
This is a repository copy of A Domain-Specific Language for Monitoring ML Model 
Performance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208524/

Version: Accepted Version

Proceedings Paper:
Kourouklidis, Panagiotis, Kolovos, Dimitris orcid.org/0000-0002-1724-6563, Noppen, Joost
et al. (1 more author) (2023) A Domain-Specific Language for Monitoring ML Model 
Performance. In: Proceedings - 2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS-C 2023. 2023 ACM/IEEE 
International Conference on Model Driven Engineering Languages and Systems, 
MODELS-C 2023, 01-06 Oct 2023 Proceedings - 2023 ACM/IEEE International 
Conference on Model Driven Engineering Languages and Systems Companion, MODELS-
C 2023 . Institute of Electrical and Electronics Engineers Inc. , SWE , pp. 266-275. 

https://doi.org/10.1109/MODELS-C59198.2023.00056

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Domain-Specific Language for

Monitoring ML Model Performance

Panagiotis Kourouklidis

University of York

British Telecom

Ipswich, United Kingdom

panagiotis.kourouklidis@york.ac.uk

Dimitris Kolovos

University of York

York, United Kingdom

dimitris.kolovos@york.ac.uk

Joost Noppen

British Telecom

Ipswich, United Kingdom

johannes.noppen@bt.com

Nicholas Matragkas

Université Paris-Saclay

Paris, France

nicholas.matragkas@york.ac.uk

Abstract—As machine learning (ML) starts to offer competitive
advantages for an increasing number of application domains,
many organisations invest in developing ML-enabled products.
The development of these products poses unique challenges
compared to traditional software engineering projects and re-
quires the collaboration of people from different disciplines. This
work focuses on alleviating some of these challenges related to
implementing monitoring systems for deployed ML models. To
this end, a domain-specific language (DSL) is developed that data
scientists can use to declaratively define monitoring workflows.
Complementary to the DSL, a runtime component is developed
that implements the specified behaviour. This component is
designed to be easily integrated with the rest of an organisation’s
ML platform and extended by software engineers that do not
necessarily have experience with model-driven engineering. An
evaluation of the proposed system that supports the validity of
the approach is also presented.

Index Terms—Machine Learning, Model-Driven Engineering,
Dataset Shift, MLOps

I. INTRODUCTION

In recent years, machine learning (ML) approaches have

found a lot of success across various application domains.

According to Delloite’s latest state of AI report [1], 94% of

business leaders agree that AI is critical to success over the

next five years. However, while interest in the technology is

very high, organisations are finding it challenging to deploy

production AI systems, with the above report listing ”lack of

technical skills” as a major challenge and Gartner reporting

that while launching AI pilot projects is relatively easy, turning

them into production systems is ”notoriously challenging” [2].

These challenges are not a new phenomenon. Researchers

from Google, an organization that was an early adopter of

ML in production, argue that ML systems are challenging

to implement as they have all the challenges of traditional

software systems in addition to ML-specific issues [3]. Ad-

ditionally, they claim that in ML systems, only a fraction of

the code is ML-specific, with the rest of the code concerning

typical software system aspects such as data management

or infrastructure configuration. This duality of ML systems

often means their development needs multi-disciplinary teams

comprising software engineers and data scientists. Nahar et al.

[4] find that this collaboration between people from different

disciplines brings unique challenges. One reported challenge

is the potential mismatch between the responsibilities assigned

to a person and their capabilities and preferences. Specifically,

data scientists prefer to receive support with software engi-

neering tasks rather than doing it all themselves. On the other

hand, software engineers find it challenging to perform ML

tasks due to a lack of domain knowledge. Additionally, the

use of different terminology in the two disciplines can lead

to ambiguity, misunderstandings and inconsistent assumptions.

Finally, they report that many of these conflicts stem from the

lack of clear responsibility boundaries and recommend that

teams should carefully define them.

The work presented in this paper focuses on the last stage of

the ML lifecycle, the continuous monitoring of deployed ML

models to ensure that they perform as expected. Monitoring

is important as complex interactions between algorithms and

data can lead to ML models failing unexpectedly, potentially

exposing their operators to adverse economic and legal con-

sequences. Organisations consider these AI-related risks to be

major barriers to AI adoption [1].

Despite its importance, Nahar et al. report that most organ-

isations do not perform monitoring as it is considered difficult

[4]. In light of this, we propose a model-driven engineering

(MDE) approach with the aim of enabling data scientists to

deploy ML monitoring workflows while maintaining a clear

boundary between data science and software engineering tasks.

The proposed solution, named Panoptes, comprises a domain-

specific language (DSL), which data scientists can use to

produce high-level specifications of monitoring workflows and

a runtime component that implements the specified workflow.

This runtime component makes minimal assumptions about

its deployment environment and can interface with other com-

ponents developed by an organisation’s software engineers.

Based on an empirical study conducted with the participation

of data scientists, we find that they can, with little effort,

familiarise themselves with the developed DSL and utilise

it effectively to specify monitoring workflows. Additionally,

participants’ qualitative evaluations indicate that the proposed

solution has the potential to significantly reduce the effort

required for the implementation of monitoring. Finally, to

ensure that the proposed solution can cover a wide range of

scenarios, three case studies based on externally developed

ML models of different input and output modalities and

implementation technologies were investigated.



The rest of this paper is structured as follows: Section II

provides an overview of the work. Section III introduces an

illustrative example used throughout the paper and discusses

the theoretical considerations of the ML monitoring domain.

Section IV introduces Panoptes Description Language (PDL),

the DSL developed for data scientists to define ML model

monitoring workflows. Section V explains how PDL mod-

els are utililsed to implement the runtime behaviour of the

monitoring system. Section VI presents an evaluation of our

proposed solution based on an empirical study. Section VII

discusses three case studies that support the generality of the

proposed solution. Finally, Section VIII summarises the paper

and discusses future work.

II. PROPOSED APPROACH OVERVIEW

To support data scientists throughout the typical ML work-

flow [5], an organisation’s software engineers develop ML

platforms comprising multiple components [6]–[9]. Figure 1

(top third) illustrates an example ML platform with a notebook

server for exploratory data analysis and ML model training, an

ML model registry, a data warehouse for storing raw data, a

feature store for transforming raw data into usable features, an

ML model prediction server, and a ground truth data ingestion

service.

Given the reactive nature of monitoring workflows, con-

tinuous observation of specific ML platform components is

required. We adopt an event-based architecture, where ML

platform components emit messages when relevant events

occur, such as serving predictions or ingesting ground truth

data. Figure 1 (middle third) depicts the MDE layer of our

proposed solution, which includes the Panoptes orchestrator as

the main component. The orchestrator receives these messages

and also the monitoring workflows defined by data scientists

in the form of MDE models. Based on this information, the

orchestrator initiates the stages of a monitoring workflow by

emitting messages.

Figure 1 (bottom third) shows the services that receive

messages from the orchestrator requesting the execution of

a monitoring workflow stage. These services, developed by an

organisation’s software engineers, are responsible for interfac-

ing with the various ML platform components to successfully

execute each stage of a monitoring workflow.

This overall approach allows the proposed solution to be

agnostic to the underlying ML platform technologies. Addi-

tionally, an organisation’s software engineers do not need to

have MDE knowledge but only adhere to the message format

of the orchestrator. Further technical details are provided in

Section V.

III. ML PERFORMANCE MONITORING DOMAIN

To clarify the concepts relevant to the ML model monitoring

domain, we introduce a simple hypothetical scenario in which

various parameters could negatively affect the performance of

an ML model used by a production system. In our scenario,

there is a customer support call centre that customers can con-

tact when facing an issue with a product they purchased. Every

ML Platform

Trained
Models

Notebook SeverFeature
ValuesFeature Store

Trained
Models Model Registry

Action Execution
Trigger Messages

Panoptes Orchestrator

Prediction Serving Messages

Model Server

Raw
DataData Warehouse

Ground Truth Data

Ground Truth Ingestion Messages

Ground Truth Ingester

PDL
Models Model Editor

Platform-specific Actions

Email Alerts

Model Retrain

Platform-specific Runtimes

Python Function Runtime

Distributed Execution
Runtime

Algorithm Execution
Trigger Messages

Algorithm Execution
Result Mesages

Fig. 1. Example ML Platform with an Integrated Panoptes Deployment.

incoming call goes through the following stages: Initially, the

customer is put in a waiting queue until a call centre worker

is available to service them. Next, they speak with a worker

who tries to resolve their issue. Finally, the call ends with the

customer’s issue potentially being resolved.

From a data science point of view, the aim is to predict

whether customers were left satisfied with the service they

received based on their call’s wait time, service time and issue

resolution. This scenario falls under the supervised learning

subset of ML [10], [11]. In such scenarios, the objective is to

extract a mapping from a set of labelled samples (the training

dataset) that can be used to predict the value of a target variable

Y, given the value of an observed variable X. The variables X

and Y follow an unknown joint probability distribution which

is usually assumed to remain unchanged between the time we

train the model and the time that we use it to make predictions

[12].

In the call centre example, this would correspond to gath-

ering a dataset of calls that includes wait duration, service

duration, issue resolution, and customer satisfaction measure-

ments. Applying ML algorithms to this dataset, we can obtain

a mapping (a classifier model) that predicts future customers’

satisfaction given their call data as long as the mapping

remains unchanged.

Unfortunately, in real applications, hidden variables can

affect the statistical distribution of the observable variables

and how they map to the target variable, which can negatively

affect the predictive accuracy of ML models. Such scenarios

have been studied for several years using numerous terms,

including concept drift/shift [13], [14], covariate/sampling

shift [12], [14], [15], prior probability shift [12], [14] and

others. In recent years, the umbrella term ”dataset shift” has

been introduced in [16] and further standardised in [17] and

[18]. In this paper, we adopt the term ”dataset shift” and its

subtypes as defined in [17].

In the call centre example, the following are some of the

ways that dataset shift could manifest:

• On a particular day, an unusually high number of work-



Fig. 2. Core classes of the PDL Metamodel.

ers might be on leave, resulting in increased waiting

times. Assuming that customers’ preferences towards

waiting times stay constant, more customers will be left

unsatisfied. According to the dataset shift terminology,

this scenario is an instance of covariate shift. Theoreti-

cally, covariate shift should not affect the ML model’s

performance since the input-to-output mapping remains

constant. However, when the ML model is relatively

simple (e.g. Linear classifier), it might approximate the

actual mapping well for a specific range of input values

but give incorrect results when the input values shift

[12]. Given that checking for covariate shift does not

require the additional collection of ground truth labels,

it might be helpful in scenarios where it is known that a

model’s performance degrades when the input is outside

a particular range.

• After some time, customers might become less tolerant of

long waiting times. As a result, even though waiting times

remain constant, more customers will be left unsatisfied.

In other words, the mapping between input and output has

changed. In dataset shift terminology, this is an instance

of concept shift. The collection of ground truth labels

is necessary to detect this kind of dataset shift since no

change in the distribution of input values is observed.

• Additionally, both of the above shifts can coincide. In

other words, the average waiting time could increase

in addition to the customers becoming less tolerant of

lengthy waiting times. This scenario falls under the ”other

types of shift” category in dataset shift terminology.

IV. PANOPTES DESCRIPTION LANGUAGE

In this section, we present the domain-specific language

developed for the specification of strategies for detecting and

reacting to the presence of dataset shift.

A. Core

Before discussing anything related to dataset shift, some

core classes must be introduced to the DSL’s metamodel.

These classes lay the foundation by representing the available

ML models, the inputs used to train them, their outputs, and

whether they are currently deployed and serving prediction re-

quests. Figure 2 shows the classes discussed in this subsection.

1 Model callcenterDecisionTree{

2 uses wait_duration, service_duration, is_solved

3 outputs callcenterDecisionTreePrediction

4 predicts is_happy}

5

6 FeatureStore{

7 features wait_duration, service_duration, is_solved

8 labels is_happy}

9

10 Deployment callcenterDeployment{

11 model callcenterDecisionTree}

Listing 1. PDL model showcasing the metamodel’s core classes.

The first core class is Platform. A Platform instance is the

top-level element in a PDL model. It represents the infrastruc-

ture that hosts all ML-related components. A Platform directly

contains instances of Model, FeatureStore, AlgorithmRuntime,

Algorithm, Action and Deployment. This class is omitted from

Figure 2 for conciseness. An ML platform can be utilised to

deploy one or more ML models in production. Over time,

as more data become available and more advanced ML tech-

niques are developed, data scientists might choose to replace

an older ML model with a newer one. This can be hidden

from any downstream service that consumes the predictions

of an ML model.

A distinction has been made between the Deployment and

Model classes to accurately represent this. Model instances

represent ML models regardless of whether they are currently

being used in production. A Model references one or more

Features and a Prediction to express an ML model’s inputs

and output, respectively. Additionally, a Prediction references

a Label that represents the ground truth values the ML model

tries to predict. Since the Feature, Prediction and Label classes

are all related to the input and output of ML models, they

subclass the abstract class ModelIO.

On the other hand, Deployment instances represent a spe-

cific task that can leverage an ML model, such as predicting

customer satisfaction in the call centre example. Each Deploy-

ment references a Model instance, representing the current ML

model used to accomplish the task.

Finally, the concept of the feature store is introduced to

express that multiple ML models can use each feature, and

those ML models might attempt to predict the values of the

same variable. Feature stores are represented in the metamodel

by the FeatureStore class whose instances contain multiple

Feature and Label instances so that they can be referenced by

as many Model instances as needed.

With the metamodel classes introduced so far, an initial

model of the call centre scenario can be constructed. Listing

1 shows this model in the textual concrete syntax developed

for PDL using Xtext1. Nevertheless, as explained in Section

V, the orchestrator is not coupled with any specific concrete

syntax, so support for multiple concrete syntaxes is possible.

1https://www.eclipse.org/Xtext/



Fig. 3. Classes of the PDL Metamodel related to Dataset Shift.

B. Dataset Shift

This subsection introduces the metamodel classes used to

specify the stages of a monitoring workflow. These stages

comprise the dataset shift detection stage and a subsequent

corrective action stage. The relevant classes for the expression

of these stages can be seen in Figure 3.

To detect dataset shift, data scientists implement algorithms

using general-purpose languages and create Algorithm in-

stances to represent them in a PDL model. For example,

Listing 2 shows a Python2 script that uses the Kolmogorov-

Smirnov [19] statistical test to check if two datasets are sam-

pled from the same underlying statistical distribution and lines

3-7 in Listing 3 show the corresponding Algorihtm instance.

Notice how the script does not seem complete. Specifically, the

script only defines a function that expects specific arguments

and returns certain values based on the result of the statistical

test. There is no code for fetching the relevant data and passing

it to the function or any code that shows how the returned

result is used.

Filling in the gaps mentioned above is the responsibility of

algorithm runtimes. These are components of the ML plat-

form implemented by software engineers capable of fetching

data from an ML platform’s data store, executing algorithms

and handling the results of the execution. The developer of

an algorithm runtime documents the requirements that the

supported algorithm implementations must fulfil and makes

them available to data scientists. In line 5 of Listing 3, for

example, we can see that the ”kolmogorovSmirnov” Algorithm

references the ”pythonFunction” AlgorithmRuntime. This run-

time requires the algorithm to be implemented as a Python

function with the input/output signature seen in Listing 2.

Further technical details about algorithm runtimes are given

in Section V.

2https://www.python.org/

1 from scipy import stats

2

3 def ksTest(trainSet, liveSet, parameters):

4 pValue = stats.ks_2samp(trainSet, liveSet))[1]

5 if pValue < parameters[’pValue’]:

6 return 1, pValue

7 else:

8 return 0, pValue

Listing 2. Dataset shift detecting algorithm implementation in Python.

Given the attributes of the Kolmogorov-Smirnov algorithm,

we can apply it to the call centre scenario to monitor the

values of the ”wait duration” variable against covariate shift.

For this, the algorithm needs to receive as inputs the values

of the ”wait duration” variable in the training set and in

recent prediction requests received by the deployed ML model.

Information regarding the inputs of an algorithm to apply

it in a specific scenario is contained in AlgorithmExecution

instances, as seen for examples in lines 22-27 of Listing 3.

Additionally, algorithms can be parametrised. The names of

the parameters are defined in the Algorithm definition (e.g.

line 7 of Listing 3), and their values are provided in the

AlgorithmExecution (e.g. line 26 of Listing 3). The algorithm

runtime passes the parameter values to the algorithm along

with the rest of the inputs. Finally, AlgorithmExecutions also

include a mapping that links the algorithm execution results

to the relevant action execution (e.g. line 27 of Listing 3).

Related to the execution of actions in response to dataset

shift are the classes Action and ActionExecution. An example

of an action is sending an email notification to the data scientist

that trained the affected ML model. Similarly to algorithm

runtimes, action execution functionality is provided by specific

software components in the underlying ML platform. These

components are represented by Action instances in PDL mod-

els.

Based on the same principle that links Algorithms with

AlgorithmExecutions, while Action instances represent a ca-

pability of the underlying platform, its usage is represented

by an ActionExecution instance that parametrises the Action

to fit in the context of a particular scenario. As an example,

lines 37-39 of Listing 3 show the ”emailMe” ActionExecution

uses the ”email” Action parametrised with an email address.

1) Base and Higher Order Algorithms: Algorithm, Algo-

rithmExecution and AlgorithmRuntime are abstract classes.

So far, the examples showcase the subclasses BaseAlgo-

rithm, BaseAlgorithmExecution and BaseAlgorithmRuntime.

Instances of BaseAlgorithm represent algorithms that can

detect dataset shift from ModelIO values (i.e. features, predic-

tions and labels) in the training and live datasets. On the other

hand, HigherOrderAlgorithm instances represent algorithms

that take as input a set of outputs from the execution of another

algorithm.

As Listing 2 shows, the execution of a base algorithm re-

turns a pair of values. The first value is an integer representing

the presence and severity of dataset shift. It corresponds to

the ”keys” of the result-action execution map of the algorithm



1 BaseAlgorithmRuntime PythonFunction

2

3 BaseAlgorithm kolmogorovSmirnov{

4 codebase "http://repo.com/kolmogorov-smirnov"

5 runtime PythonFunction

6 severity levels 2

7 parameters pValue}

8

9 HigherOrderAlgorithmRuntime higherOrderPythonFunction

10

11 HigherOrderAlgorithm exponential-moving-average{

12 codebase "http://repo.com/exponential-moving-average"

13 runtime higherOrderPythonFunction

14 parameters alpha,threshold

15 severity levels 2}

16

17 Action email{parameters address}

18

19 Deployment callcenter{

20 model callcenterDecisionTree

21

22 BaseAlgorithmExecution ksWaitTime{

23 algorithm kolmogorovSmirnov

24 live data wait_time

25 historical data wait_time

26 parameter values pValue = 0.05

27 actions 1->emailMe}

28

29 HigherOrderAlgorithmExecution emaWaitTime{

30 algorithm exponential-moving-average

31 observed execution ksWaitTime

32 min observations 3

33 max observations 3

34 parameter values alpha = 0.5, threshold = 0.05

35 actions 1->emailMe}

36

37 ActionExecution emailMe{

38 action email

39 parameter values address=user@company.com}

40

41 Trigger t1{

42 every 100 samples 100 predictions 100 labels

43 or

44 every one day

45 execute ksWaitTime}}

Listing 3. PDL model showing a simple dataset shift detection scenario.

executions that utilise the algorithm. The possible values must

be in the [0,N) range where N is the severity levels attribute

of the relevant Algorithm instance. The second return value of

the algorithm is the ”raw result” and is meant to be used as

input to higher-order algorithms for further analysis.

Listing 3 shows how a HigherOrderAlgorithm can be used.

It expresses a scenario where a data scientist wants to increase

covariate shift detection robustness by considering the last N

execution results of the abovementioned Kolmogorov-Smirnov

algorithm. An example algorithm that can be used for this

is the exponential moving average that calculates a weighted

average of the results, with more recent results having a higher

weight (the implementation is not shown for brevity).

From the listing above, one can notice that a HigherOrder-

AlgorithmExecution has a few differences compared to a

BaseAlgorithmExecution. One needs to define the Algorith-

mExecution (Base or HigherOrder) whose output will serve

as the input of the newly created HigherOrderAlgorithmEx-

ecution (seen in lines 29-35 of Listing 3). In addition, the

minimum and maximum number of observations must be

defined (seen in lines 32-33 of Listing 3).

Fig. 4. Classes of the PDL metamodel related to scheduling.

C. Scheduling

An essential aspect of the modelled domain is defining

the frequency of algorithm executions and the subsequent

execution of corrective actions as needed. For this purpose,

classes that represent various triggers and classes that represent

a combination of triggers are provided. More specifically,

TemporalTrigger, SampleBasedTrigger, PredictionBasedTrig-

ger, and LabelBasedTrigger can express the frequency of one

or more algorithm executions in terms of how long it has been

since the latest execution, how many unlabelled samples have

been received, how many predictions have been served and

how many labels have been received for previously unlabelled

samples respectively. For more complex scenarios, data scien-

tists can create CompositeTrigger instances containing up to

one instance for each kind of individual trigger and represent

scenarios in which the requirements must be met for multiple

individual triggers simultaneously. Lastly, CompositeTrigger

instances can be grouped in a TriggerGroup instance. A

TriggerGroup instance tracks which BaseAlgorithmExecution

is to be executed when the requirements for at least one of the

contained TriggerGroups are met.

Lines 41-45 of Listing 3 show a trigger group has been

added to the ”callcenter” Deployment to showcase all possible

combinations. It should be noted that trigger groups only

trigger base algorithm executions as higher order algorithm ex-

ecutions are triggered indirectly when the algorithm execution

they observe executes (provided that the observed algorithm

execution has been triggered at least the minimum number of

times required).

D. Validation

Although the metamodel of PDL already captures certain

typing and cardinality constraints, there is still the possibility

of creating a model that contains errors according to the

semantics of the domain. For this reason, a series of constraints

based on the semantics of the domain are defined, and every

PDL model is validated against these constraints. This section

explains the parts of the metamodel relevant to validation.

These are not mandatory to specify a monitoring workflow,



1 FeatureStore{

2 entities call{keys callID}

3 request data rd

4 features

5 wait_duration:continuous{requires entities call},

6 service_duration:continuous{requires entities call},

7 is_solved:categorical{requires entities call},

8 additional_feature{requires request data rd}

9 labels is_happy:categorical}

10

11 Model callcenterDecisionTree{

12 uses wait_duration, service_duration, is_solved

13 outputs happiness_prediction

14 predicts is_happy}

15

16 BaseAlgorithm kolmogorovSmirnov{

17 codebase "http://repo.com/kolmogorovsmirnov"

18 runtime PythonFunction

19 severity levels 2

20 accepts only continuous

21 parameters mandatory pValue:Real}

22

23 Action email{

24 parameters mandatory email:String}

25

26 Deployment callcenter{

27 inputs callID

28 model callcenterDecisionTree

29

30 BaseAlgorithmExecution ksWaitTime {

31 algorithm kolmogorovSmirnov

32 live data wait_duration

33 historical data wait_duration

34 actions 1->emailMe

35 parameter values pValue = 0.05}

36

37 ActionExecution emailMe{

38 action email

39 parameter values email=user@company.com}}

Listing 4. PDL model utilising validation features.

but including them in a PDL model enables the error detection

features.

Listing 4 shows an example PDL model that uses features

of the DSL that enable the optional feature and type validation.

1) Feature Validation: Feature validation ensures that every

deployment uses a suitable ML model. This is true when every

feature used as input by the ML model is retrievable from the

deployment’s inputs. This validation can prove valuable when

a deployment transitions to a newer ML model utilising more

or different features to ensure compatibility with the existing

prediction consumers.

For instance, in the call centre scenario, for a specific

call, one can retrieve the associated ”wait duration”, ”ser-

vice duration”, and ”is solved” values. Thus, instead of send-

ing the actual values of the variables, a prediction requester

can send just a ”call ID” that can be used to uniquely identify

the call and retrieve all the necessary inputs for a customer

satisfaction prediction. If additional features are available per

call, these can be added as inputs to a newer version of the

satisfaction prediction ML model while keeping the data that

prediction consumers have to send unchanged.

This is reflected in the PDL metamodel with a pattern

already familiar to data scientists using a feature store in their

workflow. Every Feature can reference zero or more Entities.

An Entity represents a concept in the domain within which

a data scientist builds a predictive model, for example, a call

in the call centre scenario. Entities contain one or more Keys

which can uniquely identify them. Keys can also be referenced

by a Deployment as inputs. For a PDL model to be valid,

every Deployment must reference the relevant Keys such that

all features that the Deployment’s referenced Model uses can

be retrievable.

Alternatively, some features are calculated on-the-fly based

on data only available when a prediction is requested. This,

for example, could be a search query that a user submits to

a search engine. This is represented in the PDL metamodel

by the RequestData class. If a Feature references a Request-

Data instance, this must also be referenced as input by any

Deployment that uses an ML Model that uses said Feature.

2) Type validation: An additional category of semantic

validity checks relates to the classes in the metamodel char-

acterised by a type attribute. This includes the Parameter and

Feature classes.

Instances of Parameter are contained by Algorithm and

Action instances to denote that they are parameterisable at

runtime. The model validation procedure here consists of

checking that the ParameterValueEntries contained in Al-

gorithmExecution and ActionExecution instances have valid

parameter names as keys and valid values. For example, in

Listing 4, the kolmogorovSmirnov BaseAlgorithm contains a

Parameter named ”pValue” of type ”Real”. Therefore it would

be checked that every AlgorithmExecution that references this

BaseAlgorithm contains a ParameterValueEntry with ”pValue”

as the key and a value that is a valid real number. Additionally,

we check that every Parameter denoted as mandatory is given

a value and no ParameterValueEntries are accidentally left

with empty keys or values.

The type attribute of Feature and Label instances can

optionally be given a value. This type attribute is enumer-

ative. It can take the values continuous, categorical and

orderedCategorical that correspond to the different types of

statistical variables found in the literature [10]. Additionally,

BaseAlgorithms can optionally be given one or more values of

the same enumerative type in their supportedTypes attribute.

Based on this information, we can validate whether the Mod-

elIO instances referenced by a BaseAlgorithmExecution are

of suitable statistical type for the BaseAlgorithm used. Lastly,

suppose the strict attribute of a BaseAlgorithm is set to false. In

that case, only a warning will be generated in case of statistical

variable type mismatch instead of an error, which will not

cause the rejection of the validated PDL model.

For example, in Listing 4, it is defined that the kolmogorovS-

mirnov BaseAlgorithm only supports continuous statistical

variables as inputs. This is because while variants of the

Kolmogorov-Smirnov statistical test can be used for statistical

variables of ordered categorical type [20], the algorithm im-

plementation shown in Listing 2 depends on the Kolmogorov-

Smirnov implementation found in the SciPy Python package
3 which only supports continuous statistical variables. This

could lead to errors that are difficult to detect since the data

3https://scipy.org/



scientist that implemented the algorithm could be someone

other than the one using the algorithm to detect covariate

shift in a specific context. To avoid this situation, this type

of validation is provided.

V. TECHNICAL IMPLEMENTATION

As briefly mentioned in Section II, Panoptes’ main compo-

nent, the orchestrator, ingests users’ PDL models and com-

municates via message passing with other components to

keep track of events relevant to ML monitoring and trigger

the executions of algorithms and actions when necessary. To

further explain this mechanism, this section presents the inner

workings of the orchestrator as well as those of algorithm

runtime and action services. Additionally, technical details of a

web editor service that allows data scientists to create and edit

PDL models in their browser is presented. For readers that are

interested in further technical details, all code repositories of

the components presented in this paper are publicly available4.

A. Panoptes Orchestrator

As seen in Figure 1, the orchestrator ingests the PDL

models received from the web editor and is responsible for

implementing the runtime behaviour specified in them. While

the PDL metamodel is designed so that data scientists can

conveniently specify how deployed ML models are to be

monitored, it does not provide the orchestrator with a way

to keep track of its internal state to determine when algorithm

and action executions must be triggered. For this reason, after

the orchestrator receives a PDL model, it constructs Finite

State Machine (FSM) objects that directly map to the required

runtime behaviour.

Specifically, an FSM object is constructed for every De-

ployment in a processed PDL model. As shown in Figure 5,

this FSM only has one state, labelled STANDBY, and multiple

transitions from STANDBY back to itself that are triggered

based on the messages ingested by the FSM. Whenever a

transition is triggered, an accompanying function is executed

that will potentially send out a message to either an algorithm

runtime or action service under certain conditions. Transitions

are added according to the following rules:

• One transition is added for every TriggerGroup a De-

ployment contains. These are triggered whenever a base

algorithm must be executed and will always send a

message to the relevant algorithm runtime.

• One transition is added for every AlgorithmExecution a

Deployment contains. These trigger after an algorithm

execution finishes. Based on the result of the execution,

if an action needs to be executed, a message is sent out

to the relevant action service.

• One additional transition is added if the above Algorith-

mExecution is a HigherOrderAlgorihtmExecution. These

trigger whenever the observed algorithm executes. If the

observed algorithm has been executed a sufficient number

of times, a message is sent out to the algorithm runtime

of the higher-order algorithm.

Algorithm Execution Result
A2

Algorithm Execution Result
A1

Higher Order Algorihtm Activation
A2

TriggerGroup
T1STANDBY

Fig. 5. Example FSM representation of a PDL model used by the orchestrator.

For the transitions to be triggered at the right time, the

relevant components of the ML platform need to send a

message to the orchestrator whenever a monitoring-related

event occurs. Algorithm execution events are sent by the algo-

rithm runtime services. For TriggerGroups, there are multiple

relevant messages. These correspond to the EventBasedTrigger

classes. No external messages are needed for TemporalTrig-

gers since the orchestrator can independently keep track of

the amount of time passed since the last time a TriggerGroup

transition has triggered. The messages corresponding to Sam-

pleBasedTriggers and PredictionBasedTriggers are emitted by

a model server when it responds to a prediction request.

These inform the orchestrator that a new sample has been

received and was used to produce a new prediction. Messages

corresponding to LabelBasedTriggers are emitted by any ser-

vice that ingests a ground-truth label for a previously served

prediction. Once enough messages have been accumulated to

satisfy the TriggerGroupconditions, the transition occurs, and

the corresponding counters are reset.

B. Algorithm Runtimes

As mentioned in Section IV, algorithm runtime services are

responsible for packaging the algorithms that data scientists

develop and executing them with the right inputs when re-

quested by the orchestrator.

For the packaging step, an algorithm runtime service must

be able to ingest a message informing it of the creation of a

new algorithm. The orchestrator sends this message whenever

a PDL model introduces a new algorithm. The message

includes the algorithm’s git repository from which the runtime

can retrieve all the artefacts needed for the packaging. In

the Python function runtime, for example, when an algorithm

creation message is received, the runtime clones the repository

and copies the file containing the algorithm function and the

pip5 requirements file into a Python project template. From

that, a docker image is built that, when run, can fetch the

relevant data, execute the algorithm, and send a message to

the orchestrator with the execution result.

For the execution step, an algorithm runtime service must

be able to ingest a message instructing it to execute a previ-

ously packaged algorithm with specific inputs. The messages

received for this step differ slightly between base and higher-

order algorithm runtimes. For base algorithm runtimes, the

4https://github.com/pkourouklidis/panoptes
5https://packaging.python.org/



message includes the names of the features/predictions/labels

to be used as inputs. The runtime triggers the execution of the

packaged algorithm and passes the names in as environment

variables so the actual values can be fetched from the data

repository specific to each ML platform. On the other hand,

for higher-order runtimes, the message will include the name

of the observed algorithm execution instead. The runtime will

similarly trigger the execution of the packaged algorithm with

the name passed in as an environment variable. The past

execution results of the observed algorithm execution will be

retrieved by an API that the orchestrator exposes.

C. Actions

Action services are more straightforward to implement than

algorithm runtime services since they do not have to execute

any code dynamically. The only message that an action service

must be able to ingest is instructing it to perform the action

it represents. The message includes values of the parameters

that the action accepts and auxiliary information, such as the

name of the algorithm execution that has caused the action to

execute in case it is useful.

D. Panoptes Web Editor

To provide data scientists with a simple user experience for

creating PDL models and sending them to the orchestrator,

an Xtext-based web editor was developed. The editor offers

various convenient features such as syntax highlighting, error

highlighting and auto-completion. Another nice feature of a

web-based editor is that it does not require installation. When

the user has finished creating or updating a PDL model, the

editor backend will parse the textual syntax and generate an

equivalent model in XMI. This is then sent to the orchestrator

to be processed as described in the previous subsection.

Following this pattern, the orchestrator only needs to support

XMI, while multiple concrete syntaxes can be developed based

on users’ preferences.

VI. LABORATORY EXPERIMENT

This section presents an empirical study conducted to eval-

uate the proposed solution, with the participation of 10 data

scientists working within British Telecom (BT). The study

sought to answer the following research questions:

RQ1 Are the concepts of the DSL easily understood by data

scientists?

RQ2 Can data scientists effectively utilise the DSL to imple-

ment dataset shift detection strategies?

RQ3 How do data scientists evaluate the solution’s potential

for reducing the effort of implementing ML performance

monitoring policies?

A. Study Design

The study was split into three parts, each seeking to answer

one of the research questions. In the first part, the participants

were given access to documentation material describing PDL,

similar to Section IV. After reading the material, the partic-

ipants were shown an example PDL model utilising every

feature of the DSL and given fifteen comprehension questions

to answer based on the model. All of the documentation and

questions are publicly available6.

For the second part, the study took the form of a laboratory

experiment since it was conducted in a highly controlled

setting created specifically for the study [21]. Based on the

call centre scenario, a system was developed that simulates

customers’ calls. Additionally, a dashboard was developed

for initiating simulations with different parameters that affect

customer satisfaction, such as the tolerance of customers to

high waiting times. Finally, a dashboard was developed that

visualises the various results of each simulation. Participants

were given access to the dashboards and asked to complete

the following tasks.

• To let participants familiarise themselves with the me-

chanics of the simulator, they were told to use the

example PDL model and a set of settings for the simulator

such that no dataset shift is observed. After executing

the simulation, the users could observe in the visualisa-

tion dashboard that the algorithm execution detected no

dataset shift.

• Keeping the PDL model unchanged, the participants were

given a set of simulator settings that introduced covariate

shift. The algorithm execution defined in the given PDL

model detected the shift, and participants received an

email notification.

• Finally, participants were given a set of simulator settings

that introduced concept shift and asked to modify the

PDL model so that the shift would be detected and they

would receive an email notification.

Their scripts were collected and analysed to quantify how

well data scientists utilised PDL for the given task. One point

was awarded for successfully completing each of the following

tasks.

1) Defining a BaseAlgorithmExecution that uses the right

Algorithm (accuracy-check).

2) Adding the right data as input to the BaseAlgorithmEx-

ecution.

3) Adding the correct result-to-action map to the BaseAl-

gorithmExecution.

4) Defining a Trigger with the newly created BaseAlgorith-

mExecution as the execution target.

5) Setting the frequency of the Trigger every 100 Labels.

For the third part, a subjective evaluation was selected due

to the difficulty of measuring the effort required to build a

monitoring solution and comparing it against a Panoptes-based

solution with the same characteristics. Instead, five tasks were

selected that were deemed representative of the monitoring

domain. Participants were asked for their subjective evaluation

in the following way: On a qualitative basis, how much do

you think Panoptes could reduce the effort required for the

following tasks? Please answer on a scale of one to five:

1) Implementing dataset shift algorithms.

6https://github.com/pkourouklidis/panoptes-wiki



0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Number of correct answers

Q
u
e
s
ti

o
n

Fig. 6. Results of the first questionnaire.

2) Fetching the relevant data to check for dataset shift.

3) Scheduling the execution of dataset-shift-detecting algo-

rithms.

4) Executing corrective actions in case of dataset shift.

5) Modifying various monitoring parameters (e.g. algo-

rithm used, frequency of execution) on a live system.

Notably, the questions also address parts of the domain

where we did not expect Panoptes to offer significant utility

but were included to get a complete picture of the participants’

opinions. The implementation of dataset shift algorithms, for

example, is streamlined by the runtime mechanism but still

requires effort by data scientists.

B. Study results

The study results7 show that data scientists can quickly

familiarise themselves with PDL. They also expect Panoptes

to provide significant benefits in terms of effort reduction for

ML performance monitoring tasks.

Regarding the first two research questions, the participants

spent approximately one hour reading the documentation ma-

terial before answering the first questionnaire and completing

the requested PDL model. Considering that all participants

were busy professionals that could not afford to invest much

time to complete the tasks, as participation was not part of

their job responsibilities, the fact that most of the questions

were answered correctly by every participant indicates that

data scientists can pick up PDL very quickly. The few mistakes

can perhaps even be attributed to people hastily reading the

questions rather than a difficulty in understanding PDL. Figure

6 shows for every question the number of participants that

correctly answered it. Similarly, Figure 7 shows that most

participants were able to complete every task of the second

part.

Regarding the third research question, Figure 8 shows the

cumulative score for every aspect participants were asked

to evaluate. Since the evaluations were given on a scale

of one to five, the maximum score was fifty. As expected,

certain features of Panoptes were valued more than others.

Specifically, the aspects requiring some degree of manual

effort, namely developing new algorithms and actions, received

7https://zenodo.org/record/8140392

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Number of correct completions

Ta
s
k

Fig. 7. Results of PDL usage test.

10 15 20 25 30 35 40 45 50

1

2

3

4

5

Score

Q
u
e
s
ti
o
n

Fig. 8. Effort reduction evaluation results.

the lowest score. On the other hand, fully automated features,

such as scheduling, received a higher score. Finally, a corre-

lation was noticed between a data scientist’s background and

their evaluation of Panoptes. In line with expectations, data

scientists from a mathematics background valued the usage

of Panoptes more than those from a software engineering

background.

VII. CASE STUDIES

To support the claim that Panoptes is general enough to

support ML models of different input and output modalities

and different implementation technologies, three case studies

using publicly available ML models were conducted8. The

case studies also show the versatility that is made possible

by custom dataset-shift-detection algorithms.

For the first case study, an image classifier implemented

using TensorFlow was used. After deployment, to simulate

dataset shift, 1000 randomly selected images from the Stand-

ford dogs dataset were classified after being made darker.

To detect this shift, a detection algorithm was developed for

the ”pythonFunction” algorithm runtime that calculates the

luminance of recent images and checks to see if they are

distributed similarly to the luminances in the training set. A

second algorithm was also developed that utilises ground truth

labels, when available, to calculate the accuracy of the model

for recent inputs and compares it against a threshold.

For the second case study, a speech-to-text model imple-

mented using PyTorch was used. To simulate dataset shift,

1000 randomly selected voice clips from the common voice

dataset were captioned after white noise was added to them.

To detect this shift, a detection algorithm that compared the

signal-to-noise ratio of recently received audio clips to those

in the training set was developed. A second algorithm that

utilises ground truth data was also developed that calculates

the word error rate, an accuracy metric commonly used for

speech-to-text models, and checks to see if it crosses a set

threshold.

8https://github.com/pkourouklidis/panoptes



For the third case study, a credit-scoring model implemented

using scikit-learn was used. The model was trained on a

tabular dataset with multiple columns containing an applicant’s

income bracket, savings, employment status etc. To simulate

dataset shift, 1000 samples were classified after the value

of the ”gender” column was switched for some of them. To

detect this shift, a detection algorithm that calculates the L-

infinity distance was implemented. Additionally, the accuracy

calculation algorithm developed for the first case study was

reused since it applies to both models.

These three case studies indicate that Panoptes can accom-

modate a wide variety of ML models. Facilitating this is the

fact that there is no inherent restriction to the type of ML

model as long as the underlying ML platform supports it. The

case studies also highlight the benefit of easily deployable

detection algorithms that are tailored for each specific model.

VIII. CONCLUSION & FUTURE WORK

In this paper, we have presented Panoptes, an MDE solu-

tion for the ML monitoring domain. The proposed solution

offers a DSL to data scientists that allows them to specify

monitoring workflows at a high level of abstraction. A runtime

component is developed that can ingest models of the DSL and

implement the defined behaviour by communicating with other

components of an ML platform. Additionally, an extensibility

mechanism is offered so that software engineers can add new

functionality to the monitoring solution. Furthermore, we pre-

sented the results of an empirical study that indicates that data

scientists can quickly familiarise themselves with the solution

and find it useful for implementing ML monitoring systems.

Finally, we presented three case studies that indicate that the

solution is able to accommodate ML models of different input

and output modalities and implementation technologies.

In future work, it would be interesting to develop an addi-

tional Python-embedded concrete syntax for PDL and check

whether that could benefit adoption, as Python is a language

that a lot of data scientists are already familiar with. This

would not require any changes to the orchestrator as it is al-

ready decoupled from the concrete syntax of PDL. Finally, we

would like to evaluate Panoptes in a production environment

and have been in contact with production teams to explore

possible avenues of collaboration. On a longer-term horizon,

the MDE approach followed could be extended to cover more

aspects of the ML model commercialisation process. BT’s

applied research department has invested resources into areas

related to AI governance, and we believe that MDE could play

a significant role in this domain.

ACKNOWLEDGMENT

The work presented in this paper has been partially sup-

ported by the Lowcomote project, which received funding

from the European Union’s Horizon 2020 research and in-

novation programme under the Marie Skłodowska-Curie grant

agreement No. 813884.

REFERENCES

[1] “State of ai 2022 report,” accessed: 2023-06-26. [Online]. Available:
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/deloitte-
analytics/us-ai-institute-state-of-ai-fifth-edition.pdf

[2] “Future of ai technologies report,” accessed: 2023-06-26. [Online].
Available: https://www.gartner.com/smarterwithgartner/gartner-predicts-
the-future-of-ai-technologies

[3] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J. Crespo, and D. Dennison, “Hidden technical
debt in machine learning systems,” in Advances in Neural Information

Processing Systems 28: Annual Conference on Neural Information

Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,

Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds., 2015, pp. 2503–2511.

[4] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration chal-
lenges in building ml-enabled systems: Communication, documentation,
engineering, and process,” in Proceedings of the 44th International

Conference on Software Engineering, 2022, pp. 413–425.
[5] S. Amershi, A. Begel, C. Bird, R. DeLine, H. C. Gall, E. Kamar,

N. Nagappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: a case study,” in Proceedings of the 41st International

Conference on Software Engineering: Software Engineering in Practice,

ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019, H. Sharp
and M. Whalen, Eds. IEEE / ACM, 2019, pp. 291–300.

[6] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwin-
ski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe et al., “Accelerat-
ing the machine learning lifecycle with mlflow.” IEEE Data Eng. Bull.,
vol. 41, no. 4, pp. 39–45, 2018.

[7] S. Schelter, F. Bießmann, T. Januschowski, D. Salinas, S. Seufert, and
G. Szarvas, “On challenges in machine learning model management,”
IEEE Data Eng. Bull., vol. 41, no. 4, pp. 5–15, 2018.

[8] K. M. Hazelwood, S. Bird, D. M. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee,
J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and X. Wang, “Applied
machine learning at facebook: A datacenter infrastructure perspective,”
in IEEE International Symposium on High Performance Computer

Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. IEEE
Computer Society, 2018, pp. 620–629.

[9] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data lifecycle
challenges in production machine learning: A survey,” SIGMOD Rec.,
vol. 47, no. 2, pp. 17–28, 2018.

[10] J. Friedman, T. Hastie, R. Tibshirani et al., The elements of statistical

learning. Springer series in statistics New York, 2001, vol. 1, no. 10.
[11] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine

learning. MIT press, 2018.
[12] A. Storkey, “When training and test sets are different: characterizing

learning transfer,” Dataset shift in machine learning, vol. 30, pp. 3–28,
2009.

[13] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Mach. Learn., vol. 1, no. 3, pp. 317–354, 1986.

[14] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij,
“On causal and anticausal learning,” in 29th International Conference

on Machine Learning (ICML 2012). International Machine Learning
Society, 2012, pp. 1255–1262.

[15] M. Salganicoff, “Tolerating concept and sampling shift in lazy learning
using prediction error context switching,” Artif. Intell. Rev., vol. 11, no.
1-5, pp. 133–155, 1997.

[16] J. Quiñonero-Candela, M. Sugiyama, N. D. Lawrence, and
A. Schwaighofer, Dataset shift in machine learning. Mit Press,
2009.

[17] J. G. Moreno-Torres, T. Raeder, R. Alaı́z-Rodrı́guez, N. V. Chawla, and
F. Herrera, “A unifying view on dataset shift in classification,” Pattern

Recognit., vol. 45, no. 1, pp. 521–530, 2012.
[18] M. Kull and P. Flach, “Patterns of dataset shift,” in First International

Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD,
2014.

[19] J. L. Hodges, “The significance probability of the smirnov two-sample
test,” Arkiv för Matematik, vol. 3, no. 5, pp. 469–486, 1958.

[20] T. B. Arnold and J. W. Emerson, “Nonparametric goodness-of-fit tests
for discrete null distributions.” R Journal, vol. 3, no. 2, 2011.

[21] K. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Trans. Softw. Eng. Methodol., vol. 27, no. 3, pp. 11:1–11:51, 2018.


