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ABSTRACT: Increased arterial stiffness is related to early vascular aging and is an
independent predictor for cardiovascular disease and mortality. Molecular mechanisms
underlying increased arterial stiffness are largely unexplored, especially at the proteome level.
We aimed to explore the relationship between pulse wave velocity and urinary proteomics. We
included 919 apparently healthy (no chronic illnesses) Black and White men and women
(equally distributed) between 20 and 30 years from the African-PREDICT study. Capillary
electrophoresis time-of-flight mass spectrometry was used to analyze the urinary proteome. We
measured the carotid-femoral pulse wave velocity to estimate arterial stiffness. In the total
group, pulse wave velocity correlated positively with collagen-derived peptides including
collagen types I, II, III, IV, V, and IX and inversely with collagen type XI (adjusted for mean
arterial pressure). Regarding noncollagen-derived peptides, pulse wave velocity positively
correlated with polymeric immunoglobulin receptor peptides (n = 2) (all q-value ≤0.05). In
multivariable adjusted analyses, pulse wave velocity associated positively and independently
with seven urinary peptides (collagen type I, n = 5) (all p-value ≤0.05). We found significant positive and independent associations
between pulse wave velocity and the collagen type I-derived peptides, suggesting that dysregulation of collagen type I in the
extracellular matrix scaffold could lead to early onset of increased arterial stiffness.
KEYWORDS: arterial stiffness, early vascular aging, vascular extracellular matrix, pathway analysis, collagen type I

■ HIGHLIGHTS

• Pulse wave velocity associated positively with collagen
type I-derived peptides in a young and healthy
population.

• Collagen type I is one of the main collagen proteins
found in the vascular ECM and is responsible for the
stability and function of blood vessels.

• The dysregulation of collagen types I and III turnover
may lead to increased arterial stiffness.

■ INTRODUCTION
Aortic pulse wave velocity (PWV) is the gold standard
measurement of arterial stiffness,1 and increased arterial
stiffness, especially at younger ages, may reflect early vascular
aging.2 Pulse wave velocity is a strong and independent
predictor for increased cardiovascular disease (CVD) risk and
all-cause mortality,3,4 even at young ages.3,5 Increased arterial
stiffness with aging may be accelerated by factors such as
oxidative stress, inflammation, endothelial dysfunction, and
hemodynamic forces6,7 and may reflect subclinical organ
damage.8,9 The molecular mechanisms underlying these
preclinical changes are largely unexplored but remain
important from a personalized medicine perspective. The use
of omics-based biomarkers and, in particular, urinary

proteomics may be useful in this regard since it provides
more insight into the structure and function of a biological
system than genomics.10,11

Proteomics is a rapidly growing field in “omics” that
provides the ability to study the function, structure, and
interactions of proteins at a certain point in time.12 Various
proteomics studies have successfully identified biomarkers
unique to diseases such as coronary artery disease,13,14 chronic
kidney disease,15,16 and heart failure.17 Previous proteomics
studies focusing on arterial stiffness were limited to very small
sample sizes,18 which were performed in older and diseased
populations19 or in plasma samples from unhealthy patients
(some presenting with obesity, diabetes, hypertension,
peripheral atherosclerotic disease, etc.) with low and high
PWV (mean age 65.5 years old)20 or arterial tissue samples in
young and healthy adults (18−26 years old).18 To the best of
our knowledge, no urinary proteomics study has focused on
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the early molecular phenotype of arterial stiffness in young
adults.

In a recent study on urinary proteomics and early CVD
risk,21 we compared the urinary peptide abundances between
low, medium, and high CVD risk groups and found that
collagen type I and III- derived peptides were lower in the high
compared to the low CVD risk group, suggesting potential
early alterations in the vascular extracellular matrix.21 There-
fore, we aimed to determine whether a measure of large artery
stiffness (PWV) is associated with a urinary proteomics profile
in young adults, with a specific focus on vascular-specific
extracellular matrix proteins such as collagen type I and III.

■ METHODS

Study Population and Organizational Procedures
This study forms part of The African Prospective Study on the
Early Detection and Identification of Cardiovascular Disease
and Hypertension (African-PREDICT). The African-PRE-
DICT study has a longitudinal design, aiming to characterize
the development of hypertension over a follow-up period of 10
years. Baseline data included 1202 healthy adults (aged 20−30
years).22 Participants were recruited from the North-West
Province of South Africa. If the participants met the inclusion
criteria of the screening phase (self-reported Black or White
ethnicity, aged 20−30 years, men or women with no self-
reported chronic illness or use of chronic medication, HIV
uninfected and clinic normotensive (office brachial blood
pressure <140/90 mmHg)), they were invited to join the
research phase of the study. For this study, we included 964
participants with complete urinary peptidomics data. All
participants with incomplete PWV data (n = 45) were
excluded, leaving a total group of n = 919. Participants signed
a written informed consent form to participate in both the
screening and research phase of the study. Both the African-
PREDICT study (NWU-00001-12-A1) and this substudy
(NWU-00495-19-A1) were approved and registered by the
Health Research Ethics Committee of the North-West
University (ClinicalTrial.gov identifier: NCT03292094).
Clinical Measurements
A detailed description of questionnaires, physical activity
monitoring, and anthropometric, cardiovascular, and biochem-
ical measurements were previously described.21

Briefly, a general health and demographic questionnaire was
completed for each participant. The Kuppuswamy’s Socio-
economic status scale was used to calculate each participant’s
socio-economic score for a South African environment.23

ActiHeart physical activity monitors (CamNtech Ltd., London,
UK) were used to measure energy expenditure and to record
the participant’s heart rate variability. The International
Society for the Advancement of Kinanthropometry24 guide-
lines were followed to perform anthropometric measurements
with the use of the following apparatuses: a SECA 213 Portable
Stadiometer (SECA, Hamburg, Germany) to measure height, a
SECA 813 Electronic Scales with a weighing capacity up to 200
kg (SECA, Hamburg, Germany) to measure weight (kg), and a
Lufkin Steel Anthropometric Tape (W606PM; Lufkin, Apex,
USA) to measure waist circumference (cm). Body mass index
(BMI) was calculated by dividing the weight (kg) by height
(m2). A Dinamap Procare 100 Vital Signs Monitor (GE
Mediacal Systems, Milwaukee, USA) with an appropriate sized
cuff was used to calculate systolic and diastolic blood pressure
as well as heart rate. Carotid-femoral pulse wave velocity was

measured noninvasively with the use of a SphygmoCor XCEL
device (AtCor Medical Pty. Ltd., Sydney, Australia).
Participants were in a supine position and relaxed before the
measurements took place. Pulse wave velocity was performed
by placing a brachial cuff on the right upper-arm and measured
in duplicate along the descending thoraco-abdominal aorta
using a foot-to-foot velocity method.

Regarding biochemical analysis, blood sampling and an early
morning spot urine sample were taken after the participant
fasted for a period of 8 h. Basic biochemical measurements
included serum total cholesterol, low-density lipoprotein
cholesterol (LDL-c), high-density lipoprotein cholesterol
(HDL-c), triglycerides, glucose, gamma-glutamyl transferase
(GGT), glycated hemoglobin (HbA1c), C-reactive protein
(CRP) (Cobas Integra 400 plus, Roche, Basel, Switzerland),
and serum cotinine (Immulite, Siemens, Erlangen, Germany).
With regard to urinary peptidomics analyses, capillary
electrophoresis time-of-flight mass spectrometry (CE-TOF-
MS) was performed using a P/ACE MDQ capillary electro-
phoresis system (Beckman Coulter, Fullerton, USA) coupled
with a microTOF mass spectrometer (Bruker Daltonic,
Bremen, Germany) as previously described.25 A detailed
description on the biochemical analysis, sample preparation,
and identification of urinary peptidomics was published
previously.21

Statistical Analysis

We used R version 3.6.0 software (R Foundation for Statistical
Computing, Vienna),26 IBM SPSS Statistics version 25
software (IBM Corporation; Armonk, New York, USA), and
G*Power version 3.1.9.3 software (Faul, Erdfelder, Lang, &
Buchner, 2007)27 to perform statistical analyses.

QQ-plots were used to test the normality of biochemical
variables, and skewed data (lipids, GGT, HbA1c, CRP and
cotinine) were logarithmically transformed. We performed
descriptive analyses to summarize the characteristics of the
total group (n = 919) (Table 1).

With regard to peptide data, all peptides with >45% missing
or undetectable values were excluded for further data analyses.
The remaining peptides were logarithmic (log2) transformed
to obtain comparable intensity ranges. In this study, we further
explored whether PWV correlated with the peptides previously
identified as being potentially associated with cardiovascular
disease risk (n = 147)21 by performing partial regression
analysis (adjusting for mean arterial pressure (MAP)) and
multivariable adjusted regression analyses (backward elimi-
nation regressions) to determine independent relationships
between PWV and the urinary peptides. For partial regression
analysis, we also adjusted for multiple comparisons (Benjami-
ni-Hochberg) (q-value ≤0.05). The covariates considered for
entry in the multiple regression models were age, sex, ethnicity,
MAP, heart rate, BMI, physical activity (kcal/kg/day), LDL-c,
GGT, cotinine, HbA1c, and CRP.
Pathway Analysis

We used STRING database v11.528 to perform pathway
analysis and explore molecular functions of the proteins that
associated significantly with PWV after multivariable adjust-
ments. Gene Ontology (GO) enrichment analysis is
determined by a hypergeometric test followed by a false
discovery rate (FDR) distribution. The pathways were sorted
according to an FDR ≤ 0.05, which describes how likely the
pathway enrichment is by chance.
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■ RESULTS
The general characteristics of the study population (n = 919)
are described in Table 1. The mean age for this group was 24.4
years, with a similar distribution of sex (51% men, 49.0%
women) and ethnicity (49.7% Black, 50.3% White).
Partial and Multivariable Regression Analysis
In the total group, after adjustment for mean arterial pressure,
pulse wave velocity correlated positively with several collagen
alpha-1(I) (COL1A1)-derived peptides (represented by 12
peptides) and negatively with peptides e01100, e04169, and
e06978 (all q-value ≤0.05). Pulse wave velocity also correlated
positively with collagen alpha-2(I) (COL1A2)-derived pep-
tides (represented by three peptides) (all q-value ≤0.039) as
well as collagen alpha-3(I) (COL3A1)-derived peptides
(represented by six peptides) and negatively with peptides
e06961 and e10876 (all q-value ≤0.036) (Figure 1,
Supplementary Table 1).

Pulse wave velocity correlated positively with collagen alpha-
1(II) (COL2A1) (represented by one peptide), collagen alpha-
2(IV) (COL4A2) (represented by one peptide), and collagen
alpha3(V) (CO5A3) (represented by one peptide) and
inversely with collagen alpha-2(XI) (COL11A2) (represented
by one peptide) (all q-value ≤0.05). Regarding noncollagen
peptides, PWV positively correlated with a polymeric
immunoglobulin receptor (PIGR) (represented by two

peptides) (all q-value ≤0.032) (Figure 1, Supplementary
Table 1).

In multivariable adjusted regression analysis (Figure 2,
Supplementary Table 2), PWV associated positively and
independently with COL1A1 (represented by five peptides)
and COL1A2 (represented by one peptide) as well as with
PIGR (represented by one peptide) (all p-value ≤0.044).
Pathway Analysis

After performing pathway analysis with the peptides that
associated with PWV in multivariable adjusted analysis (n = 3
types of peptides) (COL1A1, COL1A2 and PIGR), we
identified two pathways for molecular functions (Supplemen-
tary Table 3). The functional annotations of the identified
urinary peptides revealed that the main Gene Ontology (GO)
terms of molecular functions wherein the majority of urinary
peptides overlapped (COL1A1 and COL1A2) were (i)
extracellular matrix structural constituent conferring tensile
strength and (ii) platelet-derived growth factor binding. Also,
in STRING database (Supplementary Table 3), Reactome
pathways involved in the vascular ECM included (i) anchoring
fibril formation, (ii) platelet adhesion to exposed collagen, (iii)
cross-linking of collagen fibrils, (iv) platelet aggregation (plug
formation), (v) collagen chain trimerization, (vi) collagen
degradation, (vii) ECM proteoglycans, (viii) integrin cell
surface interactions, and (ix) cell surface interactions at the
vascular wall.

■ DISCUSSION
We performed detailed urinary proteomic analyses in young
and apparently healthy adults to determine the relationships
between the pulse wave velocity and urinary peptides specific
to the vascular extracellular matrix (ECM). We found that the
gold standard measure of arterial stiffness, PWV, was
associated significantly and independently with seven urinary
peptides. The majority were collagen type 1-derived peptides.
Moreover, in STRING analysis, we also identified molecular
functions and Reactome pathways associated with the vascular
ECM. We suggest that if these pathways are dysregulated, it
may lead to the earlier development of arterial stiffness and
should therefore be closely monitored in high risk individuals
from a young age.

The urinary peptides associated with PWV in this study are
similar to previous proteomics studies in the field of arterial
stiffness, such as collagen types I, II, and III.18,19 However,
proteomics studies focusing on arterial stiffness are limited and
it remains challenging to compare results across different age
groups and various sample matrices in either healthy or
diseased populations.18−20 Recently, a study developed a PWV
urinary proteomics score in the Flemish Study on Environ-
ment, Genes, and Health Outcomes population (mean age 50
years old) and found it to prospectively associate with all-cause
mortality and cardiovascular outcome over a period of 9.2
years.19 In the latter study, the majority of the peptides in the
urinary proteomic profile consisted of collagen type I and III
fragments and were mostly associated negatively with PWV.
This is in contrast with our findings of positive associations
between PWV and urinary peptides. We suggest that with
advancing age, the impact on collagen generation may change
with increasing collagen accumulation, increased nonenzymatic
glycation and collagen cross-linking,29 and consequently less
collagen degradation. Nonetheless, our findings add to this
since we identified collagen type I fragments to be associated

Table 1. Characteristics of the African-PREDICT
Populationa

total group (n = 919)
age (years) 24.4 ± 3.12
ethnicity, Black n (%) and White n (%) 457 (49.7); 462 (50.3)
sex, male n (%) 467 (51)
anthropometry

height (m) 169 ± 9.58
weight (kg) 71.0 ± 16.6
waist circumference (cm) 80.1 ± 12.1
body mass index (kg/m2) 24.9 ± 5.28

cardiovascular measurements
SBP (mmHg) 118 ± 11.8
DBP (mmHg) 79 ± 7.91
pulse wave velocity (m/s) 6.28 (5.10; 7.85)
heart rate (beats/min) 64 ± 10.04

biochemical analysis
total cholesterol (mmol/L) 3.44 (1.95; 5.76)
LDL cholesterol (mmol/L) 2.17 (1.02; 4.17)
HDL cholesterol (mmol/L) 1.04 (0.55; 1.87)
triglycerides (mmol/L) 0.70 (0.30; 1.82)
glucose (mmol/L) 3.85 (2.38; 5.54)
cotinine (ng/mL) 3.64 (1.00; 327)
γ-glutamyl transferase (U/l) 17.6 (5.80; 54.3)
HbA1c (%) 5.29 (4.77; 5.81)
C-reactive protein (mg/L) 0.83 (0.07:9.25)

lifestyle
self-reported smoking, n (%) 223 (24)
self-reported alcohol use, n (%) 495 (54)
physical activity (kcal/kg/day) 224 ± 364
socio-economic score 20.3 ± 6.10

aValues are arithmetic mean and standard deviation, geometric mean
(5th and 95th percentile). Abbreviations: DBP: diastolic blood
pressure, SBP: systolic blood pressure, LDL: low-density lipoprotein,
HDL: high-density lipoprotein, HbA1c: glycated hemoglobin.
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Figure 1. Regression analysis between pulse wave velocity and urinary peptides in the total group (n = 919), adjusted for mean arterial pressure.
The bars represent the regression coefficient ‘r’, all q-value <0.05.

Figure 2. Multivariable adjusted analysis between pulse wave velocity and the identified urinary peptides (n = 7), adjusted for sex, age, mean arterial
pressure, heart rate, body mass index, γ-glutamyl transferase, glycated hemoglobin, C-reactive protein, cotinine, low-density lipoprotein, and
physical activity, all p < 0.05.
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with PWV in a large young and healthy population without
end-organ damage, which may suggest that the dysregulation
of collagen type I turnover may lead to increased arterial
stiffness in the setting of early vascular aging.

■ COLLAGEN-DERIVED PEPTIDES
Collagen type I and III are the main collagen proteins in the
vascular ECM with collagen type I being the most prominent
of collagen fibrils.30 Collagens type I and III are found in the
tunica adventitia of the arterial wall and play a pivotal role in
the mechanical and tensile strength and contractility of
arteries,30 whereas elastin, found in the media of the arterial
wall, is responsible for vascular elasticity.31,32 As such, an
unbalanced vascular ECM turnover will stimulate vascular
remodeling and may consequently induce early vascular aging
and increased arterial stiffness.

■ POTENTIAL MECHANISMS THAT MAY LEAD TO
INCREASED ARTERIAL STIFFNESS

In these young and healthy subjects without end-organ
damage, there is no evidence of chronic pathological processes
on collagen cross-linking. We propose that if inflammation and
protease activity increase as seen with increasing arterial
stiffness, urinary collagen fragments will also increase, hence
the positive associations between PWV and urinary peptides.
In pathway analysis, we showed that collagen type I-derived
peptides are involved in processes that are related to the
vascular ECM, such as platelet aggregation, collagen cross-
linking, and degradation. Research has shown that platelets are
recruited to inflamed vessels or to the site of injury and can
perform pro- or anti-inflammatory reactions, depending on the
cause of inflammation.33 In addition to the respective peptides,
GGT, a marker associated with vascular inflammation,34 also
contributed significantly to the variance in PWV. With an
increase in vascular inflammation, matrix metalloproteinases
(MMPs), which are responsible for the degradation of proteins
in the ECM, are also up-regulated.35 Increased MMPs, such as
MMP2 and MMP9, are associated with arterial stiffness, even
in younger and apparently healthy subjects.36,37 We therefore
propose that if vascular inflammation increases, protease
activity may also increase, leading to early changes in the
vascular ECM, including degraded and fragmented elastin and
increased collagen degradation.38 This may lead to the up-
regulation of collagen biosynthesis39 and deposition to
counteract the potentially harmful effects of inflammation
and MMPs on the vascular ECM structure, which may over
time enhance collagen cross-linking and increase arterial
stiffness.40

In addition to the respective peptides, MAP (as expected)
also contributed significantly to the variance in PWV. Since we
found positive associations between PWV and collagen type I-
derived peptides, we propose that with increased blood
pressure, mechanical stress in blood vessels will be
elevated.41,42 This may lead to the up-regulation of collagen
biosynthesis and deposition to maintain vascular ECM
homeostasis in the midst of higher mechanical strain exerted
on the arterial walls, which may ultimately result in poorly
organized nonenzymatically collagen cross-linking,32 contribu-
ting to increased arterial stiffness. We therefore propose that
collagen type I-derived peptides may play a key role in our
understanding of structural vascular ECM changes, leading to
higher arterial stiffness and early vascular aging. Regarding

noncollagen peptides, PWV associated significantly with PIGR;
however, more research is needed to explore the possible role
between PIGR and arterial stiffness.

■ STRENGTHS AND LIMITATIONS
To the best of our knowledge, this is the first urinary
proteomics study to show independent associations between
PWV and vascular ECM specific peptides involved in pathways
related to extracellular matrix organization in a young and
healthy population. Even though PWV is within normal ranges
in this study, the impact of PWV on urinary peptides is
significant and consistent. This study did not include MMP
data, and further investigation is proposed to test our
hypotheses with regard to the role of MMPs with urinary
peptides in the early changes within the vascular ECM. Data
collection for the first follow-up phase of the African-
PREDICT study is continuing, which will enable hypothesis
testing in a longitudinal setting, to explore the development of
arterial stiffness and early vascular aging over time, as well as
the predictive value of the identified peptidome in young
asymptomatic adults.

■ CONCLUSIONS
In conclusion, in healthy young adults, we found positive and
independent associations between PWV and collagen type-I
derived peptides. Our findings likely reflect early mechanisms
for early vascular aging associated with the structural integrity
and function of the vascular ECM as described by peptides that
indicate collagen turnover, high tensile strength under
mechanical strain, and cell signaling for vascular remodeling.
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■ ABBREVIATIONS
BMI body mass index
CVD cardiovascular disease
CE-TOF-MS capillary electrophoresis time-of-flight

mass spectrometry
COL1A1 collagen alpha-1(I)
COL2A1 collagen alpha-1(II)
COL2A1 collagen alpha-1(II)
COL4A1 collagen alpha-1(IV)
COL1A2 collagen alpha-2(I)
COL4A2 collagen alpha-2(IV)
COL11A2 collagen alpha-2(XI
COL3A1 collagen alpha-3(I)
COL9A3 collagen alpha-3(IX)
ECM extracellular matrix
FDR false discovery rate
GGT gamma-glutamyl transferase
GO Gene Ontology
HbA1c glycated hemoglobin
HDL-c high-density lipoprotein cholesterol
LDL-c low-density lipoprotein cholesterol
MMPs matrix metalloproteinases
MAP mean arterial pressure
PWV pulse wave velocity
African-PREDICT The African Prospective Study on the

Early Detection and Identification of
Cardiovascular Disease and Hypertension

kcal kilocalorie
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kg kilogram
m meter
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