event. Finally, a ParStmt is a parenthesized statement, needed

to define scope for deadlines.

The Expression language is not surprising, but includes a con-

struct sinceEntry(S) to denote the time since a state S has been

entered. It avoids the need to declare and control a clock to

account for that time, and is particularly useful when S is a

composite state. In this case, entering S may involve an elaborate

control flow that complicates the identification of the points in

which the clock would need to be reset.

The normal forms for StateMachineDefinitions and Oper-

ationDefinitions defined below impose different restrictions

on their StateMachineBody. Below, we consider first StateMa-

chineDefinitions.

Definition 3.1. (Normal form for StateMachineDef). A

normalized StateMachineDefinition is specified by a

StateMachineBody that is a NodeContainer that satisfies

both conditions NCNF1 and NCNF2 in Fig. 7.

NCNF1 and NCNF2 are defined in terms of the

metamodel in Fig. 5. With those restrictions, we ensure

that the data manipulations and the time control of the

machine, normally defined in actions, are all

encapsulated in operations, which are called in the

actions and transitions of the StateMachineDefinition.

NCNF1 and NCNF2 apply to all Statements and Transitions

occurring anywhere in the StateMachineBody, including

those in the nodes and transitions of the composite States.

In Fig. 8 we present a normalized version of the IKSolver state

machine for the harvester example in Fig. 3. In this version, all

actions are calls to operations, such as normal˙IKSolver˙t2˙op()

and normal˙IKSolver˙entry˙op(), defined elsewhere and required

by the normalized IKSolver via new interfaces, such as

I˙normal˙IKSolver˙t2˙op() and I˙normal˙IKSolver˙entry˙op(), declaring

operations.

The StateMachineBody of a normalized OperationDefinition can

satisfy different restrictions.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

6 | A. Cavalcanti et al.

Figure 5. Metamodel for state-machine bodies, defining controller behaviour or operations.

Figure 6. Metamodel for statements.

Figure 7. Normal form for a NodeContainer—a normalized
NodeContainer satisfies both conditions.

Definition 3.2. (Normal form for OperationDef). A

normalized OperationDefinition is specified by a

StateMachineBody that is a NodeContainer that satisfies

either OPDNF1 or OPDFN2 in Fig. 9.

With the normalization condition OPDNF2, we cater for

OperationDefinitions whose bodies are normalized in the

sense already specified for StateMachineDefinitions.

OperationDefinitions that satisfy OPDNF1 instead are

called basic. To define the restrictions that are satisfied

by basic operations, we use the notion of an action

operation. This is an OperationDefinition whose set of

nodes includes just an Initial junction and a Final state,

and whose set of transitions includes just one Transition

between them with an optional action (and no other

element). OPDNF1 allows for an action operation whose

Statement encapsulates one data or time statement, but

no control flow: no conditionals or sequences, a limited

form of deadline or a clock reset.

Figure 10 presents the definition of normal˙IKSolver˙t2˙op()

used in Fig. 8. Its only action is an assignment, originally in

the transition from Loop to Solver in the machine IKSolver in

Fig. 3.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 7

Figure 8. IK solver of the apple harvester—normalized.

Figure 9. Normal form for an OperationDef—a normalized
OperationDef satisfies one of these conditions.

Figure 10. Basic operation in the normalized IK solver.

So, in summary, in a normalized RoboChart model, StateMa-

chineDefinitions use operation calls for data and time services.And

the OperationDefinitions themselves are either basic or also use

calls to further operations that provide data and time services.

OPDNF1 also ensures that a deadline is only imposed on a call

to the operation tStop() (see Fig. 11), which is itself normalized

according to OPDNF2. This operation simply deadlocks and never

terminates.

We can use this restricted form of deadline to express any

deadline. First of all, we can indirectly impose a deadline on a

trigger by effectively imposing it on an action, and making the

trigger the only way to terminate that action within the deadline.

For instance, in Fig. 2, we have a deadline 0 on the communication

takePic?img used as a trigger on the transition from Prepare to

LocalizeFruit. We can instead record that deadline using a during

action tStop() <{0} in Prepare that imposes the deadline 0 on the

termination of tStop(). Since this Statement does not terminate,

to satisfy that deadline, we have to leave the state Prepare to

interrupt its during action. So, the transition out of Prepare has to be

enabled in time: its event trigger needs to occur with deadline 0,

as required. The during action tStop() <{0} can be specified as a call

to a (normalized) operation that satisfies OPDNF1. This approach

works for all values of deadline, not only 0 as in the example.

Similarly, deadlines on an action can be imposed by having

it in parallel with tStop()<{d}, and making termination of that

action the only way to terminate tStop() within the deadline.

For instance, in the machine in Fig. 2, we have a deadline 0 on

the action startIKSolver in the transition from Start to Solving in

LocalizeFruit. We can instead call the operation deadlineAction(0)

whose definition is shown in Fig. 12.

The operation deadlineAction(d:nat) executes startIKSolver, which

is the action of a transition that is reached as soon as dead-

lineAction(d:nat) is started, in parallel with tStop() <{d}, which

is in a during action of a (composite) state S1, also reached as

soon as the operation is started. Here, d is the parameter for

deadlineAction(d:nat), defined as 0 in the call. Since tStop() cannot

terminate and meet the deadline, the state S1 has to be exited for

its during action to be interrupted and the deadline to be met. For

that, the transition out of S1 has to be taken, and so the guard g of

that transition has to hold. Since g is a local variable initialized to

false, the transition to the final state of S1 has to take place, and

the action startIKSolver terminate, so that g is assigned true and the

transition is enabled. So, the deadline is (indirectly) imposed on

startIKSolver. Since deadlineAction(d:int) uses tStop(), its definition

requires the interface ItStop that declares this operation.

Normalization of deadlineAction(d:nat) requires just replacing

its actions with calls to basic operations that perform them. In

Section 4, we describe how any machine can be transformed

(using our laws) to use just the restricted form of deadline tStop()

<{d}.

A basic operation cannot include Wait statements. Instead,

it can call either of the operations waitOp(i:nat) or waitInter-

val(m:nat,n:nat) in Fig. 11. They are both normalized according

to OPDNF2. They both use a clock C, which is reset (#C) at the

start, to encode a wait period. For that, waitOp(i: nat) has a state

Waiting with a single transition to a final state. The guard on that

transition uses a since(C) expression to require that it is taken only

once the clock has recorded the passage of i time units. So, when

in the state Waiting, the control flow pauses for i time units, since

the only transition out of Waiting requires that i time units pass.

In the case of waitInterval(m:nat,n:nat), it uses a call waitOp(1) to

pause one time unit. An interface IwaitOp declares waitOp(i:nat),

and waitInterval(m:nat,n:nat) declares IwaitOp as a required inter-

face. In the machine for waitInterval(m:nat,n:nat), two transitions

out of a junction encode the nondeterminism of a wait([m,n])

statement. Once m time units have passed (that is, since(C) >=

m), a transition may be taken to the final state, so that waitInter-

val(m:nat,n:nat) may terminate. While n time units are not over

(since(C) < n), however, another self-transition is enabled that

allows another time unit to pass: waitOp(1) instead of terminating.

Our normal form for open machines, defined next, enforces

the above restrictions on node containers, but allows further

structure in the construction of the body.

3.2. Open-machines normal form
The metamodel for open state machines is shown in Fig. 13. An

OpenStateMachine can be basic (BasicOpenStateMachine) or com-

posite (CompOpenStateMachine), that is, defined using ⊙. A well-

formedness condition ensures that a BasicOpenStateMachine has

at most one InitialState. Similarly, at most one of the left and right

machines of a CompOpenStateMachine has an Initial state.

A BasicOpenStateMachine is similar to a StateMachineBody from

RoboChart’s metamodel, in that it is a NodeContainer (but not a

Context). As such, it has nodes and transitions. The classes in Fig. 13

marked with an arrow on the top right-hand corner are those

already presented in Fig. 5. We have, in this context, however, a

new form of Node, namely, a NodeNameRef, whose attribute ref is

the identifier of a node that is (expected to be) defined in another

machine.

The states and junctions, including the initial junctions and

final states, are similar to those of RoboChart, but have an extra

boolean attribute, which indicates whether the Node is an entry-

point. We have classes EState, EFinal, EJunction and EInitial, which

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

8 | A. Cavalcanti et al.

Figure 11. Normalized basic operations.

Figure 12. Example: deadline—not normalized.

Figure 13. Metamodel for open machines.

are similar to the State, Final, Junction and Initial classes of the

RoboChart metamodel (Fig. 5), but inherit from a new class Entry-

Point, with the extra attribute.

In addition, all Nodes have a name as an attribute. This includes

the Junctions and Final states, since they can all be the target of

a transition via a NodeNameRef, which uses a name to identify a

Node. (Amodelling tool can easily generate names for Nodes, other

than States, and hide those not relevant, to avoid burdening the

modellers and cluttering the models.)

Since an OpenStateMachine is a Node, a composite state can use

the new composition operator to define its machine. So, we can

take advantage of the new operator for stepwise compositional

transformation of machines at all levels. Well-formedness con-

ditions ensure that a composite state either includes one Open-

StateMachine with exactly one InitialState, or one or more nodes of

other types, but not both, and that OpenStateMachines are not the

target or source of transitions.

The notion of normalization for OpenStateMachines in general

is standard, in that it requires them to be a composition of

normalized machines. For a BasicOpenStateMachine, we have the

conditions already presented for NodeContainers, and an extra

condition.

Definition 3.3. [Normal form for OpenStateMachine] An

OpenStateMachine is normalized if it is a normalized

BasicOpenStateMachine, or a CompOpenStateMachine

whose left and right OpenStateMachines are normalized. A

BasicOpenStateMachine is normalized if it is a normalized

NodeContainer, according to NCNF1-2 (Fig. 7) and

BOMNF1-2 in Fig. 14.

With BOMNF1, we ensure that there is at most one

non-connecting node in a normalized

BasicOpenStateMachine. So, every transition is either a

self-transition or a transition to a NodeNameRef. With

BOMNF2, we ensure that any machines in composite

states are also normalized, potentially as a

CompOpenStateMachine. Together, these conditions

ensure that the control flow of a normalized

OpenStateMachine is fully exposed using the state

machine combinator ⊙.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 9

Figure 14. Normal form for a BasicOpenStateMachine—a normalized
BasicOpenStateMachine satisfies NCNF1, NCNF2 and BOMNF1 and
BOMNF2 here.

Figure 15. IK solver—Open Machine normalized.

Fig. 15 shows a normalized version of the openmachine for the

IKSolver on the top of Fig. 4. In Fig. 15, to ensure that every basic

open machine has at most one node that is not a reference to

a node defined in another machine, decompositions using the ⊙

operator split the initial state, and the states Ready, Loop and Solve

into different machines. In addition, the statements in all actions

are operation calls.

Next, we define how we can normalize an arbitrary machine

via the systematic application of three sets of algebraic laws

for StateMachineDefinitions,OperationDefinitions and OpenStateMa-

chines.

4. NORMALIZATION AND LAWS

We structure the presentation of our laws by describing their role

in normalization strategies for RoboChart and open machines. In

Section 4.1 we present the procedure for StateMachineDefinitions;

in Section 4.2,we have the procedure forOperationDefinitions; and,

finally, in Section 4.3,we have the procedure for openmachines. In

each case, we show that the procedure terminates and produces

a normalized machine, thus establishing a relative notion of

completeness for our sets of laws.

4.1. normalization: StateMachineDef

We first consider a procedure normSMB() to normalize a

RoboChart StateMachineDefinition according to Definition 3.1.

This procedure is shown in Fig. 16. (It applies more widely

to any StateMachineBody, but we focus here on normalization

of a StateMachineDefinition. In Section 4.2, we explain that

normSMB() is useful, although not enough, to normalize an

OperationDefinition too.) The approach is first to eliminate all

sinceEntry expressions (Step 1), introduce operations that execute

each of the Statements, and associated interfaces that declare

those operations, and finally use them to replace all Statements

with operation Calls (Step 2). Next, we eliminate the deadlines in

transitions: we again declare new operations and interfaces (in

Steps 3 and 4), later used (in Step 5) to encode the deadlines using

Calls.

Figure 16. normSMB()—normalization of StateMachineBody.

Below, we describe each of the steps. For each of them, we

present and describe the laws that are needed. In a law defini-

tion, we name it, identify its arguments and use a(n informal)

diagrammatic notation to describe an equality. All laws, however,

are also stated formally as described in Section 6. Law definitions

may also include a provided clause that imposes restrictions that

must be satisfied for a law application to be valid. Finally, a law

definition can include awhere clause that defines elements in the

body of the law (equality and provided clause) that are not given

as argument or defined by patternmatching. In our normalization

procedures we apply all laws from left to write, although they are

all equalities.

Step 1Here, for each state S3 for which there exists one or more

sinceEntry(S3) expressions (necessarily in transition guards, which

is the only context where such expressions can occur), we apply

Law 1 once.

Law 1 establishes thatwe can replace all occurrences of sinceEn-

try(S3) expressions with since(C), where C is a new clock that is

initialized once S3 is entered. On the left-hand side of the equality

in Law 1, the block named S3, inside the unnamed block, stands

for any State in a StateMachineBody. As stated in the proviso, the

blocks named S31, ..., S3n are those identified by the function

innermostInitialStates(S3). They are the innermost states of S3, if

any, that can be reached by a sequence of transitions, starting

from the transition from the initial junction of the machine of S3,

and including only transitions from initial junctions of composite

states or from junctions. If S3 is not a composite state, this set

of states is empty. If S3 is composite, and its state machine has a

transition from the initial junction to another junction, and from

there to two non-composite states S31 and S32, for example, then

this set includes S31 and S32. (For compatibility with UML, there

can be only one transition from the initial junction.) If S31 or

S32 is composite, then, instead of including it, we consider the

initial junction of its machine, and so on. So, the innermost states

so defined are not composite. The exit action sexit of S3, and the

entry actions ss1,..., ssn of S31,..., S3n, if any, are explicitly indicated.

Finally, the transitions where sinceEntry(S3) occurs have arbitrary

triggers ev1,..., evj and actions s1,..., sj. The state blocks named S1,...,

Sj, S2,..., Sk, with a junction symbol inside, represent Nodes: States

or Junctions. The transitions identified in Law 1 can be between

any Nodes, including those inside S3, if any.

On the right-hand side of Law 1, a new interface IS3 declares

a new boolean variable inact, which is initialized to true, and the

new clock C. This interface is declared as defined in the StateMa-

chineBody, so that inact and C are added to its local context. The

clock is reset (#C) after the entry actions ss1,..., ssn of the inner

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

10 | A. Cavalcanti et al.

Law 1. elim-sinceEntry

Law 2. intro-call-for-act-state()

states S31, ..., S3n, since it is after executing one of these actions

that entering S3 is concluded. This clock reset, however, should

occur just the first time these states are entered, as a result of the

machine entering S3. For example, if S31 has as self-transition,

or the control flow leads back to S31 in any other way, without

having left S3, then C should not be reset because C is used to

record the time since the last entry in S3. For this reason, we use

inact to flag whether it is the first time an inner state has been

entered. At the end of entry actions of S31,..., S3n, inact is set to

false, and then set back to true only when S3 is exited: after its exit

action sexit.

The proviso of Law 1 requires the names of the new interface,

variable and clock to be fresh in the model. The particular names

used are not important, and soundness is guaranteed as long as

they are fresh and used consistently as determined in the law

definition.

Law 1 captures the meaning of sinceEntry(S) expressions. It also

highlights the convenience of the availability of these expressions,

since control based on clocks can become convoluted.

Step 2 Here, for each Statement that defines an action in a State

or Transition, and is not already a Call, we apply Law 2 or 3. These

laws are applied, exhaustively, that is, until all Statements are a

Call.

Law 2 establishes that any Statement s in any action of any state

S of a StateMachineBody can be replaced with a Call to an action

operation OpS for s. On the left-hand side of the equality, action

s stands for an EntryAction, DuringAction or ExitAction with State-

ment s. On the right-hand side, OpS(usedPars(s)) and its associated

interface IOpS are defined, the StateMachineBody declares IOpS as

a required interface, and the Statement s in the state S identified

on the left-hand side is replaced with a Call to OpS(usedArgs(s)).

Finally, on the right-hand side, the interfaces req˙s and defEvent˙s

used in the definition of OpS are declared.

The proviso of Law 2 requires the names of the new operation

and interfaces to be fresh. Like in Law 1, the particular names used

are not important, and soundness is guaranteed if they are fresh

and used as indicated.

As noted, Law 2 and normSMB() are applicable to any StateMa-

chineBody, not only a StateMachineDefinition. If Law 2 is applied

to an OperationDefinition, as opposed to a StateMachineDefinition,

the Statement s may use parameters of the operation. With the

applicationusedArgs(s) of a simple syntactic function,we identify

the list of names of these parameters, which are passed as argu-

ments in the call toOpS.Moreover,withusedPars(s),we determine

the matching declarations of the parameters. These are used to

specify the signature of OpS in its definition. If there is no use of

parameters in s, usedArgs(s) is the empty list of arguments, and,

of course, usedPars(s) is the empty list of declarations.When Law

2 is applied to a StateMachineDefinition, which has no parameters,

it is certain that usedArgs(s) and usedPars(s) are empty lists.

In the interfaces req˙s and defEvent˙s, we declare all the vari-

ables, operations, clocks and events used in the Statement s. Using

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 11

Law 3. intro-call-for-act-transition()

Law 4. intro-op(Op)

the applications usedVars(s), usedOps(s), usedClocks(s) and

usedEvents(s) of additional syntactic functions, we determine

the declarations of the variables, operations, clocks and events

directly referenced in s. Via reqVarsOps(s) and reqClocksOps(s),

we get the declarations of the variables and clocks in the

definitions of the operations in usedOps(s). These variables and

clocks can be declared in interfaces or directly in the definition

of an operation in usedOps(s). Similarly, with defEvOps(s), we get

the declarations of events in the operations in usedOps(s). Since

all these functions may identify no declarations, or rather empty

sets of declarations, the new interfaces req˙s and defEvents˙s may

be empty. Additionally, in req˙s and defEvent˙s, we get the union of

the sets of declarations identified by the function applications.

So, no repeated declarations are included in the interfaces.

The definition of OpS requires req˙s and defines defEvents˙s.

Since events are points of interaction, they cannot be required,

but are always defined.

For the machine IKSolver in Fig. 3, after the exhaustive

application of Law 2, we have declarations for operations

normal˙IKSolver˙entry˙op() and normal˙IKSolver˙exit˙op(). The entry and

exit actions of the state Solve in IKSolver are replaced with calls to

these operations as shown in Fig. 8.

Soundness of Law 2 is discussed in Section 6.2.1.

Law 3 is similar to Law 2, but considers all actions s in

Transitions. After the exhaustive application of Law 3 to IKSolver,

the operation definition in Fig. 10 as well as definitions for

normal˙IKSolver˙t3˙op() and normal˙IKSolver˙t4˙op(), and associated

interfaces, such as, req˙IKSolver˙t2 in Fig. 10, are introduced in the

model. In addition, the definition of IKSolver is transformed to that

shown in Fig. 8.

Steps 3 and 4 Here, we introduce in the model the definitions of

the operations tStop() in Fig. 11 and deadlineCheck(d:nat) in Fig. 16,

and the associated interfaces ItStop in Fig. 12 and IdeadlineCheck

also in Fig. 16. These definitions are used in the following step to

eliminate deadlines from transitions. We apply Laws 4 and 5 to

introduce these definitions.

Law 4, named intro-op, establishes that we can always introduce

a new operation in a model. Accordingly, its proviso requires the

name id(Op) of the OperationDefinition Op given as argument to

be fresh. In the body of Law 4, the left-hand side of the equality

has an unnamed block, which, as already explained, stands for an

arbitrary StateMachineBody. On the right-hand side of the equality,

we extend the model with Op. This is indicated by repeating the

unnamed block and including a block labelled Op.

Law 5. intro-interface(Interface)

Law 5, which is is similar to Law 4, establishes that we can

declare a new interface in a model.

For simplicity, we assume that the names of the operations and

interfaces defined in Steps 3 and 4 are fresh. If this is not the

case, different fresh names need to be used. The particular names

adopted have no bearing in the soundness of the strategy.

Step 5 Here, we apply Law 6 exhaustively to remove the dead-

lines in transitions by replacing, or introducing, during actions in

the source states S of these transitions with calls to operations

dop˙ds. To eliminate a deadline from a transition, Law 6 uses an

operation dop˙ds to enforce that deadline using a machine in a

composite state S0 defined in dop˙ds. If S has a during action, its

statement ds is run in parallel with that machine, as required: it

becomes a during action of the state S0.

The deadline d of a transition becomes relevant only once its

guard holds. So, the machine of S0 remains in a state S1 until the

guard g of the original transition holds. At that point, it moves to

the state S2, where a call deadlineCheck(d) enforces the deadline

d. In deadlineCheck(d) (see Fig. 16, Step 4), a call tStop() blocks, but

has a deadline d to terminate. Since tStop() does not terminate,

for this deadline to be met, dop˙ds() has to be interrupted. This

can be achieved only by S exiting, when its during action dop˙ds()

is interrupted. For that, the transition labelled e[g], or some other

transition out of S, must take place. In either case, the original

deadline d on the transition is enforced.

Law 6 captures precisely the semantics of a deadline on a

transition: it is not a deadline on its trigger. First, the deadline is

relevant only if the guard holds. Secondly, if some other transition

is taken, the deadline is cancelled. What we actually have is a

deadline on exiting the source state of the transition. Soundness

of Law 6 is the topic of Section 6.2.2.

To summarize, first of all, normSMB() terminates. The potential

sources of non-termination are the exhaustive law applications

in Steps 1, 2 and 5. In each iteration of the Steps 1 and 5,

however, Laws 1 and 6 are applied from left to right, eliminating

the patterns to which they apply. So, the steps terminate when

all the instances of these patterns are eliminated. In Step 2,

termination is ensured by the restriction that Law 2 is applied

only for statements s that are not a Call, and such statements

are replaced with Call statements. So, when all such statements

are eliminated, Step 2 terminates. Secondly, following Step 2,

NCNF1 holds. Moreover, after Steps 3 and 4, Law 6 applies to every

transition with a deadline. So, after Steps 1 and 5, NCNF2 holds.

Overall, NCNF1 and NCNF2 both hold and the StateMachineDef is

normalized as required.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

12 | A. Cavalcanti et al.

Law 6. elim-deadline-transition()

Figure 17. normAO()—Procedure for normalization of RoboChart action OperationDefinitions.

4.2. normalization: OperationDef

To normalize an OperationDefinition, we consider two cases. If it

is not an action operation, we apply the procedure normSMB()

(Fig. 16). (As said, normSMB() applies to any StateMachineBody,

not only to StateMachineDefinitions.) Using normSMB(), we

remove the structure from the actions and deadlines in the

OperationDefinition out to (further) OperationDefinitions, just like it

is done for StateMachineDefinitions.

Secondly, if the OperationDefinition is an action operation, we

use the procedure normAO() in Fig. 17. It starts by introducing,

in Steps 1–4, the support operations already presented for use

in normalization of time behaviour, and their associated inter-

faces. Afterwards, we apply, in any order, exhaustively, Laws 7–

13 to flatten the structure of the action (Step 5). In doing so, we

may introduce additional junctions, so that the resulting Opera-

tionDefinition may no longer be an action operation. In this case,

in Step 6, we introduce operations for the actions, like in Step 1 of

normSMB().

Law 7 is simple: it eliminates spurious parentheses around

Statements that define transition actions. Laws 8 to 10 relate struc-

ture in a transition action with that in the StateMachineBody as a

whole. Law 8 equates a sequence s1; s2 of actions to a sequence of

transitions with actions s1 and s2 connected by a junction.

Law 9 describes how a conditional if b then s1 else s2 end in a

transition can be encoded by a pair of sequences of transitions,

where b and not b are guards for the first transitions in the pairs.

The subsequent transitions have the then and else Statements as

actions. Since, as already said, for compatibility with UML, there

can be just one transition out of an initial junction, a proviso

Law 7. elim-parentheses()

ensures that Law 9 is not applicable if the source S1 of the

transition is an initial junction. To deal with such transitions, an

additional Law 10 permits the introduction of an intermediate

junction between the initial junction and the target Node. After an

application of Law 10, Law 9 applies to the intermediate junction

and its outgoing transition with action s.

Law 11 allows the elimination of a deadline on a transition

action. It is in many ways similar to Law 6. Law 11, however,

applies to a deadline on a transition action, as opposed to a dead-

line on a transition itself. Despite that, Law 11 considers a tran-

sition action s<{d} and, like Law 6 defines and calls an operation

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 13

Law 8. split-sequence()

Law 9. split-conditional()

Law 10. intro-junction-from-initial-junction()

(deadlineAction˙s(d:nat,usedArgs(s))) to enforce the deadline in

place of the original s<{d}.

The definition of deadlineAction˙s is slightly simpler than that of

dop˙s in Law 6 because it does not deal with a guard (or trigger) in

the transition. In normAO(), Law 11 is applied to machines arising

from the application of Steps 1–4 and Laws 7–13 to an action

operation. Since an action operation does not have a guard or a

trigger in its only transition, and they are not added by any of

the Steps 1–4 and Laws 7–13, Law 11 is only applied to transitions

without guards or triggers.

The operation deadlineAction˙s(d:nat,usedPars(s)) executes s in

parallel with deadlineCheck(d), via the definition of a composite

state S0 with deadlineCheck(d) as a during action and with s in an

action of a transition from a substate S1 of S0 to a final state.

To satisfy the original deadline, s must be executed, and finished,

beforemore than d time units have passed. To ensure execution of

s, exit from S0, and so termination of deadlineAction˙s, is predicated

on a transition with a guard g being enabled. This is possible only

after s is executed, since g is initialized to false, and assigned true

only after s finishes. To ensure that no more than d time units

are passed, the operation deadlineCheck(d) is used.We recall that it

enforces the deadline on tStop(), and that can be met only when

S0 is exited so that deadlineCheck(d) is interrupted. In this way,

the deadline is indirectly enforced on s, because exit from S0 is

predicated on its outgoing transition being enabled.

The proviso of Law 11 requires that the operation

deadlineCheck(d:nat,usedPars(s)) and an interface that declares

it are in scope. In normAO(), this is ensured by Step 2. So, deadlines

in actions are all eliminated.

Finally, we have Laws 12 and 13 to eliminate Wait Statements in

favour of use of the operations in Fig. 11 already explained. They

use a clock to capture the timed behaviour of Wait Statements.

Laws 7–13 are applied in our strategy just to action operations,

or tomachines arising from the application of these laws to action

operations. As a consequence, we have not considered in these

laws the possibility that the transitions have guards or triggers.

The generalization of these laws is, however, straightforward. In

all cases, except in Laws 8 and 9, the guard and trigger, if any,

do not need to be changed. In the case of Law 8, they are to be

part of the label of the transition to the new junction, and in

Law 9, they need to be duplicated in the transitions to the new

junctions.

After applications of Laws 8–10, the OperationDefinition is no

longer an action operation. In this case, Step 6 ensures that it satis-

fies OPDNF2 by exhaustive application of Law 3. If, however, Laws

8–10 have not been used, the result is still an action operation.

In summary, if we apply normSMB(), as established in the

previous section, the result is an operation definition that satisfies

OPDNF2, which corresponds to the normal form definition for

StateMachineDefinitions. If we use normAO() termination is guaran-

teed because, in Step 5, each law eliminates the pattern to which

it applies, and does not introduce it or the pattern relevant for any

of the other laws, with one exception. As said, Law 10 potentially

introduces a pattern to which Law 9 might apply, but Law 10

applies at most once for each initial junction. Moreover, in Step

6, termination is guaranteed by the proviso that the statement s

is not a Call. (This step is similar to Step 2 of normSMB().) Finally,

we note that with the exhaustive application of Laws 7 and 11–13,

we enforce OPDNF1. In detail, the forms of Statement disallowed

by OPDNF1 are eliminated as follows.

• ParStmt is a parenthesized Statement, which is eliminated by

Law 7.

• Sequences (SeqStatement) and conditionals (IfStmt) are not

present, since Laws 8 and 9 have been applied exhaustively.

• TimedStatement is a deadline, eliminated by Law 11 (using

additional operations).

• Wait is a wait, eliminated by Law 12 or 13, depending on

whether it is nondeterministic or not.

Overall, the resulting OperationDefinition is normalized accord-

ing to the normal form in Definition 3.2.

4.3. Normalization: open machines
To normalize an OpenStateMachine, we use the procedure nor-

mOM(openM) in Fig. 18 that takes a machine openM as argument.

If openM is a BasicOpenStateMachine, then in Step 1a we use a

procedure normNC() for NodeContainers. This procedure is very

similar to normSMB() from Fig. 16; it is presented in Fig. 19. The

differences are related to the Laws 1, 2, 3 and 6 used in normSMB()

that apply to a StateMachineBody and enrich its Context with an

additional interface. For normNC(), we need similar laws that,

however, apply to a NodeContainer, without a Context. In addition,

in normNC() there is no need to declare operations and interfaces

for later use. That suitable operations are used is ensured by the

provisos of the new laws as detailed in the sequel.

After an application of normNC(), all sinceEntry(S) expressions

are eliminated, all actions become operation Calls, and all dead-

lines are eliminated. Afterwards, in Step 1b of normOM(openM),

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

14 | A. Cavalcanti et al.

Law 11. elim-deadline-action()

Law 12. elim-wait()

Law 13. elim-nondeterministic-wait()

Figure 18. normOM(openM)—procedure for normalization of an open
machine.

we apply the procedure decompBOM(openM) in Fig. 20 to decom-

pose the machine using the combinator ⊙. This procedure is

applied exhaustively, so that both the machine itself and any

machines in its composite states are decomposed. In Step 2, we

Figure 19. normNC()—normalization of NodeContainer.

Figure 20. decompBOM(openM)—procedure for decomposition of a
BasicOpenStateMachine.

consider CompOpenStateMachines, already defined using ⊙, and

apply normOM recursively to the composed machines (openM.left

and openM.right).

Next,we describe in detail the steps of the procedures normNC()

and decompBOM(openM).

Procedure normNC() As shown in Fig. 19, in Step 1 of normNC(),

instead of Law 1, we apply Law 14. It differs just in that it does

not declare the interface IS3, the variable inact or the clock C to

enrich the context of the machine. Since it is an OpenStateMachine,

and so a NodeContainer but not a Context, there is no context to

be enriched. The unnamed dotted boxes in the body of Law 14

denote OpenStateMachines. In these, variables and clocks can be

used without declaration, and the proviso ensures that they are

new.

Similarly, in Step 2 of normNC(), instead of Law 2, we apply Law

15, different in that it does not introduce a new operation OpS

that executes the Statement s of a state S. Every element used in s

is already in scope and the proviso requires that OpS is defined as

indicated.

The notion of equality OM1 =OpDS OM2 for the laws of open

machines is parametrized by a set of operation definitions OpDS.

In Law 14, this set is empty and omitted. In Law 15, the argument

is the singleton set {OpS}, briefly indicated as just OpS. We recall

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 15

Law 14. elim-sinceEntry-nc()

Law 15. intro-call-for-act-state-nc()

that, as illustrated in Law 15, an operation definition identifies

the name of the operation, its parameters and its behaviour

(using, for instance, a statemachine). As formalized in Section 6.2,

with OM1 =Op OM2 we establish that OM1 and OM2 are equal

provided, when an operation whose name is that of Op is called,

then OM1 and OM2 both call Op itself. In an open machine, the

operation that is called using a given name is not identified in

the machine. Such an open machine can be used in the scope

of various definitions for the named operation. The equality

OM1 =Op OM2, therefore, fixes the association of Op to its name.

More generally, the equality OM1 =OpDS OM2 similarly fixes the

association of all operation definitions on OpDS to their names.

In Law 15, the operation OpS is not called in the open machine

on the left-hand side, since the proviso requires that the name

OpS is fresh.

In the procedure normNC(), law applications with different

arguments are used: one operation definition for each action in a

state or transition that is not a Call, for example. Overall, normNC()

establishes equality parametrized by the set of all operation

definitions used as arguments. This follows from the fact that

OM1 =Op1 OM2 and OM2 =Op2 OM3 imply that OM1 ={Op1,Op2} OM3.

Law 16. intro-call-for-act-transition-nc()

Generally, OM1 =SO1 OM2 and OM2 =SO2 OM3 imply OM1 =SO1∪SO2

OM3.

Laws 16 and 17 are similar to Laws 3 and 6, but, like Law 15, do

not introduce operations and interfaces.

In Steps 3 and 4 of normSMB(), we introduce operation defini-

tions and interfaces for use in the last step. These are not needed

in normNC(). Instead, we have a step similar to Step 5, which

applies Law 17. It is similar to Law 6, and establishes equality with

the definitions for dop_s and deadlineCheck as arguments.

Procedure decompBOM(openM) The core of this procedure is the

application of Law 18, which splits a BasicOpenStateMachine by

isolating its entry points in separate machines combined by ⊙.

For example, in a traditional machine (such as a UML machine),

the single EntryPoint is the initial junction, with a single transition

from that EntryPoint to a differentNode S. In this case, applying Law

18, we obtain the ⊙ composition of two BasicOpenStateMachines.

The first has the initial state with a transition to a NodeNameRef

to S. The second has all states and transitions of the original

machine, except the initial junction and its transition; in this

machine, S becomes an EntryPoint. Fig. 21 shows the result for the

IK solver in Fig. 3, taken as an OpenMachine, after an application of

Law 18.

In general, Law 18 applies to a BasicOpenStateMachine with

any number of EntryPoints, defining a BasicOpenStateMachine for

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

16 | A. Cavalcanti et al.

Law 17. elim-deadline-transition-nc()

Figure 21. IK solver—Open Machine—Step 1a—First iteration of
decompBOM(IKSolver).

each of them. The equality it establishes has the empty set of

operation definitions as argument,which is omitted for simplicity.

From each EntryPoint S1,...,Sn, there may be self-transitions, or

transitions to a NodeNameRef (indicated by <S11>,..., <Sn1>) or to

any other form ofNode (S1m,...,Snm), that is, Junction or (Final) State.

The first two forms of transition are untouched by Law 18; the

latter are replaced with new NodeNameRefs to the original Nodes.

A final BasicOpenStateMachine includes (a) all the actual Nodes

S1m,...,Snm, which become EntryPoints; (b) the sets of all other

Nodes; (c) Transitions from the original machine that do not target

one of the original EntryPoints S1,...,Sn; (d) Transitions that target

those original EntryPoints S1,...,Sn, with a new NodeNameRef for

those EntryPoints as a target; (e) the new NodeNameRefs as needed

for (d). This replacement of the targets of the transitions is indi-

cated in Law 18 using the substitution [S1,...,Sn <S1>,...,<Sn>].

Figure 22 shows the result of applying Law 18 to the right

machine in Fig. 21. Because it has only one EntryPoint, the decom-

position gives rise to just two BasicOpenStateMachines. The first

Figure 22. IK solver—Open Machine—Second iteration of
decompBOM(IKSolver).

Figure 23. IK solver - Open Machine - Third iteration of
decompBOM(IKSolver).

is normalized. The second needs to be further decomposed via

additional applications of Law 18. There, the transition from Loop

back to Ready, which is an EntryPoint, is now a transition to a

NodeNameRef that names Ready instead.

The normalization procedure decompBOM(openM) for a Basi-

cOpenStateMachine openM applies Law 18 whenever openM has at

least one EntryPoint with a transition t to a different Node that is

not an EntryPoint or a NodeNameRef (Step 1), or, if not, when it has

multiple EntryPoints (Step 2). In the first case, openM hasmore than

one node that is not aNodeNameRef: at least the EntryPoints and the

target of the transition t. This violates BOMNF1, so in Step 1a, Law

18 is applied to split openM. Since the rightmost machine right that

results from applying Law 18 needs to be considered, in Step 1b a

recursion decompBOM(right) deals with it.

In Fig. 22, the right machine has the state Loop as an EntryPoint

with a transition to the State Solve, which is not an EntryPoint. So,

with the recursive call to decompBOM, we apply Law 18 to that

machine to obtain the result in Fig. 23. Since in the right machine

the only transition is to a NodeNameRef, and that machine has a

single EntryPoint, no more changes arise from a recursive call to

decompBOM.

In Step 2, we consider the case where there are multiple Entry-

Points, but no transitions to a Node that is not an EntryPoint or a

NodeNameRef. In this case, we apply Law 18 in Step 2a, but there is

no need for a recursive call. Since there are no Nodes besides the

EntryPoints, the rightmost machine resulting from applying Law

18 is empty and omitted.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 17

Law 18. comp-from-entry-points()

To summarize, the procedure normOM(openM) terminates and

normalizes any OpenStateMachines. If openM is a BasicOpenStateMa-

chine, it terminates because normNC() and decompBOM(openM) do:

the argument for termination of normNC() is similar to that for

normSMB(), and termination of decompBOM(openM) is considered

next. If openM is a CompOpenStateMachine, it terminates because

there is a finite number of BasicOpenStateMachines composed.

The procedure decompBOM(openM) terminates because the

rightmost machine generated by Law 18, to which it is applied

recursively, has a number of Nodes that are not NodeNameRefs

strictly smaller than those of the original machine. This is

because the EntryPoints of the original machine, which cannot

be NodeNameRefs, are removed from it. In addition, no new Nodes

that are not NodeNameRefs are introduced. So, since the original

machine has a finite number of Nodes, after a finite number

of recursive calls, there are no more Nodes that become new

EntryPoints, indicating the need for further decomposition via

recursive calls.

Finally, the result of normOM(openM) is a normalized Open-

StateMachine. Again, we have an inductive argument. If openM

is a BasicOpenStateMachine, it is normalized by normOM(openM)

because normNC() ensures NCNF1 and NCNF2, and in sequence

exhaustive application of decompBOM(openM) ensures BOMNF1

and BOMNF2. If openM is a CompOpenStateMachine, it is normalized

because the recursive calls normalize the combined machines

openM.left and openM.right.

To see that decompBOM(openM) ensures BOMNF1, we note

that all machines generated by an application of Law 18,

except the rightmost one, satisfy BOMNF1. For that rightmost

machine, either we have a recursive call to decompBOM, so that

BOMNF1 is ensured by induction, or it is empty. The empty

BasicOpenStateMachine is normalized, but it is also the unit for

⊙, and can be eliminated. BOMNF2 is ensured by exhaustively

applying decompBOM.

In the next section,we present examples and a tool, addressing

the practical relevance of our work.We consider soundness of our

laws later on in Section 6.

5. EXAMPLES AND TOOL

As said, the normal forms provide a notion of completeness for

our laws. They are enough to reduce any machine to a normal

form, and capture properties related to control flow and time

in the state-machine notations. Here, we present in Section 5.1

the normalization of the machine AppleHarvestControl in Fig. 2,

and then the normalization of a similar, but open, machine that

defines the same control software. After that, in Section 5.2, we

describe the tool we have developed to normalize models. It has

been used with our examples and others2 . Finally, Section 5.3

discusses and illustrates practical applications.

5.1. Normalization: Examples
In this section, we present the normalization of two examples:

a RoboChart machine (Section 5.1.1) and a similar, but open,

machine (Section 5.1.2).

5.1.1. Normalization: RoboChart

AppleHarvestControl (Fig. 2) is a StateMachineDef, and so can be

normalized using the procedure normSMB() (Fig. 16). In Step 1,

since AppleHarvestControl does not use sinceEntry(S) expressions,

Law 1 is never applied. After Step 2, with the exhaustive appli-

cation of Laws 2 and 3, the definition of AppleHarvestControl is

as shown in Fig. 24. All actions are now operation Calls, and the

context requires interfaces (whose names start with I_normal_)

that declare these operations. Actions in (sub)states of composite

states also become Calls. In [37] we find the definitions of the new

operations and interfaces. No other changes are made.

In Steps 3 and 4 of normSMB(), no changes affect AppleHarvest-

Control directly. The laws applied in these steps enrich the scope

to include definitions for the operations tStop() and deadlineCheck,

with their associated interfaces ItStop and IdeadlineCheck.

In the last step, we deal with the deadline in the transition

from the state Prepare to the state LocalizeFruit.With an application

of Law 6, we obtain the state machine in Fig. 25. The deadline

is removed from the transition, and a during action that Calls a

new operation normal˙AppleHarvestControl˙Prepare˙t1˙dop() is added

to Prepare. This new operation and a new interface are introduced;

see [37] for their definitions.

Some, but not all, of the OperationDefinitions introduced by

an application of normSMB() are already normalized. They are

all action operations, and are already normalized if its single

Statement satisfies the restrictions in OPDNF1 (see Fig. 9). In our

example, most new operations are normalized or are very easy

to normalize (see [37] for details). A more interesting example is

2 robostar.cs.york.ac.uk/

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

18 | A. Cavalcanti et al.

Figure 24. AppleHarvestControl after Step 2 of normSMB().

provided by the operation that we reproduce in Fig. 26; it is called

normal˙AppleHarvestControl˙GetApple˙entry˙op(). To normalize it, we

apply the procedure normAO() (Fig. 17).

Steps 1–4 of normAO() declare operations (and associated inter-

faces) that are used to capture the meaning of time primitives

in the model and are already normalized. More interesting is

Step 5, which applies the laws that remove the control flow

from the action exhaustively. At first, only Law 11 applies, since

the Statement is a deadline. The operations resulting from the

application of this law are in Fig. 27. The interfaces used there

are in [37].

The transformed definition in Fig. 27 for the operation nor-

mal˙AppleHarvestControl˙GetApple˙entry˙op() is now normalized. The

new operation at the bottom of Fig. 27 has, however, the original

Statement restricted by the deadline in a transition action in a com-

posite state, and needs to be normalized. Since it is not an action

operation, we first use normSMB(), which replaces the transition

action with a call to the operation in Fig. 28. The relevant interface

is in [37].

The action in the new operation in Fig. 28 is a sequence, and

we apply Law 8 to decompose it. Fig. 29 shows the result of one

application of Law 8 at the top, and, at the bottom, the result

of its later exhaustive application after one application of Law

7 to remove the outer parentheses. (The spurious parentheses

are introduced in the application of Law 11 to ensure that in

s; g = true, the assignment to g follows s as stated. Without

the parentheses, there is the possibility that g = true becomes

captured, for instance, in the else branch of a conditional.)

At this point, there are three transitions with a wait statement.

They are all nondeterministic, and we eliminate them with three

applications of Law 13. The result is in Fig. 30. The order in which

the laws are applied in Step 5 of normAO() does notmatter.We can,

for example, apply Law 13 as soon as an applicable transition is

introduced by an application of Law 8.

This completes Step 5 of normAO(). The result, however, as

shown in Fig. 30, is no longer an action operation. The decom-

position of the original action introduced several transitions, and

so normalization according to OPDNF1 does not hold. We then

pursue normalization according to OPDNF2, which amounts to

NCNF1 and NCNF2. Presence of sinceEntry(S) expressions and

deadlines is not an issue, since they are removed by normSMB(),

so NCNF2 is guaranteed. We may, however, need to introduce

further operation Calls. In our example, most of the actions in the

transitions in Fig. 30 are already Calls. In Step 6 of normAO(), we

need to introduce just one more operation for the action in the

transition to the final state.

The result is shown in Fig. 31, which is a normalized version

of the operation in Fig. 28. This is obtained with an application of

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 19

Figure 25. AppleHarvestControl after Step 5 of normSMB().

Figure 26. Example for use of normAO().

Law 3. The extra action operation called in the transition to the

final state is in [37] ; it is normalized. In [37] we also present the

new interface that is needed in this step.

The state machines presented here have been automatically

generated from the original model (Fig. 2) using the tool

described in Section 5.2. Our examples here illustrate how a

model containing just normalized StateMachineDefinitions and

OperationDefinitions can be obtained using our procedures.

5.1.2. Normalization: open machines

We now consider the normalization of an OpenStateMachine

using the procedure normOM in Fig. 18. As said, for a BasicOpen

StateMachine, first of all, in Step 1a,we apply a procedure normNC()

that is very similar to normSMB() already illustrated. For example,

if our starting point is an OpenStateMachine that is similar to the

RoboChart machine AppleHarvestControl in Fig. 2, the result of

Step 1a is a machine similar to that in Fig. 25. The difference

is that an OpenStateMachine does not have a context. As we have

discussed in Section 6, their semantics differ accordingly, as does

the statement and proof of the relevant laws.

Step 1b of normOM applies decompBOM to both AppleHarvestCon-

trol itself and to the machine of its composite state LocalizeFruit.

We illustrate first the application to AppleHarvestControl. The Step

1 is similar to that for the machine IKSolver presented in the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

20 | A. Cavalcanti et al.

Figure 27. normAO(): application of Law 11.

Figure 28. Action operation from normSMB().

previous section (see Fig. 21). AppleHarvestControl has, of course, a

single EntryPoint: its initial junction, which, by a well-formedness

condition, has a single transition that is not a self-transition.

The target of that transition is the state Prepare, which is not a

NodeNameRef. The application of Law 18 in Step 1a isolates the

initial junction with a transition to a NodeNameRef connecting to

Prepare. In the second machine in the composition, Prepare is an

EntryPoint.

In Step 1b of decompBOM(AppleHarvestControl), a recursion leads

to the application of decompBOM to the newmachine with Prepare

as a single EntryPoint. It has a transition to the composite state

LocalizeFruit, which is not a NodeNameRef. Applying Law 18 to this

machine, we get the result shown in Fig. 32.

Another iteration of the recursion splits LocalizeFruit and intro-

duces a machine where the state Next is the single EntryPoint.

Yet another recursion splits out Next and introduces a machine

where GetApple is the EntryPoint. The newmachines with Next and

GetApple as EntryPoints are in Fig. 33. The self-transition of Next

stays in the machine where this state occurs. The transitions to

Next in the second machine become transitions to NodeNameRefs

referencing Next.

In the next iteration, GetApple is isolated, with its transition

to the Junction going to a new NodeNameRef, and the Junction

becoming an EntryPoint of a new machine. The result is shown in

Fig. 34. Asmentioned before, Junctions have names, just like states.

In diagrams,we normally hide such names. (Our tool, presented in

the next section, generates fresh names for them automatically.)

When, however, a junction is used as an EntryPoint, its name needs

to be used, and it is shown in our example. In Fig. 34, the Junction

is called j0 and its status as an EntryPoint in the new machine is

marked by an i inside the Junction symbol.

The next iteration of the recursion applies to the new machine

with j0 as EntryPoint, and isolates j0: see Fig. 35. Yet another

machine is defined; it has the state GoingHome as EntryPoint. Since

the only transition from GoingHome is to a NodeNameRef (to Next),

and GoingHome is the single EntryPoint of this new machine, a

recursive application of decompBOM to it has no effect. The proce-

dure application decompBOM(AppleHarvestControl) is now finished.

For LocalizeFruit, after four iterations of the recursion, we get

the machines in Fig. 36. The rightmost machine (at the bottom of

Fig. 36) has two EntryPoints: the states Solved and Moved. The fifth

iteration splits that machine into three as shown in Fig. 37: one

for each EntryPoint and one with the rest of the nodes. Since Solved

and Moved have each a single transition, both to the state Done,

the extra machine has again a single EntryPoint: Done.

The next iteration of the recursion separates out Done, leaving

just the Final state. Figure 38 shows the result. The diagram for

the last machine reveals the name of the Final state, and uses

an i to indicate that it is an EntryPoint. A recursive application of

decompBOM to this machine has no effect. The normalization of

LocalizeFruit is concluded.

Next we describe our implementation in RoboTool of the nor-

malization procedures.

5.2. RoboTool
For a preliminary validation of our laws and procedures, we have

implemented them. We have used the model-transformation

engine Epsilon3 [38], an open-source framework with a set of

languages and facilities for the management and development

of models with rich Eclipse integration. We have integrated our

implementation with RoboTool4 , a modelling and verification

tool for RoboChart.

3 www.eclipse.org/epsilon/
4 robostar.cs.york.ac.uk/robotool/

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 21

Figure 29. Law 8: (A) once and (B) exhaustively.

Figure 30. Law 13, three times.

Figure 31. normAO(): final result.

RoboTool is a set of Eclipse plug-ins that provides textual

and graphical editors, implemented using the Xtext5 and Sirius6

frameworks. RoboTool generates, automatically, a (tock-)CSP and

a reactive modules semantics [39] for RoboChart models. It is

5 eclipse.org/Xtext/
6 www.eclipse.org/sirius/

integrated with the FDR [40] and PRISM [41] model checkers to

prove behavioural and quantitative properties.

With our implementation, and the testing it has enabled, we

have established that the laws are well-typed, and have gathered

evidence for the correctness of the procedures. Our test suite7

7 github.com/UoY-RoboStar/robochart-normalization-tests

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

22 | A. Cavalcanti et al.

Figure 32. decompBOM(AppleHarvestControl): after 2nd recursion.

contains models that, together, include at least one instance of

every class of the metamodels and whose normalization requires

the application of every law presented here. A test execution

includes the comparison of the tock-CSP semantics of the original

and normalized machines.

In fact, the laws and procedures described in the previous

section are the result of our experience with the development and

use of our tool. This effort has led to the identification of missing

declarations in the body and provisos of some laws (such as Laws

2 and 6) that ensure that the machines that are defined by their

application are well formed. Our experiments have also revealed

early the need for adjustments in the order in which the laws are

applied. For example, for the procedure normAO(), the experiments

have made apparent the need for the extra Step 6.

Each law is implemented as a transformation pattern using the

Epsilon Pattern Language (EPL)8 , a language based on pattern

matching for specifying and detecting structural patterns for

model-to-model transformation. The implementation of each law

captures a structural pattern of interest (based on the left-hand

8 www.eclipse.org/epsilon/doc/epl

side of the law as presented here) to produce in-place modifica-

tions of the model (reflecting the result of the law application

defined by its right-hand side). As an example, we present in

Fig. 39 a fragment of the EPL pattern that implements Law 2.

An EPL pattern is defined by named and typed elements of

the metamodel, called roles. For Law 2 (see Fig. 39), we define

three roles (lines 2-4): a machine body (smb), a state (S) of such

a machine, and, finally, an action (s) of S. The types prefixed by

RoboChart! refer to classes of the RoboChart metamodel. Types

without such a prefix are native to Epsilon.

The implementation of Law 2 creates the new operation, OpS,

and sets its name (lines 9–10). As defined by Law 2, OpS contains

a single Transition from an Initial junction to a Final state. The

junction and the state are recorded in the variables OpS_I and

OpS_F defined on lines 11–14. These variables are used to set

the source and target of the transition OpS_Tr (lines 18–19). The

action of this transition is the original action of the state S (line 20).

The new elements (that is, OpS_I, OpS_F and OpS_Tr) are, finally,

added to the set of nodes and transitions of OpS (lines 22–23).

The signature of OpS is defined on lines 27–28 for inclusion

in the interface IOpS defined on lines 29–31. On line 32, we

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 23

Figure 33. decompBOM(AppleHarvestControl) After fourth recursion.

Figure 34. decompBOM(AppleHarvestControl) After fifth recursion.

Figure 35. decompBOM(AppleHarvestControl) After sixth recursion.

add IOpS to the set rInterfaces of required interfaces of the

StateMachineBody. The other interfaces req_s and defEvents_s

in Law 2 are defined and included in a similar way (omitted in

Fig. 39).

The main goal of Law 2 is to use an operation Call to replace an

action of a state. This is effectively implemented in lines 36–38,

where a Call (OpS_Call) is created for the new operation, and the

original action of the state s is defined to be this Call.

We have also implemented the normalization procedures for a

StateMachineBody, normSMB() and for action OperationDefinitions,

normAO(). For OpenStateMachines, decompBOM(openM), the core

of normOM(openM) is implemented. The additional procedure

normNC() used in normOM(openM) is not implemented because

it is similar to normSMB().

Each procedure is implemented as an ANT-based Epsilon work-

flow9 , a mechanism called target for performing model manage-

ment and transformation activities. In our implementation, each

target corresponds to a normalization procedure.The execution of

a workflow performs a sequence of EPL tasks, specified using an

epsilon.epl clause. Each task corresponds to a step of the target

procedure as defined in Section 4. As illustration, we present in

Fig. 40 a sketch of the implementation of normSMB(). (A workflow

is defined using an XML-based notation.)

9 ant.apache.org

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

24 | A. Cavalcanti et al.

Figure 36. decompBOM(LocalizeFruit): after fourth recursion.

As depicted in Fig. 40, the first task in the workflow for

normSMB() implements Step 1, as specified by the uri attribute in

its epsilon.epl clause. Internally, Step1.epl calls Law1 1 (elim-

sinceEntry). Step1.epl is repeated as long as successful matches

of the pattern in that law in the model (RoboChart) are found,

since the clause repeatWhileMatches is set to true.When there

are no more matches, the task is finished, and the subsequent

task is executed. Step 2 in the definition of normSMB() (see

Fig. 16), however, is applied while there are actions that are not a

Call. In ANT, there is no direct mechanism to implement tactics

for iterative applications of transformations based on patterns

other than those in the laws. We have, therefore, encoded the

termination condition for each law where relevant. So, in addition

to the code fragment presented in Fig. 39, our implementation of

Law 2 actually includes the following match condition:

match : nots.action.isTypeOf(RoboChart!Call)

This ensures that Law 2 is applied only when the action is not

a Call. The target normSMB ends after the task that calls Step 5 and

its execution is completed.

As an optimization in our tool, given a model, we apply in

parallel the procedures described above to all machines and

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 25

Figure 37. decompBOM(LocalizeFruit): after fifth recursion.

Figure 38. decompBOM(LocalizeFruit): after sixth recursion.

operations. This includes the operations that might be introduced

as the result of an application of a law. In the case of Law 11,

which is used in Step 5 of normAO(), it introduces an operation

deadlineAction˙s(d:nat) to which we need to apply normSMB(). As

part of our optimization, the definition for deadlineAction˙s(d:nat)

that we introduce is already the result that would be obtained by

normSMB().

In RoboTool, the implemented procedures are encapsulated

by a plug-in, called NormalForm Generator, and are applied in the

following order: normSMB(),normAO(), and decompBOM(). This also

reflects the optimization previously described, which applies the

procedures to machines and operations. So, when a RoboChart

model is loaded, the NormalForm Generator can be invoked by

clicking on the menu item NormalForm in its toolbar, as shown in

Fig. 41. The normalized RoboChart and OpenMachine models are

stored in the project directories /normalForm/robochart and

normalForm/openMachine, respectively.

The examples presented here, and many others, have been

developed using RoboTool.

5.3. Applications
A model or program normalization procedure is an effective

technique to establish a notion of (relative) completeness of a set

of algebraic laws, as we have already pointed out and illustrated

in Section 4.

Moreover, additional applications of such laws arise from

the benefit of using normalization as a preliminary step in the

translation into other notations. Some other transformation

techniques, however, like refactoring, involve law applications

with a different purpose: improving readability and reuse,

and reducing complexity of models. In this section, we briefly

illustrate law-based refactoring transformations.

Figure 39. Implementation of Law 2.

Figure 40. Implementation of normSMB().

To avoid bias, we use an existing RoboChart model with some

slight simplifications: a robot in a swarm acting under the Alpha

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

26 | A. Cavalcanti et al.

Figure 41. RoboTool interface.

Algorithm [42]. This example includes one machine capturing

the behaviour of the robot’s movement, and another modelling

the communication with the other robots. Our focus is on the

Movement machine: see Fig. 42.

Its initial transition includes an action that resets the clock

MBC, and targets the composite state MovementAndAvoidance.

Entering this state happens only after executing the entry action

(move(lv,0)) of the state Move. This operation is parametrised by a

linear and an angular velocity, in this order.

When an occurrence of an obstacle is detected, if less than MB-

360/av time units have passed, the transition fromMove to Avoid is

triggered. In this case, the entry action of Avoid (a conditional that

determines an angular motion, based on the robot’s position) is

executed, and a period of time must pass (as stated in the wait

action) before returning back to Move.

Another control path is via the transition from MovementAn-

dAvoidance to Turning; it is enabled when at least MB time units

have passed since the last clock reset. The action associated with

this transition is a sequence formed of the reset of theMBC clock,

an input action that reads the number n of neighbouring robots,

and an assignment of the value false to a control flow flag turned.

Once in the state Turning, the robot is required to either turn 180

degrees (top transition to final state) if n is below a threshold alpha

or, otherwise, perform a random turn (bottom transition). In any

case, the control flag takes the value true to allow the triggering

of the transition back to MovementAndAvoidance.

There are opportunities to both modularize and simplify this

model. For example, there are four occurrences of a call to move

followed by a wait statement: two in the entry action of Avoid

and two on the transitions of Turning; the differences are only

in the values of the arguments. Therefore, there is benefit in

introducing a new operation, called say turn, that encapsulates

this pattern of use ofmove andwait, and calling this operation with

the appropriate arguments, instead of duplicating actions across

the model.

To replace the two occurrences in the entry action of Avoid, we

first note that the then and else branches of the conditional include

only the invocation of the operation move. A single wait statement

comes after the conditional. This is a nice example that illustrates

the need for combining complementary sets of algebraic laws in

practical applications of model and program transformation. In

this particular context, we need a simple law of the conditional

statement that allows distributing a statement after a conditional

into its branches (at the end of the then and else branches):

if c then s1 else s2 end; s3

=

if c then s1;s3 else s2;s3 end

Applying this law, we can rewrite the conditional in the entry

action of Avoid as in Fig. 43. A seminal paper includes several

such laws of programming [7]; they are not our focus here, but

are complementary to our laws of state machines. The combined

use of these sets of laws justifies very expressive transformation

strategies.

After applying the above law, we can apply Law 2 to replace the

sequential actions in the then and else branches of the conditional

in Fig. 43 with calls to turn. The result is in Fig. 44. The first call can

be introduced with a direct application of Law 2, introducing the

interface, the definition of turn, and the call. The second call can

be introduced using a slightly simplified version of the law that

introduces only the call to the already declared turn operation.

Similarly, to refactor the actions in Turning, we first isolate the

call to move followed by the wait statement into an action of a

separate transition. This is justified by two applications of Law

8. Afterwards, we apply Law 3 to replace these sequential actions

with calls to turn, in the sameway as performed in the entry action

of Avoid. The result is in Fig. 45.

Now we combine the actions in the top and bottom transitions

of Turning back into sequential actions. This is justified by two

applications of Law 8, from right to left. The result is in Fig. 46.

At this stage, we can combine the two transition actions of

Turning into a conditional action. This is justified by applying Law

9, also from right to left. Furthermore, the transition from the

initial junction to a junction can be eliminated by an application

of Law 10, once more, from right to left. The effect of these two

transformations is presented in Fig. 47.

The resulting model of the Movement machine after all these

transformations is depicted in Fig. 48. It is possible to carry out

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 27

Figure 42. Alpha Algorithm.

Figure 43. Alpha Algorithm - Step 1.

the transformations that are based on the laws presented in this

paper using our encoding of these laws in RoboTool and Epsilon

facilities to select and direct the application of laws10 . Encoding

of the laws of programming is not in the scope of our work, but

the facilities of Epsilon make this a simple task.

In our ongoing work, we are using normalization to facili-

tate transformation of RoboChart models into simulation models

(described using another diagrammatic notation called RoboSim

[43]). Any such technique for RoboChart and open machines is

10 At github.com/UoY-RoboStar/robochart-normalization.

simplified by adding normalization as a first step, and then pro-

ceed with transformations that need to consider just normalized

models. These normalized models exhibit only a very reduced

number of patterns for transformation, characterized by the Def-

initions 3.1, 3.2, and 3.3 of the normal forms.

For all the above applications, soundness of the laws is

paramount. We address this point next.

6. SOUNDNESS

Soundness of the normalization is justified using the formal

semantics presented next in Section 6.1. Proofs of soundness of

selected laws are sketched in Section 6.2. Complete proofs are

available in [37].

6.1. Semantics
In this section, we define a discrete-time semantics in tock-CSP

[44] for RoboChart and open state machines. Besides providing a

novel semantics for open machines, we give a new compositional

account of themeaning of operations in RoboChart. This is impor-

tant for establishing soundness of our laws,whichmake extensive

use of operations to encapsulate behaviour.

The process algebra tock-CSP is a timed variant of CSP [35]; it

is part of a large family of notations for specifying concurrent

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

28 | A. Cavalcanti et al.

Figure 44. Alpha Algorithm - Step 2.

Figure 45. Alpha Algorithm - Step 3: State Turning.

Figure 46. Alpha Algorithm - Step 4.

Figure 47. Alpha Algorithm - Step 5.

systems, including CCS [45], Pi-Calculus [46] and ACP [47]. CSP

is distinctive in its denotational semantics, giving rise to notions

of refinement useful for stepwise development. Processes specify

patterns of interaction via synchronization on channels, taking

into account aspects such as (non)determinism, deadlock, and

termination. Process definitions can also be made via paral-

lel composition. Communications between parallel processes or

with the environment are instantaneous, atomic events, that can

carry values: inputs and outputs. The dialect tock-CSP, in addition,

allows processes to specify time budgets and deadlines using a

special event called tock.

In Table 1 we summarize the tock-CSP operators that we use in

our work. To illustrate the notation we present a simple example

of a one-place timed buffer.

Example 1.

TB = in?x → (TB � (Wait(1); out! x → TB))

The buffer is defined by the process TB. Initially it is prepared to

receive (?) a value x on the channel in via a prefixing (in?x →), and

then offers an external choice (�) to the environment between

accepting a new value, via the recursion on TB, or delaying the

output (!) of the current value. The delay of one time unit (Wait(1))

is sequentially composed (;) with a prefixing on out. An external

choice is resolved by the environment synchronizing on events,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 29

Figure 48. Alpha Algorithm - Refactored model.

or by termination. Here in?x is syntactic sugar for accepting

events in.x, where x ranges over the type of the channel in, left

unspecified in this example.The prefixing on out! x communicates

the value of x as introduced into context by in?x.

The denotational semantics of tock-CSP [44] forms a complete

lattice under the refinement order ⊑. Here P ⊑ Q means that Q

refines P, and is true exactly when every timed behaviour of Q,

denoted by a trace that records interactions, refusals, and passage

of time, is also a behaviour of P. The semantics of a recursive

process, such as TB, is the greatest fixed point of TB, taken as a

function from processes to processes.

Section 6.1.1 gives an overview of our semantics. Section 6.1.2

details the semantics of RoboChart state machines, and Sec-

tion 6.1.3 of open machines.

6.1.1. Overview

The structure of our tock-CSP semantics is illustrated in Fig. 49. It

is formalized by semantic functions that define, for the various

elements of the metamodel for RoboChart and open machines,

tock-CSP processes or terms used to specify such processes. The

semantic functions are used to define the notions of equality that

we use in the laws, based on mutual refinement of the processes

defined by the functions.

At the core of the semantics of a state machine is a paral-

lel composition of processes that capture the semantics of its

Nodes, taking into account any transitions with deadlines, and

of processes for the Transitions. These processes synchronize on

the CSP channels below that model the control flow. In what

follows, we use grey and underlined text to indicate terms of the

metanotation used to define the semantics.

• end, used to control termination of state machines, and oper-

ations, when a Final state is activated;

• enter.id(n), used to activate a node n, uniquely identified by a

metafunction id;

• entered.id(n), used to indicate completion of the activation of

a node n;

• exit, used to deactivate the currently active state;

• exited, used by the currently active state to indicate it has

completed its deactivation;

• interrupt.id(n), used to interrupt the execution of n, for exam-

ple, when a transition is triggered.

Although the semantics of Nodes is defined by a parallel com-

position, the control flow of a NodeContainer is sequential, and so

only one of its Nodes is active at a time, as constrained by the

parallel composition with the process semantics of its Transitions.

Activation of a State n leads to the execution of its entry

action and the activation of its substates, if there are any. As

said, completion is indicated via synchronization on the channel

entered.id(n) used to:

• communicate to (the process for) a parent State p of n, that

its child State n has completed activation;
• enforce any deadlines on outgoing transitions from n, as

modelled by a Transition deadlines process as indicated in the

innermost box in Fig. 49;

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

30 | A. Cavalcanti et al.

Table 1. tock-CSP operators, with basic processes at the top, followed by composite processes: P and Q are metavariables that stand for
processes, d for a numeric expression, e for an event, a and c for channels, x for a variable, I for a set, v for an expression, g for a
condition, and X for a set of events. For a channel c, {|c|} is a set of events; if c is a typed channel then events are constructed using the
dot notation, so that {|c|} = {|c.v0, ..., c.vn|}, where vi ranges over the type.

Process Description

Skip Termination: terminates immediately

Wait(d) Delay: terminates exactly after d units of time have elapsed

Stop Timed deadlock: no events are offered, but time can pass

StopU Timelock: no events are offered and time cannot pass

e → P Prefix operator: initially offers to engage in the event e while permitting any amount of time to pass, and then behaves

as P

a?x → P Input prefix: same as above, but offers to engage on channel a with any value, and stores the chosen value in x

a?x : I → P Restricted input prefix: same as above, but restricts the value of x to those in the set I

a! v → P Output prefix: same as above, but initially offers to engage on channel a with a value v

if g then P else Q Conditional: behaves as P if the predicate g is true, and otherwise as Q

P�Q External choice of P or Q made by the environment

P ⊓ Q Internal choice of P or Q made non-deterministically

P;Q Sequence: behaves as P until it terminates successfully, and, then it behaves as Q

P\X Hiding: behaves like P but with all communications in the set X hidden

P|||Q Interleaving: P and Q run in parallel and do not interact with each other

P |[X]|Q Generalized parallel: P and Q must synchronize on events that belong to the set X, with termination occurring only

when both P and Q agree to terminate

P [[a ← c1, ..., a ← ci]] Renaming: replaces uses of channel a with channels c1 to ci in P

P△Q Interrupt: behaves as P until an event offered by Q occurs, and then behaves as Q

P△dQ Strict timed interrupt: behaves as P, and, after exactly d time units behaves as Q

P �X Q Exception: behaves as P until P performs an event in X, and, then behaves as Q

|[X]|i : I • P(i) Replicated generalized parallel: behaves as P(i) in parallel for all i in I synchronizing in X

|||i : I • P(i) Replicated interleaving: behaves as P(i) interleaved for all i in I

�i : I • P(i) Replicated external choice: offers an external choice over processes P(i) for all i in I

⊓i : I • P(i) Replicated internal choice: offers an internal choice over processes P(i) for all i in I

• monitor the time since a state has last been activated, via syn-

chronization with the semantics of State clocks, as required

to give semantics to transitions whose guards depend on the

time elapsed since the most recent activation of a state.

The State clocks process monitors time since the occurrence of

an event entered.id(n) for each non-Final state n, and then offers

to communicate this time over a channel get_id(n). Processes

for nodes of type Junction do not synchronize on entered events,

since they do not have actions or substates, and so become active

immediately after synchronizing on enter, and also do not have

outgoing transitions with deadlines.

To illustrate the role of events modelling the control flow, in

Example 2 we reproduce the semantics of the state Prepare of the

machine AppleHarvestControl.

Example 2. Semantics of state Prepare.

let

Inactive =̂ SStop△(Activation�Termination)

Activation =̂ enter.id(Prepare) → Active

Termination =̂ end → Skip

Active =̂ [[Prepare.entry]]
nops
A

;Behaviour;Exiting

Behaviour =̂ entered.id(Prepare) → During

During =̂ SStop△interrupt.id(Prepare) → Skip

Exiting =̂ (SStop△exit → Skip); exited → Inactive

within

Inactive

It is defined using processes defined in a let. . .within block.

Initially,Prepare’s behaviour is Inactive, which behaves as SStop, but

can be interrupted by Activation, via the event enter.id(Prepare),

or Termination, synchronizing on end followed by Skip. The process

SStop = share → SStop offers to synchronize indefinitely on the

event share, used by processes in the semantics to signal and

react to changes in the value of shared variables. An Inactive

state accepts share to acknowledge that a shared variable has

been changed (although this is not relevant to an inactive state).

Once Active, the state behaves as [[Prepare.entry]]
nops
A

, the process

defined by the semantic function [[_]]
nops
A

for actions.Here, the pro-

cess models the behaviour of Prepare’s entry action Prepare.entry.

The parameter nops defines the semantics of the operations

called by AppleHarvestControl. The process for Prepare’s entry action

is sequentially composed with Behaviour, which concludes the

state’s activation by synchronizing on entered.id(Prepare) and

then behaves as During.

Because Prepare has no during action, the behaviour of

During is that of SStop with the possibility to be interrupted by

interrupt.id(Prepare) and terminate. This leads to Exiting in the

definition of Active. Now, share is offered until there is a request to

exit. Next, as Prepare has no exit action, it immediately indicates

it has exited, and becomes Inactive.

In general, once active, a Node n’s execution may be inter-

rupted, for example,when an outgoing transition is triggered. This

is modelled via synchronization on the event interrupt.id(n). In

addition, active States may be interrupted by a transition from a

parent State. To account for both sources of interruption, in the

Control flow process for n’s parent NodeContainer p:

1) the event interrupt.id(n) is relationally renamed to interrupt.

id(p), if n is a State;

2) and for each Transition t in p.transitions the event interrupt.

id(n) is renamed to:

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 31

Figure 49. Overall structure of the tock-CSP semantics of state machines shown hierarchically, including that of NodeContainer,OperationDef and
StateMachineDef. Stacked components and parallel lines indicate parallel composition. Sequential composition is indicated by the semicolon.

Bordered boxes indicate visible points of interaction, while dashed lines indicate synchronization between processes on channels. In colour:

boxes indicate control flow events, boxes are related to clocks, are related to state variables, and are related to controlling atomic
updates to shared state.

a) internal.id(n), if t has no trigger;

b) a channel id(ev)_.id(n), if t has a trigger; here ev is the

trigger Event t.trigger.event.

The first case (1) allows the process for a composite state to

synchronize its interruption with that of an active child State,

so that an outgoing transition of the composite state interrupts

its machine. Processes for Junctions are not involved in the syn-

chronization, since junctions are decision points and cannot be

interrupted.

The second case (2) introduces channels for synchronization

with the semantics of Transitions, with two possibilities depending

on whether they have a trigger. If a transition t does not have

a trigger, its trigger is modelled in the semantics by a channel

internal. In the process for a NodeContainer (see Fig. 49), internal is

hidden. This captures the fact that a triggerless Transition can be

taken as soon as its guard is true. If the transition has a trigger

ev, it is represented by a channel id(ev)_.id(n). For every such

transition t, in a NodeContainer process, id(ev)_.id(n) is renamed

to id(ev), where ev is t.trigger.event and n is t.source, the trigger

event and the source State of t (see Fig. 5). With this semantics,

events (in triggers) are used for interactionwith other components

of the system or its environment. Internal control flow, however,

is concealed.

The semantics of Transitions accounts for guards by offering,

or withholding, synchronization on channels internal.id(n) and

id(ev)_.id(n), depending on the evaluation of guards. The current

value of a variable x, state clock n, or clock C, as used, for exam-

ple, in a guard, can be queried via synchronization on channels

get_id(x), get_id(n), and get_id(C): see Fig. 49.

Variables and clocks are modelled in different ways in the

semantics of RoboChart and of open machines. These are pre-

sented separately in the sequel.

6.1.2. RoboChart state machines

The semantics of a StateMachineDef and of an OperationDef are

similar. In both cases, the semantics is defined in terms of the

semantic function for a StateMachineBody in general (see Figs 5

and 49). The semantics for an OperationDef, however, is a function

that,when applied to arguments corresponding to the parameters

of the OperationDef, determines a process that captures the mean-

ing of that OperationDef when called with those arguments. In the

case of a StateMachineDef, the semantics does not need to consider

parameters, but in addition accounts for termination and required

variables. To cater for termination, the semantics of a StateMa-

chineDef defines its contribution to a termination protocol that

ensures that it is possible to consider a set of machines running in

parallel and sharing a memory, and that guarantees that the set

of machines terminates when all its machines terminate. To cater

for required variables, the semantics provides a memory process.

In contrast, in the semantics of an OperationDef, termination

occurs when a final state is reached, so there is no need for a

protocol, and the required variables are provided by the calling

machine, so there is no need for a memory.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

32 | A. Cavalcanti et al.

As depicted in Fig. 49 the semantics for a StateMachineDef is

defined as the parallel composition of: (a) the sequential com-

position of a StateMachineBody process with the Termination pro-

cess, and (b) the memory process for required variables. In the

semantics of a StateMachineBody the internal event end is used

to terminate its behaviour, when a Final state is activated. The

process Termination subsequently
(

◦

9

)
offers to synchronize on

end, so that termination is signalled to other components or the

environment.

The semantics of variables and clocks in RoboChart machines

is given by a composition with the processes described below,

following the hierarchical, component-based nature of RoboChart

(see Fig. 49).

• State clocks: as previously discussed, account for the time

elapsed since activation of every non-final State n in a Node-

Container, with the value available for query via a channel

get_id(n);

• Local clocks: account for clocks declared in a state machine.

The reset of a Clock C is modelled by synchronizing on

clockReset.id(C), with the time elapsed since then available

via a channel get_id(C).

• Memory (local variables and constants): a process that accounts

for variables and constants declared in a state machine.

Assignment of a new value to a Variable v is modelled via a

channel set_id(v). The current value is available via a channel

get_id(v), and similarly for constants.

• Memory (required variables): similarly, this process accounts for

required variables of StateMachineDefs. The difference in this

case, however, is that the environment may also provide new

values for a Variable v via a channel set_EXT_id(v).

A StateMachineDef must declare all Clocks it directly uses or

that are required by operations that it directly calls. Thus, in the

process for a StateMachineDef any clockReset events are concealed

as all Clocks are local.

Next, we illustrate the semantics using the example of the

RoboChart machine AppleHarvestControl. What we present is the

result of applying the semantic function [[_]]_
S MD

to AppleHarvest-

Control and nops. That process is presented below, where stm

stands for AppleHarvestControl. It is defined by a parallel compo-

sition (|[...]|) of processes synchronizing on end, to proceed with

termination, and channels for getting, and setting the value of

the required variables apples and positions. Data is captured by a

process defined by a metafunction sharedVarMemory(stm). The

definition of this and other functions to follow can be found in

[48].

Example 3. tock-CSP semantics of the RoboChart state
machine AppleHarvestControl.

[[AppleHarvestControl]]
nops
S MD

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(
[[stm]]

nops
S MB

; SStop△end → Skip
)

[[
x :

{∣∣∣∣∣
set_EXT_id(apples),

set_EXT_id(positions)

∣∣∣∣∣

}
• share ← x

]]

|[{|share|}]|

Skip

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎣

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣

end,

get_id(apples), set_id(apples),

set_EXT_id(apples),

get_id(positions), set_id(positions),

set_EXT_id(positions)

∣∣∣∣∣∣∣∣∣∣∣

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣

sharedVarMemory(stm)

The semantics of a required variable, for example, apples, can

be modelled by the parametric and recursive memory process M

sketched below.

M(a) =

⎛
⎜⎝

get_id(apples)! a → M(a)

�set_id(apples)?x → M(x)

�set_EXT_id(apples)?x → M(x)

⎞
⎟⎠

For a complete definition, an initial value is provided to reflect

the default for the type of the variable being modelled. M offers,

in an external choice, the possibility to get the current value

a via get_id(apples), or set a new value x, via set_id(apples) or

set_EXT_id(apples), with the behaviour given by the recursion on

M with the chosen value x as a parameter.

Composed in parallel with sharedVarMemory(stm), in Exam-

ple 3, is the process semantics of stm’s behaviour. At the core

is the process [[stm]]
nops
S MB

defined by the semantic function for

a StateMachineBody. A renaming ([[...]]) maps the event share (←)

to set_EXT_id(apples) and set_EXT_id(positions), to allow exter-

nal updates to the values of the variables apples and positions

to be observed as share events by the process [[stm]]
nops
S MB

. If a

state machine has no required variables, and thus the renaming

relation is empty, the event share is not renamed. So, we have a

parallel composition with Skip synchronizing on share. Since Skip

terminates and does not agree to engage in share events, they are

blocked, if they are not renamed.

The behaviour of stm is defined by the sequential composi-

tion of [[stm]]
nops
S MB

and SStop△end → Skip. The latter defines

the behaviour when [[stm]]
nops
S MB

has terminated and allows the

value of required variables to be updated via synchronization on

set_EXT channels while waiting to agree on termination via end.

AppleHarvestControl has no final state, and so [[stm]]
nops
S MB

never

terminates. Next, we sketch [[stm]]
nops
S MB

.

Example 4. Sketch of [[stm]]
nops
S MB

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
[[stm]]

nops
N C

|[{|interrupt|}]|Skip
)

\ {|entered|}
∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎣

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣

end,

get_id(img), set_id(img),

get_id(localized), set_id(localized),

get_id(nextApple), set_id(nextApple), ...

∣∣∣∣∣∣∣∣∣

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
⎛
⎜⎜⎜⎜⎜⎝

varMemory(stm)

|[{end}]|

constMemory(stm)

|[{end}]|

clocks(stm.clocks)

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

\

⎧
⎪⎨
⎪⎩

∣∣∣∣∣∣∣

end, get_id(img), set_id(img),

get_id(localized), set_id(localized),

get_id(nextApple), set_id(nextApple), ...

∣∣∣∣∣∣∣

⎫
⎪⎬
⎪⎭

The semantics defined by [[stm]]
nops
S MB

is reproduced in Exam-

ple 4. The behaviour is given in terms of the NodeContainer seman-

tics of stm, defined by another semantic function [[_]]
nops
N C

, which

we discuss below. It is constrained, first of all, by a parallel

composition with Skip, synchronizing on the channel interrupt to

block it. We recall that, as discussed in subsubsection 6.1.1, the

channel interrupt can be used by composite states to synchronize

their interruption with their children. A state machine, however,

is not interruptible, so this parallel composition makes interrupt

unavailable.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 33

The channel entered is hidden, given that entering of states is a

control flow mechanism, and thus is not visible in the semantics

of a state machine. This behaviour is then composed in parallel

with processes defined by application of the following metafunc-

tions:

• varMemory(stm), which defines a process similar to

sharedVarMemory(stm), models variables defined locally

in AppleHarvestControl, synchronizing on channels for getting

and setting the value of the variables img, localized and

nextApple.

• constMemory(stm), which models local constants, syn-

chronizing on channels for geting the value of constants

defined by the interfaces TimeConstants and Locations. For

brevity we elide them from the channel sets shown in

Example 4.

• clocks(stm.clocks), which models local clocks. The state

machine AppleHarvestControl has no clocks, so synchroniza-

tion on end is the only behaviour.

Finally, the event end controlling termination and the channels

for getting and setting the value of local variables and constants

are hidden.

NodeContainer The NodeContainer semantics of the machine

AppleHarvestControl is sketched in Example 5.

Example 5. Sketch of the semantics of [[stm]]
nops
N C

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
controlFlow(stm)nops

\ {|enter, exit, exited, internal|}

)

[[
takePic_.id(Prepare) ← takePic,

endGoHome_.id(GoingHome) ← endGoHome

]]

|[{|end, entered.id(Prepare), get_id(Prepare), ...|}]|

clocks({Prepare, ...})

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

\ {|get_id(Prepare), ...|}

The behaviour is given, first of all, in terms of another

metafunction controlFlow(stm)nops, discussed next.The channels

enter, exit, exited and internal are hidden, and channels modelling

transition triggers are renamed to conceal the identifiers of

states: takePic_id(Prepare), which accounts for the transition

between Prepare and LocalizeFruit, is renamed to takePic; and

endGoHome_id(GoingHome), for the transition between GoingHome

and endGoHome, is renamed to endGoHome. This process is

then composed in parallel with that defined by application

of the function clocks(...), synchronizing on end and channels

entered.id(n) and get_id(n) for each non-final State n in Apple-

HarvestControl. This allows the clocks process to be terminated

(end), and exchange of relevant information related to time

conditions: entering a state is signalled to the clocks process,

which records time and can provide the time since entering a

state via get_id(n) channels. In Example 5 the complete channel

set is elided, with only end and the channels related to the

state Prepare shown. The metafunction clocks, defined here

over a set of States, is applied to the set of non-final states of

AppleHarvestControl, which includes Prepare. Finally, the channels

for geting the time since entering a state, such as get_id(Prepare),

are hidden.

Control Flow The interaction between the Nodes and Transitions

of AppleHarvestControl is captured by the semantics sketched in

Example 6.

Example 6. Semantics of control flow of stm.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

composeTimedNodes(stm)nops⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

interrupt.id(i0) ← internal.id(i0),

interrupt.id(Prepare) ← takePic_.id(Prepare),

interrupt.id(Prepare) ← interrupt.id(stm),

set_id(positions) ← setL_id(positions), ...

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

|[cs ∪ {|share, setL_id(positions), ...|}]|⎛
⎜⎝

(enter.id(i0) → transitions(stm)nops)[[
share ← share,

share ← setL_id(positions), ...

]]
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[[
setL_id(positions) ← set_id(positions), ...

]]

where

cs =

{∣∣∣∣∣
end, enter, exit, exited, interrupt,

internal.id(i0), takePic_.id(Prepare), ...

∣∣∣∣∣

}

The behaviour is defined by the parallel composition of the

semantics of its Nodes, defined by application of a function

composeTimedNodes with channels interrupt renamed for each

transition (as discussed in subsubsection 6.1.1), and the semantics

of its transitions. There, the prefixing on enter.id(i0) requests

initialization of AppleHarvestControl’s Initial junction i0 before

proceeding further as defined by the metafunction application

transitions(stm)nops. Assignments in the semantics of Nodes

to Variables used to guard transitions need to be synchronized

with the semantics of the transitions to ensure the sequential

control flow is consistent. For example, the assignment to the

variable positions in the state GetApple may affect the evaluation

of the guard on the transition to GoingHome, so the processes

must synchronize on set_id(positions). On the other hand,

an assignment on a transition, such as that between Prepare

and LocalizeFruit, must happen independently, that is, without

synchronization. To define this protocol, we use renaming. In

the above example, writes from Nodes to positions take place

via set_id(positions). This channel is, however, renamed to

a setL_id(positions), which is used to synchronize with the

semantics of transitions by renaming share both to itself and

to setL_id(positions). Thus, any assignment to positions by a

Node is seen by the process transitions as a synchronization

on share. The new value can be queried via get_id(positions).

Finally, after the parallel composition, setL_id(positions) is

renamed to set_id(positions) so that other processes can observe

the assignments as before. In the example, the renaming and

synchronization with share involving other variables are elided.

The parallel composition also requires synchronization on the

channel set cs, comprising events end, enter, exit, exited and

interrupt related to control flow, and channels related to triggers

of transitions, such as internal.id(i0) and takePic_.id(Prepare). This

ensures consistent flow evolution.

This concludes the discussion of the semantics of RoboChart

machines. Next, we discuss open machines.

6.1.3. Open machines

In Example 7 we reproduce the semantics of the open state

machine depicted in subsubsection 38, of type CompOpenStateMa-

chine (see subsection 13), referred to as ostm, which is itself com-

posed of two open machines, ostm.left, that contains an EState

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

34 | A. Cavalcanti et al.

named Done with a single transition to a NodeNameRef named f0,

and ostm.right, containing an EFinal state named f0.

Example 7. decompBOM(LocalizeFruit): semantics for the

model shown in subsubsection 38.

The semantics is defined by the parallel composition of

the semantics of ostm.left, obtained by application of a

semantic function [[_]]
nops
BOS M

, that we explain in the

sequel, and that of ostm.right, synchronizing on

channels end, renter, and share. The new channel renter
allows the processes for ostm.left and ostm.right to

synchronize internally on the activation requests for

their shared states, while keeping the actual control

flow channel enter available for the processes for other

machines.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝ [[ostm.left]]

nops
BOS M[[

enter.id(f0) ← renter.id(f0)
]]
⎞
⎠

|[{|end, renter, share|}]|⎛
⎜⎜⎝

[[ostm.right]]
nops
BOS M[[

enter.id(f0) ← enter.id(f0),

enter.id(f0) ← renter.id(f0)

]]
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

\ {|renter|}

For example, in ostm.right, the entry point f0 coincides in name

with that of a NodeNameRef in ostm.left that is the target of a

transition from Done. Thus, the event enter.id(f0) is renamed to

renter.id(f0) in the process for ostm.left, and in the process for

ostm.right it is renamed to: (a) renter.id(f0), so that the transition to

theNodeNameRef can request activation of f0; (b) and to enter.id(f0),

so that composition with other open machines whose transitions

may also target f0 is feasible by allowing independent synchro-

nization with enter.id(f0). The new event renter is hidden.

The semantics of ostm.left, which, we recall, is a BasicOpen-

StateMachine, is sketched in Example 8. In this case, the seman-

tics is not given by a composition with a memory process, as

illustrated by Example 3. The semantics of an open machine is

closer to that of a State, illustrated by Example 2, and is also

defined using a let. . .within block. For amachine, however, instead

of an Activation process, we have just the Active process, because

a machine does not need to report on the status of its activation.

An active machine also has no (entry) actions, so Active is simpler.

Similarly, a machine has no during action and no need to report

on its exiting. Finally, the Behaviour of the machine is triggered by

an enter, rather than entered, channel.

Example 8. Semantics of the left-hand machine in
decompBOM(LocalizeFruit) shown in subsubsection 38.

let

Inactive = SStop△(Termination�Active)

Termination = end → Skip

Active = Behaviour; Inactive

Behaviour = enter?i : {id(Done)} →⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

composeTimedNodes(stm)nops[[
interrupt.id(Done) ← internal.id(Done),

interrupt.id(Done) ← interrupt.id(stm)

]]
⎞
⎟⎠

[[{∣∣∣∣∣
share, end, enter, exit,

exited, interrupt, internal.id(t0)

∣∣∣∣∣

}]]

(enter.i → transitions(stm)nops)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

\ ({|enter, exit, exited, internal|} \ {|enter.id(f0)|})

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

\ {end}

within

Inactive

In Active, it offers to synchronize on enter with a parameter i

drawn from the set of identifiers of the machine’s entry points. In

this example, the set is a singleton, id(Done), since there is only

one entry point in ostm.left. The value of i is then subsequently

used to require activation of the stateDone, similarly to the control

flow semantics illustrated in Example 6. The parallel composition

and the renaming over composeTimedNodes are similar to those

in the control flow semantics of a RoboChart machine (see Exam-

ple 6). The subsequent hiding of channels enter, exit, exited, and

internal is similar to that of the NodeContainer semantics (as illus-

trated in Example 5), which uses the control flow semantics. The

exception here is that events enter pertaining to nodes referenced

by NodeNameRefs are excluded from the hiding, and so the event

enter.id(f0) is not hidden. This allows the composition with the

process for another machine, namely ostm.right in Example 7, to

reflect the sequential control flow, where, for example, the entry

point f0 in ostm.right is activated by the transition out of the state

Done in ostm.left. Similarly to a Final state, once a NodeNameRef is

activated, it can be terminated via synchronization on end, which

leads to the termination of Behaviour. As for RoboChart machines

(see Example 3), end is hidden. Afterwards, the open machine

becomes Inactive.

As said previously, equality of open machines is parametrised

by the OperationDefinitions for the operations that can be called

in these machines. Formally, OM1 =Op OM2 is defined as follows.

Here, [[_]]
nops
OS M

is the semantic function for OpenStateMachines,

which is defined in terms of those for BasicOpenStateMachines

and for CompOpenStateMachines, and like those, takes a parameter

that defines the semantics of operations. Below, that parame-

ter is the set defined by nops, including the semantics of the

operations other than Op, and the set containing just the pair

Op.name
→ [[Op]]
nops
OPD

that gives the semantics of Op as defined

by [[_]]_
OPD

.

OM1 =Op OM2 ⇐⇒

⎛
⎜⎜⎜⎝

[[OM1]]
nops∪

{
Op.name
→[[Op]]

nops

OPD

}

OS M

=

[[OM2]]
nops∪

{
Op.name
→[[Op]]

nops

OPD

}

OS M

⎞
⎟⎟⎟⎠

The openmachines OM1 and OM2 are related by =Op exactly when

their semantics are equal, as given by [[_]]_
OS M

with the parameter

as defined above.

This concludes the discussion of the semantics of open

machines. Next, we use the semantics to justify the soundness of

the normalization laws.

6.2. Proofs of soundness
In what follows,we justify the soundness of selected Laws 2 and 6.

First we formalize them, and then sketch our proofs of soundness

using the semantics. Results obtained as part of proving Law 2 are

useful to prove soundness of Laws 3, 15, and 16 following a similar

proof strategy. Similarly, results established for Law 6 are relevant

to justify that Laws 11 and 17 are sound. Complete proofs can be

found in [37].

6.2.1. Law 2 (intro-call-for-act-state)

Before presenting the formalization of Law 2, we first define a

relation that allows comparing state machines.

Relating structurally similar NodeContainers We recall that both

state machines and states are NodeContainers. The relation

(nc1,nc2) ≈N
N C

(nc3,nc4) allows us to compare a machine nc1

with a substate, at any level, nc2, to another machine nc3, whose

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 35

Figure 50. Example of the use of the relation ≈N
N C

between pairs
(M1, S2) and (M1′, S4). Here, it characterizes that M1 and M1′ are state
machines that differ in that the state S2 of M1 is replaced with S4 in M1′.

only difference is in that nc2 is replaced with nc4 in nc3. Informally,

(nc1,nc2) ≈N
N C

(nc3,nc4) if, and only if, (a) nc2 is equal to nc1 or

is one of its nodes (possibly indirectly, inside a composite state of

nc1, for instance); and (b) nc3 differs from nc1 just in that nc2 is

replaced with nc4 in nc3.

For the simple case, in which we want to replace a whole

machine with another, we do not require this relation. Equally, if

nc2 is a direct state of nc1, then (nc1,nc2) ≈N
N C

(nc3,nc4) holds

when

nc3 = nc1 ⊕ { nodes
→ (nc1.nodes \ {nc2}) ∪ {nc4},

trans
→ φ(nc2,nc4)(|nc1.trans |)}

where the transitions of nc1 that have nc2 as source or target are

changed to consider nc4 via the relational image (|_|) through φ

defined below. Here, we use the overriding operator (⊕) to change

the values of the attributes of an element of themetamodel, above

nc1, taking into account the pairs in a set: above, two pairs giving

new values to the attributes nodes and trans.

Below, φ is applied to NodeContainers nc5 and nc6 to define

a function from transitions to transitions. Here φ(nc5,nc6) is a

lambda function that applies to a transition t; if the source or

target of t is nc5, then it is replaced by nc6. Otherwise, no pairs are

added to the overriding set. Transitions may have a condition that

depends on the time since a state has been entered, so we apply

φexp, whose definition is omitted, to replace occurrences of nc5 by

nc6 also in that condition.

Definition 6.1.

φ(nc5,nc6) =

λt • t ⊕

⎧
⎪⎨
⎪⎩

if t.source = nc5 then source
→ nc6,

if t.target = nc5 then target
→ nc6,

cond
→ φexp(t.cond,nc5,nc6)

⎫
⎪⎬
⎪⎭

The more general relation (nc1,nc2) ≈N
N C

(nc3,nc4)

captures also situations in which nc2 is deeply

embedded in the structure of nc1. For example, in

Fig. 50, we relate a state S2 within the machine M1, and

a state S4 within M1′ using (M1, S2) ≈N
N C

(M1′, S4). The

machines M1 and M1′ are identical, except that S1 is

replaced by S1′, where S2 is replaced by S4. The

transitions of M1 that concern S1 instead refer to S1′ in

M1′, and similarly those of S1 that concern S2 instead

refer to S4 in S1′. Similarly, (S1, S2) is also related to

(S1′, S4) by ≈N
N C

. Its formal definition is below.

Definition 6.2.

(m, s) ≈N
N C

(m′, s′) ⇔ (m = s ∧ m′ = s′)∨

∃nc,nc′ : NodeContainer•

nc ∈ m.nodes ∧ #m.nodes = #m′.nodes∧

m′ = m ⊕

{
nodes
→ (m.nodes \ {nc}) ∪ {nc′}

trans
→ φ(nc,nc′)(|m.trans|)

}
∧

(nc, s) ≈N
N C

(nc′, s′)

It is defined over pairs of NodeContainers, such that:

1) (s, s) is related to (s′, s′) for arbitrary s and s′; or

2) (m, s) is related to (m′, s′) if, and only if,

a) there are NodeContainers nc and nc′, direct descendants

ofm andm′, given that we require (i) nc ∈ m.nodes, (ii) the

nodes m′.nodes of m′ can be characterized by adding nc′

after removal of nc; and (iii) the number of nodes in m

andm′ are the same (#m.nodes = #m′.nodes), so that nc′ is

not already in m;

b) the transitions of m′ can be characterized from those of

m using the function φ; and

c) (nc, s) is related to (nc′, s′) by ≈N
N C

.

Next, we use this relation in the formalization of Law 2. There,

the equality is stated over the semantics of StateMachineDefs m

and m′ as given by the semantic function [[_]]_
S MD

, which, as

explained in the previous section, is parametrised by the seman-

tics of operations: nops1 and nops2 above, which are partial

functions (|→) associating the Name of an operation with its

CSP process semantics. Afterwards, we have the declaration of

metavariables used in Law 2 giving their types.Namely,we declare

S, s, and IOpS, and actions, which capture model elements of the

state machines. In the diagram for Law 2, we use action s to refer

to an action of S; above, we use actions instead to represent that

action. We also use OpS(...) in the diagrammatic version of Law 2

to refer both to a call to an operation and to the signature used

in its definition. We here declare callOpS to represent the call, and

OpS to represent the operation itself.

Formalisation 1. (Law 2).

[[m:StateMachineDef]]nops1
S MD

= [[m′:StateMachineDef]]nops2
S MD

where

• S :State, s :Statement, IOpS : Interface,

• actions : Action,

• callOpS :Call, OpS : OperationDef

1. actions ∈ S.actions ∧ s = actions.action

2. OpS = actionOperation(s)

3. callOpS.op = opSig(OpS)∧callOpS.args = null

4. IOpS = {operations
→ {opSig(OpS)}}

5. nops2 = nops1 ∪ {OpS.name
→ [[OpS]]
nops1
OPD

}

6. (m ⊕ {RInterfaces
→ m.RInterfaces ∪ IOpS},S)

≈N
N C⎛

⎜⎝m′,S ⊕

⎧
⎪⎨
⎪⎩

actions
→

(S.actions\{actions})

∪ {actions ⊕ {action
→ callOpS}}

⎫
⎪⎬
⎪⎭

⎞
⎟⎠

�

Following the declarations, a list of numbered properties restrict

the values of the metavariables to capture the assumptions in

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

36 | A. Cavalcanti et al.

the diagram for Law 2. First, in A1, we record the fact that Law

2 uses actions as an Action of a State S and that s is the statement

of actions. We recall that the statement of an action is recorded

via an attribute named action according to the metamodel in

Fig. 5. A2 formalizes the definition of OpS using a metafunc-

tion actionOperation(s), defined in [37]; as the name suggests,

it defines an action operation for the given statement s, using

interfaces req˙s and defEvents˙s of Law 2. [A3] records the Call’s

target as the operation OpS and that there are no arguments.

[A4] formalizes the definition of the interface IOpS: its component

operations maps to the singleton set containing the signature of

OpS, obtained by a projection function opSig. [A5] states that the

parameter nops2 is defined by extending nops1 with the seman-

tics of OpS. Finally, A6 captures how the machine m′ is defined in

terms of m, after it is enriched with the required interface IOpS:

the only difference inm′ is that S has the original actions removed

and a new action added, so that the action attribute is replaced

by callOpS.

Law 2 and all the other laws for RoboChart machines apply to

both StateMachineDefs and OperationDefs; in other words, they are

laws of StateMachineBody. The formalization of Law 2 whenm and

m′ are OperationDefs is very similar to that presented above. There

are only two differences: the equality is for the semantics defined

by the function [[_]]_
OPD

, instead of [[_]]_
S MD

, and [A3] records that

the arguments to be passed in the Call are given by a function

usedArgs(s), which, as explained before, if m is an OperationDef,

captures the parameters of m used in s, if any.

Accordingly, the proof of Law 2 has two cases: one for StateMa-

chineDefs and another forOperationDefs.We sketch below the proof

for StateMachineDefs. ForOperationDefs, the proof strategy is similar

and simpler.

Proof. (Case StateMachineDefs m and m′) We define an action

a0 = actions ⊕ {action
→ callOpS}, a new state S0 = S ⊕ {actions
→

(S.actions\{actions}) ∪ {a0} that adds to S the action a0, and a

machine that extends m by including IOpS as an additional

required interface m0 = m ⊕ {RInterfaces
→ m.RInterfaces ∪ IOpS}, for

which we can establish the following results.

R1 (m0,S) ≈N
N C

(m′,S0);

R2 vars(S0) = vars(S), that is, the set of variables used in S and

S0 is the same;

R3 usedOps(a0) = usedOps(actions) ∪ {OpS}, since a0 calls OpS,

and in the definition of OpS, we have s. So, usedOps(S0) =

usedOps(S) ∪ {OpS}, that is, the set of operations used

by S0, those called by actions of S0, its substates or

transitions, is that used by S augmented with OpS, thus

we also have that usedOps(m′) = usedOps(m0) ∪ {OpS}, and

usedOps(m′) ∩ usedOps(m0) = usedOps(m0), that is, the

operations used by both m′ and m0 are the same. Therefore,

they behave the same:

∀op : usedOps(m′) ∩ usedOps(m0)•

[[nops1(op)]]
nops1
OPD

= [[nops2(op)]]
nops2
OPD

R4 [[S]]
nops1
N

= [[S0]]
nops2
N

, that is, the semantics of the state S0 is

the same as that of S.

�

We recall that the proofs of these results and all others omitted

here are in [37]. They justify the application of the two key lemmas

below. Lemma 6.1 establishes that requiring additional operations

has no impact on the semantics of a state machine.

Lemma 6.1. [Augment required operations]

[[m : StateMachineDef]]
nops1
S MD

=

[[m ⊕ {RInterfaces
→ m.RInterfaces ∪ RIopS}]]
nops1
S MD

Proof. Using the definition of [[_]]S MD , which does not rely on

the definition of required interfaces to give semantics to operation

calls. Instead, we recall, the semantics of operations is passed as

a parameter. Here, the argument nops1 is used on both sides of

the equation, thus, augmenting the required interfaces of m with

RIopS has no impact on the behaviour. �

Lemma 6.2 below can be seen as a more general account of

Law 2 in terms of the semantics of states. It establishes that the

semantics of two state machines m and m′ is the same when

(m, s) ≈N
N C

(m′, s′) and the semantics of states s and s′ is also

the same. Similarly to A6 in the formalization of Law 2, here P1

requires that (m, s) is related to (m′, s′) by ≈N
N C

, where s : State

constrains the type of s to be a State. Proviso P2 requires that

the variables used by s and s′ are the same, and P3 requires

that operations used by both machines have the same behaviour.

Proviso P4, in addition, states that the semantics of s′ and s,

given by a function [[_]]_
N

and parametrised by the semantics of

operations nops1 and nops2, respectively, must be equal.

Lemma 6.2.

[[m :StateMachineDef]]
nops1
S MD

= [[m′ :StateMachineDef]]
nops2
S MD

provided:

P1 (m, s : State) ≈N
N C

(m′, s′ : State)

P2 vars(s) = vars(s′)

P3

(
∀op : usedOps(m′) ∩ usedOps(m)•

[[nops1(op)]]
nops1
OPD

= [[nops2(op)]]
nops2
OPD

)

P4 [[s : State]]
nops1
N

= [[s′ : State]]
nops2
N

Proof. There are two cases to consider:

1) s ∈ m.nodes and s′ ∈ m′.nodes: so we can infer from Pro-

viso P1 that m.nodes and m′.nodes differ only in that s

is replaced by s′ in m′.nodes. Proviso P4 requires that the

behaviour of the states s′ and s is the same, so they engage

in the same control flow events enter.id(s), entered.id(s), and

interrupt.id(s), and so id(s) = id(s′) holds. Moreover, we can

infer that the semantics of Transitions involving these states

is the same. We recall that the control flow semantics of

NodeContainers is defined by a parallel composition of the

semantics of nodes and transitions, taking into account any

variables shared between them. Proviso P2 ensures that the

variables used by s and s′ are the same. From this and

Proviso P3 we can infer that the control flow semantics of m

and m′ match, as do their NodeContainer semantics given by

[[_]]_
N C

. We recall that the semantics of a StateMachineDef, as

given by [[_]]_
S MD

, is defined in terms of [[_]]_
N C

in a parallel

composition with a model of its variables and clocks. From

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 37

Proviso P1 the variables and clocks declared bym andm′ are

the same, and so [[m]]
nops1
S MD

= [[m′]]
nops2
S MD

as required.

2) s and s′ are not direct descendants of m and m′, so from

Proviso P1 and the definition of ≈N
N C

we can infer that there

exist substates z and z′ of m and m′, respectively, such that

(z, s) ≈N
N C

(z′, s′). We can show that [[z]]
nops1
N

= [[z′]]
nops2
N

. For

that, we consider the semantics of composite states, which

is defined in terms of their semantics as NodeContainers, that

is, using [[_]]_
N C

. In addition, in [37], we have a lemma that

is similar to Lemma 6.2 itself, but applies to states. Using

that lemma, we can establish the equality above concerning

z and z′. Proceeding, with this equality and Proviso P1, a

property of ≈N
N C

ensures that (m, z) ≈N
N C

(m′, z′). Then, by

an argument similar to that of case (1), we can lift this result,

given that [[z]]
nops1
N

= [[z′]]
nops2
N

, to show [[m]]
nops1
S MD

= [[m′]]
nops2
S MD

as required.
�

Using the lemmas and results above, soundness can be estab-

lished by a stepwise argument as follows, using Results R1 to R4

and Lemmas 6.1 and 6.2.

[[m]]
nops1
S MD

{Definition of m0 and lemma 6.1}

= [[m0]]
nops1
S MD

{Lemma 6.2 assuming R1 to R4 hold}

= [[m′]]
nops2
S MD

In summary, our overall strategy is to consider first an interme-

diate machine m0, which includes the required interface, but

no extra operation. Lemma 6.1 guarantees that the inclusion of

the extra interface has no effect on the semantics. We note that

although the new operation is in scope, it is not used, and so we

do not need to consider its semantics. We consider the semantics

of the new operation in the last step, justified by Lemma 6.2. This

is our key result in this section.

6.2.2. Law 6 (elim-deadline-transition)

As proved in the previous section, the processes defined by

[[_]]_
S MD

or [[_]]_
OPD

for the StateMachineDefs or OperationDefs m

and m′ identified in Law 2 have the same tock-CSP semantics.

For Law 6, tock-CSP equality holds for the semantics of the

StateMachineDefs characterized in the law. For OperationDefs,

however, Law 6 establishes a weaker notion of equality, captured

by a new relation ≈
α

M defined below, where α is a set of required

variables. The key point in this case is that, as established below,

if the semantics of two OperationDefs m and m′ are related by ≈
α

M,

then anymachines that differ just in that they callm′ rather than

m have the same semantics (either equal or related by ≈
α

M). So, the

weaker notion of equality is sufficient to justify transformations

that replace m with m′, whether they are StateMachineDefs or

OperationDefs.

OperationDef relation We recall that within the semantics of

machines (StateMachineDefs orOperationDefs),memory ismodelled

via CSP processes that offer to synchronize on channels to get_

the current value of a variable or clock, or set_ a new value. In

Law 6, in the semantics for the machine on the left-hand side of

the equality, the evaluation of the guard g, for example, occurs

before the evaluation of the expression d for the deadline. For

the machine on the right-hand side, g and d, used as arguments

for dop˙ds, are evaluated in parallel. For StateMachineDefs, the set_

and get_ channels are all hidden in the semantics, and this kind

of difference is not visible. For OperationDefs, however, whose

semantics, we recall, is given by [[_]]_
OPD

, both get_ and set_ events

related to the required variables are exposed (see Fig. 49). So, in the

case of Law 6, for example, if g and d involve required variables,

the semantics of theOperationDefs on the left and right-hand sides

are not equal.

In the semantics of any machine that calls such an operation,

however, all get_ events are hidden (see Fig. 49, where set_ events

show on the border of the outer box, but get_ events do not). So,

the semantics of a StateMachineDef that calls operations whose

semantics are processes that can differ in the order of get_ events,

but nothing else, does not expose these differences. So, our notion

of equality =S for OperationDefs does not require the order of get_

events (for shared variables) to be the same. It is defined in terms

of the new relation ≈
α

M over the semantics. To illustrate its role,

we consider the following examples.

Example 9.

P0 =get_g?g → get_d?d → get_g?x → e! (d+x) → Skip

P1 =get_g?g → get_d?d → e! (d+g) → Skip

Initially, process P0 is prepared to synchronize on get_g to

receive a value g, followed by similar prefixings on get_d and get_g

again. Afterwards, there is a prefixing on e with a value that is

the sum of d and x, followed by termination. When we consider

P0’s behaviour composed with a process modelling its memory,

the only visible event is e with a value that depends only on the

values communicated between P0 and the memory, but not on

the order of get_s. In that context, we can replace P0 by P1, where

the second prefixing on get_g is removed, and the value of g read

first is used in the output. In the context of a memory process,

the behaviour is identical, so, we have that P0 is related to P1 by

≈
{d,g}
M . This, however, is only valid because there are no set or share

events in between the get_s that could allow changes to values in

the memory in between share events. We consider the following

process P2, similar to P0, but including a share event.

Example 10.

P2 =
get_g?g → get_d?d → share → get_g?x →

e! (d+x) → Skip

In this example, in between the two get_g events, we have a

synchronization on share. With this, it means that the value of

g could change between the get_s, and we cannot disregard the

second get_g. The same holds, if, instead of share, we had a set_g

event.

The relation P ≈
α

M Q is defined below; it compares processes

LMem(P,α) and LMem(Q,α) instead of P and Q directly. With

LMem(P,α) (and similarly, LMem(Q,α)) what we have is P with a

copy of its associated memory for required variables, and with

the internal communications with that memory hidden. So, the

comparison between P and Q defined by P ≈
α

M Q is restricted to its

behaviour in context.

Figure 51 shows the process LMem(P,α), where we use αv to

denote a particular required variable.Thememory process LMemV

defines a context for P and has the following roles. (1) It is always

ready to interact with the environment on a get_αv channel,

whenever the value of v is known (set, as determined by αvset). (2)

It holds a local value of αv, which is used by P, via getL_αv events,

instead of get_αv events directly. (3) It, therefore, hides any order

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

38 | A. Cavalcanti et al.

Figure 51. Definition 6.3 – Pictorial representation of LMem(P, {αv}): the
process LMemV records the value of αv and whether its value is
initialized using a boolean αvset.

on get_αv events imposed by P. (4) It passes on any share events,

recording that the value of αv is then not known (αvset is false)

as it may have been changed by other processes. (5) It passes on

set_αv events, recording that the value of αv is now set. An extra

channel f is used by P to terminate the memory process, if P itself

finishes.

For example, if we assume that g and d are required variables,

we have the following results. LMem(P0, {g, d}) and LMem(P1, {g, d})

are the same, because after the initial get_s neither process offers

to synchronize in set_s or share, and so the following (internal)

getL_s happen without further interference. LMem(P2, {g, d}), on

the other hand, behaves differently. Although its initial behaviour

is the same as that of LMem(P0, {d, g}) and LMem(P1, {d, g}), after

synchronizing on share the memory process must refresh its

copy of the values of d and g before the next getL_g, namely via

additional synchronizations on get_d and get_g.

The definition below formalizes P ≈
α

M Q in terms of LMem as

suggested by the examples. Formally, in LMem(P,α) we have a

parallel composition of P, where, for each variable v in α, get_id(v)

is renamed to getL_id(v), with a process LMemV(α), that models

the local copy of the state of variables in α by synchronizing with

P on events getL_ instead of get_ (see Fig. 51). P is sequentially

composed with a prefixing on f , a fresh event, to terminate

the parallel composition with LMemV(α) after P terminates. The

synchronization set includes events getL_id(v) and set_id(v) for

all variables v in α, f , and share. The hiding of events getL_ and

f completes the definition. LMemV(α) is defined in [37].

Definition 6.3.

P ≈
α

M Q ⇐⇒ LMem(P,α) = LMem(Q,α)

where

LMem(P,α) =

⎛
⎜⎝

(
P [[v : α• get_id(v) ← getL_id(v)]] ; f → Skip

)

|[{|v : α• getL_id(v), set_id(v)|} ∪ {f , share}]|

LMemV(α)

⎞
⎟⎠

\ {|v : α• getL_id(v)|} ∪ {f }

Using≈
α

M we can then define another relation=S for comparing

OperationDefs that differ in their get_s.

Definition 6.4.

op1 =
(α,nops1 ,nops2)
S op2 ⇐⇒ [[op1]]

nops1
OPD

≈
α

M [[op2]]
nops2
OPD

Operations op1 and op2 are related by =
(α,nops1 ,nops2)
S exactly when

their semantics, given by [[_]]_
OPD

, is related by ≈
α

M. Here, α is a

set of variables and nops1 and nops2 are functions that define the

semantics of operations that op1 and op2 may call. (We consider

in the above definition just the simpler case in which op1 and

op2 do not have parameters, so that [[op1]]
nops1
OPD

and [[op2]]
nops2
OPD

are

processes, rather than functions from arguments to processes.

The generalization to require ≈
α

M to hold for each combination of

arguments is simple.) Importantly, Theorem 6.1 presented below

establishes that the semantics of StateMachineDefs is unaffected

by exchanging the definitions of an operation op if they are related

by =
(α,nops1 ,nops2)
S .

Theorem 6.1. Provided op1 =
(α,nops,nops)
S op2, where op1 and

op2 are OperationDefinitions with the same name op, α is

the set of variables required by op1 and op2, and nops

defines operations other than op, then for any

StateMachineDef m,

[[m]]
nops∪{op
→[[op1]]

nops

OPD
}

S MD
= [[m]]

nops∪{op
→[[op2]]
nops

OPD
}

S MD

Proof. Let nops1 = nops ∪ {op
→ [[op1]]
nops
OPD

} and nops2 = nops ∪

{op
→ [[op2]]
nops
OPD

}. There are two cases:

1) op is not called by m: so the semantics of op1 and op2 do

not affect that of the state machine m, and so [[m]]
nops1
S MD

=

[[m]]
nops2
S MD

, as required.

2) op is called by m: because m is well-formed, all vari-

ables required by op1 and op2 are either defined or

required by m, that is, α is a subset of localVariables(m) ∪

requiredVariables(m). So, let α = β ∪ γ , where β and γ are

disjoint sets, β is a subset of local variables of m and γ

is a subset of required variables of m. Therefore, from the

proviso, we have that op1 =
(β∪γ ,nops,nops)

S op2, and by definition

[[op1]]
nops

OPD
≈

β∪γ

M [[op2]]
nops

OPD
. Therefore, the semantics of calls

to op1 and op2, given by the copy rule, is likewise related

by ≈
β∪γ

M . The result then follows by three lemmas that lift

this result (see Fig. 49) to (1) the NodeContainer semantics of

m (to obtain [[m]]
nops1
N C

≈
β∪γ

M [[m]]
nops2
N C

), (2) from this to the

StateMachineBody semantics of m, (to obtain [[m]]
nops1
S MB

≈
γ

M

[[m]]
nops2
S MB

), and finally (3) to the StateMachineDef semantics

of m, obtaining [[m]]
nops1
S MD

= [[m]]
nops2
S MD

as required.
�

The lemmas used in the above proof are in [37], and we present

below the last of these for illustration.

Lemma 6.3. Provided [[m]]
nops1
S MB

≈
α

M [[m]]
nops2
S MB

, where

α ⊆ requiredVariables(m), then [[m]]
nops1
S MD

= [[m]]
nops2
S MD

.

Proof. We recall that the StateMachineDef semantics for m

is defined by a parallel composition of its StateMachineBody

semantics and the memory process for required variables, with

the get_ events hidden. In that composition (by a lemma in

[37]) we can replace [[m]]
nops1
S MB

with LMem([[m]]
nops1
S MB

,α) because

LMem([[m]]
nops1
S MB

,α) only places, between [[m]]
nops1
S MB

and the

memory process, an LMemV process (see Fig. 51) that caches a

local value for the required variables and passes every other com-

munication on to [[m]]
nops1
S MB

. From the proviso and the definition of

≈M we have that LMem([[m]]
nops1
S MB

,α) = LMem([[m]]
nops2
S MB

,α). So, we

can make the following argument, where we indicate the parallel

composition using ‖, the memory process as MP, and the set of

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 39

channels being hidden as {|get_, . . . |}.

[[m]]
nops1
S MD

= ([[m]]
nops1
S MB

‖ MP) \ {|get_, . . . |}

= (LMem([[m]]
nops1
S MB

,α) ‖ MP) \ {|get_, . . . |}

= (LMem([[m]]
nops2
S MB

,α) ‖ MP) \ {|get_, . . . |}

= ([[m]]
nops2
S MB

‖ MP) \ {|get_, . . . |}

= [[m]]
nops2
S MD �

With Theorem 6.1, we ensure that application of Law 6 to

operations called in StateMachineDefs is sound, because, as shown

below, Law 6 establishes =S.

Law 6, stated diagrammatically in Section 4.1, is formalized and

proved sound below.Asmentioned, the equality holds for StateMa-

chineDefs, while for OperationDefs we have the relation ≈
rv
M , where

rv is the subset of variables required bym and used in the guard or

deadline of a transition whose deadline is removed by application

of Law 6 (from left to right).

Formalisation 2 (Law 6).

[[m:StateMachineDef]]
nops1
S MD

= [[m′:StateMachineDef]]
nops2
S MD

where

• S,S′ : State, ds : Statement, Idop_ds : Interface,

• actionds : During, td : Transition,

• nc : NodeContainer,

• dop_ds : OperationDef, calldop_ds : Call

A1. actionds ∈ S.actions ∧ ds = actionds.action

A2. S ∈ nc.nodes

A3.

(
td ∈ nc.transitions ∧ td.deadline �= null∧

td.source = S

)

A4. dop_ds = dop_dsOperation(ds, td)

A5. Idop_ds = {operations
→ {opSig(dop_ds)}}

A6.

(
calldop_ds.op = opSig(dop_ds)∧

calldop_ds.args = usedArgs(d, td.condition,ds)

)

A7. nops2 = nops1 ∪ {dop_ds.name
→ [[dop_ds]]OPD}

A8. S′ = S ⊕

⎧
⎪⎨
⎪⎩

actions
→

(S.actions\{actionds})

∪ {actionds ⊕ {action
→ calldop_ds}}

⎫
⎪⎬
⎪⎭

A9. (m ⊕ {RInterfaces
→ m.RInterfaces ∪ Idop_ds},nc)

≈N
N C⎛

⎜⎜⎜⎝m
′,nc ⊕

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

nodes
→ (nc.nodes \ {S}) ∪ {S′}

trans
→

(nc.trans \ {td})∪

{φ(S,S′)(td ⊕ {deadline
→ null})}

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

�

Similarly to the formalization of Law 2, we have the declara-

tion of metavariables used in Law 6. Namely, we declare S, ds,

Idop_ds, actionds and td, which capture model elements of the

state machines. We use S′ to refer to the state on the right-

hand side of Law 6. The NodeContainer nc is used to capture the

State, StateMachineDef orOperationDef that contains the state S and

its outgoing transition td. As before, in the diagram for Law 6

we use dop_s(...) to refer both to a call to an operation and to

the signature used in its definition. Here we declare calldop_s to

represent the call, and dop_s to represent the operation itself.

Following the declarations, there is a list of numbered prop-

erties restricting the values of the metavariables. First, in A1, we

record the fact that Law 6 uses actionds as a during action of S

and that ds is the statement of actionds. The case where S has no

during action is omitted for simplicity, but can be accounted, for

example, by considering ds as skip, which terminates immediately.

A2 requires S to be one of nc’s states. A3 states that td is one

of nc’s transitions with a deadline and whose source is State

S. A4 formalizes the definition of dop_ds using a metafunction

dop_dsOperation(ds, td), defined in [37]; it defines an operation

for the given statement ds and transition td, using interfaces

req˙d˙g˙ds, defEvents˙ds and Idop˙ds and IdeadlineCheck. A5 formal-

izes the definition of the interface Idop˙ds, where its component

operations maps to the singleton set containing the signature of

dop˙ds. A6 records the Call’s target as the operation calldop_s and

that the arguments to be passed, if any, are given by a function

usedArgs(...). A7 states that the parameter nops2 is defined by

extending nops1 with the semantics of dop˙ds. A8 captures how

S′ is defined in terms of S, where the original action actionds is

replaced by calldop_s. Finally, A9 captures how the machine m′

is defined in terms of m, after it is enriched with the required

interface Idop_s. The difference inm′ is that the NodeContainer nc,

a descendant state ofm or itselfm, has S removed and a new state

S′ added; and td removed and replaced by a transition where the

deadline is set to null and any use of S is replaced by S′ using

φ, defined previously in Section 6.2.1. The proof of soundness for

Law 6 in [37] is sketched below.

Proof. There are two cases to consider: m and m′ are StateMa-

chineDefs or OperationDefs.We focus on the latter given that equal-

ity for StateMachineDefs can be established by a further application

of Lemma 6.3. For

• m0 = m ⊕ {RInterfaces
→ m.RInterfaces ∪ Idop_ds},

• td0 = φ(S,S′)(td ⊕ {deadline
→ null}),

• a0 = {actionds ⊕ {action
→ calldop_ds}},

• nc0 = nc ⊕

{
nodes
→ (nc.nodes \ {S}) ∪ {S′},

trans
→ (nc.trans \ {td}) ∪ {td0}

}

• uv =

(
usedVariables(td.condition)

∪usedVariables(td.deadline)

)

we can establish the following results.

R1. (m0,nc) ≈N
N C

(m′,nc0);

R2. vars(nc) = vars(nc0);

R3. usedOps(S′) = usedOps(S) ∪ {dop_ds}, that is, the set of

operations used by S′, those called by actions of S′, its

substates or transitions, is that used by S augmented

with dop_ds, thus we also have that usedOps(m′) =

usedOps(m0) ∪ {dop_ds}, andusedOps(m′) ∩ usedOps(m0) =

usedOps(m0), that is, the operations used by bothm′ andm0

are the same. Therefore, they behave the same:

∀op : usedOps(m′) ∩ usedOps(m0)•

[[nops1(op)]]
nops1
OPD

= [[nops2(op)]]
nops2
OPD

R3. [[nc]]
nops1
N C

≈
uv
M [[nc0]]

nops2
N C

, that is, the semantics of the Node-

Containers nc0 and nc is related by ≈
uv
M , where uv are vari-

ables used in the condition or deadline of td, and rv ⊆

requiredVars(m) ∩ uv, the subset of uv that is required by

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

40 | A. Cavalcanti et al.

m. Proving this result requires showing that the parallel

composition of the semantics of S with its transition (td)

deadline semantics is equivalent to that of S′, where there is

no deadline on transition td0 and instead the during action

is replaced by a call to dop˙ds.

They justify the application of the following key lemma.

Lemma 6.4

[[m :NodeContainer]]nops1
N C

≈
α

M [[m′ :NodeContainer]]nops2
N C

provided:

P1. (m,nc) ≈N
N C

(m′,nc′)

P2. vars(nc) = vars(nc′)

P3.

(
∀op : usedOps(m′) ∩ usedOps(m)•

[[nops1(op)]]
nops1
OPD

= [[nops2(op)]]
nops2
OPD

)

P4. [[nc]]
nops1
N C

≈
α

M [[nc′]]
nops2
N C

Proof. The proof strategy is similar to that in the proof of Lemma

6.2. The base case, when m = nc and m′ = nc′ hold directly, with

the other cases established by induction using the definitions of

[[_]]N C and ≈N
N C

, and the semantics of composite states. �

Using the lemmas and results above, soundness can be estab-

lished by a stepwise argument as follows, using Results R1 to

R4, a version of Lemma 6.1 for OperationDefs, and Lemma 6.4.

First, we have that [[m]]
nops1
S MB

is equal to [[m0]]
nops1
S MB

using the

definition of m0 and Lemma 6.1. So the proof requires showing

that [[m0]]
nops1
S MB

and [[m′]]
nops2
S MB

are related by ≈M. By a Lemma

in [37], we have [[nc]]
nops1
N C

≈
uv
M [[nc0]]

nops2
N C

, and so using Lemma

6.4 we have [[m0]]
nops1
N C

≈
uv
M [[m′]]

nops2
N C

. Finally, this result can be

lifted to show that [[m0]]
nops1
S MB

≈
rv
M [[m′]]

nops2
S MB

, as required, using

a lifting from the NodeContainer semantics to the StateMachineBody

semantics as used in case 2 of Theorem 6.1’s proof.

Finally, we note that if m and m′ are StateMachineDefs, we can

further apply Lemma 6.3 to obtain equality.

7. CONCLUSIONS

This paper presents what is, as far as we know, the first set

of transformations for timed UML-like state machines, with

accompanying proofs of soundness and notions of completeness

based on normal forms. We consider machines in both a closed

(RoboChart machines) and an open context. Most importantly, we

considermachines that can specify time properties.Moreover, our

laws and normalization procedures are implemented to provide

practical normalization engines.

RoboChart is unique as a statechart-based notation with

support for time modelling and closed components, and a formal

semantics. The open state machines are closer to those in

traditional Statecharts [49], UML [5] and SysML [50], but also

support a rigorous approach to time modelling. This unique

approach,with a process algebraic semantics, can be incorporated

in other statechart-based notations. In this sense, our results

are concerned with a time modelling approach, rather than just

RoboChart or even open machines.

On the other hand, our notations do not include the whole

repertoire of constructs of UML and SysML, for example. To keep

formalization of models tractable, we have eliminated facilities

such as inter-level transitions, which make compositional rea-

soning difficult, if not impossible. Writing models that require

elaborate control flows that are not directly supported is normally

possible via an encoding using variables. For example, we can

model completion events using boolean variables to guard transi-

tions and ensure they are enabled only when all internal activity

of a state has finished.

Our laws embed a reasoning and normalization approach that

can inform similar techniques for other notations. Those that

offermore restricted facilities to deal with data and states, such as

automata, can benefit from simpler versions of the laws. (Timed

automata [51] provide extensive support for time modelling, but

not for structured modelling, using rich data, state hierarchies

and action-based control.) Reliance on our soundness argument

requires a process-algebraic semantics, but considering sound-

ness in other semantic contexts is an interesting avenue of further

study.

To prove soundness of our laws, it has been beneficial to

rework the semantics of RoboChart state machines to provide a

compositional formulation. Two aspects have been changed. The

semantics of operations is now captured by the copy rule, and the

semantics of a composite state is given just in terms of that of its

state machine. As a result, the notion of NodeContainer is given a

semantics in its own right, and this provides a direct connection

with the semantics of open machines. All this simplifies the

semantics, facilitating proof, and, as it turns out, reducing the

number of states of the CSP model and improving efficiency of

model checking.

Previous work on refinement laws for state machines has been

carried out in the context of SysML [52]. In that approach, a

notion of refinement is defined for state machines in the context

of block diagrams, which are used to define systems (and their

components) in SysML. Similarly, here we define refinement for

machines in the context of modules. The objective in [52] is

to compare systems at different levels of abstraction. Here, we

restrict ourselves to equalities, but do define equality as mutual

refinement. To enable refinement reasoning, extensions to SysML

are proposed in [52] to support, for example, hiding and a well-

defined action language based on CSP. Hiding is already available

in RoboChart (via block containment), since RoboChart is a lan-

guage developed to support formal verification (by refinement).

Consequently, some of the laws in [52] potentially have a counter-

part as laws of open machines, and vice versa. We note, however,

that the SysML machines do not have time constructs.

In [53], the authors propose a set of laws for UML-RT [54], a UML

profile with a clear definition for reactive components and com-

ponent protocols, useful to describe concurrent and distributed

domains. The focus of the laws is on the new elements that UML-

RT adds to UML: active classes (capsules), protocols, ports and

connections. Laws are not concerned with UML-RT statecharts

in their own right, but in the context of the decomposition of

active classes. The normal form removes parallelism. That work

can be considered complementary to our contribution here, as it

addresses concurrency, but not time constructs.

To summarize, our work considers a rich state-machine nota-

tion in terms of its support to specify time properties. As far as

we know, we provide the only set of sound and complete laws for

timed state machines.

DATA AVAILABILITY STATEMENT

Supporting material is available in [37] yellowand robostar.cs.

york.ac.uk as explicitly indicated in the body of the paper.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

Laws of Timed State Machines | 41

ACKNOWLEDGMENTS

Our work is funded by Brazilian Research Councils, via project

INES, grants CNPq/465614/2014-0 and FACEPE/APQ/0388-1.03/14,

the Royal Academy of Engineering, grant CiET1718/45 and the UK

EPSRC, grants EP/R025479/1 and EP/V026801/1. We are also grate-

ful tomembers of the RoboStar (robostar.cs.york.ac.uk) centre and

to anonymous referees for useful discussions and suggestions.

REFERENCES

1. Park, H.W., Ramezani, A. and Grizzle, J.W. (2013) A finite-

state machine for accommodating unexpected large ground-

height variations in bipedal robot walking. IEEE Trans. Robot., 29,

331–345.

2. Rabbath, C.A. (2013) A finite-state machine for collaborative

airlift with a formation of unmanned air vehicles. J. Intell. Robot.

Syst., 70, 233–253.

3. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E.,

Grixa, I.L., Ruess, F., Suppa, M. and Burschka, D. (2012) Toward

a fully autonomous UAV: research platform for indoor and

outdoor urban search and rescue. IEEE Robot. Autom. Mag., 19,

46–56.

4. The MathWorks, Inc Stateflow and Stateflow coder 7 User’s

guide. www.mathworks.com/products.

5. OMG (2015) OMG Unified Modeling Language.

6. OMG (2012) OMG systems Modeling language (OMG SysML).

Version, 1, 3.

7. Hoare, C.A.R., Hayes, I.J., Morgan, C.C., Roscoe, A.W., Sanders,

J.W., Sorensen, I.H., Spivey, J.M. and Sufrin, B.A. (1987) Laws of

programming. Commun. ACM, 30, 672–686.

8. Morgan, C.C. (1994) Programming from Specifications (2nd edn).

Prentice-Hall.

9. Jifeng, H. and Bowen, J. (1994) Specification, verification, and

prototyping of an optimized compiler. Form. Asp. Comput., 6,

643–658.

10. Sampaio, A.C.A. (1997) An Algebraic Approach to Compiler Design,

AMAST Series in Computing, 4. World Scientific.

11. Duran, A., Cavalcanti, A.L.C. and Sampaio, A.C.A. (2010) An alge-

braic approach to the Design of Compilers for object-oriented

languages. Form. Aspects Comput., 22, 489–535.

12. Fowler, M. (1999) Refactoring. Addison-Wesley.

13. Opdyke,W. (1992) Refactoring Object-oriented Frameworks PhD the-

sis. University of Illinois at Urban Champaign.

14. Cornélio,M., Cavalcanti, A.L.C. and Sampaio,A.C.A. (2010) Sound

Refactorings. Sci. Comput. Program., 75, 106–133.

15. Roscoe, A.W. and Hoare, C.A. (1988) The Laws of occam program-

ming. Theor. Comput. Sci., 60, 177–229.

16. Bird, R. and de Moor, O. (1997) Algebra of Programming. Prentice-

Hall.

17. Seres, S., Spivey,M.andHoare,T. (1999) Algebra of logic program-

ming. ICPL’99..

18. Borba, P.H.M., Sampaio, A.C.A., Cavalcanti, A.L.C. and Cornélio,

M.L. (2004) Algebraic reasoning for object-oriented program-

ming. Sci. Comput. Program., 52, 53–100.

19. Zeyda, F. and Cavalcanti, A.L.C. (2015) Laws of mission-based

programming. Form. Asp. Comput., 27, 423–472.

20. Perna, J.I., Woodcock, J.C.P., Sampaio, A.C.A. and Iyoda, J. (2011)

Correct hardware synthesis - an algebraic approach.Acta Inform.,

48, 363–396.

21. Lano, K. and Evans, A. (1999) Rigorous development in uml. In

Finance, J.-P. (ed) Fundamental Approaches to Software Engineering,

Berlin, Heidelberg, pp. 129–143. Springer, Berlin Heidelberg.

22. Breu, R., Grosu, R., Huber, E., Rumpe, B. and Schwerin, W. (1998)

Systems, views and models of uml. In Schader, M., Korthaus, A.

(eds) The Unified Modeling Language, pp. 93–108. Physica-Verlag

HD.

23. Broy, M., Cengarle, M.V. and Rumpe, B. (2007) Semantics of UML -

Towards a SystemModel for UML: The State Machine Model Technical

Report TUM-I0711. Institut für Informatik, Technische Univer-

sität München.

24. Kuske, S., Gogolla, M., Kollmann, R. and Kreowski, H.-J. (2002)

An Integrated Semantics for UML Class, Object and State Dia-

grams Based on Graph Transformation. In Butler, M., Petre, L.,

SereKaisa, K. (eds) Integrated Formal Methods, Lecture Notes in

Computer Science (Vol. 2335), pp. 11–28. Springer.

25. Café, D.C., dos Santos, F.V., Hardebolle, C., Jacquet, C. and

Boulanger, F. (2013) Multi-paradigm semantics for simulating

sysml models using systemc-ams. Forum Specification Des. Lang.,

1–8.

26. Davies, J. and Crichton, C. (2003) Concurrency and refine-

ment in the unified modeling language. Form. Asp. Comput., 15,

118–145.

27. Rasch, H. and Wehrheim, H. (2003) Checking consistency in

UML diagrams: Classes and state machines. In Najm, E., Nest-

mann, U., Stevens, P. (eds) Formal Methods for Open Object-Based

Distributed Systems, Lecture Notes in Computer Science (Vol. 2884),

pp. 229–243. Springer.

28. Lima, L., Miyazawa, A., Cavalcanti, A.L.C., Cornélio, M., Iyoda, J.,

Sampaio, A.C.A., Hains, R., Larkham, A. and Lewis, V. (2017) An

integrated semantics for reasoning about SysML design models

using refinement. Softw. Syst. Model., 16, 875–902.

29. Miyazawa, A. and Cavalcanti, A.L.C. (2012) Refinement-

oriented models of Stateflow charts. Sci. Compu. Program., 77,

1151–1177.

30. Bergstra, J.A. and Ponse, A. (2002) Combining programs and state

machines. J. Log. Algebr. Program., 51, 175–192.

31. Brunner, S. G., Steinmetz, F., Belder, R., and Domel, A. (2016)

Rafcon: a graphical tool for engineering complex, robotic tasks.

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 3283–3290.

32. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J. and

Woodcock, J.C.P. (2019) RoboChart: modelling and verification

of the functional behaviour of robotic applications. Softw. Syst.

Model., 18, 3097–3149.

33. Nordmann, A., Hochgeschwender, N., Wigand, D. and Wrede, S.

(2016) A survey on domain-specific modeling and languages in

robotics. J. Softw. Eng. Robot., 7, 75–99.

34. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A. L. C., and Timmis,

J. (2017) Automatic property checking of robotic applications.

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 3869–3876.

35. Roscoe, A.W. (1998) The Theory and Practice of Concurrency Prentice-

Hall Series in Computer Science. Prentice-Hall.

36. Davidson, J. R., Silwal, A., Hohimer, C. J., Karkee, M., Mo, C., and

Zhang, Q. (2016) Proof-of-concept of a robotic apple harvester.

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 634–639.

37. Cavalcanti, A.L.C., Filho, M.C., Ribeiro, P. and Sampaio, A.C.A.

(2022) Laws of timed state machines – extended version Technical

report. RoboStar Centre on software engineering for robotics

Available at robostar.cs.york.ac.uk/publications/techreports/

reports/CCFRS22.pdf.

38. Paige, R. F., Kolovos, D. S., Rose, L. M., Drivalos, N., and Polack, F.

A. C. (2009) The design of a conceptual framework and technical

infrastructure for model management language engineering.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

42 | A. Cavalcanti et al.

2009 14th IEEE international conference on engineering of complex

computer systems, pp. 162–171.

39. Ye, K., Cavalcanti, A.L.C., Foster, S., Miyazawa, A. and Wood-

cock, J.C.P. (2021) Probabilistic modelling and verification using

RoboChart and PRISM. Softw. Syst. Model., 21, 667–716.

40. Gibson-Robinson, T., Armstrong, P., Boulgakov, A. and Roscoe,

A.W. (2014) FDR3 - a modern refinement checker for CSP. Tools

Algorithms Constr. Anal. Syst., 187–201.

41. Kwiatkowska, M., Norman, G. and Parker, D. (2004) Probabilistic

symbolic model checking with PRISM: a hybrid approach. Int. J.

Softw. Tools Technol. Transfer, 6, 128–142.

42. Dixon, C., Winfield, A.F.T., Fisher, M. and Zeng, C. (2012) Towards

temporal verification of swarm robotic systems. Robot. Auton.

Syst., 60, 1429–1441.

43. Cavalcanti, A.L.C., Sampaio, A.C.A., Miyazawa, A., Ribeiro, P.,

Filho, M.C., Didier, A., Li, W. and Timmis, J. (2019) Verified sim-

ulation for robotics. Sci. Comput. Program., 174, 1–37.

44. Baxter, J., Ribeiro, P. and Cavalcanti, A.L.C. (2022) Sound reason-

ing in tock-CSP. Acta Inform., 59, 125–162.

45. Milner, A.J.R.G. (1983) Calculi for synchrony and asynchrony.

Theor. Comput. Sci., 25, 267–310.

46. Milner, R. (1999) Communicating and Mobile Systems: the π-calculus.

Cambridge University Press.

47. Bergstra, J.A. and Klop, J.W. (1985) Algebra of communicating

processes with abstraction. Theor. Comput. Sci., 37, 77–121.

48. Miyazawa, A., Ribeiro, P., Ye, K., Cavalcanti, A.L.C., Li, W., Timmis,

J. and Woodcock, J.C.P. (2020) RoboChart: Modelling, Verification

and Simulation for Robotics Technical report. University of York,

Department of Computer Science, York, UK Available at www.

cs.york.ac.uk/robostar/notations/.

49. Harel, D. (1987) Statecharts: a visual formalism for complex

systems. Sci. Comput. Program., 8, 231–274.

50. OMG (2017). OMG systems Modeling language (OMG SysML),

Version 2.0.

51. Alur, R. and Dill, D.L. (1994) A theory of timed automata. Theor.

Comput. Sci., 126, 183–235.

52. Miyazawa, A. and Cavalcanti, A.L.C. (2014) Refinement-based

verification of implementations of Stateflow charts. Form. Asp.

Comput., 26, 367–405.

53. Ramos, R., Sampaio, A. C. A., and Mota, A. C. (2006) Transforma-

tion laws for UML-RT. In Gorrieri, R. and Wehrheim, H. (eds.),

8th IFIP WG 6.1 International Conference onFormal Methods for Open

Object-Based Distributed Systems, Lecture Notes in Computer Science,

4037, pp. 123–137. Springer.

54. Selic, B. and Rumbaugh, J. (1998) Using UML for modeling complex

real-time systems Technical report. ObjecTime Limited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

o
m

jn
l/b

x
a
d
1
2
4
/7

4
9
2
0
1
1
 b

y
 J

 B
 M

o
rre

ll L
ib

ra
ry

, U
n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 3

1
 J

a
n
u
a
ry

 2
0
2
4

	 Laws of Timed State Machines
	1. INTRODUCTION
	2. OUR MACHINE NOTATIONS
	3. NORMAL FORMS
	4. NORMALIZATION AND LAWS
	5. EXAMPLES AND TOOL
	6. SOUNDNESS
	7. CONCLUSIONS
	DATA AVAILABILITY STATEMENT

