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A B S T R A C T

The problem of identifying single degree-of-freedom (SDOF) nonlinear mechanical oscillators
with piecewise-linear (PWL) restoring forces is considered. PWL nonlinear systems are a class
of models that specify or approximate nonlinear systems via a set of locally-linear maps,
each defined over different operating regions. They are useful in modelling hybrid phenomena
common in practical situations, such as, systems with different modes of operation, or systems
whose dynamics change because of physical limits or thresholds. However, identifying PWL
models can be a challenging task when the number of operating regions and their partitions
are unknown. This paper formulates the identification of oscillators with PWL restoring forces
as a task of concurrent model selection and parameter estimation, where the selection of the
number of linear regions is treated as a model selection task and identifying the associated
system parameters as a task of parameter estimation. In this study, PWL maps in restoring forces
with up to four regions are considered, and the task of model selection and parameter estimation
task is addressed in a Bayesian framework. A likelihood-free Approximate Bayesian Computation
(ABC) scheme is followed, which is easy to implement and provides a simplified way of
doing model selection. The proposed approach has been demonstrated using two numerical
examples and an experimental study, where ABC has been used to select models and identify
parameters from among four SDOF PWL systems with different number of PWL regions. The
results demonstrate the flexibility of using the proposed Bayesian approach for identifying the
correct model and parameters of PWL systems, in addition to furnishing uncertainty estimates
of the identified parameters.

1. Introduction

Linear systems are relatively easy to analyse and well-established theories exist for the identification and analysis of such systems.
Linearity also means that local properties hold globally. This property, however, is not true for nonlinear systems, which make them
hard to analyse. Hence, when confronted with nonlinear systems, a common technique is to approximate the nonlinear system with
one or more linear systems. When a single linear approximation about an operating point is not accurate enough, a series of locally
linear approximations may be defined over different regions of operation of the nonlinear system. Such a system with a set of locally-
linear maps is called a piecewise-linear (PWL) system. These systems form an interesting class of models as they feature universal
approximation properties [1], meaning that they can approximate any nonlinear function arbitrarily well, and they generalise the
well-established theory of linear systems for analysing nonlinear systems.
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Systems with PWL dynamics (or more generally, piecewise-affine (PWA) dynamics), have been studied for a long time in science
and engineering. They are often used to model a variety of nonlinear phenomena occurring in many practical situations, such as
systems with different modes of operation, or systems where the dynamics change due to thresholds, switches, and physical limits.
One of the earliest practical implementation of PWL systems lies in control engineering, where a PWL control formulation was
introduced in anticipatory actions of a servomechanism [2]. PWL systems are also quite useful in modelling rule-based intelligent
controllers such as fuzzy-logic-based control systems [3]. In the 1970s, PWL models grew very popular in the circuit theory
community for modelling large-scale electrical circuits with diodes [4], where nonlinear transfer functions of semiconductor diodes
(used in analog computers) were realised with piecewise-continuous approximations. PWL models also have a long tradition of being
used in modelling systems with saturation and relay nonlinearities [5]. In mechanical and structural engineering, PWL systems are
extremely useful in representing oscillators with motion-limiting constraints [6]. Examples of such systems include shock absorbers
in automotive suspension systems, where different damping characteristics are observed in compression and rebound, or vibrating
components that make soft contact (or impact) with each other, giving rise to PWL stiffnesses [6]. The practical significance of these
systems has resulted in several studies involving nonlinear SDOF mechanical oscillators where the restoring forces are modelled as
PWL functions of displacement and/or velocity [7–10].

There are several results on the analysis, stability and computation of PWL systems in the literature [11–15], with the implicit
assumption that a PWL model is available at hand. A PWL model can be derived from first principles by evaluating an explicit
smooth nonlinear model (or a differential equation) at a number of points and using linear interpolation between those points.
However, in most practical cases, an explicit system model is not available and hence there arises a need to identify a PWL model
from experimental data. Identification of PWL models can be quite challenging depending on what information is known at hand.

The full set of parameters for a PWL model includes: (a) the number of operating regions, (b) the parameters of the partitions
demarcating the different operating regions, and (c) the parameters of each local linear model [16]. When the number of operating
regions and their partitions are known, parameter estimation of the local linear models is a relatively easy task and can be achieved
with standard linear parameter identification methods [17]. However, when the partitions are not known, the problem becomes
considerably more challenging, and even more difficult when the number of operating regions is also unknown. For a complete
identification of a PWL model, one requires to simultaneously classify the operating regions and estimate the parameters of the
partitions as well as those of the linear submodels.

A variety of frequentist and Bayesian approaches for identifying PWL/PWA systems has been proposed in the literature,
see [16,18,19] for a review. In most works, a commonly-followed approach is to pose the identification of PWL models in a regression
format, in the input–output space; this formatting allows the problem to be set up as an identification of piecewise AutoRegressive
with eXogenous inputs (PWARX) models [20–22]. Another way is to treat the identification problem using state–space models [17].
When the number of operating regions is treated as known, the parameters of the partitions and those of the linear submodels
can be estimated via optimisation [23,24]. However, the optimisation schemes, like gradient descent or Gauss–Newton search, may
get stuck in local optima and an evolutionary optimisation scheme (such as a genetic algorithm), is better suited. As an extension
to this problem with a fixed number of operating regions, a few studies proposed to add new partitions (i.e., new sub-regions)
progressively using several steps in identification [25–27]. Another group of methods [20,21,28–31] treat the number of operating
regions as unknown and start by classifying the data points according to a certain criterion and then estimating the local linear/affine
submodels simultaneously or iteratively.

This paper deals with identification of SDOF vibratory oscillators where the restoring forces are piecewise-linear functions of
the system displacements or velocities. Unlike the previous approaches that try to identify clusters of data points segregating the
linear regions of operation, here the number of linear regions of operation is treated as a task of model selection, whereas that
of determining the parameters of linear regions is solved via parameter estimation. Addressing model selection and parameter
estimation in a Bayesian paradigm, Bayesian model selection is used to determine the PWL model with the most appropriate number
of regions from among a set of PWL models with different number of regions of operation, and Bayesian parameter inference to
estimate the distributions over the parameters of the linear regions. For conceptual simplicity, an ABC-based model selection and
posterior parameter estimation procedure is followed [32,33]. Unlike previous Bayesian approaches [20–22] that developed specific
Bayesian computation algorithms tailored to the formulation of PWARX systems, the ABC procedure can work with any formulation
of the model as long as responses can be simulated from the model given the parameters. The simplicity of this approach lies in
the relative ease of implementation, where one only needs to specify a set of PWL models with different model orders, i.e. different
number of operating regions, and the ABC algorithm automatically determines the most suitable model, as well as estimates the
posterior uncertainty over its parameters.

To demonstrate this concept, the ABC-based combined Bayesian model selection and parameter estimation is applied to two
numerically-simulated examples of SDOF oscillators, one with PWL stiffness and other with PWL damping nonlinearities. The
particular interest in these two types of PWL models is because they are quite useful in representing mechanical systems such as
vibration sinks [34], vibration isolators [35], and freeplay nonlinearities that occur because of worn-out hinges and loose rivets [36].
What follows next, in Section 2, is a mathematical description of SDOF oscillators with PWL nonlinearities, specifically PWL stiffness
and PWL damping models. Next, in Section 3, the ABC framework for Bayesian model selection and parameter inference is described,
which is used for identification of the PWL systems. Section 4 outlines two numerical studies – one on a trilinear stiffness model
and another on a trilinear damping model – to demonstrate the working of the proposed methodology. For experimental validation,
the proposed procedure is applied to an experimental dataset from an automotive shock absorber in Section 5. Finally, Section 6
provides some discussion and concluding remarks.
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Fig. 1. Diagrammatic sketches of piecewise-linear restoring force surfaces for PWL stiffness and PWL damping models; the state–space is partitioned along
displacement 𝑧 in (a), and along velocity in �̇� in (b).

2. Piecewise-linear model description

Consider an externally-forced nonlinear SDOF mechanical oscillator represented by the following equation of motion,

𝑚�̈� + 𝑓 (𝑧, �̇�) = 𝑢 (1)

where 𝑚 is the mass of the oscillator, 𝑢 is the external forcing function, and 𝑧, �̇�, �̈� are the displacement, velocity, and acceleration
responses, respectively, and 𝑓 (𝑧, �̇�) is the internal restoring force due to damping and stiffness, which acts to bring the mass back to
equilibrium position when disturbed. The nonlinear restoring force is assumed to be a continuous PWL function of the displacement
𝑧 or velocity �̇� (but not both at the same time), such that the state–space of the oscillator defined by the pair  = {𝑧, �̇�}, is partitioned
into different operating regions

{𝑝

}𝑃
𝑝=1
. Each operating region is associated with a static linear relation describing the restoring

force surface and the partition between two adjacent regions forms a plane. The region partitions can be considered as switches
between different linear regions, the switches arising from the breakpoints in the PWL functions of the nonlinear restoring force 𝑓 .

Here the focus is placed on the identification of two types of PWL systems that are quite useful for analysing nonlinear mechanical
oscillators. These are PWL stiffness and PWL damping oscillators [6]. They differ from each other in the sense of which state variable
– displacement or velocity – of the system admits a predominant PWL representation; their corresponding restoring force surface
plots are shown in Fig. 1. When a linear behaviour is observed in the velocity variable �̇� and a piecewise-linear behaviour occurs
only as a function of the displacement variable 𝑧, a PWL stiffness system is obtained. For such a system, the system equation of
motion can be compactly represented by,

𝑚�̈� + 𝑐0�̇� + 𝑘PWL(𝑧) = 𝑢, for {𝑧, �̇�} ∈ 𝑝 (2)

Here, 𝑐0 denotes the linear damping parameter and the term 𝑘PWL(𝑧) represents the PWL stiffness function. For such a system, the
stiffness-based restoring force 𝑘PWL(𝑧) has 𝑃 linear operating regions and the regional partitions are planes that occur parallel to
the 𝑓 − �̇� plane as shown in Fig. 1(a). Nonlinearities in the form of PWL stiffness can arise in aircraft ground vibration tests from
pylon–store–wing assemblies or at pre-loading bearing locations [6]. Freeplay nonlinearity is another form of PWL stiffness that can
arise in aeroelastic systems because of worn-out hinges and loose rivets [36]. Contrary to a PWL stiffness system, the restoring force
in a PWL damping system is dominated by a PWL function of velocity �̇�; the equation of motion of such a system would read as,

𝑚�̈� + 𝑐PWL (�̇�) + 𝑘0𝑧 = 𝑢, for {𝑧, �̇�} ∈ 𝑝 (3)

where 𝑘0 is the linear stiffness parameter and 𝑐PWL(�̇�) represents the PWL damping function. For such a system, it is the damping
parameter that varies across different regions of operation, and the regional partitions manifest as planes parallel to the 𝑓 − 𝑧 plane
as shown in Fig. 1. An example of a PWL damping system is a standard automotive damper or shock absorber which is designed to
have different damping constants in compression and rebound [6]. It must be mentioned that piecewise linearity could also occur
simultaneously in both displacement and velocity; however, such scenarios are less common in practice and hence not considered
in this paper.

It is now worth looking at the piecewise-linear forms of 𝑘PWL and 𝑐PWL. As mentioned before, a dynamical system with PWL
stiffness (or damping), is obtained by partitioning along the displacement (or velocity) field to obtain a finite set of linear operating
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Fig. 2. SDOF mechanical models with (A) bilinear, (B) trilinear, and (C) quadlinear stiffnesses.

regions and then a linear restoring force map is considered for each region. When there exists only a single region of operation,
i.e. no partitions, the system is a linear system. A PWL system results when there is more than a single linear region of operation,
the number of regions of operation is considered here as the model order of the PWL system. For example, a second-order PWL
system will comprise two regions of operation, and is referred to as a bilinear system, with 𝑘BL(𝑧) representing a bilinear function
of displacement. In this study, PWL systems up to the fourth order are considered, since regions of operation beyond four are rarely
seen in practice. Fig. 2 illustrates three PWL mechanical oscillators with bilinear (BL), trilinear (TL), and quadlinear (QL) stiffnesses
and depicts their 𝑘PWL maps as a function of 𝑧. For example, Fig. 2(A) illustrates a BL system with two linear regions of operation
separated by a breakpoint, each region characterised by its own linear stiffness parameter; 𝑘0 and 𝑘𝑅1, here. The breakpoint between
the two adjacent regions of operation represents a displacement partition and its location on the displacement axis is denoted by
𝑑𝑅1. For the purpose of convenience, the stiffness and partition parameters are denoted by subscripts 𝐿# or 𝑅# to refer to which side
(left or right) of the mass they appear. If the partition for the BL stiffness system appears to the left of the mass (instead of right, as
shown in Fig. 2(A)), the stiffness parameter would be denoted by 𝑘𝐿1 and the partition parameter by 𝑑𝐿1. It must be emphasised that
two adjacent stiffness and partition parameters for any PWL-stiffness system should be distinct from each another. For example, the
two adjacent stiffnesses 𝑘𝑅1 and 𝑘𝑅2 of a QL stiffness system (see Fig. 2(C)) cannot be the same, else it would resemble a TL stiffness
model. In inverse identification, such redundancies may be avoided by enforcing the adjacent stiffness and partition parameters to
be different from each other.

This study considers PWL systems that have up to four linear regions of operation (i.e. fourth order), since the mechanical
oscillators that can be approximately modelled as PWL systems usually have less than four regions of operation. For a mechanical
oscillator with PWL stiffness, the PWL maps for bilinear (BL), trilinear (TL), and quadlinear (QL) stiffnesses can be described by
Eqs. (4), (5), and (6), respectively.

Bilinear stiffness:

𝑘BL(𝑧) =

{
𝑘0𝑧, for 𝑧 ≤ 𝑑𝑅1
𝑘0𝑑𝑅1 + 𝑘𝑅1

(
𝑧 − 𝑑𝑅1

)
, for 𝑧 > 𝑑𝑅1

(4)

Trilinear stiffness:

𝑘TL(𝑧) =

⎧⎪⎨⎪⎩

𝑘0𝑑𝐿1 + 𝑘𝐿1
(
𝑧 − 𝑑𝐿1

)
, for 𝑧 ≤ 𝑑𝐿1

𝑘0𝑧, for 𝑑𝐿1 < 𝑧 ≤ 𝑑𝑅1
𝑘0𝑑𝑅1 + 𝑘𝑅1

(
𝑧 − 𝑑𝑅1

)
, for 𝑧 > 𝑑𝑅1

(5)

Quadlinear stiffness:

𝑘QL(𝑧) =

⎧
⎪⎪⎨⎪⎪⎩

𝑘0𝑑𝐿1 + 𝑘𝐿1
(
𝑧 − 𝑑𝐿1

)
, for 𝑧 ≤ 𝑑𝐿1

𝑘0𝑧, for 𝑑𝐿1 < 𝑧 ≤ 𝑑𝑅1
𝑘0𝑑𝑅1 + 𝑘𝑅1

(
𝑧 − 𝑑𝑅1

)
, for 𝑑𝑅1 < 𝑧 ≤ 𝑑𝑅2

𝑘0𝑑𝑅1 + 𝑘𝑅1
(
𝑑𝑅2 − 𝑑𝑅1

)
+ 𝑘𝑅2

(
𝑧 − 𝑑𝑅2

)
, for 𝑧 > 𝑑𝑅2

(6)

As for oscillators with PWL damping, their mathematical descriptions are very similar to those of the PWL stiffness systems, with
the only difference that the PWL regions here are functions of the velocity �̇� (instead of displacement 𝑧), as described in Eq. (3).
Therefore, oscillators with bilinear, trilinear, and quadlinear damping, illustrated by Fig. 3, are described by the following relations.

Bilinear damping :

𝑐BL(�̇�) =

{
𝑐0�̇�, for �̇� ≤ 𝑣𝑅1
𝑐0𝑣𝑅1 + 𝑐𝑅1

(
�̇� − 𝑣𝑅1

)
, for �̇� > 𝑣𝑅1

(7)
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Fig. 3. SDOF mechanical models with (A) bilinear, (B) trilinear, and (C) quadlinear damping.

Trilinear damping :

𝑐TL(�̇�) =

⎧
⎪⎨⎪⎩

𝑐0𝑣𝐿1 + 𝑐𝐿1
(
�̇� − 𝑣𝐿1

)
, for �̇� ≤ 𝑣𝐿1

𝑐0�̇�, for 𝑣𝐿1 < �̇� ≤ 𝑣𝑅1
𝑐0𝑣𝑅1 + 𝑣𝑅1

(
�̇� − 𝑣𝑅1

)
, for �̇� > 𝑣𝑅1

(8)

Quadlinear damping :

𝑐QL(�̇�) =

⎧
⎪⎪⎨⎪⎪⎩

𝑐0𝑣𝐿1 + 𝑐𝐿1
(
�̇� − 𝑣𝐿1

)
, for �̇� ≤ 𝑣𝐿1

𝑐0�̇�, for 𝑣𝐿1 < �̇� ≤ 𝑣𝑅1
𝑐0𝑣𝑅1 + 𝑐𝑅1

(
�̇� − 𝑣𝑅1

)
, for 𝑣𝑅1 < �̇� ≤ 𝑣𝑅2

𝑐0𝑣𝑅1 + 𝑐𝑅1
(
𝑣𝑅2 − 𝑣𝑅1

)
+ 𝑐𝑅2

(
�̇� − 𝑣𝑅2

)
, for �̇� > 𝑣𝑅2

(9)

Note that the variation of damping parameters across different regions is denoted by 𝑐0, 𝑐𝐿# and 𝑐𝑅#, and the velocity partitions
between two adjacent regions of operation are denoted on the velocity axis by either 𝑑𝑅# or 𝑑𝐿#.

For the purpose of identification, it is worth looking at the parameter set for a PWL stiffness (or damping) model, it consists
of the mass, the linear damping (or stiffness) parameter and the series of stiffness (or damping) and partition parameters. If the
model-order (i.e. the number of linear regions) and the parameters of a PWL model are known, one can provide a known input
excitation to the model and simulate forward responses, such as displacement, velocity, or acceleration, using a suitable numerical
time-integration scheme, such as MATLAB’s ode45 [37]. The output measurements from such a system, denoted by 𝑦, could consists
of displacement, velocity, and/or acceleration, or some of their derivatives.

3. Bayesian model selection and parameter estimation using ABC

The goal in this study is to identify the model-order and the parameters of an SDOF PWL stiffness/damping model, subject to a

given external excitation 𝑢, based on some measured output data in discrete-time,  =
{
𝑦1,… , 𝑦𝑁𝑡

}
. The idea is to select a best-fit

model from a pool of models – comprising linear, bilinear, trilinear and quadlinear models – and estimate its parameters. Such an
identification problem is more commonly addressed as the task of model selection and parameter estimation. A Bayesian inference
framework is employed here for performing this task, as it naturally incorporates the principle of parsimony and provides uncertainty
quantification in the form of probability distributions. In Bayesian inference, one seeks to compare the quality of fit of different
models according to posterior probability distributions (after observing evidence) over them. The Bayesian inference approach has
been successfully applied in various domains ranging from structural dynamics [38–41], degradation and defect modelling [42,43],
genetics [44], finance [45,46], ecology [47,48], etc.

In Bayesian parameter estimation, one seeks to estimate the posterior probability distribution over the parameter set for a
specified model, given some measured data . The posterior distribution of parameters 𝜽(𝑖) for model 𝑖, is given by Bayes’ rule,

𝑝
(
𝜽(𝑖) ∣ ,𝑖

)
=

𝑝
( ∣ 𝜽(𝑖),𝑖

)
𝑝
(
𝜽(𝑖) ∣ 𝑖

)

𝑝
( ∣ 𝑖

) (10)

where 𝑝
( ∣ 𝜽(𝑖),𝑖

)
is the likelihood of the dataset, 𝑝

(
𝜽(𝑖) ∣ 𝑖

)
is the parameter prior distribution, and 𝑝

( ∣ 𝑖

)
is the marginal

likelihood (also called the model evidence). The model evidence is a multi-dimensional integral over the model-parameter space,

𝑝
( ∣ 𝑖

)
= ∫ 𝑝

( ∣ 𝜽(𝑖),𝑖

)
𝑝
(
𝜽(𝑖) ∣ 𝑖

)
𝑑𝜽(𝑖) (11)

and is typically analytically intractable, especially when the likelihood and/or prior distribution is non-Gaussian and the dimension
of the parameter space 𝜽(𝑖) is high. When one is only concerned with parameter posterior estimation, computation of the model
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evidence is not essential, and it can be bypassed using standard Markov Chain Monte Carlo (MCMC) methods [49] – they
only need the form of the unnormalised parameter posterior and can provide stationary samples from the parameter posterior
distribution. Nonetheless, the model evidence is important for Bayesian model selection, where given a plausible set of 𝐾 models,
 =

{1,… ,𝐾

}
, the best model is determined as the one with the highest relative model posterior probability among all models

in the set. The model posterior for the 𝑖th model 𝑖 is proportional to the model evidence,

𝑝
(𝑖 ∣ )

=
𝑝
( ∣ 𝑖

)
𝑝
(𝑖

)
𝑝 ()

∝ 𝑝
( ∣ 𝑖

)
𝑝
(𝑖

)
(12)

Several methods have been proposed to compute the model evidence, see review paper [50] for more details. With the advancement
of MCMC algorithms, model evidence is more commonly estimated using MCMC samples from the parameter posterior distribution.
Examples of such methods include Chib’s algorithm [51], and transitional MCMC [52]. However, the implementation of standard
MCMC methods to compute model evidence is not straightforward, as they require several additional steps and their efficacy
depends on proper tuning of algorithmic hyperparameters. A specific MCMC algorithm that allows simultaneous model selection and
parameter estimation in ‘one-go’ is Reversible-jump MCMC (RJMCMC) [53], which is quite popular for Bayesian model selection
and parameter estimation. However, RJMCMC has its own drawbacks: each time an RJMCMC jumps between models, the parameter
values sampled in the previous model are lost and subsequent jumps into that model must start afresh, which can make the RJMCMC
quite inefficient.

Instead of following an MCMC-based approach, an ABC approach is adopted here, as it is conceptually intuitive and quite
straightforward to implement. Moreover, ABC constitutes a class of simulation-based likelihood-free methods that has the advantage
of being able to handle problems where the likelihood is not exactly known or is difficult to compute [54,55]. However, a drawback
of ABC methods is that they can be computationally very slow. All ABC-based methods operate by generating simulated datasets and
comparing them to the observed data. To conduct posterior parameter estimation, the generated simulated data ∗ is compared to
the observed data , and the corresponding input parameter set is accepted if a suitable distance measure between them 𝜌 (,∗)

is less than a specified threshold 𝜀 defined by the user. The ABC algorithm thus provides samples from the approximate parameter
posterior of the form

𝑝
(
𝜽(𝑖) ∣ ,𝑖

)
≈ 𝑝𝜀

(
𝜽(𝑖) ∣ ,𝑖

)
∝ ∫ 𝑝

(
𝜽(𝑖),∗ ∣ 𝑖, 𝜌

(,∗
)
< 𝜀

)
𝑑∗ (13)

where 𝑝𝜀
(
𝜽(𝑖) ∣ ,𝑖

)
is the ABC-based approximate parameter posterior for model 𝑖 and it becomes increasingly close to the

true parameter posterior as 𝜀 gets smaller. In this study, the distance measure has been chosen to be the Normalised Mean Squared
Error (NMSE) between the simulated data ∗ and observed data ,

𝜌
(,∗

)
=

100

𝑁𝑡𝜎
2

𝑁𝑡∑
𝑖=1

(
𝑦∗
𝑖
− 𝑦𝑖

)2
(14)

where 𝜎2 is the variance of the observed dataset. Along with parameter estimation, ABC methods can also perform model selection
based on relative acceptance frequencies of parameter samples for different models in a set of models, thus avoiding the direct need
for model evidence computation. The algorithmic implementation of the ABC framework is quite simple and straightforward, which
makes it an attractive alternative to the conventional Bayesian approaches, particularly when performing model selection. There
are several ABC algorithms that have been proposed in the last decade, such as ABC rejection sampling [56], ABC Sequential Monte
Carlo [32], ABC-MCMC [57], ABC Nested Sampling [33], ABC Subset Simulation [58]; see [54] for details.

In this study, the ABC-NS [33] algorithm is applied for Bayesian model selection and parameter estimation, albeit with some
modifications tailored for faster convergence for the application at hand. The procedure of ABC-NS algorithm starts by generating
a set of parameter samples, referred to as particles, from different models in the model set. The collection of all particles is called
a population. A set of ‘‘active’’ particles are retained from the population, selected based on their relative NMSE values. Sampling
distributions are defined using the active particles, which are then employed to generate (or sample) a new set of particles; together,
the active particles and the newly-generated set of particles constitute the next population of particles. This process of generating
new populations of particles is repeated until a convergence/stopping criteria is met. The relative proportion of particles belonging to
each model from the last population serves to determine the relative model posterior, whereas the distribution of the model-specific
particles themselves determines the parameter posterior distributions.

The ABC-NS algorithm implemented in this study consists of the following main steps:

1. Create an initial population of particles: This step generates an initial population of 𝑁𝑠 particles from 𝐾 models using model
priors and parameter priors. First, the models are sampled from model priors, then model-specific parameters are sampled
from parameter priors. For each sampled parameter 𝜽∗ belonging to model𝑘, a dataset ∗ is simulated and compared with
the observed dataset , using NMSE given in Eq. (14). A number of particles 𝑁𝑠, that have their NMSE values lower than an
initial user-defined threshold 𝜀1 are accepted and saved as the initial population of particles. The lines 2–12 in Algorithm 1
detail the generation of initial population of particles.

2. Define the next threshold: The NMSE values of all particles of the initial population are sorted (or ranked) in a descending
order, and the next threshold 𝜀2 is defined as equal to the (𝛼0𝑁𝑠)th element of the ordered NMSE values. See lines 13–15 in
Algorithm 1.
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3. Assign weights to particles: The particles with NMSE values above threshold 𝜀2 are dropped and the rest of the particles – the
‘‘active’’ particles – are assigned weights

{
𝒘𝑘

}𝐾
𝑘=1

based on their NMSE values; a particle with a lower NMSE value receives
a higher weight. See lines 16–17 of Algorithm 1 and the weighting module in Algorithm 3.

4. Construct ellipsoids for sampling : The model-specific active particles, saved in
{
𝑘

}𝐾
𝑘=1
, are used to construct model-specific

ellipsoids
{𝑘}𝐾𝑘=1 defined by their weighted means

{
𝝁𝑘

}𝐾
𝑘=1

and weighted covariances
{
𝜮𝑘

}𝐾
𝑘=1

respectively,

𝝁𝑘 =
1∑

𝑖

𝑤𝑘,𝑖

∑
𝑖

𝑤𝑘,𝑖𝜽𝑘,𝑖 (15a)

𝜮𝑘 =
1∑

𝑖

𝑤𝑘,𝑖

∑
𝑖

𝑤𝑘,𝑖

(
𝜽𝑘,𝑖 − 𝝁𝑘

) (
𝜽𝑘,𝑖 − 𝝁𝑘

)𝑇
(15b)

Here 𝜽𝑘,𝑖 denotes the 𝑖th active parameter particle from model 𝑘 and 𝑊𝑘,𝑖 is its corresponding scalar weight. Furthermore,

the best parameter particles (with lowest NMSE values) from all models in the current population are saved as
{
𝜽𝑘,best

}𝐾
𝑘=1
.

See lines 18–19 in Algorithm 1 and the ellipsoid construction module in Algorithm 4.
5. Sample from the ellipsoids: Define the next population of 𝑁𝑠 particles by adding particles to the existing set of active particles.
These added particles are obtained by sampling from the ellipsoids

{𝑘}𝐾𝑘=1. During this step, based on a certain prefixed
probability 𝑝best, either standard ellipsoids with mean

{
𝝁𝑘

}𝐾
𝑘=1

and covariances
{
𝜮𝑘

}𝐾
𝑘=1

are used for sampling, or ‘shrunken’

ellipsoids with reduced covariances
{
𝛾𝜮𝑘

}𝐾
𝑘=1

(0 < 𝛾 < 1) and mean shifted to the location of the best particles
{
𝜽𝑘,best

}𝐾
𝑘=1

are used. The shrunken ellipsoids serve the purpose of sampling particles that have greater chances of acceptance and are
useful in scenarios where the acceptance rates of particles from standard ellipsoidal sampling become diminishingly small.
However, sampling from shrunken ellipsoids is expected to occur only occasionally and is controlled by 𝑝best, which is usually
given a small value such as 0.05, meaning that shrunken ellipsoids may be used for sampling only 5% of the total sampling
iterations on an average. Note that, the sampled particles are accepted only if they satisfy the constraint conditions (if any),
and when their corresponding NMSE values fall below the previously-generated threshold.

6. Computing the next threshold automatically : The next threshold is selected adaptively, based on NMSE values of particles of
the current population, as well as those of the previous population. The idea is to compare the relative concentration of the
distributions of model-specific NMSE values between two populations of particles, and then gauge how much the tolerance
should be decreased to: (a) prevent diminishingly-small acceptance rates (when the tolerance change is too big) and/or (b)
prevent the algorithm getting stuck around the same tolerance (when the tolerance change is too small and the samples are
dominated by a single model class). For comparing concentrations, a kernel density estimator is used to estimate the NMSE
densities of two successive populations of particles for each model class, and the ratios of the maximum values of the densities
for the two successive populations are computed. The ratio 𝑟𝑘 for a model class 𝑘 is computed as,

𝑟𝑘 = 1 −
𝑓𝑘,𝑝−1

𝑓𝑘,𝑝
(16)

where 𝑓𝑘,𝑝−1 and 𝑓𝑘,𝑝 are the maximum values of the densities of NMSE values for the successive populations 𝑝 − 1 and 𝑝,
respectively. Fig. 4 provides an example illustration of the idea for ratio calculations. In the illustration, four model classes
are considered and density estimates over the NMSE values for each model class are obtained for the current population 𝑝 and
the previous population 𝑝− 1. These density estimates are computed using the NMSE values of the corresponding parameter
particles in the respective populations. For each model class, the maximum values of the density estimates (denoted by stars in
the figure) are used to calculate the ratio given in Eq. (16). A higher concentration of NMSE values in the current population
than the previous one will produce values of

𝑓𝑘,𝑝−1

𝑓𝑘,𝑝
less than 1. In the illustration, the greatest increase in the concentration

of NMSE values from previous to current population is seen for Model 1, with a prominent difference in the maximum values
of its density estimates between two successive populations; and hence, it produces the largest ratio among all model classes.
For Models 3 and 4, the difference in the maximum values of the densities are very small and their corresponding ratios
would be small. Note that negative values of 𝑟𝑘 may also manifest when values of

𝑓𝑘,𝑝−1

𝑓𝑘,𝑝
greater than 1 occur. This case is

illustrated for Model 2, where the maximum value of density estimate for the current population is lower than that of the
previous population.
A quantile 𝛼 is assigned based on the maximum of the ratios

{
𝑟1,… , 𝑟𝐾

}
, however, 𝛼 is set to never go below a minimum of

0.1 to prevent stagnation of the population. Once the value of 𝛼 is determined, the NMSE values of all the particles of the
current 𝑝th population are sorted in a descending order, and the next threshold 𝜀𝑝+1 is defined equal to the (𝛼𝑁𝑠)th element
of the ordered NMSE values. See lines 27–28 in Algorithm 1 and the automatic threshold selection module in Algorithm 2.

7. Repeat iterations until stopping criterion is met : The steps of weight assignment (Step 3), ellipsoid construction (Step 4), sampling
from ellipsoids (Step 5), and automatic calculation of next threshold (Step 6) are repeated until a stopping criteria is met.
When the relative difference between NMSE thresholds between two successive populations is less than a preset tolerance
𝜖𝑡𝑜𝑙, the ABC algorithm is deemed to have converged and the iterations are stopped.

Post convergence of the ABC algorithm, the posterior model probability is approximated by the proportion of particles in each
model class from the last population,

𝑝
(𝑘 ∣ )

≈
Number of particles in 𝑘

Total number of particles 𝑁𝑠

(17)
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Algorithm 1 Modified ABC-NS sampler

1: Input: Observed output data  =
{
𝑦1,… , 𝑦𝑛

}
, input excitation 𝑢, model set  =

{1,… ,𝐾

}
, total number of particles 𝑁𝑠,

initial proportion of dropped particles 𝛼0, initial threshold 𝜀1, importance-sampling probability 𝑝best, shrink factor 𝛾, stopping
criterion

2: procedure Generate initial population of particles ⊳ For first population
3: 𝑝 = 1, iter = 0
4: while iter < 𝑁𝑠 do
5: Sample a model from model set: 𝑘 ∼ 𝑝 ( ∣ )

6: Sample a parameter from the model: 𝜽∗ ∼ 𝑝
(
𝜽 ∣ 𝑘

)
7: Simulate data: ∗ ∼ 𝑘(𝜽

∗) subject to excitation 𝑢

8: Calculate NMSE value: 𝜌 (,∗)

9: if 𝜌 (,∗) < 𝜀1 then
10: Save parameter sample 𝜽∗ in 𝜣𝑘,1

11: Save NMSE value 𝜌 (,∗) in 𝒆𝑘,1
12: iter = iter + 1
13: Concatenate the NMSE values for all models: 𝒆all,1 =

[
𝒆1,1,… , 𝒆𝐾,1

]
, 𝒆all,1 ∈ R

𝑁𝑠

14: Sort 𝒆all,1 in descending order, and get an integer index 𝑖𝑥 = floor
(
𝛼0𝑁𝑠

)
15: Define next threshold as 𝜀2 = 𝑒all,1(𝑖𝑥)

16: procedure Compute weights of particles(
{
𝒆𝑘,1

}𝐾
𝑘=1
, 𝜀1, 𝜀2)

17: Output:
{
𝒘𝑘

}𝐾
𝑘=1

18: procedure Construct ellipsoids for sampling(
{
𝜣𝑘,1, 𝒆𝑘,1, 𝒘𝑘

}𝐾
𝑘=1
)

19: Output:
{
𝝁𝑘, 𝜮𝑘, 𝜽𝑘,best, 𝑘, 𝒆


𝑘

}𝐾
𝑘=1
, 𝑁𝑎

20: =======================================================
21: while stopping criterion is satisfied do
22: Increment population 𝑝 = 𝑝 + 1

23: procedure Sample from ellipsoids(
{
𝝁𝑘, 𝜮𝑘, 𝜽𝑘,best

}𝐾
𝑘=1
, 𝑝is, 𝛾, , 𝜀𝑝, 𝑁𝑎, 𝑁𝑠, 𝑢)

24: Outputs:
{
𝑘, 𝒆


𝑘

}𝐾
𝑘=1

25: Define current population of particles: 𝜣𝑘,𝑝 =
{
𝑘,𝑘

}
for 𝑘 = 1,… , 𝐾

26: NMSE values for current population: 𝒆𝑘,𝑝 =
{
𝒆
𝑘
, 𝒆

𝑘

}
for 𝑘 = 1,… , 𝐾

27: procedure Compute the next threshold(
{
𝒆𝑘,𝑝−1, 𝒆𝑘,𝑝

}𝐾
𝑘=1
)

28: Output: 𝜀𝑝+1

29: procedure Compute weights of particles(
{
𝒆𝑘,𝑝

}𝐾
𝑘=1
, 𝜀𝑝, 𝜀𝑝+1)

30: Output:
{
𝒘𝑘

}𝐾
𝑘=1

31: procedure Construct ellipsoids for sampling(
{
𝜣𝑘,𝑝, 𝒆𝑘,𝑝, 𝒘𝑘

}𝐾
𝑘=1
)

32: Output:
{
𝝁𝑘, 𝜮𝑘, 𝜽𝑘,best, 𝑘, 𝒆


𝑘

}𝐾
𝑘=1
, 𝑁𝑎

33: Check stopping criterion

Algorithm 2 Automatic threshold selection module

1: Inputs: NMSE values of previous population
{
𝒆𝑘,𝑝−1

}𝐾
𝑘=1

and current population
{
𝒆𝑘,𝑝

}𝐾
𝑘=1

2: Outputs: Threshold 𝜀𝑝+1
3: procedure Compute a new nmse threshold ⊳ For the (𝑝 + 1)th population
4: Set 𝐾 equal to the total number of models in model set
5: for each model 𝑘 = 1 ∶ 𝐾 do
6: if 𝒆𝑘,𝑝−1 and 𝒆𝑘,𝑝 are non-empty then
7: Estimate pdf, �̂�

(
𝒆𝑘,𝑝−1

)
, and find its maximum value: 𝑓𝑘,𝑝−1 = max

(
�̂�
(
𝒆𝑘,𝑝−1

))
8: Estimate pdf, �̂�

(
𝒆𝑘,𝑝

)
, and find its maximum value: 𝑓𝑘,𝑝 = max

(
�̂�
(
𝒆𝑘,𝑝

))
9: Store the ratio: 𝑟𝑘 = 1 −

(
𝑓𝑘,𝑝−1∕𝑓𝑘,𝑝

)

10: Find the maximum ratio among all models: 𝑟max = max
{
𝑟1,… , 𝑟𝐾

}
11: Set quantile value 𝛼 = max of

{
𝑟max, 0.1

}
12: Concatenate NMSE values from all models: 𝒆all,𝑝 =

[
𝒆1,𝑝,… , 𝒆𝐾,𝑝

]
, 𝒆all,𝑝 ∈ R

𝑁𝑠

13: Sort 𝒆all,𝑝 in descending order, and get the integer index 𝑖𝑥 = floor
(
𝛼𝑁𝑠

)
14: Define temporary threshold as 𝜀𝑝+1 = 𝑒all,𝑝(𝑖𝑥)
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Algorithm 3 Weight assignment module

1: Inputs: NMSE values
{
𝒆𝑘,𝑝

}𝐾
𝑘=1
, current threshold 𝜀𝑝, next threshold 𝜀𝑝+1

2: Outputs: Weights
{
𝒘𝑘

}𝐾
𝑘=1

⊳ Weights for each sample in each model
3: procedure Compute weights for particles ⊳ For the 𝑝th population
4: for each model 𝑘 = 1 ∶ 𝐾 do
5: if 𝒆𝑘,𝑝 is non-empty then
6: Get the total number of particles: 𝑛𝑘 = length

(
𝒆𝑘,𝑝

)
7: Initialise weight vector to zeros: 𝒘𝑘 = zeros(𝑛𝑘, 1)
8: Find the set of indices, , of elements of 𝒆𝑘,𝑝 with NMSE values lower than 𝜀𝑝+1
9: for each index 𝑖 in  do
10: Set the corresponding weight, 𝑤𝑘(𝑖) = 1

𝜀𝑝

(
1 −

(
𝒆𝑘,𝑝(𝑖)

𝜀𝑝

)2
)

11: The weights for the rest of the elements remain zero
12: Normalise the weights such that they add upto unity

Algorithm 4 Ellipsoid construction module

1: Inputs: Population of particles
{
𝜣𝑘,𝑝

}𝐾
𝑘=1
, NMSE values

{
𝒆𝑘,𝑝

}𝐾
𝑘=1
, weights

{
𝒘𝑘

}𝐾
𝑘=1

2: Outputs: Mean vectors
{
𝝁𝑘

}𝐾
𝑘=1
, covariances

{
𝜮𝑘

}𝐾
𝑘=1
, best particles

{
𝜽𝑘,best

}𝐾
𝑘=1
, active particles

{
𝑘

}𝐾
𝑘=1
, NMSE values of

active particles
{
𝒆
𝑘

}𝐾
𝑘=1
, count of active particles 𝑁𝑎

3: procedure Construct ellipsoids for sampling
4: Set the count of active particles to zeros: 𝒏𝑎 = zeros(𝐾, 1)

5: for each model 𝑘 = 1 ∶ 𝐾 do
6: if 𝜣𝑘,𝑝 is non-empty then
7: Calculate the number of non-zero weights: 𝑛𝑎(𝑘) = length

(
find(𝒘𝑘 > 0)

)
8: Save 𝑛𝑎(𝑘) number of active particles from 𝜣𝑘,𝑝 in 𝑘

9: Select the corresponding NMSE values of the active particles from 𝒆𝑘,𝑝 and save them in 𝒆
𝑘

10: Save the parameter sample of 𝑘 with the highest weight as 𝜽𝑘,best
11: Define ellipsoid 𝑘 with weighted mean 𝝁𝑘 and weighted covariance 𝜮𝑘 using active particles in 𝑘

12: Enlarge the ellipsoid by a factor 𝑓0
13: Save the total count of active particles, 𝑁𝑎 =

∑𝐾

𝑘=1
𝑛𝑎(𝑘)

Fig. 4. Illustration of the idea of calculation of ratio 𝑟𝑘. Each plot shows density estimates for current population 𝑝 (shown in bold line) and previous population
𝑝 − 1 (shown in dotted line) for a certain model class. The stars denote the maximum values of the density estimates.



Mechanical Systems and Signal Processing 196 (2023) 110300

10

R. Nayek et al.

Algorithm 5 Sampling module

1: Inputs: Ellipsoids
{𝑘}𝐾𝑘=1 with means

{
𝝁𝑘

}𝐾
𝑘=1

and covariances
{
𝜮𝑘

}𝐾
𝑘=1
, best particles

{
𝜽𝑘,best

}𝐾
𝑘=1
, importance-sampling

probability 𝑝best, shrink factor 𝛾, observed data , current threshold 𝜀𝑝, count of active particles 𝑁𝑎, total number of particles
𝑁𝑠, excitation 𝑢

2: Outputs: Sampled population
{
𝑘

}𝐾
𝑘=1
, NMSE values for sampled population

{
𝒆
𝑘

}𝐾
𝑘=1

3: Dropped number of particles: 𝑁𝑑 = 𝑁𝑠 −𝑁𝑎

4: procedure Sample particles from ellipsoids
5: iter = 0, satisfiedConstraint = false

6: while iter < 𝑁𝑑 do
7: Sample a model from model set; 𝑘 ∼ 𝑝 ( ∣ )

8: Sample a uniform random number: 𝑣 ∼ 𝑈 (0, 1) ⊳ 𝑈 (0, 1) is a uniform distribution between (0,1)
9: if 𝑝is > 𝑣 then ⊳ Condition for sampling around best particle
10: Sample a particle 𝜃∗∗ from ellipse 𝑘 with center 𝜽𝑘,best and shrinked covariance 𝛾𝜮𝑘

11: else
12: Sample a particle 𝜃∗∗ from ellipse 𝑘 with center 𝝁𝑘 and covariance 𝜮𝑘

13: Check if parameter sample satisfies constraints: satisfiedConstraint = true/false ?
14: if satisfiedConstraint = true then
15: Simulate data: ∗ ∼ 𝑘(𝜽

∗∗) subject to excitation 𝑢

16: Calculate NMSE value: 𝜌 (,∗)

17: if 𝜌 (,∗) < 𝜀𝑝 then
18: Save parameter sample 𝜽∗∗ in 𝒌

19: Save NMSE value 𝜌 (,∗) in 𝒆
𝑘

20: iter = iter + 1

The model class that has the largest proportion of particles from the population of 𝑁𝑠 particles is taken to be the ‘‘best’’ model, and
the posterior distributions over its parameters are approximated by the particles belonging to the model.

To summarise, this section outlined an ABC algorithm to serve the purpose of identifying the correct model-order of a PWL
system and estimate the posterior distribution of the model parameters. Identifying the correct model order entails first defining
a set of PWL models with different model orders (such as bilinear, trilinear, quadlinear) and then using ABC to select the best-fit
model-order, according to the relative proportion of model-specific particles from the last population of ABC. For the selected model,
the posterior distributions over its parameters are approximated using the particles that belong to the selected model.

4. Numerical demonstrations

In this section, two numerical studies are conducted to demonstrate the working of the proposed methodology for identifying
SDOF PWL oscillators, one with PWL stiffness and the other with PWL damping. The intention behind using these two different
studies is to look at how the performance of the proposed methodology differs across these two types of PWL nonlinearities. Since
the ‘‘true’’ data-generating models are known in these studies, it would be easier to understand how the results from the proposed
methodology compare with the true system. The mathematical descriptions of both numerical examples conform to those defined
in Section 2. Further, a third numerical study is considered, where a PWL model is fitted to a system with cubic restoring force
using the proposed procedure. The intention there is to understand the extent to which fitted PWL models may be useful, especially
for cases where the restoring forces may be continuous in variation. In all cases, the systems are subjected to an input excitation
𝑢, that is modelled as a zero-mean Gaussian bandlimited noise sequence, with a standard deviation of 2 and passband of [0, 20] Hz;
the time-series of the input excitation is provided in Fig. 5. Both systems are simulated using the ode45 function in MATLAB, with
a sampling rate of 100 Hz, for a time span of 10 s. The properties of each system are defined in Section 4.1, 4.2, and 4.3.

It must be emphasised once again, that the identification of a PWL stiffness (or damping) system involves determining the number
of linear operating regions, i.e. the model order, the parameters associated with each linear region, i.e. the partition and regional
stiffness (or damping) parameters, and the mass and damping (or stiffness) parameters. For model selection, a maximum of up to
four linear regions (or fourth model-order) are guessed, which translates to performing model selection with a set of four models:
a linear model, a bilinear model, a trilinear model, and a quadlinear model. Note that the number of parameters to be identified
vary with each model class: three parameters for a linear model, five for a bilinear model, seven for a trilinear model, and nine for
a quadlinear model. It must be remarked at this point, that the stiffness (or damping) and partition parameters of two neighbouring
linear regions must differ from each other to avoid redundancies. Therefore, two constraint conditions are imposed while sampling
the parameter particles using the ABC algorithm: (a) the partition parameters 𝑑𝐿#∕𝑑𝑅# (or 𝑣𝐿#∕𝑣𝑅#) of a particle must be unique, and
(b) the adjacent local stiffness (or damping) parameters of a particle must differ by a minimum of 5% from each other. Parameter
particles that are accepted in an ABC population must satisfy these two constraints. In Bayesian inference, one requires to specify
prior beliefs over parameters as well as over models. The model priors considered for the two simulation studies are the same, and
a uniform discrete prior is assumed over all four models in the model set, that is, 𝑝

(1

)
= 𝑝

(2

)
= 𝑝

(3

)
= 𝑝

(4

)
=

1

4
. The
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Fig. 5. External input forcing used to excite SDOF systems with PWL stiffness and damping.

Fig. 6. Trilinear stiffness system with three different regions of the restoring force separated by two displacement partitions.

Fig. 7. Output acceleration used for identification of PWL stiffness dynamical system.

parameter-specific prior distributions for each simulation study are provided in the respective sections. The ABC algorithm is run
with a total of 𝑁𝑠 = 1000 particles, and the other algorithmic parameters are set to 𝜀1 = 200, 𝛼0 = 0.4, 𝑝best = 0.05, 𝛾 = 0.1, and
𝜖𝑡𝑜𝑙 = 0.005. The values of these ABC algorithmic parameters remain the same for all following studies, unless mentioned otherwise.
The simulations are run on a Windows-10 machine with Intel i5-4210M processor 2.60 GHz and 8 GB of RAM using MATLAB [37].
The next two subsections discuss the results of ABC inference on two SDOF dynamical systems, one with trilinear stiffness and the
other with trilinear damping, respectively.

4.1. Identification of a dynamic model with trilinear stiffness

A dynamic SDOF spring–mass–damper with trilinear stiffness is considered for identification,

𝑚�̈� + 𝑐0�̇� + 𝑘TL(𝑧) = 𝑢 (18)

with the true parameters of the model set to: 𝑚 = 1 kg, 𝑐0 = 2 Ns∕m, 𝑘0 = 103 N∕m, 𝑘𝐿1 = 3 × 103 N∕m, 𝑘𝑅1 = 7 × 103 N∕m,
𝑑𝐿1 = −1×10−3 m, and 𝑑𝑅1 = 0.5× 10−3 m. The trilinear map of the restoring force with respect to the displacement of the system is
shown in Fig. 6. For the sake of measurements, the input force is assumed to be noise-free while the acceleration output is corrupted
with 5% zero-mean Gaussian white noise; the output acceleration used for identification is shown in Fig. 7.
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Table 1
Uniform parameter priors for linear (L), bilinear (BL), trilinear (TL), and quadlinear (QL) stiffness
models.

Model Parameter Prior Lower bound Upper bound

L, BL, TL, QL 𝑚 (kg) Log-uniform 0.5 1.5
L, BL, TL, QL 𝑐0 (Ns∕m) Log-uniform 0.1 4
L, BL, TL, QL 𝑘0 (N∕m) Log-uniform 0.5 × 103 1.5 × 103

BL, TL, QL 𝑘𝐿#∕𝑘𝑅# (N∕m) Log-uniform 0.5 × 103 10 × 103

BL, TL, QL 𝑑𝐿#∕𝑑𝑅# (m) Uniform −10 × 10−3 10 × 10−3

Fig. 8. Plot of acceptance rate and threshold across ABC populations. Small windows on the top of the plot depict model posterior probabilities for a selected
number of populations.

Parameter prior distributions specified for all parameters of the models are tabulated in Table 1. Log-uniform priors are employed
for positively-constrained parameters, while uniform priors are defined on partition parameters which can take non-positive values
as well. The ABC algorithm took around 50 populations to converge, which used up three hours of computational time. The variation
of acceptance rates and decrement of thresholds over several populations of ABC are shown in Fig. 8. The figure also shows model
posterior probabilities for a selected number of populations. It can be seen that the acceptance rate decreases with populations as the
simpler models exit and the parameter search-space becomes larger for trilinear and quadlinear models, while the thresholds becomes
more tight. After the 10th population, the linear and bilinear models exit, as they are not able to produce datasets that are closer (in
sense of NMSE) to the observed data than the NMSE thresholds of the next population. With the remaining trilinear and quadlinear
models in the subsequent ABC populations, the parameter search spaces become relatively more complex, making it difficult to
sample good particles – particles with NMSE lower than thresholds – and hence a decline in the acceptance rates is observed post
population 10. Nonetheless, the ABC algorithm is able to clearly select the trilinear-stiffness model over the quadlinear-stiffness
model at the end of convergence, demonstrating the principle of parsimony in Bayesian model selection. The marginal posterior
distributions of parameters for the trilinear are shown in Fig. 9, in the form of histograms. The true values of the parameters are
observed to lie closely around the peaks of the histograms, which shows the proposed methodology is not only able to encompass
the true parameters within the posterior distribution but also the modes of the distribution would match closely with the true
parameters. The parameter particles of the selected trilinear system can be further used to generate the several realisations of the
restoring-force map. A plot of all such realisations, along with the mean of the restoring forces versus mean displacement is shown
in Fig. 10, which gives a sense of uncertainty over the posterior of the trilinear restoring force map.

4.2. Identification of a dynamic model with trilinear damping

Having looked at identification of a PWL stiffness system in the previous subsection, this subsection considers a PWL damping
system using a dynamic SDOF spring–mass–damper with trilinear damping,

𝑚�̈� + 𝑐TL (�̇�) + 𝑘0𝑧 = 𝑢 (19)

The model parameters for the forward simulation of the true model are considered as: 𝑚 = 1 kg, 𝑐0 = 2 Ns∕m, 𝑘0 = 103 N∕m,
𝑐𝐿1 = 0.5 Ns∕m, 𝑐𝑅1 = 0.2 Ns∕m, 𝑣𝐿1 = −0.05 m∕s, and 𝑣𝑅1 = 0.025 m∕s. The corresponding trilinear map of the restoring force with
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Fig. 9. ABC-based marginal posterior distributions over parameters of the selected trilinear stiffness model; the true values of parameters are shown in red
triangle markers.

Fig. 10. Restoring force vs displacement map of the estimated trilinear stiffness system; the grey points in the background are realisations, and the blue points
on the top represent the mean of the realisations.

respect to the velocity of the system is shown in Fig. 11. The noisy acceleration output used for identification is shown in Fig. 12.
Similar to the previous study, for parameter priors, log-uniform distributions are specified over positively-constrained parameters
and uniform distributions over velocity partition parameters; they are tabulated in Table 2.

Upon running, the ABC algorithm converged within 60 populations, taking up around 1 h and 15 min of computational time. A
plot illustrating the acceptance rates and decrement of thresholds over the populations of ABC is provided in Fig. 13, with model
posterior probabilities for a selected number of populations shown alongside. The linear model can be seen to survive for many
more ABC populations (up to the 30th population), than what was seen in the PWL stiffness case. Such a behaviour is deemed to be
caused because of the much lower sensitivity of response to damping, evident by the fact that the linear model with a single region
of damping produces a response that is comparatively close (in the sense of NMSE), to the measured response, and hence the linear
model is able to survive until the threshold drops quite low. Moreover, as the linear model is a simple model, its parameter space is
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Fig. 11. Trilinear damping restoring force with three different damping regions separated by two velocity partitions.

Fig. 12. Output acceleration used for identification of PWL damping dynamical system.

Table 2
Parameter priors for linear (L), bilinear (BL), trilinear (TL), and quadlinear (QL) damping models.

Model Parameter Prior Lower bound Upper bound

L, BL, TL, QL 𝑚 (kg) Log-uniform 0.5 1.5
L, BL, TL, QL 𝑐0 (Ns∕m) Log-uniform 0.1 4
L, BL, TL, QL 𝑘0 (N∕m) Log-uniform 0.5 × 103 1.5 × 103

BL, TL, QL 𝑐𝐿#∕𝑐𝑅# (Ns∕m) Log-uniform 0.1 4
BL, TL, QL 𝑣𝐿#∕𝑣𝑅# (m∕s) Uniform −0.5 0.5

small and it is easy to sample good particles; hence the ABC populations with the linear model have higher acceptance rates. Post
departure of the linear model, the acceptance rate drops with the parameter space becoming more complex for the remaining PWL
models. The bilinear damping model also departs at the 43rd population. Among the remaining trilinear and quadlinear damping
models, the trilinear model has larger number of particles than the quadlinear model at convergence. Hence, based on the relative
frequency of particles, the trilinear damping model is a better choice among the two surviving models. Nevertheless, the quadlinear
damping model is also not a bad choice since the proportions of particles between the trilinear and quadlinear model do not differ
by a large margin.

The marginal posterior parameter distributions for the trilinear damping model are shown in Fig. 14, in the form of histograms.
The true values of the parameters are observed to lie around the peaks of the histograms, especially for mass and stiffness. However,
the means of the posterior distributions associated with the regional damping parameters are a bit far off from the true values;
the main reason behind such behaviour is once again attributed to the low sensitivity of response to damping. Nonetheless, it is
satisfactory to note that their true values are captured well within the spread of the distributions. The posterior uncertainty over
the trilinear restoring force map is shown by a scatter plot in Fig. 19; the realisations and the mean of the realisations are obtained
by simulating the restoring forces for each posterior parameter particle of the selected trilinear system.

4.3. Identification of PWL dynamic model of a system with cubic restoring force

In the previous two numerical studies, the model class of the true systems and the estimated model were same, i.e., they were
all PWL models. Different from the two previous studies, this study focuses on fitting PWL models to responses generated from
model class that has continuous restoring force variation. In particular, an SDOF Duffing oscillator model is used for true response
generation (with cubic restoring force variation):

𝑚�̈� + 𝑐0�̇� + 𝑘0𝑧 + 𝑘3𝑧
3 = 𝑢 (20)

The parameters used to simulate the acceleration response of the Duffing oscillator system are: 𝑚 = 1 kg, 𝑐0 = 2 Ns∕m,
𝑘0 = 103 N∕m, and 𝑘3 = 108 N∕m3. The time span of simulation and the input excitation sequence remains the same as used in
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Fig. 13. Plot of acceptance rate and threshold across ABC populations. Small windows on the top of the plot depict model posterior probabilities for a selected
number of populations.

Fig. 14. ABC-based marginal posterior distributions over parameters of the selected trilinear damping model; the true values of parameters are shown in red
triangle markers.

the previous two cases. Noiseless acceleration generated from the simulation is used as response data for PWL model selection and
parameter estimation using the proposed procedure. As before, a set of four PWL stiffness models – linear, bilinear, trilinear, and
quadlinear – are chosen and the proposed algorithm is run with 𝑁 = 1000 particles until convergence.

From Fig. 15, it is found that the algorithm quickly eliminates the linear and bilinear stiffness models by the 10th generation,
as these ‘lower-order’ models are unable to represent the cubic variation with decreasing tolerance. Note that with the linear and
bilinear models exit around the tolerance threshold of 70 NMSE, leaving behind particles representing only the ’higher-order’ trilinear
and quadlinear stiffness models. Below an NMSE tolerance of 10, the trilinear model is unable to fit the data any better and exits
the population at the 21st population, resulting in the quadlinear model as the only model choice for fitting the data. From the
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Fig. 15. Plot of acceptance rate and threshold across different ABC populations.

21st population until convergence, the iterations only tuned the parameter estimates of the quadlinear to better fit the data. The
resulting parameter posterior distribution of the resulting quadlinear model is shown in Fig. 16. A mean-parameter-fitted quadlinear
model is constructed by using the sample means of the parameters of the quadlinear model. The stiffness-based restoring force from
the quadlinear model is then superimposed on the cubic stiffness restoring force from the Duffing oscillator for a comparison, in
Fig. 17. Evidently, the quadlinear model produces a best-fit piecewise linear approximation of the continuous cubic restoring force.
The discrepancy appears more near the extreme tails where the data points are few and it almost disappears in the middle regions.
It is, therefore, expected that the response from the inferred PWL model would match the Duffing oscillator response very well in
the regions of low values of acceleration and would differ only when the acceleration responses are high. This phenomenon can be
seen clearly in Fig. 18.

To summarise the important points from the three numerical case studies presented in Section 4, a distinctive trend in the
progression of ABC populations for PWL model selection is noticed. Starting with a uniform distribution of parameter particles from
different models, the simplest PWL model among the surviving models tends to dominate the population of particles until the time it
exits the population, due to unforgivingly low threshold for the simplest model. With the exit of the simplest model, the lost particles
are replenished with parameter particles from the surviving higher-order PWL models (i.e. models having greater complexity than
the exiting simpler model), and this behaviour is repeated until the algorithm converges. With the exit of a simpler model, the
population has to replenished with parameter particles from higher-order PWL models. When the parameter space becomes larger
for the remaining models, sampling good particles takes more effort and hence the acceptance ratio decreases. The time required for
the algorithm to converge depends critically on the acceptance ratio (given a stopping tolerance); larger acceptance ratios lead to
faster convergence. Another trend observed from multiple runs of the ABC algorithm is that a lower-order PWL model exits before
a higher-order PWL from the ABC population. This behaviour makes sense as a lower-order PWL model is just a more constrained
version of a higher-order PWL model, and hence it is only reasonable to eliminate a lower-order PWL before removing a higher-order
PWL model. From an algorithmic perspective, a higher-order PWL model could be eliminated earlier than a lower-order PWL if the
total number of particles used in the population is low; with a lower number of particles and a larger parameter space, it becomes
more difficult to explore and sample good particles in future ABC populations and eventually poor exploration causes early exit of
a higher-order PWL model. Finally, from the first two numerical studies, it was found that the proposed methodology was able to
select the true data-generating trilinear model, based on the relative frequency of particles in the final ABC population. From the
third numerical study, it was seen that in the case of continuous restoring force, the PWL model fit would be approximate but still
useful.

5. Experimental study: Identification a shock absorber

This section considers an experimental case study on the nonlinear behaviour of an automotive shock absorber, where the
objective is to fit a piecewise-linear relation to the restoring force. The shock absorber presents a more challenging case compared
to the previous two simulation-based studies, mainly because the exact governing equation is not available and the relation is not
exactly PWL.

The automotive shock absorber (or damper), is a fundamental part of the automobile suspension system, whose characteristics
contribute greatly to the handling properties and ride comfort of a vehicle. Traditional industrial models tend to treat the mechanism
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Fig. 16. ABC-based marginal posterior distributions of the parameters of the selected quadlinear stiffness model; the green triangles denote the mean values of
the parameters.

Fig. 17. Comparison of stiffness-based restoring forces for Duffing oscillator (true) with mean-parameter-fitted quadlinear stiffness model (estimated).

of a shock absorber using a simple linear spring-damper model. However, certain experimental studies [59–62] performed on the

dynamics of isolated shock absorbers, show that a linear assumption is not entirely justified. This is not very surprising, as automotive

dampers are designed to have different damping properties when in compression or rebound.
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Fig. 18. Comparison of acceleration responses; true response from Duffing oscillator vs estimated response from mean-parameter-fitted quadlinear stiffness model.

Fig. 19. Scatter plot of the restoring force vs velocity map for the estimated trilinear damping system; the grey points in the background are realisations, and
the blue points on the top represent the mean of the realisations.

Recognising that shock absorbers are nonlinear in their damping behaviour, some means are required to characterise the
nonlinearity and to represent their behaviour in computer simulations. Lang [59] developed a rigorous analytical model for an
absorber by accounting for its internal mechanisms; the model consisted of 87 parameters. Although the results showed good
agreement with the experiment, the model is far from general, as it can only be applied to that particular absorber and cannot be
applied to one of a different design. Instead of trying to develop a parametric model based on the internal physics of the absorber,
a rather straightforward approach is to identify an experimental characterisation of an absorber by fitting the restoring force to the
velocity and displacement. Such a characterisation can be done by taking repeated measurements of the restoring force, the velocity
and the displacement at different levels of excitation frequency and amplitude, and then plotting the restoring force data against
the corresponding velocity and displacement values for fixed frequencies of excitation. The principal benefit from using this type
of restoring-force characterisation is that it is a non-parametric in nature and is independent of the a priori model of the structure.
Identification procedures based on restoring forces have been previously applied to the identification of automotive shock absorbers
in a number of publications [63–65].

The experimental data considered in this paper come from a test carried out on a FIAT vehicle shock absorber. The test details
involving the apparatus and experimental strategy can be found in [6]. Basically, the shock absorber was constrained to move in
one direction to allow an SDOF assumption. The absorber was held fixed at one end to a load cell and a given velocity profile
was imposed at the other end; the load cell at the fixed end provided measurements of the internal force. It was found that the
contribution of inertial forces were negligible, and hence it was enough to assume a static behaviour for the shock absorber under
the testing conditions.
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Fig. 20. Original data space of the shock absorber in three dimensions.

Fig. 21. Training and testing data for shock absorber.

The dataset considered in this study was produced under the influence of a random input profile. As such, the frequency effects
can be considered to be ‘averaged out’ throughout the data. The dataset has 7000 data points featuring three variables: the restoring
force, velocity, and displacement; these are presented as a three-dimensional scatter plot in Fig. 20, with two-dimensional projections
illustrated alongside to show displacement and velocity dependence of the restoring force. It can be seen from the two-dimensional
projections that the restoring force has a fairly distinct dependence on the velocity, while it seems to depend very little on the
displacement. Negligible stiffness for the shock absorber used in this case study has been previously reported in [66]. Hence, the
displacement variable is ignored and the restoring force is treated solely as a static function of the velocity in this study. The
data projected on the velocity axis can be visibly seen (from Fig. 21) to have three (almost linear) regions of operation: the upper
tail region represents a compression zone where the damper compresses as a result of (say) braking action, the lower tail region
represents rebound where the damper rebounds to its original state after the braking action has ceased, and the mid-body region
represents damping behaviour in the normal operating range. Because of these different regions of operation, it is deemed that the
shock absorber can be modelled well by piecewise-linear damping.

To commence identification, the entire dataset is segregated in to two parts, a training set of 5000 points for learning an
appropriate PWL map, and a test set of 2000 points for performing predictive checks. The training and testing data are plotted
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Table 3
Parameter priors for linear (L), bilinear (BL), trilinear (TL), and quadlinear (QL) maps assumed
for shock absorber experimental study.

Model Parameter Prior Lower bound Upper bound

L, BL, TL, QL 𝑐0 (N s∕m) Log-uniform 102 104

BL, TL, QL 𝑐𝐿#∕𝑐𝑅# (N s∕m) Log-uniform 102 104

BL, TL, QL 𝑣𝐿#∕𝑣𝑅# (m∕s) Uniform −0.5 0.8

Fig. 22. Convergence of ABC for shock absorber data.

in Fig. 21. Unlike the previous numerical studies that dealt with identification of PWL restoring forces in dynamic SDOF models, in
this case study, a ‘static’ PWL function of velocity is sought for the restoring force of the SDOF shock absorber. In other words, the
following process is modelled here,

𝑦 = 𝑓PWL
(
�̇� − 𝑣0

)
(21)

where 𝑦 is the measured restoring force taken as the output variable, �̇� is the measured velocity considered as the input variable, and
𝑣0 is a constant offset variable. The offset variable is introduced to capture the offset of the data from the origin. The parameters
to be determined for the static model involve the model order of the PWL map along with the region-specific linear damping
coefficients, region partitions, and the constant offset variable. Once again, a pool of four candidate models is assumed, comprising
linear, bilinear, trilinear and quadlinear maps of velocity. A uniform model prior was assumed over the four models, while uniform
or log-uniform prior distributions were specified for parameters, as are tabulated in Table 3. The best model, along with the posterior
distribution over its parameters was inferred using ABC (see Fig. 22).

A total of 2000 particles were used in the ABC algorithm, and the tolerance threshold was initialised at 𝜀1 = 100. The ABC
algorithm took 44 populations (and around 35 min) to converge to a trilinear model for the shock absorber, after the linear
and bilinear models were eliminated within the first ten populations of the ABC algorithm. Between the two surviving models
at convergence, the trilinear model was selected with a larger probability over the quadlinear model. For a better comparison, the
posterior distributions of the parameters of both the trilinear and quadlinear models are shown in Fig. 23. Right away, one can see
that non-zero offset parameters are obtained which is not surprising as the data do not pass through the origin; this is because of a
preload in the experiment. The selected trilinear model has one partition occurring on the negative velocity axis and the other on the
positive side, these have been denoted by 𝑣𝐿1 and 𝑣𝑅1 respectively. The damping parameter of the middle region 𝑐0 is the highest,
followed by that of the rebound region 𝑐𝐿1 and the compression region 𝑐𝑅1; this inference agrees well with the visual depiction of
the data. The quadlinear model begets an extra partition along the negative half of the velocity axis, denoted by 𝑣𝐿2, with damping
parameter 𝑐𝐿2. All other parameters of the quadlinear model have very similar mean values as the trilinear model.

It is better to look at the data-fit qualities of the trilinear and quadlinear models for easier understanding of the results. To
compare the data-fit, the model-predicted mean restoring forces are plotted against the experimentally-measured restoring forces
for the training and test data set in Fig. 24; the model predicted means are obtained via Monte Carlo average of the model predicted
responses simulated using posterior parameter samples. It can be seen that the quadlinear model introduces an extra linear region
(see the bottom tail portion of Fig. 24(b)). The NMSE values of the corresponding predicted mean restoring forces are also provided
on the plots, and they are found to be very close to each other for both the models, with those for the quadlinear model being
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Fig. 23. Histograms of marginal posterior distributions of the parameters of trilinear and quadlinear model for shock absorber; the means of the distributions
are depicted by green triangles.
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Fig. 24. Training and test data fit for trilinear and quadlinear models.

marginally lower (and hence better) than the trilinear model. Interestingly, with the data-fit being very similar, the Bayesian
algorithm selects a lower-order trilinear model over the higher-order quadlinear model, demonstrating once again the principle
of parsimony built within the Bayesian inference paradigm.

6. Discussion and conclusion

This paper proposed a conceptually straightforward and easy-to-implement Bayesian procedure for identification of mechanical
systems with PWL restoring forces. The nonlinear restoring forces of such systems are characterised by a series of distinct linear
regions, the numbers and parameters of which must be determined from the measured data. The number of linear regions is
determined using Bayesian model-order selection, whereby an appropriate model order for the PWL model is decided from a set of
PWL models with different model orders, and the posterior distributions over the model parameters are determined using Bayesian
parameter estimation. These two tasks are performed using a convenient ABC procedure. In particular, the paper uses SDOF systems
with PWL nonlinearities in either stiffness or damping to demonstrate the working of the concept. Two numerical examples and an
experimental case study are used for demonstrating the performance of the proposed procedure. In all cases, a modified ABC-NS
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algorithm has been used to identify a PWL model from among four models with linear, bilinear, trilinear, and quadlinear nature
(in either stiffness or damping). The results show that the ABC algorithm is able to select the correct model as well as identify the
partition parameters and the regional stiffness/damping parameters. The results show the simplicity of the proposed approach and
demonstrate its potential for identifying PWL systems in a Bayesian framework.

In passing, it must be mentioned that all studies considered in this paper dealt with PWL nonlinearity resulting from either
stiffness or damping. In principle, the idea can be extended to systems having PWL nonlinearity in both stiffness and damping; in
that case, one needs to also include models that have various combinations of stiffness and damping piecewise linearities in the
model set. Needless to mention, the parameter search space in such cases would be become larger, with more models and multiple
DOFs, leading to slow convergence and increased computational time for the ABC algorithm.
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