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Abstract—Edge caching is a promising technology to re-
duce backhaul strain and content access delay in Internet-
of-Vehicles (IoVs). It pre-caches frequently-used contents close
to vehicles through intermediate roadside units. Previous edge
caching works often assume that content popularity is known in
advance or obeys simplified models. However, such assumptions
are unrealistic, as content popularity varies with uncertain
spatial-temporal traffic demands in IoVs. Federated learning
(FL) enables vehicles to predict popular content with distributed
training. It preserves the training data remain local, thereby
addressing privacy concerns and communication resource short-
ages. This paper investigates a mobility-aware edge caching
strategy by exploiting asynchronous FL and Deep Reinforcement
Learning (DRL). We first implement a novel asynchronous FL
framework for local updates and global aggregation of Stacked
AutoEncoder (SAE) models. Then, utilizing the latent features
extracted by the trained SAE model, we adopt a hybrid filtering
model for predicting and recommending popular content. Fur-
thermore, we explore intelligent caching decisions after content
prediction. Based on the formulated Markov Decision Process
(MDP) problem, we propose a DRL-based solution, and adopt
neural network-based parameter approximations for the curse of
dimensionality in RL. Extensive simulations are conducted based
on real-world data trajectory. Especially, our proposed method
outperforms FedAvg, LRU, and NoDRL, and the edge hit rate
is improved by roughly 6%, 21%, and 15%, respectively, when
the cache capacity reaches 350 MB.

Index Terms—Edge caching; federated learning; content
prediction; stacked autoencoder; deep reinforcement learning.

I. INTRODUCTION

With the popularity of vehicles on the road and the
advancements in V2X technologies, the transportation system
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has evolved into a data-driven, intelligent era [1]. Internet-
of-Vehicles (IoVs) enable vehicles with diverse vehicular
services, from multimedia to safety-related applications [2].
Technically, these applications require access to extensive
Internet contents, relying on ultra-reliable and low-latency
communications for content delivery. The significant surge in
delay, unreliability, and redundant traffic have rendered cloud-
based processing architectures infeasible due to the limited
backhaul capacity and long transmission distance [3]–[5].

Fortunately, large-scale analysis has revealed that dif-
ferent contents often necessitate different priorities, which
has prompted the emergence of edge caching in IoVs [6].
Expressly, edge caching is a promising technology to reduce
backhaul strain and content access delay. It proactively caches
frequently used contents in proximity to vehicles by sinking
cloud functions to intermediate Roadside Units (RSUs). Con-
sequently, vehicles can directly retrieve content from caching-
enabled RSUs, alleviating redundant transmissions from re-
mote cloud servers [7]. Meanwhile, integrating edge caching
in IoVs brings additional technical benefits, such as scalability,
privacy protection, and context awareness, derived from its
distributed architectures and small-scale nature.

Generally, the finite caching capacity of RSUs makes the
system performance heavily rely on well-designed caching
strategies. The key to strategy design lies in knowing content
popularity, which reflects content access preferences in the
content library. Previous works [8], [9] often assume that
content popularity is known in advance or obeys simplified
models, like 𝑍𝑖𝑝 𝑓 distribution and its variants. Nevertheless,
such assumptions are unrealistic as content popularity exhibits
non-stationary with uncertain spatial-temporal traffic demands
in IoVs [10]. Therefore, to facilitate edge cache utilization,
predicting content popularity is urgently required.

Recent strides in data analysis and computing power offer
opportunities to improve predictions from a data-driven per-
spective. Based on this, Machine Learning (ML) has exhibited
great potential in extracting dynamic features of content pop-
ularity by training Vehicular User (VU) data [11]. However,
despite the continuous progress achieved in ML, adopting ML
for content prediction in IoVs still faces two issues. First,
the regional content popularity and validity are constantly
changing. As vehicles connected to an RSU move and traverse
the cell coverage rapidly, cached content can easily be out-
dated. An effective prediction method should be context- and
mobility-aware to improve cache performance [12]. Second,
most ML methods operate on the centralized framework,
where vehicles must transmit VU data to an RSU for training.
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It is inconsistent with the growing privacy concerns and limited
communication resources in data transmission. The VU data
usually involves sensitive information, and VUs are reluctant
to share their data with others directly [13].

To address these issues, Federated Learning (FL) has
attracted widespread concern as a privacy-preserving solution
for distributed learning. Coordinated by RSUs, FL enables
a shared global model update by aggregating local model
parameters from vehicles. Each vehicle conducts training on
its local VU data and uploads only model parameters to the
RSU in proximity, instead of raw data [14]. Traditional FL
operates aggregation synchronously, as the RSU must wait for
all local updates from vehicles before aggregation. However,
due to vehicle heterogeneity and communication uncertainties,
some lagging vehicles may experience delays in local train-
ing, becoming "stragglers" [15]. Meanwhile, vehicle mobility
will hinder model aggregation, as vehicles might leave the
cell coverage of RSU before uploading their local updates.
Such unavailability of vehicles inevitably disrupts the timely
contribution of certain vehicles to the global model, leading to
resource-wasting and diminished global model accuracy [16].
As a remedy, asynchronous aggregation enables the RSU to
update its global model immediately for each arrived local
update, without waiting for other vehicles to upload. Exploring
asynchronous FL becomes imperative to enhance prediction
adaptability, mitigate the impact of "stragglers", and ensure
up-to-date global models in our work.

In addition, while prediction results offer valuable insights
for caching decisions, the diversity of content often results
in predicted popular content far surpassing the finite cache
capacity of an RSU. To maximize the benefits of content
prediction, content replacement mechanisms are indispensable
for facilitating edge caching utilization [17]. Therefore, the
RSU must determine where to cache the predicted popular
contents and whether to replace already cached contents.
Yet, intricate content requests and vehicle mobility pose new
challenges for caching decisions, effectively addressed by
Deep Reinforcement Learning (DRL). With solid cognitive
ability, DRL handles dynamic control problems with high-
dimensional and time-varying features. It is especially suited
for sequential decision-making with long-term objectives un-
der uncertainty [18], [19]. Thus, we can execute caching
decision-making in IoVs by exploiting DRL.

Based on the above considerations, this paper investigates
the mobility-aware edge caching by asynchronous FL and
DRL. The main contributions are summarized as follows:

1) We conduct popular content prediction by Stacked Au-
toEncoder (SAE) models among vehicles and the RSU.
The local updates and global aggregation of SAE models
follow an asynchronous FL framework. Unlike tradi-
tional synchronous FL awaiting all local updates, this
framework employs asynchronous aggregation, where the
central RSU updates its global model immediately for
each arrived local update. Meanwhile, we cope with
the incurred stragglers in training and improve model
convergence by several interventions.

2) Utilizing the latent features extracted by the SAE model,
we adopt a hybrid filtering model for predicting popular

content. Based on the content ratings and personal in-
formation, this hybrid filtering model combines content-
based collaborative filtering and demographic information
during runtime. It determines the distance between two
contents or two VUs through similarity metrics.

3) Furthermore, to maximize the benefits of content predic-
tion, we formulate the caching process in an RSU as
a Markov Decision Process (MDP) problem, intending
to minimize the long-term content delivery delay in the
system. Our proposed solution is based on DRL with
adaptive and foresighted considerations, adopting neural
network-based parameter approximations to circumvent
the curse of dimensionality in RL.
The remainder of the paper is organized as follows.

Section II outlines the related work. Section III provides the
system model and definition. Section IV proposes a popular
content prediction method under the FL framework. Section V
explores caching decisions based on DRL to maximize the
benefits of content prediction. Moreover, simulation results
are elaborated in Section VI. Conclusion is summarized in
Section VII.

II. RELATED WORK

A. Distributed Optimization

With the popularity of vehicles on roads and their en-
hanced computing capabilities, training models directly on
these distributed vehicles has drawn increasing attention.
Conventional multi-task models [20], however, prove to be
unsuitable for edge vehicle training due to their inherent
assumption that all vehicles partake in each training round.
This assumption becomes unrealistic as vehicles frequently
go offline during training for network unreliability or other
factors. In light of this, distributed optimization is a critical
paradigm to address the complexities of large-scale model
training across vehicular networks. It strives to collectively
optimize a global objective function while each vehicle per-
forms local computations based on its own data. These local
computations are then aggregated to yield a global solution.

Nevertheless, in recent years, various distributed opti-
mization methods [17], [21]–[23] have encountered slow con-
vergence, inefficiency, and straggler issues when deployed to
real-world scenarios that involve large-scale and highly hetero-
geneous data with rich features. For instance, Zhou et al. [17]
investigated cache replacement and multipoint collaboration
by distributed multi-agent RL. Notably, however, this method
exhibits exponential space complexity with respect to the
number of agents. The computation of the Nash equilibrium
significantly dominates the training time. Although they intro-
duced parameter approximation to alleviate the convergence
complexity, the convergence pattern remains nonlinear with
the number of agents. Jin et al. [22] devised a distributed
framework with alternating local and central learning by a soft
confidence-weighted classifier. However, this asynchronous
method assumes locally distributed data following a normal
distribution, which imposes limitations on non-convex neural
network objectives. Meanwhile, it lacks theoretical conver-
gence assurances and necessitates transmitting a fraction of
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local data from each device to the centralized server. Henna
et al. [23] proposed a collaborative distributed ML method
with leveraging edge topological dependencies. While this
method ensures high accuracy compared to heuristics, com-
plexity persists in the coordination among edge devices. The
wireless bandwidth constraints and faculties exacerbate the
coordination and become a bottleneck in the optimization
process.

B. FL for Popular Content Prediction

FL, an extension of distributed optimization, offers a
promising solution to tackle device diversity in ad-hoc net-
works. Diverging from traditional distributed optimization,
FL places a pronounced emphasis on privacy preservation,
facilitating training on sensitive data. Meanwhile, FL is tai-
lored to handle challenges like non-uniform data distribution,
communication bottlenecks, and network unreliability.

Recently, FL has acquired noteworthy application sig-
nificance in edge caching, with several promising endeav-
ours focused on popular content prediction [14], [16], [24]–
[27]. Specifically, Yu et al. [16] introduced a mobility-aware
proactive edge caching strategy using FL, where a context-
aware adversarial AE is employed for content popularity
prediction. This study significantly improves cache efficiency
and eliminates the necessity for centralized data processing.
However, coordinating vehicle learning through synchronous
aggregation proves unsuitable for highly dynamic vehicular
edge networks. Xie et al. [24] introduced an asynchronous
aggregation for federated optimization involving weighted
averaging of the global model. However, they did not consider
the practical conditions where edge devices must deal with
continuous streaming data. Furthermore, Wang et al. [26]
focused on employing FL in edge caching to improve data
security with consider the potential private data leakage in
the trained model. They incorporated gradient clipping and
model parameter limitation in model training, and proposed
a privacy-preserving method for content popularity prediction
by FL and Wasserstein generative adversarial network. Jiang
et al. [27] proposed an FL-based model integration method
that incorporates user context information for efficient user
clustering. They employed the distributed approximate Newton
algorithm with stochastic variance reduced gradient to learn
the global popularity prediction model based on local models.
However, this method does not consider user mobility and
potential straggler issues during FL training.

C. DRL for Edge Caching Decision-Making

With the revival of artificial intelligence, DRL has been
widely used in caching decision-making [6], [9], [18], [28]–
[31]. These methods excel in sequential decision-making under
uncertainty by acquiring critical attributes, including user
historical request information and content popularity.

Specifically, Jiang et al. [6] conducted a comprehensive
review of DRL-driven edge caching, discussing its imple-
mentation and outlook in depth. Zhou et al. [9] proposed a
novel incentive-driven and DRL-based content caching strat-
egy, intending to reduce the content delivery cost of the

TABLE I
NOTATIONS AND SYMBOLS

Notation Explanation
N The set of all RSUs
F The index set of available contents
𝐺𝑖 The limited cache capacity of RSU 𝑖

𝑠 𝑓 The size of each content 𝑓

𝑇𝑢,𝑖 The transmission delay between vehicle 𝑢 and
RUS 𝑖

𝑇𝑖, 𝑗 , 𝑇𝑖,𝑁+1 The transmission delay between RSU-RSU and
cloud server-RSU

𝑟𝑢,𝑖 The wireless downlink data rate between vehicle
𝑢 and RSU 𝑖

T𝑓 ,𝑖, 𝑗 The total delay through different links
𝑎𝑡
𝑓 ,𝑖, 𝑗

The caching decision of any RSU 𝑖 for the re-
quested content 𝑓

𝜉 The Poisson distribution parameter
𝑉𝑢 The velocity of vehicle 𝑢

𝜇, 𝜎 The mean and standard deviation of vehicle ve-
locities

𝑃𝑡
𝑢 The position of vehicle 𝑢

𭟋𝑑 The diameter of cell coverage

content service provider. Considering vehicle mobility and
stringent constraints, Tan and Hu [18] embarked on a bold
step in designing, analyzing, and optimizing the cooperative
coded caching placement at the vehicle and RSU levels in
vehicular networks. They configured edge caching problems
with a DRL-based multi-timescale framework, and developed
mobility-aware reward estimation to relieve spatial complexity.
Similarly, Qiao et al. [28] harnessed a comparable framework
to optimize the content placement and delivery in the vehicular
edge networks, with the aid of flexible trilateral cooperations
among a macro-cell station, RSUs, and vehicles. Moreover,
in [30], Chen et al. considered the content dependency, and
addressed the collaborative service caching problem in a
digital twin-empowered edge architecture by asynchronous
advantage actor-critic. In [31], Kirilin et al. exploited cache
admission and presented a DRL-driven method to determine
the admission of requested objects into the CDN cache. In
contrast to prior methods that rely on a limited set of criteria,
this method weights an extensive array of features, including
object size, recency, and frequency of access.

The aforementioned works demonstrate the efficacy of
DRL for edge caching decision-making. Nevertheless, their
reliance on centralized ways may not always be practical in
real-world scenarios due to distributed network topology and
privacy concerns.

D. Our Motivation

Inspired by existing studies, it’s evident that fewer works
have considered both vehicle mobility and privacy concerns
when designing adaptive and foresighted caching decision-
making. This motivates us to explore a mobility-aware edge
caching strategy by exploiting asynchronous FL and DRL.
We implement a novel asynchronous FL framework, and
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conduct popular content prediction by SAE models among
vehicles and the RSU. Compared to existing synchronous FL
works, our work employs asynchronous aggregation while
coping with straggler issues through several interventions. In
addition, to maximize the benefits of content prediction and
overall edge cache utilization, our work proposes a DRL-based
solution based on the formulated MDP problem. It adopts
neural network-based parameter approximations to circumvent
the curse of dimensionality in RL. Finally, to verify the
effectiveness of the proposed method, extensive simulations
are conducted based on real-world trajectory.

III. SYSTEM MODEL

This section presents the edge caching architecture, in-
cluding network infrastructure, content delivery, and vehicle
mobility models. The main notations are listed in Table I.

A. Network Infrastructure

We consider an IoV architecture in the highway scenario
comprising a cloud server and several small cells, each of
which is equipped with a caching-enabled RSU, as illustrated
in Fig. 1. All these RSUs in a cluster form are deployed
equidistantly along the one-way street, and the central RSU is
responsible for subsequent FL training. The set of all RSUs is
denoted by N = {1, 2, . . . , 𝑁}. Besides, let F = {1, 2, . . . , 𝐹}
represent the total available contents, and 𝑠 𝑓 is the size of each
content. The cloud server (denoted by 𝑁 + 1) has abundant
cache capacity to cache all contents. Each RSU 𝑖(𝑖 ∈ N)
is limited to a cache capacity of 𝐺𝑖 , which indicates the
maximum number of caching contents. Vehicles travel in the
single direction along the road and frequently request content
via V2X. These vehicles are assumed to be located in at least
one cell coverage and will be served by the associated RSU
therein. Particularly, each vehicle possesses its unique local
dataset, which includes access requests and rating information
for contents, as well as context information of VUs (age,
gender, 𝑒𝑡𝑐.). Meanwhile, we assume the system operates in
multiple time slots (𝑒.𝑔., batching or round) 𝑡 ∈ {1, . . . , Γ}.
Each time slot allows a vehicle to request a content, and the
caching decision of each RSU is updated periodically. Notably,
vehicle number in a cell coverage changes in each slot due to
the mobility.

Each RSU caches a small portion of contents to elimi-
nate the redundant traffic, ensuring that content requests can
be accommodated nearby. Particularly, RSUs can determine
where content requests are answered and which local caches
should be replaced. Once a vehicle sends an access request
within the cell coverage, the local RSU checks its cache
space to determine whether the desired content is already
cached. If not, the local RSU can retrieve it from adjacent
RSUs or directly download it from cloud servers, and deliver
it to the vehicle later. Additionally, all RSUs can replace
their obsolete content with the popular one in each time slot.
This involves a sequential decision-making problem, including
efficient decision optimization under constraints.

Cloud Server

RSU
Central RSU RSU

Fig. 1. Edge Caching-empowered IoV Architecture.

B. Content Delivery Model

Transmission delay of content 𝑓 from any requested
vehicle 𝑢 to its connected RSU 𝑖 is calculated as 𝑇𝑢,𝑖 = 𝑠 𝑓 /𝑟𝑢,𝑖 ,
where 𝑟𝑢,𝑖 represents the wireless downlink data rate between
RSU 𝑖 and vehicle 𝑢. Here, multiple channels are considered
within each RSU, all with the same bandwidth allocation [17].
Considering the large-scale fading, 𝑟𝑢,𝑖 is derived as follows:

𝑟𝑢,𝑖 = 𝐵𝑢,𝑖 log2

(
1 +

𝑃𝑖𝑔𝑢,𝑖

𝜎2 +∑
𝑣∈U\{𝑢} 𝑃𝑖𝑔𝑣,𝑖

)
, (1)

where 𝐵𝑢,𝑖 is the channel bandwidth, 𝑃𝑖 is the transmission
power of RSU 𝑖, 𝜎2 and 𝑔𝑢,𝑖 are the noise power and the chan-
nel gain, respectively. Notably, we neglect the transmission
delay of sending request identifiers as it involves tiny data size
and occurs over high link rates in most instances. Furthermore,
as cloud server-RSU and RSU-RSU links are wired optical
cables, the corresponding transmission delay 𝑇𝑖,𝑁+1 and 𝑇𝑖, 𝑗
are set to constant values.

Here, we introduce binary variable 𝑎𝑡
𝑓 ,𝑖, 𝑗
∈ {0, 1}, 𝑗 ∈

N ∪ {𝑁 + 1} to denote the decision of any RSU 𝑖 for the
requested content 𝑓 in time slot 𝑡. Upon a content request, the
content delivery delay is analyzed as follows:

• 𝑎𝑡
𝑓 ,𝑖,𝑖

= 1 reveals that content 𝑓 is cached in the RSU 𝑖 at
slot 𝑡 and can be delivered to the vehicle directly. In this
case, the total delay T𝑓 ,𝑖,𝑖 is just the transmission delay
𝑇𝑢,𝑖 from the RSU to the vehicle;

• 𝑎𝑡
𝑓 ,𝑖, 𝑗

= 1 ( 𝑗 ∈ N\{𝑖}) reveals that content 𝑓 is not
cached in the RSU 𝑖, but at least one of RSUs in the
cluster has cached this content, thus the local RSU can
inquire and obtain it from the neighbouring RSU 𝑗 . Then,
the total delay T𝑓 ,𝑖, 𝑗 consists of the transmission delay
𝑇𝑖, 𝑗 from the neighbouring RSU 𝑗 to the local RSU 𝑖 and
the transmission delay 𝑇𝑢,𝑖;

• 𝑎𝑡
𝑓 ,𝑖,𝑁+1 = 1 reveals that there is no expected content in all

RSUs, and the RSU 𝑖 has to forward the request identifier
to the cloud server for processing at slot 𝑡. In this way,
the total delay T𝑓 ,𝑖,𝑁+1 consists of the transmission delay
𝑇𝑖,𝑁+1 from cloud server to RSU 𝑖 and the transmission
delay 𝑇𝑢,𝑖 .
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C. Vehicle Mobility Model
Vehicle mobility is an intrinsic feature in IoVs-related

research. For each time slot 𝑡, we assume that the number of
arrived vehicles in a cell coverage follows the Poisson distribu-
tion with parameter 𝜉. Here, parameter 𝜉 is the average arrival
frequency, which reflects the mobility intensity. Notably, due
to the tiny slot size, we do not consider switching among
cell coverages, and vehicle characteristics (velocity, position)
remain unchanged throughout a time slot. This ensures a
consistent number of arrived vehicles for each cell coverage in
a time slot. Particularly, in the free-flow traffic state, vehicle
velocities are assumed to follow independent and identically
distributed (i.i.d.) distributions, as drivers can regulate them
autonomously. Therefore, we hypothesize that the velocity of
vehicle 𝑢 is derived from a Gaussian distribution, with the
probability density function as:

𝑓 (𝑉𝑢) =
1

𝜎
√

2𝜋
𝑒
−(𝑉𝑢−𝜇)2

2𝜎2 (2)

where 𝑉𝑢 is the vehicle velocity; 𝜇 and 𝜎 is the mean and
standard deviation of vehicle velocities, respectively.

Without loss of generality, we assume that vehicle ve-
locities in urban districts are restricted within the upper and
lower bounds (𝑖.𝑒., 𝑉min < 𝑉𝑢 < 𝑉max for vehicle 𝑢). To avoid
negative or near-zero velocities, we shall truncate the above
Gaussian distribution as:

𝑓 (𝑉𝑢) =
𝑓 (𝑉𝑢 )∫ 𝑉max

𝑉min
𝑓 (𝑠)𝑑𝑠

=
2 𝑓 (𝑉𝑢 )

erf
(
𝑉max−𝜇

𝜎
√

2

)
−erf

(
𝑉min−𝜇
𝜎
√

2

) , 𝑉min < 𝑉𝑢 < 𝑉max

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

where erf (𝑥) =
(

2√
2𝜋

) ∫ 𝑥

0 𝑒−𝑡
2
𝑑𝑡 is the Gaussian error function

under the mean 𝜇. Compared to the traditional Gaussian
distribution or fixed velocity setting, the truncated version is
more feasible and aligns better with practical traffic conditions.

Furthermore, we assume that vehicles maintain continu-
ous connections with the RSU within its cell coverage. The
connection time can be rather longer if vehicles travel at lower
velocities. Here, let 𝑃𝑡

𝑢 represent the position of vehicle 𝑢 in
time slot 𝑡 (𝑖.𝑒., the traversed distance within the coverage of
its connected RSU). Hence, for each vehicle 𝑢, the connection
time in the cell coverage of the current RSU is expressed as:

𝑇 𝑡
𝑢,𝑐𝑜𝑛𝑛 =

(
𭟋𝑑 − 𝑃𝑡

𝑢

)
/𝑉 𝑡

𝑢 (4)

where 𭟋𝑑 is the diameter of cell coverage.

IV. MODEL TRAINING AND CONTENT PREDICTION

This section proposes a popular content prediction method
under the FL framework. We employ asynchronous FL for
local updates and global aggregation of SAE models. The
trained SAE model extracts latent features from VUs and
contents. These features are used to construct a hybrid filtering
model for recommending popular content.

A. Mobility-Aware Asynchronous FL based Model Training
FL enables collaborative training of SAE models among

vehicles and the RSU, and preserves vehicle data remain local.

The schematic overview of model training is shown in Fig.
2(a). The central RSU distributes the global model (𝑖.𝑒., SAE
model) to selected vehicles at the beginning of each round.
Each vehicle initializes its local model with the received global
model and trains it iteratively by local data. Following the local
training, vehicles upload their local updates to the central RSU,
which then performs asynchronous aggregation to update the
global model. The above procedure is iteratively executed
in each round until the global model converges or reaches
a predefined accuracy threshold. Notably, we cope with the
incurred stragglers in FL and improve model convergence by
several interventions. Along with considering vehicle mobility,
we incorporate regularized local loss functions and dynamic
learning rates during local training. Additionally, we balance
the previous and the current local gradients using a decay
coefficient, and implement representation learning to mitigate
the performance impact of asynchronous optimization.

1) Vehicle Selection and Model Download: The high-
mobility may impose vehicles traversing the cell coverage
rapidly, with insufficient time to complete the FL training.
Thus, the central RSU should select eligible vehicles for FL
training at the start of each round. The selection process
considers favorable channel conditions, sufficient local training
data, and the remaining connection time within the cell cover-
age. Thereinto, connection time determines whether a vehicle
can participate in FL training and transmit its local update
to the central RSU. As displayed in Eq. (4), the connection
time of a vehicle largely depends on its position and velocity.
Let 𝑇𝑡𝑟𝑎 and 𝑇𝑖𝑛 𝑓 be the average training time and inference
time in each slot, respectively. For each vehicle 𝑢, only if its
connection time within the cell coverage exceeds the sum of
these two means (𝑖.𝑒., 𝑇𝑢,𝑐𝑜𝑛𝑛 > 𝑇𝑡𝑟𝑎 + 𝑇𝑖𝑛 𝑓 ), will it have the
opportunity to participate in FL training in the current round.
Hereafter, the RSU distributes the global model to selected
vehicles, enabling them to improve it through local training.

2) Training on Vehicles: For round 𝑡, a portion of ve-
hicles is selected to download the global model parameter
𝜔𝑡 from the central RSU. Then, vehicles perform gradient
optimizations and refresh their local model parallel based on
the local data for multiple iterations. Let I𝑡 denote the set of
selected vehicles, and the local data captured on each vehicle
𝑢 is H 𝑡

𝑢, with ℎ𝑡𝑢 =
��H 𝑡

𝑢

�� being the number of data samples.
The empirical local loss function of vehicle 𝑢 is defined as:

ℓ𝑢
(
𝜔𝑡
𝑢

)
=

1
ℎ𝑡𝑢

∑︁
𝑥∈H𝑡

𝑢

(𝑥 − 𝑥)2 =
1
ℎ𝑡𝑢

∑︁
𝑥∈H𝑡

𝑢

𝑓
(
𝜔𝑡
𝑢; 𝑥

)
(5)

where 𝑓
(
𝜔𝑡
𝑢; 𝑥

)
is the loss function for data point 𝑥 under

local model 𝜔𝑡
𝑢, and 𝑥 is the input reconstructed by SAE.

Notably, a regularization operation is implemented to
ensure algorithm convergence during the local training. The
regularized local loss function is defined as:

𝑠𝑖
(
𝜔𝑡
𝑢

)
= ℓ𝑢

(
𝜔𝑡
𝑢

)
+ 𝜆

2
𝜔𝑡

𝑢 − 𝜔𝑡
2 (6)

where the second term is the regularization term to avoid the
overfitting, with 𝜆 is the regularization parameter.

Generally, lagging vehicles (𝑖.𝑒., stragglers) are inevitable
in FL training due to statistical heterogeneity and commu-
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Fig. 2. (a) Mobility-Aware Asynchronous FL based Model Training Process. (b) Asynchronous Aggregation with the Representation Learning.

nication uncertainty. These stragglers may lag in uploading
their updates as they have more data or poor communication
conditions in the previous round. We define the gradient of
the regularized local loss function as "local gradient", and
distinguish the local gradient of stragglers in the previous
round as "delayed local gradient". Empirical studies have
revealed that stragglers negatively affect the accuracy and
convergence of the global model. This is attributed to the
parameter differences used in calculating the current local
gradient compared to the delayed local gradient. To this end,
balancing the previous and current local gradients during the
aggregation in the current round is essential. That is,

∇𝜁 𝑡𝑢 = ∇𝑠
(
𝜔𝑡
𝑢

)
+ 𝛿∇𝑠 (𝑝𝑟𝑒)𝑢 . (7)

where ∇𝜁 𝑡𝑢 is the aggregated local gradient of vehicle 𝑢, 𝛿 is
the decay coefficient, ∇𝑠

(
𝜔𝑡
𝑢

)
and ∇𝑠 (𝑝𝑟𝑒)𝑢 are local gradient

and delayed local gradient, respectively. Notably, ∇𝑠 (𝑝𝑟𝑒)𝑢 → 0
for uploading updates duly in the previous round.

Furthermore, to cope with the stragglers in asynchronous
optimization, we incorporate a dynamic local learning rate
into the local update. The rationale is that the corresponding
learning step size for stragglers should be increased. With 𝜂𝑡𝑢
being the time-related dynamic local learning rate of vehicle
𝑢 in round 𝑡, the closed-form iterative solution for the local
model update is defined by:

𝜔𝑡+1
𝑢 = 𝜔𝑡

𝑢 − 𝜂𝑡𝑢∇𝜁 𝑡𝑢 (8)

where multiplier 𝜂𝑡𝑢 = 𝜂𝑑 max{1, log(𝑑𝑡𝑢)}, 𝜂𝑑 is an initial
learning rate set for all vehicles, and 𝑑𝑡𝑢 = 1

𝑡

∑𝑡
𝜏=1 𝑑

𝜏
𝑢 is the

average time cost of the past 𝑡 rounds. Following that, the
actual learning step size is adjusted based on previous delays.
By assigning larger step sizes to stragglers, this adaptive
scaling effectively mitigates the adverse impact of stragglers
on model convergence.

The local iteration process persists until the maximum
number of epochs in FL training. After that, vehicle 𝑢 uploads
its local update (𝑖.𝑒., 𝜂𝑡𝑢∇𝜁 𝑡𝑢) to the RSU. The global loss

function is formally defined as:

L(𝜔𝑡 ) =
∑︁
𝑢∈I𝑡

𝑛𝑡𝑢

𝑁 𝑡
ℓ𝑢

(
𝜔𝑡
𝑢

)
(9)

where 𝑁 𝑡 =
∑

𝑢∈I𝑡
��H 𝑡

𝑢

�� is the number of whole data among
selected vehicles, 𝑛𝑡𝑢

𝑁 𝑡 is the proportion of local data to all data.
Thus, vehicles with more data contribute more to the aggre-
gated parameters, thereby preventing model contamination by
vehicles with less data. Our goal of FL is to obatain a global
model 𝜔∗ with:

𝜔∗ = arg min
𝜔𝑡
L(𝜔𝑡 ) (10)

3) Asynchronous Aggregation on the Central RSU: The
global model in central RSU gets updated by aggregating
the local update from vehicles in each round. Traditional FL
operates synchronously, which leads to resource-wasting as
the RSU must wait for all local updates before aggregation.
In contrast, we perform asynchronous FL where the central
RSU updates its global model immediately for each arrived
local update, without waiting for other vehicles to upload.
Specifically, for the local update from vehicle 𝑢, the global
model will be updated by:

𝜔𝑡+1 = 𝜔𝑡 − 𝑛𝑡𝑢

𝑁 𝑡

(
𝜔𝑡
𝑢 − 𝜔𝑡+1

𝑢

)
= 𝜔𝑡 − 𝑛𝑡𝑢

𝑁 𝑡

(
𝜔𝑡
𝑢 −

(
𝜔𝑡
𝑢 − 𝜂𝑡𝑢∇𝜁 𝑡𝑢

) )
= 𝜔𝑡 − 𝜂𝑡𝑢

𝑛𝑡𝑢

𝑁 𝑡
∇𝜁 𝑡𝑢

(11)

Meanwhile, inspired by [16], we recognize the sig-
nificance of incorporating different weights during model
aggregation, with considering vehicle mobility. Consequently,
to enhance the global model accuracy and reduce the content
transmission delay, the aggregation weight 𝜓 is introduced
with the intuition that vehicles with longer available training
time should contribute more and be endowed with larger
weights. Based on the wireless downlink rate and remaining
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traversed distance in the cell coverage, the normalized aggre-
gate weight of vehicle 𝑢 can be derived as:

𝜓𝑡
𝑢 = 𝛼

(
𭟋𝑑 − 𝑃𝑡

𝑢

)
𭟋𝑑

+ (1 − 𝛼)
𝑟 𝑡
𝑢,𝑖

max𝑢∈I𝑡
(
𝑟 𝑡
𝑢,𝑖

) (12)

where 𝛼 is the tradeoff factor between wireless downlink rate
and remaining traversed distance. As a result, the aggregated
global model in Eq. (11) can be rewritten by incorporating the
aggregate weight with it:

𝜔𝑡+1 = 𝜔𝑡 − 𝜂𝑡𝑢𝜓𝑡
𝑢

𝑛𝑡𝑢

𝑁 𝑡
∇𝜁 𝑡𝑢 (13)

In addition, to mitigate the performance impact of asyn-
chronous optimization, we implement representation learning
on the central RSU. This enables us to capture embedding
representations for most features, which are learned simulta-
neously with other parameters in the SAE model. The central
RSU executes aggregation immediately for each arrived local
update, and performs representation learning on aggregated
parameters to derive a cross-vehicle feature representation.
The illustration of asynchronous aggregation with represen-
tation learning is displayed in Fig. 2(b). Specifically, our
approach draws inspiration from attention mechanisms for
feature identification and representation. Meanwhile, we in-
corporate weight normalization to reduce computation costs.
We use feature extraction on the first layer after the input, and
denote the parameters of this layer as 𝜔𝑡+1

(1) . For each element
𝜔𝑡+1
(1) [𝑎, 𝑏] in column 𝜔𝑡+1

(1) [𝑏] of 𝜔𝑡+1
(1) , the updated 𝜔𝑡+1

(1) is
obtained by:

𝜘𝑡+1(1) [𝑎, 𝑏] ←
exp

(���𝜔𝑡+1
(1) [𝑎, 𝑏]

���)∑
𝑏 exp

(���𝜔𝑡+1
(1) [𝑎, 𝑏]

���) (14)

𝜔𝑡+1
(1) [𝑎, 𝑏] ← 𝜘𝑡+1(1) [𝑎, 𝑏] · 𝜔

𝑡+1
(1) [𝑎, 𝑏] (15)

Up to now, the asynchronous FL training during a round
is completed. More details of the asynchronous FL are sum-
marized in Algo. 1.

B. Convergence Analysis
Considering vehicle selection and asynchronous aggre-

gation, we conduct a convergence analysis of the proposed
asynchronous FL. Some definitions and assumptions are first
given below:

Definition 1: (𝐿-smoothness) The local loss function ℓ

exhibits Lipschitz-smoothness with 𝐿 > 0 if for ∀𝑥1, 𝑥2,

ℓ (𝑥1) − ℓ (𝑥2) ≤ ⟨∇ℓ (𝑥2) , 𝑥1 − 𝑥2⟩ +
𝐿

2
∥𝑥1 − 𝑥2∥2 . (16)

Definition 2: (𝜇-strongly convexity) The local loss func-
tion ℓ exhibits 𝜇-strongly convexity with 𝜇 > 0 if for ∀𝑥1, 𝑥2,

ℓ (𝑥1) − ℓ (𝑥2) ≥ ⟨∇ℓ (𝑥2) , 𝑥1 − 𝑥2⟩ +
𝜇

2
∥𝑥1 − 𝑥2∥2 . (17)

Definition 3: (Bounded gradient dissimilarity)1 The ag-
gregated local gradient ∇𝜁𝑢 is 𝑄-locally dissimilar at 𝜔 with

1To quantify the dissimilarity between vehicles, Definition 3 is defined
based on locally non-independent and identically distributed data.

Algorithm 1: Mobility-Aware Popular Content Prediction
based on Asynchronous FL

1 Central RSU Execution:
Input: tradeoff factor 𝛼, the position and velocity of

vehicles, wireless downlink rate for vehicles.
2 Initialize 𝜔← 𝜔0

3 for each round 𝑡 do
4 I𝑡 : the set of selected vehicles
5 for each vehicle 𝑢 in parallel do
6 𝑇 𝑡

𝑢,𝑐𝑜𝑛𝑛 =
(
𭟋𝑑 − 𝑃𝑡

𝑢

)
/𝑣𝑡𝑢

7 if 𝑇𝑢,𝑐𝑜𝑛𝑛 > 𝑇𝑡𝑟𝑎 + 𝑇𝑖𝑛 𝑓 then
8 Add vehicle 𝑢 to I𝑡

9 for each selected vehicle 𝑢 ∈ I𝑡 in parallel do
10 Download the current global model 𝜔𝑡

11 𝜔𝑡+1
𝑢 ← Vehicle Update (𝜔𝑡 , 𝑢)

12 Update the global model immediately for each
arrived local model 𝜔𝑡+1

𝑢

13 Compute aggregation weight 𝜓𝑡
𝑢 based on Eq. (12)

14 Update the global model with feature learning
based on Eq. (13) - (15)

15 Return 𝜔𝑡+1

16 Vehicle Execution:
Input: global model 𝜔𝑡 , regularization parameter 𝜆,

decay coefficient 𝛿, ∇𝜁 𝑡𝑢 ← 0, learning rate 𝜂𝑑
17 Compute the multiplier 𝜂𝑡𝑢 = 𝜂𝑑 max{1, log(𝑑𝑡𝑢)}
18 Vehicle Update (𝜔, 𝑢):
19 for each local epoch do
20 Compute the local loss function based on Eq. (5)
21 Implement regularization based on Eq. (6)
22 Compute ∇𝜁 𝑡𝑢 based on Eq. (7)
23 Update local model 𝜔𝑡

𝑢 based on Eq. (8)
24 Terminate until the maximum number of epochs

25 Return 𝜔𝑡+1
𝑢

26 Upload 𝜔𝑡+1
𝑢 to the RSU for asynchronous aggregation

𝑄 > 0 if
E ∥(∇𝜁𝑘 (𝜔))∥2 ≤ ∥∇L(𝜔)∥2𝑄2. (18)

Assumption 1: The expected squared norm of the
stochastic gradient is uniformly bounded. This means that,
1.1 The global loss function L(𝜔) has a lower bound, i.e.,
∀L(𝜔∗) = Lmin > −∞,
1.2 There exists 𝜖 > 0 such that E (∇𝜁𝑘 (𝜔)) ≤ ∥∇L(𝜔)∥,
and ∇L(𝜔)⊤E (∇𝜁𝑘 (𝜔)) ≥ 𝜖 ∥∇L(𝜔)∥2 hold for ∀𝜔. Notably,
∇𝜁𝑘 (𝜔) is an unbiased estimator of ∇L(𝜔) when 𝜖 = 1.

Next, we establish the convergence analysis through lem-
mas and theorems under Assumption 1.

Lemma 1: If the global loss function L(𝜔) exhibits 𝜇-
strongly convexity, then with Assumption 1, we can obtain:

2𝜇
(
L(𝜔𝑡 ) − L (𝜔∗)

)
≤

∇L(𝜔𝑡 )
2

. (19)

Theorem 1: Assuming the global loss function L(𝜔)
demonstrates Lipschitz-smoothness and 𝜇-strong convexity,
and the aggregated local gradient ∇𝜁𝑢 is 𝑄-locally dissim-
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ilar, with the satisfaction of Assumption 1. Then, let 𝜂𝑡𝑢 ≥
𝜓𝑡
𝑢

2𝜖 𝑛𝑡𝑢
𝐿𝑄2𝑁 𝑡 ≥ 𝜂𝑑 , the proposed asynchronous FL will converge

to the global optimum 𝜔∗ after 𝑇𝑚𝑎𝑥 update rounds. That is,

E
[
L

(
𝜔𝑇𝑚𝑎𝑥

)
− L (𝜔∗)

]
≤ (1 − 2𝜇𝜂𝑑𝜅′)𝑇

𝑚𝑎𝑥
[
L

(
𝜔0

)
− L (𝜔∗)

]
,

(20)

where 𝜅′ = 𝜖 − 𝜂𝑡
𝑢𝐿𝑄

2

2 .
Theorem 2: Assuming the global loss function L(𝜔)

demonstrates Lipschitz-smoothness and non-convexity, and the
aggregated local gradient ∇𝜁𝑢 is 𝑄-locally dissimilar, with the
satisfaction of Assumption 1. Then, if 𝜂𝑡𝑢 ≤ 2𝜖 −1

𝐿𝑄2 holds for each
round 𝑡, Eq.(21) is obtain after 𝑇𝑚𝑎𝑥 update rounds:

𝑇𝑚𝑎𝑥−1∑︁
𝑡=0

𝜂𝑡𝑢

2
E

[∇L (
𝜔0

)2
]
≤ L

(
𝜔0

)
− L (𝜔∗) . (21)

Overall, Theorem 1 ensures convergence, specifically for
the case of a convex global loss function, and provides an
error bound for the general model aggregation form. Theorem
2 indicates that the model convergence rate of the proposed
asynchronous FL is governed by balancing the bounded dis-
similarity value 𝑄 and learning rate 𝜂𝑡𝑢. The theoretical proofs
for Lemma 1 and Theorem 1-2 are available in ref. [15], [24],
[32]. Interested readers may refer to these sources for further
details.

C. Hybrid Filter based Popular Content Prediction
Considering the sparseness of content requests, we adopt

a hybrid filtering model based on SAE to predict the popular
content. The trained SAE model is adopted to extract the
latent feature representation of contents and VUs. Respec-
tively, based on the extracted feature, the potential associations
between the content pair and VU pair (𝑖.𝑒., content similarity
and VU similarity) can be measured by cosine distance.
Through VU similarity, a VU group is formed by randomly
selecting an active VU with its 𝑘 neighbouring VUs. Based
on the content similarity of their historical requests, a content
recommendation list is generated for RSU to facilitate pop-
ular content prediction. The hybrid filtering model combines
content-based collaborative filtering and demographic infor-
mation throughout this process. It relies on similarity metrics
to determine the distance between two contents or two VUs
based on their contents ratings and personal information. Fig.
3 illustrates the content prediction process for a vehicle within
the cell coverage, consisting of the following procedures:

1) Data Preprocessing: Each vehicle generates a rating
matrix F from its local data based on the historical requests
of VUs. The rows and columns of this matrix are VUs’ ID
and their ratings for different contents, respectively. Similarly,
a VU information matrix is generated based on the personal
information of VUs, where the rows and columns are user IDs
and their corresponding personal information, respectively.

2) Exploring Latent Representations: Vehicles put the
rating matrix as the input for the SAE to explore hidden
features among VUs and contents. Along with the user in-
formation matrix, these features are used to compute simi-
larity matrices for VUs and contents. Here, we adopt cosine
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…
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Fig. 3. Popular Content Prediction Process for a Vehicle.

similarity as the metric for similarity due to its effectiveness
in sparse matrices. Cosine similarity distinguishes directional
differences while being insensitive to absolute value changes,
making it well-suited for feature differences measure. Indeed,
VU similarity indicates content preference overlap among
VUs, while content similarity represents the level of user
interest in different contents.

3) Neighbouring VUs Selection: For simplicity, we as-
sume that any current VU is active in this work. Based on
the VU similarity matrix, we select the 𝑘 nearest VUs as the
neighbouring VUs of this active VU. Utilizing multiple neigh-
bouring VUs helps balance training errors, thereby improving
prediction accuracy. It is worth noting that the growth of 𝑘

is not unbounded. Further increasing 𝑘 would be unnecessary
once the model converges with sufficient VUs. Next, based on
the historical requests, a rating matrix K is constructed, where
the rows and columns represent the IDs of these neighbouring
VUs and their ratings for different contents, respectively.

4) Similarity Computation: We extract a vector from the
rating matrix F to construct the rating matrix of the active VU.
The content similarity matrix allows us to obtain the average
similarity between each element in the rating matrix of the
active VU and neighbouring VUs.

5) Recommendation List: Each vehicle generates a list of
the first 𝑆𝑚 highest similarity contents. After local training, the
list is transmitted to the RSU as a recommendation list. The
central RSU aggregates all recommendation lists from vehicles
and ranks contents based on their occurrence frequency. The
first 𝑆𝑚 contents with the highest occurrence frequency are set
as predicted popular contents (denoted by set S).
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V. DRL FOR EDGE CACHING DECISION

While the prediction results provide valuable insights
for caching decisions, the diversity of content often results
in predicted popular content far surpassing the finite cache
capacity of an RSU. To efficiently manage the cache space
of an RSU, content replacement mechanisms are indispens-
able in edge caching. Meanwhile, overall cache utilization
and effectiveness are prone to underutilization without edge
cooperation. Therefore, this section explores intelligent and
adaptive caching decisions based on DRL, so as to maxi-
mize the benefits of content prediction in IoVs. Notably, to
save computing resources, the prediction results generated
by the central RSU are directly shared with neighbouring
RSUs. From a macroscopic perspective, this makes sense as
neighbouring RSUs are in proximity to the central RSU along
the same path, and VU preferences are not expected to vary
dramatically during a short period.

A. Markov Decision Process

The MDP model is commonly employed to depict almost
all sequential decision-making problems. We model each RSU
as an agent for the straightforward definition of state transition.
The caching process in an RSU is formulated as an MDP
problem.

State Space: The state is the immediate environment,
including relevant information necessary for decision-making.
Under the agent setting, the state is represented as 𝒛𝒕𝒊 ={
𝒂𝒕
F,𝒊,𝒊

, 𝒒𝒕
𝒊,F

}
. The former set 𝒂𝒕

F,𝒊,𝒊
is the current caching state

respecting to the contents in RSU 𝑖. The latter set 𝒒𝒕
𝒊,F

is
content requests from vehicles. Specifically, 𝑞𝑡

𝑖, 𝑓
= 1 means

whether at least one vehicle in RSU 𝑖 requests for content 𝑓 .
Action Space: After receiving a state in each slot, the

agent is required to make a caching decision. This process
begins by sorting the caching contents in RSU 𝑖 in descending
order of popularity, relying on the prediction results provided
by the central RSU. With the current state 𝒛𝒕𝒊 , the action 𝒅𝒊𝒕
involves two parts, 𝒂𝒕

F,𝒊, 𝒋
and 𝑐𝑡

𝑖
, where matrix 𝒂𝒕

F,𝒊, 𝒋
encodes

the decision of RSU 𝑖 for the requested contents, and decision
variable 𝑐𝑡

𝑖
indicates the current content replacement control

in RSU 𝑖. Specifically, if 𝑐𝑡
𝑖
= 1, the RSU will randomly

select 1
5𝐺𝑖 contents from those in prediction results S𝑡 but

not currently cached at the edge. These selected contents will
replace the least popular contents in its local cache.

Reward Function: The reward value serves as a metric
for evaluating the action quality. Our objective is to minimize
content delivery delay, in contrast to the goal of maximizing
cumulative discounted reward for agents. To align the reward
function with our optimization objective, we define the reward
function as 𝑟 (𝒛𝒕𝒊 , 𝒅

𝒕
𝒊 ) = 𝑒

−∑𝐹
𝑓

∑𝑁
𝑖

∑𝑁+1
𝑗 𝑞𝑡

𝑖, 𝑓
𝑎𝑡
𝑓 ,𝑖, 𝑗
T𝑡
𝑓 ,𝑖, 𝑗 , where a

negative exponential function is adopted to transform the
objective legitimately. Notably, punitive negatives will be in-
corporated into the reward for violating constraint conditions.

B. Value Function Approximation

In general, MDP problems can be tackled through linear
or dynamic programmings. However, these methods may not

always be applicable in dynamic edge caching settings due to
their quasi-static and myopic models, which yields unsatisfac-
tory performance [33].

Therefore, we perform the decision via a function ap-
proximation structure, estimating the expected future value of
executing an action. This approximate structure specifically
emphasizes the agent. Each agent confronts the control and
sequential decision-making under uncertainty. In time slot 𝑡,
the agent observes the current environment state as 𝑧𝑡 , chooses
action 𝑑𝑡 from the allowable action space based on its policy 𝜋,
where 𝜋 is a mapping from the current state to the correspond-
ing action. Subsequently, the agent transitions to a new state
𝑧𝑡+1 using the engineered transition function 𝑝 (𝑧𝑡+1 | 𝑧𝑡 , 𝑑𝑡 ).
Finally, the agent receives an immediate reward 𝑟𝑡 = 𝑟 (𝑧𝑡 , 𝑑𝑡 )
and anticipates the reward as it progresses.

Considering the long-term influences, the recursive state
value function 𝑉 𝜋 (𝑧𝑡 ) is defined under the policy 𝜋(𝑧𝑡 ).
Specifically, it maps state 𝑧𝑡 to the expection of cumulative
discounted reward value 𝑈𝑡 =

∑Γ
𝑡=0 𝛾𝑡𝑟𝑡 , where discount factor

𝛾 ∈ (0, 1) indicates the importance of the predicted future
rewards. By applying the Bellman Equation, the state value
function is converted to the temporal difference form:

𝑉 𝜋 (𝑧𝑡 ) = E𝜋
[(
𝑟 (𝑧𝑡 , 𝑑𝑡 )) +

∑︁Γ

𝑡=1
𝛾𝑡𝑟𝑡

)
| 𝑧 = 𝑧𝑡+1

]
=

[
𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾

∑︁
𝑧𝑡+1

𝑝 (𝑧𝑡+1 |𝑧𝑡 , 𝑑𝑡 )𝑉 𝜋∗ (𝑧𝑡+1) | 𝑧 = 𝑧𝑡

]
,

(22)
where E represents the expectation.

In conjunction with the process above, the agent aims
to formulate an optimal policy 𝜋∗𝑡 → 𝑑∗𝑡 that maximizes
the expectation of the cumulative discounted reward value.
Subsequently, the optimization problem transforms into deter-
mining an optimal value function 𝑉 𝜋∗ (𝑧𝑡 ) under constraints,
as represented by:

𝑉 𝜋∗ (𝑧𝑡 ) = max
𝜋→𝑑𝑡

[
𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾

∑︁
𝑧𝑡+1

𝑝 (𝑧𝑡+1 |𝑧𝑡 , 𝑑𝑡 )𝑉 𝜋∗ (𝑧𝑡+1)
]

s. t. 𝐶1 : 𝑎𝑡𝑓 ,𝑖, 𝑗 ∈ {0, 1}, ∀ 𝑓 ,∀𝑖,∀ 𝑗
𝐶2 : 𝑎𝑡𝑓 ,𝑖, 𝑗 ≤ 𝑎𝑡𝑓 , 𝑗 , 𝑗 , ∀ 𝑓 ,∀𝑖,∀ 𝑗

𝐶3 :
𝑁+1∑︁
𝑗=1

𝑎𝑡𝑓 ,𝑖, 𝑗 = 1, ∀ 𝑓 ,∀𝑖

𝐶4 : 𝑎𝑡𝑓 ,𝑁+1,𝑁+1 = 1, ∀ 𝑓

𝐶5 :
𝐹∑︁
𝑓 =1

𝑎𝑡𝑓 ,𝑖,𝑖 ≤ 𝐺𝑖 , ∀𝑖.

(23)
The sequential decision problem is resolved into a series
of shorter, tractable time steps through this recursive value
function, where actions must be determined at each step. The
above constraints are summarized as follows: 𝐶1 ensures the
integer nature of binary decisions; 𝐶2 and 𝐶3 are constraints
on conflicting decisions, 𝑖.𝑒., each content request can only
be served by an RSU with related content or the cloud server
ultimately; 𝐶4 guarantees that cloud server has cached all
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contents, and 𝐶5 is the cache usage constraint of each RSU.
Explicitly, the control policy 𝜋∗ that adheres to Eq. (23) is

assured to become the optimal policy. The optimal action for
state 𝑧𝑡 can be easily determined by 𝑑∗𝑡 = argmax

𝑑𝑡

𝑉 𝜋 (𝑧𝑡 , 𝑑𝑡 ).

C. Bellman Update Process

Next, to optimize the strategy and connect the current
state with possible actions, we conduct Bellman updates
around the action-value function2 𝑄(𝑧𝑡 , 𝑑𝑡 ). This function
enables us to estimate the optimal state value function 𝑉 𝜋∗ (𝑧𝑡 )
under the current state, and the relationship between them is
𝑉 𝜋∗ (𝑧𝑡 ) = max

𝜋
𝑄 𝜋 (𝑧𝑡 , 𝑑𝑡 ). Therefore, the expected cumula-

tive reward after taking an action 𝑑𝑡 is obtained as:

𝑄 𝜋 (𝑧𝑡 , 𝑑𝑡 ) = 𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾
∑︁
𝑧𝑡+1

𝑝 (𝑧𝑡+1 |𝑧𝑡 , 𝑑𝑡 )𝑉 𝜋∗ (𝑧𝑡+1)

= 𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾
∑︁
𝑧𝑡+1

𝑝 (𝑧𝑡+1 |𝑧𝑡 , 𝑑𝑡 )max
𝜋

𝑄 𝜋 (𝑧𝑡+1, 𝑑𝑡+1).

(24)
Hereafter, the agent iteratively approximates the action-

value function under the current state and executes an action 𝑑𝑡
with the highest 𝑄-value. The core process is value iteration,
and the iterative formula for Q-value can be obtained as
follows:

𝑄 (𝑧𝑡 , 𝑑𝑡 )𝑛𝑒𝑤 = 𝑄 (𝑧𝑡 , 𝑑𝑡 ) + 𝛽
[
𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾 max

𝑑𝑡+1
𝑄 (𝑧𝑡+1, 𝑑𝑡+1)

−𝑄 (𝑧𝑡 , 𝑑𝑡 )
]
,

(25)
where 𝛽 ∈ (0, 1) is the learning rate parameter. The 𝑄-value
can definitely converge to the optimal value 𝑄 𝜋∗ (𝑧𝑡 , 𝑑𝑡 ) when
an appropriate 𝛽 is designed. Each agent regards other agents
as part of the environment, and engages in repeated interaction
to optimize the edge caching configuration gradually.

D. DRL based Edge Caching Decision-Making

Generally, RL can optimize the Bellman update pro-
cess through its self-learning ability. However, RL methods
are essentially tabular-based. The vastly diverse, dynamic,
distributed edge caching, and cooperative network topology
render the performance of most RL works unsatisfactory in
IoVs. The fundamental problem is that RL often faces the
curse of dimensionality, attributed to the vast action-state
space in dynamic scenarios. Besides, recording 𝑄-values in a
large table may lead to lengthy searches and memory issues.
Thus, DRL is employed for problems in RL trial-and-error
interaction.

During the training process, neural networks anticipate
input training samples to be independently distributed for both
exploitation and exploration. However, the high correlation
among continuous states can lead to non-uniform overesti-
mation in action-value function estimations through on-policy
updates. This introduces instability and adverse effects on
the actual value. As a remedy, we implement off-policy

2No distinction is made between "action-value function" and "𝑄-function".
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Fig. 4. The Update Process of Action-Value Function.

updates in practice. The basic principle in our proposed DRL
method is to separate the policy of behavior and target by
different state-action functions. By adopting neural network-
based parameter approximations, the agent expects to make
an optimal action by solving the sequential optimization in
Eq. (25). It estimates the anticipated value of decisions with
spatiotemporal dependencies, and approximates the optimal
value 𝑄∗ (𝑧𝑡 , 𝑑𝑡 ) with reconstructed 𝑄-function 𝑄 (𝑧𝑡 , 𝑑𝑡 ; 𝜃).
Hereafter, the agent actuates the saved 𝑄-value towards the
target value through parameter updates.

Overall, the value update process in our proposed method
largely aligns with the Double Deep-𝑄-Network. Instead of di-
rectly conducting bootstrapping, we introduce a target network
mechanism to mitigate redundancy. Specifically, two neural
networks with identical structures but distinct parameters are
maintained. The target neural network focuses on capturing the
temporal difference within the one-step return value, while the
main neural network assesses the current 𝑄-value. To maintain
learning stability, the weight parameters 𝜃 of the target neural
network undergo periodic updates (spaced a few training steps)
using the corresponding 𝜃 parameters from the main neural
network. The update rule is defined as 𝜃 = 𝜁𝜃 + (1− 𝜁)𝜃 with
𝜁 ≪ 1. It is worth noting that the one-step return method
(i.e., TD(0)) in the target neural network relies solely on the
immediate reward value. Then, the target network mechanism
is used to generate the one-step target 𝑄-value �́�𝑡 as:

�́�𝑡 = 𝑟𝑡 + 𝛾max
𝑑

𝑄(𝑧𝑡+1, 𝑑; 𝜃𝑡 )

= 𝑟𝑡 + 𝛾𝑄
[
𝑧𝑡+1, argmax𝑑𝑄(𝑧𝑡+1, 𝑑; 𝜃𝑡 ), 𝜃𝑡

]
.

(26)

Moreover, for ensuring the stability of this neural
network-based nonlinear approximation, a prioritized experi-
ence replay buffer M is employed to reuse previous experi-
ences, thereby breaking the correlation in data training. During
training sample collection, the agent stores its experience tuple
𝜍 = ⟨𝑧𝑡 , 𝑑𝑡 , 𝑟𝑡 , 𝑧𝑡+1⟩ into the experience replay buffer, which
includes its current state and available action set. The collected
experience samples are utilized to train the neural network
parameters for value approximation. This entails extracting
a minibatch of previous experience samples from the replay
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Algorithm 2: DRL for Caching Decision-Making

Input: agent set N , discount factor 𝛾, learning rate 𝛽,
replay buffer M, minibatch size 𝐽, exploration
factor 𝜖

Output: neural network parameters 𝜃

1 Each RSU 𝑖 ∈ N do
2 Initialize experience replay buffer, main neural

network with random weight 𝜃, target neural network
with 𝜃 = 𝜃.

3 for each episode do
4 Set 𝑡=0, obtain the initial state 𝑧0 by randomly

caching
5 for each slots of episode do
6 Derive an action 𝑑𝑡 based on the 𝜖-greedy

strategy in the current state 𝑧𝑡
7 Execute action 𝑑𝑡 , observe reward 𝑟𝑡 and the

next state 𝑧𝑡+1
8 Store observed experience tuple

𝜍 = ⟨𝑧𝑡 , 𝑑𝑡 , 𝑟𝑡 , 𝑧𝑡+1⟩ into the replay buffer
9 if t % updateFrequency == 0 then

10 Randomly extract a minibatch of 𝐽

experience samples from the replay buffer

11 for each experience sample
{
𝜍 𝑗

}𝐽
𝑗=1 do

12 Update parameter 𝜃 by minimizing L(𝜃) as
Eq. (27)

13 Update parameter 𝜃 periodically by 𝜃

14 Let 𝑡 ← 𝑡 + 1

buffer at each iteration, enabling the agent to reinforce its
knowledge through replaying.

Since 𝑄 (𝑧𝑡 , 𝑑𝑡 ; 𝜃𝑡 ) = �́�𝑡 is possible with a smaller error,
we attempt to optimize parameters for the 𝑄-function ap-
proximation. The loss function is interpreted as the Euclidean
distance between target value and estimated value. For a
minibatch of experience sample

{
𝜍 𝑗

}𝐽
𝑗=1, it is converted as:

L(𝜃) =1
𝐽

𝐽∑︁
𝑗=1

(
𝑟 𝑗 + 𝛾𝑄

(
𝑧 𝑗+1, argmax𝑑𝑄(𝑧 𝑗+1, 𝑑; 𝜃 𝑗 ), 𝜃 𝑗

)
−𝑄

(
𝑧 𝑗 , 𝑑 𝑗 ; 𝜃 𝑗

) )2
,

(27)
where each experience samples 𝜍 𝑗 =

〈
𝑧 𝑗 , 𝑑 𝑗 , 𝑟 𝑗 , 𝑧 𝑗+1

〉
is used

to update the parameter 𝜃 toward the target value by minim-
inzing loss function L(𝜃), and a gradient guiding updates of
𝜃 can be calculated by 𝜕L(𝜃 )

𝜕𝜃
.

Importantly, the optimal action is typically constrained
within the search space, which depends on the quantity and
quality of the training data. To introduce randomness in the
action selection, we implement and adapt 𝜖-greedy strategy to
balance exploitation and exploration, with 𝜖 as a decreasing
parameter. In particular, the agent selects action that maxi-
mizes the 𝑄-value with a probability of 1 − 𝜖 (exploitation),
and other action with a small probability of 𝜖 (exploration).

Figure 4 shows the 𝑄-value update process, and ad-
ditional details are provided in Algorithm 2. We estimate
the action-value function for each time slot using parameter
approximation. The neural network updates parameters based
on the constructed loss function, leading to optimal decisions.
This value function approximation is iteratively solved until
reaching a finite time horizon within an episode, continuing
the process to the next slot. The value iteration concludes when
it reaches the specified termination episode, resulting in the
stabilization of the desired action-value function.

VI. PERFORMANCE EVALUATION

We consider a one-way highway scenario, with all ex-
periments conducted in Python 3.8 and tested on a pro-
cessor (AMD®Threadripper TMPRO5995WX@2.70GHz

)
. The

system comprises a cloud server and 5 RSUs, where the cell
coverage is 500 m. Unless otherwise stated, the vehicle density
is 15 vehicles/km, and the initial cache capability of each RSU
is 100 contents. Table II provides details of other parameters.

The MovieLens 1M dataset [35] is utilized to emulate
the content request of VUs. The MovieLens 1M dataset
comprises 1,000,209 ratings from 6040 anonymized users for
3952 movies. The ratings range from 0 to 5. Each dataset
entry includes indices for both user and movie, alongside the
timestamp of the rating. Furthermore, the dataset encompasses
pertinent user demographic information (gender, age, occupa-
tion, 𝑒𝑡𝑐.). Particularly, we assume that a rating for a movie
equates to a content request for that particular content. This
conjecture aligns with the rationality that users generally rate
movies they have already seen.

Fig. 5. Content access delay versus episodes.

For performance comparison, the following baselines are
introduced:

1) Oracle [36]: Oracle is an omniscient algorithm that the
knowledge of future demands is known in advance. It
yields a performance upper bound for other baselines.

2) Least Recently Used (LRU): LRU replaces the cached
content with the longest un-accessed time firstly in RSU.

3) NoDRL: NoDRL only predicts popular content but also
doesn’t use DRL for caching decisions. RSUs cache
contents randomly from the predicted popular ones.

4) Federated Averaging (FedAvg) [37]: FedAvg is an
synchronous FL method, where the RSU uses a weighted
average to update the global model.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3349255

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of East Anglia. Downloaded on February 01,2024 at 14:35:04 UTC from IEEE Xplore.  Restrictions apply. 



12

(a) (b) (c)

Fig. 6. (a) Content access delay versus episodes. (b) Cache hit rate versus the round in FL. (c) The training time for each round in FL. (d) Cache
hit rate versus the vehicle density.

TABLE II
PARAMETERS SETUP

Parameter Value Parameter Value
System Parameters

𝑉max, 𝑉min 60km/h, 100km/h 𝑠 𝑓 0.5MB
𝜎2 -95dBm 𝐵𝑖 2MHz

𝑇𝑖,𝑁+1 80ms 𝑇𝑖, 𝑗 15ms
𝑃𝑖 38dBm

FL Parameters
𝜂𝑑 0.001 𝑇𝑡𝑟𝑎 3s
𝛿 0.001 𝑇𝑖𝑛 𝑓 0.5s
𝛼 0.4 𝑘 8
𝜆 0.005

DRL Parameters
M 500 𝐽 32
𝛽 3 × 10−4 𝜖 0.05
𝛾 0.98

Quantitative metrics: 1) Cache hit rate: the ratio of
requests served by an RSU to the total number of requests. 2)
Content access delay: the average delay to access a content.

Fig. 5 presents the convergence curve, indicating a grad-
ual decrease in content access delay, stabilising after about
150 episodes. This shows the learning process of RSU, which
can achieve the optimal caching strategy after 150 episodes.

Fig. 6(a) shows the cache hit rate comparison between our
proposed method and FedAVG versus rounds. Our proposed
method maintains a relatively stable cache hit rate within a
small fluctuation range (29.7% to 33.2%) during the 30 rounds.
FedAVG exhibits up to 6% fluctuation in cache hit rate over the
same period. This indicates that our proposed method slightly
outperforms FedAVG regarding model prediction accuracy.
This improvement can be attributed not only to the accu-
racy improvement through the mobility-aware asynchronous
aggregation in our method, but also to a series of measures
we adopted to cope with the learning instability caused by
stragglers. Similarly, Fig. 6(b) compares the training time for
each round between our proposed method and FedAVG. It
is evident that our proposed method significantly reduces the
training time due to asynchronous aggregation. The training
time for FedAVG ranges from 22.1 to 23.9 seconds, as it must
wait for all local updates from vehicles before aggregation.
Besides, Fig. 6(c) illustrates that vehicle density positively
impacts the cache hit rate. This is reasonable because as
vehicle density increases, the amount of training data and
uploaded local updates in the cell coverage also increase,

Fig. 7. Cache hit rate versus the cache capacity of RSUs.

further enhancing the model prediction accuracy.
Next, we study the effect of varying cache capacities on

different methods, as shown in Fig. 7 and 8. Increasing RSU
capacity resulted in higher cache hit rates and lower access
delay across all methods. As expected, Oracle achieves the
best performance, but its practicality is limited. Among other
methods, our proposed method consistently outperforms them
in terms of quantitative metrics. For example, when the cache
capacity reaches 350 MB, the edge hit rate is improved by
roughly 6%, 21%, and 15% compared to FedAvg, LRU, and
NoDRL, respectively. At this moment, content replacement
processes may infrequently occur in the RSUs.

VII. CONCLUSION

This paper investigated a mobility-aware edge caching
strategy by exploiting asynchronous FL and DRL. Firstly,
popular content prediction was conducted using the SAE
model. We employed an asynchronous FL framework for
local updates and global aggregation of SAE models. The
trained SAE model extracts latent features from VUs and
contents. These features construct a hybrid filtering model for
popular content recommendation. Secondly, to maximize the
benefits of content prediction, we explored intelligent caching
decisions considering content delivery and cache replacement.
Based on the formulated MDP problem, we proposed a
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Fig. 8. Content access delay versus the cache capacity of RSUs.

DRL-based edge caching decision-making and adopted neural
network-based parameter approximations. Extensive simula-
tions were conducted based on real-world data trajectory.
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