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A B S T R A C T   

The aim of treatments of vertebral fractures is the anatomical reduction to restore the physiological biome-
chanics of the spine and the stabilization of the fracture to allow bone healing. However, the three-dimensional 
shape of the fractured vertebral body before the fracture is unknown in the clinical setting. Information about the 
pre-fracture vertebral body shape could help surgeons to select the optimal treatment. The goal of this study was 
to develop and validate a method based on Singular Value Decomposition (SVD) to predict the shape of the 
vertebral body of L1 from the shapes of T12 and L2. 

The geometry of the vertebral bodies of T12, L1 and L2 vertebrae of 40 patients were extracted from CT scans 
available from the VerSe2020 open-access dataset. Surface triangular meshes of each vertebra were morphed 
onto a template mesh. The set of vectors with the node coordinates of the morphed T12, L1 and L2 were 
compressed with SVD and used to build a system of linear equations. This system was used to solve a minimi-
zation problem and to reconstruct the shape of L1. A leave-one-out cross-validation was performed. Moreover, 
the approach was tested against an independent dataset with large osteophytes. 

The results of the study show a good prediction of the shape of the vertebral body of L1 from the shapes of the 
two adjacent vertebrae (mean error equal to 0.51 ± 0.11 mm on average, Hausdorff distance equal to 2.11 ±
0.56 mm on average), compared to current CT resolution typically used in the operating room. The error was 
slightly higher for patients presenting large osteophytes or severe bone degeneration (mean error equal to 0.65 
± 0.10 mm, Hausdorff distance equal to 3.54 ± 1.03 mm). The accuracy of the prediction was significantly better 
than approximating the shape of the vertebral body of L1 by the shape of T12 or L2. This approach could be used 
in the future to improve the pre-planning of spine surgeries to treat vertebral fractures.   

1. Introduction 

Vertebral fractures are a widespread disease that can cause acute and 
chronic pain, deterioration of the quality of life and reduction of the life 
span. Traumatic vertebral fractures can occur due to high-energy events 
(e.g. falls, car accidents etc.) as well as after routine daily activities such 
as lifting (Schousboe, 2016). In the US an annual incidence of about 160, 
000 traumatic vertebral fractures per year has been reported (Grazier 
et al., 1984). As the population increased over the last forty years, those 
figures underestimate the real number of traumatic vertebral fractures 
in current years. The incidence of traumatic vertebral fractures is highest 
at the thoracolumbar junction, and L1 is the most recurrent fractured 
level (30% of all fractures) followed by T12 (18%) and L2 (13%) (Wang 
et al., 2020). The anatomical reduction of the fracture and the 

restoration of the vertebral body shape are crucial objectives of surgical 
treatments, as they result in re-establishing the natural curvature of the 
spine, improving the biomechanics of the segment and relieving pain 
(AOSpine association (Aebi, 2007)). This is especially important for 
individuals who are young or middle-aged and desire to resume the 
active lifestyles they had before the fracture. In order to perform a 
biomechanical stable anatomical reduction of the vertebral body, sur-
geons can choose among different treatments, without, however, any 
real consensus regarding the type of surgery (Verheyden et al., 2018). 
including posterior fixation, anterior stabilization, etc. (Vaccaro et al., 
2020). Traumatic thoracolumbar fractures have been treated by poste-
rior fixation or anterior stabilization (Vaccaro et al., 2020), and also by 
posterior fixation in combination with balloon kyphoplasty (Salle et al., 
2021) as well as with balloon kyphoplasty alone (Maestretti et al., 
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2014). Balloon kyphoplasty is an effective surgery to restore the verte-
bral body height and local kyphotic angulation (Van Meirhaeghe et al., 
2013). Although restored vertebral height has been shown, fractured 
endplate reduction is somewhat limited and might result in various disk 
healing and modification patterns, which could lead to problems 
including recurring pain, kyphosis and adjacent compression fractures 
(Lin et al., 2009; Ortiz and Bordia, 2011). A more thorough approach 
should examine not only the sagittal alignment of the spine but also the 
anatomical restoration of the vertebral body geometry as a whole, 
including the cortical ring and endplates, treating vertebral joint injuries 
as other injuries involving weight-bearing joints (Noriega González 
et al., 2022). In this regard, a technique based on expandable titanium 
implants positioned below the fracture and cement injection has been 
shown successfully on a few cases demonstrating a new trend towards an 
anatomical 3D reduction of vertebral fractures (Noriega González et al., 
2022). 

The information about the 3D shape of the fractured vertebra before 
the fracture could be used during the pre-operative planning to aid 
surgeons in the choice of the most suited surgery, or during the surgery 
as a benchmark to perform the anatomical reduction of the fracture as a 
whole. However, the original 3D shape of the fractured vertebra is often 
not known to the surgeon in the pre-operative setting. 

Statistical shape models (SSMs) can represent the possible variations 
in shape of an object belonging to a specific population and have often 
been applied to the spine. SSMs of the spine have been used to describe 
the geometric variation in spinal curvature (Hollenbeck et al., 2018) and 
single vertebrae (Clogenson et al., 2015). Recent developments have 
increased the ability of SSMs to segment vertebrae (Pereañez et al., 
2015). Other applications of SSMs of the spine are fracture detection 
(Roberts et al., 2010), 2D-to-3D reconstruction from DXA images 
(Zheng et al., 2011; Whitmarsh et al., 2013), automatic generation of 
finite element models (Campbell and Petrella, 2016, Campbell and 

Fig. 1. An overview of the different steps to predict the 3D shape of the L1 vertebral body by using the 3D shapes of the two adjacent vertebral bodies.  
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Petrella, 2015) and automatic creation of image-based finite element 
models including material properties (Day et al., 2022). However, these 
SSMs have never been applied to the reconstruction of the premorbid 
shape of a vertebra. Recently, different studies assessed the potential of 

SSMs to reconstruct the premorbid shape of a bone such as the cranial 
vault (Fuessinger et al., 2018) the mandible (Wang et al., 2021), the 
scapula (Plessers et al., 2018; Salhi et al., 2020) and the acetabulum 
(Vanden Berghe et al., 2017). In these studies, SSMs were used to 
virtually reconstruct the shape of the bone after some defects were 
artificially created to simulate a pathologic condition. The predicted 
shape was compared with the original one to assess the performance of 
the method by evaluating distance metrics between the meshes. These 
approaches were associated with low reconstruction errors (mean 
reconstruction error of about 1 mm (Salhi et al., 2020; Vanden Berghe 
et al., 2017)), and were considered applicable for pre-surgery planning 
or biomechanics modeling pipelines. If the contralateral bone was used 
as a template for the reconstruction, higher reconstruction errors (12% 
to 26% higher) were found (Krol et al., 2013; Vanden Berghe et al., 
2017). 

However, these approaches have seldom been applied to the spine. 
SSMs were employed by de Bruijne et al. (2007) for vertebral fracture 
quantification from 2D X-ray images. In particular, conditional shape 
models were used to predict the shape of one lumbar vertebra based on 
the shapes of other adjacent vertebrae (L1-L4). To validate the approach, 
it has been applied to 282 X-ray images, showing a mean (± standard 
deviation) distance between the original and reconstructed 2D shapes 
equal to 0.8 ± 0.4 mm. Nevertheless, the main limitation of this method 
is the application to the 2D sagittal X-ray images, which do not provide a 
reliable shape of the whole vertebral body and were associated with low 
inter-observer reproducibility for the measurement of vertebral height 
based on six anatomical landmarks (Genant et al., 1993). The usage of 
Computed Tomography (CT) scans, often integrated in clinical pro-
tocols, has the potential of improving the assessment of the 3D geometry 
of the pre-fracture shape of the vertebral body using SSMs, but needs 
further development and validation. 

The aim of this study was to develop and validate a method to predict 
the 3D shape of the L1 vertebral body from the shapes of the adjacent 
T12 and L2 vertebral bodies, estimated by individual segmentations of 
CT images. 

2. Materials and methods 

2.1. Summary 

An overview of the study is shown in Fig. 1. Briefly, the segmentation 
of T12, L1 and L2 vertebral bodies from CT scans of 40 patients were 
processed. An average reference template mesh was generated and the 
mesh of each vertebra was aligned and morphed onto that reference 
mesh. The vectors of node coordinates of the morphed meshes were 
compressed by Singular Value Decomposition (SVD). An optimal set of 
modes was used to build a linear system of equations to predict the 3D 
shape of the L1 by considering only the information corresponding to 
T12 and L2. A leave one out cross-validation was performed and the 
accuracy of the validated approach was tested with an independent 
dataset. The accuracy of the approach was evaluated by comparing the 
predicted and real mesh of L1. 

2.2. Dataset construction 

The publicly available VerSe2020 database of CT-scan images and 
segmentation masks was used in this study (Kirschke et al., 2020; Liebl 
et al., 2021; Löffler et al., 2020; Sekuboyina et al., 2020). A subgroup of 
40 patients from the database was processed for model construction. 
Patients were randomly picked from the database (22 men, 18 women; 
ID numbers of patients in the VerSe2020 database are reported in 
Appendix A). Exclusion criteria were severe bone degeneration (e.g., 
marked asymmetries along the antero-posterior or right-left directions), 
presence of large osteophytes (e.g., osteophytes that bridge between 
different vertebral levels or osteophytes at the level of the endplates), 
fractures or signs of previous fractures at T12, L1 or L2 levels, as 

Fig. 2. Anatomical landmarks placed on the superior and inferior endplates of 
the vertebral bodies, for Patient #33, on T12 (A), L1 (B) and L2 (C) in cranial- 
frontal, caudal-frontal, postero-lateral views, respectively. Anatomical planes to 
define the landmarks on the superior endplate (D), the anatomical planes to 
define the landmarks on the inferior endplate were similar. 
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pathologic bones are not suited to the creation of SSMs. As a result, the 
mean age of patients within the dataset was 40.9 ± 15.9 years (18.9 – 77 
years) that matches well the target population that would benefit from 
this study (i.e. those suffering of traumatic fractures). The CT voxel size 
was variable, from 0.68×0.68×0.45 mm3 to 1.31×1.31×3 mm3 

(Appendix A). An additional subset of 5 patients from the database 
(Testing dataset) was used to test the validated approach with an in-
dependent dataset (Patient #40 to Patient #45). Among those patients, 
three presented large osteophytes and severe bone degeneration 
(Appendix A). 

For each mesh of the dataset, eight anatomical landmarks were 
placed on the superior and inferior endplates (Fig. 2) (Yeung et al., 
2020). The instructions to retrieve the anatomical position of the land-
marks are reported in Table 1. Based on anatomical landmarks, the 
height and width of each vertebra was calculated and are reported in 
Table 2. To calculate the height, least-squares planes fitting landmarks 
on the superior and inferior endplates were calculated. A sagittal di-
rection was estimated as the average of the normal to the two planes. 
The landmarks were projected onto a line parallel to the sagittal direc-
tion and going through the center of mass of the landmarks. The height 
was estimated as the mean distance between projected landmarks on the 
superior and the inferior endplates. To calculate the width, landmarks 
were first projected onto the least-squares planes. Then, by using pro-
jected landmarks, an antero-posterior width was calculated as the 
average of the distance between SED and SEV and the distance between 
IEV and IED; a lateral width was calculated as the average of the distance 
between SER and SEL and the distance between IER and IEL. 

2.3. Image segmentation for vertebral bodies 

From the segmented images of the vertebra, the geometry of the 
vertebral body was obtained with a manual procedure as following 
(3DSlicer, v4.11.0) (Fedorov et al., 2012). The posterior part of the 
vertebra was cut from the cross sections by considering the contours of 
the endplates as boundaries of the vertebral body. Once the vertebral 
bodies were isolated, the segmented images were smoothed with a 
Gaussian smoothing filter (standard deviation of 0.8 mm). Each verte-
bral body was overlapped with the CT-scan images to qualitatively 
assess the extraction of proper geometry. Manual corrections were 
performed to segmented images in case adjustments were required. An 
example of the segmented geometry overlapped to the CT images is 
showed in Fig. 3. A surface mesh was generated from each segmentation, 
followed by a regularization with an element size of 0.4 mm. 

2.4. Mesh morphing 

The methods used for the mesh morphing of the vertebral bodies and 
the construction of a set of isotopological surface meshes (same number 
of nodes, same number of elements, same connectivity, preserved 
topology-anatomy correspondence) are based on Gaussian process (GP) 
morphable models implemented in Scalismo software (Scalismo, version 
0.90, Graphics and Vision Research group, University of Basel, 2020; 
Luthi et al., 2018) and are detailed in the next sections. An overview of 

Table 1 
Name, abbreviation and anatomical definition of the 8 landmarks placed on the 
superior and inferior endplates of each vertebral body.  

Name Abb. Definition 
Superior Endplate 

Ventral 
SEV Cranial to caudal view, consider the sagittal plane that 

cuts the superior endplate in two halves, consider the 
most ventral point on the superior endplate 

Superior Endplate 
Dorsal 

SED As SEV but consider the most dorsal point 

Superior Endplate 
Right 

SER Cranial to caudal view, back to front view, consider 
the coronal plane that cut the superior endplate in two 
halves, consider the rightmost point on the superior 
endplate 

Superior Endplate 
Left 

SEL As SER but consider the most left point 

Inferior Endplate 
Ventral 

IEV Caudal to cranial view, consider the sagittal plane that 
cut the inferior endplate in two halves, consider the 
most ventral point on the inferior endplate 

Inferior Endplate 
Dorsal 

IED As IEV but consider the most dorsal point 

Inferior Endplate 
Right 

IER Caudal to cranial view, back to front view, consider 
the coronal plane that cut the inferior endplate in two 
halves, consider the rightmost point on the inferior 
endplate 

Inferior Endplate 
Left 

IEL As IER but consider the most left point  

Table 2 
Size of the vertebrae within the testing dataset reported as antero-posterior 
width (Width-AP), left-right width (Width-LR) and height.   

Construction dataset 
Vertebral 
level 

Width-AP (mm) Width-LR (mm) Height (mm)  

Avg ±
st dev 

(Min, 
Max) 

Avg ±
st dev 

(Min, 
Max) 

Avg ±
st dev 

(Min, 
Max) 

T12 29.6 ±
3.15 

(23.4, 
35.2) 

39.8 ±
3.98 

(30.7, 
46.9) 

24.6 ±
1.96 

(20.4, 
28.8) 

L1 30.4 ±
2.97 

(24.0, 
35.7) 

41.6 ±
4.12 

(33.5, 
49.4) 

26.0 ±
1.95 

(21.6, 
30.5) 

L2 32.1 ±
3.30 

(26.0, 
37.7) 

43.5 ±
4.15 

(36.9, 
52.3) 

26.6 ±
1.92 

(22.7, 
31.2) 

T12, L1 and 
L2 

30.7 ±
3.31 

(23.4, 
37.7) 

41.5 ±
4.42 

(30.7, 
52.3) 

25.8 ±
2.14 

(20.4, 
31.2)   

Testing dataset  
Width-AP (mm) Width-LR (mm) Height (mm) 

Vertebral 
level 

Avg ±
st dev 

(Min, 
Max) 

Avg ±
st dev 

(Min, 
Max) 

Avg ±
st dev 

(Min, 
Max) 

T12 28.2 ±
2.02 

(25.1, 
30.6) 

39.5 ±
1.95 

(36.7, 
42.4) 

23.2 ±
1.57 

(21.0, 
25.5) 

L1 29.1 ±
2.16 

(25.4, 
31.2) 

42.2 ±
2.49 

(39.5, 
46.9) 

24.7 ±
1.17 

(23.2, 
26.5) 

L2 31.1 ±
3.22 

(25.8, 
35.9) 

44.7 ±
1.76 

(42.0, 
47.4) 

24.8 ±
0.62 

(23.9, 
25.7) 

T12, L1 and 
L2 

29.4 ±
2.80 

(25.1, 
35.9) 

42.0 ±
2.91 

(36.7, 
47.4) 

24.3 ±
1.38 

(21.0, 
26.5)  

Fig. 3. Example of segmentation for Patient #5 (L1) in a sagittal view: 3D representation of the whole vertebra (A); segmentation mask of the vertebral body (B); 3D 
representation of the segmented vertebral body (C). 
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the different steps to obtain morphed meshes is presented in Fig. 4. 

2.4.1. Generation of the reference mesh 
A reference mesh was generated through an iterative procedure to 

avoid biasing the accuracy of the mesh morphing to a particular 
vertebra. To initialize the process, an independent reference mesh with 
an element size of 0.7 mm and about 12,000 nodes was morphed onto 
the 120 geometries (T12, L1 and L2 vertebral bodies for each patient). 
This element size has been chosen lower than the one of target meshes to 
reduce the computational time. A mean mesh was calculated from the 
120 morphed geometries and used as reference mesh in the first step of 
an iterative mesh morphing process. At each iteration, the mesh 
morphing of the 120 geometries onto the mean mesh was done by using 
the mesh morphing algorithm described below, then a new mean mesh 
was computed and compared with the mean mesh of the previous iter-
ation. As metrics to compare two meshes, the mean error with respect to 
the target mesh (Eq. (1)) and the Hausdorff distance (HD) (Eq. (2)) were 
considered: 

Mean error = 1/N
∑

J

j=1

dist
(

hj, Starget

) (1)    

where: N is the number of nodes of the morphed mesh, hj is the j-node of 
the morphed mesh, Starget is the target mesh; hmorphed and htarget are the 
nodes of the morphed and target meshes Smorphed and Starget, dist is the 
Euclidean distance. The point-to-cell distance was calculated by per-
forming a geometric interpolation of the cells of the surface mesh 

(Commandeur et al., 2011; Schroeder et al., 2006). In fact, the algorithm 
computes the minimum distance between each point of the morphed 
mesh and each point belonging to the surface that interpolates the 
closest element of the target mesh. The iterative process was stopped 
when the HD between the mean mesh at iteration (i) and the mean mesh 
at iteration (i-1) was lower than 0.12 mm, which is more than three 
times lower than the voxel size of the CT-scan with the best resolution in 
the dataset (approximately 0.45 mm3)The mean distance and the HD 
between the mean mesh at the (i)-iteration and the mean mesh at the 
(i-1)-iteration are reported in function of the number of iterations 
(Fig. 5A). The mean mesh at iteration 1 was compared to the indepen-
dent reference mesh. The mean mesh at iteration 3 was considered 
acceptable as the reference mesh for the mesh morphing (Fig. 5B-C). 
Iteration 4 must be considered as a confirmation of the choice of the 
mean mesh at iteration 3. We verified that the average mesh morphing 
error (mean error and Hausdorff distance) did not change between it-
erations 2 and 4. 

2.4.2. Alignment 
The best rigid transformation that minimizes the distance between 

the position of landmarks on the reference mesh and the position of 
landmarks on the morphed mesh after the transformation was identified. 
The minimization problem was solved with a linear least squares 
method. A routine in Scalismo (Scalismo, version 0.90; Graphics and 

Vision Research group, University of Basel, 2020; Luthi et al., 2018) was 
used for the alignment. As a consequence, the pose of the vertebrae was 
not considered in this study. 

Fig. 4. Mesh morphing workflow. The starting point is the set of 120 meshes of the vertebral bodies of 40 patients (Patient #1 to Patient #40). From this set of 
meshes and through an iterative procedure (ε represents the threshold error), an optimal reference mesh is generated. The set of meshes is aligned onto the reference 
mesh (R) and the reference mesh is morphed onto each geometry in order to obtain a new set of geometries with the same number of nodes and elements, and same 
connectivity. The morphed meshes are obtained from a three steps procedure where a free-form deformation model (FFDM1) is created from the reference mesh, then 
adapted to each geometry based on displacements between anatomical landmarks (FFDM2) and between points sampled on the meshes in an Iterative closest point 
(ICP) process (FFDM3). 

Hausdorff distance (HD) = max
{

max
{

dist
(

hmorphed , Starget

)}

; max
{

dist
(

htarget, Smorphed

)}} (2)   
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2.4.3. Deformable morphing algorithm 
Based on the reference mesh, a deformable model was built with a GP 

and morphed onto the dataset of aligned meshes. A low-rank approxi-
mation of the GP characterised by a set of mode deformations of the 
reference mesh was used. The coefficients of these deformation modes 
were optimised to deform the reference mesh so that it matched the 
target shapes in the dataset. 

The reference mesh was chosen as the mean mesh of the GP, and a 
combination of two multi-scale Gaussian kernels was used. Gaussian 
kernels are able to enforce smooth deformations, and, in their scalar- 
valued form, are defined as: 

kg = e
−
‖x−y‖2

σ2 (3)  

where the parameter σ is associated with the degree of smoothness of the 
deformation field (Luthi et al., 2018). The first kernel took into account 
global shape variations of the geometry (σ = 50) while the second 
considered more localised changes (σ = 5). A finite-rank approximation 
of the GP was computed with a rank (i.e. the number of basis functions of 

the GP) equal to 200. This was done by using the Nystrom method 
(Luthi et al., 2018) with 1500 uniformly sampled points. These settings 
were chosen after preliminary analyses to optimize the mesh morphing 
outcome. This free-form deformation model (FFDM1) allows modeling 
of an ideally infinite range of non-meaningful deformations of the 
reference vertebra. 

Then, for each mesh in the dataset, the displacements between the 
anatomical landmarks placed on the reference mesh and the landmarks 
on the target mesh were incorporated within the FFDM1 through a GP 
regression, giving a so-called posterior model (FFDM2). Thanks to this 
process, the variance of the FFDM1 was constrained and the FFDM2 was 
able to represent more meaningful shapes than those obtained from the 
FFDM1. The same landmarks used for the alignment were used also for 
the creation of the FFDM2 (Fig. 2). 

The FFDM2 was morphed onto the target mesh with an iterative 
process based on displacements between regularly sampled points on 
the reference mesh and the respective closest points evaluated on the 
target mesh (Salhi et al., 2020). This GP regression, based on a large 
number of points, results in a highly constrained GP that represents a full 

Fig. 5. Mean error and Hausdorff distance (HD) (mm) between the mean mesh calculated at iteration (i) and the mean mesh calculated at iteration (i-1) (A). The 
dash-dotted line represents the threshold error of 0.12 mm. The mean mesh at iteration 3 was considered as reference mesh for further analyses as the HD with the 
mean mesh at iteration 4 was below the threshold error, and it is showed in frontal (B) and posterolateral (C) view. 
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normal distribution of shapes fitting the target shape (FFDM3). The 
mean mesh of the FFDM3 represents the final morphed mesh. The 
closest points on the target mesh were evaluated in an iterative process 
to improve the fitting (Iterative Closest Point, ICP). The mesh morphing 
process was characterized by the following steps:  

1 10,000 sample nodes were sampled on the reference mesh covering 
regularly the whole geometry  

2 For each of those nodes, the closest point on the target mesh was 
selected as candidate correspondence  

3 The displacements between the sample nodes on the reference mesh 
and the candidate correspondences on the target geometry were 
incorporated within the FFDM2 through a GP regression. This 
allowed to obtain the FFDM3  

4 The spatial position of the 10,000 nodes previously sampled was 
computed on the FFDM3 from the previous step, and the closest 
points on the target mesh were selected as candidate 
correspondences  

5 The displacements between the sample nodes on reference mesh and 
the new candidate correspondences identified in the previous step 
were incorporated within the FFDM2 through a GP regression. This 
approach allowed a new FFDM3 based on a better estimation of the 
closest points, and therefore a new morphed mesh, to be obtained.  

6 Loop to step 4 to update the displacements used in the GP regression 
based on the new morphed mesh and repeat for 100 iterations. 

At the end of this iterative procedure, to evaluate the accuracy of the 
algorithm, the mean error and HD were considered between the 
morphed meshes and the original geometries. 

2.5. Prediction of the shape of L1 

For each patient, a vector h with the coordinates of the nodes of the 
morphed T12, L1 and L2 surface meshes was created. The set of vectors 
for patients in the dataset for model construction was compressed by 
SVD. A leave-one-out experiment was performed for each number of 
modes (from 2 to 38 modes) in order to estimate the optimal number of 
modes to describe the variability of the geometries within the dataset 
(Xu and Goodacre, 2018). For a fixed number of modes (k), one vector 
was left-out and the remaining 39 vectors were compressed with SVD 
keeping the first k modes: 
H(mxn) = A(mxm)⋅Σ(mxn)⋅V(nxn) (4)  

where H is the matrix where the columns are the vectors h of node 

coordinates of each patient, A is composed of the left singular vectors 
(modes) of H, Σ is a diagonal matrix composed of the singular values σk 
of H, V is composed of the right singular vectors of H, m is equal to three 
times the number of node coordinates of a morphed vertebra, n is equal 
to 39. 

Each basis of k modes was assessed to evaluate the accuracy of the 
representation of the left-out vector and the learning vectors. Each 
vector was projected in the basis of k modes, and the surface mesh of 
T12, L1 and L2 was reconstructed from the projected vector. These 
meshes were compared with the morphed and original meshes based on 
the mean error and HD as described above. The error associated with L1 
alone and the average error associated with T12, L1 and L2 were eval-
uated. The error for the left-out patient and mean error for the 39 
learning patients were assessed. This was repeated for each patient, 
therefore 40 different bases were built for any fixed k. As output of the 
leave-one-out experiment, the average errors among the 40 bases, 
evaluated on the left-out patients or on the learning patients (only on L1 
or averaged over the three vertebrae), were calculated to define the 
optimal number of modes. 

Once the optimal k was fixed and the modes were extracted, the 
leave-one-out experiment was repeated to validate the method that aims 
to predict the shape of L1 from the shapes of T12 and L2 (Plessers et al., 
2018; Salhi et al., 2020; Vanden Berghe et al., 2017; Wang et al., 2021). 
This method was based on a minimization problem. Briefly, each vector 
including the node coordinates of the morphed vertebral bodies could be 
approximated as a linear combination of the modes as: 
hproj = A ⋅α (5)  

where α is a vector of k parameters. 
Given a patient not belonging to the dataset and for which the node 

coordinates corresponding to the L1 level are not available, we hy-
pothesize that the corresponding vector of node coordinates of T12 and 
L2 levels hT12-L2 could be approximated as a linear combination of 
modes related to the T12 and L2 parts of the matrix as: 
hT12−L2 proj = AT12−L2 ⋅α (6)  

where AT12-L2 is the part of the matrix A that includes only the node 
coordinates of T12 and L2 of the k modes, and α is a vector of k pa-
rameters. As the columns of AT12-L2 are linearly independent, the linear- 
least-square (LLS) solution α’ of this system is unique. The following 
minimization problem was solved: 
α

′

= argmin
α ∈ R

k

‖ hT12−L2 proj − hT12−L2 ‖ (7) 

Fig. 6. Anatomical planes (A) used to define sagittal and frontal angles (B).  

M. Sensale et al.                                                                                                                                                                                                                                



Medical Image Analysis 87 (2023) 102827

8

where ‖ ⋅ ‖ is the Euclidean norm. Then, we hypothesize that the co-
efficients α’ can be used to reconstruct the vector of node coordinates of 
L1 (hL1) as: 

hL1 = AL1 ⋅α
′ (8)  

where AL1 is the part of the matrix A that includes only the node co-
ordinates of L1 of the k modes. 

For each left-out patient, the mean error and HD were calculated. For 
patients presenting the highest, the lowest and average mean error and 
HD, the distribution of heights of the predicted surface mesh of the L1 
vertebral body and the respective original mesh were overlapped and 
compared. The heights were consistently defined along an average 
cranio-caudal direction between triangles of the superior endplate and 
points intersecting the inferior endplate. A heatmap of the distribution 
of heights was computed by using a linear interpolator and a step size of 
0.7 mm (equal to the average size of triangles). Also, frequency plots of 
the distribution of heights and the median values were calculated. For 
the same patients, sagittal and frontal angles between the endplates 
were calculated based on the original and predicted geometries (Fig. 6). 
Vertebral endplates were defined manually on the original and predicted 
geometries. First, anatomical landmarks used in the mesh morphing 
algorithm (Table 1) were used to define the antero-posterior and right- 
left limits of the endplates. Secondly, four lines were drawn on each 
endplate to join the landmarks and isolate the endplates. The angles 
were defined in the mid-sagittal and mid-frontal planes based on least- 
squares planes fitting the endplates. Anterior and right angles were 
considered positive (Fig. 6B). The difference between angles measured 
on original or predicted geometries was defined as absolute difference if 
angles were both anterior (posterior) or right (left), or as the sum of the 
absolute values of the angles if they were of different sign. 

The minimization was repeated to simulate the cases when only T12 
or only L2 were available. Therefore, the following systems of linear 
equations were considered and solved with a LLS method: 
hL2 = AL2 ⋅α (9)  

hT12 = AT12 ⋅α (10)  

where AL2 is the part of the matrix A that includes only the node co-
ordinates of L2 of the k modes, AT12 is the part of the matrix A that 
includes only the node coordinates of T12 of the k modes. For each left- 
out patient, the mean error and HD between the predicted surface mesh 
of L1 and the respective original meshes were evaluated. 

The method to predict the shape of L1 was also tested on an inde-
pendent dataset of 5 patients (see Section 2.2). For each patient, the 
mean error and HD were calculated, as well as the distribution of heights 
for both predicted and real meshes, frequency plots of the distribution of 
heights, and sagittal and frontal angles between the endplates. 

2.6. Comparison with simpler approach 

The estimation of the shape of the L1 vertebral body was compared 
with the results from a simpler algorithm that uses the segmented shapes 
of the T12 or L2 vertebral bodies. The mean error and HD were calcu-
lated by comparing T12 (real) and L1 (real) or L2 (real) and L1 (real). 
The results were then compared to the SSM approach presented above. 

2.7. Statistical analyses 

Descriptive statistics were used to investigate: the influence of the 
vertebral level (variable assuming values T12, L1 or L2) on the mesh 
morphing error; the influence of the number of levels used to compute 
the prediction of L1 (T12+L2, T12 only or L2 only) on the reconstruction 
error; any difference between the reconstruction error evaluated with 
respect to the original or morphed meshes; any difference between the 
reconstruction error of L1 and the projection error obtained for the 
number of modes k used to predict the shape of the L1 vertebral body. 

The normality of data was tested through a Kolmogorov-Smirnoff 
test. The sphericity of data was tested through a Mauchly’s test. In 

Table 3 
Mean error and Hausdorff distance (HD) (mm) between the morphed mesh and 
the original geometry, averaged over all the patients, for T12, L1 and L2 levels, 
and averaged over the three levels. * represents a significant difference in the 
mean error or in the HD for the T12 or L2 vertebrae compared to the L1 vertebra.  

Vertebral 
level 

Mean error (mm) Hausdorff distance (mm)  

Average ± st 
dev 

(Min, Max) Average ± st 
dev 

(Min, Max) 

T12 *0.140 ±
0.023 

(0.093, 
0.180) 

1.030 ± 0.360 (0.556, 
2.165) 

L1 0.135 ± 0.018 (0.099, 
0.177) 

0.886 ± 0.205 (0.599, 
1.628) 

L2 *0.142 ±
0.022 

(0.103, 
0.188) 

0.961 ± 0.311 (0.478, 
1.901) 

T12, L1 and 
L2 

0.139 ± 0.021 (0.093, 
0.188) 

0.959 ± 0.301 (0.478, 
2.165)  

Fig. 7. Frontal and posterolateral views of the spatial distribution of the error 
between morphed and original meshes for the highest (A-B), average (C-D) and 
lowest (E-F) Hausdorff distance (HD). Red arrows indicate the area where the 
HD occurred. The error is considered “inside” when the morphed mesh is inside 
the original one, and “outside” when the morphed mesh is outside the original 
one. Errors lower than 0.5 mm (value closest close to the voxel size of the best 
CT-scan) are reported in green. 
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fact, data did not satisfy at least one of the two requisites. Therefore, to 
compare three groups of data (for all analyses mentioned above), sta-
tistical paired analyses were conducted with Friedman test (non-para-
metric). For significant differences, a Nemenyi Post-hoc test was 
performed. To compare two groups of data (for all analyses mentioned 
above), statistical paired analyses were conducted with paired t-test 
(parametric) and Wilcoxon signed-rank test (non-parametric). Signifi-
cance level was considered at 0.05. 

3. Results 

3.1. Mesh morphing 

The mean error and HD between the morphed mesh and the original 
geometries are reported in Table 3. The average, minimum and 
maximum errors are reported for each vertebral level and for all ge-
ometries in the dataset. 

Overall, on the three levels, the average mean error was lower than 
0.15 mm, showing an excellent reconstruction of the geometry of each 
patient through the mesh morphing process. Mean errors for L1 were 
lower than those for T12 (−3.7% difference, p = 0.008) and lower than 
those for L2 (−5.2% difference, p = 0.006). The differences between the 
mesh morphing errors at different levels were in some cases statistically 
significant but lower than 6%. Non-significant differences were found 
among the average Hausdorff distances for the three vertebral levels (p 
= 0.09). Examples of spatial distributions of the error, in frontal and 
postero-lateral views, were reported for the patients with the highest 
(Patient #16, T12 level, Fig. 7A-B), lowest (Patient #14, L2 level, 
Fig. 7E-F) and average (Patient #5, L1 level, Fig. 7C-D) HD. In most 
cases the largest HD occurred at the posterolateral part of the vertebral 
body for the T12 vertebrae. Overall, the morphing mesh captured well 
the shape of the original geometries as it is demonstrated by large parts 
on the geometry with error inferior to 0.5 mm (Fig. 7). For the case with 
a HD close to the average, this error occurred at the level of the inferior 
endplate where Patient #5 presented a small osteophyte (see red arrow 
in Fig. 7D). 

Fig. 8. Mean error (ME) and Hausdorff distance (HD) due to the projection in the sub-space of modes reported in function of the number of modes for the L1 
vertebra. The errors are evaluated with respect to the morphed mesh (A) and the original mesh (B) for the leave-one-out experiment. The dotted lines show the 
optimal number of modes. The shaded region represents the standard deviation. The standard deviation was about zero for the errors evaluated on the learning data. 

Fig. 9. Boxplots of the Mean Error (mm) and Hausdorff distance (mm). Mean 
values are provided in Table 4. 
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3.2. Estimation of the optimal number of modes 

The results are summarized in Fig. 8. The HD and mean errors 
evaluated on the left-out vectors and on all the learning vectors (mean 
value) are presented. The error evaluated with respect to the morphed 
meshes, which were used to build the matrix H, (Fig. 8A) and with 
respect to the original geometries (Fig. 8B) are reported. The trends of 
errors were very similar for L1 alone (Fig. 8) or if all the three vertebrae 
were considered (Appendix B). 

As expected, the errors on left-out patients or on training data 
decreased when the number of modes increased. Considering the mean 
error on the left-out patient (morphed mesh, Fig. 8A), the error corre-
sponding to 6 modes was lower than the error corresponding to 2 modes 
by 57%. Whereas, increasing the number of modes from 6 to 39 further 
reduced the error by 25%. An optimal number of modes equal to 6, 
corresponding to a mean error of 0.44 mm that is close to the voxel size 
of the best CT-scan (0.45 mm), was chosen. A similar behavior was 
observed for the HD: the error corresponding to 6 modes was lower than 
the error corresponding to 2 modes by 35%. When increasing the 
number of modes from 6 to 39 modes the HD decreased by 19%. An 
optimal number of modes equal to 6, corresponding to a HD of 1.75 mm 
and mean error of 0.44 mm, was chosen. 

3.3. Prediction of the shape of L1 

The results of the leave-one-out cross validation show that the mean 
reconstruction error of the 3D shape of L1 was on average 0.51 mm, and 
the HD was on average 2.11 mm (Fig. 9). Examples of error maps, in 
frontal and posterolateral views, are reported for the patient with the 
highest (mean error 0.96 mm, Patient #11 Fig. 10A-B), close to the 
average (mean error 0.51 mm, Patient #5, Fig. 10C-D), and lowest 
(mean value 0.29 mm, Patient #4, Fig. 10E-F) mean error. 

Patient #35 and Patient #11 were associated with the lowest (1.38 
mm) and highest (4.52 mm) values of HD, respectively. When the in-
formation about T12 alone was used to solve the minimization problem, 
the mean error and the HD increased by 10% (p = 0.001) and 9% (p =
0.001), respectively (Table 4); when the information about L2 alone was 
used, the mean error increased by 8% (p = 0.012) but the HD was not 
significantly different (p = 0.074) (Table 4). The mean error and the HD 
when using T12 alone or L2 alone were not statistical different (p =
0.750 and p = 0.280, respectively). 

As expected the mean error (3.8%, p < 0.001) and the HD (10.5%, p 
< 0.001) evaluated on the original meshes were significantly higher 
than the case where the errors were evaluated on the morphed meshes 
(Table 4). The mean error (p = 0.301) and the HD (p = 0.248) evaluated 
on the morphed meshes (Table 4) were similar to the projection errors 
for the number of modes (6) used to predict the shape of the L1 vertebral 
body (Fig. 8A). 

For Patient #4 (lowest mean error), the distribution of height across 
the vertebral body predicted for the L1 vertebral body was very similar 
to the distribution of the original geometry (Fig. 11E-F, Fig. 12C). For 
Patient #5 (average mean error) and for Patient #11 (highest mean 
error) the height of the vertebral body was overestimated (difference 
between median values equal to 1.05 mm) (Fig. 11C-D, Fig. 12B) or 
underestimated (difference between median values equal to −1.41 mm) 
(Fig. 11A-B, Fig. 12A), respectively. For this sub-group of patients, the 
difference between sagittal and frontal angles measured on original or 
predicted geometry was always lower than 1.8◦ and 1.4◦, respectively. 

For the testing dataset of 5 patients, the mean reconstruction error of 
the 3D shape of L1 was on average 0.65 ± 0.10 mm (range: 0.51–0.83 
mm), and the HD was on average 3.54 ± 1.03 mm (range: 2.35–5.00 
mm) (Fig. 13). The mean difference in median height between the 

Fig. 10. Frontal and posterolateral views of the spatial distribution of the error 
between predicted and original meshes for the highest (A-B), average (C-D) and 
lowest (E-F) mean error (ME). Red arrows indicate the area where the Haus-
dorff distance (HD) occurred. The error is considered “inside” (blue) when the 
morphed mesh is inside the original one, and “outside” (red) when the morphed 
mesh is outside the original one. 

Table 4 
Mean error and Hausdorff distance (HD) (mm) between the predicted 3D shape 
of L1 and the original or morphed geometry, as a function of the information 
used for the prediction. * represents a significant difference in the mean error or 
in the HD for the cases where data for T12 alone or L2 alone were used compared 
to the case where data from both T12 and L2 were used.  

Reconstruction error with respect to the original geometry 
Level(s) 
used 

Mean error (mm) Hausdorff distance (mm)  

Average ± st 
dev 

(Min, Max) Average ± st 
dev 

(Min, Max) 

T12 and L2 0.51 ± 0.11 (0.29, 
0.96) 

2.11 ± 0.56 (1.38, 
4.52) 

T12 *0.56 ± 0.13 (0.34, 
1.09) 

*2.31 ± 0.52 (1.45, 
4.42) 

L2 *0.55 ± 0.13 (0.32, 
0.94) 

2.22 ± 0.57 (1.36, 
4.60)  

Reconstruction error with respect to the morphed geometry  
Mean error (mm) Hausdorff distance (mm) 

Level(s) 
used 

Average ± st 
dev 

(Min, Max) Average ± st 
dev 

(Min, Max) 

T12 and L2 0.49 ± 0.12 (0.26, 
0.94) 

1.88 ± 0.54 (1.23, 
4.06) 

T12 *0.54 ± 0.13 (0.32, 
1.08) 

*2.13 ± 0.49 (1.33, 
3.96) 

L2 *0.53 ± 0.13 (0.30, 
0.92) 

1.99 ± 0.55 (1.21, 
4.15)  
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predicted and real vertebral bodies was 0.25 ± 0.19 mm. The distribu-
tion of height across the vertebral body was similar for predicted and 
real geometry apart from Patient #44 and Patient #45 that presented 
some differences over the endplates. The difference between sagittal and 
frontal angles measured on original or predicted geometry was 1.4◦ ±

1.0◦ (range: 0.49◦−3.04◦) and 0.6◦ ± 0.2◦ (range: 0.41◦−0.89◦), 
respectively. 

3.4. Comparison with simpler approach 

When the L1 vertebral body shape was approximated with the T12 

shape, the mean error and the HD increased by 55% (p < 0.001) and 
35% (p < 0.001) for the dataset for model construction and by 36% (p <
0.001) and 25% (p < 0.001) for the independent dataset, respectively 
(Table 5); when the L1 vertebral body shape was approximated with the 
L2 shape, the mean error and the HD increased by 35% and 32% for the 
dataset for model construction and by 40% and 20% for the independent 
dataset, respectively (Table 5). 

Fig. 11. Comparison of the maps of the distribution of heights of the vertebral 
bodies between predicted (A-C-E) and original meshes (B-D-F). The comparison 
is done for the best prediction case (A-B), an average one (C-D) and the worst 
one (E-F) with respect to the mean error (ME). 

Fig. 12. Frequency plots of the heights of the predicted and real vertebral 
bodies for the worst prediction case (A), an average one (B) and the best one (C) 
with respect to the mean error (ME). Dotted lines represent the median values 
of distributions. 
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4. Discussion 

The goal of this study was to develop and validate an approach to 
reconstruct the 3D shape of an L1 human vertebral body by using the 
shapes of adjacent T12 and L2 vertebral bodies. The algorithm uses as 
input the segmentation of the two adjacent vertebral bodies (namely 

T12 and L2) from a CT scan of the lumbar spine and, by using the 
reference vertebral body mesh, predicts the 3D shape of the L1 vertebral 
body. This approach could potentially enable the prediction of the pre- 
fracture shape or height of a fractured vertebra. The algorithm showed 
an excellent reconstruction error of 0.51 ± 0.11 mm (mean error) for a 
dataset of 40 healthy patients (highest input CT-scan resolution equal to 
0.68×0.68×0.45 mm3). The reconstruction error was slightly worse for 
the independent dataset including patients with osteophytes and severe 
bone degeneration (mean error of 0.65 ± 0.10 mm). Nevertheless, the 
mean errors are close to the voxel size of the input CT images, high-
lighting the potential of this approach for different clinical applications. 
In particular, the mean errors are lower than the precision of segmen-
tations that could be obtained in a clinical setting by O-arm images 
(Casiraghi et al., 2021). 

The morphing algorithm applied to CT images allowed accurate 
descriptions of patient-specific geometries with a single template mesh. 
The average mean error and HD between the morphed meshes and their 
corresponding original geometries were lower than 0.15 mm and 1 mm, 
respectively. It is difficult to compare these values with the literature as 
in most cases the mesh morphing error associated with the creation of 
SSMs of different bones (e.g. mandible (Wang et al., 2021), skull 
(Fuessinger et al., 2018), scapular bone (Plessers et al., 2018; Salhi et al., 
2020), acetabular bone (Vanden Berghe et al., 2017) and C2 vertebra 
(Clogenson et al., 2015)) has not been reported. Campbell and Petrella 
(2016) created an SSM of the lumbar spine (L1-L5) (training set of 18 
specimens) using a subject-specific mesh morphing technique charac-
terized by a Euclidean node to surface distance lower than 10−5 mm, i.e., 
a perfect matching between the morphed and original geometries. The 
mesh morphing algorithm was based on 1306 landmarks automatically 
identified by a script that took approximately 15 min to run per vertebra. 
While this error is much lower than the one we report, it has to be 
remarked that the mean error in this study is three times lower than the 

Fig. 13. Evaluation of the prediction of the shape of L1 for the testing dataset. Frontal view of the original geometry (A). Frontal view of the spatial distribution of the 
error between predicted and original meshes (B) (green corresponds to a distance lower than 0.8 mm, blue means that the morphed mesh is inside the original one, 
red means that the morphed mesh is outside the original one). Maps of the distribution of heights of the vertebral bodies (C). Frequency plots of the heights (D). 
Values of errors (E). 

Table 5 
Mean error and Hausdorff distance (HD) (mm) between the predicted 3D shape 
of L1 and the original geometry, where the predicted 3D shape of L1 is calculated 
by the SSM based algorithm or approximated with the shape of T12 or L2 
vertebral bodies. * represents a significant difference in the mean error or in the 
HD for the cases where L1 is approximated with T12 or L2 compared to the case 
where L1 was predicted with the SSM based algorithm.  

Reconstruction error with respect to the original geometry (LOO dataset) 
Comparison Mean error (mm) Hausdorff distance (mm)  

Average ± st 
dev 

(Min, 
Max) 

Average ± st 
dev 

(Min, 
Max) 

L1pred vs L1real 0.51 ± 0.11 (0.29, 
0.96) 

2.11 ± 0.56 (1.38, 
4.52) 

T12real vs 
L1real 

*0.79 ± 0.11 (0.56, 
1.02) 

*3.29 ± 0.55 (2.11, 
4.32) 

L2real vs L1real *0.69 ± 0.12 (0.37, 
0.98) 

*2.79 ± 0.67 (1.33, 
4.06)  

Reconstruction error with respect to the original geometry (testing dataset)  
Mean error (mm) Hausdorff distance (mm) 

Comparison Average ± st 
dev 

(Min, 
Max) 

Average ± st 
dev 

(Min, 
Max) 

L1pred vs L1real 0.65 ± 0.10 (0.51, 
0.83) 

3.54 ± 1.03 (2.35, 
5.00) 

T12real vs 
L1real 

0.89 ± 0.12 (0.74, 
1.09) 

4.15 ± 1.04 (2.84, 
5.05) 

L2real vs L1real 0.91 ± 0.12 (0.78, 
1.08) 

4.26 ± 1.83 (2.83, 
7.56)  
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voxel size of the CT-scan with the best resolution in the dataset 
(0.68×0.68×0.45 mm3), and therefore lower than the segmentation 
error. In addition, the HD was concentrated in small areas of the 
vertebral bodies not critical for the proposed application (e.g. at the 
posterolateral region of the vertebral body), or at the level of small 

protuberances or porosities that affect the anatomy of a limited number 
of patients. The mesh morphing error could be reduced by choosing a 
different kernel in the deformable morphing algorithm that would 
improve the retrieval of small details of geometries. However, a further 
reduction of the mesh morphing error would not make a significant 
impact on the description of the shapes, which were accurately captured 
by the morphing algorithm used in this study, and ultimately is not 
expected to influence the performance of the algorithm. 

The optimal number of modes to build the minimization problem 
and to predict the shape of the L1 vertebral body was determined by 
repeating a leave-one-out experiment for all possible numbers of modes, 
end evaluating the projection error of patients external to the basis. This 
parameter has to be chosen based on the desired accuracy of the rep-
resentation, and on the compromise of representing the variability of the 
training data without overfitting it (Brunton et al., 2016). For a 
SSM-based reconstruction of the scapular bone, Salhi et al. (2020) 
retained the first 15 modes that allowed to account for 95% of the 
variability in a training set of 82 samples. This approach is frequently 
used in literature, but it does not consider the ability to represent data 
outside the training set. By using the leave-one-out approach, the ability 
of the model to represent data which is not part of the training set is 
measured, and, therefore, this approach was preferred in this study. As 
expected, the mean and HDs on the training data approached zero when 
increasing the number of modes. The errors evaluated on the left-out 
patients with respect to the original meshes were slightly higher than 
the errors with respect to the morphed meshes while presenting similar 
trends. In fact, the error with respect to the original mesh could be 
interpreted as the combination of the mesh morphing error and the 
projection error. For this reason, the mean error and HD on the training 
data converged to a residual error which was dominated by the mesh 
morphing error. 

In this study, the 3D shape of the L1 vertebral body was predicted 
with a mean error of 0.51 ± 0.11 mm and HD of 2.11 ± 0.56 mm, on 
average over the 40 patients in the construction dataset. The algorithm 
performed slightly worse for an external dataset containing older pa-
tients with large osteophytes and severe bone degeneration (mean error 
of 0.65 ± 0.10 mm and HD of 3.54 ± 1.03 mm, on average). For this 
dataset, the mean difference in median height between the predicted 
and real vertebral bodies was 0.25 ± 0.19 mm showing that the algo-
rithm could also be used for an estimation of the median vertebral 
height, even though the differences may be higher locally over the 
endplates. While it is hard to identify an acceptable accuracy of the 
approach as it will depend on the different clinical applications, the 
approach, being based on the segmentation of CT images, is likely to be 
affected by their resolution. Nevertheless, the mean reconstruction error 
was lower to the precision associated with the detection of the contour of 
the vertebra in clinical protocols using O-arm imaging (resolution of 
~0.4 mm), an advanced imaging system combining 2D and 3D acqui-
sition modes which is often used in the operating room during spinal 
surgical procedures (Zhang et al., 2009). The mean error was also 
relatively small in comparison with the lowest dimension of the verte-
brae in the dataset which was about 25 mm on average (vertebral 
height). The highest errors were associated with the worst voxel di-
mensions (e.g., slice thickness equal to 3 mm for Patient #11) or with 
the most degenerated shapes (Patient #42, Patient #43, Patient #45). 
The reconstruction errors were close to the projection errors obtained 
with the number of modes retained to compute the prediction (mean 
error of 0.44 ± 0.09 mm and HD of 1.75 ± 0.50 mm). As the projection 
errors represent the lowest reconstruction errors that could be found 
through the optimization process, the optimization showed excellent 
results and the reconstruction error may be further decreased by 
increasing the number of modes. In previous studies on SSM-based 
reconstruction of bones with artificial defects, the mean reconstruction 
error was 0.47 mm for the skull (node-to-node average distance) 
(Fuessinger et al., 2018), ~1 mm for the acetabular bone (mean 
Euclidean point to mesh distance equal to 1.2 ± 0.9 mm) (Vanden 

Table A1 
. Patient IDs and VerSe2020 IDs, voxel size, sex (M = man, W = woman), age and 
CT-scan used for the acquisition of images (CT-Scanner (2: Philips ICT; 3: Philips 
IQON, 4: Siemens Somatom AS+; 8 Siemens external; 9: GE external; 10 Toshiba 
external) (Löffler et al., 2020).  

Patient 
# 

Verse 
2020 
ID 

In-plane 
resolution 
(mm x mm) 

Slice 
thickness 
(mm) 

Sex Age 
(years) 

CT- 
scanner 

1 517 0.68×0.68 0.9 M 42 3 
2 540 0.98×0.98 0.9 W 19 3 
3 550 0.78×0.78 0.8 M 38 2 
4 075 1 × 1 1 W 56.6 2 
5 552 0.75×0.75 0.9 M 67 3 
6 570 0.91×0.91 0.9 M 50 3 
7 591 0.81×0.81 0.9 M 67 3 
8 597 0.80×0.80 0.9 M 64 2 
9 141 1 × 1 2 W 62.6 4 
10 254 1 × 1 2 M 27.4 4 
11 702 0.80×0.80 3 M 77 10 
12 402 1 × 1 2 M 35.2 4 
13 407 1 × 1 2 M 18.9 4 
14 413 1 × 1 1 W 23 2 
15 415 1 × 1 2 M 34.8 4 
16 500 0.68×0.68 0.90 M 35 3 
17 708 0.78×0.78 0.80 W 50 10 
18 521 0.68×0.68 1 W 35 7 
19 532 0.93×0.93 0.6 M 23 4 
20 533 0.72×0.72 0.6 M 41 4 
21 508 0.988×0.98 0.70 M 39 4 
22 522 0.73×0.73 0.9 W 71 3 
23 529 0.68×0.68 0.9 W 20 3 
24 547 0.92×0.92 0.9 W 24 3 
25 763 1.07×1.07 3 M 19 9 
26 554 0.92×0.92 0.9 M 70 3 
27 805 0.73×0.73 0.7 W 44 8 
28 569 0.73×0.73 0.9 W 46 3 
29 573 0.98×0.98 0.9 W 37 2 
30 576 0.78×0.78 0.9 W 36 3 
31 580 0.76×0.76 0.9 M 27 3 
32 606 0.68×0.68 0.45 W 58 3 
33 609 0.68×0.68 0.9 M 31 3 
34 502 0.98×0.98 0.6 W 35 4 
35 618 0.98×0.98 0.9 M 28 2 
36 627 0.78×0.78 0.9 W 47 3 
37 636 0.75×0.75 0.9 W 42 3 
38 703 0.66×0.66 0.8 M 32 10 
39 753 0.83×0.83 2.5 W 28 9 
40 761 1.31×1.31 3 M 36 9 
41 96 1 × 1 1 W 60 2 
42 553 0.68×0.68 0.9 W 60 3 
43 616 0.72×0.72 0.9 W 77 3 
44 711 0.72×0.72 0.8 M 62 10 
45 814 0.33×0.33 0.9 M 77 8  

Fig. A1. Geometries of patients included in the external dataset. Patients #42, 
#43 and #45 presented severe bone degeneration and large osteophytes. 
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Berghe et al., 2017) and scapula (root mean square error equal to 1.2 ±
0.4 mm (Plessers et al., 2018); mean closest point distance equal to 0.97 
± 0.14 mm (Salhi et al., 2020)). For the scapula Salhi et al. (2020) and 
Wang et al. (2021) reported average Hausdorff reconstruction distance 
of 5.86 ± 2.21 mm and 4.51 ± 2.65 mm, respectively. The prediction 
errors observed in the present study were similar to those reported in 
Fuessinger et al., 2018 and lower than those reported in Vanden Berghe 
et al. (2017), Plessers et al. (2018), Salhi et al. (2020) and Wang et al. 
(2021). The differences between these studies could be due to the 
different studied anatomical sites (vertebrae vs scapula or pelvis), 
reconstruction approaches (T12 and L2 vertebral bodies to reconstruct 
the L1 vertebral body vs reconstruction of bones with artificial defects 
from healthy bones), and distance metrics. In a simpler 2D case, de 
Bruijne et al. (2007) found a mean distance (closest point distance) 
between the original and reconstructed shapes of unfractured vertebrae 
equal to 0.8 ± 0.4 mm, which is higher than the mean distance found in 
the present study on the 3D shape of the vertebral body. Moreover, in 
that study, the error increased for L1 and L4 levels if only one adjacent 
vertebra was used as input. This is in line with the findings of the present 
study, which showed higher errors of about 10% if the information of 
only one adjacent vertebra was used as input. Significant differences 
were found between the reconstruction errors obtained by this approach 
and a simpler method that uses the segmented shapes of T12 or L2 
vertebral bodies. Although the algorithm provided better performance, 
the clinical impact of the method has to be demonstrated (e.g. biome-
chanical studies based on Finite Element models). In fact, differences 
between the two approaches were on average below the voxel size, 
highlighting that in most cases where the height of the vertebral body 

has to be estimated for a certain surgical procedure using the simpler 
approach based on the segmentations of the adjacent vertebrae would 
probably be accurate enough. Nevertheless, the improvements in esti-
mating the shape of the vertebral bodies (max difference in mean error 
of 0.6 mm (Patient #6) and in HD of 2.56 mm (Patient #43)) suggests 
that this approach can be helpful in some cases. Similar considerations 
may be applied to studies on the acetabular bone (Vanden Berghe et al., 
2017) and pelvis (Krol et al., 2013) that showed an improvement in the 
estimation of hip joint center of 0.4 mm (on average) and in the 
reconstruction mean distance of 0.26 mm (on average), respectively, if 
the contralateral bone was used as a template for the reconstruction. 

This study has some limitations. First, the performance of the algo-
rithm was slightly worse for older patients with large osteophytes than 
for healthy patients. However, the approach could be adapted to better 
predict shapes of L1 in case of specific pathologies by using training 
datasets specific for each application. Second, this method has been 
assessed only on the vertebrae at the thoracolumbar junction (T12, L1 
and L2). While the thoracolumbar junction is the area where traumatic 
fractures of the spine occur more often (Bensch et al., 2005; Wood et al., 
2014), probably due to the sudden change in curvature and stiffness 
resulting in a concentration of biomechanical stress (Oxland et al., 
1992), the approach presented in this study can be extended to other 
lumbar and lower thoracic vertebral bodies. This would be particularly 
useful in cases where more vertebrae adjacent to the investigated one 
are also affected by fractures. In fact, we expect a degradation of the 
quality of the prediction in cases where the adjacent vertebrae also 
present signs of fractures or microfractures, as showed by de Bruijne 
et al. (2007). Nevertheless, the approach can be extended in the future to 

Fig. B1. Mean error (ME) and Hausdorff distance (HD) due to the projection in the sub-space of modes reported in function of the number of modes as average value 
for the T12, L1 and L2 vertebrae. The errors are evaluated with respect to the morphed mesh (A) and the original mesh (B) for the leave-one-out experiment. The 
dotted lines show the optimal number of modes. The shaded region represents the standard deviation. The standard deviation was about zero for the errors evaluated 
on the learning data. 
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predict the shape of a vertebra based on the geometry of non-adjacent 
levels, with likely the need to accept lower accuracy. In these cases, 
the performance of the algorithm is expected to be significantly better 
than simpler approaches based on direct approximation of one vertebra 
shape with the most adjacent one. Additionally, this method focused 
only on the prediction of the shape of the vertebral body. The approach 
could be adapted to study the shape of the posterior part of the spine, 
which however are generally associated with high-energy trauma and 
neurologic injury (Magerl et al., 1994; Wood et al., 2014). Finally, the 
extraction of vertebral bodies from segmentations and the placement of 
anatomical landmarks were executed with a manual procedure as well 
as the definition of vertebral endplates for the estimation of vertebral 
angles. The intra- and inter- operator reproducibility of these steps need 
to be assessed before clinical application of the methodology. 

In conclusion, in this study a methodology to predict the 3D shape of 
the L1 vertebral body from adjacent ones was developed and validated. 
This research could lead to practical application as the pre-fracture 3D 
shape of the vertebral body could be used by surgeons to choose the 
optimal treatment to restore the anatomy of the vertebra and to optimize 
the reduction of vertebral fractures in multiple anatomical planes (Aebi, 
2007). 
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software support. 

Appendix A. Table of correspondence between patient IDs and 
Verse 2020 IDs 

Table A1 and Fig. A1 

Appendix B. Projection errors averaged over the T12, L1 and L2 vertebrae 

Fig. B1 

References 
Aebi, M., 2007. AOSpine Manual. AOSpine International. 
Bensch, F.V., Koivikko, M.P., Kiuru, M.J., Koskinen, S.K., 2005. The incidence and 

distribution of burst fractures. Emerg. Radiol. 12, 124. https://doi.org/10.1007/ 
s0010140-005-0457-5. 

Brunton, A., Salazar, A., Bolkart, T., Wuhrer, S., 2016. Statistical shape spaces for 3d 
data: a review, in: handbook of Pattern Recognition and Computer Vision. World 
scientific 217–238. https://doi.org/10.1142/9789814656535_0012. 

Campbell, J.Q., Petrella, A.J., 2015. An automated method for landmark identification 
and finite-element modeling of the lumbar spine. IEEE Trans. Biomed. Eng. 62, 
2709–2716. https://doi.org/10.1109/TBME.2015.2444811. 

Campbell, J.Q., Petrella, A.J., 2016. Automated finite element modeling of the lumbar 
spine: using a statistical shape model to generate a virtual population of models. 
J. Biomech. 49, 2593–2599. https://doi.org/10.1016/j.jbiomech.2016.05.013. 

Casiraghi, M., Scarone, P., Bellesi, L., Piliero, M.A., Pupillo, F., Gaudino, D., 
Fumagalli, G., Grande, F., Presilla, S., 2021. Effective dose and image quality for 
intraoperative imaging with a cone-beam CT and a mobile multi-slice CT in spinal 
surgery: a phantom study. Phys. Med. 81, 9–19. https://doi.org/10.1016/j. 
ejmp.2020.11.006. 

Clogenson, M., Duff, J.M., Luethi, M., Levivier, M., Meuli, R., Baur, C., Henein, S., 2015. 
A statistical shape model of the human second cervical vertebra. Int. J. Comput. 
Assist. Radiol. Surg. 10, 1097–1107. https://doi.org/10.1007/s11548-014-1121-x. 

Commandeur, F., Velut, J., Acosta, O., 2011. A VTK Algorithm for the Computation of 
the Hausdorff Distance. VTK J., 2011 January-December Submissions 839. 

Day, G.A., Jones, A.C., Wilcox, R.K., 2022. Using Statistical Shape and Appearance 
Modelling to characterise the 3D shape and material properties of human lumbar 
vertebrae: a proof of concept study. J. Mech. Behav. Biomed. Mater. 126, 105047 
https://doi.org/10.1016/j.jmbbm.2021.105047. 
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