$\pi \rightarrow$
 University of East Anglia

Synthesis of novel symmetrical and unsymmetrical aza BODIPY analogues.

Budur Nuwayji Alanazi

A thesis submitted to: School of chemistry, University of East Anglia in fulfilment of the requirements for the degree of Doctor of Philosophy

March 2023

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution.

Declaration

The research described in this thesis is, to the best of my knowledge, original except where due reference is made.

Budur N Alanazi

Abstract

This thesis is focused on the expansion of the synthetic study of aza (dibenzo) BODIPY analogues. It describes a more detailed investigation of the formation of the precursor aminoisoindolines using reaction of alkyl and benzyl acetylenes with bromo benzamidine under microwave conditions. Treating the amidine with 1-hexyne under Sonogashira copper-free cross coupling reaction conditions led to unexpected formation of the six-member ring compound, 3-butyl isoquinoline-1-amine was isolated in 31% yield. However, using aryl acetylene in the synthesis of the precursor aminoisoindolines successfully produced the required 5 -member ring compounds (aminoisoindolines) in good yield. Therefore, a variety of new symmetrical and unsymmetrical aza BODIPYs and their precursors aza (dibenzo) dipyrromethenes bearing electron withdrawing or electron donating substituents have been smoothly synthesised and isolated in good yield. Initially the synthesis of unsymmetrical analogues was achieved using simple mixed condensation reactions. Approximately statistical mixtures were produced when the precursor aminoisoindolenes were electronically similar. However, when they were different, the reaction favoured the formation of the two symmetrical derivatives. Consequently, a new synthetic procedure has been developed to control the synthesis of unsymmetrical analogues by converting of the amino group of one aminoisoindoline into good leaving groups such as triflate or tosylate. This successfully led to favour formation of the unsymmetrical aza (dibenzo) dipyrromethenes with reaction yields of up to double those obtained via the mixed condensation synthetic method (50\%-64\%). Complexation of symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ was successfully optimized by treating the mixture with TMS-Cl to remove the fluoride ion which led to shift the equilibrium towards the target aza BODIPYs with remarkable improvement in the outcome.

The final part of the thesis describes attempts to cyclise aza dipyrromethenes to form porphyrin-like macrocycles. Unfortunately, these attempts were unsuccessful due to a combination of low reactivity and isomerisation of the precursors in the presence of any metal.

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the Data Collections is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form. You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions only apply where a deposit may be explicitly provided under a stated licence, such as a Creative Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder themselves) and UEA reserves the right to take immediate 'take down' action on behalf of the copyright and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in this database has been supplied on the understanding that it is copyright material and that no quotation from the material may be published without proper acknowledgement.

This thesis is dedicated to my befoved mother.

Acknowledgements

First and foremost, I would like to give thanks to the almighty Allah for giving me the strength, knowledge, and the ability to complete this project satisfactorily.
I would also like express my deepest gratitude to my supervisor, Prof. Andrew N. Cammidge for his unlimited support during my PhD. I am very grateful to him for his advice, invaluable supervision and patience he has given me during the past years.
I would also like to extend my thanks to Dr. Isabelle Fernandes for her time, advice and support. Also, I would like to thank Prof. Richard Stephenson, and Dr. Maria Paz Muñoz-Herranz for their valuable comments. I would also like to acknowledge Dr. David Hughes, and Dr Atheer Madlool for their help in the X-Ray crystallography service. I would also thank the examiners Prof. Jon Preece (University of Birmingham), and Dr Rianne Lord (UEA) for their time.
A special and massive thanks to my beloved husband, Mr Khalid for all his love, kindness, and unlimited support that he has shown to me during the last years, he was always stood by my side through the good times and bad. There are no adequate words to thank him, I will be grateful for him forever. I am exceedingly grateful to my little angels Rivanna, Omar, and Mishaal, they are the greatest gift from Allah to me, they are always bringing joy to my life, and taught me to always smile.
I am also deeply grateful to my parents, and my brothers and sisters for their unconditional love, and continuous encouragements, they have been always close to me despite the distance.

I would like to acknowledge all the past/current members of Cammidge's group, I deeply appreciate the time that we worked together at the lab, and the experience they shared with me during the last four years.

I am very grateful to the Princess Nourah Bint Abdul Rahman University for the opportunity to study in the UK, and the Embassy of Saudi Arabia for the funding of my PhD degree.

List of abbreviations

Abs	Absorption
aq.	Aqueous
Ar	aromatic/ aryl
AcOEt	ethyl acetate
b.p	boiling Point
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
Bu	butyl
Conc.	Concentrated
${ }^{\circ} \mathrm{C}$	Celsius
d	doublet
dd	doublet of doublets
DBU	1,8-diazabicyclo [5.4.0] undec-7-ene
DCM	Dichloromethane
DMF	N, N-dimethylformamide
DMSO	Dimethyl sulfoxide
eq.	Equivalent
h	Hour
Hz	Hertz
IR	Infrared
J	coupling constant in NMR spectroscopy
λ	lambda (wavelength)
m	Multiplet
MALDI	matrix assisted laser desorption ionisation
m.p	melting point
Me	Methyl
mmol	milli mole
mol	Mole
MS	mass spectrometry
MW	Microwave
OMe	Methoxy
OPh	Phenoxy

OTf	triflate, trifluoro methane sulfonate
PE	petroleum ether
PDT	photodynamic therapy
Ph	Phenyl
ppm	parts per million
py	Pyridine
Rf	retention factor
rt	room temperature
s	Singlet
SubTBDAP	Sub tri benzo di aza porphyrin
TBDAP	Tetra benzo di aza porphyrins
TBTAP	Tetra benzo tri aza porphyrin
t	Triplet
t-Bu	tertiary butyl
THF	Tetrahydrofuran
TLC	thin layer chromatography
UV/Vis	Ultraviolet/Visible spectroscopy
δ	chemical shift in parts per million (ppm)
ε	molar extinction coefficient
λ	Wavelength

Contents

Chapter 1: Introduction and Literature review
1.0. Introduction of BODIPYs 2
1.1. Synthesis of BODIPYs 5
1.2. Synthesis of benzo fused BODIPY fluorophores 8
1.3. Synthesis of a different Class of π-Extended BODIPY derivatives 10
1.4. Introduction to aza BODIPYs and their precursor aza dipyrromethenes 11
1.5. Applications 12
1.6. Synthesis of aza dipyrromethenes 13
1.7. Synthesis of benzo-fused aza BODIPY 18
1.7.1 Synthesis of [b]-fused aza dipyrromethenes and aza-BODIPYs from ring-fused pyrroles 19
1.7.2 Synthesis of [c]-fused aza dipyrromethenes (fusion at the β sites) and aza- BODIPYs 20
1.7.2.1 From phthalonitrile and their derivatives 20
1.7.3 Synthesis of [b] and [c]-fused aza dipyrromethenes and aza-BODIPYs 28
1.7.3.1 From benzo [c, d] indole-2-amine 28
1.7.3.2 Postmodifications of ring-fused aza-BODIPYs 29
1.8. Boron fused aza-BODIPYs 35
1.9. Aim of the Project 36
Chapter 2: Results and Discussion
2.1 Attempted syntheses of alkyl aza (dibenzo) dipyrromethenes (ADBDP) 38
2.1.1 Attempted syntheses of alkyl aminoisoindolines for use in the synthesis of aza (dibenzo) dipyrromethenes (ADBDP) and aza BODYPYs and competing formation of aminoisoquinolines 40
2.2 Introduction to isoquinoline 46
2.3 Synthesis of 2-hexynalbenzonitrile and use it as precursor in the synthesis of alkyl aminoisoindoline 50
2.4 Alternative syntheses using different terminal acetylenes. 57
2.5 Symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes (ADBDP) 61
2.5. 1 Selection of Aminoisoindolines precursors 63
2.5.2 Synthesis of symmetrical aza (dibenzo) dipyrromethenes (ADBDP) from self- condensation of Aminoisoindolines 71
2.5.3 Synthesis of unsymmetrical aza (dibenzo) dipyrromethenes (ADBDP) 75
2.6 Controlled synthesis of unsymmetrical derivatives 83
2.7 Complexation of symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes (ADBDPs) using Boron trifluoride diethyl etherate 89
2.8 Optical properties of symmetrical and unsymmetrical aza BODIPYs and their precursor aza dibenzo dipyrromethenes (ADBDP). 97
2.9 Oxidative cyclisations to give fused and/or macrocyclic aza dibenzo dipyrromethenes system 100
2.9.1 Macrocycle formation attempts from aza dipyrromethene derivatives. 102
2.9.1.2 From 3-methoxy phenyl methylene aza dipyrromethene compound 155 102
2.9.1.3 From thiophene methylene aza dipyrromethene compound 201 109
2.9.1.4 Macrocycle formation attempt using aldehyde methene linkage 116
2.10 Conclusion 120
2.11 Future work 121
CHAPTER 3: Experimental
3.1 General Methods 124
3.2 Synthesis of 2-bromobenzamidine Hydrochloride 79 125
3.3 Synthesis of 3-butyl isoquinoline -1-amine 112 125
3.4 Synthesis of 2-hexylbenzonitrile 117 126
3.5 Synthesis of 2-[2-(4-methoxyphenyl)ethynyl] benzonitrile 118 127
3.6 Synthesis of 1,6-diethyl 2,4-hexadienedioate 132 128
3.7 Synthesis of 2-naphthalenol and 2-(2-bromophenyl)-4(3H)-pyrimidinone 129

- 3.7.1: 2-naphthalenol 135 129
- 3.7.2: 2-(2-bromophenyl)-4(3H)-pyrimidinone 136 130
3.8 Synthesis of 2-[2-(4-methoxyphenyl)ethynyl]-benzamidine hydrochloride $\mathbf{1 2 0}$ 130
3.9 Synthesis of 2-(3-hydroxy-3-methyl-1-butynyl) benzonitrile 148 131
3.10 synthesis of 2-[2-(4-nitrophenyl)ethynyl] benzonitrile $\mathbf{1 5 0}$ 132
3.11 Synthesis of 2-[2-(4-nitrophenyl)ethynyl]-benzamidine hydrochloride 151 133
3.12 Synthesis of aminoisoindolene derivatives 133
3.12.1 General procedure 133
3.12.2 Synthesis of (Z)-1-(4-Methoxyphenylmethylene) -1H-isoindol-3-amine $\mathbf{8 1}$ 134
3.12.3 Synthesis of (Z)-1-(3-Methoxyphenylmethylene)-1H-isoindol-3-amin 137 134
3.12.4 Synthesis of (Z)-1-(4-pentYloxyphenylmethylene)-1H-isoindol-3-amine 138 135
3.12.5 Synthesis of (Z)-1-(4-benzonitrle methylene)-1H-isoindol-3-amine $\mathbf{1 5 4}$ 136
3.12.6 Synthesis of (Z)-1-(4-hydroxyphenylmethylene)-1H-isoindol-3-amine $\mathbf{1 8 7}$ 137
3.12.7 Synthesis of (Z)-1-(4-thiophene methylene)-1H-isoindol-3-amine 200 138
3.13 Synthesis of aza dibenzo dipyrromethene derivatives 139
3.13.1 Synthesis of aza (dibenzo) dipyrromethene $\mathbf{8 3}$ 139
3.13.2 Synthesis of aza (dibenzo) dipyrromethene $\mathbf{1 5 5}$ 140
3.13.3 Synthesis of aza (dibenzo) dipyrromethene 156 141
3.13.4 Synthesis of aza (dibenzo) dipyrromethene 157 142
3.13.5 Synthesis of aza (dibenzo) dipyrromethene $\mathbf{1 8 0}$ 143
3.13.6 Synthesis of aza (dibenzo) dipyrromethene 201 144
3.14 Synthesis of triflate aza (dibenzo) dipyrromethene $\mathbf{1 8 1}$ 145
3.15 Tosylation of aminoisoindolene derivatives 146
3.15.1 Tosylation of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine 163 146
3.15.2 Tosylation of (Z)-1-(4-pentaloxyphenylmethylene)-1H-isoindol-3-amine 164 147
3.16 Triflation of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine 165
... 148
3.17 Synthesis of unsymmetrical aza dibenzo dipyrromethene derivatives 148
3.17 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene derivatives 149
3.17.1 Dimerization of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine 81 and (Z)-1-(4-pentaloxyphenylmethylene)-1H-isoindol-3-amine $\mathbf{1 3 8}$ 149
3.17.2 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene $\mathbf{1 6 0}$ by reacting of(Z)-1-(4-pentyloxyphenylmethylene)-1H-isoindol-3-amine tosylate 164, andcompound 81151
3.17.3 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene $\mathbf{1 6 0}$ by reacting of (Z)-1-(4-pentyloxyphenylmethylene)-1H-isoindol-3-amine 138, and 4-methoxy phenyl methylene aminoisoindoline triflate 165 151
3.17.4 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene $\mathbf{1 6 1}$ by reacting of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine tosylate 163, and 4-cyano phenyl methylene aminoisoindoline 154 152
3.17.5 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene $\mathbf{1 6 1}$ by reacting of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine triflate 165, and 4-cyano phenyl methylene aminoisoindoline 154 153
3.17.6 Dimerization of (Z)-1-(4-pentaloxyphenylmethylene)-1H-isoindol-3-amine tosylate 164, and (Z)-1-(4-benzonitlile methylene)-1H-isoindol-3-amine 154 154
3.18 Synthesis of aza (dibenzo) BODIPYs derivatives 152
3.18.1 Aza (dibenzo) BODIPY compound 172 152
3.18.2 Aza (dibenzo) BODIPY compound 173 153
3.18.3 Aza (dibenzo) BODIPY compound 174 154
3.18.4 Aza (dibenzo) BODIPY compound 175 155
3.18.5 Aza (dibenzo) BODIPY compound 176 156
3.18.6 Aza-(dibenzo) BODIPY compound 177 157
References 158

list of figures

Figure 1.1: Structure of dipyrromethene, IUPAC numbering and the resonance of the BODIPY core 2
Figure 1.2: Structure of BODIPY 2 and Porphyrin unit 5 3
Figure 1.3: Modification examples to BODIPY unit 4
Figure 1.4: Examples of diisondole -BODIPYs using the Paal-Knorr strategy 10
Figure 1.5: Aza dipyrromethene unit $\mathbf{3 6}$ and the corresponding aza-BODIPY core 3713
Figure 1.6: Structure of diphenyl aza dipyrromethene 44 15
Figure 1.7: A selection of aza-BODIPY structures showing the effect of electron donating groups on the absorption and emissions properties 19
Figure1.8: Type of the ring-fused aza-BODIPY analogues 24
Figure 1.9: Derivatives of benzo fused aza-BODIPY 25
Figure 1.10: UV-vis absorption for compound $\mathbf{8 4}$ (blue solid line), and compound $\mathbf{8 5}$(green solid line), and normalized fluorescence emission (blue dotted line) spectra of $\mathbf{8 4}$and $\mathbf{8 5}$ (green dotted line), in DCM and the excitation spectrum of $\mathbf{8 4}$ (dashed line, $\kappa_{\mathrm{em}}$$=537 \mathrm{~nm}$)30
Figure 1.11: Structures of [b]-fused aza BODIPY 89 and fully fused system $\mathbf{8 8}$ 32Figure 1.12: UV- vis absorption for compound $95 \mathbf{9}$ (black solid lines), and compound96a (red solid lines), and fluorescence emission (dotted lines) of 95 (black lines) and96 (red lines) in toluene34Figure 1.13: UV- vis absorption (a), and fluorescence emission (b) spectra ofcompound 98 a (black lines), compound 100 a (red lines), and compound 99 a (bluelines) in toluene35
Figure 1.14: Traditional aza BODIPY structure, compared with the resulting aza BODIPY in Cammidge group previous work 39
Figure 2.15: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 152 in deuterated chloroform 40
Figure 2.1: Target structure of alkyl aza BODIPY 43
Figure 2.2: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-bromobenzimidamide hydrochloride 79 45
Figure 2.3: ${ }^{1} \mathrm{H}$-NMR spectrum of the resulting product from reacting of amidine 79 with 1-hexyne under microwave condition. 48
Figure 2.4: Crystal structure of 3-butyl isoquinoline -1-amine compound 112 49
Figure 2.5: Structure of isoquinoline core 50
Figure 2.6: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 1 8}$ 55
Figure 2.7: ${ }^{1} \mathrm{H}$-NMR spectrum and X-ray crystal structure of compound $\mathbf{1 2 0}$ 56
Figure 2.8: ${ }^{1} \mathrm{H}$-NMR spectra and MLADI mass spectra of the resulting compound with MW 366 57
Figure 2. 9: ${ }^{1} \mathrm{H}$-NMR spectra of product from the reaction between 2-bromo benzo amidine and ethyl propiolate 62
Figure 2. 10: ${ }^{1} \mathrm{H}$-NMR spectra of compound 132 63
Figure 2. 11: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{1 3 6}$ 64
Figure 2. 12: ${ }^{1} \mathrm{H}$-NMR spectrum of compounds $\mathbf{1 3 7}$ (blue spectra) and $\mathbf{8 1}$ (red spectra) 68
Figure 2. 13: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the resulting mixture from the reaction of amidine 79 and 1-ethynyl 4-nitro benzene under microwave condition 69
Figure 2. 14: ${ }^{1} \mathrm{H}$-NMR spectrum of compounds 150 (red colour) and 151 (blue colour).73
Figure 2.15: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 152 73
Figure 2. 16: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 154 74
Figure 2.17: Crystal structures of compound 155 and 157 77
Figure 2. 18: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 157. 78
Figure 2. 19: MALDI-TOF mass spectrum of the green fraction isolated from synthesis of $\mathbf{1 5 6}$ 80
Figure 2.20: ${ }^{1} \mathrm{HNMR}$ spectrum of the mixture of symmetrical and unsymmetrical azadipyrromethenes (red colour) compared with ${ }^{1}$ HNMR spectrum of the compounds $\mathbf{8 3}$(blue colour), and 155 (green colour)81
Figure 2.21: ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{1 6 0}$ 83
Figure 2.22: ${ }^{1}$ HNMR spectrum of the mixture symmetrical aza dipyrromethene $\mathbf{8 3}$ (blue colour), and the mixture symmetrical $\mathbf{8 3}$ and unsymmetrical aza dipyrromethene 161 (red colour) 86
Figure 2.23: MALDI-TOF spectrum of the crude mixture 87
Figure 2.24: MALDI-TOF spectrum of the crude mixture 87
Figure 2.25: ${ }^{1}$ HNMR spectra of symmetrical aza dipyrromethene 156 (blue colour), andthe mixture of symmetrical 156, and unsymmetrical aza dipyrromethene 162 (redcolour)88
Figure 2.26: X-Ray structure for compound 163 and compound 164 89
Figure 2.27: ${ }^{1} \mathrm{HNMR}$ spectrum of compound 163 90
Figure 2.28: ${ }^{1}$ HNMR spectrum and MALDI-TOF mass spectrum of compounds 16192
Figure 2.29: X-Ray structure for compound 165 101
Figure 2.30: ${ }^{1} \mathrm{H}$-NMR and ${ }^{19} \mathrm{~F}$-NMR spectrum of compound 172 94
Figure 2.31: X-Ray structure for compound $\mathbf{1 7 2}$ and compound 174 103
Figure 2.32: UV-Visible spectra for compound $\mathbf{1 7 3}$ and the isolated isomer 103
Figure 2. 33: ${ }^{1} \mathrm{HNMR}$ and ${ }^{1}$ spectrum of the isomer of compound $\mathbf{1 7 3}$ 104
Figure 2. 34: UV-vis absorption spectra of symmetrical, unsymmetrical aza dibenzo dipyrromethene compounds 105

Abstract

Figure 2. 35: UV-vis absorption (blue solid line) and normalized fluorescence emission (black and green dotted line) and the excitation spectrum spectra (red dotted line) of 172 in DCM 106

Figure 2.36: UV-vis absorption (solid line) and normalized fluorescence emission (dotted line) of compound $\mathbf{1 7 3}, \mathbf{1 7 4}$, and $\mathbf{1 7 5}$ in DCM 106
Figure 2. 37: MALDI-TOF obtained from demethylation of compound $\mathbf{1 5 5}$ following Chakraborti precedure 111
Figure 2. 38: ${ }^{1} \mathrm{H}$-NMR spectrum of the resulting from demethylation of compound $\mathbf{8 3}$ using tribromide boron 114
Figure 2. 39: ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{1 8 0}$ 115
Figure 2.40: ${ }^{1} \mathrm{HNMR}$ spectrum and MALDI-TOF mass spectrum of compound 181 116
Figure 2.41: Corrole structure and the possible macrocycle structure 188117
Figure 2.42: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 201 118
Figure 2.43: Comparison between ${ }^{1} \mathrm{HNMR}$ spectrum of compound 201 and the isolating compound after reaction with Pd 120
Figure 2. 44: MALDI-TOF mass spectrum of the isolated product after reaction with Pd and the suggested structure 204 120
Figure 2.45: ${ }^{1}$ HNMR spectrum of compound $\mathbf{1 5 5}$ in deuterium DMSO and the resulting mixture after adding pd and TFA 122
Figure 2.46: Structures of tetra phenyl porphyrin 206 and thiophene substituted tetra phenyl porphyrin 207 123
Figure 2.47: MALDI-TOF mass spectrum of the reaction crude 124Figure 2.48: ${ }^{1} \mathrm{HNMR}$ spectrum of compound 201 in deuterium CDCl_{3} (blue colour) andthe resulting mixture after refluxing with benzaldehyde and propionic acid (red colour)125
Figure 2.49: Stacked ${ }^{1}$ HNMR spectrum of compound $\mathbf{3 5}$ and the resulting isomers 126
list of schemes
Scheme 1.1: Synthesis of the first BODIPY dyes $\mathbf{9}$ and $\mathbf{1 0}$ by Treibs and Kreuzer 6
Sheme 1.2: Synthesis of BODIPY 15 by an acid-catalysed condensation of pyrrole 11 with an aromatic aldehyde 12, followed by oxidation and boron complexation 7
Scheme 1.3: Formation of dipyrrinium salts $\mathbf{1 9}$ and BODIPY dyes $\mathbf{2 0}$ by condensation of 2-acylpyrroles 18 and 2-unsubstituted pyrroles 16 8
Scheme 1.4: Synthesis of diisondole -BODIPYs 26 by Kang and Haugland using the Paal-Knoor strategy 9
Scheme 1.5: Synthesis of a 'masked" isoindole 30 10
Scheme 1.6: Synthesis of diisoindole-BODIPYs by a retro Diels-Alder reaction 11
Scheme 1.7: Synthesis of Ex-BODIPYs 35a (in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$) and 35b (in $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$) 12
Scheme 1.8: Synthetic strategies to aza dipyrromethenes $\mathbf{3 9}$ formation developed by Rogers 14
Scheme 1.9: The cycle of degradation and resynthesis of tetra aryl aza dipyrromethenes compound $\mathbf{3 9}$ 15
Scheme 1.10: First synthetic procedure in the formation of aza-BODIPY dyes 16
Scheme 1.11: General route to formation of aza dipyrromethene 48. 16
Scheme 1.12: Synthetic mechanism of aza dipyrromethene from nitro butyrophenones.17
Scheme 1.13: Synthetic strategy to formation of unsymmetrical aza dipyrromethene. 18
Scheme 1.14: Synthesis of benzo fused aza dipyrromethene by Vollman 20
Scheme 1.15: Synthesis of [b]-fused aza dipyrromethene 55 and aza-BODIPY 5622
Scheme 1.16: Formation of benzo fused aza-BODIPY 57 from phthalonitrile 23
Scheme 1.17: Synthesis of benzo-fused aza-dipyrromethene 53 and its BF_{2} complexes 57 24
Scheme 1.18: Synthesis of ace naphthalene-fused aza-BODIPY 62 25
Scheme 1.19: Synthesis of asymmetric benzo-annulated aza BODIPY 68 26
Scheme 1.20: Synthesis of derivatives of aza-diisoindolymethene from mono and bis substituted phthalonitrile 27
Scheme 1.21: Formation of benzo-fused aza dipyrromethenes by reacting of ortho- lithiated nitriles with benzonitrile 28
Scheme 1.22: Synthesis of aza BODIPYs from aminoisoindolines and X-ray crystal structure of compound $\mathbf{8 5}$ 29
Scheme 1.23: Synthesis aza-BODIPYs 83 and 87 from benzo [c, d] indole-2-amine 31
Sheme1.24: Regioselective formation of [b]-fused aza BODIPY via postmodification of ring-fused aza-BODIPYs, and Xray crystal structures of compounds $\mathbf{9 2}$ and 93 33
Scheme 1.25: Resulting of ring-fused aza-BODIPY depending on the equivalence of FeCl_{3} used 36
Scheme1.26: : Synthesis of fused aza BODIPYs $\mathbf{1 0 3}$ and $\mathbf{1 0 5}$ 37
Scheme 1.27: Synthesis of boron fused aza BODIPYs 107 a-d 38
Scheme 2.1: The full synthetic route towards aza BODIPYs 84, and 85 and their precursors (ADBDP) 82, and $\mathbf{8 3}$ 42
Scheme 2.2: Outline plan toward hexyl aminoisoindoline 109 and its corresponding aza (dibenzo) dipyrromethene $\mathbf{1 1 0}$ and aza BODYPYs $\mathbf{1 1 1}$ using 1-hexyne 44
Scheme 2.3: Formation mechanism of compound 79 45
Scheme 2.4: Suggested copper-free Sonogashira cross-coupling reaction 46
Scheme 2.5: Suggested mechanism for the 5-exo-dig cyclodimerization 47
Scheme 2.6: Unsuccessful synthesis toward alkyl aminoisoindoline 48
Scheme 2.7: Synthesis of compound 112 49
Scheme 2.8: Synthesis of aminoisoindoline by using rare earth catalyst and secondary amine 51
Scheme 2.9: Synthesis of isoquinolines by microwave-assisted One-Pot reaction from 2-alkynylbenzaldehyde 53
Scheme 2.10: Synthesis of isoquinolines $\mathbf{1 1 6}$ from 2-alkynylbenzamides by using gold
(III) catalyst 53
Scheme 2.11: Outline of suggested pathway to formation of compound 109 54
Scheme 2.12: Unsuccessful attempt to synthesis of compound 119 57
Scheme 2.13: Suggested resulting structure resulting from the reaction between compound $\mathbf{5}$ and lithium bis(trimethylsilyl)amide in THF 58
Scheme 2.14: Synthesis of 4- substituted aryl amidines 58
Scheme 2.15: Synthesis attempts of formation of compound $\mathbf{1 1 9}$ 59
Scheme 2.16: Synthesis of aminoisoindoline from 2-phenylalkynylbenzonitrile 59
Scheme 2.17: Unsuccessful attempt to synthesis of compound $\mathbf{1 2 5}$ 60
Scheme 2.18: Suggested resulting structures from the reaction between 2-bromobenzoamidine and ethyl propiolate61
Scheme 2.19: Attempt to synthesise compound 132 using Sonogashira cross coupling reaction 62
Scheme 2.20: Resulting compounds $\mathbf{1 3 5}$ and $\mathbf{1 3 6}$ from reaction of amidine $\mathbf{7 9}$ and 2-naphthyl propiolate under microwave condition, and Xray crystal structure of $\mathbf{1 3 6}$64
Scheme 2.21: Synthesis of aza-BODIPYs, TBTAPS and Sub TBDAPs fromaminoisoindolines65
Scheme 2.22: Structures of the symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes 66
Scheme 2.23: Synthesis of aminoisoindoline compounds 137, 81 and $\mathbf{1 3 8}$ and X-ray crystal structure of compound 137 67
Scheme 2.24: Synthesis attempt to formation of compound 140 69
Scheme 2.25: Competition between formation of aminoisoquinoline 143 and aminoisoindoline 144 70
Scheme 2.26: Attempted formation of compound $\mathbf{1 4 0}$ from the reaction of amidine $\mathbf{7 9}$ and 1-ethynyl 4-nitro benzene under microwave condition 71
Scheme 2.27: Stepwise synthesis route toward compound 140 72
Scheme 2.28: Synthesis of compound 154 74
Scheme 2.29: Synthesis of aza (dibenzo) dipyrromethenes 76
Scheme 2.30: Mixed condensation reaction forming symmetrical aza dipyrromethenes 83, 155, and unsymmetrical-aza dipyrromethene 159 81
Scheme 2.31: Formation of symmetrical aza (dibenzo)dipyrromethenes 83 and 156, and unsymmetrical aza dipyrromethene 160 82
Scheme 2.32: Suggested mechanism for formation of unsymmetrical aza (dibenzo) dipyrromethenes (ADBDP) 84
Scheme 2.33: Mixed condensation reaction formatting of symmetrical aza dipyrromethenes 83, 157, and unsymmetrical aza dipyrromethene 161 85
Scheme 2.34: Synthesis of compound 163 and compound 164 89
Scheme 2.35: Synthesis of unsymmetrical aza (dibenzo) dipyrromethenes (ADBDPs) 161 and 162 via aminoisoindolines tosyolate 163 and 164 91
Scheme 2.36: Synthesis of unsymmetrical aza (dibenzo) dipyrromethenes (ADBDP) 161 from triflate aminoisoindoline 165 94
Scheme 2.37: Formation of aza BODIPY-OPh $\mathbf{1 6 8}$ as a side product during synthesis of Sub-TBDAP hybrids 96
Scheme 2.38: Synthesis of aza BODIPYs-OPh compounds 168 and 170 under microwave irradiation, and X-ray crystal structure of compound 170 97
Scheme 2.39: Clarification of the chemical equilibrium between compounds $\mathbf{8 3}$ and compound 171 98
Scheme 2.40: Synthesis of aza (dibenzo) BODIPYs $\mathbf{8 4}$ and $\mathbf{8 5}$ 92
Scheme 2.40: Optimized synthesis strategy towards aza BODIPYs 99
Scheme 2.42: Proposed strategies to extentd π conjugation in the aza (dibenzo) dipyrromethens (ADBDP) and aza BODYPYs unit 107
Scheme 2.43: Synthesis of benzo fused aza BODIPY 96a 108
Scheme 2.44: Synthesis attempts for compound 178 108
Scheme 2.45: Synthesis attempts for compound 179 109
Scheme 2.46: Proposed plan to synthesis of the macrocycle 182 110
Scheme 2.47: Demethylation of compound 155 110
Scheme 2.48: Reaction attempts performed by our group towards the formation of the macrocycle structures 112
Scheme 2.49: Demethylation of compound $\mathbf{1 8 8}$ starting with compound 137 112
Scheme 2.50: Demethylation of compound $\mathbf{8 3}$ using tribromide boron 113
Scheme 2.51: Synthetic routes toward compound 180 114
Scheme 2.52: Synthesis of compound 181 115
Scheme 2.53: Synthesis of compound 201 117
Scheme 2.54: Direct oxidative coupling attempts to formation the macrocycle 188118
Scheme 2.55: Metal activation attempt to form the macrocycle $\mathbf{1 8 8}$ 119
Scheme 2.56: Metal activation attempt to form the macrocycle $\mathbf{1 8 8}$ from compound 200 121
Scheme 2.57: Metal activation attempt to form the macrocycle structures from the aza (dibenzo) dipyrromethene 83 and 155 121
Scheme 2.58: Synthesis attempt to formation the macrocycle 209 124

List of tables

> Table 1.1: Absorption and emission wavelengths of BODIPY derivatives from the literature.. 5.
Table 1.2: Absorption and emission wavelengths of benzo fused BODIPYs 33a, and 33b compared with non-benzo fused BODIPY. 11
Table 2.1: Comparative summary of synthesis of aminoisoindoline and amino isoquinoline using different catalysts 52
Table 2.2: Summary of the synthesis of aminoisoindoline derivatives 75
Table 2.3: Summary of the synthesis of aza (dibenzo) dipyrromethene derivatives 79
Table 2.4: Summary of the formation of unsymmetrical aza dipyrromethenes using tosylate and triflate aminoisoindolines 95
Table 2.6: Summary for synthesis of aza-BODIPY derivatives 102

Chapter 1: Introduction and Literature review

1.0. Introduction of BODIPYs

BODIPY (4-bora-3a,4a-diaza-s-indacene) ${ }^{1,2}$ is a class of fluorescent dyes also referred to as boron dipyrrin or boron dipyrromethene. ${ }^{3}$ This class of compounds was first reported by Treibs and Kreuzer in 1968. ${ }^{1}$ However, it was towards the end of the 1980s that it began to attract attention and by 1990s was a booming and successful area of research. ${ }^{4}$ A range of physical and chemical properties of BODIPY dyes make them excellent for optimal laser performance. ${ }^{5}$ They are chemically robust, have a high thermal resistance, low photodegradation and high solubility in most organic solvents ${ }^{5}$, ${ }^{6}$ Moreover, they possess an interesting photophysical signature. ${ }^{7}$ They usually display strong absorption in the visible region and bright fluorescence spectral bands often in the green-yellow part of the visible spectrum. ${ }^{8}$ Their absorption and emission bands tend to be relatively sharp resulting in creating pure colours with molar absorption approaching $10^{5} \mathrm{M}^{-1} \mathrm{~cm}^{-1},{ }^{8}$ high fluorescence quantum yields, and excellent photochemical stabilities, ${ }^{9}$ in addition to facile synthesis and structural versatility. ${ }^{10}$ BODIPY cores consist of two pyrrole units linked via a methine bridge at the 2 position as well as via a boron atom co-ordinated to each of the pyrrole nitrogen heteroatoms, structure 2 (Figure 1.1). ${ }^{11,12}$ The IUPAC name and the numbering system of the BODIPY structure $\mathbf{2}$ is based on the s-indacene structure 3 (Figure 1.1, A) and not dipyrromethene 1 which it resembles. As in the related porphyrin structures the mesoposition refers to the central 8-position. ${ }^{13}$ Figure 1.1 A shows the numbering system for BODIPY structures, which was derived from indacene. This numbering system differs to that used for dipyrromethenes, however the α, β, and meso positions are defined in the same way. ${ }^{13}$
A)

B)

Figure 1.1: A) Structure of dipyrromethene, IUPAC numbering, and B) the resonance of the BODIPY core. ${ }^{14}$

The formal structure of a BODIPY dye is a complex, composed of a central disubstituted electron-deficient boron surrounded by a monoanionic dipyrromethene ligand. The boron dipyrrin core is overall neutral but contains a formal positive charge delocalized over the ring structure while the formal negative charge locates on the boron atom. ${ }^{7}$ Thus, it is formally a betaine compound 4 (Figure 1.1, B) however unlike most betaines it relatively nonpolar in nature hence the formal charges are not depicted on the structures, it is possible to explain the reactivity of the BODIPY core by using the resonance structures (Figure 1.1, B). ${ }^{14}$ The BODIPY parent core, known as "the little sister of porphyrin", is a particular intriguing structure as the boron difluoride BF_{2} complexes a fragment of a hybrid porphyrin macrocycle. ${ }^{15}$

Figure 1.2: Structure of BODIPY 2 and Porphyrin unit 5.
The absorption and emission wavelengths for classical BODIPY chromophores lie in the range $470-530 \mathrm{~nm} .{ }^{11}$ This limits their application as activity in the far-red or NIR region would be more useful in a number of applications including biological imaging. Also, BODIPY derivatives have some undesirable characteristics for many applications in biotechnology, particularly their small Stokes of approximately $10-30 \mathrm{~nm} .{ }^{11} \mathrm{~A}$ variety of strategies have therefore been developed to access BODIPYs that emit in the far-red or NIR region, and to obtain BODIPY dyes with large Stokes shifts and high quantum yields by a range of structural modifications of the BODIPY core. ${ }^{11,16}$ These include, replacement of the meso-carbon of the BODIPY by a nitrogen atom to form the analogous aza-BODIPY dyes (Figure $1.3 \mathbf{A}$). ${ }^{17}$ In addition to a variety of extensions of the π conjugation such as functionalization of α-positions of the pyrrole rings by introduction of diaryl substituents, vinyl, styryl and aryl ethynyl substituents at the α positions 3 , 5 position of the BODIPY unit. ${ }^{18}$ However, it should be noted that some of these changes decreased the fluorescence quantum yields and this may be attributed to nonradiative energy loss due to spinning motions about the C -aryl single bonds ${ }^{19}$ (i.e. a possible rationale for this is that energy loss because of the rotation about the C -aryl
single bonds of the aromatic substituents). ${ }^{19}$ Furthermore some systems such as the bisstyryl derivatives decreased the (photo)- chemical stability as they are prone to photooxidation ${ }^{20}$ (example is shown in Figure 1.3 B). An example or a different modification, rigidification of rotatable moieties, is shown in Figure $1.3 \mathbf{C} \mathbf{C}^{21}$ Functionalization of 3,5 position with electron donating substituents (push) group on the BODIPY unit (behaving as electron deficient (pull) group) causes push-pull effect within the molecule (Figure 1.3 D). ${ }^{22}$ Another modification strategy has been developed towards the extension of the π conjugation by the annulation of aryl moieties on the pyrrole ring. ${ }^{23}$ Depending on the position of the aromatic ring fusion, i.e. [b]-bond or [c]-bond, two isomeric structures can be identified (Figure. 1.3 E and F). This not only alters the absorption but also provides a more rigid aromatic core. ${ }^{20}$

Figure 1.3: Modification examples to BODIPY unit.

Table 1.1 illustrates some examples from the literature that demonstrate the effect of structural modification of BODIPY derivatives on the absorption and emission wavelengths. ${ }^{20,23}$

	$\begin{aligned} & \lambda_{\text {max }} \text { abs }=555 \mathrm{~nm} \mathrm{CHCl}_{3} \\ & \lambda_{\text {max }} \mathrm{em}=588 \mathrm{~nm} \mathrm{CHCl}_{3} \end{aligned}$	
$\begin{aligned} & \lambda_{\max } \mathrm{abs}=564 \mathrm{~nm} \mathrm{MeOH} \\ & \lambda_{\text {max }} \mathrm{em}=593 \mathrm{~nm} \mathrm{MeOH} \end{aligned}$	$\lambda_{\text {max }}$ abs $=650 \mathrm{~nm} \mathrm{CHCl}_{3}$ $\lambda_{\text {max }} \mathrm{em}=672 \mathrm{~nm} \mathrm{CHCl} 3$	$\begin{aligned} & \lambda_{\max } \mathrm{abs}=634 \mathrm{~nm} \mathrm{MeOH} \\ & \lambda_{\max } \mathrm{em}=658 \mathrm{~nm} \mathrm{MeOH} \end{aligned}$
$\begin{aligned} & \lambda_{\text {max }} \mathrm{abs}=658 \mathrm{~nm} \text { toluene } \\ & \lambda_{\text {max }} \mathrm{em}=690 \mathrm{~nm} \text { toluene } \end{aligned}$	$\begin{aligned} & \lambda_{\text {max }} \mathrm{abs}=718 \mathrm{~nm} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & \lambda_{\text {max }} \mathrm{em}=756 \mathrm{~nm} \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\lambda_{\text {max }}$ abs $=609 \mathrm{~nm}$ toluene $\lambda_{\text {max }} \mathrm{em}=650 \mathrm{~nm}$ toluene

Table 1.1: Absorption and emission wavelengths of BODIPY derivatives from the literature. ${ }^{20,23}$

1.1. Synthesis of BODIPYs

The original synthesis of BODIPYs was an unexpected discovery by Treibs and Kreuzer. ${ }^{1}$ They found that the acylation of 2,4-dimethyl pyrrole $\mathbf{6}$ with acetic anhydride $\left(\mathrm{Ac}_{2} \mathrm{O}\right)$ using boron trifluoride diethyl etherate $\left(\mathrm{BF}_{3} . \mathrm{OEt}_{2}\right)$ as a Lewis acid catalyst, resulted in the formation of two brightly fluorescent compounds, products $\mathbf{9}$ and 10, in a low yield of 7% and 9% respectively, as shown in Scheme 1.1. ${ }^{1}$ The low yield was due to an insufficient amount of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ and the occurrence of over acylation which led to a mixture of products rather than the desired 2 acyl pyrrole 7. ${ }^{1}$ However, the authors improved their yields by first forming and isolating dipyrromethene $\mathbf{8}$, followed chelating this ligand using a large excess of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ in the presence of an excess of triethylamine, which acted as a base. ${ }^{1}$

Scheme 1.1: Synthesis of the first BODIPY dyes $\mathbf{9}$ and $\mathbf{1 0}$ by Treibs and Kreuzer. ${ }^{1}$

Thus, the first step in the standard synthesis of the BODIPY unit begins with the preparation of the corresponding dipyrromethene. Two distinct synthetic approaches have been adapted from porphyrin chemistry to form this ligand. ${ }^{1,13}$ The first approach can be seen in Scheme 1.2; it starts with an acid-catalysed condensation of pyrrole 11
with an aldehyde $\mathbf{1 2}$ forming a dipyrromethene $\mathbf{1 3} .{ }^{24}$ Typically, pyrrole is used as the solvent, so it is in excess, in order to prevent polymerization. ${ }^{25} \mathrm{An}$ alternative more convenient water based system, the HCl -catalysed synthesis of 5-aryl dipyrromethane 13 that does not require the use of large excess of pyrrole has also been reported. ${ }^{26}$ Since this protocol does not require a large excess of pyrrole it is better suited for the largescale synthesis. Additionally water is an inexpensive and environmentally benign ('green') solvent compared to pyrrole. ${ }^{14}$ As dipyrromethanes $\mathbf{1 3}$ are unstable and sensitive to light, air, and acid, it is best to use them immediately upon preparation. Treatment of dipyrromethane 13, with an oxidant such as 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ) or the milder 2,3,5,6-tetrachloro-1,4-benzoquinone (p-chloranil), yields dipyrromethene 14 (dipyrrin). ${ }^{27,28}$

It should be noted with this method that there are only a few cases where the aldehyde in the first step is not aromatic or heteroaromatic, since this reaction tends to fail with nonaromatic aldehydes. ${ }^{27}$ On the other hand, numerous aromatic aldehydes ArCHO 12 are commercially available, making this approach a popular method for introducing aromatic functionalities at the meso-carbon. ${ }^{14}$ The target boron dipyrrin dye $\mathbf{1 5}$ is obtained by treating dipyrrin 14 with an excess of base and $\mathrm{BF}_{3} . \mathrm{OEt}_{2} .{ }^{27}$ All three reactions can be conducted sequentially, purifying after each step, or in a one-pot procedure, by the stepwise addition of the reagents to the reaction mixture. Unfortunately, the latter strategy results in lower yields although it is operationally easier. ${ }^{14}$

Sheme 1.2: Synthesis of BODIPY 15 by an acid-catalysed condensation of pyrrole 11 with an aromatic aldehyde 12, followed by oxidation and boron complexation. ${ }^{14}$

The alternative is the second approach that involves the acid-catalysed condensation of a 2-acylpyrrole $\mathbf{1 8}$ with a pyrrole $\mathbf{1 6}$ that is unsubstituted at its 2-position. ${ }^{14}$ Under these acidic conditions, the dipyrrinium salt 19 is initially formed followed by deprotonation of salt $\mathbf{1 9}$ with base and fluoroboration with BF_{3}.OEt t_{2} to yield BODIPY dye $\mathbf{2 0}$ (Scheme 1.3). ${ }^{29}$ A key contrast with the previous procedure is that it is not limited to an aryl
group, (the substituent that ends up at the meso-position is not limited to an aryl group); hence, a larger range of boron dipyrrins can be made using this approach. ${ }^{14}$ Additionally this allows for the synthesis of unsymmetrical boron dipyrrins such as $\mathbf{2 0}\left(R_{1} \neq R_{2}\right)^{30}$ via the condensation of two different pyrrole moieties alongside symmetrical dipyrrinium salts such as $19\left(R_{1}=R_{2}\right.$, Scheme 1.3$)$ via a similar procedure. ${ }^{14}$ As shown in Scheme 1.3, the acylation and condensation of a 2-unsubstituted pyrrole 16 are done consecutively, forming in situ 2-acylpyrrole 18 that immediately reacts further to symmetrical dipyrrinium salt 19 (Scheme 1.3). ${ }^{14}$ Moreover, the acylating agent $\mathbf{1 7}$ used in this reaction can be varied it can be either an acid chloride ${ }^{31,32}$ acid bromide, ${ }^{33}$ anhydride , ${ }^{34}$ or ortho ester. ${ }^{35}$ Burgess and Wu discovered an alternative to forming symmetrical dipyrrinium salts such as $\mathbf{1 9}\left(\mathrm{R}_{1}=\mathrm{R}_{2}\right)$. They serendipitously discovered that in the presence of phosphorous oxytrichloride $\left(\mathrm{POCl}_{3}\right)$ pyrrole-2-carbaldehyde derivatives 21 self-condense. Treatment with excess base and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ yielded BODIPY 20. ${ }^{36}$

$\mathrm{X}=\mathrm{Cl}$ or Br or $\mathrm{O}(\mathrm{CO}) \mathrm{R}$

Scheme 1.3: Formation of dipyrrinium salts 19 and BODIPY dyes 20 by condensation of 2-acylpyrroles $\mathbf{1 8}$ and 2-unsubstituted pyrroles $\mathbf{1 6}{ }^{14}$

1.2. Synthesis of benzo fused BODIPY fluorophores

Kang and Hangland reported the first diisoindole BODIPYs in 1995. ${ }^{37}$ Their synthetic pathway uses the Paal- Knorr synthesis; this depends on the condensation of 2acylacetophenone 24 with ammonia or ammonium salts ${ }^{38}$ followed by treatment with $\mathrm{Et}_{3} \mathrm{~N}$ and BF_{3}. OEt_{2}. This afforded the corresponding benzo fused BODIPY 26. ${ }^{20}$ The 2acylacetophenone $\mathbf{2 4}$ is synthesised by reacting of o-hydroxy-acetophenone derivatives with N -arylhydrazones, then treated with lead(IV) salt (Scheme 1.4). ${ }^{39}$

Scheme 1.4: Synthesis of diisondole -BODIPYs 26 by Kang and Haugland using the Paal-Knorr strategy. ${ }^{39}$

Following this methodology symmetrical BODIPYs analogues can be formed in good yields, ${ }^{20}$ whereas condensation of different 2-acylacetophenone precursors produced unsymmetrical diisoindole BODIPYs in lower yield. ${ }^{20}$ Also, during this strategy various dibenzo dipyrrins with a hydrogen atom in the meso position can be synthesised and examples are shown in Figure 1.4. ${ }^{20}$

$$
\begin{aligned}
& \lambda_{\max } \mathrm{abs}=634 \mathrm{~nm} \\
& \lambda_{\max } \mathrm{em}=658 \mathrm{~nm}
\end{aligned}
$$

$\lambda_{\text {max }} \mathrm{abs}=673 \mathrm{~nm}$
$\lambda_{\text {max }} \mathrm{em}=704 \mathrm{~nm}$

Figure 1.4: Examples of diisondole -BODIPYs using the Paal-Knorr strategy. ${ }^{20}$

In the late nineties (1998) Ono and co-workers published synthetic procedures to synthesise diisoindole BODIPYs. They started with formation of a masked isoindole 30 instead of ordinary isoindole via Diels Alder reaction by reacting cyclopentadiene or cyclohexadiene with β-sulfonyl nitroethylene followed by a Barton Zard reaction with ethyl isocyanoacetate. ${ }^{40}$

Scheme 1.5: Synthesis of a 'masked'" isoindole 30. ${ }^{40}$

The alternative masked isoindoles could be synthesised in good yield because they have more stability during the separation and purification on silica gel and in acidic or basic solutions compared with simple isoindoles moieties. ${ }^{20}$ This methodology supplements the Barton Zard strategy that proved difficulty in synthesis of simple isoindoles due to poor electrophilicity of the nitrobenzene. ${ }^{40}$ Following this procedure diisoindole BODIPY can be synthesised through four steps initiated from the masked isoindole. ${ }^{18}$ After reducing the ester by LiAlH_{4}, it was reacted with acyl chloride followed by adding $\mathrm{Et}_{3} \mathrm{~N}$ and BF_{3}. OEt_{2} producing BODIPY 32 with fused bicyclo [2.2.2] octadiene units. Finally, it was converted to BODIPY $\mathbf{3 3}$ by retro Diels Alder reaction. ${ }^{18}$

$220^{\circ} \mathrm{C}, 2 \mathrm{~h}$

$$
\begin{aligned}
& \text { 32a, 33a } \mathrm{R}=\mathrm{CH}_{3} \quad 54 \%, 100 \% \\
& \text { 33b, 33b } \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I} \quad 25 \%, 100 \%
\end{aligned}
$$

Scheme1.6: Synthesis of diisoindole-BODIPYs by a retro Diels-Alder reaction. ${ }^{18}$

Because of the extended π conjugation, all the resulting derivatives of diisoindole BODIPYs showed increase in the intensity of absorption which almost doubled. ${ }^{20}$ Also, these BODIPY dyes exhibited absorption and emission maximum wavelength that showed a bathochromic shift around 70 to 80 nm compared with the corresponding non benzo fused BODIPYs. ${ }^{20}$

| compound | $\lambda_{\max }$ abs | $\lambda_{\max } \mathbf{e m}$ | Example of non-benzo fused
 BODIPY |
| :---: | :---: | :---: | :---: | :---: |

Table 1.2: Absorption and emission wavelengths of benzo fused BODIPYs 33a, and 33b compared with non-benzo fused BODIPY. ${ }^{18}$

1.3. Synthesis of a different Class of π-Extended BODIPY derivatives

Recently, a new class of π-extended BODIPY derivatives have garnered interest. The structures are directly relevant to the aza analogues (reported earlier by our group) ${ }^{41}$ that are the subject of this research and thesis. Jiao et al, extended the π-conjugation beyond the dipyrromethene unit, resulting in a more rigid framework which is significantly different from classical BODIPYs in their electronic configuration. ${ }^{42}$ They are accessed by the facile condensation of aldehyde and pyrrole in aqueous solution in the presence of HCl , for example see Scheme 1.7. In spite of the low yields this is a facile one pot reaction using commercially available reagents hence can furnish significant quantities of the extended BODIPY (100 mg in a single experiment). They explored the use of a slight excess of the mesitaldehyde (1.0 equivalent) with pyrrole (0.7 equivalent) in a $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}(3: 1)$ solvent system in the presence of catalytic $\mathrm{HCl} .^{42}$ The product could be directly observed by thin-layer chromatography (TLC). Unlike with dipyrromethene, there was no need for oxidation and the product was used directly for further complexation with BF_{3}. OEt_{2} to provide the extended BODIPY 35. ${ }^{42}$ Extended BODIPY 35a was obtained in 10% yield, while a similar condensation of 2,6dichlorobenzaldehyde and pyrrole in a $\mathrm{H}_{2} \mathrm{O}$: THF (5:1) mixture gave extended BODIPY 35b in 7%. The crystal structure analysis of 35b further confirmed the unique π extended dipyrromethene core structure. ${ }^{42}$ The two α-vinyl double bonds both adopt an E configuration. Both π-extended BODIPYs displayed intense absorption and moderate emission with maxima around 565 and 620 nm , respectively, and showed interesting reactivity toward various nucleophiles such as phenethylamine. ${ }^{42}$

34a $\mathrm{R}=\mathrm{R}_{1}=\mathrm{CH}_{3}$
34b $\mathrm{R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}$

35a $\mathrm{R}=\mathrm{R}_{1}=\mathrm{CH}_{3} 10 \%$
35b $\mathrm{R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H} 7 \%$

Scheme 1.7: Synthesis of Ex-BODIPYs 35a (in $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$), and 35b (in $\mathrm{H}_{2} \mathrm{O}$: THF). ${ }^{42}$

1.4. Introduction to aza BODIPYs and their precursor aza dipyrromethenes

A subset of BODIPY structures is known as aza-BODIPYs. In this group the methine carbon atom in position 8 is replaced with a strongly electron-withdrawing imine nitrogen (Figure 1.5). Aza dipyrromethene 36, the key precursor to aza-BODIPY 37, were reported in the 1940s, but were not extensively researched. ${ }^{43}$ However, the drive to find compounds with far-red or NIR region led to increased research into the application of aza dipyrromethenes over the last few decades. ${ }^{44} \mathrm{O}$ 'Shea and co-workers have reported that the aza-BODIPYs modification to the BODIPYs core effectively red shifted the absorption properties whilst conserving the extinction coefficients, fluorescence intensity and photostability. ${ }^{45}$ As a result the aza-BODIPY dyes can form efficient sensitizers for photodynamic therapy (PDT). ${ }^{46,47}$

Figure 1.5: Aza dipyrromethene unit 36 and the corresponding aza-BODIPY core 37.

1.5. Applications

As previously mentioned with BODIPYs, aza-BODIPY dyes and their various substructures have a wide variety of applications ranging from laser dyes to labelling reagents, chemo sensors to fluorescent switches. ${ }^{9}$ However a key area of application is in photodynamic therapy (PDT). ${ }^{48}$ PDT is a non-invasive process that is used to treat malignant and premalignant diseases. ${ }^{48}$ The process is via the action of three components that result in targeted cellular and tissue damage. ${ }^{48}$ Firstly the photosensitiser accumulates within a tumour. In the second stage it is then irradiated with a suitable low energy light such that it doesn't damage healthy body tissue. ${ }^{48}$ Finally upon irradiation the photosensitiser is excited, it can then transfer its excited state energy to the tumour via generation of a singlet oxygen, thus leading to the death of the tumour. ${ }^{43}$ The singlet oxygen generated has the ability to react with most organic molecules, as a result of the spin-allowed nature of these procedures. ${ }^{48}$ Thus, this singlet
oxygen generation is a key process and a photosensitiser that can quantitatively generate singlet oxygen is required in PDT. ${ }^{48}$ Many photosensitisers that have been cleared for medical use still suffer from some key flaws such as low absorption in the near infrared region, which decreases its efficiency, and toxicity which results in unwanted side effects. However it has been found that BODIPY and aza-BODIPY structures have more favourable properties as a photosensitiser as they address these issues due to their significant fluorescence quantum yield and for example high photostability. ${ }^{49}$ As mentioned earlier aza-BODIPY structures, due to the red-shifted absorption properties when compared to BODIPY structures, have particular importance as photosensitisers for PDT. ${ }^{46,47}$

1.6. Synthesis of aza dipyrromethenes

The synthetic strategies to prepare aza dipyrromethenes were first reported by Rogers $1943 .{ }^{50} \mathrm{He}$ attempted a Leuckart reaction by heating ammonium formate with 4-nitro1,3-diphenylbutan-1-one $\mathbf{3 8}$ under solventless conditions wherein unexpectedly an intense blue colour was observed. A similar result was observed when 4-oxo-2,4diphenyl butane nitrile $\mathbf{4 0}$ was used as substrate (Scheme 1.8$)^{51}$ giving $\mathbf{3 9}$ as 'a new chromophoric system, having a formal relationship to the phthalocyanines,'. ${ }^{51}$ However, possibly due to the success of phthalocyanines as blue dyes, aza dipyrromethenes were not investigated in much detail for a further 50 years. ${ }^{52}$ Due to the limited analytical instrumentation at that time, which were limited to melting points, elemental analysis, and molecular weight determinations, it was not easy to determine the structural assignment of the resulting coloured compound. ${ }^{52}$

Scheme 1.8: Synthetic strategies to aza dipyrromethenes 39 formation developed by Rogers. ${ }^{50}$

Through the degradation reactions and re-synthesis published by Rogers the resulting product 39 was characterised. ${ }^{50}$ Degradation reaction includes heating of 39 with hydriodic acid to form 2,4-phenyl pyrrole 41. Then 2,4-phenylpyrroles 41 were converted into their corresponding 5-nitroso derivatives 42, at room temperature reaction with sodium nitrite in $\mathrm{EtOH} / \mathrm{aq} \mathrm{HCl}$; the nitrosation reaction occurred
selectively at the unsubstituted α-pyrrole position to produce the desired product 42. ${ }^{11}$,
${ }^{53}$ Then it was condensed with a second molecule of 2,4-phenylpyrrole 41 under high temperature in acetic acid to confirm aza dipyrromethene structure 39 (Scheme 1.9). ${ }^{11,}$ ${ }^{53}$ Further, reduction of compound $\mathbf{4 2}$ in the presence of Adams's catalyst $\mathrm{H}_{2}, \mathrm{PtO}_{2}$, led to generation of 5-amino-2,4-diphenyl pyrrole $\mathbf{4 3}$ which oxidised upon exposure to air, then self-condensed with the loss of ammonia producing aza dipyrromethene $\mathbf{3 9}$ in low yield. ${ }^{51}$, ${ }^{52}$

Scheme 1.9: The cycle of degradation and resynthesis of tetra aryl aza dipyrromethenes compound 39. ${ }^{51,52}$

The synthesis is most facile when there are four phenyl substituents, however it is possible to obtain the diphenyl products 44 (Figure 1.6) by following the procedure described in Scheme 1.9, starting with 2-phenyl pyrrole. ${ }^{11}$

44
Figure 1.6: Structure of diphenyl aza dipyrromethene 44.
It was not until the 1990's that the first reactions of aza dipyrromethenes with boron electrophiles were reported (Scheme 1.10). ${ }^{53,}{ }^{54}$ For example treatment of 3,5tetraphenyl aza dipyrromethene 39 with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ resulted in the formation of azaBODIPY 45 Unfortunately, this method did not yield the less substituted aza-BODIPY 46 after treatment of the corresponding aza-dipyrromethene $\mathbf{4 4}$ with boron trifluoride. ${ }^{54}$

Scheme 1.10: First synthetic procedure in the formation of aza-BODIPY dyes. ${ }^{11}$
Later, O'Shea group has optimised this synthetic route by using different ammonium sources. The reaction performed by heating of 4-nitro1,3-diphenylbutan-1-one 47 with ammonium acetate instead of ammonium formate in either ethanol or butanol as solvents under reflux. This was smoothly performed, led to a significant development in the outcome yield. However, it was observed that use of alcohol solvents usually causes the aza dipyrromethenes to precipitate from the reaction mixture, thus, enabling easier isolation and enhanced yields. ${ }^{46}$ Using mild condition such as replacing of formate with acetate led to improve the reaction outcome, by following this procedure several derivatives of aza dipyrromethene have been synthesized in moderate yield ~ ($25 \%-50 \%$) as described in Scheme $1.11 .{ }^{46}$ However, using compound 47 as starting material allowed the synthesis of aza dipyrromethenes with only two different aryl substituents. ${ }^{52}$

compound	Ar $_{\mathbf{1}}$	Ar $_{2}$	Time/h	Yield \%
$\mathbf{4 8 a}$	Ph	Ph	48 h	42%
$\mathbf{4 8 b}$	Ph	$\mathrm{p}-\mathrm{OMePh}$	24 h	47%
$\mathbf{4 8 c}$	$\mathrm{p}-\mathrm{OMePh}$	Ph	48 h	48%
$\boldsymbol{4 8 d}$	$\mathrm{p}-\mathrm{BrPh}$	Ph	48 h	24%

Scheme 1.11: General route to formation of aza dipyrromethene 48. ${ }^{52}$

Chapter 1. Introduction and literature review

Scheme 1.12 shows a possible mechanism for formation of the aza dipyrromethene core from the nitromethane adducts. Initially pyrrole \mathbf{A} is formed, this is then nitrosylated in situ to give \mathbf{B} which then condenses with another molecule of the pyrrole (Scheme 1.12). ${ }^{11}$

Scheme 1.12: Synthetic mechanism of aza dipyrromethene from nitro butyrophenones. ${ }^{11}$

Another approach has been developed in order to synthesise unsymmetrical aza dipyrromethenes by condensing diaryl pyrroles and nitroso diaryl pyrroles in acetic
anhydride/acetic acid mixture at $100{ }^{\circ} \mathrm{C} .{ }^{55}$ Work up by cooling the reaction mixture with ice then extraction with DCM, and purified by slow evaporation of a chloroform solution at room temperature giving the pure aza dipyrromethene $\mathbf{5 1}$ as dark blue material in good to excellent yields (Scheme 1.13). ${ }^{55}$ Following this approach led to synthesise derivatives of aza dipyrromethene with one to four different substituted aryl rings depending on the pyrrole building blocks. ${ }^{55}$

compound	$A r_{1}$	$A r_{2}$	$A r_{3}$	$A r_{4}$	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$
51a	Ph	Ph	$\mathrm{pMeNC} \mathrm{C}_{6} \mathrm{H}_{4}$	Ph	35%
$51 b$	Ph	Ph	$\mathrm{p}-\mathrm{BrC}_{6} \mathrm{H}_{4}$	Ph	92 \%
51c	Ph	Ph	$\mathrm{p}-\mathrm{Et}_{2} \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	Ph	94%
51d	p-MeOC6 ${ }_{6} \mathrm{H}_{4}$	Ph	Ph	p-MeOC6 ${ }_{6} \mathrm{H}_{4}$	72 \%
$51 e$	Ph	$\mathrm{p}-\mathrm{FC} 6 \mathrm{H}_{4}$	p-Et $\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	p-MeOC6 ${ }^{\text {H }} 4$	88 \%
$51 f$	Ph	$\mathrm{p}-\mathrm{FC}_{6} \mathrm{H}_{4}$	Ph	p-MeOC6 ${ }_{6} \mathrm{H}_{4}$	94%

Scheme 1.13: Synthetic strategy to formation of unsymmetrical aza dipyrromethene. ${ }^{55}$

Moreover, it has been observed that the addition of strongly electron donating groups along with the increase in conjugation provides a means to further increase the red shifting of the fluorescence emission. ${ }^{44}$ This has been demonstrated with the addition electron donating groups on the para position of the $5-\mathrm{Ar}$ substituents which led to increased extinction coefficients and red shifts in the absorption maximum. ${ }^{11}$ Figure 1.7 shows examples from the literature demonstrating the effect of adding electron donating groups on the 5-positions of Aryl substituents on the absorption and emission. In Figure 1.7 B , installation of the electron donating groups $\left(\mathrm{NMe}_{2}\right)$ on the para phenyl substituents led to increase the absorption and emissions by 149 nm compared with non-
phenyl substituents (Figure 1.7A). ${ }^{3,56}$ The increase of the absorption and emission properties in these motifs led to properties as effective photosensitizers and agents of photodynamic therapy, like photofrin or protoporphyrin. ${ }^{57}$

A

$$
\begin{aligned}
& \lambda_{\max } \mathrm{abs}=650 \mathrm{~nm} \\
& \lambda_{\max } \mathrm{em}=672 \mathrm{~nm}
\end{aligned}
$$

B

$$
\begin{aligned}
& \lambda_{\max } \mathrm{abs}=799 \mathrm{~nm} \\
& \lambda_{\max } \mathrm{em}=823 \mathrm{~nm}
\end{aligned}
$$

Figure 1.7: A selection of aza-BODIPY structures showing the effect of electron donating groups on the absorption and emission properties, and the absorption spectra of \mathbf{A} in $\mathrm{CHCl}_{3}\left(\right.$ green $\lambda_{\text {max }} 650 \mathrm{~nm}$), and \mathbf{B} in CHCl_{3} (solid red line $\lambda_{\max } 799 \mathrm{~nm}$), ethanol (dashed red line $\lambda_{\max } 799 \mathrm{~nm}$), and toluene (dotted red line $\lambda_{\max } 798 \mathrm{~nm}$), (conc. $4 \times 10^{-}$ $6 \mathrm{M}) .{ }^{56}$

1.7. Synthesis of benzo-fused aza BODIPYs

A variety of modifications have been explored to optimize the aza-BODIPY scaffolds in order to further shift the absorption and emission properties towards the far red and NIR region. ${ }^{58}$, 59 Vollman reported the first synthesis of benzo fused aza dipyrromethenes in 1972 by the reaction of phthalonitrile with 2.5 equivalents of aryl magnesium bromides, at room-temperature in dry benzene. By using steam distillation and recrystallisation from pyridine, benzo fused aza dipyrromethenes were isolated in low to moderate yield. ${ }^{60}$

53a $\mathrm{Ar}=$ phenyl 34%
53b $\mathrm{Ar}=4-\mathrm{CH}_{3}$ phenyl 24%
53c $\mathrm{Ar}=4-\mathrm{OCH}_{3}$ phenyl 7%

Scheme 1.14: Synthesis of benzo fused aza dipyrromethene by Vollman. ${ }^{47,60}$

To date a number of novel ring-fused aza-BODIPY scaffolds have been reported. ${ }^{61}$ These fused ring systems are identified as [b]-fused, and/or [c]-fused (fusion at the β sites), aza BODIPYs depending on the bonds involved in annulation of the aromatic group onto the pyrrole ring, or boron-fused where the ring fusion is via intramolecular B-O ring formation (Figure.1.8). ${ }^{61}$ These fused ring derivatives can be classified into four key groups as shown in Figure 1.8. ${ }^{61}$

Figure1.8: Type of the ring-fused aza-BODIPY analogues. ${ }^{61}$

1.7.1 Synthesis of [b]-fused aza dipyrromethenes and aza-BODIPYs from ring-fused pyrroles

The first report of the conformationally restricted six-membered ring-fused azaBODIPYs was by Carreira and co-workers in 2005. ${ }^{47}$ By simply replacing 2,4-diaryl pyrroles with stable ring-fused pyrrole precursors 54, they developed a convenient synthetic route to constructed [b]-fused aza dipyrromethene 55 and aza-BODIPY 56 (Scheme 1.15). ${ }^{47}$ Since then, their reported preparation of [b]-fused aza-BODIPYs 56 by direct cyclization of substituted pyrroles has become a popular method that furnishes the desired products in good to excellent yields $76 \% .^{61}$ However, the precursors themselves, the fused pyrroles, require a multiple-step synthesis. Hence it limits the effectiveness of this strategy to conveniently access a diverse range of ring-fused aza BODIPYs (Scheme 1.15). ${ }^{47}$

Scheme 1.15: Synthesis of [b]-fused aza dipyrromethene 55 and aza-BODIPY 56. ${ }^{47}$

1.7.2 Synthesis of [c]-fused (fusion at the $\boldsymbol{\beta}$ sites) aza dipyrromethenes and aza-BODIPYs

1.7.2.1 From phthalonitrile and their derivatives

In 2008, Lukyanets and Kobayashi reported the synthetic method to synthesise [c]-fused aza-BODIPYs (Figure 1.8), following Vollman procedure as mentioned previously. Reaction of phthalonitrile $\mathbf{5 2}$ with aryl magnesium bromides in dry benzene at room temperature for 1 h , steam distillation and recrystallization from pyridine and methanol provided [c]-fused aza dipyrromethenes 53a and 53d in moderate yields, 28% and 27 \% respectively (Scheme 1.16). ${ }^{44}$ Following chelation by treatment with $\mathrm{BF}_{3} \mathrm{OEt}_{2}$, the resulting [c]-fused aza-BODIPYs 57a and 57d were obtained in good yields. ${ }^{44}$ As expected, these exhibited significant shift in the absorption and fluorescence spectra. The fused aza dipyrromethenes 53a and 53d displayed intense absorption bands at 653 nm and 658 nm respectively. ${ }^{44}$ Thus they exhibit a red-shift analogous to that observed in the spectra of aza dipyrromethenes systems with extended π-conjugated. ${ }^{62,}{ }^{63}$ The fluorescence spectra of $\mathbf{5 3 a}$ and 53d exhibit emission at 701 nm , and 705 nm respectively. Complexation to the corresponding aza-BODIPYs increased the red-shift further. ${ }^{44}$ The fused aza-BODIPY moieties 57a and 57d exhibit intense absorption at 715 nm , and 724 nm respectively alongside intense emission at 736 nm , and 749 nm respectively. ${ }^{44}$ Thus they have an expanded scope for application most notably, the
application of the ring-fused aza-BODIPY 57a as potential donor unit for NIRabsorbing organic solar cells. ${ }^{64}$

53a $\mathrm{Ar}=$ phenyl 28 \%
53d Ar = 4-tert-butylphenyl 27%

57a $\mathrm{Ar}=$ phenyl 70%
57d Ar $=4$-tert-butylphenyl 73%

Scheme 1.16: Formation of benzo fused aza-BODIPY 57 from phthalonitrile. ${ }^{44}$

The ready availability of the starting materials, (phthalonitriles and their derivatives), and aryl magnesium bromides either commercially or via a facile synthesis make this strategy very attractive. ${ }^{61}$ Thus this has proved itself to be an efficient strategy to access a number of symmetric aromatic [c]-fused aza-BODIPYs with additional aryl substituents at the 3,5 - positions. ${ }^{61}$ Nonetheless as noted by Gresser et al, in 2011, the high reactivity of Grignard reagent limited the substrate scope of this method as it led to a number of side products. ${ }^{65}$ Gresser and co-workers were able to overcome this to some extent by modifying the reaction conditions to limit side products and optimise yield. They found the use of one equivalent of phenyl Grignard reagent in diethyl ether at $20^{\circ} \mathrm{C}$ followed by reaction in formamide instead of using water steam distillation furnished the desired products in better yields. ${ }^{65}$ Scheme 1.17 shows the suggested mechanism which involves reacting of phthalonitrile with phenyl Grignard, then evaporating the solvent produced crude, likely to be the magnesium salt of 1arylisoindoylimines 58. Heating of the resulting material with formamide under reflux for a few minutes gave the activated amine species $\mathbf{5 9}$ which could be easily converted to compound $\mathbf{6 0}$. Condensation of compounds 59 and $\mathbf{6 0}$ following by loss of ammonia, led to give the desired benzo fused aza dipyrromethene 53. Under these conditions the yield of $\mathbf{5 3}$ was increased from 28%, to 55%. Finally the aza-BODIPY 57 was also successfully prepared in good yields 78%. ${ }^{65}$

Scheme 1.17: Synthesis of benzo-fused aza-dipyrromethene $\mathbf{5 3}$ and its BF_{2} complexes 57. ${ }^{65,66}$

Another successful application inspired by this route is the synthesis of the ringexpanded aza-BODIPY dye 62 by Mack et al (Scheme 1.18). ${ }^{67}$ Here, 1,2dicyanoacenaphthylene $\mathbf{6 1}$ which was prepared using the methods of Rieke and coworkers ${ }^{68}$ was used as a synthetic precursor to furnish the NIR absorbing ace naphthalene-fused ring in 54% yield (Scheme 1.18). This ace naphtho-fused azaBODIPY 62 is particularly suitable for application in solar cells due to its relatively wide ranging absorption band at $628 \mathrm{~nm} .{ }^{67}$

Scheme 1.18: Synthesis of ace naphthalene-fused aza-BODIPY 62. ${ }^{67}$

A number of benzo fused aza-BODIPY dyes were synthesized using this route including the first chiral aza-BODIPY derivatives. One featured a binaphthyl substituent 63, $64{ }^{69}$ and another benzo-fused aza-BODIPY 65 with tert-butyl dimethyl silyl groups at the phenyl substituents. ${ }^{70}$

63

64

65

Figure 1.9: Derivatives of benzo fused aza-BODIPYs. ${ }^{69,70}$

The first synthesis of unsymmetric aza diisoindolylmethenes and their BF_{2} complexes was reported by Shen and co-workers (Scheme 1.19). ${ }^{71}$ Treatment of phthalonitrile with a solution of potassium tert-butoxide in dry dimethylformamide (DMF) at $0{ }^{\circ} \mathrm{C}$ for 3 h produced compound 66 in 79% yield. This unsymmetrical compound, containing an amine group on one side, was subsequently treated with dimethylamine in tetrahydrofuran (THF) to form compound 67 in 69% yield. Treatment of 67 with $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ under basic conditions in dichloromethane resulted in the formation of $\mathrm{BF}_{2}-$ chelated complex $68 .{ }^{71}$

Scheme 1.19: Synthesis of unsymmetrical benzo-annulated aza BODIPY 68. ${ }^{71}$

The postulated mechanism for the formation of $\mathbf{6 6}$ includes deprotonation of phthalonitrile at the ortho position of the CN group using potassium tert-butoxide in DMF initiates the reaction. ${ }^{72}$ The phthalonitrile anion acts as a nucleophilic reagent to attack the cyano moiety of a second phthalonitrile molecule, this then leads to the formation of $\mathrm{C}-\mathrm{C}$ bond. ${ }^{72}$ This is followed by a further nucleophilic reaction and finally two electrons reduction process to furnish the aza diisoindolymethene with an amino group on one side. ${ }^{72}$ It should be noted that in this mechanism the activation of C-H bond in phthalonitrile by the concomitant formation of anion with potassium tertbutoxide is the key step. This versatile method has been extended to furnish other benzofused aza-BODIPY derivatives, such as tert-butyl or tert-butyl thiol (69, 70, and 71) (Scheme 1.20). ${ }^{71}$

69

70

69a $(\mathrm{R}=t-\mathrm{Bu})$
$70 \mathbf{a}(\mathrm{R}=\mathrm{S}-t-\mathrm{Bu})$

69b $(\mathrm{R}=t-\mathrm{Bu})$
$70 \mathrm{~b}(\mathrm{R}=\mathrm{S}-t-\mathrm{Bu})$

71

71a $(\mathrm{R}=\mathrm{S}-t-\mathrm{Bu})$

$71 \mathrm{~b}(\mathrm{R}=\mathrm{S}-t-\mathrm{Bu})$

Scheme 1.20: Synthesis of derivatives of aza-diisoindolymethene from mono and bis substituted phthalonitrile. ${ }^{71}$

Another synthetic strategy has been used to synthesise a variety of benzo fused aza dipyrromethenes from benzonitriles with different functional group such as benzene, benzonitrile and thiophene (Scheme 1.21 inset). ${ }^{73}$ In this process a molecule of the benzonitrile is lithiated by LDA in the ortho-position to the cyano group at low temperature to form 73. ${ }^{73,74}$ Subsequent coupling with the second molecule of benzonitrile leads to the formation of the intermediate $\mathbf{7 4}$ (Scheme 1.21). Condensation of the intermediate $\mathbf{7 4}$ after reduction with formamide led to produce the benzo fused aza dipyrromethenes. ${ }^{73}$ Unfortunately, as a result of the low solubility of the corresponding aza-BODIPYs, the BF_{2} complexes could not be obtained with the exception of the compound 75. It was successfully converted to the corresponding azaBODIPY 76 after the treating with BF_{3}.OEt 2 . They could obtain zinc(II) complexes of the benzo fused aza dipyrromethenes which demonstrated strong absorption in the 621653 nm region and these had no detectable fluorescence. ${ }^{73}$

Scheme 1.21: Formation of benzo-fused aza dipyrromethenes by reacting of ortholithiated nitriles with benzonitrile. ${ }^{73}$

Our group has reported a straightforward synthetic pathway for a new type of aza (dibenzo) dipyrromethenes and the corresponding aza-BODIPY derivatives via the aminoisoindoline precursors. ${ }^{41}$ The synthesis of the aminoisoindolines starts with the precursor amidine 79 under palladium catalysed cross coupling with a variety of arylacetylenes and furnishes a number of aminoisoindolines. ${ }^{75}$ The aminoisoindolines $\mathbf{8 0}$ and $\mathbf{8 1}$ undergo efficient self-condensation to form the π extended aza (dibenzo) dipyrromethene derivatives $\mathbf{8 1}$ and $\mathbf{8 2} .^{41}$ Typically the aminoisoindolines $\mathbf{8 0}$ and $\mathbf{8 1}$ were heated under reflux in toluene for 2 h , and the products were isolated by crystallization from dichloromethane and methanol to obtain deep red crystals of aza (dibenzo) dipyrromethene derivatives $\mathbf{8 2}$ and $\mathbf{8 3}$. The straightforward treatment of aza (dibenzo) dipyrromethene precursors $\mathbf{8 2}$ and $\mathbf{8 3}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ furnished the corresponding aza (dibenzo) BODIPY analogues $\mathbf{8 4}$ and $\mathbf{8 5}$ in moderate yield (Scheme 1.22). ${ }^{41}$

$\mathbf{8 4}$ R = H 32%
$\mathbf{8 5} \mathrm{R}=\mathrm{OCH}_{3} 49 \%$

83

85

Scheme 1.22: Synthesis of aza BODIPYs from aminoisoindolines and X-ray crystal structure of compound $\mathbf{8 5}$. ${ }^{41}$

Furthermore, X-ray crystallography and analysis of $\mathbf{8 2}$ and $\mathbf{8 3}$, showed that the same Z, Z configuration present in the starting material was reproduced in the aza (dibenzo) dipyrromethene products. ${ }^{41}$ However, it is immediately apparent from the crystal structure of $\mathbf{8 5}$ (Scheme 1.22), that the aza BODIPY analogues display the opposite of the configuration of their precursors i.e., the E, E configuration. However, this may solely be a result of the crystal packing and solid-state interactions favouring in this case
the E, E configuration. ${ }^{41}$ The photophysical properties of these analogues are promising. Aza (dibenzo) dipyrromethenes exhibited a relatively broad profile in the visible region with a maximum at 465 nm in dichloromethene. ${ }^{41}$ Addition of further conjugation via the introduction of 4-methoxy substituents in 83 led to shift the absorption to 491 nm , as observed in similar classical BODIPYs. ${ }^{65}$ Analogous to their precursors, boron complexes 84 and 85 show absorption maxima at 439 and 469 nm , respectively, (Figure 1.10) supporting a similar trend of the substituent effect. However, unlike their precursors 82 and 83 , they show fluorescence with significant Stokes shifts of around

Figure 1.10: UV-vis absorption spectra for compound 84 (blue solid line), and compound 85 (green solid line), and normalized fluorescence emission (blue dotted line) spectra of $\mathbf{8 4}$ and for $\mathbf{8 5}$ (green dotted line), in DCM and the excitation spectrum of $\mathbf{8 4}$ (dashed line, $\lambda_{\max } \mathrm{em}=537 \mathrm{~nm}$). ${ }^{41}$

1.7.3 Synthesis of [b] and [c] fused aza dipyrromethenes and aza BODIPYs

1.7.3.1 From benzo [c, d] indole-2-amine

Synthesis of [b] and [c]-fused aza dipyrromethenes and aza-BODIPYs from benzo [c, d] indole-2-amine provides an alternative route for building ring-fused aza dipyrromethenes and their corresponding aza-BODIPYs. ${ }^{76}$ The first reported of naphtho [c] and [b] fused aza-BODIPYs was by Vasilenko and co-workers in 1986 using 2-benz[$\mathrm{c}, \mathrm{d}]$ indolamine hydroiodide and 2-(methylthio)benz[c,d]-indole-hydroiodide (Scheme 1.23 inset). ${ }^{77}$ Subsequently in 2015 Kobayashi and Shimizu reported the use of a Schiff-
base reaction involving titanium tetrachloride to catalyse this reaction. This allowed them to access the benzo[c,d]indole- containing-aza-BODIPY skeleton $\mathbf{8 6}$ by a facile treatment of commercially available benzo[c,d] indole-2(1H)-one (lactam) 88 and heteroaromatic amine 87, with titanium tetrachloride in triethylamine. ${ }^{76} \mathrm{Then}^{\mathrm{BF}} \mathrm{F}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was added to the reaction mixture producing compound 86 in 41% yield. (Scheme 1.23). ${ }^{76}$ The aza-BODIPY 86 demonstrated strong fluorescence in solution and showed good solid-state emission. ${ }^{76}$ However, the absorption and emission is centred at around 540 nm , which is not ideal for potential applications as a NIR dye. ${ }^{76}$ Following this synthetic pathway compound $\mathbf{9 0}$ was successfully achieved by reacting diketopyrrolopyrrole (DPP) 89 as the starting material with heteroaromatic amine 87 in 1.0% yield. In comparison to $\mathbf{8 6}$ the dimer $\mathbf{9 0}$ exhibited a significantly red-shifted absorption maximum at 747 nm which is more suitable for NIR applications. So far these remain the only two synthetic strategies towards fused aza-BODIPY structures utilizing benzo [$\mathrm{c}, \mathrm{d}]$ indole-2-amine. ${ }^{76,77}$

Scheme 1.23: Synthesis of aza-BODIPYs 86 and 90 from benzo [c, d] indole-2-

$$
\text { amine. }{ }^{76,77}
$$

1.7.3.2 Postmodifications of ring-fused aza-BODIPYs

The final route towards [b] and [c]-fused aza dipyrromethenes and aza-BODIPYs is via postmodification of ring-fused aza-BODIPY dyes. ${ }^{61}$ Large numbers of aza-BODIPY chromophores, in particular tetraphenyl and hexaphenyl aza BODIPYs, are readily available via facile synthesis. ${ }^{61}$ Thus, further annulation onto these pre-synthesised cores provides a promising strategy to access various ring-fused aza-BODIPYs with extended π-conjugation, that complements the three strategies previously discussed. ${ }^{61}$ A number of ring-fused aza-BODIPYs have been reported recently via post functionalization of the parent aza-BODIPY chromophores. ${ }^{78,79}$, ${ }^{80}$ In particular Jiao and co-workers have reported efficient postfunctionalisation strategies primarily of tetraphenyl and hexaphenyl aza-BODIPY derivatives, typically using regioselective intramolecular oxidation reactions or palladium catalysed $\mathrm{C}-\mathrm{H}$ activation followed by intramolecular coupling reactions. ${ }^{78,79}, 80$ This route of annulation of tetraphenyl or hexaphenyl substituted aza-BODIPYs provided access to [b]-fused 92, and [b], [c]fused 91 derivatives in moderate yields. ${ }^{78,79}$

Figure 1.11: Structures of [b]-fused aza BODIPY 92 and fully fused system 91.

In 2017 Jiao, Hao and co-workers reported the preparation of three novel [b] fused azaBODIPYs 96 a-c including an interesting nine-ring fused structure (Scheme 1.24). ${ }^{78}$ Regioselective bromination of aza BODIPY 93, using a literature procedure, led to 2,6dibromo aza BODIPY 94 in nearly quantitative yield (Scheme 1.24). Suzuki coupling of 2,6-dibromo aza BODIPY 94 with an aromatic boronic acid was followed by an iron(III) chloride mediated intramolecular oxidative aromatic coupling which led the desired ring fused aza-BODIPYs 96 a-c. The oxidative ring fusion reaction proved to be highly regioselective with qualitative isolated yields over 93%, and none of the [c] fused product, or any other fused derivatives were observed. ${ }^{78}$

93
93a $\mathrm{R}_{1}=\mathrm{OCH}_{3}$
93b $\mathrm{R}_{2}=\mathrm{OC}_{12} \mathrm{H}_{25}$

94

94a $\mathrm{R}_{1}=\mathrm{OCH}_{3} 99 \%$
94b $\mathrm{R}_{1}=\mathrm{OC}_{12} \mathrm{H}_{25} 99 \%$

95

96

96a $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H} 96 \%$
96b $\mathrm{R}_{1}=\mathrm{OC}_{12} \mathrm{H}_{25}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H} 96 \%$
96c $\mathrm{R}_{1}=\mathrm{OC}_{12} \mathrm{H}_{25}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=t$ - $\mathrm{Bu} 93 \%$

Sheme 1.24: Regioselective formation of [b]-fused aza BODIPYs via postmodification of ring-fused aza-BODIPYs, and X-ray crystal structures of compounds 95 a and 96a. ${ }^{78}$

The resultant aza-BODIPYs 95 a-c show nearly identical strong absorption centred at around 683 nm and moderate fluorescence emission centred at 716 nm , respectively, in toluene. Compounds 96 a-c show absorption at around 790 nm and fluorescence emission centred at 807 . In comparison with 95 a-c, this ring fusion brings more than 100 nm red-shift in both the absorption and emission bands. ${ }^{78}$

Figure 1.12: UV- vis absorption spectra or compound 95a (black solid line), and compound 96a (red solid line), and fluorescence emission spectra (dotted lines) of 95a (black) and 96a (red) in toluene. ${ }^{78}$

Attempts to form the fully fused system 91 via treatment of compound $\mathbf{9 5 a}$ with a large excess of FeCl_{3} led mainly to the product 96a-c instead of the fully fused product (Scheme 1.24). ${ }^{78}$ Varied conditions of oxidants, solvents, temperatures, and light irradiation did not lead to further fusing of 96a-c to generate the expected [b],[c] fused product. ${ }^{78}$ Jiao, Hao and co-workers reported the successful synthesis of the [b],[c] fused aza BODIPY 99 (Scheme 1.25) from the oxidative ring-fusion reaction of hexaphenyl aza BODIPYs.80 In analogous porphyrin systems Osuka ${ }^{81}$ and Gryko ${ }^{82}$ had both demonstrated that the electron-rich directing groups were conclusive for the successful oxidative ring fusion. ${ }^{80}$ Thus Jiao, Hao and co-workers rationalized that the addition of the electron-rich directing groups on a specific phenyl group of hexaphenyl aza BODIPYs would be able to activate it for efficient oxidative annulation and thus form the [b], [c] fused $\mathbf{9 9}$. Hence, $\mathbf{9 7}$ which bears two methoxy (electron rich directing)
groups on the meta-positions of 1,7 phenyls was prepared. Suzuki coupling reactions of aza dipyrromethene 97 with 4-tert-butylphenyl boronic acid followed by complexation with $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ yielded the desired product 98a in 65% (Scheme 1.25). ${ }^{80}$ In this reaction compound 97 underwent Suzuki coupling reaction instead of its corresponding boron complex due to formation of some BF_{2} decomposition products. Treatment 98a with 40 equivalents of FeCl_{3} gave the desired fully fused 99a in 11% yield. Halving the amount of FeCl_{3} to 20 equivalents, gave the corresponding [b] ring-fused product 100a in 31% yield. To activate the system towards formation of [b], [c] ring fused systems they synthesized 98b and 98c with two additional methoxy groups on the meta-positions of 2,6-phenyls. Applying the same reaction conditions as to $\mathbf{9 8 b}$ and $\mathbf{9 8 c}$ led to the corresponding [b], [c] ring fused aza-BODIPYs 99b and 99c in 19% and 41% yields respectively (Scheme 1.25)..80 As expected, compound 98b and 98c demonstrated higher reactivity; they required only 20 equivalents of FeCl_{3} to initiate oxidative ring-fusion reaction to form the fully annulated system. ${ }^{80}$ As mentioned previously the [b], [c] fusion results in an over 100 nm red-shift compared to the parent in the absorption spectrum. Hexaphenyl aza BODIPYs 98 a-c showed absorption maxima at 675, 684, and 674 nm , respectively, which were red-shifted to 787,808 , and 791 nm , respectively in $\mathbf{1 0 0} \mathbf{a - c}$. Notably the [b],[c] fused 99 a-c showed a further red shift, with near-infrared absorption in the range $826-878 \mathrm{~nm}$ and emission in the range $832-907 \mathrm{~nm} .{ }^{80}$ Figure 1.13 shows the UV-Vis absorption and fluorescence emission spectra of compounds 98a, 99a and compound 100a. ${ }^{80}$

Figure 1.13: UV-vis absorption (a), and fluorescence emission (b) spectra of compound 98a (black lines), compound 100a (red lines), and compound 99a (blue lines) in toluene. ${ }^{80}$

98a $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=t-\mathrm{Bu} 65 \%$
98b $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3} 75 \%$
98c $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H} 63 \%$

100 or

99

100a
31% with 20 equiv FeCl_{3}

100b
70% with 10 equiv FeCl_{3}

99b
19% with 20 equiv FeCl_{3}

100c
33% with 10 equiv FeCl_{3}

99a
11% with 40 equiv FeCl_{3}

99c
41% with 20 equiv FeCl_{3}

Scheme 1.25: Results of ring-fused aza-BODIPYs depending on the equivalents of

$$
\mathrm{FeCl}_{3} \text { used. }{ }^{80}
$$

Applying the concept of using electron rich methoxy groups to direct the oxidative cyclisation, later in 2017 Jiao, Hao and co-workers reported the synthesis of [c] fused
aza BODIPYs. They used an analogous strategy to previously described i.e. bromination followed by Suzuki coupling and palladium catalysed intramolecular $\mathrm{C}-\mathrm{H}$ activation reaction. ${ }^{79,}{ }^{83}$ However, oxidative annulation still generated exclusively [b]-fused compound $\mathbf{1 0 3}$ in 87% yield (Scheme 1.26). ${ }^{79}$ Bromination of hexaphenyl aza BODIPY $\mathbf{1 0 2}$ led to dibromo hexaphenyl aza BODIPY $\mathbf{1 0 4}$ in 82% yield. The regioselectivity can be explained by the three electron rich directing methoxy groups on the 1,7-phenyls of aza BODIPY compound $\mathbf{1 0 4}, \mathrm{Pd}(\mathrm{OAc})_{2}$ catalysed intramolecular $\mathrm{C}-\mathrm{H}$ activation of dibromo hexaphenyl aza BODIPY 104 led to the [c]- fused isomer 105 in 46% yield. (Scheme 1.26). This compound $\mathbf{1 0 5}$ showed absorption at 745 nm whereas the unfused precursor to 102 absorptions at 694 nm . This 51 nm red-shift is lower than that achieved via the corresponding b fused ring systems. ${ }^{79}$

Scheme1.26: Synthesis of fused aza BODIPYs 103 and $105 .{ }^{79}$

1.8. Boron fused aza-BODIPYs

A number of boron fused aza-BODIPYs have been prepared primarily using a brominating agent to cause demethylation of a methoxy substituent followed by spontaneous cyclisation. ${ }^{61}$ For example O'Shea et al reported the synthesis of boron fused aza-BODIPYs $\mathbf{1 0 7}$ a-d from the tetra aryl-substituted aza-BODIPYs precursors 106 a-d, which in turn can be synthesized in four steps from commercially available materials. ${ }^{84}$ Treatment of the tetra aryl-substituted aza-BODIPYs $\mathbf{1 0 6}$ a-d with BBr_{3} resulted in demethylation of the methoxy groups to the corresponding bisphenols followed by spontaneous cyclization to give the corresponding boron fused $\mathbf{1 0 7} \mathbf{a - d}$ in 21 to 61% yield. However, the methoxy and methylamine substituted 106 e and 106 f did not yield any products. They also observed that prolonging the reaction time or amount of BBr_{3} led to further bromination on the benzene and pyrrole rings. These compounds were also isolated and analysed. As expected, the restrictions caused by the B-O bonds led to a shift in $\mathbf{1 0 7}$ a absorption by 86 nm and in its emission maxima by 58 nm compared to the unfused parent compound $\mathbf{1 0 6} \mathbf{a} .{ }^{85}$

| | \mathbf{a} | \mathbf{b} | \mathbf{c} | \mathbf{d} | \mathbf{e} | \mathbf{f} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| \boldsymbol{R} | \mathbf{H} | \mathbf{H} | \mathbf{H} | \mathbf{H} | $\mathbf{O M e}$ | $\mathbf{N M e}_{2}$ |
| $\boldsymbol{R}^{\boldsymbol{I}}$ | \mathbf{H} | $\mathbf{B r}$ |
| $\boldsymbol{X}^{\boldsymbol{I}}$ | \mathbf{H} | \mathbf{H} | $\mathbf{B r}$ | $\mathbf{B r}$ | \mathbf{H} | \mathbf{H} |
| $\boldsymbol{X}^{\boldsymbol{2}}$ | \mathbf{H} | \mathbf{H} | \mathbf{H} | $\mathbf{B r}$ | \mathbf{H} | \mathbf{H} |
| Yield (\%) | $\mathbf{6 2}$ | $\mathbf{3 6}$ | $\mathbf{4 1}$ | $\mathbf{2 1}$ | \mathbf{n} / \mathbf{a} | \mathbf{n} / \mathbf{a} |

Scheme 1.27: Synthesis of boron fused aza BODIPYs 107 a-d. ${ }^{85}$

1.9. Aim of the Project

In recent years, the investigation of BODIPYs has attracted many researchers due to their interesting photophysical properties. They exhibit absorption bands close to the NIR region, which led to increased research into their applications. The first synthesis of the precursor azadipyrromethenes in our group was achieved during the development of a new synthetic strategy towards new classes of meso-aryl tetrabenzotriazaporphyrins (TBTAPs). However, later our group developed new straightforward synthesis pathways to access this new type of azadipyrromethene from self-condensation of aminoisoindolines under reflux, then converting to the corresponding aza BODIPYs. Aminoisoindolines were smoothly achieved by reacting a 2-bromo amidine with aryl acetylene via copper-free Sonogashira cross-coupling, followed by a cycloismerization reaction under microwave irradiation.75 The resulting aza BODIPYs bear structural similarity to the traditional aza BODIPYs, but differ significantly in the electron configuration leading to notably different absorption and emission properties (Figure 1.14). ${ }^{41}$

traditional aza BODIPYs

aza BODIPYs in the Cammidge group previous work

Figure 1.14: Traditional aza BODIPY structure, compared with the resulting aza BODIPY in Cammidge group's previous work.

The bond arrangement in the traditional aza BODIPY is not possible in the resulting structure due to presence of the external units (phenyl methylene) at the α position and benzo fusion at the β position on the aza BODIPY structure (Figure 1.14). Building on this work, this project aims to investigate the scope of the processes, starting with extension to alkyl and benzyl acetylenes, alkylated aminoisoindolines and use as the precursors in the synthesis of aza (dibenzo) dipyrromethenes and the corresponding azaBODIPYs, to access aza BODIPYs that have similar π systems to that found in the traditional aza BODIPYs. To achieve this aim, 1-hexyne was selected for the synthesis of alkyl aminoisoindoline, which is the key intermediate in the synthesis of the main
target. The resulting structure is expected to change the chemistry significantly by an oxidation reaction with loss of two hydrogens as described in Figure 1.15.

Figure 1.15: Target structure.

The second aim is investigating the reactivities and electronic effects of different derivatives (such as donor and acceptor substituents), and alternative aryl units on the synthesis and properties of these molecules. and investigate whether a synthetic strategy could be developed to efficiently give unsymmetrical derivatives. There are no unsymmetrical derivatives reported to date and the investigation of electronic effects has not been investigated.

The last aim is investigating the extension of π conjugated system on the aza dipyrromethenes either by ring fusion reactions of the parent aza BODIPYs, or formation of the macrocycle structures from the aza (dibenzo) dipyrromethene derivatives.

Chapter 2: Results and Discussion

2.1 Attempted syntheses of alkyl aza (dibenzo) dipyrromethenes (ADBDP)

Aza (dibenzo) dipyrromethenes are precursors to a subset of BODIPY analogues. In this class of compounds, the methine carbon at the meso position is replaced with strongly electron withdrawing nitrogen atom as we mentioned in the introduction chapter. Several modifications have been published to optimize the aza-BODIPY scaffolds in order to further shift the absorption and emission properties towards the far red and NIR region. ${ }^{58,59}$ In 2014 our group has published a new class of conjugated boron aza (dibenzo) dipyrromethenes and its precursors aza (dibenzo) dipyrromethenes through relatively straightforward synthetic procedure from readily available aminoisoindoline derivatives. ${ }^{41}$ In this synthetic pathway the aminoisoindolines are the key intermediate which can be smoothly accessed from 2-bromobenzoamidine 79 as described in Scheme 2.1. Heating of aminoisoindolines $\mathbf{8 0}$ and $\mathbf{8 1}$ under reflux in toluene at $120^{\circ} \mathrm{C}$ produces the π-extended aza-(dibenzo) dipyrromethene derivatives $\mathbf{8 2}$ and $\mathbf{8 3}$ in good yield. Aza (dibenzo) dipyrromethene derivatives smoothly converted to the corresponding aza BODIPYs $\mathbf{8 4}$ and $\mathbf{8 5}$ by treating with BF_{3}. OEt_{2} in the presence of TEA as a base in dry DCM (Scheme 2.1).

$80 \mathrm{Ar}=$ phenyl
$\mathbf{8 1} \mathrm{Ar}=4-\mathrm{OCH}_{3}$ phenyl

Scheme 2.1: The full synthetic route towards aza BODIPYs 84 , and $\mathbf{8 5}$ and their precursors (ADBDPs) 82, and $\mathbf{8 3} .^{41}$

Chapter 2. Results and Discussion

The resulting structures include modifications on the parent core such as, replacement of the carbon atom on the methine bridge (meso-carbon) with nitrogen, extended the π conjugation system via benzo fused the pyrrole rings at the β position on the ADBDP unit, and functionalization of pyrrole units at the α position via conjugation to a benzene ring. ${ }^{44}$ There is contrasting spectroscopic behaviour when comparing the resulting molecule with traditional BODIPY derivatives, presumably as a result of the local aromaticity that is preserved in the benzene rings giving a different electronic structure to that found in BODIPYs, they display absorption in the visible region with a maximum $\sim 465 \mathrm{~nm}$ in DCM. ${ }^{41}$

Based on the success of this strategy this project aims to investigate the scope of this process and extend this strategy to furnish a range of aza (dibenzo) dipyrromethanes (ADBDP), and the corresponding aza-BODIPYs that could have interesting properties and applications. A key stage to achieve this aim would involve extending the copper free Sonogashira coupling to alkyl and benzyl acetylenes. This seemingly simple structural modification is expected to change the chemistry significantly due to the potential tautomerism of the intermediate and its subsequent impact on the electronic configuration of the BODIPY unit (Figure 2.1).

Target structure

Figure 2.1: Target structure of alkyl aza BODIPY.

2.1.1 Attempted syntheses of alkyl aminoisoindolines for use in the synthesis of aza (dibenzo) dipyrromethenes (ADBDP) and aza BODIPYs and competing formation of aminoisoquinolines.

Aminoisoindoline derivatives have been used as key intermediates in the synthesis of aza BODIPYs and its precursor ADBDP. Previously our group has published successful synthesis of aminoisoindoline derivatives following the procedure reported by Hellal and Cuny ${ }^{75}$ as mentioned in the introductory section. This led us to consider extending it to embark on the formation of aminoisoindoline derivatives starting with extension to alkyl and benzyl acetylenes as the key intermediates in the synthesis of aza-BODIPYs (Scheme 2.2).

Scheme 2.2: Outline plan toward hexyl aminoisoindoline 109 and its corresponding aza (dibenzo) dipyrromethene $\mathbf{1 1 0}$ and aza BODIPY $\mathbf{1 1 1}$ using 1-hexyne.

The first stage in the formation of the aminoisoindoline derivatives begins by following the procedure published by the Meijere group for the synthesis of amidine 79, by converting 2-bromobenzonitrile 108 to its corresponding 2-bromobenzamidine hydrochloride 79. ${ }^{86}$ Consequently 2-bromobenzonitrile 108 was treated with a solution of lithium bis(trimethylsilyl)amide in dry THF, and the mixture left stirring under
nitrogen at room temperature for 4 h . Then the mixture was quenched with a solution of $\mathrm{HCl}(5 \mathrm{~N})$ in isopropanol to obtain 2-bromobenzimidamide hydrochloride 79 as a white sold in 95% yield. Compound 79 was characterised by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy where $\mathrm{N}-\mathrm{H}$ protons are clearly visible as broad peaks at 9.49 ppm and 9.25 ppm (Figure 2.2). The spectra matched the published ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for compound 79 .

Figure 2.2: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 2-bromobenzimidamide hydrochloride 79.

The mechanism of formation of compound 79 includes a nucleophilic attack by the nitrogen bis trimethylsilyl anion (stabilized by a lithium cation) at the partially positive carbon atom of the nitrile group. Acid work up removes the trimethylsilyl groups yielding 2-bromobenzamidine 79 (Scheme 2.3).

Scheme 2.3: Formation mechanism of compound 79.

The next stage was based on the procedure developed by Hellal and Cuny, which involves synthesis of the aminoisoindolines using aryl acetylene derivatives. ${ }^{75}$ The starting material 79 underwent a palladium catalysed copper-free Sonogashira crosscoupling followed by a cycloismerisation reaction under microwave irradiation to give aminoisoindolines in good yield. ${ }^{75}$ In this pathway the copper was replaced by an amine
as a base. As in Sonogashira cross coupling the unfavourable homocoupling of the terminal alkyne was formed. In the original procedure the one-pot reaction was accomplished by reacting amidine, phenyl acetylene, catalytic amounts of palladium and BINAP as ligand, in the presence of DBU as a base. The reaction was carried out in DMF as the solvent, and this mixture was placed in a microwave vial then irradiated under microwave at $120^{\circ} \mathrm{C}$ for 1 h . After that the mixture was separated and washed with a saturated solution of NaHCO_{3} and purified by column chromatography and crystallised from DCM: PE (1:1) giving the pure aryl aminoisoindolines as yellow crystals in good yield. ${ }^{75}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of aminoisoindoline compounds illustrates the characteristic vinyl proton at $\sim 6.65 \mathrm{ppm}$ confirming that this one pot reaction is stereo selective producing the (Z)-isomer as major product. ${ }^{78}$ The suggested copperfree Sonogashira reaction mechanism is illustrated in (Scheme 2.4). The first step of the mechanism involves oxidative addition of the aryl halide to the active catalyst $\left[\mathrm{Pd}^{(0)} \mathrm{L}_{2}\right]$, to form the four-coordinated palladium complex. The acetylene ligand consequently coordinates to palladium metal followed by deprotonation of the ligated alkyne occurs through the action of a base, DBU. Then trans/cis isomerization and reductive elimination occur stepwise reforming the catalytic species $\left[\mathrm{Pd}^{(0)} \mathrm{L}_{2}\right]$ ready to start a new cycle. ${ }^{87}$

Scheme 2.4: Suggested copper-free Sonogashira cross-coupling reaction. ${ }^{87}$

Chapter 2. Results and Discussion

The mechanism described above was commonly preferential if the amine is a less good ligand than the alkyne for the palladium(II)..88 In the case of synthesis of aryl aminoisoindoline, coupling is immediately followed by a regioselective 5 -exo-dig cycloismerization domino reaction to give the final product. The suggested mechanism includes three steps clarified in Scheme 2.5. The reaction is initiated by coordination of the palladium catalyst to the alkyne, followed by the loss of HCl . Finally, protonation recovers of the catalyst.

Scheme 2.5: Suggested mechanism for the 5-exo-dig cyclodimerization.

Accordingly, in order to achieve the alkyl aminoisoindoline compound 109, 1-hexyne was selected due to it is availability and likely solubility to the final compound. Attempting to synthesise compound $\mathbf{1 0 9}$ following the identical conditions as described above. A product with the expected $(m / z 200)$ mass was isolated. However, the ${ }^{1} \mathrm{HNMR}$ spectra of the resulting compound demonstrated that the expected aminoisoindoline 109 was not formed. A new singlet of 1 H appeared at 6.84 ppm instead of the expected triplet peak for the alkene proton in the target compound (labelled *, Figure. 2.3). Which reasoned this corresponds to the newly formed C-H proton, formed via cyclisation to yield a different ring system. The alkyl chain gives a characteristic set of peaks starting with a triplet integrating to two protons corresponding to alkyl proton followed by the rest of peaks giving 2 H , 2 H multiplets, and 3 H triplet respectively at correspondingly lower values.

Scheme 2.6: Unsuccessful synthesis toward alkyl aminoisoindoline 109.

Figure 2.3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the resulting product from reacting of amidine 79 with 1-hexyne under microwave condition.

It was suspected that the cyclisation might be occurred in different way producing the 6 -member ring compound. On close inspection of the literature, it found this has been observed before, as in some cases, the competition between 5 and 6 membered ring compounds (isoindoline and isoquinoline) have been observed to vary depending on conditions used. Fortunately, the resulting crystals were suitable for X-ray crystallography and, as expected, it confirmed the structure assignment for 3-n-butyl-isoquinolin-1-amine, which crystallises to form H-bonded pairs of molecules as shown in Figure 2.4. The results, performed and analysed by our collaborator Dr David Hughes, show that all the non-hydrogen atoms of the isoquinoline rings of the resulting molecule form a good planar array; the carbon atoms of the n-butyl group lie close to this plane and show an all-trans chain. One of the amino H atoms forms a good hydrogen bond to the N atom of a neighbouring molecule, and this bonding is repeated about a centre of symmetry, thus forming an eight-membered ring which links the pair of molecules in a dimer unit. Structural data and tables are given in the Appendix.

Figure 2.4: Crystal structure of 3-butyl isoquinoline -1-amine compound 112.

Using 1-hexyne failed to produce the desired aminoisoindoline 109 however, the isomeric isoquinoline $\mathbf{1 1 2}$ was isolated in 31% yield. Subtle changes in reaction conditions and the starting alkyne clearly affect chemical control in the formation of 5 versus 6 membered rings. The suggested mechanism of this reaction includes a nucleophilic attack where an amine group attacks on the triple bond to give 6-endo dig cyclisation compound (Scheme 2.7 inset). ${ }^{89}$

Scheme 2.7: Synthesis of compound 112.

2.2 Introduction to isoquinoline

Isoquinoline (2-azanaphthalene) is composed of a benzene ring fused to a pyridine ring (Figure 2.5). It is an important heterocyclic system and a structural isomer of quinoline. ${ }^{90}$

Figure 2.5: Structure of isoquinoline core.
Isoquinoline was initially extracted from coal tar in 1885 by Hoogewerf and van Dorp. ${ }^{90}$ In 1914, Weissgerber reported a faster route by selective extraction of coal tar, exploiting the fact that isoquinoline is more basic than quinoline, followed by fractional crystallization of the acid sulfate. ${ }^{11}$ More recently the synthesis of isoquinolines has attracted considerable attention given the wide range of biological activities exhibited by isoquinoline derivatives. ${ }^{92}$ Of the many reported routes the transition metal catalysed route to construct the isoquinoline core is particularly significant. ${ }^{93} \mathrm{As}$ compared to the classical synthetic methods, such as the Pomeranz-Fritsch reaction, which is mostly subjected to harsh condition such as using strong acids, or performed the reaction under multiple steps which effects the resulting yield, while the transition metal catalysed route requires milder conditions. ${ }^{94}$ In particular, the palladium catalysed methodology have garnered the most attention because of the considerable role that palladium plays in carbon-carbon bond coupling ${ }^{95}$ and annulation reactions of alkynes. ${ }^{96}$

Recently, 2-alkynylbenzonitriles have been used as precursors for the construction of the isoquinoline or isoindoline derivatives through aminative 6 -endo-dig and 5 -exo-dig cyclization, respectively. In these cases, competition between 5 and 6 membered ring formation has been observed to vary depending on conditions used. Moreover, 2alkynylbenzonitriles precursor would lead to the products without elimination or formation of any side products hence have the potential to attain 100% atom economy in this case. ${ }^{97}$ For example, 1 -aminoisoquinoline (Table $2.1 \mathbf{E}$) have been successfully formed by the reaction of secondary amines with 2-alkynylbenzonitriles, under solventfree condition and using copper-based catalysts. Here it is clear that the secondary amines influence the regioselectivity of the reaction i.e. they favour 6-endo-dig
cyclization as opposed to the 5 -exo-dig. ${ }^{97}$ However, attempting this annulation with primary aliphatic amines and secondary aromatic amines generated a complex mixture. ${ }^{97}$ On the other hand, other catalysts such as triflates of Zn , favoured the formation of 1-aminoisoindoles via 5-exo-dig cyclization. ${ }^{97}$ Nonetheless, it should be noted that it has also been reported under different conditions, the use of zinc as a catalysts with this precursor favours 6-endo-dig resulting in naphthalene amino esters. ${ }^{98}$ Thus, it appears both the catalyst and reaction conditions impact the product formed. Rare earth catalyst such as lanthanides have also been used to catalyse sequential addition/annulation reaction of secondary amines with 2-alkynylbenzonitrile derivatives, ${ }^{99}$ resulting in a tandem procedure for the preparation of aminoisoindoline (Scheme 2.8). The authors Pengqing and Yinlin suggest that the reaction is initiated by deprotonation of the amine by the lanthanide catalyst, resulting in coordination to form Ln-N species A and a sequential insertion of CN triple bond to the Ln N species to furnish lanthanide-amidinate intermediate \mathbf{B}. This is followed by cis-addition of Ln N bond to C-C bond leading to cyclization, resulting in intermediate \mathbf{C}. Finally the desired aminoisoindoline is obtained via protonation of \mathbf{C} with another amine. ${ }^{99}$

Scheme 2.8: Synthesis of aminoisoindoline by using rare earth catalyst and secondary amine. ${ }^{99}$

Additional synthetic procedures have been published by Xien Shen, this includes reaction of 2-alkylbenzonitrile with aliphatic amines in the presence of a catalytic amount of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$, in toluene or benzene. ${ }^{100}$ This has shown excellent
regioselectivity with regards to the 5-exo-dig cyclization for the preparation of substituted aminoisoindolines. Moreover only Z isomers were isolated as the final products. ${ }^{100}$ Table 2.1 gives a comparative summary of the four different catalysts discussed above and the resulting products.

	NHR_{2}	solvent	Time/h	temperat ure		
CuOTf $\cdot \mathrm{PhMe}$		Solvent free	24 h	$120^{\circ} \mathrm{C}$	62 \%	20 \%
$\mathrm{Zn}(\mathrm{OTf})_{2}$		Solvent free	24 h	$120^{\circ} \mathrm{C}$	8 \%	76%
$\mathrm{La}\left[\mathrm{N}(\mathrm{SiMe})_{2}\right]_{3}$	$\left.\zeta_{N}\right\rangle$	Toluene	6 h	$25^{\circ} \mathrm{C}$	0 \%	97 \%
$\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$		$\mathrm{C}_{6} \mathrm{D}_{6}, \text { or }$ toluene	18 h	$115^{\circ} \mathrm{C}$	0 \%	95%

Table 2.1: Comparative summary of synthesis of aminoisoindolines and amino isoquinolines using different catalysts.

Yang et al, have reported a strategy for the one-pot synthesis of isoquinoline from 2alkynylbenzaldehyde as shown in scheme 2.9. ${ }^{101}$ This includes reacting of 2-bromo arylaldehydes with a range of terminal acetylenes under standard Sonogashira coupling conditions. They found that replacing of copper catalyst by a combination of $2 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAC})_{2}$ and $4 \mathrm{~mol} \%$ of PPh_{3} led to doubling the yield. DMF was used as the solvent, KOAc as the base and microwave irradiation as the heating source. After completion of palladium-catalysed coupling, ammonium acetate was used as an ammonia source for the imination step. ${ }^{101}$

(i) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{KOAc}$, microwave, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{DMF}$
(ii) $\mathrm{NH}_{4} \mathrm{OAc}$, microwave, $150^{\circ} \mathrm{C}, 2 \mathrm{~h}$

Scheme 2.9: Synthesis of isoquinolines by microwave-assisted One-Pot reaction from 2-alkynylbenzaldehyde. ${ }^{101}$

Another reported route for the formation of the 1-aminoisoquinolines from 2Alkynylbenzamides is by using gold(III) catalyst in the presence of ammonium acetate (Scheme 2.10). ${ }^{102}$ This synthetic route starts with the coupling of 2-bromobenzamides with terminal alkynes under Sonogashira cross coupling condition to produce the corresponding 2 -alkynylbenzamides $\mathbf{1 1 5}$. The 1 -aminoisoquinolines $\mathbf{1 1 6}$ are produced after coordination of the gold(III) catalysts to carbon - carbon triple bond in the alkyne which results in the regioselective 6-endo-dig cyclization in 92% yield. ${ }^{102}$

Scheme 2.10: Synthesis of isoquinolines 116 from 2-alkynylbenzamides by using gold(III) catalyst. ${ }^{102}$

2.3 Synthesis of 2-hexynalbenzonitrile and use it as precursor in the synthesis of alkyl aminoisoindoline.

The unexpected result led to identifying useful conditions to 6-endo-dig regioselectivity which could have application for forming interesting isoquinoline units. However, in order to obtain the target, the desired alkyl aminoisoindoline 109, another route has to devise. This synthetic pathway includes three steps as described in Scheme 2.11. The first step starts with changing the amidine to its precursor 2-bromobenzonitrile to produce the corresponding 2-hexylbenzonitrile 117 which could be accomplished according to the literature under Sonogashira cross coupling reaction. ${ }^{99}$ The next step involved treating 2-hexylbenzonitrile $\mathbf{1 1 7}$ with a solution of lithium bis(trimethylsilyl) amide in dry THF to produce the corresponding 2-hexylbenzoamidine 119. The final step was applying microwave heating conditions using Pd catalyst, hoping this might allow the formation of the desired alkyl aminoisoindoline $\mathbf{1 0 9}$.

step 1

$\mathbf{1 1 7} \mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9} 82 \%$
$\mathbf{1 1 8} \mathrm{R}=4-\mathrm{OCH}_{3}$ Phenyl 68%

$$
\begin{aligned}
& 109 \mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9} \\
& \mathbf{8 1} \mathrm{R}=4-\mathrm{OCH}_{3} \text { Phenyl }
\end{aligned}
$$

$119 \mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}$
$120 \mathrm{R}=4-\mathrm{OCH}_{3}$ Phenyl

Scheme 2.11: Outline of suggested pathway to formation of compound 109.

Chapter 2. Results and Discussion

This plan was inspired by the suggestion that the mechanism for the formation of aryl aminoisoindolines involved the aryl ethynyl amidine as the intermediate before the cyclisation step as described earlier. So, the next decision was to start synthesising 4methoxy phenyl ethynyl amidine $\mathbf{1 2 0}$ directly to ensure the effectiveness of the synthesis, and as the resulting 4-methoxy phenyl aminoisoindoline $\mathbf{8 1}$ could be easily identified due to its availability from previous synthesis. Compound $\mathbf{1 1 8}$ was successfully synthesised via a Sonogashira cross coupling, it was the first fraction that eluted from the column chromatography and was isolated as white crystals in good yield, 68 \% (Scheme 2.11). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 1 8}$ as shown in Figure 2.6 showed doublet at 6.91 ppm with coupling constant $J=7.8 \mathrm{~Hz}$ for the protons in the phenyl ring labelled a, the other phenyl protons appeared as a doublet overlapped with other signal refer to the benzene ring protons labelled \mathbf{b}, benzene ring protons appeared in the expected aromatic region. The methoxy protons clearly appear as a singlet peak at $\delta 3.84 \mathrm{ppm}$. MALDI-MS spectrum showed a clear peak at $\mathrm{m} / \mathrm{z} 233$ confirming 118 was formed.

Figure 2.6: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 118.

For the next step, treating compound $\mathbf{1 1 8}$ with a solution of lithium bis(trimethylsilyl) amide in dry THF, led to the production of compound $\mathbf{1 2 0}$ in excellent yield 80%. The structure of compound $\mathbf{1 2 0}$ was confirmed by NMR spectroscopy and X-ray diffraction analysis as shown in Figure 2.7. As expected, the ${ }^{1} \mathrm{HNMR}$ spectrum retains the same features present in the precursor nitrile but they are shifted slightly and the $\mathrm{N}-\mathrm{H}$ signals
are not observed, most likely due to exchange in the $\mathrm{CD}_{3} \mathrm{OD}$ solvent. The crystal structure confirmed the product, but the data (appendix) were of low quality so additional analysis of the structure was not undertaken.

Figure 2.7: ${ }^{1} \mathrm{H}$-NMR spectrum and X-ray crystal structure of compound 120.

In the final step, compound $\mathbf{1 2 0}$ underwent a cycloismerisation reaction, following a microwave assisted protocol developed by Hellal and Cuny. ${ }^{75}$ Compound $\mathbf{1 2 0}$ was treated with catalytic amounts of palladium catalyst and BINAP as ligand, in the presence of DBU as base and employing DMF as the solvent for the reaction. The mixture was irradiated under microwave heating at $120^{\circ} \mathrm{C}$ for 1 h , after which an aqueous work up was performed, and recrystallisation with DCM: PE to give the pure aminoisoindoline $\mathbf{8 1}$ as yellow crystals in 65% yield. Thus, this pathway to the synthesis of 4-methoxy phenyl aminoisoindoline $\mathbf{8 1}$ has confirmed that compound $\mathbf{1 2 0}$ is an intermediate in the one pot reaction, this provides evidence that supports the proposed reaction mechanism.

Then, moving to the first step was applied using 1-hexyne under normal Sonogashira condition, compound $\mathbf{1 1 7}$ was produced in excellent yield 82% (Scheme 2.11). Compound 117 was characterised using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy and demonstrated all signals as in the reference. ${ }^{103}$ The next step involved synthesis of 2hexyl benzamidine hydrochloride $\mathbf{1 1 9}$ by treating of 2-hexylbenzonitrile $\mathbf{1 1 7}$ with a solution of lithium bis(trimethylsilyl)amide in dry THF (Scheme 2.12). The mixture was quenched with a solution of $\mathrm{HCl}(5 \mathrm{~N})$ in isopropanol then it was diluted by $\mathrm{H}_{2} \mathrm{O}$ and extracted by ethyl acetate. The resulting product was separated by using several
column chromatography. A product with molecular weight 366 was isolated. The ${ }^{1} \mathrm{H}$ NMR spectroscopy indicates a butyl and propyl chains, and the aromatic region showed this compound has two benzene rings as shown in Figure 2.8. While the Infrared spectra showed a nitrile CN group, alkyl, alkene and NH functional groups.

Scheme 2.12: Unsuccessful attempt to synthesis of compound 119.

Figure 2.8: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and MLADI mass spectra of the resulting compound with molecular weight 366 .

Our explanation was the reaction with the strong base led to the starting material being deprotonated on the position * as shown in Scheme 2.13, then reacting with itself to give the suggested structure shown in the Scheme 2.13.

Scheme 2.13: Suggested resulting structure resulting from the reaction between compound 5 and lithium bis(trimethylsilyl)amide in THF.

There are a few literature methods published for converting nitriles to the amidines. Pavel and his co-workers had synthesised para-substituted aryl amidines following a development based on the Pinner amidine synthesis. ${ }^{104}$ In this synthesis parasubstituted aryl amidines were synthesised by three methods as described in the Scheme 2.14 .

Scheme 2.14: Synthesis of 4- substituted aryl amidines. ${ }^{104}$
Method (i) as shown in Scheme 2.14 involved treatment of compound \mathbf{A} with the sodium methoxide as the base in methanol at room temperature, followed by adding of dry ammonium chloride. Pavel et al, had proven that the use of basic conditions are more suitable for nitriles with electron withdrawing group substituents, while for nitriles

Chapter 2. Results and Discussion

with electron donating substituents the acidic condition is the preferred method. ${ }^{104}$ Following this method was unsuccessful in the formation of 2-alkyl benzo amidine 119, the starting material remained unreacted. The second method (ii) was then attempted (Scheme 2.14). This involves treatment of compound a with thionyl chloride in methanol at room temperature, then after the formation of the intermediate methyl imidate hydrochloride \mathbf{C}, methanolic ammonia solution is added in one portion. ${ }^{104}$ Unfortunately, this method too did not produce the target product. This may be due to the equilibrium reaction between the starting material and the intermediate compound during the process and with the presence of thionyl chloride, the reaction shifts to the starting material. The third method reported method (iii), includes treatment of nitriles with HCl in methanol at room temperature. This method was not attempted because in case of hexyl benzonitrile the triple bond will likely undergo electrophilic addition converting to the alkene under these conditions.

Scheme 2.15: Synthesis attempts of formation of compound 119.

As previously mentioned, the synthesis of aminoisoindolines by the lanthanidecatalysed tandem intermolecular cross-disinsertion reaction of 2-alkynylbenzonitriles and secondary amines have been recently reported (Scheme 2.16). ${ }^{99}$

Scheme 2.16: Synthesis of aminoisoindoline from 2-phenylalkynylbenzonitrile. ${ }^{99}$
Inspired by these works, it was decided to follow this synthetic procedure. Compound 117, with piperidine as the base (due to its availability in the lab), in the presence of
lanthanide catalyst such as lanthanum bis(trimethylsilyl)amide, was stirred in toluene at room temperature. TLC showed starting material remained even when doubled the equivalence of the amine or attempted heating the mixture under reflux. Unfortunately, these were unsuccessful conditions to produce the desired alkyl aminoisoindoline. Using alternate lanthanide sources like lanthanum(III) acetylacetonate hydrate or replacing the amine with bis(trimethylsilyl)amine did not help to convert the starting material towards the target product. The final attempt was made using palladium as a catalyst and BINAP as a ligand to assist the cyclisation but unfortunately starting material did not react. It is not clear why these reactions were unsuccessful in our hands, but it is to be noted that in the procedure that we followed ${ }^{99}$ the authors do not report any examples with piperidine, (lit examples use pyrrolidine). There might be some subtle influence of the secondary amine on these reactions. Therefore, it was decided to not investigate it further.

Then, replacing the 1-hexyne with 3-phenyl-1propyne $\mathbf{1 2 4}$ was attempted, with the idea that the aromatic substituent influences the electronic properties of the alkyne thus favouring the 5-exo-dig cyclisation required. The reaction was performed following the procedure reported by Hellal and Cuny as explained earlier. ${ }^{75}$ TLC for the crude showed complicated mixture of spots and MALDI-TOF mass spectrum showed no significant peak corresponding to our desired compound $\mathbf{1 2 5}$, as such the crude was not analysed further.

Scheme 2.17: Unsuccessful attempt to synthesis of compound $\mathbf{1 2 5}$.

2.4 Alternative syntheses using different terminal acetylenes.

All the previous attempts towards aminoisoindolines using alkyl acetylene unfortunately were unsuccessful. Therefore, synthesis of aminoisoindoline using an acetylene ester was the next target, by following the synthetic protocol which has been
discussed earlier. ${ }^{75}$ Unfortunately, using the ethyl propiolate $\mathbf{1 2 6}$ failed to give the target product 127. TLC showed a complicated mixture, and most of 2-bromobenzoamidine 79 remained unreacted. This might be due to the fast formation of the acetylene homocoupling compound. Trace amounts of other compounds were also isolated by several separations via column chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy of the resulting product indicates two unsymmetrical benzene rings as well as a $\mathrm{N}-\mathrm{H}$ proton (Figure 2.9). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ showed clear peaks for the $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$. No additional analysis was performed due to the poor generated yield. Accordingly, we suggest that the reaction started with coupling of the acetylene in the bromo position of the amidine compound followed by amination reaction by the other amidine molecule to give the intermediate $\mathbf{1 2 8}$ which might have cyclised to provide compound $\mathbf{1 2 9}$ as shown in Scheme 2.18.

Scheme 2.18: Suggested resulting structures from the reaction between 2bromobenzoamidine and ethyl propiolate.

Figure 2. 9: ${ }^{1} \mathrm{H}$-NMR spectrum of product from the reaction between 2bromobenzoamidine and ethyl propiolate.

In order to obtain the target product, the standard Sonogashira cross coupling reaction was followed starting with 2-bromobenzonitrile 108. Unfortunately, this reaction was unsuccessful, most of the 2- bromobenzonitrile remained unreacted and 1,6-diethyl 2,4hexadienedioate $\mathbf{1 3 2}$ was isolated as a yellow oil in 30% yield. An explanation is that the ester acetylene homocoupling compound seems to be produced first, then reduced to the corresponding alkene (either cis or trans), due to effect of the Pd catalyst as shown in Scheme 2.19.

Scheme 2.19: Attempt to synthesise compound 131 using Sonogashira cross coupling reaction.

Chapter 2. Results and Discussion

Formation of compound $\mathbf{1 3 2}$ was confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. Two doublets appeared at 7.57 ppm and 5.65 ppm with coupling constant $J=12 \mathrm{~Hz}$ in addition to ethyl chain protons at 4.20 ppm and 1.29 ppm respectively.

Figure 2. 10: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 132.

Then the reaction was repeated by replacing the ethyl ester with an aromatic acetylene ester to allow for easy monitoring by TLC. Also, it was assumed this might assist the successful coupling at the bromo position in the amidine compound to give the required intermediate followed by the cyclisation to give the target aminoisoindoline compound 134. Therefore, 2-bromobenzoamidine $\mathbf{7 9}$ was reacted with 2-naphthyl propiolate $\mathbf{1 3 3}$ under microwave condition. This reaction failed to give the target product, the major resulting compound was naphthol $\mathbf{1 3 5}$, this was confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. While the other compound $\mathbf{1 3 6}$ showed two doublet peaks at $6.5 \mathrm{ppm} J=7 \mathrm{~Hz}$ and at $8.03 \mathrm{ppm} J=7 \mathrm{~Hz}$ which indicate those peaks for the cis alkene protons, in addition a broad singlet peak around 10 ppm which must be $\mathrm{N}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$ this confirmed by treating the sample with deuterium oxide. Four protons for the benzene ring appeared in the aromatic region. ${ }^{13} \mathrm{C}$-NMR indicates 10 carbons of which one of them was a carbonyl carbon and appeared at 162 ppm (Figure 2.11). Fortunately, this compound gave suitable crystals for X-ray diffraction analysis confirmed the structure assignment for 2-(2-bromophenyl)-4(3H)-pyrimidinone $\mathbf{1 3 6}$ (Scheme 2.20 inset). We are awaiting full analysis from our crystallography collaborator.

not observed

Scheme 2.20: Resulting compounds $\mathbf{1 3 5}$ and $\mathbf{1 3 6}$ from reaction of amidine $\mathbf{7 9}$ and 2naphthyl propiolate under microwave condition, and Xray crystal structure of $\mathbf{1 3 6}$.

Figure 2. 11: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 136.

The proposed explanation for this reaction is that the lone pair on the amine amidine initiates the coupling by attacking the partially positive carbon on the carbonyl of the 2naphthyl propiolate compound followed by the cyclisation to produce compound $\mathbf{1 3 6}$ in 20%. The resulting naphthoxide is protonated during the workup to give the naphthol 135 in 46% yield.

2.5 Symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes (ADBDP)

With the lack of success in formation of aminoisoindolines using alkyl terminal, the attention was turned to synthesise aminoisoindolines using aryl acetylenes and focus on expanding the range of derivatives available and investigating the reactivities and electronic effects of different derivatives (such as donor and acceptor substituents). Cammidge group has already synthesised and published the successful synthesis of aminoisoindolines using aryl acetylene derivatives, and the resulting aminoisoindolines were used as the intermediates in the synthesis of aza-BODIPYs, TBTAPs and SubTBDAPs (Scheme 2.21). ${ }^{41}$

Scheme 2.21: Synthesis of aza-BODIPYs, TBTAPs and SubTBDAPs from aminoisoindolines. ${ }^{41}$

Chapter 2. Results and Discussion

The synthesis of symmetrical aza (dibenzo) dipyrromethene derivatives can be accomplished smoothly by heating aminoisoindoline derivatives in toluene under reflux at $120^{\circ} \mathrm{C} .{ }^{41}$ As stated previously this class of compounds is relatively under explored. However, this project aimed to investigate the effects of electron withdrawing, electron donating, and alternative aryl units on the synthesis and properties of these molecules and investigate whether a synthetic strategy could be developed to efficiently give unsymmetrical derivatives. There are no unsymmetrical derivatives reported to date and the investigation of electronic effects has not been investigated.

Scheme 2.22: Structures of the symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes.

2.5. 1 Selection of aminoisoindolines precursors

The synthesis of new aminoisoindoline compounds were carried following the general condition that published by Hellal and Cuny. ${ }^{75}$ Amidine 79 was reacting with a commercially available 3-methoxy phenyl acetylene, in the presence of catalytic amounts of bis(acetonitrile)palladium(II) chloride and BINAP as ligand, DBU was added as a base, and DMF as the solvent. The reaction mixture was irradiated under
microwave at $120^{\circ} \mathrm{C}$ for 1 h . Workup by quenching the reaction with ethyl acetate then washing the mixture with a saturated solution of NaHCO_{3}, purified by crystallisation from DCM: PE (1:1) giving the pure 3-methoxy phenyl methylene aminoisoindoline 137 as yellow crystals in good yield. The reaction was also performed using different aryl acetylenes such as (4-methoxy phenyl acetylene, and 4-pentyloxy phenyl acetylene) they both succeeded in converting the amidine 79 to the aminoisoindoline derivatives $\mathbf{8 1}$ and $\mathbf{1 3 8}$ in good yield $\geq 70 \%$.

$137 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
$81 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$
$138 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OC}_{5} \mathrm{H}_{11}$

Scheme 2.23: Synthesis of aminoisoindoline compounds $\mathbf{1 3 7}, \mathbf{8 1}$ and 138.

Figure 2.12 shows stack ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{1 3 7}$ and compound $\mathbf{8 1}$ in deuterated chloroform. In both spectra the alkene proton is clearly appear as a singlet peak at 6.72 ppm and 6.75 ppm in compounds $\mathbf{1 3 7}$ and $\mathbf{8 1}$ respectively. A broad singlet corresponding to the proton on the 3-methoxy phenyl ring in compound $\mathbf{1 3 7}$ appeared at 7.83 ppm labelled a, other phenyl protons in compound $\mathbf{1 3 7}$ appeared as doublet of doublet at 6.83 ppm labelled \mathbf{b}, in addition to doublet and triplet signals at 7.56 ppm and 7.30 labelled \mathbf{d} and \mathbf{c} respectively. While in compound $\mathbf{8 1}$ the 4 -methoxy phenyl protons labelled $\mathbf{a 1}$ and $\mathbf{b 1}$ appear as doublets at 8.08 ppm and 6.94 ppm with coupling constant $J=8.8 \mathrm{~Hz}$. Methoxy protons appears in both spectra as a singlet at 3.89 ppm and 3.83 ppm in $\mathbf{1 3 7}$ and $\mathbf{8 1}$ respectively. The analysis confirmed that the 5-exo-dig cyclisation was successful, and this one pot reaction is stereo selective producing the (Z)-isomer as the isolated product. The other aryl aminoisoindolines (4-pentyloxy
phenyl methylene aminoisoindoline) $\mathbf{1 3 8}$ was also fully characterised by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$ NMR, MALDI- TOF mass spectrometry, and as expected showed similar characteristic peaks for the aminoisoindoline with variations only observed at the aryl substituent.

Figure 2. 12: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compounds $\mathbf{1 3 7}$ (blue colour) and $\mathbf{8 1}$ (red colour).

Next, the focus was on the synthesis of aminoisoindolines bearing electron withdrawing substituents. It was expected this would affect the electronic properties in the target ADBDP and aza-BODIPY molecules. 4-Nitro and 4-cyano substituents were selected due to their high electron withdrawing ability via both resonance and inductive effects. Following the identical procedure reported by Hellal et al., a solution of 1-ethynyl 4nitro benzene 139 and DBU in dry DMF was added to a mixture of amidine 79, BINAP and $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$. The mixture was then irradiated in a microwave reactor at $120{ }^{\circ} \mathrm{C}$ for 1 h (Scheme 2.24).

Scheme 2.24: Synthesis attempt to formation of compound 140.
Unfortunately, this reaction yielded a very complicated reaction mixture, the products obtained could not be isolated pure in spite of several chromatographic separations. The major fraction obtained contained only two spots by TLC, but unfortunately it could not be purified further nor suitable crystals for X-ray diffraction obtained. It was suspected that one of these compounds is the aminoisoindoline $\mathbf{1 4 0}$ so, another strategy has been applied in order to isolate the components of the mixture. By treating the mixture with p-toluene sulfonyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in dry DCM , it was expected that formation of the corresponding aminoisoindoline tosylate compound might lead to easier separation. Unfortunately, no reaction occurred. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the mixture shows two singlet peaks at 7.05 ppm , and 6.79 ppm corresponding to the alkene protons in both compounds, as well as 16 protons on the aromatic region for the presence of two phenyl substituents and two core benzene rings.

Figure 2. 13: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the resulting mixture from the reaction of amidine 79 and 1-ethynyl 4-nitro benzene under microwave condition.

As mentioned previously competition between formation of 5 and 6 membered ring compounds (isoindoline and isoquinoline) can occur depending on the reaction condition used, they have been observed in the literature. For example, reacting 2-[(4nitrophenyl)ethynyl] benzonitrile 141 with secondary amine $\mathbf{1 4 2}$ in the presence of CuOTf . PhMe as a catalyst in toluene at $120{ }^{\circ} \mathrm{C}$ can access both the aminoisoindoline 144 and aminoisoquinoline $\mathbf{1 4 3}$ in a ratio of 1:1 as illustrated in Scheme 2.25. ${ }^{97}$

Scheme 2.25: Competition between formation of aminoisoquinoline 143 and aminoisoindoline $144 .{ }^{97}$

Comparing between the ${ }^{1} \mathrm{H}$-NMR spectrum for compound 143 , compound 144 and the mixture spectrum, the alkene singlets in the compound $\mathbf{1 4 3}$ and $\mathbf{1 4 4}$ appeared at 7.85 ppm and 6.56 ppm respectively, this was close to the chemical shift for the two singlet peaks in the ${ }^{1} \mathrm{H}$-NMR spectrum for the mixture obtained. The singlets appeared at 7.05 ppm and 6.79 ppm . However, there is no conclusive evidence for the outcome of this reaction due to other possibilities. The reaction also, might result in a mixture of E and Z aminoisoindoline isomers 140 and 145.

Scheme 2.26: Attempted formation of compound 140 from the reaction of amidine 7 79 and 1-ethynyl 4-nitro benzene under microwave condition.

After unsuccessful formation of 4-nitro phenyl methylene aminoisoindoline $\mathbf{1 4 0}$ following the microwave conditions, an alternative stepwise route was attempted (Scheme 2.27). Synthesis of the intermediate 4- nitro amidine 151 was the next target, then it would undergo cyclisation reaction using palladium(II) catalyst under microwave conditions, this might be producing the desired product 140 . The intermediate $\mathbf{1 5 1}$ can be accomplished via three steps as shown in Scheme 2.27. Firstly, 2-bromobenzonitrile $\mathbf{1 0 8}$ was treated with dimethyl ethynyl carbinol 147 under Sonogashira conditions to produce the corresponding compound 148 in excellent yield. ${ }^{103}$ Then compound $\mathbf{1 4 8}$ was subjected to the reported modified Sonogashira coupling with 1-idol-4- nitrobenzene $\mathbf{1 4 9}$ in the presence of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}$, and $\mathrm{Bu}_{4} \mathrm{NI}$ in a heterogeneous mixture of toluene and aqueous NaOH under nitrogen at 80 ${ }^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{105}$ Yeung et al., found this procedure was very effective to reduce the amount of the resulting homo-coupling compound and assist to increase the target compound yield by more than 23% compared with the outcome when the normal

Sonogashira condition performed. ${ }^{105}$ Following this procedure compound $\mathbf{1 5 0}$ was obtained in good yield. In the third step, compound $\mathbf{1 5 0}$ was treating with LiTMS in dry THF produced the corresponding amidine $\mathbf{1 5 1}$ in low yield. Figure 2.14 shows stacked ${ }^{1} \mathrm{H}$-NMR spectra of both $\mathbf{1 5 0}$ and $\mathbf{1 5 1}$ in deuterated methanol, they both display set of peaks for all of the phenyl and benzene protons.

Step 1

108
147

Scheme 2.27: Stepwise synthesis route toward compound 140.

Figure 2. 14: ${ }^{1} \mathrm{H}$-NMR spectrum of compounds $\mathbf{1 5 0}$ (red colour) and $\mathbf{1 5 1}$ (blue colour).

After the intermediate $\mathbf{1 5 1}$ has been successfully synthesis, it underwent a microwave irradiation in the presence of $\mathrm{Pd}(\mathrm{II})$ catalyst. Unfortunately, this reaction was poor, giving a complicated mixture that was difficult to separated and analyse. The major product formed $\mathbf{1 5 2}$ which was separated by several columns and isolated in poor yield. The ${ }^{1}$ HNMR spectra of compound 152 indicates that the intermediate amidine hydrochloride salt $\mathbf{1 5 1}$ converted to the free amidine $\mathbf{1 5 2}$ (Figure 2.15).

Figure 2.15: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 152 in deuterated chloroform.

Therefore, the attention was switched to the 4-cyano derivative. Using of 4-ethynyl benzonitrile $\mathbf{1 5 3}$ under the microwave conditions that are described above led to the successful synthesis of the corresponding 4-benzonitrile methylene aminoisoindoline 154 in 65% yield.

Scheme 2.28: Synthesis of compound 154.

The structure of product $\mathbf{1 5 4}$ was confirmed by ${ }^{1} \mathrm{HNMR}$ spectroscopy which showed the alkene proton appears as a singlet at 6.8 ppm and the set of peaks of the 4 -cyno phenyl and benzene ring protons in the aromatic region (Figure 2.16). MALDI- TOF mass spectrometry showed a clear peak at $\mathrm{m} / \mathrm{z} 245$ confirming that compound $\mathbf{1 5 4}$ was formed.

Figure 2. 16: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 154.

Table 2.2 summarises the derivatives of aryl acetylene used to synthesise aminoisoindolines and their outcomes. All aminoisoindoline compounds were furnished easily and fast, they were isolated in good yield, except when we used 1-ethynyl-4nitrobenzene, where the reaction produced an inseparable mixture.

Entry

Table 2.2: Summary of the synthesis of aminoisoindoline derivatives.

2.5.2 Synthesis of symmetrical aza (dibenzo) dipyrromethenes (ADBDP) from self-condensation of aminoisoindolines.

The synthesis of aza (dibenzo) dipyrromethenes via dimerization (self-condensation) of aminoisoindolines has been previously reported by our group. ${ }^{41}$ The aminoisoindoline derivatives were initially refluxed in toluene at $120{ }^{\circ} \mathrm{C}$ for $2-24 \mathrm{~h}$, until the aminoisoindoline is completely consumed. This reaction was reproducibly carried out using different aminoisoindolines with donor and acceptor substituents. These selfcondensation reactions gave the required symmetrical compounds as red crystals in good to excellent yield averaging 60-80 \%. The likely mechanism of this reaction includes a nucleophilic attack where an amine group of one molecule attacks the partially positive carbon between the two nitrogens on the other molecule followed by extrusion of ammonia and tautomerisation of the resulting structure resulting in the target symmetrical ADBDPs.

Method $1=$ toluene, $120^{\circ} \mathrm{C}, 24 \mathrm{~h}$
$\left(\mathbf{8 3} \mathrm{Ar}=4-\mathrm{OCH}_{3}\right.$ phenyl, $\mathbf{1 5 5} \mathrm{Ar}=3-\mathrm{OCH}_{3}$ phenyl, $\mathbf{1 5 6} \mathrm{Ar}=4-\mathrm{OC}_{5} \mathrm{H}_{11}$ phenyl $)$
Method $2=$ diglyme, $200^{\circ} \mathrm{C}, 24 \mathrm{~h}$
($157 \mathrm{Ar}=4-\mathrm{CN}$ phenyl)

Scheme 2.29: Synthesis of aza (dibenzo) dipyrromethenes.

Using toluene as the solvent was not a good choice for the synthesis of compound $\mathbf{1 5 7}$ because it was unable to dissolve the starting material $\mathbf{1 5 4}$, which remained unreacted during the reaction for a long period of time then started to dimerise after 24 h . Therefore, the solvent was replaced with diethylene glycol dimethyl ether (diglyme) and heated at $200^{\circ} \mathrm{C}$. After 2 h the colour of the solution changed to a red colour and TLC showed formation of the desired product 157. The reaction was left to continue for
over 24 h until the starting material was almost consumed. All the aza (dibenzo) dipyrromethene compounds were purified by column chromatography eluting with DCM, followed by recrystallisation with 1:1 DCM and MeOH to produce red crystals in good yield. Compounds $\mathbf{1 5 5}$ and $\mathbf{1 5 7}$ gave crystals suitable for X-ray crystallography which confirmed these structures and showed that the configuration of the alkene double bonds were Z, Z as shown in Figure 2.17. The crystallography results, performed and analysed by UEA collaborator Dr David Hughes, are similar for the two structures $\mathbf{1 5 5}$ and 157 . Compound 157 is representative, and the data show all the bonds in the chain of $\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(41)-\mathrm{C}(21)-\mathrm{N}(22)$ are very similar, at ca $1.34 \AA$, suggesting delocalisation. However, the amino nitrogen atoms are different - the hydrogen on N (2) comes up strongly in early difference maps while the hydrogen on N (22) appears weaker. It is assumed that there is only one hydrogen atom here, shared unequally between the two nitrogen atoms. After refinement, the ratio of hydrogen (2):H (22) is ca $0.64: 0.36$. Both these hydrogen atoms are involved in hydrogen bonds to the opposite nitrogen atom in the molecule.

Figure 2.17: Crystal structures of compounds 155 and 157.

These aza (dibenzo) dipyrromethene derivatives were further characterized by NMR spectroscopy and MALDI-TOF mass spectrometry to confirm their identity. The
${ }^{1}$ HNMR spectra of compound $\mathbf{1 5 7}$ is shown below (Figure 2.18). The key characteristic peak for the amine protons is observed at 13.35 ppm . The vinyl $(\mathrm{C}=\mathrm{CH})$ proton is seen as a singlet, integrating to two protons at 7.0 ppm . Moreover, the aromatic region shows eight protons of the isoindoline benzene rings and the phenyl groups. The other aza dipyrromethene compounds $\mathbf{8 3}, \mathbf{1 5 5}$, and $\mathbf{1 5 6}$, were also fully characterised by ${ }^{1} \mathrm{HNMR}$, ${ }^{13}$ CNMR, MALDI-TOF mass spectroscopy and as expected showed similar characteristic peaks for the desired compounds with variations only observed at the aryl substituents.

Figure 2. 18: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 157.

Table 2.3 summarises the synthesis of symmetrical aza dibenzo dipyrromethene derivatives isolated from smooth and efficient self- condensation producing the desired compounds in good yield.

Solvent | Time and |
| :---: |
| temperature |
| 24 h |
| $120^{\circ} \mathrm{C}$ |

Table 2.4: Summary of the synthesis of aza (dibenzo) dipyrromethene derivatives.

During the separation of all these derivatives a side product was noticed, it was the first fraction eluted from the column chromatography and was green in colour. The amount isolated of this fraction was very small, nonetheless a concentrated sample of it were collected over the course of several reactions, during formation of compound 156. The ${ }^{1}$ HNMR spectrum for this fraction was unclear, and MALDI-TOF mass spectrometry gave three main ion peaks. One of them at $m / z 835$ indicates it could contain a TBDAP$\left(\mathrm{OC}_{5} \mathrm{H}_{11}\right)_{2}$ molecular structure 158 as shown in Figure 2.19. We were unable to purify this fraction further. Previously in our group when other aza dipyrromethene derivatives were synthesised we had made similar observations. However, this was not an important issue to investigate extensively due to the trace yields that were collected. Moreover,
previously in our group experiments were carried out re-subjecting the aza dipyrromethenes to the formation of TBTAPs reaction conditions $\left(\mathrm{MgBr}_{2}\right.$, diglyme, 220 ${ }^{\circ} \mathrm{C}$), but no more than trace hybrid macrocycles were observed. ${ }^{106}$

Figure 2. 19: MALDI-TOF mass spectrum of the green fraction isolated from synthesis of $\mathbf{1 5 6}$.

2.5.3 Synthesis of unsymmetrical aza (dibenzo) dipyrromethenes (ADBDPs).

Unsymmetrical aza (dibenzo) dipyrromethene derivatives had not yet been investigated, and such systems could present interesting properties. In particular, systems bearing complementary donor and acceptor fragments are expected to show valuable modified properties. We started the investigation following the standard procedure i.e., heating a 1:1 mixture of 3-methoxy phenyl methylene aminoisoindoline 137 and 4-methoxy phenyl methylene aminoisoindoline $\mathbf{8 1}$ using toluene as the solvent at $120^{\circ} \mathrm{C}$. Following this reaction by TLC showed a major red spot corresponding to the aminoisoindoline dimerization products as well as two other minor spots close to the baseline which refer to the starting materials. The red dimers were isolated and the ${ }^{1}$ HNMR spectrum proved the product to be a mixture of the symmetrical and unsymmetrical condensation products, as expected. Closer analysis of the ${ }^{1} \mathrm{HNMR}$ spectrum of the resulting mixture showed a total of four singlet peaks refer to the methoxy protons appearing in the range of $3.61 \mathrm{ppm}-3.70 \mathrm{ppm}$, two of them overlapping at 3.61 ppm . Vinyl protons appear as sets of four singlets overlapping at 6.75 ppm and 6.80 ppm , this indicates formation of symmetrical and unsymmetrical aza (dibenzo) dipyrromethene compounds (Figure 2.20). They demonstrated yields of 1: 1.76: 1 for compounds 83, 159 and 155 respectively, based on NMR integrations for the isolated mixture. The obtained compounds had very similar chromatographic mobility which led to difficult separation, even after exploring a range of solvents systems.

Scheme 2.30: Mixed condensation reaction forming symmetrical aza dipyrromethenes 83,155 , and unsymmetrical-aza dipyrromethene 159.

83					
155					
L dut	L				
$83 \& 155$ \& 159		$\mathrm{O}-\mathrm{CH}_{3}$			
- H	$\begin{aligned} & \mathbf{H C = C} \\ & \text { Wuld }\\|\\| \end{aligned}$				

Figure 2.20: ${ }^{1} \mathrm{HNMR}$ spectrum of the mixture of symmetrical and unsymmetrical aza dipyrromethenes (red colour) compared with ${ }^{1}$ HNMR spectrum of the compounds 83 (blue colour), and $\mathbf{1 5 5}$ (green colour).

MALDI-TOF mass spectrometry was not helpful due to the identical mass of both compounds and no further analysis was performed. So, the focus was turned to dimerisation of other aminoisoindoline derivatives that would be separable. As such, 4pentyloxyphenyl methylene aminoisoindoline $\mathbf{1 3 8}$ was selected to be used with 4methoxyphenylisoindolene 81, refluxing at $120{ }^{\circ} \mathrm{C}$ in toluene. TLC revealed the formation of three major products, later confirmed by MALDI mass spectrum to be the self-condensation products for symmetrical and unsymmetrical aza dipyrromethene compounds. Purification of the mixture by column chromatography gave three of aza (dibenzo) dipyrromethenes, 4-methoxyphenyl-aminoisoindolene self-condensation product 83 (30%), 4-pentyloxyphenyl aminoisoindolene self-condensation product 156 (27%), and the target unsymmetrical product 160 (44%).

138

81

83

156

30 \%
27 \%

160
44\%

Scheme 2.31: Formation of symmetrical aza (dibenzo) dipyrromethenes 83 and 156, and unsymmetrical aza dipyrromethene $\mathbf{1 6 0}$.

Chapter 2. Results and Discussion

The ${ }^{1} \mathrm{HNMR}$ spectrum in deuterated acetone for $\mathbf{1 6 0}$ showed all signals corresponding to both methoxy and pentyloxy protons. The alkene peaks appear as a singlet integrating to two protons. The aromatic protons for the phenyl and isoindoline benzene rings appeared as expected in the range between $6.6 \mathrm{ppm}-8.0 \mathrm{ppm}$.

Figure 2.21: ${ }^{1} \mathrm{HNMR}$ spectrum of compound 160.

Condensation of similar electronic components was expected to produce an approximately statistical mixture of compounds. It was reasoned if one component was electron rich and one was electron poor, then we might be able to favour one unsymmetrical product. This was assumed in the mechanism one component behaves as a nucleophile, therefore favoured by addition of electron rich substituent, whereas the second component behaves as an electrophile, therefore favoured by addition of electron withdrawing substituent, and that might lead to formation of unsymmetrical dimer (Scheme 2.32).

$($ Blue colour $)=$ aminoisoindoline with electron rich substituent
 $($ Red colour $)=$ aminoisoindoline with electron poor substituent

Scheme 2.32: Suggested mechanism for formation of unsymmetrical aza (dibenzo) dipyrromethenes (ADBDPs).

Condensation of electron poor 4-cyano substituted aminoisoindoline 154 (prepared as previously described) with the 4-methoxyphenylisondoline compound $\mathbf{8 1}$ was therefore examined. The reaction was monitored by TLC. After a few hours it was observed formation of a new red spot, and the reaction was left longer due to presence of large amount of starting materials still unreacted. After 24 h reflux the red spot has become the major component. Another red spot has also formed, refers to symmetrical di cyano aminoisoindoline dimer 157 (the reference was already available from previous preparation). Also, there was a minor spot close to the baseline which corresponded to the starting material 154. After separation of the mixture and analysis by ${ }^{1} \mathrm{HNMR}$ spectroscopy, the first red spot was found not to be a single compound but rather a mixture of 4-methoxy aminoisoindoline dimer $\mathbf{8 3}$ and the target unsymmetrical product 161. They had very similar chromatographic mobility which led to difficult separation.

Scheme 2.33: Mixed condensation reaction formatting of symmetrical aza dipyrromethenes 83,157 , and unsymmetrical aza dipyrromethene 161.

During this reaction the formation of compound 157 was very slow and the outcome yield was poor, the explanation is that the aminoisoindoline with electron rich substituent $\mathbf{8 1}$ is more reactive than the aminoisoindoline with electron poor substituent 154. So, in the first step compound $\mathbf{8 1}$ initiates the reaction by reacting either with itself, producing the symmetrical ADBDP 83 or with compound 154 to produce the unsymmetrical 161. Therefore, when compound 81 was consumed, and only compound 154 remains, then it started the self-condensation reaction producing the symmetrical ADBDP 157. Another suggestion for the low yield of compound 157 is that the slow step in the reaction mechanism could be loss of ammonia and the protonation might be less favoured if the substituent is electron withdrawing leading to slow formation of compound 157. Also, as mentioned earlier, compound 154 is poorly soluble in toluene so, it is formed later in the reaction. Figure 2.22 illustrates comparison between ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{8 3}$ and the resulting mixture of 83 and $\mathbf{1 6 1}$ in deuterated acetone. As shown, there were two singlets at 3.79 ppm and 3.74 ppm indicating the presence of the methoxy group in symmetrical and unsymmetrical dimers. There were three singlets appear at $7.13 \mathrm{ppm}, 7.10 \mathrm{ppm}$ and 7.07 ppm which refer to the vinyl protons $(\mathrm{C}=\mathrm{C}-\mathrm{H})$,
multiplet at 6.70 ppm integrating to four protons refer to the phenyl protons in both symmetrical and unsymmetrical dimers. From the NMR integration, they demonstrated the yield ratio $\mathbf{1 : 1}$ for the compound $\mathbf{8 3}$ and compound $\mathbf{1 6 1}$ respectively. While compound 157 was isolated in low yield 14%. MALDI-TOF mass spectrum for the first fraction confirmed presence of two products with two ion peaks at $m / z 477$ and m / z 480, which correspond to the target product 161 and 4-methoxy phenyl aminoisoindoline self-condensation product 83.

Figure 2.22: ${ }^{1} \mathrm{HNMR}$ spectrum of the mixture symmetrical aza dipyrromethene $\mathbf{8 3}$ (blue colour), and the mixture of symmetrical $\mathbf{8 3}$ and unsymmetrical aza dipyrromethene 161 (red colour).

Figure 2.23: MALDI-TOF spectrum of the crude mixture.
In order to make separation possible, 4-methoxy phenyl methylene aminoisoindoline $\mathbf{8 1}$ was replaced by the 4-pentyloxy phenyl methylene aminoisoindoline 138. However, the similar issue was also encountered, and the TLC showed two red spots were very close to each other. MALDI-TOF mass spectrum for this fraction confirmed the presence of two products with $\mathrm{m} / \mathrm{z} 536$ and $\mathrm{m} / \mathrm{z} 597$ molecular weights which correspond to the target product 162 and 4-pentyloxy aminoisoindoline self-condensation product $\mathbf{1 5 6}$ (Figure 2.24).

Figure 2.24: MALDI-TOF mass spectrum of the crude mixture.
These products were difficult to isolate, trace amount of compound $\mathbf{1 5 6}$ remained inseparable from the mixture in spite of applying several solvent systems. Compound 157 was also observed on the TLC, it was isolated from the column chromatography in low yield. The ${ }^{1} \mathrm{HNMR}$ spectra of the first fraction (Figure 2.25) showed two sets of the pentyloxy chains demonstrating presence of two products, three singlets at 6.81 ppm , 6.78 ppm and 6.71 ppm correspond to the vinyl protons $(\mathrm{C}=\mathrm{C}-\mathrm{H})$ in the symmetrical and unsymmetrical dimers. Multiplet at 6.61 ppm integrating to four protons which supports the presence of two pentyloxy phenyl protons in both symmetrical and unsymmetrical dimer. A doublet at 7.22 ppm with coupling constant $J=8.7 \mathrm{~Hz}$ corresponds to the cyano phenyl protons.

Figure 2.25: ${ }^{1}$ HNMR spectrum of symmetrical aza dipyrromethene 156 (blue colour), and the mixture of symmetrical 156, and unsymmetrical aza dipyrromethene 162 (red colour).

2.6 Controlled synthesis of unsymmetrical derivatives.

Although operationally simple, this synthetic procedure was not an efficient method to synthesise the unsymmetrical aza (dibenzo) dipyrromethenes as the isolation of products was impossible. Moreover, the symmetrical derivatives from the electron rich component were generally observed in the close proportion to that of the unsymmetrical product. This indicated the higher reactivity of electron rich derivatives. To overcome this issue, it was looked to design a method to prevent formation of the symmetrical aza (dibenzo) dipyrromethenes and improve the yield of unsymmetrical dimers. Therefore, it was investigated conversion of the amino group of one aminoisoindoline into good leaving group by converting to the corresponding tosylate. The 4 -alkoxy phenyl aminoisoindolines $\mathbf{8 1}$ and $\mathbf{1 3 8}$ were chosen as substrates to investigate tosylate methodology, due to their rapid self-condensation, producing the symmetrical compounds that are difficult to separate from the unsymmetrical dimers. Compounds $\mathbf{8 1}$ and $\mathbf{1 3 8}$ were treated with p-toluene sulfonyl chloride ($\mathrm{Ts}-\mathrm{Cl}$) in the presence of TEA ${ }^{107}$ (Scheme 2:34).

Scheme 2.34: Synthesis of compound 163 and compound 164.

The mixture was stirred at room temperature in dry DCM and the reaction monitored by TLC. Conversion to a new product was observed in both cases. Work up led to isolation of pure materials whose spectroscopic data were consistent with the formation of a tosylate. However, there are in theory two possible sites (nitrogens) that can undergo tosylation, and ${ }^{1} \mathrm{HNMR}$ spectroscopy cannot differentiate between them. Fortunately, crystals suitable for X-ray crystallography were obtained for 163 and 164, and the crystal structures (Figure 2.26) clearly prove that tosylation has occurred on the desired nitrogen. The crystallography results, performed and analysed by UEA collaborator Dr David Hughes, are again similar for the two structures 163 and 164. However, in structure 164 the hydrogen atom on N (11), is clearly identified.

Figure 2.26: X-Ray structure for compound 163 and compound 164.

Figure 2.27 illustrates the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 163 . The spectrum confirmed that the Ts group is indeed coupled on the amine group of the 4-methoxy phenyl methylene aminoisoindoline, as it is clear to observe presence of Ts group protons appeared as doublet at 7.47 ppm overlapped with another doublet refers to the isoindoline benzene ring with coupling constant $J=8.2,6.0 \mathrm{~Hz}$, in addition to doublet at 7.29 ppm with coupling constant $J=8.0 \mathrm{~Hz}$. Methyl group protons appeared as a singlet at 3.88 ppm . The aminoisoindoline set peaks appeared at the expected range between $7.00 \mathrm{ppm}-7.90 \mathrm{ppm}$ (Figure 2.27). Compound 164 was also fully characterised by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR, MALDI- TOF mass spectrum and as expected showed similar characteristic peaks for the desired compound.

Figure 2.27: ${ }^{1} \mathrm{HNMR}$ spectrum of compound 163.

Our working assumption for the reaction mechanism, it was suggested a tosylation of $\mathbf{1 6 3}$ or $\mathbf{1 6 4}$ followed by a nucleophilic reaction. It was postulated in the key step the amino group of one component behaves as a nucleophile while on the second component it behaves as a leaving group due to the tosylation. It was suggested that the tosylation of the amine (amidine) would simultaneously reduce the nitrogen nucleophilicity and improve its ability to act as a leaving group. After compounds $\mathbf{1 6 3}$
and 164 were isolated, they were tested by refluxing each separately in toluene at 120 ${ }^{\circ} \mathrm{C}$ in order to detect whether the Ts group would be removed under the condensation reaction condition. The reaction was monitored frequently by TLC over 8 h , indicating that no dimerisation reaction occurred. This test was also carried out using p -xylene at $140{ }^{\circ} \mathrm{C}$, and once more there was no changes observed of the tosylate products. Accordingly, after the evidence had made that Ts group was effective in protecting of NH group on the 4-alkoxy phenyl methylene aminoisoindoline tosylate derivatives $\mathbf{1 6 3}$ and 164, which subsequently underwent condensation reaction with 4-cyano substituted aminoisoindoline $\mathbf{1 5 4}$ (Scheme 2.35). Therefore, the amine group on the compound $\mathbf{1 5 4}$ acts as a nucleophile attacking the partially positive carbon between the two nitrogens on the 4-alkoxy phenyl aminoisoindoline tosylate derivatives $\mathbf{1 6 3}$ and $\mathbf{1 6 4}$ followed by loss of the Ts group and tautomerisation of the resulting structure to obtain the target unsymmetrical aza dipyrromethenes 161 and 162. This route was successful to furnish the unsymmetrical aza dipyrromethenes 161 and 162 with remarkable improvement of the reaction yields to those obtained via the mixed condensation synthetic method. In both pathways compound 157 produced in low yield $\leq 24 \%$.

Scheme 2.35: Synthesis of unsymmetrical aza (dibenzo) dipyrromethenes (ADBDPs)
161 and 162 via aminoisoindolines tosylate 163 and 164.

Compounds 161 and 162 were analysed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy and they both displayed similarities in their ${ }^{1} \mathrm{H}$-NMR spectra, the only difference was in the methoxy protons and pentaloxy chain protons. Figure 2.28 shows the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 161, vinyl $(\mathrm{C}=\mathrm{CH})$ protons appeared as two singlets at 7.0 ppm and 6.9 ppm
confirming a break of the symmetry in the aza dipyrromethene. MALDI- TOF mass spectrum showed the expected ion peaks for both compounds confirming their structures.

Figure 2.28: ${ }^{1} \mathrm{HNMR}$ spectrum and MALDI-TOF mass spectrum of compounds 161.

The improvement in yield is because the protection of the amino functional group with Ts group prevented formation of symmetrical self-condensation of aminoisoindolines, whose formation leads to decrease in the yield of the unsymmetrical dimers and an impossible separation. With the optimized condition in hand, we turned our attention to investigate this strategy further by converting of amino group in the 4-methoxy phenyl aminoisoindoline 81 into a better leaving group. This was easily achieved by reacting $\mathbf{8 1}$ with trifluoromethanesulfonic anhydride under nitrogen in the presence of pyridine at $-20^{\circ} \mathrm{C}$ in dry DCM. ${ }^{108}$ The work up and isolation of the crude mixture followed by column chromatography led to the isolation of pure materials whose spectroscopic data were consistent with formation of a triflate aminoisoindoline 165. Crystals suitable for X-ray diffraction was eventually grown from a mixture of 1:1 DCM and PE, and analysis showed that the triflate group coupled at the desired nitrogen (Figure 2.29). The crystallography results, again performed and analysed by UEA collaborator Dr David Hughes, shows the isoindole group forms the central plane of the molecule. The
normal to the phenyl group is rotated 14.3° from that of the isoindole group and the $\mathrm{SO}_{2}-\mathrm{CF}_{3}$ group provides the only significantly displaced atoms from the major planar units. The pyrrole hydrogen atom was recognised in difference maps and forms a good intramolecular hydrogen bond with $\mathrm{O}(121)$, (Figure $2.29 \mathbf{A}$). Molecules are stacked, principally through the $\pi \pi$ interactions between overlapping isoindole rings, in columns parallel to the a axis, (Figure 2.29 B, and \mathbf{C}), with interplanar distances of 3.000 and $3.319 \AA$, either side of the isoindole plane. The phenyl ring partially overlaps its symmetry neighbour on one side at a distance of $3.59 \AA$; there are no $\pi \pi$ interactions on the opposing side.

Figure 2.29: X-Ray structure for compound 165.

Therefore, to detect whether the triflate group would be removed under the dimerisation condition, compound 165 was examined by refluxing in toluene at $120^{\circ} \mathrm{C}$, and TLC showed no dimerisation reaction had occurred. So, compound 154 was added to the solution, after 24 h unsymmetrical dimer $\mathbf{1 6 1}$ was isolated in 64% yield (Scheme 2.36). The increase in the unsymmetrical outcome indicates that the triflate group is a better leaving group than the tosylate.

Scheme 2.36: Synthesis of unsymmetrical aza (dibenzo) dipyrromethene (ADBDP) 161 from triflate aminoisoindoline 165.

Table 2.4 summarises the reactions carried out using this synthetic procedure and the resulting yields of the symmetrical and unsymmetrical aza dipyrromethenes using tosylate and triflate aminoisoindolines. In terms of comparing the resulting yield of the unsymmetrical dimer 161 in both reactions, the one using the 4 -methoxy phenyl aminoisoindoline triflate showed an increase of 14% compared to the tosylate. However, there was not much difference in the yield observed when 4-methoxyphenyl aminoisoindoline 81 was condensed with 4-pentaloxy phenyl aminoisoindoline, either with tosylate group or the triflate group, which indicates that they have almost equal influence. Also, the reactivity of the aminoisoindolines with electron donating substituents on the phenyl ring led to the self-condensation of the 4 -alkoxy phenyl aminoisoindolines, producing the symmetrical 4-alkoxy aminoisoindoline dimers in a convergent yield.

Reactant 1	Reactant 2	Solvent \& time	Result 1	Result 2	Results3
 154	 163	toluene reflux, 24 h	 161 50 \%		unreacted 163 17%, and 154 traces
	 165	toluene reflux, 24 h			unreacted 165 15%, and 154 traces
		toluene reflux, 24 h		 157 23%	unreacted 164 17%, and 154 traces
 81		toluene reflux, 24 h	 160 51%	 83 41%	traces of the SMs
 138	 165	toluene reflux, 24 h	 160 49 \%	 156 39 \%	traces of the SMs

Table 2.4: Summary of the formation of unsymmetrical aza dipyrromethenes using tosylate and triflate aminoisoindolines.

2.7 Complexation of symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes (ADBDPs) using boron trifluoride diethyl etherate.

Previously, our group had isolated aza BODIPY-OPh 168 as a side product during the formation of the Sub-TBDAP hybrids 166 as shown in Scheme 2.37. This one pot reaction was done in two steps, the first step was by refluxing of phenyl methylene aminoisoindoline $\mathbf{8 0}$ with phthalonitrile in the presence of BCl_{3} as the boron template for the macrocyclisation process, in p -xylene for 3 h . In the next step, the $\mathrm{B}-\mathrm{Cl}$ fragment was replaced with stable $\mathrm{B}-\mathrm{OPh}$ moieties by adding excess of phenol to the reaction vessel. ${ }^{109}$ In this reaction aza BODIPY-OPh 168 was isolated as a side product, the major product was $\mathrm{SubPc}-\mathrm{OPh} 167$, while the target boron subtribenzodiazaporphyrin (SubTBDAP) 166 was obtained as pink-red solid in 15% yield. ${ }^{109}$

Scheme 2.37: Formation of aza BODIPY-OPh 168 as a side product during synthesis of Sub-TBDAP hybrids. ${ }^{109}$

Our group were able to control synthesis of aza BODIPYs-OPh compounds in one single reaction step, by irradiating aminoisoindoline derivatives and triphenyl under microwave in p-xylene at $220^{\circ} \mathrm{C}$ for 1 h . High temperature was required to stop the equilibrium formed between the dimer (boron free), and the desired product (boron complex) 168, and to allow aminoisoindoline 80 to fully convert to the target aza

BODIPYs. Following this synthetic pathway, compounds $\mathbf{1 6 8}$ and $\mathbf{1 7 0}$ were isolated as either yellow solid in 41 \% yield or a red solid in 14 \% yield respectively (Scheme 2.38). ${ }^{110}$

$80 \mathrm{Ar}=$ phenyl
$169 \mathrm{Ar}=$ pyrenyl
$168 \mathrm{Ar}=$ phenyl 41%
$170 \mathrm{Ar}=$ pyrenyl 14%

Scheme 2.38: Synthesis of aza BODIPYs-OPh compounds 168 and $\mathbf{1 7 0}$ under microwave irradiation, and X-ray crystal structure of compound 170. ${ }^{110}$

Our group has isolated compound $\mathbf{1 6 8}$ as a single isomer with E, E configuration, this assignment was strongly supported by ${ }^{1}$ HNMR spectrum which demonstrated a set of signals for a single compound with a singlet peak referring to the alkene proton at 8.36 ppm. Also, ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ spectrum showed one singlet at 2.34 ppm confirming presence of one single isomer. In contrast they isolated compound $\mathbf{1 7 0}$ as a mixture of isomers, this indication was based on the ${ }^{1} \mathrm{H}$-NMR spectrum which showed two different sets of signals, and the ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ showed two singlets at 2.76 ppm and 1.80 ppm , this strongly supported presence of two isomers, they favoured the E, E configuration in a ratio (4:1). Eventually, crystals were grown from 1:1 DCM and MeOH as the crystallisation system, producing suitable crystals for X-ray diffraction demonstrating the E, E configuration (Scheme 2.38 inset). Therefore, the reaction was repeated following a
similar microwave condition at $180{ }^{\circ} \mathrm{C}$ with 4-methoxy phenyl methylene aminoisoindoline $\mathbf{8 1}$ as the starting material. TLC after 1 h showed two major spots. The first spot was orange in colour, and it was suspected this to be the boron complex. The other was red and refers to the dimer $\mathbf{8 3}$ (reference was available from previous preparation). The reaction was left longer in order to give it more chance to be completely consumed, but the reaction was not completed even after 8 h reflux. Then the mixture was cooled down, and PhOH was added, to prove the equilibrium, and drive the reaction back toward the dimer $\mathbf{8 3}$. As we expected, after 1 h reflux, TLC showed two red spots very close to each other referring to the dimer isomers, and the orange spot had disappeared.

Scheme 2.39: Clarification of the chemical equilibrium between compounds $\mathbf{8 3}$ and compound 171.

Complexation of aza (dibenzo) dipyrromethenes (ADBDPs) with BF_{3}. OEt_{2} is more common, and our group has synthesised aza BODIPYs derivatives by straightforward synthetic procedure. ${ }^{41}$ Compounds $\mathbf{8 2}$ and 83 were converted into corresponding aza(dibenzo) BODIPYs in the presence of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ as boron source, and TEA as a base in dry DCM, producing the desired corresponding boron complexes 84 and 85 in moderate yield as mentioned previously (Scheme 2.40). ${ }^{41}$

Scheme 2.40: Synthesis of aza (dibenzo) BODIPYs 84 and $\mathbf{8 5}$. ${ }^{41}$

Aza (dibenzo) BODIPYs $\mathbf{8 4}$ and $\mathbf{8 5}$ were isolated as single products displaying E, E configuration in the solid state. However, they are prone to isomerisation in solution producing a mixture of stereoisomers in the equilibrium reaction as mentioned in the introduction chapter. ${ }^{41}$ Accordingly, to start the investigation to improve the resulting yield and expand in the formation of different derivatives of aza BODIPYs, the reaction was repeated with 3-methoxy phenyl methylene ADBDP 155 as the starting material. Compound $\mathbf{1 5 5}$ was stirred in dry DCM in the presence of DBU or TEA as a base, followed by the dropwise addition of BF_{3}. OEt_{2}. The reaction was kept stirring under N_{2} for 24 h . The product formed was clearly observed on the TLC after adding excess of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ along with a major quantity of starting material. After the work up compound $\mathbf{1 7 2}$ was isolated in 40% yield. Leaving the reaction for more than 24 h and increasing the temperature up to $50^{\circ} \mathrm{C}$ did not help to improve of conversion of the starting material to the target product, which in turn caused a challenging isolation and resulted in low yield. The suggestion is that there is an equilibrium between the starting material $\mathbf{1 5 5}$ and the resulting boron complex compound 172. To investigate the equilibrium, tetrabutylammonium fluoride hydrate as the fluoride ion source was added to the pure sample of the compound 172, it was observed that the aza BODIPY 172 was destroyed very quickly, and TLC shows mixture of multiple red spots with none of them matching compound 172. However, the ${ }^{1}$ HNMR spectrum indicates a complex mixture, possibly of stereoisomers that might be formed as a result of removing of BF_{2} from compound 172. Thus, this did not investigate further, because the key result (ion fluoride F^{-}reacts with the aza BODIPY) was conclusive. However, adding excess of BF_{3} had negligible effects, so a strategy to remove the formed fluoride ion from the reaction to drive the
equilibrium towards the desired aza BODIPYs was required. It was suggested that replacing boron fluorine $\mathrm{B}-\mathrm{F}$ with silicone fluorine $\mathrm{Si}-\mathrm{F}$ which has greater bond energy than B-F (Si-F > B-F), the difference in these energies might shift the equilibrium towards the desired product i.e., fluoride ion could be remove from the equilibrium. Therefore, it was decided to investigate the treatment of fluoride ion with a suitable silane reagent, trimethylsilyl chloride (TMS-Cl) was chosen due to its availability and its ability to remove the fluoride ion, producing trimethylsilyl fluoride as described in Scheme 2.41. To examine this strategy, the synthesis of compound $\mathbf{1 7 2}$ was repeated following the standard procedure, and after 24 h the orange spot had appeared on the TLC along with a major red spot corresponding to the starting material. Then TMS-Cl was added to the reaction mixture. TLC was monitored and after 8 h and no dimer was observed. As we expected, adding of TMS-Cl helped to shift the equilibrium towards the target product giving the single orange spot with improved outcome. Compound $\mathbf{1 7 2}$ was isolated as orange crystals in 73% yield. Warming the reaction mixture up to 50 ${ }^{\circ} \mathrm{C}$ successfully assisted to reduce the conversion period time, producing the desired product after 3 h . This procedure was adopted for all subsequent BF_{2} complexations.

155

$4 \begin{gathered}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si-Cl} \\ \text { then, } 50^{\circ} \mathrm{C}\end{gathered}$

172
73 \%

Scheme 2.41: Optimized synthesis strategy towards aza BODIPYs.
Isolation and characterization of aza (dibenzo) BODIPYs analogues proved more complicated than their precursors. Nonetheless their crystals were finally grown from 1:1 DCM:PE as orange crystals in good yield (73%). This issue might be because these compounds were prone to isomerisation in solution at room temperature which led to
the observation of a mixture of E and Z isomers. The ${ }^{1} \mathrm{H}$-NMR spectrum proved initially one molecular type corresponding to the E, E configuration. However, when these compounds remain in solution, isomerisation occurs at room temperature leading to the formation of a mixture of E and Z isomers after a few hours. This suggests that the E, E configuration is favoured solely by the crystal packing and solid-state interactions. ${ }^{41}$ Figure 2.30 illustrates the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{19} \mathrm{~F}$-NMR spectrum of compound $\mathbf{1 7 2}$, and it shows a singlet corresponding to the alkene proton at 7.8 ppm which confirmed the E, E configuration, the other singlet corresponding to the proton on the phenyl ring at 7.14 ppm is labelled *. Protons on the phenyl and benzene rings appeared as expected at the range from $8.21 \mathrm{ppm}-6.97 \mathrm{ppm}$. The methoxy group protons appeared as a singlet peak at $3.8 \mathrm{ppm} .{ }^{19} \mathrm{~F}$-NMR spectrum strongly supported the presence of the fluorine linked with boron compound in the structure, the ${ }^{19} \mathrm{~F}$-NMR signal appeared around -139 ppm .

Figure 2.30: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{19} \mathrm{~F}$-NMR spectrum of compound 172.

Aza (dibenzo) BODIPYs derivatives 173, 174, 175, 176 and 177 were synthesised following the same synthetic procedure, and were fully characterised by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F-NMR spectroscopy and MALDI-TOF mass spectrometry to confirm the structures. Table 2.5 outlines the aza BODIPY compounds obtained and the resulting yield.

Table 2.5: Summary for synthesis of aza-BODIPY derivatives.
As mentioned previously, X-ray crystallography confirmed that the Z, Z configuration existed in the starting material (ADBDPs). Whilst the corresponding aza (dibenzo) BODIPYs obviously demonstrated the E, E configuration which is the opposite configuration. ${ }^{41}$ This was supported by ${ }^{1} \mathrm{HNMR}$ spectroscopy with a singlet peak corresponding to the alkene protons around 8.00 ppm as a result of the steric clashes between the aryl groups and the BF_{2} in the aza (dibenzo) BODIPYs structures. Both compounds $\mathbf{1 7 2}$ and $\mathbf{1 7 4}$ gave a single crystal suitable for X-ray diffraction analysis and their structures were confirmed to contain the E, E configuration as shown in Figure 2.31. These crystals were grown from a mixture of 1:1 DCM:PE. Crystal data and brief description are included in the appendix.

Figure 2.31: X-ray structure for compound 172 and compound 174.

To clarify the equilibrium reaction between these isomers they were studied by TLC. The freshly obtained TLC of aza (dibenzo) BODIPYs compounds showed a single orange spot corresponding to the $E, E \mathrm{BF}_{2}$ complexes, then two new spots were observed after a few hours. The isomerisation was clearly ongoing when 2D TLC was performed. To investigate this, some analyses were carried out on the new major compound formed from 173. It was separated and analysed by MALDI- TOF mass spectrometry, UV-Visible spectroscopy, ${ }^{1} \mathrm{HNMR}$ and ${ }^{19} \mathrm{FNMR}$ spectrum. All this analysis indicated the presence of BF_{2} in the compound. UV-vis spectra showed a similar absorption pattern to the aza (dibenzo) BODIPYs, they displayed two absorption bands at 478 nm and 335 nm (Figure 2.32).

Figure 2.32: UV-Visible spectra for compound 173 and the new compound formed from compound 173.

Furthermore, ${ }^{19} \mathrm{~F}$-NMR spectrum of this compound showed the fluoride signals as overlapping multiple peaks, indicating formation of isomers of compound 173. Furthermore, the ${ }^{1} \mathrm{H}$-NMR spectra for the isolated fraction from compound $\mathbf{1 7 3}$ supported presence of the unsymmetrical E, Z configuration compound. Figure 2.33
shows two singlets corresponding to the alkene protons at 8.09 ppm , and 7.78 ppm respectively in addition to signals for sixteen aromatic protons at the range from 8.24 $\mathrm{ppm}-7.01 \mathrm{ppm}$. The protons of the methylene group on the pentaloxy chains were found at 4.06 ppm as two overlapping triplets, followed by the set of peaks that appeared at $1.83 \mathrm{ppm}, 1.41 \mathrm{ppm}$ and 0.95 ppm with the integration for two pentaloxy chains. After we had evidence that BF_{2} is still coupled in these compounds, it underwent recrystallisation again to yield crystals that displayed the E, E configuration which confirms that there is a reversible isomerisation between these isomers.

Figure 2. 33: ${ }^{1}$ HNMR spectrum of the new compound formed from compound 173.

2.8 Optical properties of symmetrical and unsymmetrical aza BODIPYs and their precursor aza (dibenzo) dipyrromethenes (ADBDPs).

Figure 2.34 shows the UV-Vis spectra of symmetrical and unsymmetrical aza (dibenzo) dipyrromethene compounds in dichloromethane. All aza (dibenzo) dipyrromethenes are red in colour, they displayed three absorption bands in the visible region. Depending on the substitution pattern, the absorption ranged from 477 nm for compound $\mathbf{1 5 5}$ to 508 nm for compound 162. There was slight difference (around 14 nm) in the absorption of compounds 155 when the methoxy group is located on the meta position compared with compound $\mathbf{8 3}$ with methoxy group on the para position, they displayed 477 nm and 491 nm respectively. However, introduction of electron withdrawing substituent (nitrile group) on the para position 157 exhibits absorption at 492 nm which is identical
absorption to compound 83. Further conjugation applied by entering of 4-pentaloxy substituents on the para position compound 156 red shifts the absorption by around 14 nm compared to compound $\mathbf{8 3}$. On the other hand, unsymmetrical aza (dibenzo) dipyrromethene compounds $\mathbf{1 6 0}, \mathbf{1 6 1}$ and $\mathbf{1 6 2}$ show absorption maxima at $500 \mathrm{~nm}, 495$ nm and 508 nm , respectively and this indicates that electronic properties of the substituent groups (electron withdrawing or electron donating) on the aza dipyrromethene units have similar effect on the absorption as seen in Figure 2.34.

$\lambda_{\max }$

Figure 2. 34: UV-vis spectra of symmetrical, unsymmetrical aza (dibenzo) dipyrromethene compounds.

Boron difluoride complexes are orange in colour, they showed two absorption bands in the visible region at $321 \mathrm{~nm}-330 \mathrm{~nm}$ and $441 \mathrm{~nm}-475 \mathrm{~nm}$. Figure 2.35 demonstrated the absorption, emission and excitation spectra of aza (dibenzo) BODIPYs compound

172, the emission band in this molecule shown at 523 nm after excitation at 445 nm , these features give significant Stokes Shift of around 78 nm .

Figure 2. 35: Normalized UV-Vis absorption (blue solid line) and fluorescence emission (black and green dotted line) and the excitation spectrum spectra (red dotted line) of $\mathbf{1 7 2}$ in DCM.

Figure 2.36 shows a comparison between the symmetrical aza (dibenzo) BODIPYs 173, 174 and unsymmetrical aza (dibenzo) BODIPYs 175. Compound 173 and 174 display absorption maxima at $475 \mathrm{~nm}, 441 \mathrm{~nm}$ respectively and fluorescence with Stokes shifts of 86 nm . This indicates that in case of introduction of further conjugation of electron donating substituents (4- pentaloxy group) 173, red shift the absorption to around 35 nm compared with the molecule with electron withdrawing substituents (4- nitrile group) 174. While unsymmetrical compound 175 exhibits emission at 567 nm upon excitation at 465 nm , and Stokes Shift of 102 nm which demonstrated the electronic effects donor and acceptor substituents on the absorption. In general, the observed Stokes shift in the series are larger than typically found for the BODIPYs ($10-30 \mathrm{~nm}$). ${ }^{111}$

Figure 2.36: Normalized UV-Vis absorption (solid line) and fluorescence emission (dotted line) of compound 173, 174, and 175 in DCM.

2.9 Oxidative cyclisations to give fused and/or macrocyclic aza (dibenzo) dipyrromethenes system

Two strategies were investegated to modify the properties of aza (dibenzo) dipyrromethene (ADBDP) materials. The first strategy is π extension (fusion) that is expected to shift the absorption/emmission to longer wavelength. The second strateg is oxidative coupling leading to rigid macrocycles (Scheme 2.42)

Scheme 2.42: Proposed strategies to extentd π conjugation in the aza (dibenzo) dipyrromethens (ADBDP) and aza BODIPYs unit.

As mentioned in the introductory chapter, there have been examples published recently in the literature of ring fused aza-BODIPYs that are synthesised by oxidative aromatic coupling. One example is shown in Scheme 2.43, 10 equivalents of iron(III) chloride with nitromethane $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right)$ in dry DCM were reacted with aza BODIPY 95a, and this straightforward reaction was regioselective, producing [b] fused aza BODIPY 96a in excellent yield, and no [c] fused aza BODIPYs was observed. The modified structure leads to more than 100 nm red-shift in both absorption and emission. ${ }^{78}$

Scheme 2.43: Synthesis of benzo fused aza BODIPY 96a. ${ }^{78}$

Accordingly, investigation of the ring fused aza (dibenzo) BODIPYs by oxidation reaction was carry out using aza (dibenzo) BODIPY 172 that was available from previous synthesis. Compound $\mathbf{1 7 2}$ was selected, due to presence of the methoxy group on the meta position in the phenyl ring that is expected to dierct the coupling to produce the desired fused aza BODIPY compound 178. Compound 172 was treated with 10 equivalents of FeCl_{3} in dry DCM. The mixture was stirred at room temperature and monitored by TLC over 24 h . Since no reaction occurred an excess of FeCl_{3} (more 10 equivalents) with $\mathrm{CH}_{3} \mathrm{NO}_{2}$ in DCM were added. Unfortunately, this did not produce the corresponding fused ring system, and then starting material started to isomerise in the solution. Then a photocyclisation reaction was performed in the presence of iodine as an oxidant, but no effect was seen through TLC or in the ${ }^{1} \mathrm{HNMR}$ spectroscopy even after a powerful UV light was applied to compound 172 (Scheme 2.44). The main suggested reason that prevents the oxidative coupling to occur is the BODIPY unit might be behaving as an electron poor group.

172

178

Scheme 2.44: Synthesis attempts for compound 178.

2.9.1 Macrocycle formation attempts from aza dipyrromethene derivatives.

2.9.1.1 From 4-methoxy phenyl methylene aza dipyrromethene compound 83

The first attempt towards formation of the macrocycle structure 179 was by treating of 4-methoxy phenyl methylene aza dipyrromethene 83 with iron(III) chloride in dry DCM. Compound $\mathbf{8 3}$ was selected due to presence of the methoxy group on the para position that is expected to direct the coupling to the right position producing the closed structure 179. Unfortunately this was unsuccessful to produce the target compound, the starting material appeared to remain unreacted.

83

179

Scheme 2.45: Synthesis attempts for compound 179.

2.9.1.2 From 3-methoxy phenyl methylene aza dipyrromethene compound 155

Formation of the macrocycle compound $\mathbf{1 8 2}$ from the precursor 3-methoxy phenyl methylene aza (dibenzo) dipyrromethene compound 155, was one of the targets. Compound $\mathbf{1 5 5}$ was chosen due to the possibilities of direct coupling of the phenyl rings to produce the closed structure 182. It was reasoned this could be achieved following three steps, starting with demethylation of the compound $\mathbf{1 5 5}$, followed by converting the hydroxy group into the triflate producing the corresponding compound $\mathbf{1 8 1}$. Homocoupling in the last step (macrocyclisation step) would lead to the desired macrocycle structure 182. Scheme 2.46 outlines the proposed plan toward the desired macrocycle 182.

182
Scheme 2.46: Proposed plan to synthesis of the macrocycle 182.

To achieve our target, we started with demethylation of the 3-methoxy phenyl aza dipyrromethene compound $\mathbf{1 5 5}$ following the procedure reported by Chakraborti et al. ${ }^{112}$ Compound $\mathbf{1 5 5}$ was treated with three equivalents of thiophenol and potassium carbonate in dry DMF at $150{ }^{\circ} \mathrm{C}$ for 6 h (Scheme 2.47).

21%
Scheme 2.47: Demethylation of compound 155.

The reaction was monitored by the ${ }^{1} \mathrm{HNMR}$ until the singlet peak of the methoxy group had disappeared, then it was quenched by washing the mixture with water and extracted with ethyl acetate. The resulting mixture was analysed by MALDI-TOF mass spectrometry, which showed three ion peaks (Figure 2.37). The peak at $m / z 457$ indicates formation of the desired product compound 180, while the other peak at m / z 471 we expected this an indication of partial demethylation occurring at one methoxy
group producing the unsymmetrical dipyrromethene 183. The third peak observed appears at $\mathrm{m} / \mathrm{z} 699$ and it was suggested this could be correspond to the formation of TBDAP-OH molecule, this was noticed as well during the separation of aza dipyrromethene derivatives as mentioned before (Figure $2.37 \mathbf{A}$). The crude mixture was separated by column chromatography. The desired product $\mathbf{1 8 0}$ was isolated in low yield, in addition to trace amounts of a green fraction with $m / z 699$. No further analyses were performed for this fraction due to the poor isolated yield < 3 \% (Figure 2.37 B).

Figure 2. 37: MALDI-TOF obtained from demethylation of compound 155 following Chakraborti precedure.

This was studied further to clarify what was occurring in this reaction. The starting material 155 was refluxed in DMF at $150^{\circ} \mathrm{C}$ and after 2 h the TLC was checked and revealed just the starting material. Then 1.2 eq of MgBr_{2} was added to the reaction mixture to investigate if there was a possibility for the formation of any macrocycle compounds. The reaction was monitored by TLC, but no macrocycle was observed even after adding excess MgBr_{2} and leaving the reaction longer. This was not surprising as our group had investigated before that the aza (dibenzo) dipyrromethenes do not lead to significant formation of any macrocycle when they were re-subjected to the macrocycle reaction conditions (TBTAPs and Sub TBDAPs) as shown in scheme 2.48. ${ }^{106,109}$

SubTBDAP-OPh

meso-substituted TBTAP

Scheme 2.48: Reaction attempts performed by our group towards the formation of the macrocycle structures. ${ }^{106,109}$

To control the reaction, and to obtain a better yield of compound 180, the reaction was repeated starting with 3-methoxy phenyl methylene aminoisoindoline 137. Compound $\mathbf{1 3 7}$ was reflux in DMF at $150^{\circ} \mathrm{C}$, once the dimer $\mathbf{1 5 5}$ formed (as observed by TLC) two drops of thiophenol, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added to the reaction mixture, then we continued to heat under reflux at $150{ }^{\circ} \mathrm{C}$ until the reaction had ceased, as observed by TLC. A large amount of the intermediate dimer $\mathbf{1 5 5}$ was not consumed. The ${ }^{1} \mathrm{HNMR}$ spectrum confirmed formation of the target product 180. Unfortunately, the yield was very low by using this procedure.

Scheme 2.49: Demethylation of compound 188 starting with compound 137.

Since this procedure did not give reasonable yield of compound 180, another demethylation reaction was explored, using boron tribromide in DCM. ${ }^{113}$ Due to its availability from previous synthesis, the 4-methoxy phenyl methylene aza (dibenzo) dipyrromethene $\mathbf{8 3}$ was used to test the effectiveness of using BBr_{3} to deprotect the methyl groups in compound 83. Unfortunately, most of the starting material remained unreacted, however a new product was formed in this reaction, it was isolated by column chromatography in the trace amount. The characterisation of the isolating compound did not identify compound $\mathbf{1 8 4}$ as expected. It was speculated that the boron might reacted to form the aza BODIPY (the potential structure 185). This indication was because of the ${ }^{1} \mathrm{HNMR}$ spectra as shown in Figure 2.38. A singlet peak appears at 8.10 ppm corresponding to the alkene protons, this chemical shift indicates the linkage of the boron with the nitrogen atoms in the dimer. A doublet peak at $6.81 \mathrm{ppm}(J=7.2 \mathrm{~Hz})$ integrating to two proton corresponds to protons in the phenyl group labelled \mathbf{a}, and the further six aromatic protons appeared as a multiplet in the range $7.76 \mathrm{ppm}-7.66 \mathrm{ppm}$. No methoxy groups were present in the NMR spectrum that indicates that starting material 83 has been successfully demethylated, and also that there is no methoxy group on boron. However, MALDI-TOF mass spectra did not gives any peaks that recognised. At this stage we choice different way to make it.

Scheme 2.50: Demethylation of compound $\mathbf{8 3}$ using tribromide boron.

Figure 2. 38: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the resulting from demethylation of compound $\mathbf{8 3}$ using tribromide boron.

We therefore, turned to synthesis of compound $\mathbf{1 8 0}$ from its precursor 3-hydroxy phenyl aminoisoindoline 187, following the procedure published by Hellal et al., as explained previously. ${ }^{75}$ Using this method compound 187 was synthesised in good yield, followed by a self-condensation reaction in p-xylene at $140{ }^{\circ} \mathrm{C}$ to produce the desired dimer product $\mathbf{1 8 0}$ in moderate yield.

Scheme 2.51: Synthetic routes toward compound 180.

Figure 2.39 illustrates the ${ }^{1} \mathrm{HNMR}$ spectrum of compound 180, showing a singlet corresponding to the alkene proton at 7.04 ppm , and a signal corresponding to the proton on the phenyl ring at 7.43 ppm is labelled \mathbf{a}. Protons on the phenyl and benzene rings appeared as expected at the range from $8.08 \mathrm{ppm}-6.66 \mathrm{ppm}$.

Figure 2. 39: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 180.

After successfully producing of compound $\mathbf{1 8 0}$ it was converted to its corresponding triflate by treating with trifluoromethanesulfonic anhydride with pyridine as a base in dry DCM under nitrogen at $-20^{\circ} \mathrm{C}$. Workup was by washing the mixture with water then extracted with DCM. The crude was purified by column chromatography using 1:3 DCM:PE to give the desired product 181 in 24 \% yield.

Scheme 2.52: Synthesis of compound 181.

Figure 2.39 shows the ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{1 8 1}$, it shows a singlet peak at 7.82 ppm for the alkene proton, multiplet peaks appeared at $7.03 \mathrm{ppm}-6.94 \mathrm{ppm}$ refer to the phenyl ring protons labelled $\mathbf{a} \& \mathbf{b}$. Also, the hydroxyl proton peak in the precursor 180 disappeared from 5.6 ppm . The resulting peak from the MALDI-TOF
mass spectrometry showed peak at $\mathrm{m} / \mathrm{z} 717$ which corresponds to the product (Figure 2.40 inset).

Figure 2.40: ${ }^{1}$ HNMR spectrum and MALDI-TOF mass spectrum of compound 181.

According to the literature, conversion of Ar-OTF into Ar-Ar can be achieved by treating of Ar-OTF with catalytic amount of $\mathrm{NiCl}_{2}{ }^{114}$ However, at this stage of the project an extended work on these aza (dibenzo) dipyrromethenes revealed a general flaw to our strategy (discussed next). We realised that isomerisation of the alkene occurred in the presence of any metal, and this would prevent homocoupling (macrocyclisation). The reaction was therefore not attempted.

2.9.1.3 From thiophene methylene aza dipyrromethene compound 201

The macrocycle formation from compounds $\mathbf{8 3}$ and $\mathbf{1 5 5}$ was not possible, due to the poor yield resulting from the triflation of compound 180, but mostly the probability of isomerisation by the metal in the last step (macrocyclisation step). An alternative derivative of aza (dibenzo) dipyrromethene was investigated at the same time that could be coupled to give an interesting macrocycle structure. In compound $\mathbf{2 0 1}$ the aryl units are thiophenes and it gives different opportunities for closing the structure, giving fully conjugated macrocycles. Direct oxidative coupling might give a "corrole" type ring system 188, as shown in Figure 2.41.

Corrole structure

Figure 2.41: Corrole structure and the possible macrocycle structure 188.

Therefore, it was turned to synthesis of thiophene methylene aza (dibenzo) dipyrromethene 201 from its precursor thiophene methylene aminoisoindoline 200 which was synthesised by following a procedure published by Hellal et al., as explained previously ${ }^{75}$ and modified by other members of our group. Here, TMS protected thiophene acetylene is employed in the reaction. Following this procedure, compound $\mathbf{2 0 0}$ was isolated in 76% yield. Then compound $\mathbf{2 0 0}$ underwent self-condensation reaction in toluene at $120{ }^{\circ} \mathrm{C}$. After 24 h reflux the solvent was evaporated, and purification achieved by using column chromatography with DCM, to give the desired dimer product $\mathbf{2 0 1}$ in 77% yield.

Scheme 2.53: Synthesis of compound 201.

The ${ }^{1} \mathrm{HNMR}$ spectrum was run in deuterated acetone, and the spectrum obtained proves that compound $\mathbf{2 0 1}$ has successfully formed. A doublet of doublet appeared at 7.05 ppm integrating to one proton (labelled a), in addition to a multiplet appeared at 7.56 ppm integrating to two protons (labelled $\mathbf{b} \& \mathbf{c}$) indicating presence of the thiophene ring. The alkene proton appeared as a singlet at 7.32 ppm as expected, the integration of the other peaks matches the benzene and thiophene rings protons as expected (Figure 2.42).

Figure 2.42: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 201.

Starting with thiophene methylene aza (dibenzo) dipyrromethene 201, two strategies have been attempted to close the macrocycle structure that might present interesting properties. The first strategy was performed using direct oxidative coupling starting with compound 201, this might allow to close the macrocycle giving a fully conjugated π system, inspired by a "corrole" type ring system. However, oxidative cross coupling reaction using iron(III) chloride was unsuccessful to produce the desired macrocycle 188, starting material remained unreacted. Another attempt was performed using iodine under the UV lamp. Unfortunately, this procedure failed to give the target macrocycle compound 188, and starting material remained unreacted.

Scheme 2.54: Direct oxidative coupling attempts to formation the macrocycle 188.

The second strategy has been attempted followed the procedure published by Li, Zhang et al., which is a direct catalytic C-H activation homocoupling of thiophene using
palladium(II) as a catalyst and oxygen as an oxidant in the presence of TFA to complete the catalytic cycle. This proceeds with complete C5 position regioselectivity (Scheme 2.55 inset). ${ }^{115}$ To investigate the direct catalytic C-H activation homocoupling of compound 201, it was catalysed by $\mathrm{Pd}(\mathrm{II})$ acetate in the presence of TFA, oxygen, and dimethyl sulfoxide at room temperature (Scheme 2.55). TLC was monitored, and after 24 h formation of a new red spot was observed. This spot became clearer after warming the mixture up to $50^{\circ} \mathrm{C}$, but most of the starting material also remained unreacted. The work up was done by adding water then extracting with DCM. The mixture was purified by column chromatography using 1:3 DCM:PE.

Scheme 2.55: Metal activation attempt to form the macrocycle 188.

The ${ }^{1} \mathrm{HNMR}$ spectrum for the resulting product illustrated that the alkene singlet peak was shifted from 7.30 ppm in the starting material spectrum to the 6.94 ppm in the resulting product spectrum, all thiophene signals were intact, a doublet of doublet integrating one proton appeared at 7.15 ppm and a multiplet with two protons at 7.55 ppm, which confirmed no thiophene coupling occurred, and the isolated product might be symmetrical isomer of compound 201 (Figure 2.43). MALDI-TOF mass spectrum showed starting material peak at $m / z 433$ and other peak at $m / z 539$ which indicates that the isomerisation had taken place due to the palladium effect (Figure 2.44).

Figure 2.43: Comparison between ${ }^{1} \mathrm{HNMR}$ spectrum of compound 201 and the isolating compound after reaction with Pd .

Figure 2. 44: MALDI-TOF mass spectrum of the isolated product after reaction with Pd and the suggested structure 204.

Direct reaction was also attempted starting from the precursors thiophene methylene aminoisoindoline 200 as shown in the Scheme 2.56. However, treating with $\mathrm{Pd}(\mathrm{II})$ acetate and TFA resulted no reaction, probably due to the protonation of the starting material 200 in the presence of TFA, and no further reaction. This proved by neutralising the sample which recovered the original NMR spectrum of compound $\mathbf{2 0 0}$.

Scheme 2.56: Metal activation attempt to form the macrocycle $\mathbf{1 8 8}$ from compound 200.

Similar procedure was also performed using 4-methoxy phenyl methylene aza (dibenzo) dipyrromethene 83 and 3-methoxy phenyl methylene aza (dibenzo) dipyrromethene $\mathbf{1 5 5}$ to investigate whether there is a possibility of cyclisation occurring due to presence of palladium catalyst and TFA. This might be activating the C-H homocoupling to give the desired compound (Scheme 2.57). Unfortunately, this was unsuccessful to produce the closed structure.

$$
\begin{aligned}
& 83 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H} \\
& \mathbf{1 5 5} \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}
\end{aligned}
$$

Scheme 2.57: Metal activation attempt to form the macrocycle structures from the aza (dibenzo) dipyrromethene $\mathbf{8 3}$ and 155.

The ${ }^{1} \mathrm{HNMR}$ spectra for reaction with $\mathbf{1 5 5}$ are shown in Figure 2.45. It is immediately clear that the spectrum becomes more complex over time. At this stage the complexity of this spectrum gives clear evidence that cyclisation has not occurred. This was unsurprising because there was no clear change in the sample. Although the spectrum cannot be analysed completely, signals are present which indicate that we are likely to be observing isomerisation and formation of an unsymmetrical compound as major product in the mixture.

155 after 1 week

Figure 2.45: ${ }^{1} \mathrm{HNMR}$ spectra of compound 155 in deuterated DMSO (red spectra), and the resulting mixture after adding Pd and TFA (green spectra after 1day), and (blue spectra after one week).

2.9.1.4 Macrocycle formation attempt using aldehyde methine linkage

Modification of the porphyrin core by replacing of pyrrole units by other heterocycle units such as thiophene are relatively rare but known to show interesting properties by changing the electronic environment of the macrocycle core π system. ${ }^{116}$

Figure 2.46: Structures of tetra phenyl porphyrin 206 and thiophene substituted tetra phenyl porphyrin 207.

The closed structure 188 (Scheme 2.55) was not formed, probably due to combination of strain and isomerisation discussed above. It was reasoned that the problem could be solved by shifting to more porphyrin-like structures (as opposed corrole-like). Reactions between thiophene and aldehyde are well known. This strategy was therefore investigated, selecting benzaldehyde due to its wide use in porphyrin chemistry, but also because it might break the planarity leading to formation of the macrocycle structure $\mathbf{2 0 9}$, and its likely contribution to aiding solubility in any product. A literature search revealed that commonly used mild conditions for reacting thiophenes with aldehydes employed iodine-catalysed Fridel-Crafts reaction in toluene open to the air. This synthetic pathway successfully produced the product $\mathbf{2 0 8}$ with high selectively in 71% yield (Scheme 2.58 inset). ${ }^{117}$ Consequently, di thiophene aza (dibenzo) dipyrromethene 201 was mixed with benzaldehyde in presence of iodine, toluene, and air at room temperature. The reaction was monitored by TLC showing no reaction occurred after 48 h . TLCs revealed no change even with raised temperature up to $60^{\circ} \mathrm{C}$ or refluxing the mixture at $120{ }^{\circ} \mathrm{C}$. Continuing to monitor the reaction showed no change or consumption of the starting material. Using excess of iodine and benzaldehyde were not assisting to convert the starting material to the macrocycle structure 209, see Scheme 2.58 (Reaction condition \mathbf{A}).

201

209

Reaction condition $\mathbf{A}: \mathrm{I}_{2}$, toluene, rt then $60^{\circ} \mathrm{C}$, then $120^{\circ} \mathrm{C}$.
Reaction condition B: propionic acid, $140^{\circ} \mathrm{C}$.

Scheme 2.58: Synthesis attempt to the formation of macrocycle 209.

Therefore, it was looked to mimic classic porphyrin formation reaction conditions and attempted the cyclisation using propionic acid at reflux (Scheme 2.58, reaction condition B). TLCs from propionic acid solution were unclear. Instead the reaction was followed by removal of aliquots at intervals, simple workup, ${ }^{1} \mathrm{HNMR}$ and MALDI-TOF mass spectrometry analysis. MALDI-TOF mass spectrum for the crude mixture displayed presence of a peak close to the desired macrocycle 209 at $\mathrm{m} / \mathrm{z} 520$, and the starting material peak at $m / z 434$ (Figure 2.47).

Figure 2.47: MALDI-TOF mass spectrum of the reaction crude.

Chapter 2. Results and Discussion

However, the ${ }^{1}$ HNMR spectra showed evidence that no cyclisation was occurring, as thiophene protons were present as a doublet of doublet with one proton appeared at 7.12 ppm and a multiplet integrating two protos at 7.49 ppm . Sets of peaks referring to the benzene ring protons in the isoindoline unit appeared in the aromatic region as expected. In the resulting product the singlet alkene proton was shift to 6.72 ppm , compared with the chemical shift of the alkene singlet in starting material which was at 6.96 ppm 201 (Figure 2.48). It became clear that no cyclisation was occurring, but rather once again isomerisation (to a likely unreactive configuration) was evident.

Figure 2.48: ${ }^{1} \mathrm{HNMR}$ spectrum of compound 201 in deuterium CDCl_{3} (blue colour) and the resulting mixture after refluxing compound 201 with benzaldehyde and propionic acid (red colour).

Therefore, to force the reaction to occur, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added to the small sample of the reaction mixture, but this led to hydrolysis the mixture. Then the reaction was repeated using acetone instead of the benzaldehyde in presence of iodine, and toluene, then it left stirring at room temperature overnight, but no effect of acetone was observed through the ${ }^{1} \mathrm{HNMR}$ spectra. Consequently, after removing of propionic acid, TLC showed three spots, the top major spot was red colour, the second spot was trace of the starting material 201, and some hydrolysis was seen in the baseline. The mixture
was precipitated by adding petroleum ether to remove the benzaldehyde, then crystallised by DCM: MeOH. ${ }^{1} \mathrm{HNMR}$ spectra indicated presence of mixture of 7% of starting material 201 and another isomer formed in 70% yield (blue spectra, Figure 2.49). Subsequently the reaction was repeated by refluxing of compound 201 in propionic acid in the absence of benzaldehyde. After 4 h reflux, simple work up, and TLC revealed presence of the starting material and the other red spot. The ${ }^{1}$ HNMR spectra showed that the isomerisation occurred under refluxing of compound $\mathbf{2 0 1}$ in the propionic acid (green spectra, Figure 2.49), producing similar ${ }^{1}$ HNMR spectra for that was isolated from the previous reaction. Figure 2.49 illustrates stacked ${ }^{1} \mathrm{HNMR}$ spectra of starting material 201 shown in the red colour, and the resulting isomers. It is clear that the alkene singlet peak in the starting material was shifted from 7.29 ppm to 6,94 ppm in the resulting isomer.

Figure 2.49: Stacked ${ }^{1}$ HNMR spectrum of compound 201, and the resulting compound after refluxing of $\mathbf{2 0 1}$ with propionic acid (green spectra), and the resulting compound after refluxing of $\mathbf{2 0 1}$ with benzaldehyde in toluene (blue spectra).

The explanation for no reaction occurring under the conditions described above, although these strategies performed were effective when applied using normal thiophene, might be because of the substituent at the position 2 on the thiophene ring in the aza (dibenzo) dipyrromethene 201 behaves as deactivating group. This leads to

Chapter 2. Results and Discussion

decrease the reactivity of thiophene ring, which make it impossible for any reaction to occur. This is reasonable assumption because we see no clear evidence for intermolecular reaction either indicating that the problems stem from low reactivity.

2.10 Conclusion

A detailed investigation of the formation of aminoisoindolines using reaction of alkyl and benzyl acetylenes with bromo benzamidine under microwave conditions has been performed. Treating the amidine with 1-hexyne under Sonogashira copper-free cross coupling reaction conditions led to unexpected formation of the six-membered ring compound, 3-butyl isoquinoline -1-amine in 31% yield. However, using aryl acetylene in the synthesis of the precursor aminoisoindolines successfully produced the required 5 -member ring compounds (aminoisoindolines) in good yield. It was concluded that only aryl acetylenes can be used in this method for aminoisoindoline synthesis.

A variety of new symmetrical and unsymmetrical aza BODIPYs and their precursors aza (dibenzo) dipyrromethenes bearing electron withdrawing or electron donating substituents have been smoothly synthesised and isolated in good yield. The synthesis of unsymmetrical analogues was achieved using simple mixed condensation reactions. Approximately statistical mixtures were produced when the precursor aminoisoindolenes were electronically similar. However, when they were different, the reaction favoured the formation of the two symmetrical derivatives, presumably because of favourable homo-condensation of the more reactive component. Consequently, a new synthetic procedure has been developed to control synthesis of unsymmetrical analogues by converting of the amino group of one aminoisoindoline into good leaving group such as triflate or tosylate. X-ray crystallography proved that tosylation (reaction) occurs on the amino nitrogen. Reactions employing the tosylates and triflates successfully led to preferred formation of the unsymmetrical aza (dibenzo) dipyrromethene with remarkable improvement of the reaction yields to those obtained via the mixed condensation synthetic method.

Complexation of the symmetrical and unsymmetrical aza dipyrromethenes has been successfully achieved following the procedure published by our group with the optimization in the reaction conditions. The new optimized synthetic method involves treating the reaction mixture of dipyrromethene, BF_{3} with $\mathrm{TMS}-\mathrm{Cl}$ to remove the fluoride ion to drive the equilibrium towards the target aza BODIPYs with remarkable improvement in the outcome. All symmetrical and unsymmetrical aza BODIPYs and
their precursors aza dipyrromethene were successfully characterised by MALDI-TOF, ${ }^{1}$ HNMR, ${ }^{13}$ CNMR, UV-Vis spectroscopy.

Extention of π conjugation system on the aza BODIPYs and their precusrsor aza dipyrromethenes via oxidative ring fusion reactions or macrocyclisation reactions were unfortunately unsuccessful. In oxidative ring fusion reactions of aza (dibenzo) BODIPYs like 172, the main suggested reason that prevents the oxidative coupling to occur is that the BODIPY unit behaves as strong electron withdrawing group (preventing the oxidation first step). Compounds $\mathbf{8 3}, \mathbf{1 5 5}$ and $\mathbf{2 0 1}$ were not good choice to formation of the macrocycle structures due to the isomerisation that occurred in the presence of the metal reagent/catalyst. Switching to more porphyrin-like structures (as opposed corrole-like), by treating of compound $\mathbf{2 0 1}$ with benzaldehyde did not lead to any reaction, and again this is likely because of the substituent at the position 2 on the thiophene ring in the aza dibenzo dipyrromethene $\mathbf{2 0 1}$ behaving as a deactivating group leading to decrease the reactivity of thiophene ring.

2.11 Future work

Following the successes and failures of this work there are two areas that are now primed for further investigation and likely to yield promising results.

- Expand the range of unsymmetrical systems, now that this triflate/tosylate strategy is demonstrated, this could include stronger donor/acceptor systems, or introduction of further conjugated aryl groups to give red shifted absorption and fluorescence.
- Change the synthetic strategy to build macrocyclic analogues by first synthesising diaryl-diacetylene as shown in Scheme 2.58.

Scheme 2.58: Proposed synthesis of structure 182.

Chapter 3: Experimental

3.1 General Methods

All reagents and solvents were bought from commercial suppliers unless otherwise stated and no additional purification was used. Dichloromethane was dried over calcium hydride and distilled under nitrogen, triethylamine (TEA) dried using molecular sieves under nitrogen, and THF was freshly distilled from sodium and benzophenone. Rotary Evaporator Buchi was used to evaporate the solvents under reduced pressure.

Thin layer chromatography (TLC) was run using Merck Silica Gel 60 F254 aluminium backed sheets and was monitored under UV light. Column chromatography was run using Silica gel 60A 40-63 micron at ambient temperature. Melting points were measured by using Reichert Thermovar microscope with Thermopar based temperature control. Reactions carried out under microwave irradiation were irradiated in Biotage Initiator Microwave system.
${ }^{1} \mathrm{H}$ NMR (500 MHz), ${ }^{13} \mathrm{C}$ NMR (126 MHz) and ${ }^{19}$ FNMR spectra were recorded with a Bruker Avance 500 MHz spectrometer or at 400 MHz on a Varian 400 spectrometer using deuterated chloroform, acetone, dimethyl sulfoxide, methanol and methylene chloride as the solvents. Signals for both ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ were recorded in ppm and the coupling constant (J values) are reported in Hz . The spectra were obtained at room temperature unless otherwise stated.

A Perkin-Elmer Spectrum BX FT-IR spectrometer was used to record Infrared spectra. Ultraviolet-Visible absorption spectra were taken on a Perkin-Elmer Lambda 35 UV/Vis Spectrophotometer in solvent as stated, and emission spectra were recorded using Hitachi F-4500 fluorescence spectrophotometer. MALDI-TOF mass spectra were carried out on a Shimadzu Biotech Axima instrument.
3.2 Synthesis of 2-bromobenzamidine Hydrochloride $79{ }^{86}$

2-Bromobenzonitrile ($4.20 \mathrm{~g}, 23.0 \mathrm{mmol}$) was dissolved in dry THF (3 ml). Lithium bis(trimethylsilyl)amide (1 M in THF), (25 ml , 1.1eq) was added. The reaction mixture stirred at room temperature for 4 h . Then the reaction was cooled down on an ice bath and quenched by adding dropwise of 15 ml of a $1: 1$ mixture of $\mathrm{HCl}(5 \mathrm{~N})$ and isopropanol, and then it was left to stir overnight. The colourless precipitate was filtered (cold) and washed twice with diethyl ether (10 ml) to give 2-bromobenzamidine hydrochloride ($5.07 \mathrm{~g}, 94 \%$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.46(\mathrm{~s}, 2 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.62$ (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 166.09,133.57,133.50,132.43,130.31,128.45$, 119.99.

3.3 Synthesis of 3-butyl isoquinoline -1-amine 112.

A mixture of 2-bromobenzamidine hydrochloride 79 ($0.353 \mathrm{~g}, 1.498 \mathrm{mmol}$), BINAP $(0.051 \mathrm{~g}, 0.082 \mathrm{mmol}, 0.027 \mathrm{eq})$ and $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(0.019 \mathrm{~g}, 0.073 \mathrm{mmol}, 0.025 \mathrm{eq})$ was sealed in a microwave vessel with magnetic bar. It was purged and refilled with nitrogen for 5 min . Then a solution of 1-hexyne $(0.492 \mathrm{~g}, 5.998 \mathrm{mmol}, 4 \mathrm{eq})$, DBU $(0.560 \mathrm{ml}, 3.740 \mathrm{mmol}, 2.5 \mathrm{eq})$ in dry DMF (6 ml) was added. The reaction was kept stirring under N_{2} for a further 5 min . Then the mixture was irradiated by microwave at $120{ }^{\circ} \mathrm{C}$ for 1 h . The solution was allowed to cool down. The reaction was stopped by adding AcOEt (25 ml) then it was washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 10$ ml). The organic layer was dried over MgSO_{4}, filtered and the solvents evaporated. The
crude mixture was purified by column chromatography eluting with DCM then AcOEt: PE 1:1. Finally the product was recrystallised using 1:1 DCM:PE to give 3-butyl isoquinoline -1 -amine ($0.1 \mathrm{~g}, 33 \%$).
$\mathbf{R f}=0.26$ (AcOEt: pet ether 1:1).
IR (thin film cm ${ }^{-1}$) 3398 (N-H), 2998 (C-H), 1274 (C=C).
$\mathbf{M P}=90-92^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR (500 MHz , Chloroform- d) $\delta 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H})$, $7.43(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 5.73\left(\mathrm{~s}, 2 \mathrm{H}-\mathrm{NH}_{2}\right), 2.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.63(\mathrm{~m}$, $2 \mathrm{H}), 1.41(\mathrm{~h}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 167.87, 132.51, 132.24, 130,91,128.78, 127.99, 127.54, 117.83, 115.32, 30.46, 21.99, 19.28, 13.61.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=\mathbf{2 0 0}$ [M, 100%].

3.4 Synthesis of 2-hexynylbenzonitrile $117{ }^{103}$

A mixture of 2-bromobenzonitrile $(1.820 \mathrm{~g}, 9.998 \mathrm{mmol}, 1 \mathrm{eq}), 1$-hexyne $(0.985 \mathrm{~g}$, $11.99 \mathrm{mmol}, 1.2 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.160 \mathrm{~g}, 0.227 \mathrm{mmol}, 0.022 \mathrm{eq}), \mathrm{CuI}(0.080 \mathrm{~g}, 0.42$ $\mathrm{mmol}, 0.042 \mathrm{eq}$), and $\mathrm{NEt}_{3}(4 \mathrm{ml})$ was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with PE , dried and purified by column chromatography using 1:9 AcOEt and PE to give a pure 2-hexynylbenzonitrile as an oil ($1.5 \mathrm{~g}, 82 \%$).
$\mathbf{R f}=0.7$ (AcOEt: pet ether 1:9).
IR (thin film cm ${ }^{-1}$) 3067, 2230 (CN).
${ }^{1}$ H NMR (500 MHz , Chloroform- d) $\delta 7.60(\mathrm{dt}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52-7.48(\mathrm{~m}$, 2H), $7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}$, $2 \mathrm{H}), 0.96$ ($\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 132.37,132.25,132.21,127.93,127.60,117.67$, 115.14, 97.78, 30.40, 21.90, 19.17, 13.52.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=183$ [M, 100%].
3.5 Synthesis of 2-[2-(4-methoxyphenyl)ethynyl] benzonitrile 118. ${ }^{99}$

A mixture of 2-bromobenzonitrile ($1.820 \mathrm{~g}, 9.998 \mathrm{mmol}, 1 \mathrm{eq}$), 4-methoxyphenyl acetylene ($1.585 \mathrm{~g}, 11.99 \mathrm{mmol}, 1.2 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.160 \mathrm{~g}, 0.227 \mathrm{mmol}, 0.022 \mathrm{eq})$, $\mathrm{CuI}(0.080 \mathrm{~g}, 0.42 \mathrm{mmol}, 0.042 \mathrm{eq})$, and $\mathrm{NEt}_{3}(5 \mathrm{ml})$ was heated in a sealed tube at 120 ${ }^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate, dried and purified by column chromatography using 1:20 AcOEt and hexane to give colourless crystals ($1.6 \mathrm{~g}, 68 \%$).
$\mathbf{M P}=78-79{ }^{\circ} \mathrm{C}\left(\right.$ Lit MP).${ }^{99}$
$\mathbf{R f}=0.43$ (AcOEt: hexane 1:20).
IR (thin film cm ${ }^{-1}$) 3434, 2215 (CN).
${ }^{1} H$ NMR (500 MHz , Chloroform- d) $\delta 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.58-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (s, 3H).
${ }^{13}$ C NMR (126 MHz , Chloroform- d) δ 160.42, 133.62, 132.63, 132.34, 131.84, 127.80, 127.70, 117.73, 115.05, 114.15, 114.12, 96.38, 84.65, 55.37.
3.6 Synthesis of 1,6-diethyl 2,4-hexadienedioate 132.

A mixture of 2-bromobenzonitrile $(3.00 \mathrm{~g}, 16.5 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.34 \mathrm{~g}$, $0.48 \mathrm{mmol}, 0.03 \mathrm{eq}), \mathrm{CuI}(0.16 \mathrm{~g}, 0.84 \mathrm{mmol}, 0.05 \mathrm{eq})$ was stirred in $\mathrm{NEt}_{3}(50 \mathrm{ml})$. Then ethyl propiolate ($3.18 \mathrm{~g}, 32.5 \mathrm{mmol}$, 2 eq) was dissolved in $\mathrm{NEt}_{3}(25 \mathrm{ml})$ and slowly added to the mixture during (6 h). After the completion of the addition the mixture was refluxed overnight. The reaction was worked up by adding water and extracted with DCM, dried and purified by column chromatography using 1:20 AcOEt and PE to give yellow oil $(1 \mathrm{~g}, 33 \%)$ that was presumed to be the product of alkyne homocoupling and reduction.
${ }^{1}$ H NMR (500 MHz , Chloroform- d) $\delta 7.57(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
3.7 Synthesis of 2-(2-bromophenyl)-4(3H)-pyrimidinone.

A mixture of 2-bromobenzamidine hydrochloride $79(0.706 \mathrm{~g}, 2.997 \mathrm{mmol}, 1 \mathrm{eq})$, $\operatorname{BINAP}(0.102 \mathrm{~g}, 0.165 \mathrm{mmol}, 0.055 \mathrm{eq})$ and $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(0.039 \mathrm{~g}, 0.150 \mathrm{mmol}, 0.05$
eq) was sealed in a microwave vessel with magnetic bar. It was purged and refilled with nitrogen for 5 min . Then naphthyl propiolate ($0.705 \mathrm{~g}, 3.596 \mathrm{mmol}, 1.2 \mathrm{eq}$), DBU (1.120 ml) in dry DMF (12 ml) was added. The reaction was kept stirring under N_{2} for a further 5 min . Then the mixture irradiated by microwave at $120^{\circ} \mathrm{C}$ for 1 h . The solution was allowed to cool down. The reaction was stopped by adding $\mathrm{AcOEt}(50 \mathrm{ml})$ then washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 25 \mathrm{ml})$. The organic layer was extracted and dried over MgSO_{4}, filtered then the solvents removed. Finally, the crude was purified by column chromatography eluting with DCM then 1:3 AcOEt: PE then AcOEt to give 2-naphthol ($0.2 \mathrm{~g}, 46 \%$), and (2-bromophenyl)-4(3H)-pyrimidinone ($0.15 \mathrm{~g}, 20 \%$).

- 3.7.1: 2-naphthalenol 135. ${ }^{118}$

${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.80-7.73(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.7$
$\mathrm{Hz}, 1 \mathrm{H}), 7.43$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (ddd, $J=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$.
- 3.7.2: 2-(2-bromophenyl)-4(3H)-pyrimidinone 136.

$\mathbf{M P}=164-165^{\circ} \mathrm{C}$.
IR (thin film cm ${ }^{-1}$) 3311, 1633, 1596.
${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.08(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (ddd, $J=16.7,7.8$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 162.89,157.68,154.98,134.03,133.93$, 132.37, 131.17, 127.94, 120.74, 114.70.

3.8 Synthesis of 2-[2-(4-methoxyphenyl)ethynyl]-benzamidine hydrochloride 120.

A solution of 2-[2-(4-methoxyphenyl)ethynyl] benzonitrile $\mathbf{1 1 8}(0.50 \mathrm{~g}, 2.14 \mathrm{mmol}, 2$ eq) in dry THF (3 ml) was stirred at room temperature. Lithium bis(trimethylsilyl) amide (1 M in THF), ($4.3 \mathrm{ml}, 4.3 \mathrm{mmol}, 2 \mathrm{eq}$) was added and stirring continued at room temperature overnight. Then the reaction was cooled down on an ice bath and quenched by adding dropwise of 8 ml of a $1: 1$ mixture of $\mathrm{HCl}(5 \mathrm{~N})$ and isopropanol, and then it was left to stir overnight. The resulting precipitate was filtered off and washed twice with diethyl ether to give the product as yellow crystals ($0.4 \mathrm{~g}, 80 \%$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 7.75$ (dd, $\left.J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H})$, 7.58 (td, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz , Methanol- d_{4}) δ 167.12, $160.64,132.84,132.55,131.95,131.31$, 128.16, 127.93, 122.10, 114.01, 113.96, 94.70, 82.90, 54.41.
3.9 Synthesis of 2-(3-hydroxy-3-methyl-1-butynyl) benzonitrile 148. ${ }^{103}$

A mixture of 2-bromobenzonitrile $(3.00 \mathrm{~g}, 16.5 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.34 \mathrm{~g}, 0.49$ mmol, 0.03 eq), $\mathrm{CuI}(0.22 \mathrm{~g}, 1.15 \mathrm{mmol}, 0.07 \mathrm{eq})$, and $\mathrm{PPh}_{3}(0.51 \mathrm{~g}, 1.97 \mathrm{mmol}, 0.12$ eq) were dissolved in $\mathrm{NEt}_{3}(50 \mathrm{ml})$. Then 2-methyl-but-3n-2-ol ($2.77 \mathrm{~g}, 32.5 \mathrm{mmol}, 2$ eq) was dissolved in (25 ml) TEA and added slowly using the syringe pump to the reaction mixture (4 ml per h). After completion of the addition the reaction mixture was refluxed overnight. Then the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with DCM, dried and purified by column chromatography using 1:8 AcOEt: PE to give the target product as yellow oil ($3 \mathrm{~g}, 98 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37$ (m, 1H), 1.66 (s, 6H).
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 132.53,132.35,132.14,128.39,126.72,117.45$, 115.62, 100.54, 65.70, 31.20, 22.63.
3.10 synthesis of 2-[2-(4-nitrophenyl)ethynyl] benzonitrile 150. ${ }^{105}$

A mixture of 2-(3-hydroxy-3-methyl-1-butynyl) benzonitrile $148(0.55 \mathrm{~g}, 2.96 \mathrm{mmol}$, 1 eq), 1-Iodo-4-nitrobenzene ($0.49 \mathrm{~g}, 1.98 \mathrm{mmol}, 0.67 \mathrm{eq}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.04 \mathrm{~g}, 0.05$ $\mathrm{mmol}, 0.02 \mathrm{eq}), \mathrm{CuI}(0.06 \mathrm{~g}, 0.3 \mathrm{mmol}, 0.1 \mathrm{eq}), \mathrm{BU} 4 \mathrm{NI}(0.11 \mathrm{~g}, 0.03 \mathrm{mmol}, 0.01 \mathrm{eq})$, $\mathrm{NaOH}(5 \mathrm{M})$ and toluene (5 ml) was heated in a sealed tube at $60^{\circ} \mathrm{C}$ under N_{2} for 1 h . Then it was filtered over a silica pad and washed with AcOEt. The product was purified by column chromatography using 1:20 AcOEt and PE and recrystalised from DCM:PE to give colourless crystals ($0.5 \mathrm{~g}, 67 \%$).
$\mathbf{M P}=143-144{ }^{\circ} \mathrm{C}\left(\right.$ Lit MP)..103
IR (thin film cm ${ }^{-1}$) $3070(\mathrm{C}-\mathrm{H}), 2223(\mathrm{CN}), 1592,1513(\mathrm{~N}=\mathrm{O})$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 8.25$ (d, $\left.J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.77$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.75-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 147.66,132.84,132.78,132.60,132.39,129.32$, 128.80, 126.01, 123.73, 117.27, 115.77, 93.48, 90.14.
3.11 Synthesis of 2-[2-(4-nitrophenyl)ethynyl]-benzamidine hydrochloride 151.

A solution of 2-[2-(4-nitrophenyl)ethynyl] benzonitrile $\mathbf{1 5 0}$ ($0.165 \mathrm{~g}, 0.664 \mathrm{mmol}, 1 \mathrm{eq}$) was stirred in dry THF (2 ml). Lithium bis(trimethylsilyl)amide (1 M in THF), (1.32 ml , $1.32 \mathrm{mmol}, 2 \mathrm{eq}$) was added and stirring continued at room temperature overnight. Then the reaction was cooled down on an ice bath and quenched by adding dropwise of 6 ml of a $1: 1$ mixture of $\mathrm{HCl}(5 \mathrm{~N})$ and isopropanol, and then it was left to stir overnight. The resulting precipitate was filtered in cold and washed twice with diethyl ether (5 ml) to give yellow crystals ($50 \mathrm{mg}, 28 \%$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 8.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.70$ (ddd, $J=7.9,1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz , Methanol- d_{4}) $\delta 166.88,160.43,145.86,140.14,139.79,132.82$, $132.45,131.80,128.12,127.84,113.90,96.35,94.81$.

3.12 Synthesis of aminoisoindoline derivatives.

3.12.1 General procedure ${ }^{75}$

A mixture of 2-bromobenzamidine hydrochloride $79(0.706 \mathrm{~g}, 2.997 \mathrm{mmol}, 1 \mathrm{eq})$, BINAP ($0.102 \mathrm{~g}, 0.165 \mathrm{mmol}, 0.055 \mathrm{eq}$) and $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(0.039 \mathrm{~g}, 0.15 \mathrm{mmol}, 0.05$ eq) was sealed in a microwave vessel with magnetic bar. It was purged and refilled with N_{2} for 5 min . Then a solution of acetylene derivatives (1.2 eq), DBU ($1.120 \mathrm{ml}, 7.492$ $\mathrm{mmol}, 2.5 \mathrm{eq}$) in dry DMF (12 ml) was added. The reaction was kept stirring under N_{2} for a further 5 min to yield a clear yellow solution with a white solid. Then the mixture was irradiated by microwave at $120^{\circ} \mathrm{C}$ for 1 h . The solution was allowed to cool down. The reaction was stopped by adding $\mathrm{AcOEt}(50 \mathrm{ml})$ then it was washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 25 \mathrm{ml})$. The organic layer was extracted and dried over MgSO_{4}, filtered then the solvents removed. Finally, the crude was purified by crystallisation using DCM:PE to give the desired compound in good yield.
3.12.2 Synthesis of (Z)-1-(4-methoxyphenylmethylene) -1H-isoindol-3-amine $81{ }^{41}$

This compound was isolated as yellow needles; yield ($560 \mathrm{mg}, 74 \%$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 8.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (s, 1 H), 3.85 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 164.49,159.10,145.81,143.20,132.00$, 130.71, 129.60, 128.90, 126.76, 119.57, 118.74, 115.63, 114.00, 55.31.
3.12.3 Synthesis of (Z)-1-(3-methoxyphenylmethylene)-1H-isoindol-3-amin 137.

This compound was isolated as yellow crystals; yield ($540 \mathrm{mg}, 72 \%$).
$\mathbf{M P}=183-184{ }^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.63(\mathrm{AcOEt})$
IR (thin film cm ${ }^{-1}$) $3440(\mathrm{C}-\mathrm{H}), 1665(\mathrm{C}=\mathrm{C}), 1571(\mathrm{C}=\mathrm{N})$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83 (ddd, $J=8.1,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.73 (s, 1H), 3.89 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 165.21,159.61,147.62,142.95,141.68,138.07$, 131.11, 129.23, 127.27, 123.25, 119.82, 118.89, 115.54, 114.85, 113.31, 55.35.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=250$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 389\left(2.6 \times 10^{4}\right), 360\left(5.5 \times 10^{4}\right), 315$
$\left(2.7 \times 10^{4}\right), 230\left(6.7 \times 10^{4}\right), 277\left(2.9 \times 10^{4}\right), 229\left(6.8 \times 10^{4}\right)$.
3.12.4 Synthesis of (Z)-1-(4-pentyloxyphenylmethylene)-1H-isoindol-3-amine 138.

This compound was isolated as yellow crystals; yield ($670 \mathrm{mg}, 73 \%$).
$\mathbf{M P}=120-122^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.66(\mathrm{AcOEt})$
IR (thin film cm ${ }^{-1}$) $3358(\mathrm{C}-\mathrm{H}), 1602(\mathrm{C}=\mathrm{C}), 1505(\mathrm{C}=\mathrm{N})$.
${ }^{1} H$ NMR (500 MHz, Chloroform- d) $\delta 8.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$,
7.45 (dd, $J=8.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$6.74(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Methylene Chloride- d_{2}) $\delta 165.42,158.98,139.86,139.83$, 139.77, $131.15,130.00,128.10,127.90,122.02,121.91,119.24,115.05,67.88,28.97,28.17$, 22.52, 13.80.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=306$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right): 397\left(5.6 \times 10^{4}\right), 377\left(8.2 \times 10^{4}\right), 288$ $\left(2.4 \times 10^{4}\right), 230\left(6.7 \times 10^{4}\right)$.
3.12.5 Synthesis of (Z)-1-(4-cyanophenylmethylene)-1H-isoindol-3-amine 154.

This compound was isolated as yellow powder; yield ($480 \mathrm{mg}, 65 \%$).
$\mathbf{M P}=226-228^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.86$ (AcOEt).
IR (thin film cm ${ }^{-1}$) $3428(\mathrm{C}-\mathrm{H}), 2220(\mathrm{CN}), 1671(\mathrm{C}=\mathrm{C}), 1530(\mathrm{C}=\mathrm{N})$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{dt}, J=7.6,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86(\mathrm{dt}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28\left(\mathrm{~s}, 2 \mathrm{H}-\mathrm{NH}_{2}\right), 6.79(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) $\delta 167.09,152.60,143.31,142.63,132.43,131.62$, 130.62, 129.23, 127.83, 119.98, 119.79, 119.06, 110.45, 108.75.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=245$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right): 406\left(3.8 \times 10^{4}\right), 379\left(7.6 \times 10^{4}\right), 327$ $\left(3.6 \times 10^{4}\right), 291\left(3.4 \times 10^{4}\right), 232\left(7.6 \times 10^{4}\right)$.
3.12.6 Synthesis of (Z)-1-(4-hydroxyphenylmethylene)-1H-isoindol-3-amine 187.

This compound was isolated as yellow powder; yield ($530 \mathrm{mg}, 74 \%$).
$\mathbf{M P}=123-125^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.33(\mathrm{AcOEt})$.
IR (thin film cm ${ }^{-1}$) $3450(\mathrm{C}-\mathrm{H}), 2985(\mathrm{O}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{C}), 1528(\mathrm{C}=\mathrm{N})$.
${ }^{1} H$ NMR (500 MHz, Acetone- d_{6}) $\delta 7.92(\mathrm{dd}, J=2.6,0.53 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (dt, $J=7.7$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (dt, $J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (dt, $J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=$ $7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{ddd}, J=8.0,2.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) $\delta 165.65,157.12,149.04,143.72,138.96,132.10$, $128.73,128.59,126.94,122.28,119.59,119.33,117.19,113.94,113.45$.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=236$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 390\left(2.9 \times 10^{4}\right), 370\left(4.8 \times 10^{4}\right), 334$ $\left(2.8 \times 10^{4}\right), 282\left(4.4 \times 10^{4}\right), 229\left(5.0 \times 10^{4}\right)$.
3.12.7 Synthesis of (Z)-1-(2-thiophenylmethylene)-1H-isoindol-3-amine 200.

This compound was isolated as yellow powder; yield ($520 \mathrm{mg}, 76 \%$).
$\mathbf{M P}=133-135^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.8(\mathrm{AcOEt})$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.82(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dt}, J=7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, 7.00 (dd, $J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}) 6.88$ (brs, $1 \mathrm{H}, \mathrm{NH}_{2}$).
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) $\delta 164.92,147.50,142.82,141.50,133.21,128.97$, 128.60, 128.42, 127.18, 126.68, 120.21, 119.67, 108.27.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=227$ [M+1].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right): 403\left(4.5 \times 10^{4}\right), 385\left(6.3 \times 10^{4}\right), 354$
$\left(4.2 \times 10^{4}\right), 281\left(4.8 \times 10^{4}\right), 230\left(6.5 \times 10^{4}\right)$.
3.13 Synthesis of aza (dibenzo) dipyrromethene derivatives.

3.13.1 General procedure ${ }^{41}$

Aminoisoindolene derivatives (500 mg) were refluxed in toluene at $120^{\circ} \mathrm{C}(10 \mathrm{ml})$, in diglyme (6 ml) at $200{ }^{\circ} \mathrm{C}$ (in the synthesis of compound 157), or p-xylene (6 ml) at $140^{\circ} \mathrm{C}$ (in the synthesis of compound 180), for 24 h . After evaporation of the solvents, the crude mixture was purified by column chromatography eluting with DCM. The resulting red solid was recrystallised from 1:1 DCM and methanol.

3.13.1 Synthesis of aza (dibenzo) dipyrromethene 83^{41}

This compound was isolated as red crystals ($400 \mathrm{mg}, 82 \%$).
$\mathbf{M P}=204^{\circ} \mathrm{C}$. Lit MP). ${ }^{41}$
${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 13.09(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$
$(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$
(td, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 159.91,150.42,148.07,141.82$, 139.52, 135.88, $130.33,130.10,128.45,123.11,122.96,122.07,119.46,115.22,113.94,55.03$.

3.13.2 Synthesis of aza (dibenzo) dipyrromethene 155

This compound was isolated as red crystals ($410 \mathrm{mg}, 84 \%$).
$\mathbf{M P}=140-142^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.55(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) $2930(\mathrm{~N}-\mathrm{H}), 1577$ (C=C).
${ }^{1} H$ NMR (500 MHz, Chloroform- d) $\delta 13.37(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 164.49,159.10,145.81,143.20,132.00,130.71$, 129.60, 128.90, 126.76, 119.57, 118.74, 115.63, 114.00, 55.31.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=483$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} . \mathrm{cm}^{-1}\right): 341\left(9.5 \times 10^{4}\right), 421\left(2.0 \times 10^{4}\right), 477$ $\left(2.3 \times 10^{4}\right)$.

3.13.3 Synthesis of aza (dibenzo) dipyrromethene 156

This compound was isolated as red crystals ($390 \mathrm{mg}, 80 \%$).
$\mathbf{M P}=150-152^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.7(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2934 (N-H), 1577, 1508.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Methylene Chloride- d_{2}) $\delta 12.79$ (brs, 1 H), 8.06 (d, $J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 164.37,158.73,145.49,143.18,131.98,130.62$, $129.31,128.90,126.72,119.56,118.75,115.79,114.60,68.02,28.98,28.22,22.50$, 14.04.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=596[\mathrm{M}+1]$.
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} . \mathrm{cm}^{-1}\right): 363\left(8.9 \times 10^{4}\right), 416\left(2.2 \times 10^{4}\right), 505$ (1.6×104).
3.13.4 Synthesis of aza (dibenzo) dipyrromethene 157

This compound was isolated as red crystals ($290 \mathrm{mg}, 60 \%$).
MP=290-292 ${ }^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.36(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2935(N-H), 2218 (CN), 1575, 1500.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 13.56$ (brs, 1 H$), 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~m}$, $2 \mathrm{H}), 7.56(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.01$ ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 140.48,132.43,131.11,130.77,130.45,130.05$, 128.98, 122.17, 121.98, 120.19, 119.79, 114.68, 114.49, 110.24.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=473$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}\right): 358\left(9.3 \times 10^{4}\right), 492\left(1.2 \times 10^{4}\right)$.

3.13.5 Synthesis of aza (dibenzo) dipyrromethene 180

This compound was isolated as brown powder ($250 \mathrm{mg}, 51 \%$).
$\mathbf{M P}=168-170^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.1(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) $3300(\mathrm{O}-\mathrm{H}), 2980(\mathrm{~N}-\mathrm{H}), 1572(\mathrm{C}=\mathrm{C})$.
${ }^{1}$ H NMR 500 MHz , Acetone- d_{6}) $\delta 8.06(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}$, $2 \mathrm{H}), 7.43(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{ddd}, J=8.1$, $2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) $\delta 146.56,137.24,133.42,130.23,129.64,129.47$, 128.76, 127.98, 123.65, 123.10, 121.39, 121.16, 119.77, 116.60, 115.33.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=455$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 349\left(8.73 \times 10^{4}\right), 469\left(2.3 \times 10^{4}\right)$.

3.13.6 Synthesis of aza (dibenzo) dipyrromethene 201

This compound was isolated as red crystals ($370 \mathrm{mg}, 77 \%$).
$\mathbf{M P}=192-195^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.73(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 3330, 2970 (N-H), 1584 (C=C).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone $\left.-d_{6}\right) \delta 12.45(\mathrm{~s}, 1 \mathrm{H}), 8.06$ (dt, $\left.J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.03$ (dt, $J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J$ $=5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz , Acetone- d_{6}) δ 139.07, 138.71, 136.87, 135.01, 130.42, 129.41, 129.05, 128.30, 127.99, 123.67, 122.12, 119.77, 108.17.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=435$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 315\left(5.1 \times 10^{4}\right), 360\left(8.6 \times 10^{4}\right), 505$ (1.9×104).
3.14 Synthesis of triflate aza (dibenzo) dipyrromethene 181.

According to the procedure of Henach et al., ${ }^{108}$ to a stirred solution of compound 1-(3-hydroxyphenylmethylene)-1H-isoindol-3-amine 180 ($0.250 \mathrm{~g}, 0.549 \mathrm{mmol}$), and pyridine ($0.1 \mathrm{ml}, 0.823 \mathrm{mmol}, 1.5 \mathrm{eq}$) in dry DCM (30 ml) was dropwise added trifluoromethanesulfonic acid anhydride ($0.24 \mathrm{ml}, 0.823 \mathrm{mmol}, 1.5 \mathrm{eq}$) at $-20^{\circ} \mathrm{C}$ over 30 min under nitrogen. The resulting mixture was left overnight at room temperature. After dilution with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$, the mixture was extracted with DCM ($3 \times 15 \mathrm{ml}$). The solvent was evaporated in vacuo and the obtained product was purified by column chromatography (eluting with 1:3 DCM:PE) and recrystallized from DCM and MeOH to give the desired compound ($98 \mathrm{mg}, 24 \%$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 13.38(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (dd, $J=7.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.07$ (td, $J=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.03-6.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) $\delta 168.48,162.77,159.52,150.02,131.64,130.66$, 129.37, 128.72, 125.54, 125.31, 123.43, 122.21, 119.97, 119.78, 108.90.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=719$ [M,100 \%].

3.15 Tosylation of aminoisoindoline derivatives

3.15.1 Tosylation of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine 163

Following the general procedure, ${ }^{107}$ aminoisoindoline $\mathbf{8 1}(0.250 \mathrm{~g}, 0.998 \mathrm{mmol}, 1 \mathrm{eq})$ was stirred with p-toluene sulfonyl chloride $(0.209 \mathrm{~g}, 1.098 \mathrm{mmol}, 1.1 \mathrm{eq})$ in the presence of triethylamine ($0.3 \mathrm{ml}, 2.994 \mathrm{mmol}, 3 \mathrm{eq}$) in dry DCM (6 ml) at room temperature. The reaction was monitored by TLC until the completion then diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted by DCM, dried over MgSO_{4} and filtered. Finally, recrystallisation using 1:1 DCM:PE yielded the target product as yellow crystals ($380 \mathrm{mg}, 94 \%$).

$\mathbf{M P}=196-197^{\circ} \mathrm{C}$.
IR (thin film cm ${ }^{-1}$) 3392,1596, 1577.
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 10.58(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.2,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.77$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.2,6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ (s, 1H), 3.88 (s, 3H), $2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 159.87,159.25,143.17,139.15,136.43,132.68$,
$132.65,130.73,130.14,129.44,128.92,126.76,126.60,124.05,119.58,115.18$, 109.95, 55.45, 21.56.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=404$ [M,100 \%].
3.15.2 Tosylation of (Z)-1-(4-pentyloxyphenylmethylene)-1H-isoindol-3-amine 164

Following the general procedure, ${ }^{107}$ aminoisoindoline 138 ($\left.0.250 \mathrm{~g}, 0.816 \mathrm{mmol}, 1 \mathrm{eq}\right)$ was stirred with p-toluene sulfonyl chloride ($0.171 \mathrm{~g}, 0.898 \mathrm{mmol}, 1.1 \mathrm{eq}$) in the presence of triethylamine ($0.3 \mathrm{ml}, 2.448 \mathrm{mmol}, 3 \mathrm{eq}$) in dry DCM (6 ml) at room temperature. The reaction was monitored by TLC until the completion then diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted by DCM, dried over MgSO_{4} and filtered. Finally, recrystallisation using 1:1 DCM:PE yielded the target product as yellow crystals ($345 \mathrm{mg}, 92 \%$).

$\mathbf{M P}=.105-106^{\circ} \mathrm{C}$.
IR (thin film cm ${ }^{-1}$) 3374, 1593, 1511.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 10.58(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.5,5.5 \mathrm{~Hz}, 3 \mathrm{H})$, 7.76 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}, 3 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.40(\mathrm{~S}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 159.50,159.24,143.16,139.17,136.46,132.67$,
$132.48,130.67,130.14,129.44,128.86,126.60,126.49,124.03,119.57,115.68$, 110.15, 68.23, 28.90, 28.19, 22.47, 21.55, 14.04.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=460$ [M, 100%].
3.16 Triflation of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine 165.

According to the published procedure, ${ }^{108}$ a solution of 4-methoxy phenyl methylene aminoisoindoline $81(0.250 \mathrm{~g}, 0.998 \mathrm{mmol}, 1 \mathrm{eq})$, and pyridine $(0.039 \mathrm{~g}, 0.495 \mathrm{mmol}$, $1.5 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was stirred at $-20^{\circ} \mathrm{C}$, then trifluoromethanesulfonic acid anhydride ($0.330 \mathrm{~g}, 1.188 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added dropwise to the solution mixture over 30 min under nitrogen. The resulting mixture was left stirring overnight at room temperature. After complication of the reaction (TLCs monitored), the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$ and extracted with DCM ($3 \times 15 \mathrm{ml}$). The solvent was evaporated, and the crude was purified by column chromatography (eluting with DCM) and recrystallized from DCM and petroleum ether to give the desired compound (280 $\mathrm{mg}, 74 \%$).

$\mathbf{M P}=150^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 10.41$ (s, 1H), $7.93(\mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (dt, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.1,7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform- d) δ 163.10, 160.70, 136.37, 133.92, 131.68, 130.60, $129.56,129.44,125.77,124.58,119.85,115.45,114.66,55.50,53.44$.

MS (MALDI-TOF): m/z 382 [M, 100 \%].
3.17 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene derivatives.
3.17.1 Dimerization of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine 81 and (Z)-1-(4-pentaloxyphenylmethylene)-1H-isoindol-3-amine 138

138

81

83

30 \%

156

27 \%

160 44 \%

A mixture of aminoisoindoline $\mathbf{1 3 8}(0.200 \mathrm{~g}, 0.652 \mathrm{mmol}, 1 \mathrm{eq})$ and compound $\mathbf{8 1}$ $(0.195 \mathrm{~g}, 0.783 \mathrm{mmol}, 1.2 \mathrm{eq})$ was dissolved in $(12 \mathrm{ml})$ toluene. The mixture was refluxed overnight. After evaporating the solvents, the crude mixture was purified by column chromatography using DCM and petroleum ether 3:1. The isolated compounds were recrystallised from 1:1 DCM and methanol to produce compound 83 ($55 \mathrm{mg}, 30$ $\%$), compound 156 ($53 \mathrm{mg}, 27 \%$), and the desired unsymmetrical dimer 160 (155 mg , 44 \%).

- Compound 160

$\mathbf{M P}=151-152^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.56(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2933 (N-H), 1580, 1509.
${ }^{1} H$ NMR (500 MHz , Chloroform- d) $\delta 8.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 4 \mathrm{H})$, $7.80(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 6.78$ (s, 2H), 6.62 (dd, $J=8.8,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.79(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.71$ (m, 2H), $1.50-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 165.45,159.14,158.81,140.10,139.86,139.73$, $139.67,131.19,130.00,129.98,128.34,128.11,127.97,122.48,119.17,115.13$, $114.62,67.88,55.00,28.94,28.16,22.50,13.80$.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=539$ [M,100 \%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 360\left(9.7 \times 10^{4}\right), 500\left(1.9 \times 10^{4}\right)$.
3.17.2 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene 160 by reacting of (Z)-1-(4-pentyloxyphenylmethylene)- 1 H -isoindol-3-amine tosylate 164 , and compound 81

A mixture of compound $164(0.050 \mathrm{~g}, 0.108 \mathrm{mmol}, 1 \mathrm{eq})$ and compound $\mathbf{8 1}(0.049 \mathrm{~g}$, $0.196 \mathrm{mmol}, 1.8 \mathrm{eq})$ was dissolved in (4 ml) toluene. The mixture was refluxed overnight. After evaporating the solvents, the crude mixture was purified by column chromatography using DCM and petroleum ether $3: 1$. The isolated compounds were recrystallised from 1:1 DCM and methanol to produce compound $\mathbf{8 3}$ ($20 \mathrm{mg}, 41 \%$), and the desired unsymmetrical compound $\mathbf{1 6 0}$ ($30 \mathrm{mg}, 51 \%$).
3.17.3 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene 160 by reacting of (Z)-1-(4-pentyloxyphenylmethylene)-1H-isoindol-3-amine 138, and 4-methoxy phenyl methylene aminoisoindoline triflate 165

A mixture of compound $165(0.060 \mathrm{~g}, 0.156 \mathrm{mmol}, 1 \mathrm{eq})$ and compound $138(0.062 \mathrm{~g}$, $0.202 \mathrm{mmol}, 1.3 \mathrm{eq}$) was dissolved in (4 ml) toluene. The mixture was refluxed overnight. After evaporating the solvents, the crude mixture was purified by column chromatography using DCM and petroleum ether 3:1. The isolated compounds were recrystallised from 1:1 DCM and methanol to produce compound 156 ($23 \mathrm{mg}, 39 \%$), and the desired unsymmetrical compound $\mathbf{1 6 0}$ ($42 \mathrm{mg}, 49 \%$).

3.17.4 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene 161 by reacting

 of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine tosylate 163, and 4cyano phenyl methylene aminoisoindoline 154

A mixture of compound $163(0.082 \mathrm{~g}, 0.203 \mathrm{mmol}, 1 \mathrm{eq})$ and compound $154(0.050 \mathrm{~g}$, $0.203 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in (4 ml) toluene. The mixture was refluxed overnight. After evaporating the solvents, the crude mixture purified was by column chromatography using DCM and petroleum ether 3:1. The isolated compounds were recrystallised from 1:1 DCM and methanol to produce compound 157 ($12 \mathrm{mg}, 24 \%$), and the desired unsymmetrical compound $\mathbf{1 6 1}$ ($49 \mathrm{mg}, 50 \%$).

- Compound 161

$\mathbf{M P}=219-220^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.5(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2225, 1571.
${ }^{1} \mathbf{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 13.08(\mathrm{~s}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.97-7.88$ (m, 4H), 7.74 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00$ (s, 1H), 6.97 ($\mathrm{s}, 1 \mathrm{H}$), 6.56 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) 159.90, 140.85, 132.44, 133.18, 130.80, 130.46, $130.08,129.00,128.32,122.14,121.95,120.24,119.89,118.45,114.80,114.62$, 112.53, 110.26, 54.76.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=478$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 362\left(6.8 \times 10^{4}\right), 495\left(1.0 \times 10^{4}\right)$.
3.17.5 Synthesis of unsymmetrical aza (dibenzo) dipyrromethene 161 by reacting of (Z)-1-(4-methoxyphenylmethylene)-1H-isoindol-3-amine triflate 165 , and 4cyano phenyl methylene aminoisoindoline 154

A mixture of compound $165(0.077 \mathrm{~g}, 0.203 \mathrm{mmol}, 1 \mathrm{eq})$ and compound $154(0.050 \mathrm{~g}$, $0.203 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in (4 ml) toluene. The mixture was refluxed overnight. After evaporating the solvents, the crude mixture was purified by column chromatography using DCM and petroleum ether 3:1. The isolated compounds were recrystallised from 1:1 DCM and methanol to produce compound $157(10 \mathrm{mg}, 20 \%)$, and the desired unsymmetrical compound 161 ($63 \mathrm{mg}, 64 \%$).
3.17.6 Dimerization of (Z)-1-(4-pentaloxyphenylmethylene)-1H-isoindol-3-amine tosylate 164, and (Z)-1-(4-benzonitlile methylene)-1H-isoindol-3-amine 154

A mixture of compound $164(0.093 \mathrm{~g}, 0.203 \mathrm{mmol}, 1 \mathrm{eq})$ and compound $154(0.050 \mathrm{~g}$, $0.203 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in $(4 \mathrm{ml})$ toluene. The mixture was refluxed overnight. After evaporating the solvents, the crude mixture was purified by column chromatography using DCM and petroleum ether 3:1. The isolated compounds were recrystallised from 1:1 DCM and methanol to produce compound 157 ($11 \mathrm{mg}, 23 \%$), and the desired unsymmetrical compound 162 ($54 \mathrm{mg}, 49 \%$).

- Compound 162

$\mathbf{M P}=197-198^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.63(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2993, 2220, 1573.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- d_{6}) $\delta 13.08(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98-7.89$ (m, 4H), 7.73 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00$ $(\mathrm{s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) 156.33, 151.24, 143.41, 138.19, 132.40, 131.19, $130.81,130.46,130.08,129.00,128.30,127.80,122.14,121.94,120.24,119.87$, $115.05,112.51,67.78,54.06,28.04,22.31,13.44$.

MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=534$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 363\left(8.7 \times 10^{4}\right), 508\left(1.2 \times 10^{4}\right)$.
3.18 Synthesis of aza (dibenzo) BODIPYs derivatives.

3.18.1 Aza (dibenzo) BODIPY compound 172.

A solution of aza (dibenzo) dipyrromethene $155(0.100 \mathrm{~g}, 0.206 \mathrm{mmol}, 1 \mathrm{eq})$ was stirred in dry $\operatorname{DCM}(20 \mathrm{ml})$, then $\operatorname{DBU}(0.30 \mathrm{ml}, 2.06 \mathrm{mmol}, 10 \mathrm{eq})$ and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(1.50 \mathrm{~g}$, $10.30 \mathrm{mmol}, 50 \mathrm{eq})$ were added to the reaction mixture. The mixture was left stirring overnight at room temperature. After 24 h yellow spot appeared on the TLC, trimethylsilyl chloride (1.5 ml) was added to the reaction mixture, then the mixture was refluxed for 3 h . After completion of the reaction (TLCs followed), the mixture was cooled down at room temperature, diluted by $\mathrm{DCM}(50 \mathrm{ml})$, and washed by $\mathrm{HCl}(1 \mathrm{M}$, 50 ml). The orange crystals were isolated from recrystallisation from 1:1 DCM:PE to yield the desired product $\mathbf{1 7 2}$ in ($80 \mathrm{mg}, \mathbf{7 3} \%$).

$\mathbf{M P}=190-192{ }^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.66(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2995, 2830, 1574.
${ }^{1}$ H NMR (500 MHz , Chloroform- d) $\delta 8.18$ (dd, $\left.J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.84(\mathrm{~s}, 1 \mathrm{H})$,
7.70 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=8.3,7.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.3$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 163.79,159.75,138.71,136.26,133.20,132.50$,
129.72, 129.31, 125.39, 123.72, 123.66, 122.06, 119.71, 114.91, 114.44, 55.40.
${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-139.12(\mathrm{dd}, J=61.1,30.5 \mathrm{~Hz}$).
MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=530$ [M-1].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 321\left(8.2 \times 10^{4}\right), 449\left(9.0 \times 10^{4}\right)$.
Fluorescence (DCM, Excitation at 445 nm): 523 nm .

3.18.2 Aza (dibenzo) BODIPY compound 173.

A solution of aza (dibenzo) dipyrromethene 156 ($0.100 \mathrm{~g}, 0.168 \mathrm{mmol}, 1 \mathrm{eq}$) was stirred in dry $\operatorname{DCM}(20 \mathrm{ml})$, then $\operatorname{DBU}(0.251 \mathrm{ml}, 1.680 \mathrm{mmol}, 10 \mathrm{eq})$ and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(1.20 \mathrm{~g}$, $8.40 \mathrm{mmol}, 50 \mathrm{eq})$ were added to the reaction mixture. The mixture was left stirring overnight at room temperature. After 24 h yellow spot appeared on the TLC, trimethylsilyl chloride (1.5 ml) was added to the reaction mixture, then the mixture was refluxed for 3 h . after completion of the reaction (TLCs followed), the mixture was cooled down at room temperature, diluted by DCM (50 ml), and washed by $\mathrm{HCl}(1 \mathrm{M}$, 50 ml). The orange crystals were isolated from recrystallisation from DCM:PE to yield the desired product $\mathbf{1 7 3}$ in ($80 \mathrm{mg}, 74 \%$).

$\mathbf{M P}=170-171^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.83(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2929, 1648.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Methylene Chloride- d_{2}) $\delta 8.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dt}, J=$ $7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.00$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Methylene Chloride- d_{2}) 159.97, 140.05, 132.22, 132.17, 131.35, $130.91,129.15,126.86,125.73,123.48,123.24,114.60,113.57,68.22,48.82,28.94$, 22.48, 13.80.
${ }^{19}$ F NMR (376 MHz , Methylene Chloride- d_{2}) $\delta-138.48$ (dd, $J=63.53,33.73 \mathrm{~Hz}$).
MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=643$ [M,100 \%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 324\left(6.5 \times 10^{4}\right), 475\left(7.5 \times 10^{4}\right)$.
Fluorescence (DCM, Excitation at 475 nm): 561 nm .

3.18.3 Aza (dibenzo) BODIPY compound 174.

A solution of aza (dibenzo) dipyrromethene $157(0.100 \mathrm{~g}, 0.211 \mathrm{mmol}, 1 \mathrm{eq})$ was stirred in dry $\operatorname{DCM}(20 \mathrm{ml})$, then $\operatorname{DBU}(0.31 \mathrm{ml}, 2.11 \mathrm{mmol}, 10 \mathrm{eq})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.50 \mathrm{~g}$, $10.55 \mathrm{mmol}, 50 \mathrm{eq})$ were added to the reaction mixture. The mixture was left stirring overnight at room temperature. After 24 h yellow spot appeared on the TLC, trimethylsilyl chloride (1.5 ml) was added to the reaction mixture, then the mixture was refluxed for 3 h . after completion of the reaction (TLCs followed), the mixture was cooled down at room temperature, diluted by $\mathrm{DCM}(50 \mathrm{ml})$, and washed by $\mathrm{HCl}(1 \mathrm{M}$, 50 ml). The orange crystals were isolated from recrystallisation from DCM:PE to yield the desired product 174 in ($80 \mathrm{mg}, 73 \%$).

$\mathbf{M P}=329-330^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.4(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2227, 1499.
${ }^{1} H$ NMR (400 MHz , Chloroform- d) $\delta 8.21$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.82 - $7.72(\mathrm{~m}, 5 \mathrm{H})$, 7.60 (ddd, $J=7.7,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) 164.44, 139.95, 139.70, 132.92, 132.87, 132.62, 132.49, 130.41, 130.16, 124.25, 123.32, 122.87, 118.53, 112.31.
${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-139.16$ (dd, $J=62.44,30.25 \mathrm{~Hz}$).
MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=521$ [M, $100 \%]$.
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 328\left(7.6 \times 10^{4}\right), 441\left(9.2 \times 10^{4}\right)$.
Fluorescence (DCM, Excitation at 441 nm): 527 nm .

3.18.4 Aza (dibenzo) BODIPY compound 175.

A solution of aza (dibenzo) dipyrromethene $\mathbf{1 6 2}(0.100 \mathrm{~g}, 0.187 \mathrm{mmol}, 1 \mathrm{eq})$ was stirred in dry DCM (20 ml), then $\operatorname{DBU}(0.28 \mathrm{ml}, 1.87 \mathrm{mmol}, 10 \mathrm{eq})$ and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(1.32 \mathrm{~g}, 9.35$ $\mathrm{mmol}, 50 \mathrm{eq})$ were added to the reaction mixture. The mixture was left stirring overnight at room temperature. After 24 h yellow spot appeared on the TLC, trimethylsilyl chloride (1.5 ml) was added to the reaction mixture, then the mixture was refluxed for 3 h . after completion of the reaction (TLCs followed), the mixture was cooled down at room temperature, diluted by $\mathrm{DCM}(50 \mathrm{ml})$, and washed by $\mathrm{HCl}(1 \mathrm{M}, 50 \mathrm{ml})$. The orange crystals were isolated from recrystallisation from DCM:PE to yield the desired product $\mathbf{1 7 5}$ in ($77 \mathrm{mg}, 70 \%$).

$\mathbf{M P}=234-235{ }^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.71(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2997, 2223.
${ }^{1}$ H NMR (500 MHz , Methylene Chloride- d_{2}) $\delta 8.25$ (dt, $J=7.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.92 (dt, $J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~s}$, $1 \mathrm{H}), 7.66-7.51(\mathrm{~m}, 7 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Methylene Chloride- d_{2}) $\delta 163.11,160.15,139.93$, 137.47, 136.00, $133.45,132.47,132.43,131.43,130.35,130.00,129.25,126.86,126.67,123.75$, $123.53,123.37,123.25,121.61,118.61,114.64,112.01,68.24,28.93,28.19,22.47$, 13.80.
${ }^{19}$ F NMR (376 MHz , Methylene Chloride- d_{2}) $\delta-138.99(\mathrm{dd}, J=62.05,30.03 \mathrm{~Hz}$).
MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=582$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 326\left(7.5 \times 10^{4}\right), 465\left(5.8 \times 10^{4}\right)$.
Fluorescence (DCM, Excitation at 465 nm): 567 nm .

3.18.5 Aza (dibenzo) BODIPY compound 176.

A solution of aza (dibenzo) dipyrromethene $161(0.100 \mathrm{~g}, 0.208 \mathrm{mmol}, 1 \mathrm{eq})$ was stirred in dry DCM $(20 \mathrm{ml})$, then $\mathrm{DBU}(0.3 \mathrm{ml}, 2.08 \mathrm{mmol}, 10 \mathrm{eq})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.50 \mathrm{~g}, 10.40$ $\mathrm{mmol}, 50 \mathrm{eq})$ were added to the reaction mixture. The mixture was left stirring overnight at room temperature. After 24 h yellow spot appeared on the TLC, trimethylsilyl chloride (1.5 ml) was added to the reaction mixture, then the mixture was refluxed for 3 h . after completion of the reaction (TLCs followed), the mixture was cooled down at room temperature, diluted by $\mathrm{DCM}(50 \mathrm{ml})$, and washed by $\mathrm{HCl}(1 \mathrm{M}, 50 \mathrm{ml})$. The orange crystals were isolated from recrystallisation from DCM:PE to yield the desired product $\mathbf{1 7 6}$ in ($\mathbf{7 8} \mathrm{mg}, 71 \%$).

$\mathbf{M P}=252-253^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.63(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2223, 1583.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.10-8.06(\mathrm{~m}, 3 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ - 7.77 (m, 3H), 7.71 (s, 1H), 7.68 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ ($\mathrm{s}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 5 \mathrm{H})$, 7.01 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz , Acetone- d_{6}) $\delta 164.75,161.67,158.81,154.30,137.99,133.93$, $133.03,132.58,131.38,130.40,129.56,126.64,123.56,122.81,114.32,113.41$, 112.89,54.71.
${ }^{19}$ F NMR (376 MHz , Acetone- d_{6}) $\delta-138.54(\mathrm{dd}, J=61.25,30.00 \mathrm{~Hz}$).
MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=526[\mathrm{M}, 100 \%]$.
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \mathrm{max} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right): 332\left(5.4 \times 10^{4}\right), 453\left(4.5 \times 10^{4}\right)$.
Fluorescence (DCM, Excitation at 453 nm): 531 nm .

3.18.6 Aza-(dibenzo) BODIPY compound 177

A solution of aza (dibenzo) dipyrromethene $\mathbf{1 6 0}(0.100 \mathrm{~g}, 0.185 \mathrm{mmol}, 1 \mathrm{eq})$ was stirred in dry DCM (20 ml), then $\operatorname{DBU}(0.280 \mathrm{ml}, 1.855 \mathrm{mmol}, 10 \mathrm{eq})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.30 \mathrm{~g}$, $9.25 \mathrm{mmol}, 50 \mathrm{eq}$) were added to the reaction mixture. The mixture was left stirring overnight at room temperature. After 24 h yellow spot appeared on the TLC, trimethylsilyl chloride (1.5 ml) was added to the reaction mixture, then the mixture was refluxed for 3 h . after completion of the reaction (TLCs followed), the mixture was cooled down at room temperature, diluted by $\mathrm{DCM}(50 \mathrm{ml})$, and washed by $\mathrm{HCl}(1 \mathrm{M}$, 50 ml). The orange crystals were isolated from recrystallisation from DCM:PE to yield the desired product 177 in ($78 \mathrm{mg}, 71 \%$).

$\mathbf{M P}=184-185^{\circ} \mathrm{C}$.
$\mathbf{R f}=0.67(\mathrm{DCM})$.
IR (thin film cm ${ }^{-1}$) 2927, 1585.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 8.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.82(\mathrm{~s}, 2 \mathrm{H}), 7.74-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.14(\mathrm{dd}, J=8.8,3.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.14(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Acetone- d_{6}) $\delta 162.83,160.55,160.14,137.41,135.68,132.56$, $131.34,129.47,126.78,126.60,125.53,125.33,123.31,123.18,114.82,114.34$, 113.03, 67.71, 54.82, 22.23, 22.07, 21.94, 13.42.
${ }^{19}$ F NMR (376 MHz , Acetone- d_{6}) $\delta-138.15(\mathrm{dd}, J=62.08,30.06 \mathrm{~Hz}$).
MS (MALDI-TOF): $\boldsymbol{m} / \boldsymbol{z}=587$ [M, 100%].
UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 330\left(5.6 \times 10^{4}\right), 474\left(7.0 \times 10^{4}\right)$.
Fluorescence (DCM, Excitation at 474 nm): 552 nm .

References

(1) Treibs, A.; Kreuzer, F. H. European Journal of Organic Chemistry 1968, 718 (1), 208-223.
(2) Heisig, F.; Gollos, S.; Freudenthal, S. J.; El-Tayeb, A.; Iqbal, J.; Müller, C. E. Synthesis of BODIPY derivatives substituted with various bioconjugatable linker groups: a construction kit for fluorescent labeling of receptor ligands. Journal of Fluorescence 2014, 24 (1), 213-230.
(3) Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chemical Society Reviews 2012, 41 (3), 1130-1172.
(4) Ulrich, G.; Ziessel, R.; Harriman, A. Minireviews fluorescent molecular devices the chemistry of fluorescent BODIPY dyes. Versatility Unsurpassed. Angewandte Chemie International Edition 2008, 47, 1184-1201.
(5) Shah, M.; Thangaraj, K.; Soong, M.-L.; Wolford, L. T.; Boyer, J. H.; Politzer, I. R.; Pavlopoulos, T. G. Pyrromethene-BF2 complexes as laser dyes:1. Heteroatom Chemistry 1990, 1 (5), 389-399.
(6) Chu, G. M.; Guerrero-Martínez, A.; Fernández, I.; Sierra, M. Á. Tuning the Photophysical Properties of BODIPY Molecules by π-Conjugation with Fischer Carbene Complexes. Chemistry - A European Journal 2014, 20 (5), 1367-1375.
(7) Vos, d. W. E.; Pardoen, JA; Van, Koeveringe, JA; Lugtenburg. Recl. Trav. Chim. Pays-Bas 1977, 96, 306.
(8) Bañuelos, J. BODIPY Dye, the Most Versatile Fluorophore Ever? The Chemical Record 2016, 16 (1), 335-348.
(9) Ziessel, R.; Ulrich, G.; Harriman, A. The chemistry of Bodipy: A new El Dorado for fluorescence tools. New Journal of Chemistry 2007, 31 (4), 496-501.
(10) Boens, N.; Verbelen, B.; Dehaen, W. Postfunctionalization of the BODIPY core: synthesis and spectroscopy. European Journal of Organic Chemistry 2015, 2015 (30), 6577-6595.
(11) Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chemical Reviews 2007, 107 (11), 4891-4932.
(12) Ziessel, R.; Ulrich, G.; Elliott, K. J.; Harriman, A. Electronic Energy Transfer in Molecular Dyads Built Around Boron-Ethyne-Substituted Subphthalocyanines. Chemistry A European Joural 2009, 15 (20), 4980-4984.
(13) Wood, T. E.; Thompson, A. Advances in the chemistry of dipyrrins and their complexes. Chemical Reviews 2007, 107 (5), 1831-1861.
(14) Boens, N.; Verbelen, B.; Ortiz, M. J.; Jiao, L.; Dehaen, W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coordination Chemistry Reviews 2019, 399, 213024.
(15) Cammidge, A. N.; Chambrier, I.; Cook, M. J.; Sosa-Vargas, L. 75 Synthesis and Properties of the Hybrid Phthalocyanine-Tetrabenzoporphyrin Macrocycles. In Handbook of Porphyrin Science: With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine-Volume 16: Synthetic Developments (Part I), World Scientific, 2012; pp 331-404.
(16) Burghart, A.; Thoresen, L. H.; Chen, J.; Burgess, K.; Bergström, F.; Johansson, L. B.-Å. Energy transfer cassettes based on BODIPY® dyesElectronic supplementary information (ESI) available: absorption and emission spectra of donor and acceptor A and of 1 and experimental details for the spectroscopic measurements. Chemical Communications 2000, (22), 2203-2204.
(17) Killoran, J.; Allen, L.; Gallagher, J. F.; Gallagher, W. M.; Donal, F. Synthesis of BF 2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chemical Communications 2002, (17), 1862-1863.
(18) Wada, M.; Ito, S.; Uno, H.; Murashima, T.; Ono, N.; Urano, T.; Urano, Y. Synthesis and optical properties of a new class of pyrromethene-BF2 complexes fused with rigid bicyclo rings and benzo derivatives. Tetrahedron Letters 2001, 42 (38), 67116713.
(19) Burghart, A.; Kim, H.; Welch, M. B.; Thoresen, L. H.; Reibenspies, J.; Burgess, K.; Bergström, F.; Johansson, L. B.-Å. 3, 5-Diaryl-4, 4-difluoro-4-bora-3a, 4a-diaza-sindacene (BODIPY) dyes: synthesis, spectroscopic, electrochemical, and structural properties. The Journal of Organic Chemistry 1999, 64 (21), 7813-7819.
(20) Jean-Gérard, L.; Vasseur, W.; Scherninski, F.; Andrioletti, B. Recent advances in the synthesis of [a]-benzo-fused BODIPY fluorophores. Chemical Communications 2018, 54 (92), 12914-12929.
(21) Chen, J.; Burghart, A.; Derecskei-Kovacs, A.; Burgess, K. 4, 4-Difluoro-4-bora3a, 4a-diaza-s-indacene (BODIPY) dyes modified for extended conjugation and restricted bond rotations. The Journal of Organic Chemistry 2000, 65 (10), 2900-2906. (22) Xuan, S.; Zhao, N.; Ke, X.; Zhou, Z.; Fronczek, F. R.; Kadish, K. M.; Smith, K. M.; Vicente, M. G. H. Synthesis and spectroscopic investigation of a series of pushpull boron dipyrromethenes (BODIPYs). The Journal of Organic Chemistry 2017, 82 (5), 2545-2557.
(23) Wang, Y. W.; Descalzo, A. B.; Shen, Z.; You, X. Z.; Rurack, K. Dihydronaphthalene-Fused Boron-Dipyrromethene (BODIPY) Dyes: Insight into the Electronic and Conformational Tuning Modes of BODIPY Fluorophores. Chemistry- A European Journal 2010, 16 (9), 2887-2903.
(24) Lee, C.-H.; Lindsey, J. S. One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks. Tetrahedron 1994, 50 (39), 11427-11440.
(25) Boyle, R. W.; Bruckner, C.; Posakony, J.; James, B. R.; Dolphin, D. 5Phenyldipyrromethane and 5, 15-Diphenylporphyrin. Organic Syntheses 2003, 76, 287287.
(26) Dolušić, E.; Ngo, H. T.; Maes, W.; Dehaen, W. Efficient synthesis of aryldipyrromethanes in water and their application in the synthesis of corroles and dipyrromethenes. Arkivoc 2007, 10, 307-324.
(27) Brückner, C.; Karunaratne, V.; Rettig, S. J.; Dolphin, D. Synthesis of meso-phenyl4, 6-dipyrrins, preparation of their Cu (II), Ni (II), and Zn (II) chelates, and structural characterization of bis [meso-phenyl-4, 6-dipyrrinato] Ni (II). Canadian Journal of Chemistry 1996, 74 (11), 2182-2193.
(28) Yu, L.; Muthukumaran, K.; Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Diers, J. R.; Boyle, P. D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening bis (dipyrrinato) metal complex. Inorganic Chemistry 2003, 42 (21), 6629-6647.
(29) Wories, H.; Koek, J.; Lodder, G.; Lugtenburg, J.; Fokkens, R.; Driessen, O.; Mohn, G. A novel water-soluble fluorescent probe: Synthesis, luminescence and biological properties of the sodium salt of the 4-sulfonato-3, 3', 5, 5'-tetramethyl-2, 2'-pyrromethen-1, 1'-BF2 complex. Collection of Chemical Works of the Netherlands 1985, 104 (11), 288-291.
(30) Zhao, C.; An, J.; Zhou, L.; Fei, Q.; Wang, F.; Tan, J.; Shi, B.; Wang, R.; Guo, Z.; Zhu, W.-H. Transforming the recognition site of 4-hydroxyaniline into 4methoxyaniline grafted onto a BODIPY core switches the selective detection of peroxynitrite to hypochlorous acid. Chemical Communications 2016, 52 (10), 20752078.
(31) Boyer, J. H.; Haag, A. M.; Sathyamoorthi, G.; Soong, M. L.; Thangaraj, K.; Pavlopoulos, T. G. Pyrromethene-BF2 complexes as laser dyes: 2. Heteroatom Chemistry 1993, 4 (1), 39-49.
(32) Li, T.; Gu, W.; Yu, C.; Lv, X.; Wang, H.; Hao, E.; Jiao, L. Syntheses and Photophysical Properties of meso-Phenylene ridged Boron Dipyrromethene Monomers, Dimers and Trimer. Chinese Journal of Chemistry 2016, 34 (10), 989-996.
(33) Xie, R.; Yi, Y.; He, Y.; Liu, X.; Liu, Z.-X.; Upadhyaya, K.; Ajay, A.; Mahar, R.; Pandey, R.; Kumar, B. A simple BODIPYeimidazole-based probe for the colorimetric and fluorescent sensing of Cu (II) and Hg (II) pp 8541e8546. Tetrahedron 2013, 69 (40), 8535e8539.
(34) Li, Z.; Mintzer, E.; Bittman, R. First synthesis of free cholesterol- BODIPY conjugates. The Journal of Organic Chemistry 2006, 71 (4), 1718-1721.
(35) Yakubovskyi, V. P.; Shandura, M. P.; Kovtun, Y. P. Boradipyrromethenecyanines. European Journal of Organic Chemistry: 2009; pp 3237-3243.
(36) Wu, L.; Burgess, K. A new synthesis of symmetric boraindacene (BODIPY) dyes. Chemical Communications 2008, (40), 4933-4935.
(37) Deng, Y.; Bennink, J. R.; Kang, H.; Haugland, R. P.; Yewdell, J. Fluorescent conjugates of brefeldin A selectively stain the endoplasmic reticulum and Golgi complex of living cells. Journal of Histochemistry \& Cytochemistry 1995, 43 (9), 907915.
(38) Handy, S.; Lavender, K. Organic synthesis in deep eutectic solvents: Paal-Knorr reactions. Tetrahedron Letters 2013, 54 (33), 4377-4379.
(39) Kotali, A.; Tsoungas, P. G. Oxidation of N-Aroylhydrazones of o-hydroxyaryl ketones withlead (IV) acetate: A facile route to aromatic o-diketones. Tetrahedron Letters 1987, 28 (37), 4321-4322.
(40) Ito, S.; Murashima, T.; Ono, N. A new synthesis of pyrroles fused with polycyclic skeletons. Journal of the Chemical Society, Perkin Transactions 1 1997, (21), 31613166.
(41) Díaz-Moscoso, A.; Emond, E.; Hughes, D. L.; Tizzard, G. J.; Coles, S. J.; Cammidge, A. N. Synthesis of a class of core-modified aza-BODIPY derivatives. The Journal of Organic Chemistry 2014, 79 (18), 8932-8936.
(42) Li, W.; Gong, Q.; Guo, X.; Wu, Q.; Chang, F.; Wang, H.; Zhang, F.; Hao, E.; Jiao, L. Synthesis, Reactivity, and Properties of a Class of π-Extended BODIPY Derivatives. The Journal of Organic Chemistry 2021, 86 (23), 17110-17118.
(43) Killoran, J.; Allen, L.; Gallagher, J. F.; Gallagher, W. M.; O'Shea, D. F. Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chemical Communications 2002, (17), 1862-1863.
(44) Donyagina, V. F.; Shimizu, S.; Kobayashi, N.; Lukyanets, E. A. Synthesis of N, N-difluoroboryl complexes of 3, 3^{\prime}-diarylazadiisoindolylmethenes. Tetrahedron Letters 2008, 49 (42), 6152-6154.
(45) Lu, H.; Shimizu, S.; Mack, J.; Shen, Z.; Kobayashi, N. Synthesis and Spectroscopic Properties of Fused-Ring-Expanded Aza-Boradiazaindacenes. Chemistry-An Asian Journal 2011, 6 (4), 1026-1037.
(46) Gorman, A.; Killoran, J.; O'Shea, C.; Kenna, T.; Gallagher, W. M.; O'Shea, D. F. In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy. Journal of the American Chemical Society 2004, 126 (34), 10619-10631. DOI: 10.1021/ja047649e.
(47) Zhao, W.; Carreira, E. M. Conformationally Restricted Aza-Bodipy: A Highly Fluorescent, Stable, Near-Infrared-Absorbing Dye. A Journal of the German Chemical society 2005, 117 (11), 1705-1707.
(48) Jiang, X.-J.; Lo, P.-C.; Tsang, Y.-M.; Yeung, S.-L.; Fong, W.-P.; Ng, D. K. P. Phthalocyanine-Polyamine Conjugates as pH -Controlled Photosensitizers for Photodynamic Therapy. Chemistry A European Joural 2010, 16 (16), 4777-4783.
(49) Adarsh, N.; Shanmugasundaram, M.; Avirah, R. R.; Ramaiah, D. Aza-BODIPY Derivatives: Enhanced Quantum Yields of Triplet Excited States and the Generation of Singlet Oxygen and their Role as Facile Sustainable Photooxygenation Catalysts. Chemistry A European Joural 2012, 18 (40), 12655-12662.
(50) Rogers, M. A. T. 156. 2: 4-Diarylpyrroles. Part I. Synthesis of 2: 4-diarylpyrroles and 2: 2': 4: 4'-tetra-arylazadipyrromethines. Journal of the Chemical Society (Resumed) 1943, 590-596.
(51) Davies, W.; Rogers, M. A. 46. 2: 4-Diarylpyrroles. Part IV. The formation of acylated 5-amino-2: 4-diphenylpyrroles from β-benzoly- α-phenylpropionitrile and some notes on the Leuckart reaction. Journal of the Chemical Society (Resumed) 1944, 126-131.
(52) Ge, Y.; O'Shea, D. F. Azadipyrromethenes: from traditional dye chemistry to leading edge applications. Chemical Society Reviews 2016, 45 (14), 3846-3864.
(53) Allik, T. H.; Hermes, R. E.; Sathyamoorthi, G.; Boyer, J. H. Spectroscopy and laser performance of new BF2-complex dyes in solution. 1994; International Society for Optics and Photonics: Vol. 2115, pp 240-248.
(54) Sathyamoorthi, G.; Soong, M. L.; Ross, T. W.; Boyer, J. H. Fluorescent tricyclic β-azavinamidine-BF2 complexes. Heteroatom Chemistry 1993, 4 (6), 603-608.
(55) Hall, M. J.; McDonnell, S. O.; Killoran, J.; O'Shea, D. F. A modular synthesis of unsymmetrical tetraarylazadipyrromethenes. The Journal of Organic Chemistry 2005, 70 (14), 5571-5578.
(56) McDonnell, S. O.; O'Shea, D. F. Near-infrared sensing properties of dimethlyamino-substituted BF2- azadipyrromethenes. Organic Letters 2006, 8 (16), 3493-3496.
(57) Antina, E. V.; Bumagina, N. A. Tetraaryl-substituted aza-BODIPY: synthesis, spectral properties, and possible applications (microreview). Chemistry of Heterocyclic Compounds 2017, 53, 39-41.
(58) Jiao, L.; Wu, Y.; Wang, S.; Hu, X.; Zhang, P.; Yu, C.; Cong, K.; Meng, Q.; Hao, E.; Vicente, M. G. H. Accessing near-infrared-absorbing BF2-azadipyrromethenes via a push-pull effect. The Journal of Organic Chemistry 2014, 79 (4), 1830-1835.
(59) Le Guennic, B.; Maury, O.; Jacquemin, D. Aza-boron-dipyrromethene dyes: TDDFT benchmarks, spectral analysis and design of original near-IR structures. Physical Chemistry Chemical Physics 2012, 14 (1), 157-164.
(60) Bredereck, H.; Vollmann, H. W. Synthesen in der heterocyclischen Reihe, XV. Über 1-[3-Aryl-isoindolyl-(1)-imino]-3-aryl-1H-isoindole. European Journal of Organic Chemistry 1972, 105 (7), 2271-2283.
(61) Wang, J.; Yu, C.; Hao, E.; Jiao, L. Conformationally restricted and ring-fused azaBODIPYs as promising near infrared absorbing and emitting dyes. Coordination Chemistry Reviews 2022, 470, 214709.
(62) Rurack, K.; Kollmannsberger, M.; Daub, J. A highly efficient sensor molecule emitting in the near infrared (NIR): 3, 5-distyryl-8-(p-dimethylaminophenyl) difluoroboradiaza-s-indacene. New Journal of Chemistry 2001, 25 (2), 289-292.
(63) Killoran, J.; McDonnell, S. O.; Gallagher, J. F.; O'Shea, D. F. A substituted BF 2chelated tetraarylazadipyrromethene as an intrinsic dual chemosensor in the 650-850 nm spectral range. New Journal of Chemistry 2008, 32 (3), 483-489.
(64) Mueller, T.; Gresser, R.; Leo, K.; Riede, M. Organic solar cells based on a novel infrared absorbing aza-bodipy dye. Solar energy materials and solar cells 2012, 99, 176-181.
(65) Gresser, R.; Hummert, M.; Hartmann, H.; Leo, K.; Riede, M. Synthesis and characterization of near-infrared absorbing benzannulated aza-BODIPY dyes. Chemistry-A European Journal 2011, 17 (10), 2939-2947.
(66) Shamova, L. I.; Zatsikha, Y. V.; Nemykin, V. N. Synthesis pathways for the preparation of the BODIPY analogues: aza-BODIPYs, BOPHYs and some other pyrrole-based acyclic chromophores. Dalton Transactions 2021, 50 (5), 1569-1593.
(67) Majumdar, P.; Mack, J.; Nyokong, T. Synthesis, characterization and photophysical properties of an acenaphthalene fused-ring-expanded NIR absorbing azaBODIPY dye. RSC Advances 2015, 5 (95), 78253-78258.
(68) Herold, D. A.; Rieke, R. D. Synthesis of 1, 2-disubstituted acenaphthylenes. The Journal of Organic Chemistry 1979, 44 (8), 1359-1361.
(69) Zhang, L.; Zhao, L.; Wang, K.; Jiang, J. Chiral benzo-fused Aza-BODIPYs with optical activity extending into the NIR range. Dyes and Pigments 2016, 134, 427-433. (70) Zou, B.; Liu, H.; Mack, J.; Wang, S.; Tian, J.; Lu, H.; Li, Z.; Shen, Z. A new azaBODIPY based NIR region colorimetric and fluorescent chemodosimeter for fluoride. RSC Advances 2014, 4 (96), 53864-53869.
(71) Zheng, W.; Wang, B. B.; Li, C. H.; Zhang, J. X.; Wan, C. Z.; Huang, J. H.; Liu, J.; Shen, Z.; You, X. Z. Asymmetric Donor- π-Acceptor-Type Benzo-Fused AzaBODIPYs: Facile Synthesis and Colorimetric Properties. Angewandte Chemie 2015, 127 (31), 9198-9202.
(72) Xiang, S.-K.; Tan, W.; Zhang, D.-X.; Tian, X.-L.; Feng, C.; Wang, B.-Q.; Zhao, K.-Q.; Hu, P.; Yang, H. Synthesis of benzimidazoles by potassium tert-butoxidepromoted intermolecular cyclization reaction of 2-iodoanilines with nitriles. Organic \& Biomolecular Chemistry 2013, 11 (42), 7271-7275.
(73) Mckeown, G. R.; Manion, J. G.; Lough, A. J.; Seferos, D. S. Synthesis of fusedring aza-dipyrromethenes from aromatic nitriles. Chemical Communications 2018, 54 (64), 8893-8896.
(74) Krizan, T. D.; Martin, J. Directed ortho lithiation of isophthalonitrile. New methodology for the synthesis of 1, 2, 3-trisubstituted benzenes. The Journal of Organic Chemistry 1982, 47 (13), 2681-2682.
(75) Hellal, M.; Cuny, G. D. Microwave assisted copper-free Sonogashira coupling/5-exo-dig cycloisomerization domino reaction: access to 3-(phenylmethylene)isoindolin-1-ones and related heterocycles. Tetrahedron Letters 2011, 52 (42), 5508-5511.
(76) Shimizu, S.; Murayama, A.; Haruyama, T.; Iino, T.; Mori, S.; Furuta, H.; Kobayashi, N. Benzo [c, d] indole-Containing Aza-BODIPY Dyes: AsymmetrizationInduced Solid-State Emission and Aggregation-Induced Emission Enhancement as New Properties of a Well-Known Chromophore. Chemistry-A European Journal 2015, 21 (37), 12996-13003.
(77) Shimizu, S.; Ino, T.; Saeki, A.; Seki, S.; Kobayashi, N. Rational Molecular Design towards Vis/NIR Absorption and Fluorescence by using Pyrrolopyrrole aza-BODIPY and its Highly Conjugated Structures for Organic Photovoltaics. Chemistry-A European Journal 2015, 21 (7), 2893-2904.
(78) Sheng, W.; Zheng, Y.-Q.; Wu, Q.; Wu, Y.; Yu, C.; Jiao, L.; Hao, E.; Wang, J.-Y.; Pei, J. Synthesis, properties, and semiconducting characteristics of BF2 complexes of β, β-bisphenanthrene-fused azadipyrromethenes. Organic Letters 2017, 19 (11), 28932896.
(79) Sheng, W.; Cui, J.; Ruan, Z.; Yan, L.; Wu, Q.; Yu, C.; Wei, Y.; Hao, E.; Jiao, L. [a]-Phenanthrene-Fused BF2 Azadipyrromethene (AzaBODIPY) Dyes as Bright NearInfrared Fluorophores. The Journal of Organic Chemistry 2017, 82 (19), 10341-10349. (80) Sheng, W.; Wu, Y.; Yu, C.; Bobadova-Parvanova, P.; Hao, E.; Jiao, L. Synthesis, crystal structure, and the deep near-infrared absorption/emission of bright AzaBODIPY-based organic fluorophores. Organic letters 2018, 20 (9), 2620-2623.
(81) Fukui, N.; Cha, W. Y.; Lee, S.; Tokuji, S.; Kim, D.; Yorimitsu, H.; Osuka, A. Oxidative Fusion Reactions of meso-(Diarylamino) porphyrins. Angewandte Chemie 2013, 125 (37), 9910-9914.
(82) Nowak-Krol, A.; Gryko, D. T. Oxidative aromatic coupling of meso-arylaminoporphyrins. Organic Letters 2013, 15 (22), 5618-5621.
(83) Alberico, D.; Scott, M. E.; Lautens, M. Aryl- aryl bond formation by transition-metal-catalyzed direct arylation. Chemical Reviews 2007, 107 (1), 174-238.
(84) Loudet, A.; Bandichhor, R.; Wu, L.; Burgess, K. Functionalized BF2 chelated azadipyrromethene dyes. Tetrahedron 2008, 64 (17), 3642-3654.
(85) Loudet, A.; Bandichhor, R.; Burgess, K.; Palma, A.; McDonnell, S. O.; Hall, M. J.; O'Shea, D. F. B, O-chelated azadipyrromethenes as near-IR probes. Organic letters 2008, 10 (21), 4771.
(86) Dalai, S.; Belov, V. N.; Nizamov, S.; Rauch, K.; Finsinger, D.; de Meijere, A. Access to Variously Substituted 5,6,7,8-Tetrahydro-3H-quinazolin-4-ones via DielsAlder Adducts of Phenyl Vinyl Sulfone to Cyclobutene-Annelated Pyrimidinones. European Journal of Organic Chemistry 2006, 2006 (12), 2753-2765.
(87) Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chemical Society Reviews 2011, 40 (10), 5084-5121.
(88) Shirai, H.; Amano, N.; Hashimoto, Y.; Fukui, E.; Ishii, Y.; Ogawa, M. Trisannelated benzene synthesis by zirconium halide catalyzed cyclodehydration of cycloalkanones. The Journal of Organic Chemistry 1991, 56 (6), 2253-2256.
(89) Niu, Y.-N.; Yan, Z.-Y.; Gao, G.-L.; Wang, H.-L.; Shu, X.-Z.; Ji, K.-G.; Liang, Y.M. Synthesis of isoquinoline derivatives via Ag-catalyzed cyclization of 2-alkynyl benzyl azides. The Journal of Organic Chemistry 2009, 74 (7), 2893-2896.
(90) Kmieciak, A.; Ćwiklińska, M.; Jeżak, K.; Shili, A.; Krzemiński, M. P. Searching for new biologically active compounds derived from isoquinoline alkaloids. Chemistry Proceedings 2020, 3 (1), 97.
(91) Dyke, S.; Kinsman, R. Properties and Reactions of Isoquinolines and their Hydrogenated Derivatives. Chemistry of Heterocyclic Compounds: Isoquinolines, Part 1 1981, 38, 1-137.
(92) Guimond, N.; Fagnou, K. Isoquinoline synthesis via rhodium-catalyzed oxidative cross-coupling/cyclization of aryl aldimines and alkynes. Journal of the American Chemical Society 2009, 131 (34), 12050-12051.
(93) Roesch, K. R.; Larock, R. C. Synthesis of isoquinolines and pyridines via palladium-catalyzed iminoannulation of internal acetylenes. The Journal of Organic Chemistry 1998, 63 (16), 5306-5307.
(94) Whaley, W.; Govindachari, T. Organic Reactions, ed R Adams. Wiley, New York: 1951; pp 151-190.
(95) Negishi, E.-i.; Anastasia, L. Palladium-catalyzed alkynylation. Chemical Reviews 2003, 103 (5), 1979-2018.
(96) Zeni, G.; Larock, R. C. Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chemical Reviews 2006, 106 (11), 4644-4680.
(97) Reddy, V.; Jadhav, A. S.; Anand, R. V. Catalyst-Controlled Regioselective Approach to 1-Aminoisoquinolines and/or 1-Aminoisoindolines through Aminative Domino Cyclization of 2-Alkynylbenzonitriles. European Journal of Organic Chemistr: 2016; pp 453-458.
(98) Sakthivel, K.; Srinivasan, K. Synthesis of naphthalene amino esters by the Blaise reaction of o-alkynylarenenitriles. The Journal of Organic Chemistry 2014, 79 (7), 3244-3248.
(99) Ye, P.; Shao, Y.; Xie, L.; Shen, K.; Cheng, T.; Chen, J. Lanthanide-Catalyzed Tandem Insertion of Secondary Amines with 2-Alkynylbenzonitriles: Synthesis of Aminoisoindoles. Chemistry An Asian Journal 2018, 13 (23), 3681-3690.
(100) Shen, H.; Xie, Z. Atom-Economical Synthesis of N-Heterocycles via Cascade Inter-/Intramolecular $\mathrm{C}-\mathrm{N}$ Bond-Forming Reactions Catalyzed by Ti Amides. Journal of the American Chemical Society 2010, 132 (33), 11473-11480.
(101) Yang, D.; Burugupalli, S.; Daniel, D.; Chen, Y. Microwave-assisted one-pot synthesis of isoquinolines, furopyridines, and thienopyridines by palladium-catalyzed sequential Coupling-Imination-Annulation of 2-bromoarylaldehydes with terminal acetylenes and ammonium acetate. The Journal of Organic Chemistry 2012, 77 (9), 4466-4472.
(102) Long, Y.; She, Z.; Liu, X.; Chen, Y. Synthesis of 1-aminoisoquinolines by gold (III)-mediated domino reactions from 2-alkynylbenzamides and ammonium acetate. The Journal of Organic Chemistry 2013, 78 (6), 2579-2588.
(103) Tsai, C.-W.; Yang, S.-C.; Liu, Y.-M.; Wu, M.-J. Microwave-assisted cycloadditions of 2-alkynylbenzonitriles with sodium azide: selective synthesis of tetrazolo [5, 1-a] pyridines and 4, 5-disubstituted-2H-1, 2, 3-triazoles. Tetrahedron 2009, 65 (40), 8367-8372.
(104) Golubev, P. R.; Pankova, A. S.; Kuznetsov, M. A. Transition-Metal-Free Approach to 4-Ethynylpyrimidines via Alkenynones. European Journal of Organic Chemistry 2014, 2014 (17), 3614-3621.
(105) Chow, H.-F.; Wan, C.-W.; Low, K.-H.; Yeung, Y.-Y. A highly selective synthesis of diarylethynes and their oligomers by a palladium-catalyzed Sonogashira coupling reaction under phase transfer conditions. The Journal of Organic Chemistry 2001, 66 (5), 1910-1913.
(106) Díaz-Moscoso, A.; Tizzard, G. J.; Coles, S. J.; Cammidge, A. N. Synthesis of meso-Substituted Tetrabenzotriazaporphyrins: Easy Access to Hybrid Macrocycles. Angewandte Chemie 2013, 125 (41), 10984-10987.
(107) Moussa, Z.; Romo, D. Mild deprotection of primary N-(p-toluenesulfonyl) amides with SmI2 following trifluoroacetylation. Synlett 2006, 2006 (19), 3294-3298.
(108) Xiao, W.; He, Z.; Remiro-Buenamañana, S.; Turner, R. J.; Xu, M.; Yang, X.; Jing, X.; Cammidge, A. N. A π-Extended Donor-Acceptor-Donor Triphenylene Twin Linked via a Pyrazine Bridge. Organic letters 2015, 17 (13), 3286-3289.
(109) Remiro-Buenamañana, S.; Díaz-Moscoso, A.; Hughes, D. L.; Bochmann, M.; Tizzard, G. J.; Coles, S. J.; Cammidge, A. N. Synthesis of Meso-Substituted Subphthalocyanine-Subporphyrin Hybrids: Boron Subtribenzodiazaporphyrins. Angewandte Chemie International Edition 2015, 54 (26), 7510-7514.
(110) Remiro Buenamanana, S. Contracted phthalocyanine macrocycles: Conjugation with nanoparticles and the first synthesis of meso-substituted Boron SubTriBenzoDiAzaPorphyrin hybrids (SubTBDAPs). University of East Anglia, 2015.
(111) Bukowska, P.; Piechowska, J.; Loska, R. Azine-imidazole aza-BODIPY analogues with large Stokes shift. Dyes and Pigments 2017, 137, 312-321.
(112) Chakraborti, A. K.; Sharma, L.; Nayak, M. K. Demand-based thiolate anion generation under virtually neutral conditions: Influence of steric and electronic factors on chemo-and regioselective cleavage of aryl alkyl ethers. The Journal of Organic Chemistry 2002, 67 (18), 6406-6414.
(113) Liu, S.-T.; Reddy, K. V.; Lai, R.-Y. Oxidative cleavage of alkenes catalyzed by a water/organic soluble manganese porphyrin complex. Tetrahedron 2007, 63 (8), 18211825.
(114) Yamashita, J.; Inoue, Y.; Kondo, T.; Hashimoto, H. Ullmann-type coupling reaction of aryl trifluoromethanesulfonates catalyzed by in situ-generated low valent nickel complexes. Chemistry Letters 1986, 15 (3), 407-408.
(115) Li, N.-N.; Zhang, Y.-L.; Mao, S.; Gao, Y.-R.; Guo, D.-D.; Wang, Y.-Q. Palladium-catalyzed $\mathrm{C}-\mathrm{H}$ homocoupling of furans and thiophenes using oxygen as the oxidant. Organic Letters 2014, 16 (10), 2732-2735.
(116) Ravikanth, M.; Chandrashekar, T. Nonplanar porphyrins and their biological relevance: ground and excited state dynamics. Coordination Chemistry 1995, 105-188.
(117) Jaratjaroonphong, J.; Tuengpanya, S.; Saeeng, R.; Udompong, S.; Srisook, K. Green synthesis and anti-inflammatory studies of a series of 1, 1-bis (heteroaryl) alkane derivatives. European Journal of Medicinal Chemistry 2014, 83, 561-568.
(118) Marciniak, B.; Rozycka-Sokolowska, E.; Pavlyuk, V. 2-Naphthalenol. Acta Crystallographica Section E: Structure Reports Online 2003, 59 (1), o52-o53.

Appendix

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) of compound 155

${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) of compound 155

${ }^{1} \mathrm{H}$ NMR (400 MHz , Methylene Chloride- d_{2}) of compound 156

${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) of compound 156

${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) δ) of compound $\mathbf{1 6 2}$

N-H

${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) of compound 160

${ }^{1}$ H NMR (500 MHz , Chloroform- d) of compound 164

${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) of compound 164

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) of compound 165

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) compound 165

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methylene Chloride- d_{2}) of compound $\mathbf{1 7 3}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) compound $\mathbf{1 7 4}$

${ }^{19}$ F NMR (376 MHz , Chloroform- d) of compound $\mathbf{1 7 4}$

${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) of compound 174

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methylene Chloride- d_{2}) compound 175

${ }^{19}$ F NMR (376 MHz , Methylene Chloride- d_{2}) of compound 175

${ }^{13} \mathrm{C}$ NMR (126 MHz , Methylene Chloride- d_{2}) of compound 175

${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) of compound $\mathbf{1 7 7}$

${ }^{{ }^{19} \text { F NMR }\left(376 \mathrm{MHz} \text {, Acetone- } d_{6} \text {) of compound } 177\right.}$

${ }^{13} \mathrm{C}$ NMR (126 MHz , Acetone- d_{6}) of compound 177

Crystal data and structure refinement for 3-n-butyl-isoquinolin-1-amine


```
Final R indices (all data) }\quad\mp@subsup{R}{1}{}=0.058, wR2=0.10
Reflections weighted:
W}=[\mp@subsup{\sigma}{}{2}(F\mp@subsup{O}{}{2})+(0.0464P\mp@subsup{)}{}{2}+0.2192P\mp@subsup{]}{}{-1}\mathrm{ where }\textrm{P}=(\textrm{FO}+2\textrm{FC
Extinction coefficient
    n/a
Largest diff. peak and hole
    0.23 and -0.22 e. \AA}\mp@subsup{\AA}{}{-3
Location of largest difference peak at mid-point of C(1)-C(9) bond
```

Table 1. Atomic coordinates ($\mathrm{x} 10^{5}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	Y	z	U (eq)
N(1)	51595 (11)	110760 (20)	59412 (6)	254 (3)
C (1)	42381(12)	93320 (20)	59512 (6)	195 (3)
N (2)	39358 (9)	78280 (19)	53965 (5)	199 (2)
C (3)	30433 (11)	59750 (20)	53916 (6)	193(3)
C(4)	24699(12)	55740 (20)	59464 (7)	217(3)
C (5)	21793(13)	68890 (20)	71321 (7)	244 (3)
C (6)	24330 (13)	85410 (30)	76803 (7)	259(3)
C (7)	32913 (13)	105210 (20)	76811 (7)	256(3)
C (8)	38984 (13)	107990 (20)	71280 (7)	234 (3)
C (9)	36465 (11)	91310 (20)	65524 (6)	190 (3)
C (10)	27646 (12)	71650 (20)	65458(6)	203 (3)
C (31)	27515 (13)	44480 (20)	47216 (7)	218 (3)
C (32)	16387 (12)	26030 (20)	46525 (7)	227 (3)
C (33)	13372 (13)	12410 (30)	39442 (7)	269 (3)
C (34)	2930 (14)	-7300 (30)	39089 (9)	310 (3)

Table 2. Molecular dimensions. Bond lengths are in Ångstroms, angles in degrees. E.s.ds are in parentheses.

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{4}$) for the expression:
$\exp \left\{-2 \pi^{2}\left(h^{2} a{ }^{2}{ }^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)\right\}$
E.s.ds are in parentheses.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
N(1)	287(6)	307 (6)	189(6)	-29(5)	97 (5)	-72 (5)
C (1)	181(6)	233(6)	172 (6)	36 (5)	40 (5)	29 (5)
N(2)	191 (5)	242 (5)	171 (5)	7 (4)	56 (4)	9 (4)
C (3)	188(6)	209(6)	183(6)	18 (5)	41 (5)	34 (5)
C (4)	233 (6)	222 (6)	204(6)	16 (5)	69 (5)	-10 (5)
C (5)	263(6)	272 (7)	216 (7)	50 (5)	93(5)	5 (5)
C (6)	299 (7)	325 (7)	182(6)	36 (5)	114 (5)	44 (6)
C (7)	320 (7)	281 (7)	171 (6)	-18(5)	69 (5)	34 (5)
C (8)	260 (7)	239(7)	206 (7)	16 (5)	57 (5)	-2 (5)
C (9)	187(6)	224(6)	159(6)	29 (5)	43(4)	47 (5)
C (10)	214(6)	229(6)	171(6)	38 (5)	57 (5)	40 (5)
C (31)	231 (6)	253 (7)	184 (7)	3 (5)	74 (5)	13 (5)
C (32)	231 (6)	241 (6)	220 (6)	6 (5)	75 (5)	17 (5)
C (33)	265 (7)	296 (7)	258 (7)	-37(6)	89 (6)	-23(6)
C (34)	266 (7)	289 (7)	377 (9)	-42 (6)	75 (6)	-11 (6)

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). All hydrogen atoms were located in a difference map and were refined freely.

	x	Y	z	U(iso)
H (1A)	5255 (16)	12290 (30)	6266 (9)	42 (5)
H (1B)	5390 (15)	11410 (30)	5524 (9)	37 (4)
H (4)	1849(14)	4230 (30)	5931 (7)	27 (4)
H (5)	1577 (14)	5480 (30)	7135 (8)	25 (4)
H (6)	2013(14)	8360 (30)	8080 (8)	33 (4)
H (7)	3484 (14)	11700 (30)	8064 (8)	34 (4)
H (8)	4488(14)	12170 (30)	7127 (7)	26 (4)
H (31A)	2553(13)	5620 (30)	4316 (8)	26 (4)
H (31B)	3559 (15)	3580 (30)	4687 (7)	29 (4)
H (32A)	834 (14)	3490 (30)	4710 (7)	25 (4)
H (32B)	1858(14)	1350 (30)	5052 (8)	30 (4)
H (33A)	1022 (14)	2480 (30)	3546 (8)	32 (4)
H (33B)	2144 (15)	520 (30)	3864 (8)	33 (4)
H (34A)	-504 (15)	40 (30)	3978 (8)	34 (4)
H (34B)	600 (16)	-2040(30)	4286(9)	43 (5)
H (34C)	64 (16)	-1590(30)	3443 (9)	47 (5)

Table 5. Torsion angles, in degrees. E.s.ds are in parentheses.

```
N(1) -C (1) -N (2) -C (3)
177.71(10)
    C (9) -C (1)-N (2) -C (3)-1.08(17)
    C(1)-N(2)-C(3)-C (4)-1.57(17)
    C (1) -N (2) -C (3)-C (31)
178.08(10)
    N(2)-C (3) -C (4) -C (10)
2.08(18)
    C(31)-C(3)-C(4)-C (10)-177.54(11)
    C(10)-C (5)-C (6)-C (7) -1.0(2)
    C(5)-C (6)-C (7) -C (8) -0.7 (2)
    C(6)-C (7) -C (8) -C (9)
1.15(19)
    C(7)-C (8) -C (9) -C (10)
0.00(18)
    C(7)-C (8)-C (9) -C (1)
179.24(12)
    N(2)-C (1) -C (9) -C (10)
3.06(17)
    N(1) -C (1) -C (9) -C (10) -175.69(11)
    N(2) -C (1) -C (9) -C (8)-176.20(11)
```

```
    N(1)-C(1)-C(9) -C (8)
```

 N(1)-C(1)-C(9) -C (8)
 5.05(18)
5.05(18)
C(8)-C(9)-C(10)-C (5)-1.59(17)
C(8)-C(9)-C(10)-C (5)-1.59(17)
C(1)-C(9)-C (10)-C (5)
C(1)-C(9)-C (10)-C (5)
179.12(11)
179.12(11)
C(8)-C (9)-C (10) -C (4)
C(8)-C (9)-C (10) -C (4)
176.84(11)
176.84(11)
C(1)-C(9)-C(10)-C(4)-2.44(16)
C(1)-C(9)-C(10)-C(4)-2.44(16)
C(6)-C(5)-C (10) -C (9)
C(6)-C(5)-C (10) -C (9)
2.08(18)
2.08(18)
C(6)-C(5)-C(10)-C(4)-176.30(12)
C(6)-C(5)-C(10)-C(4)-176.30(12)
C(3)-C(4)-C(10)-C(9)
C(3)-C(4)-C(10)-C(9)
0.05(18)
0.05(18)
C(3)-C(4)-C (10) -C (5)
C(3)-C(4)-C (10) -C (5)
178.42(12)
178.42(12)
C(4)-C(3)-C(31)-C (32)
C(4)-C(3)-C(31)-C (32)
7.49(18)
7.49(18)
N(2)-C(3)-C(31)-C(32)-172.15(10
N(2)-C(3)-C(31)-C(32)-172.15(10
C(3)-C(31)-C(32)-C (33)
C(3)-C(31)-C(32)-C (33)
176.29(11)
176.29(11)
C (31) -C (32) -C (33) -C (34)
C (31) -C (32) -C (33) -C (34)
175.65(12)

```
175.65(12)
```

Table 6. Hydrogen bond, in Ångstroms and degrees.

$D-H \ldots A$	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$N(1)-H(1 B) \ldots N(2) \# 1$	$0.914(17)$	$2.108(17)$	$3.0201(15)$	$175.8(14)$

Symmetry transformation used to generate equivalent atoms:
\#1 : 1-x, 2-y, 1-z

Crystal structure analysis of 3-n-butyl-isoquinolin-1-amine

Crystal data: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}, \mathrm{M}=200.28$. Monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}$ (no. 14), $\mathrm{a}=$ $10.5288(4), b=5.4244(2), c=19.3720(7) \AA, \beta=103.423(4)^{\circ}, V=1076.16(7) \AA^{3} \cdot \mathrm{Z}=4$, $\mathrm{Dc}=1.236 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=432, \mathrm{~T}=140(1) \mathrm{K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.74 \mathrm{~cm}^{-1}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073$ Å.

Crystals are yellow prisms. From a sample under oil, one, ca $0.07 \times 0.18 \times 0.35 \mathrm{~mm}$, was mounted on a glass fibre and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-3/Sapphire3-CCD diffractometer, equipped with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation and graphite monochromator. Intensity data were measured by thin-slice ω - and φ-scans. Total no. of reflections recorded to $\theta_{\max }=27.5^{\circ}$, was 15704 of which 2466 were unique ($\operatorname{Rint}=0.037$); 1958 were 'observed' with I > $2 \sigma_{\mathrm{I}}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on F^{2} s, in SHELXL (2B). The non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were located in a difference map and were refined freely. At the conclusion of the refinement, $\mathrm{wR}_{2}=0.104$ and $\mathrm{R}_{1}=0.058(2 \mathrm{~B})$ for all 2466 reflections weighted $\mathrm{w}=\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0464 \mathrm{P})^{2}+0.2192 \mathrm{P}\right]$ ${ }^{1}$ with $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$; for the 'observed' data only, $\mathrm{R}_{1}=0.043$.

In the final difference map, the highest peaks (ca $0.23 \mathrm{e}^{-3}$) were close to the mid-points of the ring $\mathrm{C}-\mathrm{C}$ bonds.

Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(1) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2018).
(2) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112122 and (2015) C71, 3-8.
(3) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). Vol. C, pp. 500, 219 and 193.
(4) L. J. Farrugia, J. Appl. Cryst. (2012) 45, 849-854.

Legends for Figures

Figure 1. View of a pair of 3-n-butyl-isoquinolin-1-amine molecules linked by hydrogen bonds about a centre of symmetry; the atom numbering scheme is indicated. Thermal ellipsoids are drawn at the 50% probability level.

Figure 2. View along the b axis of the packing of the hydrogen-bonded dimer pairs.

Notes on the structure.

All the non-hydrogen atoms of the isoquinoline rings of the title molecule form a good planar group; the carbon atoms of the n-butyl group lie close to this plane and show an all-trans chain. One of the amino H atoms forms a good hydrogen bond to the pyridine N atom of a neighbouring molecule, and this bonding is repeated about a centre of symmetry, thus forming an eight-membered ring which links the pair of molecules in a dimer unit.

Crystal data and structure refinement for $\mathrm{MeO}_{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}, \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$

120


```
Data / restraints / parameters
1416 / 3 / 200
Goodness-of-fit on F2 1.075
Final R indices ('observed' data) }\quad\mp@subsup{R}{1}{}=0.138, wR2 = 0.31
Final R indices (all data) }\quad\mp@subsup{R}{1}{}=0.213, wR2 = 0.34
Reflections weighted:
    w = [\mp@subsup{\sigma}{}{2}(\mp@subsup{FO}{2}{2})+(0.2000P\mp@subsup{)}{}{2}\mp@subsup{]}{}{-1}\mathrm{ where P=(FO}+2F\mp@subsup{C}{}{2})/3
Extinction coefficient n/a
Largest diff. peak and hole 0.68 and -0.46 e.Å-3
Location of largest difference peak close to Cl(1)
```

Table 1. Atomic coordinates ($\mathbf{x} 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	Y	z	U (eq)
C (1)	-40(20)	9243 (15)	2375 (8)	38 (3)
C (2)	990 (20)	9747(16)	1562 (8)	45 (4)
C (3)	(20)	11241(17)	882 (8)	47(4)
C(4)	-1960 (20)	12131(17)	955 (8)	43(4)
C(5)	-2960 (20)	11652(15)	1722(9)	47(4)
C (6)	-1990 (20)	10205(18)	2447 (8)	49(4)
C(7)	977 (17)	7741 (15)	3142 (8)	37 (3)
C (8)	1726 (19)	6545 (18)	3761 (9)	46(4)
C(9)	2820 (20)	4982 (16)	4494(8)	38 (3)
C (10)	4600 (19)	3629 (16)	4190(8)	40(3)
C (11)	5650 (20)	2128 (15)	4861 (9)	50 (4)
C (12)	4850 (20)	2020 (18)	5818(9)	44(4)
O(12)	5839 (14)	502 (11)	6516(5)	51 (3)
C(121)	7627 (19)	-972 (16)	6212 (8)	44(3)
C (13)	3090 (20)	3354 (18)	6132 (8)	43(3)
C (14)	2041 (19)	4843 (16)	5461 (9)	46(3)
C (21)	3050 (20)	8815 (19)	1438(8)	43(3)
N (21)	3998 (17)	6913(14)	1522(7)	49(3)
N (22)	3974 (16)	9810 (13)	1183(6)	52 (3)
Cl (1)	2006 (5)	4361 (4)	1308(2)	52.7 (14)
O(51)	7638 (15)	6630 (12)	932 (7)	53 (3)

Table 2. Molecular dimensions. Bond lengths are in Ångstroms,angles in degrees. E.s.ds are in parentheses.

C(1)-C(6)
1.382 (17)

C(1)-C(2)
1.436 (17)
$C(1)-C(7)$
$1.468(16)$
C (2) -C (3)
$1.383(15)$
C(2)-C (21)
1.457 (17)

C(3)-C(4)
1.390 (16)
$C(4)-C(5)$
1.373(16)
$C(5)-C(6)$
$1.400(16)$
C(7)-C(8)
$1.165(14)$
C (8) - C (9)
1.479 (18)

C(9) -C (10)
1.372(15)

C(9) - C (14)
1.394(16)

$$
C(6)-C(1)-C(2)
$$

119.9(11)
$C(6)-C(1)-C(7)$
$119.8(11)$
$C(2)-C(1)-C(7)$
120.3(12)
$C(3)-C(2)-C(1)$
119.3(14)
$C(3)-C(2)-C(21)$
117.5(12)
$C(1)-C(2)-C(21)$
123.2(10)
$C(2)-C(3)-C(4)$
$119.2(12)$
$C(5)-C(4)-C(3)$
122.0(11)
$C(4)-C(5)-C(6)$
119.6(13)
$C(1)-C(6)-C(5)$
119.9(11)
$C(8)-C(7)-C(1)$
177.6(13)
$C(7)-C(8)-C(9)$
175.3(14)

C (10) -C (9) -C (14)
120.7(11)
$C(10)-C(9)-C(8)$
118.5(11)
$C(10)-C(11)$
1.391(15)

C (11) -C (12)
1.383(16)

C (12) - C (13)
1.362(16)

C (12) -O (12)
1.407(13)

O(12) - C (121)
1.413(13)
$C(13)-C(14)$
1.387(16)

C (21) $-N(22)$
1.341(14)

C (21) $-N(21)$
1.349(15)
$\mathrm{N}(21)-\mathrm{H}(21 \mathrm{~A})$
$0.86(2)$
O (51) - H (51A)
0.82 (2)

O (51) - H (51B)
$0.82(2)$
$C(14)-C(9)-C(8)$
120.8(13)
$C(9)-C(10)-C(11)$
119.7(11)

$$
C(12)-C(11)-C(10)
$$

118.7(13)

$$
C(13)-C(12)-C(11)
$$

122.3(11)
$C(13)-C(12)-O(12)$
116.8(11)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(12)$
120.9(14)

C (12) -O (12) -C (121)
119.1(9)
$C(12)-C(13)-C(14)$
118.9(11)
$C(13)-C(14)-C(9)$
119.7(13)

$$
\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{N}(21)
$$

120.4(13)
$\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{C}(2)$
121.2(11)
$\mathrm{N}(21)-\mathrm{C}(21)-\mathrm{C}(2)$
118.3(11) $\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{H}(21 A)$
115 (8)
H (51A) $-\mathrm{O}(51)-\mathrm{H}(51 \mathrm{~B})$
118(10)

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for the expression: $\exp \left\{-2 \pi^{2}\left(h^{2} a *{ }^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)\right\}$ E.s.ds are in parentheses.

		U_{11}	U_{22}	U_{33}	U_{23}	U_{13}

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). The water and amino hydrogen atoms were located in difference maps; their $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances were constrained as were the Uiso parameters of two of these atoms. All remaining hydrogen atoms were included in idealised positions with U (iso)'s set at $1.2 * U(e q)$ or, for the methyl group hydrogen atoms, $1.5 * \mathrm{U}(\mathrm{eq})$ of the parent carbon atoms.

	x	y	U (iso)	
H(3)	649	11647	381	57
H(4)	-2617	13080	470	52
H(5)	-4279	12285	1759	56
H(6)	-2662	9892	2978	59
H(10)	5099	3714	3539	48
H(11)	6869	1216	4670	60
H(12A)	8120	-1897	6765	66
H(12B)	7501	-1551	5667	66
H(12C)	8477	-470	5998	66
H(13)	2605	3268	6786	52
H(14)	820	5744	5654	55
H(21A)	$5120(70)$	$6430(150)$	$1720(80)$	60
H(51A)	$7510(190)$	$6560(160)$	$340(30)$	60
H(51B)	$8710(70)$	$6280(150)$	$1100(80)$	$50(40)$

Table 5. Torsion angles, in degrees. E.s.ds are in parentheses.

$C(6)-C(1)-C(2)-C(3)$	$C(10)-C(11)-C(12)-C(13)-1.6(17)$
2.4(16)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(12)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-176.1(10)$	178.2(9)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}(12)-\mathrm{C}(121)$
179.3(11)	176.6(10)
$C(7)-C(1)-C(2)-C(21)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(12)-\mathrm{C}(121)-3.2(14)$
$0.8(16)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-4.9(16)$	2.0(18)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-177.8(9)$
178.1(10)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)-2.2(17)$
$C(2)-C(3)-C(4)-C(5)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$
4.3 (17)	2.1(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-1.0(17)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$
$C(2)-C(1)-C(6)-C(5)$	179.5(10)
$0.8(16)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(22)$
$C(7)-C(1)-C(6)-C(5)$	40.1(16)
179.3(9)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(22)-136.8(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)-1.5(16)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(21)-135.6(11)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-1.7(16)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(21)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-179.1(10)$	47.5(16)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	
1.4(16)	

$C(10)-C(11)-C(12)-C(13)-1.6(17)$ $C(10)-C(11)-C(12)-O(12)$
178.2(9)
$C(13)-C(12)-O(12)-C(121)$
176.6(10)
$C(11)-C(12)-O(12)-C(121)-3.2(14)$
C (11) -C (12) -C (13) -C (14)
2.0(18)
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-177.8(9)$
$C(12)-C(13)-C(14)-C(9)-2.2(17)$
2.1(17)
$C(8)-C(9)-C(14)-C(13)$
179.5(10)
$C(3)-C(2)-C(21)-N(22)$
40.1(16)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(22)-136.8(11)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(21)-135.6(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(21)$
47.5(16)
1.4(16)

Table 6. Hydrogen bonds, in Ångstroms and degrees.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
N(21)-H(21)A...O(51)	0.857	2.256	128.32	2.867
O(51)-H(51)A...Cl(1)\#1	0.824	2.360	164.22	3.161
O(51)-H(51)B...Cl(1)\#2	0.823	2.384	160.43	3.171

Symmetry operations: \#1 : 1-x, 1-y, -z
\#2 : x+1, y, z

Crystal structure analysis of $\mathrm{MeO}_{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}, \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}$

Crystal data: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Cl}, \mathrm{M}=304.77$. Triclinic, space group $\mathrm{P}-1$ (no. 2), $\mathrm{a}=$ 8.113(3), $b=8.133(3), c=13.467(3) \AA, \alpha=82.91(2), \beta=83.06(2), \gamma=60.90(3)^{\circ}, \mathrm{V}=$ $768.6(4) \AA^{3} . \mathrm{Z}=2, \mathrm{Dc}=1.317 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=320, \mathrm{~T}=140(1) \mathrm{K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=2.54 \mathrm{~cm}^{-1}$, $\lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA$.

Crystals are colourless plates. From a sample under oil, one, ca $0.05 \times 0.33 \times 0.41 \mathrm{~mm}$, was mounted on a glass fibre and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-3/Sapphire3-CCD diffractometer, equipped with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation and graphite monochromator. Intensity data were measured by thin-slice ω - and φ-scans. Total no. of reflections recorded to $\theta_{\max }=20^{\circ}$, was 5362 of which 1416 were unique (Rint $=0.19$); 796 were 'observed' with I > $2 \sigma_{\text {I }}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on F^{2} 's, in SHELXL (2B). The non-hydrogen atoms were refined with anisotropic thermal parameters. The two water hydrogen atoms and one of the amino hydrogens were located in difference maps and were included in the refinement process but with constrained $\mathrm{O} / \mathrm{N}-\mathrm{H}$ distances; the Uiso values for two of these atoms were fixed. The remaining hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms. The intensity data were rather diffuse and weak and the $2 \theta_{\text {max }}$ value for inclusion in the refinement process was set at 40°. At the conclusion of the refinement, $\mathrm{wR}_{2}=0.35$ and $\mathrm{R}_{1}=0.21$ (2B) for all 1416 reflections weighted $\mathrm{w}=\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.20 \mathrm{P})^{2}\right]^{-1}$ with $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$; for the 'observed' data only, $\mathrm{R}_{1}=0.138$.

In the final difference map, the highest peaks (to $c a 0.7 \mathrm{e}^{-3}{ }^{-3}$) were close to the chloride ion atom.

Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(5) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2018).
(6) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112-

122 and (2015) C71, 3-8.
(7) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). Vol. C, pp. 500, 219 and 193.
(8) L. J. Farrugia, J. Appl. Cryst. (2012) 45, 849-854.

Legends for Figures

Figure 1. View of the moieties of $\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}, \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, indicating the atom numbering scheme. Thermal ellipsoids are drawn at the 50\% probability level.

Figure 2. View showing the probable hydrogen bonds connecting the ions and water molecules in the crystal.

Figure 3. Packing viewed along the b axis.

Crystal data and structure refinement for $\mathrm{C}_{\mathbf{1 6}} \mathrm{H}_{12} \mathrm{NO}-\mathrm{N}=\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$

155

Identification code

Elemental formula
Formula weight
Crystal system, space group
Unit cell dimensions

Volume

Z, Calculated density

F(000)

Absorption coefficient

Temperature
Wavelength
Crystal colour, shape
Crystal size
Crystal mounting: on a small loop, in oil, fixed in cold N_{2} stream
On the diffractometer:
Theta range for data collection

Limiting indices

Completeness to theta $=67.684$

Absorption correction

Max. and min. transmission

155

C32 H25 N3 O2
483.55

Triclinic, $P-1 \quad$ (no. 2)
$a=7.47981(11) \AA \quad \alpha=101.5042(12)^{\circ}$ $\mathrm{b}=11.99860(18) \AA \quad \AA=95.5867(11){ }^{\circ}$ $c=14.03558(19) \AA \quad \gamma=103.8877(13)^{\circ}$
$1184.22(3) \AA^{3}$
2, $1.356 \mathrm{Mg} / \mathrm{m}^{3}$

508
$0.679 \mathrm{~mm}^{-1}$
100.01(10) K
$1.54184 \AA$
deep red plate
$0.185 \times 0.14 \times 0.04 \mathrm{~mm}$
3.251 to 69.994°
$-8<=h<=9, \quad-14<=\mathrm{k}<=14, \quad-17<=1<=17$
99.6%

Semi-empirical from equivalents
1.00000 and 0.78261

Reflections collected (not including absences) 35660
No. of unique reflections 4473 [R(int) for equivalents $=0.045$]
No. of 'observed' reflections (I > 2 σ_{I}) 4170
Structure determined by: dual methods, in SHELXT
Refinement: Full-matrix least-squares on F^{2}, in SHELXI

Data / restraints / parameters 4473 / 0 / 340

Goodness-of-fit on $\mathrm{F}^{2} 1.057$

Final R indices ('observed' data)	$R_{1}=0.045, \mathrm{wR}_{2}=0.102$
Final R indices (all data)	$R_{1}=0.047, \mathrm{wR}_{2}=0.103$

Reflections weighted: $\mathrm{w}=\left[\sigma^{2}\left(\mathrm{FO}^{2}\right)+(0.0380 \mathrm{P})^{2}+0.8695 \mathrm{P}\right]^{-1}$ where $\mathrm{P}=\left(\mathrm{FO}^{2}+2 \mathrm{FC}^{2}\right) / 3$

Extinction coefficient
Largest diff. peak and hole
Location of largest difference peak
n / a
0.25 and -0.23 e. \AA^{-3}
near C(29)-C(23) bond

Table 1. Atomic coordinates ($\mathbf{x} 10^{5}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	y	z	U (eq)
N(1)	75077(16)	51663 (10)	53486(9)	180 (3)
C (1)	79368(18)	41107 (12)	52659 (10)	172 (3)
N (2)	80062 (16)	33605 (10)	44441 (9)	175 (3)
C (3)	85005 (19)	23936 (12)	47152 (10)	177 (3)
C (4)	91100(20)	19054 (13)	64443 (11)	212 (3)
C (5)	92530 (20)	23859 (14)	74446 (11)	240 (3)
C (6)	90030 (20)	35068 (14)	77887 (11)	238 (3)
C (7)	85610 (20)	41696 (13)	71383 (11)	206 (3)
C (8)	83967 (19)	36783 (12)	61418 (10)	182 (3)
C (9)	86783(19)	25710 (12)	57925 (10)	183(3)
C (10)	88501(19)	14826(12)	40916 (11)	184(3)
C (11)	89997(19)	13456 (12)	30459 (10)	181(3)
C (12)	95540 (20)	23147 (12)	26314(10)	193(3)
C (13)	97510 (20)	21501 (13)	16402 (11)	197(3)
O(13)	$103138(16)$	31664 (9)	13213(8)	257 (2)
C (131)	106940 (20)	30562 (14)	3381 (11)	258 (3)
C (14)	93830 (20)	10207 (13)	10461(11)	213(3)
C (15)	88480 (20)	581 (13)	14634 (11)	224(3)
C (16)	86760 (20)	2065 (12)	24483 (11)	205 (3)
C (21)	69917 (18)	54830 (12)	45460 (10)	174 (3)
N (22)	67310 (16)	48656 (10)	35944 (9)	179(3)
C (23)	62378 (19)	55134 (12)	29299 (11)	184(3)
C (24)	58380 (20)	76519 (12)	32964 (11)	209(3)
C (25)	58760 (20)	85965 (13)	40566(12)	232 (3)
C (26)	62610 (20)	85527 (13)	50413 (12)	229 (3)
C (27)	66290 (20)	75565 (12)	52879 (11)	205 (3)
C (28)	$66098(19)$	66180 (12)	45228 (11)	180 (3)
C (29)	62111 (19)	66526 (12)	35404 (11)	189(3)
C (30)	58480 (20)	51529 (13)	19450 (11)	208(3)
C (31)	56801 (19)	39820 (13)	13311(11)	197(3)
C (32)	50760 (20)	29497 (13)	16701(10)	196(3)
C (33)	48930 (20)	18535 (13)	10584(11)	203 (3)
O(33)	43202 (15)	8035 (9)	13216(8)	250 (2)
C (331)	39650 (20)	8411 (13)	23059 (11)	247 (3)
C (34)	52870 (20)	17633 (13)	972 (11)	229(3)
C (35)	58490 (20)	27786(14)	-2385 (11)	233(3)
C (36)	60470 (20)	38823 (13)	3656 (11)	221 (3)

Table 2. Molecular dimensions. Bond lengths are in Ångstroms, angles in degrees. E.s.ds are in parentheses.

```
        N(1) -C (1)
1.3655(18)
        C(1) -N (2)
1.3279(18)
    C(1)-C (8)
1.4685(19)
    N(2) -C (3)
1.4079(18)
    C (3)-C (10)
1.353(2)
    C(3)-C (9)
1.4725(19)
    C(4)-C (5)
1.390(2)
    C (4)-C (9)
1.392(2)
    C (5) -C (6)
1.399(2)
        C (6)-C(7)
1.390(2)
        C(7) -C (8)
1.386(2)
        C(8)-C (9)
1.395(2)
        C(10)-C(11)
1.462(2)
        C(11)-C (12)
1.396(2)
        C(11) -C (16)
1.405(2)
        C (12) -C (13)
1.393(2)
        C (13) -O (13)
1.3684(17)
        C(13) -C (14)
1.390(2)
        O(13)-C (131)
1.4228(18)
    C(14)-C(15)
1.389(2)
        C(15)-C(16)
1.381(2)
    C(21)-N(1)-C(1)118.93(12)
    N(2)-C(1) -N(1)
127.36(13)
        N(2) -C (1) -C (8)
111.63(12)
        N(1)-C(1)-C (8)
121.02(12)
        C(1)-N(2)-C (3)
107.43(12)
        C (10) -C (3) -N (2)
125.43(13)
        C(10)-C (3) -C (9)
125.63(13)
        N(2) -C (3)-C (9)
108.86(12)
        C(5)-C (4)-C (9)
117.68(14)
        C(4)-C(5)-C(6)
121.41(14)
        C (7) -C (6)-C (5)
120.95(14)
```

$\mathrm{N}(1)-\mathrm{C}(21)$
1.3112 (18)

C (21) $-\mathrm{N}(22)$
1.3623 (18)

$$
C(21)-C(28)
$$

1.4627 (19)

N(22) -C (23)
$1.4036(18)$

$$
\mathrm{C}(23)-\mathrm{C}(30)
$$

1.344 (2)

$$
C(23)-C(29)
$$

1.4671 (19)

C (24) -C (25)
$1.386(2)$
C (24) -C (29)
1.392 (2)

C (25) -C (26)
1.398 (2)

C (26) -C (27)
1.389 (2)

C (27) -C (28)
1.389 (2)

C (28) -C (29)
1.393(2)

C(30)-C (31)
1.464 (2)

C(31) -C (36)
1.396(2)

C (31) -C (32)
1.405(2)

C (32) -C (33)
1.388 (2)

C(33) -O (33)
1.3655 (17)

C(33)-C(34)
1.398 (2)

O(33)-C (331)
1.4261(18)

C (34) -C (35)
$1.380(2)$
C (35) -C (36)
1.389 (2)

N(22) $-\mathrm{H}(22)$
0.90 (2)

$$
C(8)-C(7)-C(6)
$$

117.31(14)

$$
C(7)-C(8)-C(9)
$$

122.13(13)

$$
C(7)-C(8)-C(1)
$$

131.96 (13)
$C(9)-C(8)-C(1)$
105.90 (12)

$$
C(4)-C(9)-C(8)
$$

120.50 (13)

$$
C(4)-C(9)-C(3)
$$

133.39(13)

C (8) $-\mathrm{C}(9)-C(3)$
$106.05(12)$
$C(3)-C(10)-C(11)$
128.51(13)
$C(12)-C(11)-C(16)$
118.71(13)

C (12) -C (11) -C (10)
121.99(13)

```
    \(C(16)-C(11)-C(10)\)
119.21(13)
    C (13) -C (12) -C (11)
120.39(13)
    O (13) -C (13) -C (14)
124.35(13)
    O (13) -C (13) -C (12)
114.98(12)
    \(C(14)-C(13)-C(12)\)
120.67(13)
    \(C(13)-O(13)-C(131)\)
\(117.50(11)\)
    \(C(15)-C(14)-C(13)\)
118.77(13)
    \(C(16)-C(15)-C(14)\)
121.26(13)
    \(C(15)-C(16)-C(11)\)
120.16(13)
    \(\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{N}(22)\)
128.45(13)
    \(\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(28)\)
124.73(13)
        \(\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{C}(28)\)
106.82(12)
    \(\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)\)
112.00(12)
    \(\mathrm{C}(30)-\mathrm{C}(23)-\mathrm{N}(22)\)
126.98(13)
    \(C(30)-C(23)-C(29)\)
\(127.65(13)\)
\(\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(29)\)
105.36(12)
    \(C(25)-C(24)-C(29)\)
117.99(14)
\(C(24)-C(25)-C(26)\)
121.44(14)
\(C(27)-C(26)-C(25)\)
120.76(14)
        C (26) -C (27) -C (28)
117.54(14)
```

$$
C(27)-C(28)-C(29)
$$

$$
121.95(13)
$$

$$
C(27)-C(28)-C(21)
$$

$$
130.26(13)
$$

$$
C(29)-C(28)-C(21)
$$

107.79(12)

$$
C(24)-C(29)-C(28)
$$

$$
120.32 \text { (14) }
$$

$$
C(24)-C(29)-C(23)
$$

$$
131.72 \text { (14) }
$$

$$
C(28)-C(29)-C(23)
$$

107.95(12)

$$
C(23)-C(30)-C(31)
$$

128.37(13)

$$
C(36)-C(31)-C(32)
$$

$118.90(13)$

$$
C(36)-C(31)-C(30)
$$

119.17 (13)

$$
C(32)-C(31)-C(30)
$$

121.86(13)

$$
C(33)-C(32)-C(31)
$$

$$
120.19(13)
$$

$$
O(33)-C(33)-C(32)
$$

$$
124.46(13)
$$

$$
O(33)-C(33)-C(34)
$$

$$
115.05(13)
$$

$$
C(32)-C(33)-C(34)
$$

$$
120.49(13)
$$

$$
C(33)-O(33)-C(331)
$$

$$
117.61(11)
$$

$$
C(35)-C(34)-C(33)
$$

119.13(14)

C (34) -C (35) -C (36)
121.09(14)
$C(35)-C(36)-C(31)$
120.18(14)
$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{H}(22)$
118.8(13)
$\mathrm{C}(23)-\mathrm{N}(22)-\mathrm{H}(22)$
129.0(13)

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{4}$) for the expression: exp $\left\{-2 \pi^{2}\left(h^{2} a{ }^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)\right\}$
E.s.ds are in parentheses.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
N(1)	176 (6)	160(6)	200 (6)	37 (5)	31 (5)	39(5)
C (1)	126(6)	167(7)	210 (7)	42 (5)	19(5)	19(5)
N(2)	166 (6)	158(6)	208 (6)	43 (5)	31 (5)	$52(5)$
C (3)	144 (6)	183(7)	205 (7)	63 (5)	20 (5)	29 (5)
C (4)	191(7)	213 (7)	246 (7)	72 (6)	31 (6)	64 (6)
C (5)	234(7)	272(8)	238 (8)	113 (6)	17 (6)	71 (6)
C (6)	229 (7)	279(8)	184(7)	40 (6)	21 (6)	$39(6)$
C (7)	188 (7)	197(7)	215 (7)	32 (6)	26 (6)	29(5)
C (8)	133 (6)	186 (7)	216 (7)	53 (5)	22 (5)	16 (5)
C (9)	130 (6)	200(7)	210 (7)	49 (6)	28(5)	27 (5)
C (10)	162 (7)	167 (7)	229 (7)	63 (5)	21 (5)	43 (5)
C (11)	143(6)	191(7)	213 (7)	41 (6)	17 (5)	62 (5)
C (12)	205 (7)	166 (7)	207 (7)	19(5)	26 (6)	72 (5)
C (13)	186(7)	197(7)	229 (7)	69 (6)	29(6)	72 (5)
O(13)	382 (6)	198(5)	223 (5)	75 (4)	97 (5)	95 (5)
C (131)	295 (8)	286(8)	220 (7)	100(6)	65 (6)	88(6)
C (14)	221 (7)	244 (7)	180 (7)	29 (6)	29(6)	90 (6)
C (15)	231 (7)	168(7)	250 (8)	-7 (6)	23(6)	62 (6)
C (16)	188(7)	173(7)	265 (8)	61 (6)	41(6)	59(5)

C (21)	133 (6)	162(7)	210(7)	30 (5)	36 (5)	15 (5)
N (22)	192 (6)	155 (6)	190 (6)	35 (5)	18 (5)	52 (5)
C (23)	158(7)	159(7)	237 (7)	59 (6)	33 (5)	34 (5)
C (24)	180 (7)	181(7)	268(8)	74 (6)	24(6)	37 (5)
C (25)	183 (7)	166 (7)	352 (8)	78 (6)	45 (6)	41 (6)
C (26)	198(7)	170(7)	299 (8)	6 (6)	52 (6)	43 (6)
C (27)	169 (7)	191(7)	236 (7)	23 (6)	28(6)	31 (5)
C (28)	134 (6)	160(7)	237 (7)	46 (5)	35 (5)	20 (5)
C (29)	134 (6)	177 (7)	246 (7)	50 (6)	34 (5)	20 (5)
C (30)	213 (7)	190(7)	232 (7)	77 (6)	21(6)	54 (6)
C (31)	178(7)	204(7)	208 (7)	38 (6)	-1(5)	66 (5)
C (32)	192(7)	219(7)	176 (7)	41 (6)	11 (5)	68(6)
C (33)	190 (7)	197(7)	232 (7)	59 (6)	5 (6)	73 (6)
O(33)	338 (6)	177(5)	238 (5)	39 (4)	55 (4)	79 (4)
C (331)	288(8)	215 (7)	252 (8)	76 (6)	47 (6)	71 (6)
C (34)	230 (7)	238(8)	211 (7)	3 (6)	6 (6)	101(6)
C (35)	233 (7)	297(8)	183 (7)	51 (6)	29(6)	100 (6)
C (36)	212 (7)	240 (7)	226 (7)	83 (6)	24(6)	69 (6)

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). The amino hydrogen atom, $H(22)$, was located in a difference map and was refined freely and isotropically. All remaining hydrogen atoms were included in idealised positions with U(iso)'s set at $1.2 * \mathrm{U}(\mathrm{eq})$ or, for the methyl group hydrogen atoms, $1.5 * \mathrm{U}(\mathrm{eq})$ of the parent carbon atoms.

	x	Y	U (iso)	
H(4)	9297	1165	6219	25
H(5)	9520	1953	7894	29
H(6)	9134	3813	8462	29
H(7)	8383	4913	7363	25
H(10)	9017	862	4364	22
H(12)	9793	3075	3019	23
H(13A)	11054	3825	201	39
H(13B)	9597	2586	-109	39
H(13C)	11687	2683	259	39
H(14)	9493	912	382	26
H(15)	8602	-701	1072	27
H(16)	8345	-449	2717	25
H(24)	5571	7684	2643	25
H(25)	5640	9274	3909	28
H(26)	6271	9198	5537	28
H(27)	6878	7519	5941	25
H(30)	5660	5720	1610	25
H(32)	4798	3001	2306	23
H(33A)	3684	57	2415	37
H(33B)	2925	1165	2408	37
H(33C)	5046	1326	2757	37
H(34)	5172	1029	-311	27
H(35)	6100	2723	-880	28
H(36)	6426	4557	126	27
H(22)	$6980(30)$	$4153(19)$	$3469(15)$	$42(6)$

Table 5. Torsion angles, in degrees. E.s.ds are in parentheses.

4.4(2)

$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$
$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)-175.74(12)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-179.84(13)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$
$0.26(15)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(10)-174.78$ (13)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)$
$2.03(15)$
$C(9)-C(4)-C(5)-C(6)-1.0(2)$
$C(4)-C(5)-C(6)-C(7)$
1.4 (2)
$C(5)-C(6)-C(7)-C(8)-0.5(2)$
$C(6)-C(7)-C(8)-C(9)-0.7(2)$
$C(6)-C(7)-C(8)-C(1)$
179.23(14)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$
177.53(14)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)-2.4(2)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-2.53(16)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$
177.56(12)
$C(5)-C(4)-C(9)-C(8)-0.2(2)$
$C(5)-C(4)-C(9)-C(3)$
176.61(14)
$C(7)-C(8)-C(9)-C(4)$
1.1(2)
$C(1)-C(8)-C(9)-C(4)-178.86(12)$
$C(7)-C(8)-C(9)-C(3)-176.50(12)$
$C(1)-C(8)-C(9)-C(3)$
3.55 (14)
$C(10)-C(3)-C(9)-C(4)-3.9(3)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(4)$
179.29(15)

C (10) -C (3) -C (9) -C (8)
173.22(13)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(8)-3.58(15)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{C}(11)$
7.3(2)
$C(9)-C(3)-C(10)-C(11)-169.03(13)$
$C(3)-C(10)-C(11)-C(12)$
27.2(2)
$C(3)-C(10)-C(11)-C(16)-$
156.33(14)
$C(16)-C(11)-C(12)-C(13)$
1.0 (2)
$C(10)-C(11)-C(12)-C(13)$
177.49(13)

C (11) -C (12) -C (13) -O (13) -
179.55(12)

C (11) -C (12) -C (13) -C (14)
$0.6(2)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{O}(13)-\mathrm{C}(131)-5.4(2)$
$C(12)-C(13)-O(13)-C(131)$
174.72(12)

O(13) -C (13) -C (14) -C(15)
178.99(13)
$C(12)-C(13)-C(14)-C(15)-1.2(2)$
$C(13)-C(14)-C(15)-C(16)$
0.1 (2)
$C(14)-C(15)-C(16)-C(11)$
1.5 (2)
$C(12)-C(11)-C(16)-C(15)-2.1(2)$
$C(10)-C(11)-C(16)-C(15)-$
178.64(13)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{N}(22)$
3.2 (2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(28)-175.85(12)$
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)-$
177.91(13)
$\mathrm{C}(28)-\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)$
1.23 (15)
$C(21)-N(22)-C(23)-C(30)-$
178.54(14)
$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(29)$
0.56 (15)
$C(29)-C(24)-C(25)-C(26)-0.5(2)$
$C(24)-C(25)-C(26)-C(27)$
0.4 (2)
$C(25)-C(26)-C(27)-C(28)$
0.4 (2)
$C(26)-C(27)-C(28)-C(29)-1.0(2)$
C (26) - C (27) -C (28) -C (21)
177.98(14)
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(27)-2.5(2)$
$\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(27)$
178.30(14)
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(29)$
176.54(13)
$\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(29)-2.64(15)$
$C(25)-C(24)-C(29)-C(28)$
0.0 (2)
$C(25)-C(24)-C(29)-C(23)$
178.27(14)
$C(27)-C(28)-C(29)-C(24)$
0.8 (2)

C (21) -C (28) -C (29) -C (24) -
178.35(12)

C (27) -C (28) -C (29) -C (23) -
$177.86(13)$
$C(21)-C(28)-C(29)-C(23)$
2.98 (15)

C (30) - C (23) -C (29) -C (24)-1. 6(3)
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(29)-\mathrm{C}(24)$
179.30(14)
$C(30)-C(23)-C(29)-C(28)$
$176.86(14)$
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(29)-\mathrm{C}(28)-2.23(15)$
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(30)-\mathrm{C}(31)$
5.8(2)
$C(29)-C(23)-C(30)-C(31)-$
$173.08(14)$
$C(23)-C(30)-C(31)-C(36)-$
153.14(15)
$C(23)-C(30)-C(31)-C(32)$
29.9(2)
$C(36)-C(31)-C(32)-C(33)$
1.5(2)

C (30) - C (31) -C (32) -C (33)
178.48(13)
$C(31)-C(32)-C(33)-O(33)$
$179.87(13)$
$C(31)-C(32)-C(33)-C(34)-0.7(2)$
$C(32)-C(33)-O(33)-C(331)-2.8(2)$
C (34) - C (33) -O (33) -C (331)
177.69(12)
$\mathrm{O}(33)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$
179.06(13)
$C(32)-C(33)-C(34)-C(35)-0.5(2)$
$C(33)-C(34)-C(35)-C(36)$
0.7 (2)

C (34) -C (35) -C (36) -C (31)
0.1 (2)
$C(32)-C(31)-C(36)-C(35)-1.2(2)$
$C(30)-C(31)-C(36)-C(35)-$
178.29(13)

Table 6. Hydrogen bond, in Ångstroms and degrees.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$N(22)-H(22) \ldots N(2)$	$0.90(2)$	$2.01(2)$	$2.6567(16)$	$127.3(17)$

Crystal structure analysis of $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}-\mathrm{N}=\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$

Crystal data: $\mathrm{C}_{32} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}, \mathrm{M}=483.55$. Triclinic, space group P-1 (no. 2), $\mathrm{a}=7.47981$ (11), $\mathrm{b}=11.99860(18), \mathrm{c}=14.03558(19) \AA, \alpha=101.5042(12), \beta=95.5867(11), \gamma=103.8877(13)$ ${ }^{\circ}, \mathrm{V}=1184.22(3) \AA^{3} . \mathrm{Z}=2, \mathrm{Dc}=1.356 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=508, \mathrm{~T}=100.01(10) \mathrm{K}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)$ $=6.8 \mathrm{~cm}^{-1}, \lambda(\mathrm{Cu}-\mathrm{K} \alpha)=1.54184 \AA$.

The crystals were deep red plates. One, ca $0.04 \times 0.14 \times 0.185 \mathrm{~mm}$, was mounted in oil on a small loop and fixed in the cold nitrogen stream on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer, equipped with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, HyPix detector and mirror monochromator. Intensity data were measured by thin-slice ω-scans. Total no. of reflections recorded, to $\theta_{\max }=70.0^{\circ}$, was 35660 of which 4473 were unique ($\operatorname{Rint}=0.045$); 4170 were 'observed' with I $>2 \sigma_{\text {I }}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on F^{2} 's, in SHELXL (2B). The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atom on $\mathrm{N}(22)$ was located in a difference map and was refined freely. The remaining hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms. At the conclusion of the refinement, $w R_{2}=0.103$ and $R_{1}=0.047(2 B)$ for all 4473 reflections weighted $\mathrm{w}=\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0380 \mathrm{P})^{2}+0.8695 \mathrm{P}\right]^{-1}$ with $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$. In the final difference map, the highest peak (ca0.25 e^{-3}) was near the $\mathrm{C}(29)-\mathrm{C}(23)$ bond. Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(9) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2018).
(10) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112122 and (2015) C71, 3-8.
(11) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). Vol. C, pp. 500, 219 and 193.
(12) L. J. Farrugia, J. Appl. Cryst. (2012) 45, 849-854.

Legends for Figures

Figure 1. View of a molecule of $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}-\mathrm{N}=\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$, indicating the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

Figure 2. View of the packing of molecules, along the a axis.

Notes on the structure

The molecule shows pseudo-twofold symmetry about $\mathrm{N}(1)$; the major distortions from real symmetry are (1) in the hydrogen bond in $\mathrm{N}(22)-\mathrm{H}(22) \ldots \mathrm{N}(2)$ and (2) in the alignment of the methoxy groups.

The hydrogen atom of the hydrogen bond was located clearly in a difference map and was refined freely, isotropically and satisfactorily. The bond distances and angles in the chain between $\mathrm{N}(2)$ and $\mathrm{N}(22)$ are in agreement with the arrangement of single- and double-bonds of the formula.

The two bicyclic $\mathrm{C}_{8} \mathrm{~N}$ moieties are essentially coplanar, with the $\mathrm{CHC}_{6} \mathrm{H}_{4}$ groups veering away to opposite sides of the plane. There are rotations about the $\mathrm{C}(10)-\mathrm{C}(11)$ and $\mathrm{C}(30)-$ $\mathrm{C}(31)$ bonds of about 28° which allow the two phenyl rings to lie almost parallel with $\mathrm{C}(13)$ and $\mathrm{C}(33)$ overlaid at a distance of $3.562 \AA$. The O-Me bonds are diametrically opposed, with $\mathrm{O}(13)-\mathrm{C}(131)$ pointing away from $\mathrm{N}(1)$ and $\mathrm{O}(33)-\mathrm{C}(331)$ towards the $\mathrm{N}(1)$ centre.

Molecules are stacked in columns parallel to the a axis, each molecule involved with three $\pi \ldots \pi$ columns; the central bis-bicyclic rings have centrosymmetrically groups on each side at a distance of ca $3.5 \AA$, and each of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ groups has, on one side, the other $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ group of the same molecule and, on the other side, the second $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ group of the next molecule along the a axis.

Crystal data and structure refinement for $\left.\mathrm{F}_{2} \mathrm{BN}-\left\{\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}\right)=\mathbf{C H}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}\right\}\right\}_{2}$

172

Identification code

Elemental formula

Formula weight

Crystal system, space group
Unit cell dimensions

Volume

Z, Calculated density
F(000)
Absorption coefficient

Temperature

Wavelength

Crystal colour, shape

Crystal size

Crystal mounting: on a small loop, in oil, fixed in cold N_{2} stream On the diffractometer:

Theta range for data collection
Limiting indices
Completeness to theta $=52.066$

Absorption correction

Max. and min. transmission

172
$2(\mathrm{C} 32 \mathrm{H} 24 \mathrm{~B} 1 \mathrm{~F} 2 \mathrm{~N} 3 \mathrm{O})$
1062.70

Orthorhombic, $\mathrm{P} 2_{1} 2_{1} 2$ (no. 18)
$a=22.0145(8) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=27.0662(9) \AA \quad \beta=90^{\circ}$
$c=8.6554(4) \AA \quad \gamma=90^{\circ}$
5157.3(3) \AA^{3}

4, $1.369 \mathrm{Mg} / \mathrm{m}^{3}$
2208
$0.784 \mathrm{~mm}^{-1}$
100.01(10) K
$1.54184 \AA$
yellow prism
0.02 x 0.05 x 0.18 mm
6.343 to 52.066°
$-22<=\mathrm{h}<=22, \quad-27<=\mathrm{k}<=27, \quad-8<=1<=8$
99.2 웅

Semi-empirical from equivalents
1.00000 and 0.62028

Reflections collected (not including absences) 54700

No. of unique reflections 5729 [R(int) for equivalents $=0.108]$

No. of 'observed' reflections (I > 2 σ_{I}) 5047

Structure determined by: dual methods, in SHELXT

Refinement: Full-matrix least-squares on F^{2}, in SHELXL
Data / restraints / parameters 5729 / 0 / 721

Goodness-of-fit on F^{2}	0.991
Final R indices ('observed' data)	$\mathrm{R}_{1}=0.039, \mathrm{wR}_{2}=0.093$
Final R indices (all data)	$\mathrm{R}_{1}=0.046, \mathrm{wR}_{2}=0.095$
$\begin{aligned} & \text { Reflections weighted: } \\ & \qquad \mathrm{w}=\left[\sigma^{2}\left(\mathrm{FO}^{2}\right)+(0.0680 \mathrm{P})^{2}\right]^{-1} \text { where } \end{aligned}$	$\mathrm{P}=\left(\mathrm{FO}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
Absolute structure parameter	0.02 (9)
Extinction coefficient	n / a
Largest diff. peak and hole	0.19 and $-0.21 \mathrm{e} . \AA^{-3}$
Location of largest difference peak	near C(62)

Table 1. Atomic coordinates ($\mathbf{x ~} 10^{5}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	Y	z	U (eq)
B (1)	41790 (20)	33917 (18)	61840 (60)	291(13)
F(11)	38164 (10)	36050 (8)	73310 (30)	345 (6)
F(12)	44305 (10)	37708(8)	52990 (30)	343 (6)
N(1)	38071(14)	30337 (12)	51850 (40)	296(9)
N (2)	43222 (15)	22962 (12)	59590 (40)	303 (9)
C (2)	38910 (18)	25395 (15)	51900 (50)	293 (11)
C (3)	34477 (18)	23128 (15)	41880 (50)	271 (11)
C (4)	33400 (20)	18142 (16)	39050 (50)	333 (11)
C (5)	28710 (20)	16948 (16)	28980(50)	349 (12)
C (6)	25220 (20)	20643 (17)	22270 (50)	356 (12)
C (7)	26220 (20)	25620 (15)	25310 (50)	325 (12)
C (8)	30956 (18)	26855 (15)	35190 (50)	284(11)
C (9)	33211 (18)	31584 (16)	41610 (50)	302 (11)
C (10)	31403 (18)	36318 (15)	40090(50)	301 (11)
C (11)	27028(19)	38541 (15)	29590(50)	307 (11)
C (12)	23647 (18)	42610 (15)	34950 (60)	325 (11)
C (13)	19652(18)	45152 (15)	25370 (50)	301 (11)
O (13)	16670 (13)	49024 (10)	31990 (30)	361 (8)
C (17)	12010 (20)	51377 (17)	23070 (60)	483(14)
C (14)	18946(19)	43677 (16)	10020(50)	335 (12)
C (15)	22352 (19)	39698 (15)	4520 (60)	358 (12)
C (16)	26324 (19)	37176 (16)	14010 (50)	325 (11)
N (21)	46805 (14)	30695 (12)	69160 (40)	287(9)
C (22)	46987 (19)	25749 (16)	67860 (50)	285 (11)
C (23)	52079 (19)	23886(16)	76750 (50)	298 (11)
C (24)	53836 (19)	19018(16)	79480 (50)	334 (12)
C (25)	58750 (20)	18259 (18)	89170 (50)	384 (12)
C (26)	61646 (19)	22227 (17)	96260 (60)	383 (12)
C (27)	59862 (18)	27074 (16)	93690 (50)	342 (11)
C (28)	55044 (18)	27921 (15)	83490 (50)	300 (11)
C (29)	51653 (18)	32391 (16)	78820 (50)	308 (11)
C (30)	52115 (18)	37225 (16)	82580 (50)	320 (11)
C (31)	56891(19)	39808 (15)	91080 (50)	315 (11)
C (32)	55183 (19)	43742 (15)	100590(50)	333 (11)
C (33)	59600 (20)	46566 (16)	108150 (60)	362 (12)
C (34)	65710 (20)	45466 (16)	106330 (60)	384 (12)
C (35)	67420 (20)	41620 (16)	96710 (60)	381(12)
C (36)	63105 (18)	38802 (17)	89120 (50)	358 (12)
O (33)	57339 (13)	50377 (11)	116800(40)	459 (8)
C (37)	61540 (20)	53720 (18)	123380 (60)	527 (14)
B (41)	14980 (20)	65362 (18)	10990 (60)	297 (13)
F(41)	17664(9)	61701 (8)	1890 (30)	339 (6)
F (42)	11391(10)	63023 (8)	22090 (30)	348(6)
N(41)	19807(14)	68673 (12)	18510 (40)	291 (9)
N(42)	$16108(15)$	76381 (12)	8760 (40)	298 (9)
C (42)	19927(18)	73640 (15)	17170 (50)	295 (11)
C (43)	24890 (20)	75602 (16)	26220(50)	305 (11)
C (44)	26490 (20)	80473 (16)	29040(50)	333 (12)
C (45)	31360 (20)	81331 (17)	38880 (50)	375 (12)
C (46)	34335 (19)	77436 (17)	45980 (60)	376 (12)
C (47)	32676 (19)	72542 (17)	43300 (50)	357 (12)
C (48)	27901(18)	71623 (15)	32980 (50)	301 (11)
C (49)	24719(18)	67113 (16)	28090(50)	309 (11)
C (50)	25434(19)	62298 (16)	31490 (50)	328 (11)
C (51)	30250 (20)	59854 (15)	40290(50)	326 (11)
C (52)	28640 (20)	55928 (15)	49630 (50)	367 (12)
C (53)	32980 (20)	53308 (16)	57900 (60)	403(12)
C (54)	39040 (20)	54576 (17)	56580 (60)	444(13)
C (55)	40690 (20)	58414 (18)	46910 (60)	435 (13)
C (56)	36423 (19)	61057 (18)	38770 (60)	403 (13)
O(53)	30768 (15)	49565 (11)	66810 (40)	515 (9)

$\mathrm{C}(57)$	$35160(30)$	$46530(18)$	$74500(60)$	$572(15)$
$\mathrm{N}(61)$	$11102(14)$	$68930(12)$	$1100(40)$	$291(9)$
$\mathrm{C}(62)$	$11848(18)$	$73881(15)$	$1090(50)$	$285(11)$
$\mathrm{C}(63)$	$7351(18)$	$76088(15)$	$-8920(50)$	$293(11)$
$\mathrm{C}(64)$	$6270(20)$	$81064(16)$	$-11910(50)$	$318(11)$
$\mathrm{C}(65)$	$1579(19)$	$82186(16)$	$-21950(50)$	$323(11)$
$\mathrm{C}(66)$	$-1901(19)$	$78497(17)$	$-28360(50)$	$352(12)$
$\mathrm{C}(67)$	$-850(20)$	$73536(17)$	$-25220(50)$	$343(12)$
$\mathrm{C}(68)$	$3889(19)$	$72309(15)$	$-15470(50)$	$294(11)$
$\mathrm{C}(69)$	$6264(18)$	$67606(15)$	$-9080(50)$	$296(11)$
$\mathrm{C}(70)$	$4661(18)$	$62838(16)$	$-10770(50)$	$326(11)$
$\mathrm{C}(71)$	$140(20)$	$60539(15)$	$-20900(50)$	$305(11)$
$\mathrm{C}(72)$	$-3129(18)$	$56517(15)$	$-15130(50)$	$304(11)$
$\mathrm{C}(73)$	$-7341(19)$	$54023(15)$	$-23960(50)$	$319(11)$
$\mathrm{C}(74)$	$-8390(20)$	$55484(16)$	$-39140(60)$	$376(12)$
$\mathrm{C}(75)$	$-5060(20)$	$59418(16)$	$-45100(60)$	$403(12)$
$\mathrm{C}(76)$	$-794(19)$	$61926(16)$	$-36320(50)$	$357(11)$
$\mathrm{O}(73)$	$-10246(13)$	$50147(10)$	$-16870(30)$	$365(7)$
$\mathrm{C}(77)$	$-14560(20)$	$47396(17)$	$-25790(60)$	$477(14)$

Table 2. Molecular dimensions. Bond lengths are in Ångstroms, angles in degrees. E.s.ds are in parentheses.

$$
\begin{gathered}
\mathrm{B}(1)-\mathrm{F}(12) \\
1.395(5) \\
\mathrm{B}(1)-\mathrm{F}(11) \\
1.399(5) \\
\mathrm{B}(1)-\mathrm{N}(1) \\
1.536(6) \\
\mathrm{B}(1)-\mathrm{N}(21) \\
1.542(6) \\
\mathrm{N}(1)-\mathrm{C}(2) \\
1.350(5) \\
\mathrm{N}(1)-\mathrm{C}(9) \\
1.430(5) \\
\mathrm{N}(2)-\mathrm{C}(22) \\
1.330(5) \\
\mathrm{N}(2)-\mathrm{C}(2) \\
1.333(5) \\
\mathrm{C}(2)-\mathrm{C}(3) \\
1.442(6) \\
\mathrm{C}(3)-\mathrm{C}(4) \\
1.392(6) \\
\mathrm{C}(3)-\mathrm{C}(8) \\
1.398(6) \\
\mathrm{C}(4)-\mathrm{C}(5) \\
1.390(6) \\
\mathrm{C}(5)-\mathrm{C}(6) \\
1.388(6) \\
\mathrm{C}(6)-\mathrm{C}(7) \\
1.390(6) \\
\mathrm{C}(7)-\mathrm{C}(8) \\
1.390(6) \\
\mathrm{C}(8)-\mathrm{C}(9) \\
1.481(6) \\
\mathrm{C}(9)-\mathrm{C}(10) \\
1.3
\end{gathered}
$$

C (26) -C (27)
1.387(6)

C (27) -C (28)
1.399 (6)

C (28) -C (29)
1.478(6)

C (29) -C (30)
1.352 (6)

C (30) -C (31)
1.461(6)

C (31) -C (32)
1.398(6)

C(31)-C(36)
1.405(6)

$$
C(32)-C(33)
$$

1.399(6)

$$
\mathrm{C}(33)-0(33)
$$

1.368(5)

$$
C(33)-C(34)
$$

1.388(6)

C (34) -C (35)
1.385(6)

C (35) -C (36)
1.384(6)

O(33)-C(37)
1.414 (5)

B(41) -F (42)
1.395 (5)

B(41)-F(41)
1.397(5)

B(41) $-\mathrm{N}(41)$
1.535(6)

B(41) $-\mathrm{N}(61)$
1.547(6)

$$
N(41)-C(42)
$$

1.350 (5)
N(41) -C(49)
1.427(5)
N (42) -C (62)
1.334 (5)

N(42) -C (42)
1.337 (5)

$$
C(42)-C(43)
$$

1.444(6)

C(43)-C(44)
1.387 (6)

C (43) -C (48)
1.394 (6)

C (44) -C (45)
1.389(6)

C (45) -C (46)
1.385(6)

C (46) -C (47)
1.393(6)

$$
C(47)-C(48)
$$

1.401 (6)

$$
C(48)-C(49)
$$

1.470(6)

$$
C(49)-C(50)
$$

1.345(6)

C (50) -C (51)
$1.463(6)$ C(51)-C(52)
1.382 (6)

C (51) -C (56)
1.404(6)

${ }_{1.389(6)}^{\text {C (52)-C (53) }}$
1.364 (5)
C(53)-C (54)
1.382 (7)
C (54)-C (55)
1.382 (6)
C (55) -C (56)
1.375 (6)
O(53) -C (57)
1.432 (5)
N(61) -C (62)
1.350 (5)
N(61) -C (69)
1.428 (5)
C (62) - C (63)
1.445 (6)
C (63) - C (64)
1.392 (6)
C (63)-C (68)
1.396 (6)
C (64)-C (65)
1.383 (6)
C (65) - C (66)
1.375 (6)
$\mathrm{F}(12)-\mathrm{B}(1)-\mathrm{F}(11)$
$\begin{aligned} & 108.2(3) \\ & \quad F(12)-B(1)-N(1) \end{aligned}$
$\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{N}(1)$
$110.8(3)$
$\mathrm{F}(12)-\mathrm{B}(1)-\mathrm{N}(21)$
$111.0(3)$
$\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{N}(21)$
110.5(4)
$N(1)-B(1)-N(21)$
104.8(3)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)$
109.8(4)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{B}(1)$
123.4(4)
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{B}(1)$
126.8(3)
$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(2)$
115.6(4)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{N}(1)$
126.0(4)
N(2) -C (2) -C (3)
124.9(4)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
109.1(4)
C (4) -C (3)-C (8)
122.2(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$
129.3(4)
C (8) -C (3)-C (2)
108.5(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$
117.5(4)
C (6) -C (5) -C (4)
120.4(4)
C (5) -C (6)-C (7)
122.1(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$
117.9(4)
C (7)-C (8)-C (3)
119.9(4)
C(7)-C (8)-C (9)

$$
C(66)-C(67)
$$

$1.390(6)$

$$
C(67)-C(68)
$$

1.382(6)

$$
C(68)-C(69)
$$

1.483(6)

$$
C(69)-C(70)
$$

1.346 (6)
$C(70)-C(71)$
1.465(6)
$C(71)-C(72)$
1.397(6)
$C(71)-C(76)$
1.401(6)
$C(72)-C(73)$
$1.378(6)$
C(73) -O (73)
1.373(5)

$$
C(73)-C(74)
$$

1.392(6)

$$
C(74)-C(75)
$$

1.391(6)

$$
C(75)-C(76)
$$

1.387(6) O(73) -C(77)
$1.433(5)$

$$
F(42)-B(41)-F(41)
$$

107.8(3)

$$
F(42)-B(41)-N(41)
$$

111.4(4)

$$
\mathrm{F}(41)-\mathrm{B}(41)-\mathrm{N}(41)
$$

111.1(3) F (42) - B (41) -N (61)
110.6(3) $\mathrm{F}(41)-\mathrm{B}(41)-\mathrm{N}(61)$
111.3(4)

$$
N(41)-B(41)-N(61)
$$

104.6(3)

$$
C(42)-N(41)-C(49)
$$

109.2(3)
$\mathrm{C}(42)-\mathrm{N}(41)-\mathrm{B}(41)$
124.0(4)
$\mathrm{C}(49)-\mathrm{N}(41)-\mathrm{B}(41)$
126.8(3)
$\mathrm{C}(62)-\mathrm{N}(42)-\mathrm{C}(42)$
115.6(4) $C(3)-C(8)-C(9)$
106.4(4)

$$
C(10)-C(9)-N(1)
$$

120.4(4) $C(10)-C(9)-C(8)$
133.3(4) N(1) -C (9) -C (8)
106.2(3)

$$
C(9)-C(10)-C(11)
$$

130.5(4) $C(16)-C(11)-C(12)$
117.6(4)

$$
C(16)-C(11)-C(10)
$$

124.3(4)

C (12) -C (11) -C (10)
117.9(4) $C(13)-C(12)-C(11)$
121.7(4) $\mathrm{O}(13)-\mathrm{C}(13)-\mathrm{C}(12)$
115.7(4) $\mathrm{O}(13)-\mathrm{C}(13)-\mathrm{C}(14)$
124.5(4) $C(12)-C(13)-C(14)$
119.7(4)

```
        \(C(13)-O(13)-C(17)\)
        117.4(3)
        C(13) -C (14) -C (15)
    119.0(4)
        C (16) -C (15) -C (14)
    121.3(4)
        \(C(15)-C(16)-C(11)\)
    120.7(4)
        C (22) \(-\mathrm{N}(21)-\mathrm{C}(29)\)
        110.2(4)
        \(\mathrm{C}(22)-\mathrm{N}(21)-\mathrm{B}(1)\)
        123.4(4)
        \(\mathrm{C}(29)-\mathrm{N}(21)-\mathrm{B}(1)\)
    126.3(3)
        \(\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{N}(21)\)
    126.2(4)
        \(\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(23)\)
    124.8(4)
        \(\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{C}(23)\)
    109.0(4)
        C (24) -C (23) -C (28)
    122.5(4)
        C (24) -C (23) -C (22)
    129.3(4)
        \(C(28)-C(23)-C(22)\)
    108.1(4)
        \(C(25)-C(24)-C(23)\)
    117.4(4)
        \(C(24)-C(25)-C(26)\)
    120.7(4)
        \(C(27)-C(26)-C(25)\)
    122.0(4)
        \(C(26)-C(27)-C(28)\)
    118.1(4)
        \(C(27)-C(28)-C(23)\)
    119.3(4)
        \(C(27)-C(28)-C(29)\)
    133.6(4)
        \(C(23)-C(28)-C(29)\)
    106.8(4)
        \(\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{N}(21)\)
    120.5(4)
        C (30) -C (29) -C (28)
    133.5(4)
        \(\mathrm{N}(21)-\mathrm{C}(29)-\mathrm{C}(28)\)
    105.9(4)
        C (29) - C (30) -C (31)
    129.7(4)
        \(C(32)-C(31)-C(36)\)
    118.7(4)
        \(C(32)-C(31)-C(30)\)
    117.9(4)
        C (36) -C (31) -C (30)
        123.2(4)
        C (31) -C (32) -C (33)
        120.3(4)
        O (33) -C (33) -C (34)
    125.2(4)
        O(33) -C (33) -C (32)
    114.5(4)
        C (34) -C (33) -C (32)
    120.3(4)
        \(C(35)-C(34)-C(33)\)
    119.5(4)
        \(C(36)-C(35)-C(34)\)
    120.9(4)
        C (35) -C (36) -C (31)
    120.3(4)
        \(C(33)-O(33)-C(37)\)
        117.7(3)
```

126.0 (4)

$$
N(42)-C(42)-C(43)
$$

124.5(4)
$\mathrm{N}(41)-\mathrm{C}(42)-\mathrm{C}(43)$
109.5(4)
$C(44)-C(43)-C(48)$
122.6(4)
$C(44)-C(43)-C(42)$
129.6(4)
$C(48)-C(43)-C(42)$
107.7(4)
$C(43)-C(44)-C(45)$
117.6(4)
$C(46)-C(45)-C(44)$
120.7(4) $C(45)-C(46)-C(47)$
121.7(4)

$$
C(46)-C(47)-C(48)
$$

118.1(4)

$$
C(43)-C(48)-C(47)
$$

119.2(4)

$$
C(43)-C(48)-C(49)
$$

107.1(4)
$C(47)-C(48)-C(49)$
133.5(4)

$$
C(50)-C(49)-N(41)
$$

120.2(4)
$C(50)-C(49)-C(48)$
133.3(4)

N(41) -C (49) -C (48)
106.4(4)
$C(49)-C(50)-C(51)$
129.5(4) $C(52)-C(51)-C(56)$
118.8(4) $C(52)-C(51)-C(50)$
117.8(4)

$$
C(56)-C(51)-C(50)
$$

123.2(4)

$$
C(51)-C(52)-C(53)
$$

121.1(4)
$O(53)-C(53)-C(54)$
125.2(4)

O (53) -C (53) -C (52)
115.1(4)
$C(54)-C(53)-C(52)$
119.7(5)
$C(53)-C(54)-C(55)$
119.3(4)
$C(56)-C(55)-C(54)$
121.5(4)
$C(55)-C(56)-C(51)$
119.5(5)
$C(53)-O(53)-C(57)$
116.6(4)
$C(62)-N(61)-C(69)$
109.8(3)

$$
\mathrm{C}(62)-\mathrm{N}(61)-\mathrm{B}(41)
$$

123.6(4) $\mathrm{C}(69)-\mathrm{N}(61)-\mathrm{B}(41)$
126.6(3) $\mathrm{N}(42)-\mathrm{C}(62)-\mathrm{N}(61)$
126.1(4) $\mathrm{N}(42)-\mathrm{C}(62)-\mathrm{C}(63)$
124.8(4)
$\mathrm{N}(61)-\mathrm{C}(62)-\mathrm{C}(63)$
109.1(4)
$C(64)-C(63)-C(68)$
122.7(4)

$$
\begin{aligned}
& C(64)-C(63)-C(62) \\
& \text { 129.0(4) } \\
& \text { C (68) -C (63) -C (62) } \\
& \text { 108.3(4) } \\
& C(65)-C(64)-C(63) \\
& \text { 117.2(4) } \\
& C(66)-C(65)-C(64) \\
& \text { 120.6(4) } \\
& C(65)-C(66)-C(67) \\
& \text { 122.0(4) } \\
& C(68)-C(67)-C(66) \\
& \text { 118.5(4) } \\
& C(67)-C(68)-C(63) \\
& \text { 118.9(4) } \\
& C(67)-C(68)-C(69) \\
& \text { 134.4(4) } \\
& C(63)-C(68)-C(69) \\
& \text { 106.6(4) } \\
& \mathrm{C}(70)-\mathrm{C}(69)-\mathrm{N}(61) \\
& \text { 120.2(4) } \\
& C(70)-C(69)-C(68) \\
& \text { 133.6(4) } \\
& \mathrm{N}(61)-\mathrm{C}(69)-\mathrm{C}(68) \\
& \text { 106.1(3) } \\
& C(69)-C(70)-C(71) \\
& \text { 130.6(4) } \\
& C(72)-C(71)-C(76) \\
& \text { 118.3(4) } \\
& \text { C (72) -C (71) -C (70) } \\
& \text { 117.8(4) } \\
& C(76)-C(71)-C(70) \\
& \text { 123.7(4) } \\
& C(73)-C(72)-C(71) \\
& \text { 122.0(4) } \\
& \mathrm{O}(73)-\mathrm{C}(73)-\mathrm{C}(72) \\
& \text { 116.1(4) } \\
& \mathrm{O}(73)-\mathrm{C}(73)-\mathrm{C}(74) \\
& \text { 124.2(4) } \\
& C(72)-C(73)-C(74) \\
& \text { 119.7(4) } \\
& C(75)-C(74)-C(73) \\
& \text { 118.7(4) } \\
& C(76)-C(75)-C(74) \\
& \text { 121.9(4) } \\
& C(75)-C(76)-C(71) \\
& \text { 119.4(4) } \\
& C(73)-O(73)-C(77) \\
& \text { 117.7(3) }
\end{aligned}
$$

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{4}$) for the expression: $\exp \left\{-2 \pi^{2}\left(h^{2} a *^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)\right\}$ E.s.ds are in parentheses.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
B (1)	290(30)	270(30)	310 (30)	10 (30)	20 (30)	-20(20)
F (11)	344 (13)	318(14)	373 (16)	-22(12)	7 (12)	37 (11)
F (12)	335 (13)	308(13)	387 (15)	44 (12)	-35 (12)	-17(11)
N(1)	270 (19)	270(20)	350 (20)	30 (18)	5 (19)	2 (16)
N(2)	310 (20)	290 (20)	310 (20)	18(18)	13 (19)	15 (19)
C (2)	300 (30)	290 (30)	290 (30)	0 (20)	70 (20)	0 (20)
C (3)	260 (20)	270(30)	280(30)	0 (20)	60 (20)	-20(20)
C (4)	340 (30)	330 (30)	330 (30)	-10(20)	70 (20)	10 (20)
C (5)	400 (30)	320(30)	320 (30)	-40(20)	40 (20)	-60(20)
C (6)	360 (30)	380 (30)	330 (30)	-30 (20)	20 (20)	-70 (20)
C(7)	310 (30)	330 (30)	340 (30)	40 (20)	50 (30)	-40(20)
C (8)	270 (20)	290(30)	280(30)	20 (20)	60 (20)	-20 (20)
C (9)	260 (20)	360(30)	290(30)	10 (20)	50 (20)	-20 (20)
C (10)	270 (20)	300(30)	330 (30)	-10(20)	10 (20)	-10 (20)
C (11)	280 (20)	270 (30)	370 (30)	30 (20)	10 (20)	-70 (20)
C (12)	330 (20)	290(30)	360 (30)	-30(20)	-10 (20)	-40(20)
C (13)	320 (30)	230(20)	350 (30)	0 (20)	30 (20)	-30 (20)
O(13)	413 (17)	283(16)	387 (19)	18 (15)	-14(16)	90 (15)
C (17)	490(30)	390 (30)	560 (40)	20 (30)	-30(30)	160(20)
C (14)	300 (30)	320 (30)	380 (30)	50 (20)	-40 (20)	-30 (20)
C (15)	380 (30)	340 (30)	360 (30)	10 (20)	-10 (20)	-10 (20)
C (16)	340 (30)	270 (20)	360 (30)	0 (20)	10 (20)	-20(20)
N (21)	280 (20)	270 (20)	310 (20)	-2 (17)	9 (18)	15 (16)
C (22)	280 (30)	300 (30)	280 (30)	30 (20)	40 (20)	10 (20)
C (23)	270 (20)	350 (30)	270 (30)	30 (20)	60 (20)	50 (20)
C (24)	350 (30)	300 (30)	360 (30)	10 (20)	70 (20)	40 (20)
C (25)	350 (30)	370 (30)	440 (30)	60 (30)	40 (30)	60 (20)
C (26)	290 (20)	440(30)	420 (30)	90(30)	20 (20)	60 (20)
C (27)	290(30)	390 (30)	340 (30)	70 (20)	0 (20)	-10(20)
C (28)	250 (20)	340 (30)	310 (30)	40 (20)	70 (20)	20 (20)
C (29)	270 (20)	370 (30)	280 (30)	30 (20)	40 (20)	-10(20)
C (30)	270 (20)	310 (30)	370 (30)	30 (20)	-20 (20)	10 (20)
C (31)	350 (30)	280(30)	310 (30)	50 (20)	-10 (20)	0 (20)
C (32)	280 (20)	290 (20)	440 (30)	50 (20)	-30 (20)	0 (20)
C (33)	370 (30)	280(30)	430 (30)	50 (20)	-30 (30)	0 (20)
C (34)	380 (30)	350 (30)	420 (30)	40 (30)	-100(30)	-80 (20)
C (35)	280(30)	400(30)	470 (30)	90(30)	0 (20)	-30 (20)

C (36)	330 (30)	350(30)	400(30)	70 (20)	-10(20)	40 (20)
O (33)	426 (18)	353 (18)	600(20)	-96(19)	-106(18)	-36(16)
C (37)	560 (30)	450(30)	570(40)	-40(30)	-170(30)	-120(30)
B (41)	260 (30)	310 (30)	320 (30)	-10 (30)	50(30)	-10(30)
F (41)	330 (13)	310 (13)	376 (15)	-44 (13)	-29(12)	27 (11)
F (42)	324 (13)	327 (14)	393 (16)	-8(12)	1 (12)	-2 (11)
N(41)	270 (20)	310 (20)	300 (20)	-17 (17)	-9(18)	31 (17)
N(42)	280 (20)	310 (20)	310 (20)	-18(18)	21 (19)	-5 (19)
C (42)	290(30)	310 (30)	280(30)	0 (20)	90 (20)	0 (20)
C (43)	270 (30)	350 (30)	290(30)	-20 (20)	50 (20)	-20 (20)
C (44)	320 (30)	330(30)	350(30)	-10 (20)	60 (20)	-30 (20)
C (45)	350 (30)	380(30)	400(30)	-80 (20)	60 (30)	-80 (20)
C (46)	290 (20)	450(30)	390 (30)	-120 (30)	30 (20)	-40 (20)
C (47)	290 (20)	430(30)	350(30)	-30 (20)	40 (20)	20 (20)
C (48)	260 (20)	370 (30)	270 (30)	-60 (20)	50 (20)	-50 (20)
C (49)	300 (30)	340(30)	290(30)	-20 (20)	30 (20)	-10 (20)
C (50)	300 (30)	370(30)	320 (30)	-20 (20)	-20 (20)	-40 (20)
C (51)	350 (30)	300(30)	330 (30)	-40 (20)	-20 (20)	10 (20)
C (52)	350 (30)	350(30)	400(30)	-90 (30)	-60 (20)	30 (20)
C (53)	540 (30)	280(30)	390 (30)	-70 (20)	-30(30)	-10 (30)
C (54)	440 (30)	380(30)	510 (40)	-130 (30)	-190(30)	110 (30)
C (55)	370 (30)	440(30)	490(30)	-100 (30)	-90(30)	50 (20)
C (56)	400(30)	370(30)	440(30)	-80 (20)	0 (30)	10 (20)
O (53)	640 (20)	354 (19)	550 (20)	45 (19)	-130(20)	37 (17)
C (57)	810 (40)	430(30)	470 (30)	0 (30)	-90(30)	230 (30)
N (61)	240 (20)	290 (20)	340 (20)	-24 (19)	4 (19)	-28(16)
C (62)	260 (20)	290(30)	300 (30)	-50 (20)	90 (20)	10 (20)
C (63)	250 (20)	310 (30)	320 (30)	0 (20)	70 (20)	20 (20)
C (64)	330 (30)	290(30)	330 (30)	-40 (20)	100(20)	-20 (20)
C (65)	320 (30)	320 (30)	320 (30)	40 (20)	30 (20)	50 (20)
C (66)	310 (30)	370 (30)	380 (30)	40 (20)	20 (20)	70 (20)
C (67)	280 (30)	380(30)	370 (30)	-30 (20)	-10(20)	50 (20)
C (68)	280 (20)	330 (30)	270(30)	-10 (20)	70 (20)	0 (20)
C (69)	250 (20)	310 (30)	330 (30)	-10 (20)	20 (20)	0 (20)
C (70)	280 (20)	340 (30)	360 (30)	10 (20)	10 (20)	20 (20)
$\mathrm{C}(71)$	290 (20)	270(30)	350 (30)	10 (20)	0 (20)	50 (20)
C (72)	310 (20)	310 (30)	290(30)	-20 (20)	-20 (20)	40 (20)
C (73)	310 (20)	280(30)	360 (30)	0 (20)	0 (30)	40 (20)
C (74)	400 (30)	320 (30)	410 (30)	-50 (20)	-80 (20)	-60 (20)
$\mathrm{C}(75)$	470 (30)	390 (30)	360 (30)	20 (20)	-20(30)	-30 (20)
$\mathrm{C}(76)$	370 (30)	300 (30)	400(30)	20 (20)	20 (20)	0 (20)
O(73)	366 (17)	309 (17)	420 (20)	15 (17)	-2 (16)	-81(15)
C(77)	530 (30)	420(30)	480 (30)	0 (30)	-80(30)	-210(30)

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). All hydrogen atoms were included in idealised positions with U(iso)'s set at $1.2 * \mathrm{U}(\mathrm{eq})$ or, for the methyl group hydrogen atoms, $1.5 * \mathrm{U}(\mathrm{eq})$ of the parent carbon atoms.

	X	Y	z	U (iso)
H (4)	3573	1570	4373	40
H (5)	2790	1365	2671	42
H (6)	2211	1976	1553	43
H (7)	2379	2805	2086	39
H (10)	3326	3852	4685	36
H (12)	2410	4362	4515	39
H (17A)	1027	5403	2895	72
H (17B)	1374	5267	1372	72
H (17C)	891	4901	2057	72
H (14)	1624	4532	355	40
H (15)	2194	3873	-573	43
H (16)	2856	3455	1006	39
H (24)	5179	1638	7498	40
H (25)	6014	1506	9096	46
H (26)	6487	2161	10292	46
H (27)	6181	2968	9861	41
H (30)	4891	3920	7926	38
H (32)	5109	4449	10190	40
H (34)	6865	4730	11153	46
H (35)	7152	4092	9533	46
H (36)	6432	3623	8270	43
H (37A)	5939	5620	12912	79
H (37 B)	6423	5196	13017	79
H (37 C)	6385	5527	11531	79
H (44)	2438	8307	2451	40
H (45)	3264	8455	4072	45
H (46)	3752	7810	5272	45
H (47)	3468	6996	4821	43
H (50)	2243	6022	2768	39
H (52)	2457	5502	5040	44
H (54)	4198	5287	6214	53
H (55)	4477	5923	4588	52
H (56)	3762	6362	3230	48
H (57A)	3311	4403	8040	86
H (57B)	3774	4499	6697	86
H (57 C$)$	3757	4854	8127	86
H (64)	860	8353	-735	38
H (65)	77	8547	-2440	39
H (66)	-505	7935	-3500	42
H (67)	-328	7110	-2958	41
H (70)	677	6064	-448	39
H (72)	-244	5549	-502	36
H (74)	-1126	5386	-4519	45
H (75)	-572	6039	-5527	48
H (76)	143	6450	-4061	43
H (77A)	-1626	4481	-1955	72
H (77B)	-1775	4956	-2920	72
H (77 C)	-1257	4598	-3461	72

Table 5. Torsion angles, in degrees. E.s.ds are in parentheses.

$$
\mathrm{F}(12)-\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(2)
$$

127.6(4)
$\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(2)-111.8(4)$
$\mathrm{N}(21)-\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(2)$
7.5(5)
$\mathrm{F}(12)-\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(9)-54.0(5)$
$\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(9)$
66.6(5)
$\mathrm{N}(21)-\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(9)-174.2(3)$
$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{N}(1)-0.1(6)$
$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$
178.0(4)

```
    C (9) \(-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)\)
176.8(4)
    \(\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)-4.6(7)\)
    \(\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-1.5(5)\)
    B(1) \(-N(1)-C(2)-C(3)\)
177.0(4)
    N(2) -C (2) -C (3) -C (4)
\(5.6(7)\)
    \(\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-176.0(4)\)
    \(\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-176.5(4)\)
    \(N(1)-C(2)-C(3)-C(8)\)
1.8(5)
    \(C(8)-C(3)-C(4)-C(5)\)
1.2 (6)
    \(C(2)-C(3)-C(4)-C(5)\)
178.7 (4)
    \(C(3)-C(4)-C(5)-C(6)-0.9(6)\)
    \(\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-0.3(7)\)
    C (5) -C (6) -C (7)-C (8)
\(1.2(7)\)
    \(C(6)-C(7)-C(8)-C(3)-0.9(6)\)
    C (6) -C (7)-C (8)-C (9)-176.8(4)
    C (4) -C (3) -C (8) -C (7)-0.3(6)
    \(C(2)-C(3)-C(8)-C(7)-178.3(4)\)
    C (4) -C (3) -C (8) -C (9)
176.7(4)
    C (2) -C (3) -C (8) -C (9)-1.3(4)
    \(\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)\)
177.7(4)
    \(\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)-0.9(6)\)
    C(2) \(-N(1)-C(9)-C(8)\)
0.7 (4)
    \(\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)-177.8(4)\)
    C (7) \(-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)\)
0.4 (8)
    C (3) -C (8) -C (9)-C (10)-176.0 (5)
    \(\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1)\)
176.8(4)
    C(3) \(-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1)\)
0.4 (4)
    \(\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)\)
173.8(4)
    C (8) -C (9) -C (10) -C (11)-10.2(8)
    C (9) \(-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)-\)
38.9 (7)
    C (9) -C (10) -C (11) -C (12)
147.0(5)
    \(C(16)-C(11)-C(12)-C(13)\)
1.3(6)
    C (10) -C (11) -C (12) -C (13)
175.8(4)
    C (11) -C (12) -C (13) -O (13) -
179.9(4)
    C (11) -C (12) -C (13) -C (14)
\(0.2(6)\)
    C (12) -C (13) -O (13) -C (17) -
173.0(4)
    C (14) -C (13) -O (13) -C (17)
7.3(6)
    O(13)-C (13)-C (14)-C(15)
178.8(4)
    C (12) -C (13) -C (14)-C(15)-
0.9 (6)
    \(C(13)-C(14)-C(15)-C(16)\)
\(0.8(6)\)
    \(C(14)-C(15)-C(16)-C(11)\)
\(0.3(6)\)
    \(C(12)-C(11)-C(16)-C(15)-\)
1.4(6)
    \(C(10)-C(11)-C(16)-C(15)-\)
175.5(4)
```

127.8(4)

$$
\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{N}(21)-\mathrm{C}(22)
$$

112.1(4)
$\mathrm{N}(1)-\mathrm{B}(1)-\mathrm{N}(21)-\mathrm{C}(22)-7.3(5)$
$\mathrm{F}(12)-\mathrm{B}(1)-\mathrm{N}(21)-\mathrm{C}(29)$
55.8 (5)
$\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{N}(21)-\mathrm{C}(29)-$
64.2 (5)

$$
N(1)-B(1)-N(21)-C(29)
$$

176.4(3)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{N}(21)$
$0.3(6)$
$\mathrm{F}(42)-\mathrm{B}(41)-\mathrm{N}(41)-\mathrm{C}(42)-$
114.3(4)

F (41) -B(41) -N (41) -C (42)
125.4(4)

N(61) -B(41)-N(41)-C(42)
5.2 (5)
$\mathrm{F}(42)-\mathrm{B}(41)-\mathrm{N}(41)-\mathrm{C}(49)$
$64.2(5)$
F (41) -B(41)-N(41)-C (49)-
56.0 (5)
$\mathrm{N}(61)-\mathrm{B}(41)-\mathrm{N}(41)-\mathrm{C}(49)-$
176.2(3)

C (62) $-\mathrm{N}(42)-\mathrm{C}(42)-\mathrm{N}(41)-$
$0.1(6)$
C(62)-N(42)-C (42) -C (43)
179.4(4) C(49)-N(41)-C (42) -N (42)
178.2(4)

$$
\mathrm{B}(41)-\mathrm{N}(41)-\mathrm{C}(42)-\mathrm{N}(42)-
$$

3.0 (7)

C(49)-N(41)-C (42)-C (43)-
1.4 (5)

B(41)-N(41)-C (42) -C (43)
177.4(4)

$$
N(42)-C(42)-C(43)-C(44)
$$

4.9 (7)

N(41) -C (42) -C (43) -C (44) -
175.5(4)

N(42) -C (42) -C (43) -C (48) -
178.5(4)

N(41) -C (42) -C (43) -C (48)
1.1 (5)
$C(48)-C(43)-C(44)-C(45)$
0.9 (7)
$C(42)-C(43)-C(44)-C(45)$
177.0(4)

$$
C(43)-C(44)-C(45)-C(46)-
$$

2.2 (6)

C(44)-C(45)-C(46)-C(47)
1.5 (7)

C(45)-C (46)-C (47) -C (48)
$0.6(7)$
C(44)-C(43)-C(48)-C(47)
1.3 (7)

C (42) -C (43) -C (48) -C (47) -
175.6(4)

C(44)-C(43)-C(48)-C(49)
176.5(4)

C (42) -C (43) -C (48) -C (49) 0.3 (5)
$C(46)-C(47)-C(48)-C(43)-$ 2.0 (6)
$C(46)-C(47)-C(48)-C(49)-$
175.7(4)

C(42)-N(41)-C (49) -C (50)
178.1(4)

B(41)-N(41)-C (49) -C (50) 0.7 (6)

```
        C(42)-N(41)-C(49)-C(48)
1.2(4)
    B(41) -N (41) -C (49) -C (48)-
177.6(4)
    C(43)-C(48)-C(49)-C(50) -
176.8(5)
    C(47)-C(48)-C(49)-C(50)-
2.5(8)
    C(43)-C(48)-C(49)-N(41)-
0.5(5)
    C(47)-C(48)-C(49)-N(41)
173.8(4)
    N(41)-C(49)-C(50)-C(51)
176.5(4)
    C(48)-C(49)-C (50)-C(51)-
7.6(9)
C(49)-C (50)-C (51)-C (52)
143.2(5)
        C(49)-C(50)-C (51) -C (56) -
41.9(7)
        C(56) -C (51) -C (52) -C (53)
2.4(7)
        C(50)-C(51)-C (52) -C (53)
177.6(4)
        C (51) -C (52) -C (53) -O (53)
179.2(4)
        C(51)-C(52)-C(53)-C(54)-
1.2(7)
        O(53)-C(53)-C(54)-C(55)
179.0(4)
        C(2) -N (2) -C (22) -C (23) -
178.3(4)
        C (29) -N (21) -C (22) -N (2) -
178.9(4)
        B(1) -N (21) -C (22) -N (2)
4.2(7)
        C (29) -N (21) -C (22) -C (23) -
0.2(5)
        B (1) -N (21) -C (22) -C (23) -
177.0(4)
        N(2) -C (22) -C (23)-C (24)-5.2(7)
        N(21) -C (22) -C (23) - C (24)
176.0(4)
        N(2) -C (22) -C (23) -C (28)
178.4(4)
        N(21) -C (22) -C (23) -C (28) -
0.4(5)
        C(28) -C (23) -C (24) -C (25) -
0.7(6)
        C(22) -C (23) -C (24) -C (25) -
176.6(4)
        C (23) -C (24) -C (25) -C (26)
2.3(6)
        C(24)-C(25)-C(26)-C(27)-
1.6(7)
        C(25)-C(26)-C(27)-C(28)-
0.7(7)
        C(26)-C(27)-C (28)-C(23)
2.3(6)
        C(26)-C(27)-C (28)-C(29)
174.8(4)
        C(24)-C (23) -C (28) -C (27) -
1.7 (6)
        C(22)-C (23)-C (28)-C (27)
175.0(4)
        C (24) -C (23) -C (28) -C (29) -
176.0(4)
        C(22)-C (23)-C (28)-C (29)
0.7(5)
        C(22) -N (21) -C (29) -C (30) -
175.6(4)
```

$0.6(7)$
$C(53)-C(54)-C(55)-C(56)$
1.1(7)
$C(54)-C(55)-C(56)-C(51)$
0.1 (7)
$C(52)-C(51)-C(56)-C(55)-$ 1.9 (7)
$C(50)-C(51)-C(56)-C(55)-$ 176.8(4)
$C(54)-C(53)-O(53)-C(57)-$ 4.5(7)
$C(52)-C(53)-O(53)-C(57)$
175.1 (4)
$\mathrm{F}(42)-\mathrm{B}(41)-\mathrm{N}(61)-\mathrm{C}(62)$
114.6(4)
$\mathrm{F}(41)-\mathrm{B}(41)-\mathrm{N}(61)-\mathrm{C}(62)-$
125.5(4)

$$
N(41)-B(41)-N(61)-C(62)-
$$

5.4(5)
$\mathrm{F}(42)-\mathrm{B}(41)-\mathrm{N}(61)-\mathrm{C}(69)-$
64.7(5)

F (41) -B(41)-N(61)-C(69)
55.1(5)
$\mathrm{N}(41)-\mathrm{B}(41)-\mathrm{N}(61)-\mathrm{C}(69)$
175.2(3)

C(42)-N(42)-C(62)-N(61)0.1 (6)

$$
\mathrm{B}(1)-\mathrm{N}(21)-\mathrm{C}(29)-\mathrm{C}(30)
$$

1.2(6)
$\mathrm{C}(22)-\mathrm{N}(21)-\mathrm{C}(29)-\mathrm{C}(28)$
$0.6(5)$
$\mathrm{B}(1)-\mathrm{N}(21)-\mathrm{C}(29)-\mathrm{C}(28)$
177.4(4)
$C(27)-C(28)-C(29)-C(30)$
1.5(8)
$C(23)-C(28)-C(29)-C(30)$
174.7(5)

$$
\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{N}(21)-
$$

174.0(4) $\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{N}(21)-$ 0.8 (4)
$\mathrm{N}(21)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-$
174.4(4) $C(28)-C(29)-C(30)-C(31)$
10.7(8)
$C(29)-C(30)-C(31)-C(32)-$ 145.4(5)
$C(29)-C(30)-C(31)-C(36)$
40.1(7)
$C(36)-C(31)-C(32)-C(33)-$
0.9(6)
$C(30)-C(31)-C(32)-C(33)-$
175.5(4) $C(31)-C(32)-C(33)-O(33)$
178.5(4)
$C(31)-C(32)-C(33)-C(34)-$
$0.3(7)$
$O(33)-C(33)-C(34)-C(35)-$
177.3(4)

C(32) -C (33) -C (34) -C (35)
1.4(7)
$C(33)-C(34)-C(35)-C(36)-$
1.2 (7)
$C(34)-C(35)-C(36)-C(31)$ $0.0(7)$
$C(32)-C(31)-C(36)-C(35)$
1.0(6)

$$
C(30)-C(31)-C(36)-C(35)
$$

175.4(4)
$C(34)-C(33)-O(33)-C(37)$
5.6(7)
$C(32)-C(33)-O(33)-C(37)-$
173.1(4)
$C(42)-N(42)-C(62)-C(63)-$
178.6(4)
$\mathrm{C}(69)-\mathrm{N}(61)-\mathrm{C}(62)-\mathrm{N}(42)-$
177.0(4)

B (41) $-\mathrm{N}(61)-\mathrm{C}(62)-\mathrm{N}(42)$
3.5(6)
$\mathrm{C}(69)-\mathrm{N}(61)-\mathrm{C}(62)-\mathrm{C}(63)$
1.6(4)
$B(41)-N(61)-C(62)-C(63)-$
177.8(4) $N(42)-C(62)-C(63)-C(64)-$
4.2(7) $\mathrm{N}(61)-\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$
177.1(4) $\mathrm{N}(42)-\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(68)$
177.1(4) $N(61)-C(62)-C(63)-C(68)-$
1.6 (5)
$C(68)-C(63)-C(64)-C(65)-$ 0.7 (6)

$$
C(62)-C(63)-C(64)-C(65)-
$$

179.3(4) $C(63)-C(64)-C(65)-C(66)$
1.3(6)
$C(64)-C(65)-C(66)-C(67)-$
0.7 (7) $C(65)-C(66)-C(67)-C(68)-$
0.7 (7) $C(66)-C(67)-C(68)-C(63)$
1.3(6) $C(66)-C(67)-C(68)-C(69)$
177.6(4) $C(64)-C(63)-C(68)-C(67)-$
$0.6(6)$ C (62) -C (63) -C (68) -C (67)
178.2(4) C (64) -C (63) -C (68) -C (69) 177.9(4) $C(62)-C(63)-C(68)-C(69)$
$0.9(4)$ $\mathrm{C}(62)-\mathrm{N}(61)-\mathrm{C}(69)-\mathrm{C}(70)-$ 179.2(4)

$$
\mathrm{B}(41)-\mathrm{N}(61)-\mathrm{C}(69)-\mathrm{C}(70)
$$

0.2 (6)
$C(62)-N(61)-C(69)-C(68)-$ 1.0(4)

B (41) $-\mathrm{N}(61)-\mathrm{C}(69)-\mathrm{C}(68)$
178.4(4)
$C(67)-C(68)-C(69)-C(70)$
1.2(8)
$C(63)-C(68)-C(69)-C(70)$
177.8(5)
$C(67)-C(68)-C(69)-N(61)-$
176.6(4)

$$
\mathrm{C}(63)-\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{N}(61)
$$

0.0(4)
$\mathrm{N}(61)-\mathrm{C}(69)-\mathrm{C}(70)-\mathrm{C}(71)-$
176.6(4)
$C(68)-C(69)-C(70)-C(71)$
5.8(8)

$$
C(69)-C(70)-C(71)-C(72)-
$$

143.4(5)

$$
C(69)-C(70)-C(71)-C(76)
$$

41.0(7)
$C(76)-C(71)-C(72)-C(73)-$
2.2(6)
$C(70)-C(71)-C(72)-C(73)-$
178.0(4)
$C(71)-C(72)-C(73)-O(73)-$
179.8(4)
$C(71)-C(72)-C(73)-C(74)$
0.5 (6)
$O(73)-C(73)-C(74)-C(75)-$
178.8(4)
$C(72)-C(73)-C(74)-C(75)$
0.9 (6)
$C(73)-C(74)-C(75)-C(76)-$
0.5 (7)
$C(74)-C(75)-C(76)-C(71)-$
1.2(6)
$C(72)-C(71)-C(76)-C(75)$
2.5(6)
$C(70)-C(71)-C(76)-C(75)$
178.0(4)
$C(72)-C(73)-O(73)-C(77)-$ 178.7(4)
$\mathrm{C}(74)-\mathrm{C}(73)-\mathrm{O}(73)-\mathrm{C}(77)$
1.0(6)

Table 6. Hydrogen bonds, in Ångstroms and degrees.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$C(10)-H(10) \ldots F(12)$	0.93	2.50	$3.075(5)$	120.3
$C(17)-H(17 A) \ldots F(42)$	0.96	2.52	$3.156(5)$	123.9
$C(14)-H(14) \ldots O(73) \# 1$	0.93	2.52	$3.447(5)$	171.3
$C(30)-H(30) \ldots F(12)$	0.93	2.52	$3.088(5)$	119.4
$C(50)-H(50) \ldots F(41)$	0.93	2.50	$3.085(5)$	121.2
$C(70)-H(70) \ldots F(41)$	0.93	2.48	$3.081(5)$	122.6
$C(74)-H(74) \ldots O(13) \# 3$	0.93	2.44	$3.325(6)$	160.0

Symmetry transformations used to generate equivalent atoms:
\#1 : -x, 1-y, z \#2 : -x, 1-y, z-1

Crystal structure analysis of $\mathrm{F}_{2} \mathrm{BN}-\left\{\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}\right)=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right\}_{2}$

Crystal data: $2\left(\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right), \mathrm{M}=1062.70$. Orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2$ (no. 18), $\mathrm{a}=22.0145(8), \mathrm{b}=27.0662(9), \mathrm{c}=8.6554(4) \AA, \mathrm{V}=5157.3(3) \AA^{3} . \mathrm{Z}=4, \mathrm{Dc}=$ $1.369 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=2208, \mathrm{~T}=100.01(10) \mathrm{K}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=7.84 \mathrm{~cm}^{-1}, \lambda(\mathrm{Cu}-\mathrm{K} \alpha)=$ $1.54184 \AA$.

The crystal was a fine yellow prism. One crystal, $c a 0.02 \times 0.06 \times 0.18 \mathrm{~mm}$, was mounted, in oil, on a small loop and fixed in the cold nitrogen stream on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer, equipped with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, HyPix detector and mirror monochromator. Intensity data were measured by thin-slice ω-scans. Total no. of reflections recorded, to $\theta_{\max }=52.066^{\circ}$, was 54700 of which 5729 were unique $($ Rint $=0.108) ; 5047$ were 'observed' with $\mathrm{I}>2 \sigma_{\mathrm{I}}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on F^{2} 's, in SHELXL (2B). There are two independent molecules in this crystal. The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms. At the conclusion of the refinement, $w R_{2}=0.095$ and $\mathrm{R}_{1}=0.046(2 \mathrm{~B})$ for all 5729 reflections weighted $w=\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0680 \mathrm{P})^{2}\right]^{-1}$ with $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$; for the 'observed' data only, $\mathrm{R}_{1}=0.039$. The Flack (absolute structure) parameter is $0.02(9)$ and the correct absolute configuration is shown in the Figures.

In the final difference map, the highest peak (ca0.2 $\mathrm{e}^{\AA^{-3}}$) was near $\mathrm{C}(62)$.
Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(13) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2018).
(14) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112122 and (2015) C71, 3-8.
(15) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers,

Legends for Figures

Figure 1. View of the two independent molecules of $\mathrm{F}_{2} \mathrm{BN}-\left\{\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}\right)=\mathrm{CH}\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right\}_{2}$ indicating the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

Figure 2. Side-on view of the two molecules.
Figure 3. Similar view as Figure 2, showing the stacking of one set of columns of isoindoline rings.

Figure 4. View along the b axis of the same set of isoindoline columns.

Notes on the structure

There are two independent molecules in this crystal, Figure 1; they are related by a pseudo-twofold symmetry axis. Each molecule shows pseudo-symmetry about the plane containing the boron atom, the two fluorine atoms and the $\mathrm{N}(2)$ or $\mathrm{N}(22)$ atom; the symmetry does not extend beyond this particular molecule.

These molecules are very similar in conformation; the central $\mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{~B}$ ring in each molecule has a shallow envelope shape with $\mathrm{B}(1)$ and $\mathrm{B}(41)$ displaced 0.102(5) and $0.073(5) \AA$ from the good mean-planes of the other five ring atoms. The normals to these two planes, related by the pseudo-symmetry, are $9.2(2)^{\circ}$ apart. In each molecule, the adjoining isoindoline groups are essentially coplanar with the central $\mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{~B}$ rings. In every case (in these two adjoining molecules), there is rotation about the $\mathrm{C}(10)-\mathrm{C}(11)$ type bond by ca 45°; this brings the four O atoms out of the general molecular plane, and they all lie on the same side of that plane and are displaced ca $1.3 \AA$ from the plane, Figure 2.

The central $\mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{~B}$ rings are essentially planar and show aromatic mean dimensions, viz. B-N 1.538, (B)-N-C 1.438, C-N $\mathrm{N}_{\mathrm{BH}} 1.333 \AA$, and in the isoindoline-phenyl ring link, as $C(9)-C(10)$ and $C(10)-C(11) 1.348$ and $1.461 \AA$, respectively.

Crystal data and structure refinement for $\left.\mathrm{N}_{(1)} \mathrm{C}_{8} \mathrm{NH}_{5}-\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}\right)\left(\mathrm{C}_{8} \mathrm{NH}_{4}-\mathrm{CH}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}$)

Identification code

Elemental formula

Formula weight

Crystal system, space group
Unit cell dimensions

Volume

Z, Calculated density
F(000)
Absorption coefficient

Temperature

Wavelength

Crystal colour, shape

Crystal size

Crystal mounting: on a Micro-mount, in oil, fixed in cold N_{2} stream On the diffractometer:

Theta range for data collection
Limiting indices
Completeness to theta $=67.684$
Absorption correction Semi-empirical from equivalents

Max. and min. transmission
157

C32 H19 N5
473.52

Monoclinic, $\mathrm{P} 21 / \mathrm{n}$ (eqiv. to no. 14)
$a=12.5809(2) ~ \AA \quad \alpha=90$
$\mathrm{b}=8.0343(2) \AA \quad \beta=95.576(2)^{\circ}$
$\mathrm{c}=23.6089(4) \AA \quad \gamma=90{ }^{\circ}$
2375.07 (8) \AA^{3}

4, $1.324 \mathrm{Mg} / \mathrm{m}^{3}$
984
$0.632 \mathrm{~mm}^{-1}$
100.01(10) K
$1.54184 \AA$
dark red needle
$0.3 \times 0.1 \times 0.05 \mathrm{~mm}$
7.688 to $72.478{ }^{\circ}$
$-15<=\mathrm{h}<=13, \quad-9<=\mathrm{k}<=9,-29<=1<=27$
99.4%
1.00000 and 0.81773

Reflections collected (not including absences) 17294

No. of unique reflections 4624 [R(int) for equivalents $=0.032]$

No. of 'observed' reflections (I > 2 σ_{I}) 4049

Structure determined by: dual methods, in SHELXT
Refinement:
Full-matrix least-squares on F^{2}, in SHELXL

Data / restraints / parameters 4624 / 0 / 34
Goodness-of-fit on $\mathrm{F}^{2} 1.044$
Final R indices ('observed' data) $\quad R_{1}=0.037, \mathrm{wR}_{2}=0.091$
Final R indices (all data)
$\mathrm{R}_{1}=0.043, \mathrm{wR}_{2}=0.094$

Reflections weighted: $\mathrm{w}=\left[\sigma^{2}\left(\mathrm{FO}^{2}\right)+(0.0436 \mathrm{P})^{2}+0.5908 \mathrm{P}\right]^{-1}$ where $\mathrm{P}=\left(\mathrm{FO}^{2}+2 \mathrm{FC}^{2}\right) / 3$

Extinction coefficient
n / a
Largest diff. peak and hole
0.17 and -0.18 e. \AA^{-3}

Location of largest difference peak near midpoint of $C(1)-C(9)$ bond

Table 1. Atomic coordinates ($\mathbf{x ~} 10^{5}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	Y	z	U (eq)
C (1)	58408 (9)	38330 (15)	46837 (5)	257 (3)
N(2)	61216 (9)	51094 (13)	43534 (4)	267 (2)
C (3)	54936 (9)	51422 (16)	38276 (5)	269 (3)
C (4)	47756 (9)	37017 (15)	38332 (5)	264 (3)
C (5)	39913 (10)	30917 (16)	34312 (5)	307 (3)
C (6)	34144 (10)	17062 (17)	35750 (5)	321 (3)
C(7)	36077 (10)	9541 (17)	41086 (5)	315 (3)
C (8)	43748 (10)	15812 (16)	45123 (5)	285 (3)
C (9)	49587 (9)	29462 (15)	43660 (5)	253 (2)
C (10)	55222 (10)	62889 (16)	34143 (5)	290 (3)
C (11)	61033 (9)	78643 (16)	34365 (5)	277 (3)
C (12)	63844(10)	87181 (16)	39473 (5)	306 (3)
C (13)	68849 (10)	102452 (17)	39524 (5)	309 (3)
C (14)	71258 (10)	109696 (17)	34426 (5)	302 (3)
C (15)	68490 (11)	101449 (18)	29272 (5)	354 (3)
C (16)	63344 (11)	86248 (17)	29282 (5)	332 (3)
C (17)	76550 (10)	125618(18)	34537 (5)	332 (3)
N (18)	80820 (10)	138250 (16)	34653 (5)	413 (3)
C (21)	71533 (9)	42315 (15)	54242 (5)	257 (2)
N (22)	77576 (8)	52623 (13)	51527 (4)	266 (2)
C (23)	86345 (9)	57393 (15)	55300 (5)	252 (2)
C (24)	85050 (9)	49943 (15)	60897 (5)	254 (2)
C (25)	90904(10)	51118(16)	66183 (5)	302 (3)
C (26)	87278 (11)	42296 (17)	70680 (5)	329 (3)
C (27)	78083(10)	32482 (16)	69945 (5)	306 (3)
C (28)	72238 (10)	31256 (15)	64671 (5)	272 (3)
C (29)	75826 (9)	40208(15)	60192 (5)	250(2)
C (30)	94852 (10)	66381 (15)	54000 (5)	266 (3)
C (31)	97118(9)	73646 (15)	48589 (5)	256 (2)
C (32)	90760(10)	71419 (16)	43426 (5)	295 (3)
C (33)	93088(10)	79559 (17)	38546 (5)	309 (3)
C (34)	101906 (10)	90073 (16)	38655 (5)	289(3)
C (35)	108588(10)	91957 (16)	43688 (5)	302 (3)
C (36)	106228(10)	83748(16)	48537 (5)	288(3)
C (37)	$104102(10)$	98984 (17)	33617 (6)	330 (3)
N(38)	105795 (10)	106297 (16)	29607 (5)	420 (3)
N(41)	62650 (8)	34125 (13)	51973 (4)	276 (2)

Table 2. Molecular dimensions. Bond lengths are in Ångstroms, angles in degrees. E.s.ds are in parentheses.

$\mathrm{C}(1)-\mathrm{N}(41)$		$\mathrm{C}(21)-\mathrm{N}(22)$
1.3204(15)		1.3302 (16)
$\mathrm{C}(1)-\mathrm{N}(2)$		$\mathrm{C}(21)-\mathrm{N}(41)$
1.3557(16)		1.3611 (16)
C (1) - C (9)		C (21)-C (29)
1.4628(17)		1.4650 (16)
N (2) - C (3)		N(22) - C (23)
1.4056(15)		1.4023 (15)
N (2) - H (2)		$\mathrm{N}(22)-\mathrm{H}(22)$
0.878 (19)		0.91 (5)
C (3) - C (10)		$C(23)-C(30)$
1.3449(18)		1.3509 (18)
C (3) - C (4)		C (23)-C (24)
1.4690(18)		1.4741 (17)
C (4)-C(5)		C (24)-C(25)
$1.3902(17)$		1.3894(17)
C (4)-C(9)		C (24)-C(29)
1.3956(17)		$1.3959(17)$
C (5) - C (6)		C (25)-C(26)
1.3890 (19)		$1.3898(18)$
C (6)-C(7)		C (26)-C(27)
1.3972 (19)		1.3968 (19)
C (7) - C (8)		C (27)-C(28)
1.3837(18)		1.3867 (17)
C (8) - C (9)		C (28) - C (29)
1.3824 (18)		$1.3901(17)$
C (10)-C (11)		C (30)-C(31)
1.4601(18)		1.4575 (17)
C (11)-C(16)		C (31)-C(32)
1.4020(18)		1.4030 (17)
C (11)-C (12)		C (31)-C(36)
1.4024 (17)		1.4055 (17)
C (12)-C (13)		C (32)-C (33)
1.3786(19)		1.3806(18)
C (13) - $\mathrm{C}(14)$		C (33)-C (34)
1.3965 (18)		1.3926(18)
C (14)-C (15)		C (34)-C(35)
1.3995(18)		1.3955 (18)
C (14)-C (17)		C (34)-C(37)
1.4412 (19)		1.4377 (18)
C (15) - $\mathrm{C}(16)$		C (35)-C (36)
1.382(2)		1.3784 (18)
$\mathrm{C}(17)-\mathrm{N}(18)$		$\mathrm{C}(37)-\mathrm{N}(38)$
1.1474(18)		1.1516(18)
$\mathrm{C}(1)-\mathrm{N}(41)-\mathrm{C}(21)$	118.75(11)	
$\mathrm{N}(41)-\mathrm{C}(1)-\mathrm{N}(2)$		$C(5)-C(4)-C(3)$
128.10(11)		131.90(11)
$\mathrm{N}(41)-\mathrm{C}(1)-\mathrm{C}(9)$		C (9) - C (4)-C(3)
124.40(11)		107.64(10)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)$		C (6) -C (5)-C(4)
107.50(10)		117.96(12)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$		$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$
111.51(10)		121.18(11)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{H}(2)$		$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$
120.8(11)		120.81(12)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{H}(2)$		$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$
126.5(11)		117.96(11)
$\mathrm{C}(10)-\mathrm{C}(3)-\mathrm{N}(2)$		C (8) - C (9)-C (4)
126.96(11)		121.67(11)
$\mathrm{C}(10)-\mathrm{C}(3)-\mathrm{C}(4)$		$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$
127.30(11)		130.80(11)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$		C (4) -C (9)-C(1)
105.70(10)		107.51(11)
C (5) - C (4) - C (9)		$\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{C}(11)$
120.40(12)		128.05(11)

```
    C(16)-C(11)-C(12)
    117.83(12)
            C(16)-C (11)-C (10)
119.45(11)
            C (12) -C (11) - C (10)
122.58(11)
    C(13)-C(12)-C(11)
121.31(12)
    C (12) -C (13) -C (14)
120.03(12)
    C(13)-C(14)-C(15)
119.71(12)
    C (13)-C (14)-C (17)
119.52(11)
    C (15) -C (14) -C (17)
120.77(12)
        C (16) -C (15) -C (14)
119.59(12)
        C(15)-C(16)-C(11)
121.51(12)
        N(18) -C (17) -C (14)
179.51(16)
        N(22) -C (21) -N (41)
126.67(11)
        N(22) -C (21) - C (29)
111.06(10)
        N(41) -C (21) - C (29)
122.26(11)
        C(21)-N(22)-C(23)
108.37(10)
        C(21)-N (22)-H(22)
120(3)
    C(23)-N (22)-H(22)
130(3)
    C(30) -C (23) -N (22)
126.41(11)
        C(30)-C(23)-C (24)
125.43(11)
        N (22) -C (23) - C (24)
108.05(10)
        C(25)-C (24)-C(29)
120.48(11)
```

C (25) -C (24) -C (23)
$133.05(11)$

$$
C(29)-C(24)-C(23)
$$

$106.47(10)$

$$
C(24)-C(25)-C(26)
$$

$117.82(12)$
$C(25)-C(26)-C(27)$
$121.50(11)$
$C(28)-C(27)-C(26)$
$120.80(12)$
$C(27)-C(28)-C(29)$
$117.60(11)$
$C(28)-C(29)-C(24)$
121.79(11)
$C(28)-C(29)-C(21)$
$132.26(11)$
$C(24)-C(29)-C(21)$
105.93(10) $C(23)-C(30)-C(31)$
129.78(11)

$$
C(32)-C(31)-C(36)
$$

$117.55(11)$

$$
C(32)-C(31)-C(30)
$$

124.53 (11) $C(36)-C(31)-C(30)$
117.91(10) $C(33)-C(32)-C(31)$
121.02(12)
$C(32)-C(33)-C(34)$
120.34(11)
$C(33)-C(34)-C(35)$
119.63 (11) C (33) -C (34) -C (37)
120.24(11) $C(35)-C(34)-C(37)$
120.13(12) $C(36)-C(35)-C(34)$
119.66(12) $C(35)-C(36)-C(31)$
121.69(11) $N(38)-C(37)-C(34)$
$179.13(15)$

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{4}$) for the expression: $\exp \left\{-2 \pi^{2}\left(h^{2} a \star^{2} U_{11}+\ldots+2 h k a \star^{2}{ }^{*} U_{12}\right)\right\}$ E.s.ds are in parentheses.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C (1)	244(6)	293(6)	234 (6)	-19(5)	22 (4)	23 (5)
N(2)	257 (5)	304 (6)	233 (5)	12 (4)	-19(4)	-2 (4)
C (3)	254 (6)	322 (6)	225 (6)	-29 (5)	-10 (4)	38 (5)
C (4)	256 (6)	284(6)	249(6)	-29 (5)	6 (5)	47 (5)
C (5)	326 (6)	340 (7)	242(6)	-40 (5)	-29(5)	28 (5)
C (6)	297 (6)	363 (7)	292(6)	-85 (5)	-23(5)	-14(5)
C (7)	287 (6)	319 (7)	343 (7)	-50 (5)	49 (5)	-22(5)
C (8)	287 (6)	313 (6)	255 (6)	-7 (5)	32 (5)	26 (5)
C (9)	236 (6)	285 (6)	235 (6)	-36(5)	10 (4)	44 (5)
C (10)	295 (6)	347 (7)	220(6)	-17(5)	-20(5)	29 (5)
C (11)	255 (6)	320 (6)	250(6)	16 (5)	-4(4)	47 (5)
C (12)	350 (6)	337 (7)	232(6)	10 (5)	23 (5)	43 (5)
C (13)	318 (6)	347 (7)	254(6)	-33(5)	-6 (5)	49 (5)
C (14)	282(6)	322 (7)	297(6)	-11 (5)	5 (5)	27 (5)
C (15)	418 (7)	391 (8)	248(6)	21 (5)	15 (5)	-29(6)
C (16)	386 (7)	376 (7)	222(6)	-7(5)	-31(5)	-20 (6)
C (17)	339 (7)	385 (8)	273(6)	-27(5)	28 (5)	14(6)
N (18)	454(7)	422 (7)	363(6)	-60 (5)	39 (5)	-72(6)
C (21)	273(6)	248(6)	245 (6)	-9 (5)	-10(5)	38 (5)

N(22)	255 (5)	280(5)	254 (5)	0 (4)	-21(4)	13 (4)
C (23)	273(6)	245 (6)	230 (6)	-18(4)	-13 (4)	37 (5)
C (24)	269(6)	242 (6)	248 (6)	-19 (4)	5 (4)	44 (5)
C (25)	312 (6)	314 (7)	269(6)	-20 (5)	-22 (5)	-14 (5)
C (26)	361 (7)	389 (7)	222 (6)	-6(5)	-40 (5)	-4 (6)
C (27)	350 (6)	326 (7)	238(6)	21 (5)	17 (5)	15 (5)
C (28)	276(6)	265 (6)	271 (6)	-4 (5)	8 (5)	13 (5)
C (29)	259(6)	243 (6)	243(6)	-23 (4)	-4 (4)	44 (5)
C (30)	271 (6)	280 (6)	234 (6)	-32 (5)	-36(4)	20 (5)
C (31)	252(6)	243(6)	271(6)	-19 (5)	9(4)	33 (5)
C (32)	276(6)	310 (7)	295 (6)	4 (5)	4(5)	-20 (5)
C (33)	290 (6)	359 (7)	270 (6)	4 (5)	-21(5)	6 (5)
C (34)	302 (6)	276(6)	293(6)	2 (5)	52 (5)	44 (5)
C (35)	271 (6)	295 (6)	344 (6)	-34 (5)	56 (5)	-16(5)
C (36)	263(6)	314 (7)	280 (6)	-41 (5)	-10 (5)	3 (5)
C (37)	337 (7)	331 (7)	321 (7)	-5 (5)	23 (5)	9 (5)
N(38)	470 (7)	439 (7)	348 (6)	56 (5)	31 (5)	-50 (6)
N(41)	272 (5)	305 (5)	241 (5)	11(4)	-29 (4)	-8(4)

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). The two part-amino-hydrogen atoms were located in difference maps and were refined freely. The remaining hydrogen atoms were included in idealised positions with $U(i s o)$'s set at $1.2 * U(e q)$ of the parent carbon atoms.

	x	Y	z	U(iso)	S.O.f.\#
H (5)	3857	3596	3077	37	
H (6)	2890	1271	3311	38	
H (7)	3216	21	4194	38	
H (8)	4494	1099	4871	34	
H (10)	5122	6049	3072	35	
H (12)	6230	8245	4289	37	
H (13)	7062	10793	4296	37	
H (15)	7010	10617	2586	42	
H (16)	6137	8094	2584	40	
H (25)	9705	5760	6670	36	
H (26)	9106	4294	7426	39	
H (27)	7585	2670	7303	37	
H (28)	6614	2468	6415	33	
H (30)	10005	6821	5701	32	
H (32)	8489	6435	4329	35	
H (33)	8874	7801	3517	37	
H (35)	11460	9872	4377	36	
H (36)	11078	8492	5186	35	
H (2)	6710 (15)	5680 (20)	4445 (7)	5 (6)	0.64 (4)
H (22)	7510 (40)	5700 (60)	4810 (20)	50(18)	0.36 (4)

Table 5. Torsion angles, in degrees. E.s.ds are in parentheses.
$\mathrm{N}(41)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$
179.03(12)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-0.55(13)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(10)$
176.20(12)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-1.78(13)$
C (10) -C (3) -C (4) -C (5)
2.8(2)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-179.23(13)$
C (10) -C (3) -C (4) -C (9) -
174.47(12)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$
3.50 (13)
$C(9)-C(4)-C(5)-C(6)-0.86(18)$
$C(3)-C(4)-C(5)-C(6)-177.84(12)$
$C(4)-C(5)-C(6)-C(7)$
0.54 (19)
$C(5)-C(6)-C(7)-C(8)$
0.7 (2)
$C(6)-C(7)-C(8)-C(9)-1.51(18)$
$C(7)-C(8)-C(9)-C(4)$
1.20(18)
$C(7)-C(8)-C(9)-C(1)-176.94(12)$
$C(5)-C(4)-C(9)-C(8)-0.01(18)$
$C(3)-C(4)-C(9)-C(8)$
177.63(11)
$C(5)-C(4)-C(9)-C(1)$
178.51(11)
$C(3)-C(4)-C(9)-C(1)-3.85(13)$
$\mathrm{N}(41)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$
1.5 (2)
$N(2)-C(1)-C(9)-C(8)-178.86(12)$
N (41) -C (1) -C (9) -C (4) -
176.80(11)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(4)$
2.80 (13)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{C}(11)-8.3(2)$
$C(4)-C(3)-C(10)-C(11)$
169.21(12)

C (3) -C (10) -C (11) -C (16)
158.68(13)
$C(3)-C(10)-C(11)-C(12)-25.6(2)$
$C(16)-C(11)-C(12)-C(13)-$
$0.87(18)$
$C(10)-C(11)-C(12)-C(13)-$
176.63(12)
$C(11)-C(12)-C(13)-C(14)-$
$0.25(19)$

$$
C(12)-C(13)-C(14)-C(15)
$$

$0.53(19)$
$C(12)-C(13)-C(14)-C(17)-$
179.62(12)
$C(13)-C(14)-C(15)-C(16)$
$0.3(2)$
$C(17)-C(14)-C(15)-C(16)-$
$179.50(12)$
$C(14)-C(15)-C(16)-C(11)-1.5(2)$
$C(12)-C(11)-C(16)-C(15)$
1.77(19) $C(10)-C(11)-C(16)-C(15)$
177.67(12) $\mathrm{N}(41)-\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)-$
175.70(11)
$\mathrm{C}(29)-\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)$
2.56(13)
$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(30)$
172.76(12)
$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)-$
3.54 (13)
$C(30)-C(23)-C(24)-C(25)$
7.4(2)
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-$
176.23(13) $C(30)-C(23)-C(24)-C(29)-$
173.16(12)

$$
N(22)-C(23)-C(24)-C(29)
$$

3.18 (13) C (29) -C (24) -C (25) -C (26)
0.17 (18) $C(23)-C(24)-C(25)-C(26)$
179.52(13) C (24) -C (25) -C (26) -C (27)
0.3 (2)
$C(25)-C(26)-C(27)-C(28)-0.1(2)$
$C(26)-C(27)-C(28)-C(29)-$
0.45 (18) C (27) -C (28) -C (29) -C (24)
$0.89(18)$ $C(27)-C(28)-C(29)-C(21)-$ 177.34(12) $C(25)-C(24)-C(29)-C(28)-$
0.77 (18)

C (23) -C (24) -C (29) -C (28)
179.73(11)

C (25) -C (24) -C (29) -C (21)
177.87(11)
$C(23)-C(24)-C(29)-C(21)-$
1.63(12)

N(22) -C (21) -C (29) -C (28)
177.92(12) $\mathrm{N}(41)-\mathrm{C}(21)-\mathrm{C}(29)-\mathrm{C}(28)-3.7(2)$ $\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{C}(29)-\mathrm{C}(24)-$
0.51 (13)
$\mathrm{N}(41)-\mathrm{C}(21)-\mathrm{C}(29)-\mathrm{C}(24)$
177.84(11)
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(30)-\mathrm{C}(31)$
1.5(2)
$C(24)-C(23)-C(30)-C(31)$
177.13(12) $\mathrm{C}(23)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-4.7(2)$ C (23) -C (30) -C (31) -C (36)
174.48(12)
$C(36)-C(31)-C(32)-C(33)-$
3.26(18)

C (30) -C (31) -C (32) -C (33)
175.96(12)

C (31) -C (32) -C (33) -C (34)
0.6 (2)
$C(32)-C(33)-C(34)-C(35)$
$1.96(19)$
$C(32)-C(33)-C(34)-C(37)-$
177.84(12)
$C(33)-C(34)-C(35)-C(36)-$
1.76(19)

$$
C(37)-C(34)-C(35)-C(36)
$$

178.04(12) $C(34)-C(35)-C(36)-C(31)-$
1.02(19) $C(32)-C(31)-C(36)-C(35)$
3.48 (18) $C(30)-C(31)-C(36)-C(35)-$
175.79(11)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(41)-\mathrm{C}(21)-6.19(19)$ $\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(41)-\mathrm{C}(21)$
173.33(11)

```
    N(22) -C (21) -N (41) - C(1)
11.13(18)
```

 \(\mathrm{C}(29)-\mathrm{C}(21)-\mathrm{N}(41)-\mathrm{C}(1)\)
 170.79(11)

Table 6. Hydrogen bonds, in Ångstroms and degrees.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$N(2)-H(2) \ldots N(22)$	$0.878(19)$	$2.053(17)$	$2.6565(14)$	$125.1(14)$
$N(22)-H(22) \ldots N(2)$	$0.91(5)$	$2.02(5)$	$2.6565(14)$	$126(4)$

Crystal structure analysis of $\mathrm{N}\left(\mathrm{C}_{8} \mathrm{NH} 5-\mathrm{CH}_{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}\right)\left(\mathrm{C}_{8} \mathrm{NH}_{4}-\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}\right)$

Crystal data: $\mathrm{C}_{32} \mathrm{H}_{19} \mathrm{~N}_{5}, \mathrm{M}=473.52$. Monoclinic, space group $\mathrm{P}_{2} / \mathrm{n}$ (equiv. to no. 14), $\mathrm{a}=12.5809(2), \mathrm{b}=8.0343(2), \mathrm{c}=23.6089(4) \AA, \beta=95.576(2)^{\circ}, \mathrm{V}=2375.07(8) \AA^{3} . \mathrm{Z}$ $=4, \mathrm{Dc}=1.324 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=984, \mathrm{~T}=100.01(10) \mathrm{K}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=6.32 \mathrm{~cm}^{-1}, \lambda(\mathrm{Cu}-\mathrm{K} \alpha)$ $=1.54184 \AA$.

The crystal was a dark red needle. From a sample under oil, one, $c a 0.05 \times 0.1 \times 0.3 \mathrm{~mm}$, was mounted on a small loop and fixed in the cold nitrogen stream on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer, equipped with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, HyPix detector and mirror monochromator. Intensity data were measured by thin-slice ω-scans. Total no. of reflections recorded, to $\theta_{\max }=72.5^{\circ}$, was 17294 of which 4624 were unique $($ Rint $=0.032) ; 4049$ were 'observed' with $\mathrm{I}>2 \sigma_{\mathrm{I}}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on $\mathrm{F}^{2} \mathrm{~s}$, in SHELXL (2B). The nonhydrogen atoms were refined with anisotropic thermal parameters. The amino hydrogen atom was disordered over the two nitrogen atoms, $\mathrm{N}(2)$ and $\mathrm{N}(22)$, located in difference maps and both were refined freely. The remaining hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms. At the conclusion of the refinement, $\mathrm{wR}_{2}=0.094$ and $\mathrm{R}_{1}=0.043$ (2B) for all 4624 reflections weighted $w=\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0436 \mathrm{P})^{2}+0.591 \mathrm{P}\right]^{-1}$ with $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+\right.$ $\left.2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$; for the 'observed' data only, $\mathrm{R}_{1}=0.037$.

In the final difference map, the highest peak $\left(c a 0.17 \mathrm{e}^{-3}\right.$) was near the midpoint of the $\mathrm{C}(1)-\mathrm{C}(9)$ bond.

Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(17) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2018).
(18) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112122 and (2015) C71, 3-8.
(19) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). Vol. C, pp. 500, 219 and 193.
(20) L. J. Farrugia, J. Appl. Cryst. (2012) 45, 849-854.

Legends for Figures

Figure 1. View of a molecule of the N -bis-isoindole derivative, indicating the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

Figure 2. View of the molecule with the normal to the three N atoms $\mathrm{N}(2), \mathrm{N}(22)$ and $\mathrm{N}(41)$, vertical in the plane of the paper.

Figure 3. Overlap of a N-bis-isoindole unit by its inverted neighbour.
Figure 4. The packing of molecules, along the 110 axis.

Notes on the structure.

The two isoindole groups, connected through the central $\mathrm{N}(41)$ atom, Figure 1, are essentially identical in dimensions except in the rotation of the phenyl group planes about the $\mathrm{C}(10)-\mathrm{C}(11)$ and $\mathrm{C}(30)-\mathrm{C}(31)$ bonds; the benzyl isoindole group of $\mathrm{C}(21)$ to $\mathrm{N}(38)$ is approximately planar whereas there is a rotation of $c a 29.9^{\circ}$ about the $\mathrm{C}(10)-\mathrm{C}(11)$ bond in the group of $\mathrm{C}(1)$ to $\mathrm{N}(18)$.

All the bonds in the chain of $\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(41)-\mathrm{C}(21)-\mathrm{N}(22)$ are very similar, at ca 1.34 \AA, suggesting delocalisation. However, the amino nitrogen atoms are different - the hydrogen on $\mathrm{N}(2)$ comes up strongly in early difference maps while the H on $\mathrm{N}(22)$ appears weaker. I am assuming that there is only one H atom here, shared unequally between the two N atoms - certainly the refinement is best this way! After refinement, the ratio of $\mathrm{H}(2): \mathrm{H}(22)$ is $c a 0.64: 0.36$. Both these hydrogen atoms are involved in hydrogen bonds - to the opposite N atom in the molecule. There is a hint of a spiralling of the atoms along this chain, and this feature is followed to the end of the group at $\mathrm{N}(38)$, but is interrupted by the rotation about the $\mathrm{C}(10)-\mathrm{C}(11)$ bond in the other group, Figure 2.

Molecules are stacked in pairs about centres of symmetry: the ring of $\mathrm{C}(4)-\mathrm{C}(9)$ lies over that of $\mathrm{C}\left(21^{\prime}\right), \mathrm{N}\left(22^{\prime}\right), \mathrm{C}\left(23^{\prime}-24^{\prime}\right), \mathrm{C}\left(29^{\prime}\right)$, with $\mathrm{N}\left(41^{\prime}\right)$ over the centre of the adjoining
pyrazole ring of $\mathrm{N}(2)$, and $\mathrm{C}(1)$ and $\mathrm{C}\left(1^{\prime}\right)$ are almost directly superimposed, $3.292 \AA$ apart, Figure 3. The phenyl rings of $\mathrm{C}(31-36)$ and $\mathrm{C}(31 "-36$ ") are overlapping with a $\mathrm{C}(36)-\mathrm{C}(36$ ") distance of $3.156 \AA$. Molecules are stacked parallel to the b axis through these $\pi \ldots \pi$ interactions,

Crystal data and structure refinement for a BF_{2}-linked N (bis-isoindoline) derivative

Identification code

Elemental formula

Formula weight
Crystal system, space group
Unit cell dimensions

Volume

Z, Calculated density

F(000)

Absorption coefficient

Temperature

Wavelength
Crystal colour, shape
Crystal size

On the diffractometer:
Theta range for data collection
Limiting indices
Completeness to theta $=67.684$

Absorption correction Semi-empirical from equivalents

Max. and min. transmission

Crystal mounting: on a small loop, in oil, fixed in cold N_{2} stream
174

C32 H18 B F2 N5, $0.5(\mathrm{C}$ H2 Cl2)
563.79

Orthorhombic, Pbca (no, 61)
$a=16.2443(2) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=15.9943(2) \AA \quad \beta=90^{\circ}$
$c=20.3605(2) \AA \quad \gamma=90^{\circ}$
5289.99(11) \AA^{3}

8, $1.416 \mathrm{Mg} / \mathrm{m}^{3}$
2312
$1.783 \mathrm{~mm}^{-1}$
100.01(10) K
$1.54184 \AA$
dark yellow block
$0.45 \times 0.35 \times 0.3 \mathrm{~mm}$ $-16<=\mathrm{h}<=20, \quad-16<=\mathrm{k}<=19, \quad-25<=1<=23$
99.5 \%
1.00000 and 0.59544

Reflections collected (not including absences) 21805
No. of unique reflections 5148 [R(int) for equivalents $=0.033$]
No. of 'observed' reflections (I > 2 σ_{I}) 4449
Structure determined by: dual methods, in SHELXT
Refinement: Full-matrix least-squares on F^{2}, in SHELXL
Data / restraints / parameters 5148 / 0 / 388

Goodness-of-fit on F^{2}	1.057
Final R indices ('observed' data)	$\mathrm{R}_{1}=0.043, \mathrm{wR}_{2}=0.110$
Final R indices (all data)	$\mathrm{R}_{1}=0.050, \mathrm{wR}_{2}=0.113$
Reflections weighted:	
w $=\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.0521 \mathrm{P})^{2}+3.0672 \mathrm{P}\right]^{-1}$	where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
Extinction coefficient	$0.00022(7)$
Largest diff. peak and hole	0.54 and -0.44 e. A^{-3}
Location of largest difference peak	near $\mathrm{N}(28)$

Table 1. Atomic coordinates ($\mathbf{x ~} 10^{5}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	Y	z	U (eq)	S.O.f.\#
C (1)	35837 (10)	40447 (10)	51837 (7)	226 (3)	
N (2)	34704 (8)	41431 (8)	58344 (6)	214 (3)	
C (3)	32111 (9)	33761 (10)	61224 (8)	219 (3)	
C (4)	31521 (10)	27692 (11)	55778(8)	240 (3)	
C (5)	28822 (11)	19411(12)	55350 (9)	304 (4)	
C (6)	28682 (12)	15711(13)	49184(10)	382 (4)	
C (7)	31120 (12)	19963 (13)	43524 (9)	376 (4)	
C (8)	33672 (11)	28190 (12)	43875 (8)	304 (4)	
C (9)	33786 (10)	31925 (11)	50053(8)	250 (3)	
B	36067 (12)	49791 (11)	62000 (8)	230 (4)	
F (1)	41389 (7)	48792 (6)	67256(4)	301 (2)	
F (2)	28578(6)	52882 (6)	64209 (5)	328 (2)	
N (10)	38345 (9)	46296 (9)	47632 (6)	246 (3)	
C (11)	40115 (10)	53695 (10)	50274(7)	229(3)	
N (12)	39765 (8)	55657 (8)	56720 (6)	222 (3)	
C (13)	42106 (10)	64170 (10)	57659(8)	231(3)	
C (14)	43859 (10)	67520 (10)	51055 (8)	239 (3)	
C (15)	46529 (10)	75314 (11)	48814 (8)	275 (4)	
C (16)	47785 (11)	76294 (12)	42113 (9)	311 (4)	
C (17)	46533 (11)	69744 (12)	37717(8)	320 (4)	
C (18)	44032 (11)	61970 (12)	39880 (8)	289(4)	
C (19)	42708 (10)	61021 (11)	46606 (8)	246 (3)	
C (20)	30159 (10)	33323 (10)	67682 (8)	228 (3)	
C (21)	28261 (10)	25749 (10)	71455 (8)	231(3)	
C (22)	32952 (10)	18480 (11)	70729 (8)	268 (4)	
C (23)	31114 (11)	11372 (11)	74247 (9)	288(4)	
C (24)	24506 (11)	11364 (11)	78575 (8)	304 (4)	
C (25)	19977 (11)	18672 (12)	79594(8)	316 (4)	
C (26)	21977 (10)	25830 (11)	76146(8)	262 (3)	
C (27)	22383 (13)	3608 (14)	81749 (11)	439 (5)	
N (28)	20818 (13)	-2725 (14)	83992 (13)	684(7)	
C (30)	42878 (10)	67532 (10)	63675 (8)	254 (3)	
C (31)	44686 (10)	76390 (10)	65080 (7)	241(3)	
C (32)	51139 (11)	78495 (11)	69276 (8)	279(4)	
C (33)	52896(12)	86762 (11)	70682 (8)	300 (4)	
C (34)	48023 (11)	93076(10)	68035 (8)	252 (3)	
C (35)	41332 (10)	91073 (11)	64031 (8)	267 (4)	
C (36)	39796 (10)	82763 (11)	62521 (8)	266 (4)	
C (37)	49871 (10)	101760 (11)	69278 (8)	273 (4)	
N (38)	51216 (9)	108725 (9)	70137 (7)	312 (3)	
C (51)	7880 (30)	-1090 (30)	97480(30)	542 (12)	0.5
Cl(52)	15618(6)	6576(6)	97791 (5)	432 (2)	0.5
Cl (53)	-1891 (6)	2455 (7)	99504 (6)	512 (3)	0.5

[^0]Table 2. Molecular dimensions. Bond lengths are in Ångstroms, angles in degrees. E.s.ds are in parentheses.

	C (14)-C (15)
$\mathrm{C}(1)-\mathrm{N}(10)$	1.397 (2)
1.332 (2)	C (15) - C (16)
$\mathrm{C}(1)-\mathrm{N}(2)$	1.389(2)
1.3467(19)	C (16) - C (17)
C (1) - C (9)	1.393 (3)
1.449 (2)	C (17) - C (18)
$\mathrm{N}(2)-\mathrm{C}(3)$	1.380 (3)
1.423 (2)	C (18) - C (19)
N (2) -B	1.395 (2)
1.546 (2)	$\mathrm{C}(20)-\mathrm{C}(21)$
C (3) - C (20)	1.467 (2)
1.354 (2)	C (21)-C (22)
C (3) - $\mathrm{C}(4)$	$1.398(2)$
1.477 (2)	C (21)-C (26)
C (4)-C (9)	$1.398(2)$
1.397 (2)	C (22) - C (23)
C (4)-C(5)	1.376 (2)
$1.398(2)$	C (23) - $\mathrm{C}(24)$
C (5) - C (6)	1.389(3)
1.388 (2)	C (24)-C (25)
C (6)-C (7)	1.397(3)
1.395 (3)	C (24)-C (27)
C (7) - C (8)	1.441 (3)
1.381 (3)	C (25)-C (26)
C (8) - C (9)	1.382 (2)
1.393 (2)	$\mathrm{C}(27)-\mathrm{N}(28)$
$B-F(1)$	1.140 (3)
1.385 (2)	C (30)-C (31)
$B-F(2)$	1.475 (2)
1.388 (2)	C (31)-C (36)
B-N (12)	1.393 (2)
1.548 (2)	C (31) - C (32)
$\mathrm{N}(10)-\mathrm{C}(11)$	1.394 (2)
1.331 (2)	C (32) - C (33)
$\mathrm{C}(11)-\mathrm{N}(12)$	1.383 (2)
1.3506(19)	C (33) - $\mathrm{C}(34)$
C (11)-C(19)	1.392 (2)
1.452 (2)	C (34)-C (35)
$\mathrm{N}(12)-\mathrm{C}(13)$	1.396 (2)
1.427 (2)	C (34)-C (37)
C (13)-C(30)	1.443 (2)
1.343 (2)	C (35)-C (36)
C (13)-C(14)	1.387 (2)
1.475 (2)	$\mathrm{C}(37)-\mathrm{N}(38)$
C (14)-C(19)	1.149(2)
1.391(2)	
$\mathrm{N}(10)-\mathrm{C}(1)-\mathrm{N}(2)$	$C(9)-C(4)-C(5)$
126.30(15)	119.33(15)
N(10) -C (1) - C (9)	$C(9)-C(4)-C(3)$
124.73(14)	106.90(14)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	$C(5)-C(4)-C(3)$
108.97(14)	133.62(16)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$C(6)-C(5)-C(4)$
110.18(13)	117.74(17)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{B}$	$C(5)-C(6)-C(7)$
123.72(13)	122.30(18)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{B}$	$C(8)-C(7)-C(6)$
126.10(13)	120.44(16)
$\mathrm{C}(20)-\mathrm{C}(3)-\mathrm{N}(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$
120.92(14)	117.35 (17)
C (20)-C (3)-C (4)	C (8) -C (9)-C (4)
132.82(15)	122.82(16)
N(2)-C (3) - C (4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$
106.04(13)	129.26(16)

```
    C(4)-C (9) -C (1)
107.90(14)
    F(1)-B-F (2)
109.74(13)
    F(1)-B-N(2)
111.20(13)
    F(2)-B-N(2)
109.79(14)
    F(1) -B-N(12)
111.36(14)
    F(2) -B-N(12)
110.44(13)
    N(2) -B-N (12)
104.20(12)
    C(11)-N(10)-C(1)
115.51(13)
    N(10) -C (11) -N (12)
126.15(15)
    N(10) -C (11) -C (19)
124.91(14)
    N(12) -C (11) -C (19)
108.94(14)
    C(11)-N(12)-C (13)
109.92(13)
    C(11)-N(12)-B
123.39(14)
    C(13)-N(12)-B
126.06(13)
    C(30)-C(13)-N(12)
121.95(14)
    C(30)-C(13)-C(14)
131.87(15)
    N(12) -C(13) -C (14)
106.02(13)
    C(19)-C(14)-C(15)
119.73(15)
    C(19)-C(14)-C(13)
107.22(14)
    C(15)-C(14)-C(13)
133.00(16)
    C(16)-C(15)-C(14)
117.87(17)
    C(15)-C(16)-C(17)
121.67(17)
    C(18)-C(17)-C(16)
121.04(15)
    C(17)-C(18)-C(19)
117.17(17)
    C(14)-C(19)-C(18)
122.51(16)
    C(14)-C(19)-C(11)
107.88(14)
    C (51) -Cl (53)
1.735(5)
    Cl(53)-C(51)-
Cl(52) 114.7(3)
1.757(5)
```

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{4}$) for the expression: $\exp \left\{-2 \pi^{2}\left(h^{2} a *^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)\right\}$ E.s.ds are in parentheses.

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). All hydrogen atoms were included in idealised positions with U(iso)'s set at $1.2 * \mathrm{U}(\mathrm{eq})$ or, for the methyl group hydrogen atoms, $1.5 * \mathrm{U}(\mathrm{eq})$ of the parent carbon atoms.

	x	y	z	U(iso)	S.O.f.\#
H (5)	2718	1648	5907	36	
H (6)	2690	1021	4881	46	
H (7)	3103	1724	3949	45	
H (8)	3525	3112	4013	36	
H (15)	4744	7971	5172	33	
H (16)	4950	8146	4052	37	
H (17)	4740	7062	3325	38	
H (18)	4326	5755	3697	35	
H (20)	3001	3836	6997	27	
H (22)	3738	1845	6783	32	
H (23)	3429	658	7373	35	
H (25)	1564	1872	8258	38	
H (26)	1911	3076	7695	31	
H (30)	4222	6398	6725	30	
H (32)	5430	7428	7116	34	
H (33)	5732	8810	7339	36	
H (35)	3794	9527	6239	32	
H (36)	3543	8142	5976	32	
H (51A)	772	-340	9308	65	0.5
H (51B)	935	-558	10046	65	0.5

$\mathrm{N}(10)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3-$
179.15(15)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$
1.51(17)
$\mathrm{N}(10)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{B}$
1.0(2)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{B}-178.39(14)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(20)-$
176.46(14)
$B-N(2)-C(3)-C(20)$
3.4(2)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-1.16(17)$
B-N (2) - C (3) -C (4)
178.74(14)

$$
C(20)-C(3)-C(4)-C(9)
$$

174.85(17)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$
$0.34(17)$
$C(20)-C(3)-C(4)-C(5)-0.5(3)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-$
175.00(18)

$$
C(9)-C(4)-C(5)-C(6)
$$

1.3(3)

$$
C(3)-C(4)-C(5)-C(6)
$$

176.14(18)

$$
0.0(3)
$$

$$
C(4)-C(5)-C(6)-C(7)
$$

$$
C(5)-C(6)-C(7)-C(8)-1.1(3)
$$

$$
C(6)-C(7)-C(8)-C(9)
$$

$0.8(3)$
$C(7)-C(8)-C(9)-C(4)$
$0.5(3)$
$C(7)-C(8)-C(9)-C(1)-$
177.29(17)
$C(5)-C(4)-C(9)-C(8)-1.6(3)$
$C(3)-C(4)-C(9)-C(8)-$
177.72(15)
$C(5)-C(4)-C(9)-C(1)$
176.66(15)
$C(3)-C(4)-C(9)-C(1)$
$0.52(17)$
$\mathrm{N}(10)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)-2.5(3)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$
176.82(16)
$\mathrm{N}(10)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(4)$
179.37(15)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(4)-1.27(18)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{B}-\mathrm{F}(1)-126.44$ (15)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{B}-\mathrm{F}(1)$
53.7 (2)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{B}-\mathrm{F}(2)$
111.92(16)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{B}-\mathrm{F}(2)-67.96(19)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{B}-\mathrm{N}(12)-6.4(2)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{B}-\mathrm{N}(12)$
173.76(13)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(10)-\mathrm{C}(11)$
2.3(2)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(10)-\mathrm{C}(11)-$
178.45(15)
$\mathrm{C}(1)-\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{N}(12)$
1.6(2)
$\mathrm{C}(1)-\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(19)-$
178.02(15)
$\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(13)$
179.97(15) $\mathrm{C}(19)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(13)-$
$0.39(18)$
$N(10)-C(11)-N(12)-B-8.6(2)$
$\mathrm{C}(19)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{B}$
171.07(14)
$\mathrm{F}(1)-\mathrm{B}-\mathrm{N}(12)-\mathrm{C}(11)$
129.76(15)
$\mathrm{F}(2)-\mathrm{B}-\mathrm{N}(12)-\mathrm{C}(11)-$
108.04(16)
$\mathrm{N}(2)-\mathrm{B}-\mathrm{N}(12)-\mathrm{C}(11)$
9.8(2)
$\mathrm{F}(1)-\mathrm{B}-\mathrm{N}(12)-\mathrm{C}(13)-60.2(2)$
$\mathrm{F}(2)-\mathrm{B}-\mathrm{N}(12)-\mathrm{C}(13)$
62.0 (2)
$\mathrm{N}(2)-\mathrm{B}-\mathrm{N}(12)-\mathrm{C}(13)$
$179.85(13)$
$\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(30)-$
174.91(15)
$B-N(12)-C(13)-C(30)$
13.9(2)
$\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(14)$
1.03(17)
$B-N(12)-C(13)-C(14)-$
170.15(14) $C(30)-C(13)-C(14)-C(19)$
174.09(18) $\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)-$
1.28(17) $C(30)-C(13)-C(14)-C(15)-$ 3.3(3) $\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-$ 178.63(17) C (19) -C (14) -C (15) -C (16)
1.3(2) $C(13)-C(14)-C(15)-C(16)$
178.34(17) $C(14)-C(15)-C(16)-C(17)-$ 0.7 (3) $C(15)-C(16)-C(17)-C(18)-$ 0.4 (3) $C(16)-C(17)-C(18)-C(19)$ 0.9 (3) $C(15)-C(14)-C(19)-C(18)-$ 0.8 (2) $C(13)-C(14)-C(19)-C(18)-$
$178.52(15)$ $C(15)-C(14)-C(19)-C(11)$
178.83(14) $C(13)-C(14)-C(19)-C(11)$
1.06 (17) C(17)-C(18)-C(19)-C(14) -
0.4 (2) $C(17)-C(18)-C(19)-C(11)-$
$179.84(16)$ $\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(19)-\mathrm{C}(14)$
$179.20(15)$ $\mathrm{N}(12)-\mathrm{C}(11)-\mathrm{C}(19)-\mathrm{C}(14)-$ 0.45 (18) $\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(19)-\mathrm{C}(18)-$
1.3(3) $\mathrm{N}(12)-\mathrm{C}(11)-\mathrm{C}(19)-\mathrm{C}(18)$
179.09(16) $N(2)-C(3)-C(20)-C(21)-$
172.98(14) $C(4)-C(3)-C(20)-C(21)$
13.2(3) $C(3)-C(20)-C(21)-C(22)$
43.4(2) $C(3)-C(20)-C(21)-C(26)-$ 140.28(17)

```
        C(26) -C (21) -C (22) -C (23)
4.1(2)
    C (20) -C (21) -C (22) -C (23) -
179.56(15)
    C(21)-C (22) -C (23) -C (24)
0.2(3)
    C(22)-C (23)-C(24)-C(25)-
3.1(3)
    C (22) -C (23) - C (24) - C (27)
174.99(17)
    C(23)-C (24)-C(25)-C (26)
    1.7(3)
        C(27)-C (24) -C (25) -C (26) -
    176.31(18)
        C(24)-C (25)-C (26)-C (21)
    2.6(3)
        C(22)-C (21)-C (26)-C (25) -
    5.5(2)
        C (20) -C (21)-C (26)-C (25)
    178.12(15)
        N(12)-C(13) -C (30) -C (31) -
    175.40(15)
        C(14)-C(13)-C (30) -C (31)
9.8(3)
```

$$
C(13)-C(30)-C(31)-C(36)
$$

$$
54.9(2)
$$

$$
C(13)-C(30)-C(31)-C(32)-
$$

$$
128.13(19)
$$

$$
2.6(2)
$$

$$
C(36)-C(31)-C(32)-C(33)-
$$

$$
C(30)-C(31)-C(32)-C(33)-
$$

$$
179.62(16)
$$

$$
C(31)-C(32)-C(33)-C(34)
$$

$$
1.9(3)
$$

$$
0.7(3)
$$

$$
C(32)-C(33)-C(34)-C(35)
$$

$$
C(32)-C(33)-C(34)-C(37)-
$$

$$
178.23(16)
$$

$$
C(33)-C(34)-C(35)-C(36)-
$$

$$
2.5(2)
$$

$$
C(37)-C(34)-C(35)-C(36)
$$

$176.45(15)$
$C(34)-C(35)-C(36)-C(31)$
1.8(2)
$C(32)-C(31)-C(36)-C(35)$
0.8 (2)
$C(30)-C(31)-C(36)-C(35)$
177.74(15)

Table 6. Hydrogen bonds (?), in Ångstroms and degrees.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$C(20)-H(20) \ldots F(1)$	0.93	2.55	$3.0751(19)$	116.0
$C(20)-H(20) \ldots F(2)$	0.93	2.61	$3.2175(19)$	123.2
$C(30)-H(30) \ldots F(1)$	0.93	2.43	$3.0943(19)$	128.1

Crystal structure analysis of a BF2-linked N(bis-isoindoline) derivative

Crystal data: $\mathrm{C}_{32} \mathrm{H}_{18} \mathrm{BF}_{2} \mathrm{~N}_{5}, 0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \quad \mathrm{M}=563.79$. Orthorhombic, space group Pbca (no. 61), $\mathrm{a}=16.2443(2), \mathrm{b}=15.9943(2), \mathrm{c}=20.3605(2) \AA, \mathrm{V}=5289.99(11) \AA^{3}$. $\mathrm{Z}=8, \mathrm{Dc}=1.416 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=2312, \mathrm{~T}=100.01(10) \mathrm{K}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=17.83 \mathrm{~cm}^{-1}$, $\lambda(\mathrm{Cu}-\mathrm{K} \alpha)=1.54184 \AA$.

The crystals were dark yellow blocks. From a sample under oil, one, ca $0.3 \times 0.35 \mathrm{x}$ 0.45 mm , was mounted on a small loop and fixed in the cold nitrogen stream on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer, equipped with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, HyPix detector and mirror monochromator. Intensity data were measured by thin-slice ω-scans. Total no. of reflections recorded, to $\theta_{\max }=72.5^{\circ}$, was 21805 of which 5148 were unique $($ Rint $=0.033) ; 4449$ were 'observed' with $\mathrm{I}>2 \sigma_{\mathrm{I}}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on $\mathrm{F}^{2} \mathrm{~s}$, in SHELXL (2B). The principal molecule was clear and well-defined. A solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ molecule was found, disordered about a centre of symmetry. All the non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms. At the conclusion of the refinement, $w R_{2}=0.113$ and $R_{1}=0.050(2 B)$ for all 5148 reflections weighted $\mathrm{w}=\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0521 \mathrm{P})^{2}+3.067 \mathrm{P}\right]^{-1}$ with $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$; for the 'observed' data only, $\mathrm{R}_{1}=0.043$.

In the final difference map, the highest peak (ca0.54 e^{-3}) was near $\mathrm{N}(28)$.
Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(21) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2021).
(22) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112-122 and (2015) C71, 3-8.
(23) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers,

Legends for Figures

Figure 1. View of a molecule of the BF_{2}-linked N (bis-isoindoline) derivative, indicating the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

Figure 2. View of the packing of molecules, along the b axis. Molecules are linked through $\mathrm{N}-\mathrm{H} . . . \mathrm{O}$ hydrogen bonds in chains parallel to the c axis.

Notes on the structure.

The BF_{2}-linked N (bis-isoindoline) derivative molecule has a three-plane structure. The central plane comprises the two isoindole groups and the $\mathrm{N}(10)$ and B atoms that link them; the isoindole rings are tilted only slightly from the mean-plane of the central sixmembered ring. The two phenyl rings are rotated from the isoindole rings, about the $\mathrm{C}(20)-\mathrm{C}(21)$ and $\mathrm{C}(30)-\mathrm{C}(31)$ bonds, by 52.2 and 61.8° respectively.

The solvent molecule, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, is disordered and lies close to a centre of symmetry with $\mathrm{Cl}(53$ ') 0.66 A from the $\mathrm{C}(51)-\mathrm{Cl}(53)$ bond.

There are several short intramolecular contacts, e.g. $\mathrm{H}(15)-\mathrm{C}(22)$ and, correspondingly, $\mathrm{H}(5)-\mathrm{H}(36)$, both at $2.57 \AA$. Most of the intermolecular contacts are close to van der Waals' distances.

Crystal data and structure refinement for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}-\mathrm{NSO}_{2} \mathrm{CF}_{3}-1, \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}-3$

Data / restraints / parameters	3042 / 0 / 235
Goodness-of-fit on F^{2}	1.074
Final R indices ('observed' data)	$\mathrm{R}_{1}=0.055, \mathrm{wR}_{2}=0.153$
Final R indices (all data)	$\mathrm{R}_{1}=0.060, \mathrm{wR}_{2}=0.157$
$\begin{aligned} & \text { Reflections weighted: } \\ & \quad \mathrm{w}=\left[\sigma^{2}\left(\mathrm{FO}^{2}\right)+(0.1025 \mathrm{P})^{2}+0.2160 \mathrm{P}\right]^{-1} \end{aligned}$	where $\mathrm{P}=\left(\mathrm{FO}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
Extinction coefficient	n / a
Largest diff. peak and hole	0.55 and $-0.57 \mathrm{e} . \AA^{-3}$
Location of largest difference peak	near C(13)

Table 1. Atomic coordinates ($\mathbf{x ~} 10^{5}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	Y	z	U (eq)
C (1)	88220 (30)	63890 (20)	60185 (19)	249 (5)
N (2)	76650 (30)	62378(18)	49530 (16)	252(4)
C (3)	66440(30)	48130 (20)	42221 (19)	249(5)
C (4)	67480 (30)	26050 (20)	47370 (20)	293(5)
C (5)	75930 (40)	21780 (20)	56170 (20)	321 (5)
C (6)	89550 (40)	31470 (30)	67110 (20)	314 (5)
C (7)	94810 (30)	45750 (20)	69400 (20)	281(5)
C (8)	86200 (30)	49940 (20)	60530 (20)	253 (5)
C (9)	72610 (30)	40340 (20)	49569 (19)	255 (5)
N (11)	99930 (30)	75513 (19)	69228(17)	282 (4)
O (121)	85500 (30)	91070 (17)	59508(15)	420 (5)
O (122)	121910 (30)	98472 (19)	71226(17)	468 (5)
S (12)	101316 (9)	90602 (5)	68759 (5)	313 (2)
C (13)	95620 (40)	98730 (20)	82280 (20)	314 (5)
F (131)	77320 (20)	91919 (15)	81895 (13)	410 (4)
F (132)	96120 (30)	111876 (15)	83793(14)	463 (4)
F (133)	109490 (20)	98972 (17)	91558(12)	443 (4)
C (30)	54000 (30)	42900 (20)	31020 (20)	264 (5)
C (31)	47540 (30)	49670 (20)	22887(19)	259(5)
C (32)	56640 (30)	63520 (20)	24410 (20)	287(5)
C (33)	50000 (30)	69110 (20)	16210(20)	286 (5)
C (34)	33740 (30)	60780 (20)	5910 (20)	279 (5)
C (35)	24250(30)	47030 (20)	4190 (20)	297 (5)
C (36)	30960 (30)	41550 (20)	12456(19)	273(5)
O(37)	26190 (20)	65245 (18)	-2805 (15)	337 (4)
C (38)	36840 (40)	78840 (30)	-1930 (20)	352 (6)

Table 2. Molecular dimensions. Bond lengths are in Ångstroms, angles in degrees. E.s.ds are in parentheses.

$\mathrm{C}(1)-\mathrm{N}(11)$	O (122) -S (12)
1.328(3)	1.4255 (19)
$\mathrm{C}(1)-\mathrm{N}(2)$	S (12)-C (13)
1.340(3)	1.838(2)
C (1)-C(8)	C (13) -F (133)
1.459(3)	1.325(3)
$\mathrm{N}(2)-\mathrm{C}(3)$	C (13) -F (131)
1.417(3)	1.325(3)
C (3) - C (30)	C (13) - F (132)
1.345(3)	1.327(3)
C (3) - C (9)	C (30)-C(31)
1.462 (3)	1.458(3)
C (4) - C (5)	C (31)-C (32)
1.374 (3)	1.399(3)
C (4) - C (9)	$C(31)-C(36)$
1.392(3)	1.415 (3)
$C(5)-C(6)$	C (32)-C (33)
1.406(4)	1.375(3)
$C(6)-C(7)$	$C(33)-C(34)$
1.389 (3)	1.399(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	$\mathrm{C}(34)-\mathrm{O}(37)$
1.380 (3)	1.361(3)
C (8) - $\mathrm{C}(9)$	C (34)-C(35)
1.404 (3)	1.389(3)
$N(11)-S(12)$	C (35)-C (36)
1.589(2)	1.374(3)
O(121)-S (12)	O(37)-C(38)
1.431(2)	1.431(3)
$\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{N}(2)$	$\mathrm{O}(122)-\mathrm{S}(12)-\mathrm{O}(121)$
129.4(2)	119.12(13)
$\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{C}(8)$	$\mathrm{O}(122)-\mathrm{S}(12)-\mathrm{N}(11)$
122.8(2)	111.47(12)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	$\mathrm{O}(121)-\mathrm{S}(12)-\mathrm{N}(11)$
107.76(18)	115.41(10)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$\mathrm{O}(122)-\mathrm{S}(12)-\mathrm{C}(13)$
112.39(19)	103.40(11)
$\mathrm{C}(30)-\mathrm{C}(3)-\mathrm{N}(2)$	$\mathrm{O}(121)-\mathrm{S}(12)-\mathrm{C}(13)$
128.0(2)	105.09(12)
$\mathrm{C}(30)-\mathrm{C}(3)-\mathrm{C}(9)$	$\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{C}(13)$
127.6(2)	99.14(11)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	F(133) - $\mathrm{C}(13)-\mathrm{F}(131)$
104.47(18)	108.6(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$\mathrm{F}(133)-\mathrm{C}(13)-\mathrm{F}(132)$
118.3(2)	107.66(18)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	F(131) -C (13) -F (132)
121.4(2)	108.4(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	F (133) - C (13)-S (12)
120.8(2)	110.55(17)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	F (131) - C (13) -S (12)
117.4(2)	111.64(15)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	F (132)-C (13)-S (12)
122.2(2)	109.82(17)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	$\mathrm{C}(3)-\mathrm{C}(30)-\mathrm{C}(31)$
130.8(2)	131.7(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(1)$	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$
106.92(19)	$116.9(2)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$
119.9(2)	125.4(2)
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(3)$	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(30)$
131.7(2)	117.7(2)
C (8) - C (9)-C (3)	C (33) - C (32)-C (31)
108.45(19)	122.2(2)
$\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)$	C (32) - C (33) - C (34)
121.78(17)	119.6(2)

$$
O(37)-C(34)-C(35)
$$

$116.19(19)$
O(37) -C (34) -C (33)
124.3(2)

C (35) -C (34) -C (33)
119.6(2)
$C(36)-C(35)-C(34)$
120.3(2)
$C(35)-C(36)-C(31)$
121.4(2)
$C(34)-O(37)-C(38)$
117.80 (17)

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{4}$) for the expression: $\exp \left\{-2 \pi^{2}\left(h^{2} a *^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)\right\}$ E.s.ds are in parentheses.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C (1)	229 (10)	212 (10)	244 (11)	24(9)	80 (9)	26(8)
N(2)	266 (9)	169(8)	234 (9)	27 (7)	30 (7)	17 (7)
C (3)	224 (10)	174(10)	273 (11)	26(8)	58 (9)	17 (8)
C (4)	256 (11)	202(11)	317 (12)	20 (9)	66 (9)	4 (9)
C (5)	331 (12)	224 (11)	382 (13)	89(10)	119(10)	62 (9)
C (6)	319 (12)	309 (12)	306 (12)	127(10)	84 (10)	76 (10)
C (7)	250 (11)	278(11)	252 (11)	48 (9)	59 (9)	53 (9)
C (8)	223 (10)	209(10)	262 (11)	43 (9)	64 (9)	13 (8)
C (9)	221 (10)	218(10)	262 (11)	42 (9)	68 (9)	17 (8)
N (11)	299 (10)	201 (9)	238 (9)	18 (7)	37 (8)	10 (7)
O (121)	644 (12)	211(8)	276 (9)	50 (7)	32 (8)	61 (8)
O (122)	498 (11)	259(9)	463 (11)	-37(8)	221 (9)	-83(8)
S (12)	394 (4)	180(3)	247 (3)	5 (2)	79 (3)	-10 (2)
C (13)	369 (12)	201(10)	290 (12)	35 (9)	79 (10)	34 (9)
F (131)	395 (8)	294 (7)	440 (9)	28(6)	161 (7)	31 (6)
F (132)	704 (11)	196 (7)	427 (8)	44(6)	210 (8)	86 (7)
F (133)	495 (9)	462 (9)	247 (7)	30 (6)	40 (6)	139 (7)
C (30)	231 (10)	199 (10)	275 (11)	25 (9)	60 (9)	3 (8)
C (31)	241 (10)	232 (11)	228 (11)	21 (9)	57 (9)	35 (8)
C (32)	242 (10)	251 (11)	242 (11)	17 (9)	10 (9)	13 (9)
C (33)	259 (11)	216(10)	272 (12)	24(9)	31 (9)	8 (9)
C (34)	251 (10)	267 (11)	239 (11)	37 (9)	45 (9)	42 (9)
C (35)	253 (11)	273 (11)	238 (11)	12(9)	23 (9)	11 (9)
C (36)	238 (10)	211(10)	246 (11)	1 (9)	27 (9)	2 (8)
O(37)	306 (8)	306 (9)	287(9)	85 (7)	-11 (7)	26 (7)
C (38)	400 (13)	272 (12)	327 (13)	109(10)	48 (10)	71 (10)

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). All hydrogen atoms were included in idealised positions with U(iso)'s set at $1.2 * \mathrm{U}(\mathrm{eq})$ or, for the methyl group hydrogen atoms, $1.5 * \mathrm{U}(\mathrm{eq})$ of the parent carbon atoms.

	x	y	U (iso)	
H (2)	7551	6943	4732	30
H (4)	5838	1942	3998	35
H (5)	7248	1207	5482	39
H (6)	9523	2821	7301	38
H(7)	10397	5237	7678	34
H(30)	4839	3299	2783	32
H(32)	6777	6925	3134	34
H(33)	5642	7858	1753	34
H(35)	1305	4138	-273	36
H(36)	2434	3212	1114	33
H(38A)	2985	8074	-872	53
H(38B)	3709	8592	532	53
H(38C)	5088	7918	-179	53

Table 5. Torsion angles, in degrees. E.s.ds are in parentheses

$\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$\mathrm{O}(122)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(133)-$
179.6(2)	54.0(2)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$\mathrm{O}(121)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(133)-$
0.0 (2)	179.57(15)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(30)-178.8(2)$	$\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(133)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	60.85(18)
0.8 (2)	$\mathrm{O}(122)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(131)-$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-0.5(4)$	175.03(17)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$\mathrm{O}(121)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(131)$
0.4 (4)	59.4(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-0.2(3)$	$N(11)-S(12)-C(13)-F(131)-$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	60.22 (19)
0.1 (3)	$\mathrm{O}(122)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(132)$
$C(6)-C(7)-C(8)-C(1)$	64.7 (2)
178.7(2)	$\mathrm{O}(121)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(132)-$
N (11) -C (1)-C (8)-C (7)	60.93 (19)
0.7 (4)	$\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(132)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)-179.7(2)$	179.49(16)
$\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(30)-\mathrm{C}(31)$
179.5(2)	1.9(4)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-0.9(2)$	$\mathrm{C}(9)-\mathrm{C}(3)-\mathrm{C}(30)-\mathrm{C}(31)-177.5(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$\mathrm{C}(3)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$
0.4 (3)	14.2(4)
$C(5)-C(4)-C(9)-C(3)$	$\mathrm{C}(3)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(36)-167.1(2)$
179.8(2)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-0.2(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)-0.2(3)$	C (30) - C (31)-C (32) - C (33)
C (1) - C (8)-C (9)-C (4)-	178.4(2)
179.13(19)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-0.5(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(3)-179.7(2)$	C (32) - C (33)-C (34)-O (37) -
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(3)$	179.2(2)
1.3 (2)	C (32) - C (33)-C (34)-C (35)
$\mathrm{C}(30)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(4)-1.2(4)$	1.2 (4)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(4)$	$\mathrm{O}(37)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$
179.2(2)	179.3(2)
C (30)-C (3)-C (9)-C (8)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-1.0(4)$
178.3(2)	C (34)-C (35)-C (36)-C (31)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(8)-1.3(2)$	0.2 (4)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)$	C (32) - C (31)-C (36)-C (35)
2.4(3)	$0.4(3)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)-$	C (30) - C (31)-C(36)-C (35)-
178.05 (16)	178.4(2)
$\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{O}(122)-$	C (35) - C (34)-O(37) - C (38) -
124.11(19)	173.8(2)
$\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{O}(121)$	C (33)-C(34)-O(37)-C(38)
15.9(2)	6.5(3)
$\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{C}(13)$	
127.5(2)	

```
127.5(2)
\(\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)\)
9.6(2)
0 (2)
    \(\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(30)-178.8(2)\)
    \(\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)\)
    \(C(9)-C(4)-C(5)-C(6)-0.5(4)\)
    C (4) -C (5) -C (6) -C (7)
0.4 (4)
    \(C(5)-C(6)-C(7)-C(8)-0.2(3)\)
    \(C(6)-C(7)-C(8)-C(9)\)
0.1 (3)
    \(C(6)-C(7)-C(8)-C(1)\)
178.7(2)
    N(11) -C (1) -C (8) -C (7)
(4)
    \(N(2)-C(1)-C(8)-C(7)-179.7(2)\)
    \(\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)\)
179.5(2)
    \(N(2)-C(1)-C(8)-C(9)-0.9(2)\)
    C (5) - C (4) -C (9) -C (8)
C (5) -C (4)-C (9) -C (3)
179.8(2)
    \(C(7)-C(8)-C(9)-C(4)-0.2(3)\)
    \(C(1)-C(8)-C(9)-C(4)-\)
179.13(19)
    \(C(7)-C(8)-C(9)-C(3)-179.7(2)\)
    \(C(1)-C(8)-C(9)-C(3)\)
3 (2)
    \(C(30)-C(3)-C(9)-C(4)-1.2(4)\)
    N (2) -C (3) -C (9) -C (4)
179.2(2)
    C (30) -C (3) -C (9) -C (8)
    \(\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(8)-1.3(2)\)
    \(\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)\)
2.4(3)
    C(8) -C (1) -N (11) -S (12) -
178.05(16)
    C (1) -N (11) -S (12) -O (122) -
124.11(19)
    \(\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{O}(121)\)
15.9(2)
\(\mathrm{C}(1)-\mathrm{N}(11)-\mathrm{S}(12)-\mathrm{C}(13)\)
C (8) - C (1) -N (2) -C (3)
```

$O(122)-S(12)-C(13)-F(133)-$ 54.0 (2)
$179.57(15)$
$N(11)-S(12)-C(13)-F(133)$
60.85(18)
O (122) -S (12) -C (13) -F (131) -
175.03(17)
O (121) -S (12) -C (13) -F (131)
N(11) -S (12) -C (13) -F (131) -
$60.22(19)$
$O(122)-S(12)-C(13)-F(132)$
64.7 (2)
$\mathrm{O}(121)-\mathrm{S}(12)-\mathrm{C}(13)-\mathrm{F}(132)-$
(19)
N (11) -S (12) -C (13) -F (132)
179.49(16)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(30)-\mathrm{C}(31)$
1.9(4)
C (3) - C (30) -C (31) -C (32)
14.2(4)
C (3) - C (30) -C (31)-C (36)-167.1(2)
$C(36)-C(31)-C(32)-C(33)-0.2(4)$
$C(30)-C(31)-C(32)-C(33)$
178.4(2)
$C(31)-C(32)-C(33)-C(34)-0.5(4)$
C (32) - C (33) -C (34) -O (37) -
179.2(2)
1.2(4)
O(37) -C (34) -C (35) -C (36)
179.3(2)
C (33) - C (34) -C (35) -C (36) - $1.0(4)$
C (34) -C (35) -C (36) -C (31)
0.2 (4)
$C(32)-C(31)-C(36)-C(35)$
0.4 (3)
$C(30)-C(31)-C(36)-C(35)-$
178.4(2)
C (35) - C (34) -O (37) -C (38) -
173.8(2)
C (33) - C (34) -O (37) -C (38)
6.5(3)
59.4(2)
60.93(19)
$C(9)-C(3)-C(30)-C(31)-177.5(2)$
C (32) - C (33) -C (34) -C (35)

Crystal structure analysis of $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}-\mathrm{NSO}_{2} \mathrm{CF}_{3}-1, \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}-3$

Crystal data: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}=382.35$. Triclinic, space group P-1 (no. 2), $\mathrm{a}=7.0556$ (3), $\mathrm{b}=10.5060(5), \mathrm{c}=12.6271(5) \AA, \alpha=107.878(4), \beta=103.794(4), \gamma=101.674(4)^{\circ}, \mathrm{V}=$ $825.77(7) \AA^{3} . \mathrm{Z}=2, \mathrm{Dc}=1.538 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=392, \mathrm{~T}=100.01(10) \mathrm{K}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=22.4$ $\mathrm{cm}^{-1}, \lambda(\mathrm{Cu}-\mathrm{K} \alpha)=1.54184 \AA$.

The crystal was a colourless shard. From a sample under oil, one, $c a 0 . \mathrm{x} 0 . \mathrm{x} 0 . \mathrm{mm}$, was mounted on a small loop and fixed in the cold nitrogen stream on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer, equipped with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, HyPix detector and mirror monochromator. Intensity data were measured by thin-slice ω-scans. Total no. of reflections recorded, to $\theta_{\max }=70.0^{\circ}$, was 7870 of which 3042 were unique (Rint $=0.048$); 2659 were 'observed' with $\mathrm{I}>2 \sigma_{\mathrm{I}}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on $\mathrm{F}^{2} \mathrm{~s}$, in SHELXL (2B). The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atom on $\mathrm{N}(2)$ was located in a difference map. All the hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the Ueq values of the parent carbon or nitrogen atoms. At the conclusion of the refinement, $\mathrm{wR}_{2}=0.157$ and $\mathrm{R}_{1}=0.060(2 \mathrm{~B})$ for all 3042 reflections weighted $\mathrm{w}=\left[\mathrm{\sigma}^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.1025 \mathrm{P})^{2}+0.2160 \mathrm{P}\right]^{-1}$ with $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$; for the 'observed' data only, $\mathrm{R}_{1}=0.055$.

In the final difference map, the highest peak (ca0.55 e^{-3}) was near $\mathrm{C}(13)$.
Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(25) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2018).
(26) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112122 and (2015) C71, 3-8.
(27) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). Vol. C, pp. 500, 219 and 193.

Legends for Figures

Figure 1. View of a molecule of $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}-\mathrm{NSO}_{2} \mathrm{CF}_{3}-1, \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}-3$, indicating the atom numbering scheme. Thermal ellipsoids are drawn at the 50\% probability level.

Figure 2. View of the packing of molecules, along the b axis.
Figure 3. Showing the stacking of molecules parallel to the a axis.

Notes on the structure.

The isoindole group forms the central plane of the molecule. The normal to the phenyl group is rotated 14.3° from that of the isoindole group and the $\mathrm{SO}_{2}-\mathrm{CF}_{3}$ group provides the only significantly displaced atoms from the major planar units.

The pyrrole hydrogen atom was recognised in difference maps and forms a good intramolecular hydrogen bond with $\mathrm{O}(121)$, Figure 1.

Molecules are stacked, principally through the $\pi \ldots \pi$ interactions between overlapping isoindole rings, in columns parallel to the a axis, Figures 2 and 3, with interplanar distances of 3.000 and 3.319 Å, either side of the isoindole plane. The phenyl ring partially overlaps its symmetry neighbour on one side at a distance of $3.59 \AA$; there are no $\pi \ldots \pi$ interactions on the opposing side.

Crystal data and structure refinement for an isoindoline derivative:

 $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NH}-\left\{\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right\}$,- $\left\{\mathrm{NSO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right\}$

Data / restraints / parameters 5220 / 0 / 299

Goodness-of-fit on F^{2} 1.057

Final R indices ('observed' data) $\quad R_{1}=0.031, \mathrm{wR}_{2}=0.087$
Final R indices (all data) $\quad R_{1}=0.033, \mathrm{wR}_{2}=0.088$

Reflections weighted:
$\mathrm{w}=\left[\sigma^{2}\left(\mathrm{FO}^{2}\right)+(0.0468 \mathrm{P})^{2}+0.4434 \mathrm{P}\right]^{-1}$ where $\mathrm{P}=\left(\mathrm{FO}^{2}+2 \mathrm{FC}^{2}\right) / 3$
Extinction coefficient
n / a
Largest diff. peak and hole
0.39 and -0.38 e. \AA^{-3}

Location of largest difference peak near C(21)

Table 1. Atomic coordinates ($\mathbf{x} 10^{5}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. E.s.ds are in parentheses.

	x	y	z	U (eq)
C (1)	58583 (11)	59534 (9)	66246 (10)	149(2)
C (2)	69839 (12)	62734 (10)	61880 (10)	176 (2)
C (3)	67899 (12)	70116 (10)	53503 (11)	182 (2)
C (4)	54474 (12)	74582 (9)	48984 (10)	157 (2)
C (5)	43086 (12)	71554 (10)	53092 (10)	164 (2)
C (6)	45257 (12)	64189 (10)	61637 (10)	165 (2)
C (10)	61946 (11)	51900 (9)	75300 (10)	153 (2)
N(11)	37981 (10)	45362 (8)	76961 (8)	146 (2)
C (12)	53349 (11)	46014 (9)	79924 (9)	143 (2)
C (13)	58195 (12)	38481 (9)	89023 (9)	145 (2)
C (14)	72155 (12)	35733 (10)	95399(10)	171 (2)
C (15)	73151 (12)	28242 (10)	103689(10)	193 (2)
C (16)	60714 (13)	23640 (10)	105748(10)	196 (2)
C (17)	46823 (12)	26329 (10)	99379(10)	172 (2)
C (18)	45828 (11)	33751 (9)	91016(10)	144 (2)
C (19)	32930 (12)	38150 (9)	83092 (9)	143 (2)
N(20)	19478(10)	35175 (8)	82615 (9)	165 (2)
S (2)	5529 (3)	40241 (2)	73698 (2)	158.3(8)
O (21)	9698(9)	50971 (7)	69885 (8)	205 (2)
O (22)	-5076(9)	41361 (8)	79925 (8)	247 (2)
C (21)	-2026(11)	28111(10)	59644 (10)	159 (2)
C (22)	-7005 (12)	16494 (10)	60329 (11)	189(2)
C (23)	-13449(12)	7205 (10)	49175 (12)	210 (2)
C (24)	-14929(12)	9269 (11)	37313 (11)	216 (2)
C (25)	-9907(12)	20987 (11)	36908 (11)	211 (2)
C (26)	-3529(12)	30423 (10)	47962 (11)	186 (2)
C (27)	-21737 (14)	-894 (12)	25233 (12)	293 (3)
O(4)	53684 (9)	81881 (7)	40793 (7)	185 (2)
C (41)	39867 (12)	86423 (10)	35936 (10)	174 (2)
C (42)	41200 (13)	94519(10)	27377 (10)	183 (2)
C (43)	26771 (13)	99628(10)	21900 (11)	216 (2)
C (44)	28044 (15)	108479 (11)	13849 (12)	266 (3)
C (45)	14265 (16)	114669 (13)	9300(14)	373 (3)

Table 2. Molecular dimensions. Bond lengths are in Ångstroms, angles in degrees. E.s.ds are in parentheses.

$1.4016(14)$
$C(1)-C(2)$
1.4114(14)

$$
C(1)-C(10)
$$

1.4578(14)
$C(2)-C(3)$
$1.3792(15)$
$C(3)-C(4)$
1.3975 (15)

$$
C(4)-O(4)
$$

$$
9(12)
$$

$$
C(4)-C(5)
$$

$$
C(5)-C(6)
$$

$$
C(10)-C(12)
$$

$1.3490(15)$ N(11) -C (19)
1.3573 (13)

$$
\mathrm{N}(11)-\mathrm{C}(12)
$$

$1.4116(13)$
C (12) - C (13)
1.4621(14)

C(13) -C (14)
1.3972 (14)

$$
C(13)-C(18)
$$

1.3991 (15)

$$
5 .
$$

$$
7 \text { (15) }
$$

$$
C^{\prime}(1)
$$

C(16)-C(17)
C(17)-C(18)

$$
C(6)-C(1)-C(2)
$$

116.84 (9)

$$
C(6)-C(1)-C(10)
$$

$$
C(2)-C(1)-C(10)
$$

117.20 (9) $C(3)-C(2)-C(1)$
121.84(10) $C(2)-C(3)-C(4)$
120.22(10) O(4)-C(4)-C(5)
$124.87(10)$ O(4)-C(4)-C(3)
115.76 (9)
$C(5)-C(4)-C(3)$
C(6)-C(5)-C(4)
$119.74(10)$
$C(12)-C(10)-C(1)$
$131.84(10)$ $\mathrm{C}(19)-\mathrm{N}(11)-\mathrm{C}(12)$
112.67(9)

$$
1+0(121 \text { N11 }
$$

$$
5(10)
$$

$$
6(10)
$$

$$
\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)
$$

104.87(9)
(18)-C(19)
$1.4647(14)$

$$
C(19)-N(20)
$$

$1.3141(14)$

$$
N(20)-S(2)
$$

1.6191(9)

$$
S(2)-O(22)
$$

1.4371(8)
S (2) -o (21)
1.4531(8)
S (2) - C (21)
$1.7707(11)$ $C(21)-C(26)$
$1.3887(15)$ C (21) - C (22)
1.3951 (15) C(22)-C(23)
$1.3888(16)$ C(23)-C(24)
$1.3985(17)$ C (24) -C (25)
$1.3948(17)$ C (24) -C (27)
$1.5085(16)$
C (25) -C (26)
$1.3900(16)$ O (4) -C (41)
$1.4387(13)$ C(41)-C(42)
1.5121(14) C (42) - C (43)
$1.5309(16)$ $C(43)-C(44)$
1.5285 (15) C(44)-C(45)
1.5287(19)

$$
C(14)-C(13)-C(18)
$$

120.41(10) $C(14)-C(13)-C(12)$
131.43(10) $C(18)-C(13)-C(12)$
108.15(9)

$$
C(15)-C(14)-C(13)
$$

117.44(10)

$$
C(14)-C(15)-C(16)
$$

121.83(10) C(17)-C(16)-C(15)
120.78(10) C(16)-C(17)-C(18)
117.33(10) $C(17)-C(18)-C(13)$
122.21(10) $C(17)-C(18)-C(19)$
129.90(10) $C(13)-C(18)-C(19)$
107.89(9)
$\mathrm{N}(20)-\mathrm{C}(19)-\mathrm{N}(11)$
$130.42(10)$ $\mathrm{N}(20)-\mathrm{C}(19)-\mathrm{C}(18)$
123.17(9) $\mathrm{N}(11)-\mathrm{C}(19)-\mathrm{C}(18)$
106.40(9) C(19) $-N(20)-S(2)$
121.50(8) $O(22)-S(2)-O(21)$
117.15(5)

$$
\mathrm{O}(22)-\mathrm{S}(2)-\mathrm{N}(20)
$$

```
107.00(5)
    O(21) -S (2) -N (20)
113.16(5)
    O(22)-S (2) -C (21)
107.43(5)
    O(21)-S (2)-C (21)
106.68(5)
    N(20) -S (2) -C (21)
104.56(5)
    C(26)-C (21)-C (22)
120.60(10)
C (26) -C (21) -S (2)
119.48(8)
C (22) -C (21) -S (2)
119.86(8)
    C (23) -C (22) -C (21)
119.23(10)
C (22) -C (23)-C (24)
121.21(11)
```

 \(C(25)-C(24)-C(23)\)
 \(118.32(11)\)
 \(C(25)-C(24)-C(27)\)
 120.61 (11)
$C(23)-C(24)-C(27)$
121.07 (11)
$C(26)-C(25)-C(24)$
121.29(11)
$C(21)-C(26)-C(25)$
119.34(10)
C (4) -O (4) -C (41)
116.40 (8)
O(4)-C(41)-C(42)
108.84(9)
$C(41)-C(42)-C(43)$
111.20(9)
$C(44)-C(43)-C(42)$
$112.45(10)$
$C(43)-C(44)-C(45)$
113.59(11)

Table 3. Anisotropic displacement parameters ($\AA^{2} \times 10^{4}$) for the expression: $\exp \left\{-2 \pi^{2}\left(h^{2} a *{ }^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)\right\}$ E.s.ds are in parentheses.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C (1)	157(5)	134 (5)	150(5)	36 (4)	48 (4)	21 (4)
C (2)	139 (5)	186(5)	205 (5)	65 (4)	53 (4)	40(4)
C (3)	159 (5)	195 (5)	215 (5)	70 (4)	85 (4)	22 (4)
C (4)	182 (5)	138 (5)	149 (5)	49 (4)	49 (4)	15 (4)
C (5)	149 (5)	165 (5)	187(5)	68 (4)	55 (4)	41(4)
C (6)	155 (5)	174 (5)	186(5)	68 (4)	72 (4)	30 (4)
C (10)	143(5)	154 (5)	158(5)	42(4)	43 (4)	41 (4)
N (11)	135 (4)	165 (4)	150(4)	76 (3)	39 (3)	38 (3)
C (12)	141 (5)	143 (5)	131(5)	32 (4)	27 (4)	44(4)
C (13)	167 (5)	137 (5)	121 (5)	27 (4)	40(4)	38 (4)
C (14)	160 (5)	188(5)	155 (5)	38 (4)	45 (4)	42 (4)
C (15)	189 (5)	213 (5)	156(5)	55 (4)	20(4)	81 (4)
C (16)	241 (6)	199 (5)	146(5)	81 (4)	39 (4)	68 (4)
C (17)	201(5)	173 (5)	144 (5)	56 (4)	52 (4)	30 (4)
C (18)	155 (5)	139 (5)	121(4)	28 (4)	28 (4)	38 (4)
C (19)	168(5)	134 (4)	116(4)	33 (4)	35 (4)	32 (4)
$\mathrm{N}(20)$	145 (4)	186(4)	167(4)	81 (3)	37 (3)	32 (3)
S (2)	129.1(13)	182.0(14)	169.3(13)	67.6(10)	42.0 (10)	45.3(9)
O(21)	186(4)	178(4)	235 (4)	$93(3)$	26 (3)	$39(3)$
O (22)	190(4)	338 (5)	246(4)	85 (4)	105 (3)	94(3)
C (21)	104 (4)	191(5)	183 (5)	64(4)	38 (4)	41 (4)
C (22)	152 (5)	219 (5)	226 (5)	109(4)	68 (4)	56 (4)
C (23)	161 (5)	180 (5)	292 (6)	85 (4)	65 (4)	47 (4)
C (24)	143 (5)	231 (6)	238(6)	39 (4)	27 (4)	71 (4)
C (25)	181(5)	276 (6)	175 (5)	89(4)	36 (4)	71 (4)
C (26)	151 (5)	208 (5)	215 (5)	96(4)	54(4)	41 (4)
C (27)	252 (6)	267 (6)	270 (6)	6(5)	12 (5)	69 (5)
O (4)	188(4)	199(4)	210 (4)	115 (3)	82 (3)	41 (3)
C (41)	182 (5)	173 (5)	177(5)	73 (4)	57 (4)	36 (4)
C (42)	233 (5)	158(5)	161 (5)	61 (4)	63 (4)	16 (4)
C (43)	243(6)	180 (5)	200 (5)	80 (4)	30 (4)	12 (4)
C (44)	371 (7)	203 (5)	211 (6)	97(4)	59 (5)	36 (5)
C (45)	368 (7)	259(6)	360 (7)	154 (6)	-77(6)	-14(6)

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$). All hydrogen atoms were included in idealised positions with U(iso)'s set at $1.2 * \mathrm{U}(\mathrm{eq})$ or, for the methyl group hydrogen atoms, $1.5 * \mathrm{U}(\mathrm{eq})$ of the parent carbon atoms.

	x	y	z	U(iso)
H (2)	7882	5978	6473	21
H (3)	7555	7213	5085	22
H (5)	3409	7445	5013	20
H (6)	3764	6230	6437	20
H (10)	7184	5090	7847	18
H (11)	3242	4913	7183	18
H (14)	8046	3880	9414	21
H (15)	8231	2622	10799	23
H (16)	6179	1873	11144	24
H (17)	3852	2329	10066	21
H (22)	-602	1499	6816	23
H (23)	-1684	-53	4960	25
H (25)	-1084	2252	2909	25
H (26)	-30	3821	4754	22
H (27A)	-2272	-863	2733	44
H (27B)	-1555	-131	2023	44
H (27C)	-3128	79	2045	44
H (41A)	3740	9115	4293	21
H (41B)	3210	7956	3117	21
H (42A)	4376	8975	2046	22
H (42B)	4904	10132	3220	22
H (43A)	1909	9281	1669	26
H (43B)	2392	10392	2884	26
H (44A)	3000	10395	648	32
H (44 B)	3638	11482	1882	32
H (45A)	1577	12008	432	56
H (45B)	600	10847	419	56
H (45 C$)$	1238	11934	1653	56

Table 5. Torsion angles, in degrees. E.s.ds are in parentheses.

```
\(C(6)-C(1)-C(2)-C(3)\)
\(0.17(16)\)
    \(C(10)-C(1)-C(2)-C(3)-\)
178.71(10)
    \(C(1)-C(2)-C(3)-C(4)-0.58(17)\)
    C (2) - C (3) -C (4) -O (4)
179.59(10)
    \(\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)\)
\(0.37(16)\)
    \(\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\)
178.92(10)
    \(C(3)-C(4)-C(5)-C(6)\)
\(0.22(16)\)
    \(C(4)-C(5)-C(6)-C(1)-0.63(16)\)
    \(C(2)-C(1)-C(6)-C(5)\)
0.44 (16)
    C (10) -C (1) -C (6) -C (5)
179.20(10)
    \(\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(12)\)
11.15(19)
    \(C(2)-C(1)-C(10)-C(12)-\)
170.09(11)
    \(\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{N}(11)\)
1.52(19)
    \(C(1)-C(10)-C(12)-C(13)\)
179.49(10)
    \(\mathrm{C}(19)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(10)\)
177.43(10)
    \(\mathrm{C}(19)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\)
\(0.87(11)\)
    C (10) -C (12) -C (13) -C (14)
2.24(18)
\(\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\)
179.40(10)
C (10) -C (12) -C (13) -C (18) -
178.19(10)
    \(\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)\)
\(0.18(11)\)
    C (18) -C (13) -C (14) -C (15) -
0.17 (15)
    \(\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)\)
179.36(10)
    \(C(13)-C(14)-C(15)-C(16)-\)
0.55 (16)
\(C(14)-C(15)-C(16)-C(17)\)
\(0.80(17)\)
    C (15) -C (16) -C (17) -C (18) -
\(0.31(16)\)
    \(C(16)-C(17)-C(18)-C(13)-\)
\(0.41(16)\)
    C (16) -C (17) -C (18) -C (19) -
179.76(10)
    \(C(14)-C(13)-C(18)-C(17)\)
\(0.66(16)\)
    C(12) -C (13) -C (18) -C (17) -
178.97(9)
    C (14) -C (13) -C (18) -C (19) -
179.87(9)
    \(C(12)-C(13)-C(18)-C(19)\)
\(0.51(11)\)
    \(\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(19)-\mathrm{N}(20)-\)
    178.70(11)
```

$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(19)-\mathrm{C}(18)$ $1.18(11)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(20)-$ 1.71(17)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(20)$
178.87(10)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(11)$
178.40(10)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(11)-$
1.02 (11)
$\mathrm{N}(11)-\mathrm{C}(19)-\mathrm{N}(20)-\mathrm{S}(2)-$
0.05 (16)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(20)-\mathrm{S}(2)-$
179.92(8)
C (19) -N (20) -S (2) -O (22) -
149.17(9)
$\mathrm{C}(19)-\mathrm{N}(20)-\mathrm{S}(2)-\mathrm{O}(21)-$
18.64(10)
$\mathrm{C}(19)-\mathrm{N}(20)-\mathrm{S}(2)-\mathrm{C}(21)$
97.06(9)
$\mathrm{O}(22)-\mathrm{S}(2)-\mathrm{C}(21)-\mathrm{C}(26)$
123.27(9)
$\mathrm{O}(21)-\mathrm{S}(2)-\mathrm{C}(21)-\mathrm{C}(26)-$
3.13 (10)
N (20) -S (2) -C (21) -C (26) -
123.26(9)
$\mathrm{O}(22)-\mathrm{S}(2)-\mathrm{C}(21)-\mathrm{C}(22)-$
$53.90(10)$
$\mathrm{O}(21)-\mathrm{S}(2)-\mathrm{C}(21)-\mathrm{C}(22)$
179.71(8)
$\mathrm{N}(20)-\mathrm{S}(2)-\mathrm{C}(21)-\mathrm{C}(22)$
59.57(9)
$C(26)-C(21)-C(22)-C(23)$
$0.28(16)$
$S(2)-C(21)-C(22)-C(23)$
177.42 (8)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$
0.47 (16)
$C(22)-C(23)-C(24)-C(25)-$
$0.72(16)$
C (22) -C (23) -C (24) -C (27)
179.12(10)
C (23) -C (24) -C (25) -C (26)
$0.23(16)$
C (27)-C (24)-C (25)-C (26) -
179.61(10)
C (22) - C (21) -C (26) -C (25) -
$0.76(16)$
$S(2)-C(21)-C(26)-C(25)-$
177.91(8)
$C(24)-C(25)-C(26)-C(21)$
$0.50(17)$
$C(5)-C(4)-O(4)-C(41)-1.58(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(41)$
179.26(9)
C (4)-O (4)-C (41)-C (42)
178.57 (8)
$\mathrm{O}(4)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$
179.95(8)
C (41) -C (42) -C (43) -C (44)
176.52(9)
$C(42)-C(43)-C(44)-C(45)-$
174.52(10)

Table 6. Hydrogen bonds, in Ångstroms and degrees.

D-H...A	$d(D-H)$	$d(H \ldots$ A)	$d(D \ldots$ A)	$<(D H A)$
$C(10)-H(10) \ldots O(22) \# 1$	0.93	2.51	$3.3890(13)$	158.4
$N(11)-H(11) \ldots O(21)$	0.86	2.17	$2.7434(12)$	123.7
$C(26)-H(26) \ldots O(21) \# 2$	0.93	2.51	$3.1860(13)$	129.7

Symmetry transformations used to generate equivalent atoms:

$$
\# 1: x+1, y, z \quad \# 2:-x, 1-y, 1-z
$$

Crystal structure analysis of an isoindoline derivative, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NH}-\left\{\mathrm{CH}_{-} \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right\}$,-\{ $\left.\mathrm{NSO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right\}$

Crystal data: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}=460.57$. Triclinic, space group $\mathrm{P}-1$ (no. 2), $\mathrm{a}=$ $9.72837(12), \mathrm{b}=11.21343(12), \mathrm{c}=11.52630(15) \AA, \alpha=102.8528(10), \beta=$ 109.6048(12), $\gamma=92.8657(9)^{\circ}, V=1144.13(2) \AA^{3} . \mathrm{Z}=2, \mathrm{Dc}=1.337 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)$ $=488, \mathrm{~T}=99.98(15) \mathrm{K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.74 \mathrm{~cm}^{-1}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA$.

The crystal was a yellow block. From a sample under oil, one, ca $0.062 \times 0.094 \times 0.062$ mm , was mounted on a small loop and fixed in the cold nitrogen stream on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer, equipped with Mo-K α radiation, HyPix detector and mirror monochromator. Intensity data were measured by thin-slice ω-scans. Total no. of reflections recorded, to $\theta_{\max }=72.5^{\circ}$, was 31925 of which 5220 were unique ($\operatorname{Rint}=0.024$); 4840 were 'observed' with $\mathrm{I}>2 \sigma_{\mathrm{I}}$.

Data were processed using the CrysAlisPro-CCD and -RED (1) programs. The structure was determined by the intrinsic phasing routines in the SHELXT program (2A) and refined by full-matrix least-squares methods, on $\mathrm{F}^{2 \prime}$ s, in SHELXL (2B). The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the Ueq values of the parent carbon or nitrogen atoms. At the conclusion of the refinement, $w R_{2}=0.088$ and $R_{1}=0.033(2 B)$ for all 5220 reflections weighted $w=\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+\right.$ $\left.(0.0468 \mathrm{P})^{2}+0.4434 \mathrm{P}\right]^{-1}$ with $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$; for the 'observed' data only, $\mathrm{R}_{1}=$ 0.031 .

In the final difference map, the highest peak (ca0.39 e^{-3}) was near $\mathrm{C}(21)$.
Scattering factors for neutral atoms were taken from reference (3). Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 780 PC at the University of East Anglia.

References

(29) Programs CrysAlisPro, Rigaku Oxford Diffraction Ltd., Abingdon, UK (2018).
(30) G. M. Sheldrick, Programs for crystal structure determination (SHELXT), Acta Cryst. (2015) A71, 3-8, and refinement (SHELXL), Acta Cryst. (2008) A64, 112-122 and (2015) C71, 3-8.
(31) 'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). Vol. C, pp. 500, 219 and 193.
(32) L. J. Farrugia, J. Appl. Cryst. (2012) 45, 849-854.

Legends for Figures

Figure 1. View of a molecule of the isoindoline derivative, indicating the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

Figure 2. View of the packing of molecules, along the b axis.

[^0]: \# - site occupancy, if different from 1.

 * - U(iso) (\AA^{2} x $\left.10^{4}\right)$

