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 
Abstract—Surface electromyography (sEMG) signals are crucial 

in developing human-machine interfaces, as they contain rich 
information about human neuromuscular activities. Objective: The 
real-time, accurate detection of muscle activation onset (MAO) is 
significant for EMG-triggered control strategies in embedded 
applications like prostheses and exoskeletons. Methods: This paper 
investigates sEMG signals using the generalized autoregressive 
conditional heteroskedasticity (GARCH) model, focusing on 
variance. A novel feature, the likelihood of conditional 
heteroskedasticity (LCH) extracted from the maximum likelihood 
estimation of GARCH parameters, is proposed. This feature 
effectively distinguishes signal from noise based on 
heteroskedasticity, allowing for the detection of MAO through the 
LCH feature and a basic threshold classifier. For online calculation, 
the model parameter estimation is simplified, enabling direct 
calculation of the LCH value using fixed parameters. Results: The 
proposed method was validated on two open-source datasets and 
demonstrated superior performance over existing methods. The mean 
absolute error of onset detection, compared with visual detection 
results, is approximately 65 ms under online conditions, showcasing 
high accuracy, universality, and noise insensitivity. Conclusion: The 
results indicate that the proposed method using the LCH feature from 
the GARCH model is highly effective for real-time detection of 
muscle activation onset in sEMG signals. Significance: This novel 
approach shows great potential and possibility for real-world 
applications, reflecting its superior performance in accuracy, 
universality, and insensitivity to noise. 
 

Index Terms—Change point detection, muscle activation onset, 
surface electromyography, human machine interface, generalized 
auto regressive conditional heteroskedasticity (GARCH) 
 

I. INTRODUCTION 

urface electromyography (sEMG) is a physiological 
electrical signal, measured non-invasively from the surface 

of  the skin, that indicates  the neuromuscular activation of the 
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underlying muscle fibers [1]. A variety of information can be 
extracted or inferred from this signal, such as muscle 
activation, muscle strength, joint angle, joint stiffness, motor 
unit action potential, etc. [2].  Hence sEMG has been widely 
applied in research and clinical practice. In particular, the 
detection of muscle activation onset (MAO) is of crucial 
importance in medicine, sports science, rehabilitation, and in 
assistive applications,  for example, in the diagnosis of 
neuromuscular disorders, examination of muscle activity 
pattern dysfunction, triggering of rehabilitation devices [3], 
and control of neuro-prostheses. 

In terms of data processing, applications of sEMG can be 
divided into those utilizing retrospective, offline processing 
methods and those requiring real-time, online analysis. Off-
line processing of sEMG signals is mostly used for diagnosis 
or evaluation, and thus can exploit the use of powerful 
computing resources and the complete signal recording 
retrospectively, for analysis. However, online sEMG 
applications have critical real-time requirements in which a 
processing delay of more than 200 milliseconds is considered 
unacceptable [4]. Consequently, a notable challenge arises in 
online applications as subsequent data cannot be acquired in 
advance. Such a processing method or system is causal, and 
must act without the availability of future information. 
Therefore, online detection algorithms often lag the actual 
moment of muscle activation, which is referred to as the 
detection latency or accuracy of the algorithm. Many 
applications in the field of control require real-time processing 
methods for sEMG signals. For instance, sEMG-based 
interfaces have been utilized in prostheses, exoskeletons, 
manipulators, VR devices, remote control devices, 
teleoperations, medical equipment, biofeedback applications, 
etc. [5]–[8]. This fosters the development of intelligent 
devices that incorporate human-machine interfaces (HMI). 
This paper focuses on improving the accuracy of online MAO 
detection, which plays a crucial role in developing an HMI 
within the field of EMG-triggered control, as it can provide 
indication of human motion intentions. 

Broadly speaking, online sEMG analysis is akin to the 
theoretical problem of signal change point detection which has 
been widely studied in statistics and financial fields. The first 
relative study dates back to the 1950s [9] for industrial quality 
control. The main concept from research progress in this area 
over the years can be summarized as detecting change points 
based on alterations of the mean, standard deviation, and trend 
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(slope or intercept) values of continuous or count variables 
[10].  

In a recent review of offline change-point detection, the 
algorithm is classified according to three points: cost/objective 
functions, search methods, and constraints (the penalty for 
multiple change points) [11]. This methodology is more 
suitable to application on offline MAO detection of sEMG 
signals. Suviseshamuthu et al. [12] proposed a profile-
likelihood-based method with a discrete Fibonacci search. 
Here, the objective function is the superposition of two sets of 
profile likelihood functions based on the activation segment 
and resting segment, and the search method is a discrete 
Fibonacci search. Alternatively, Selvan et al.[13] proposed a 
scree-plot-based method. In this case, the objective function is 
the summation of error from piecewise linear regression, and 
the search method is an exhaustive search. Another example is 
the classic method, cumulative sum (CUSUM)[9]. In its 
various derivations [14], the objective function is the 
cumulative sum of a relevant index, while the search method 
is commonly a threshold value. 

The above studies are focused on offline change point 
detection, whereby the sequence segmentation is conducted 
after the completed acquisition of a whole signal trial, also 
known as a retrospective or posteriori method [11]. This paper 
looks to consider online detection methods classed as a 
preprocessor/feature combined with a classifier, similar to the 
concept of machine learning. To begin with, the sEMG signal 
is processed using an envelope operation to acquire the energy 
information. On application of low-pass filtering (LPF), the 
filtered signal can then be regarded as a feature, and online 
MAO detection can be realized through use of a threshold 
classifier [15]. The Teager-Kaiser energy operator (TKEO) 
[16] is a wildly used non-linear filter for highlighting the 
muscle activations from the background noise in a raw sEMG 
signal. Such a preprocessing stage has also been utilized with 
a classifier, e.g. double threshold [17], and Bayesian 
changepoint detection [18], to achieve online MAO detection 
in the last century. An extended version of TKEO (ETKEO) 
has since been proposed, with a more general formula and 
powerful performance. Wavelet transforms (WT) are another 
common signal preprocessing method. Using these 
foundations, together with the application of a likelihood-
based test statistic method as a classifier, provides an 
alternative MAO detection methodology [19]. A machine-
learning-based method can also be used to approach the MAO 
detection problem. Liu et al. [20] used a sequential Gaussian 
mixture model (GMM) to classify the logarithmic power of 
EMG signals. Nardo et al. [21] developed a neural network 
with an input of an EMG feature set. Trigili et al. [22] 
developed a method for MAO detection using subject-
independent, time-domain EMG features and GMM 
classifiers. 

Consideration of these methods from the perspective of their 
interpretability, detection latency, and universality properties, 
these existing mainstream methods all have certain 
disadvantages: ETKEO is equivalent to filtering, and 
additional operation is required for MAO detection to lose 
timeliness; the WT is more appropriate for offline 
applications; LPF produces delays and is ineffective in 
magnifying the differential between the signal and noise; 

machine learning lacks interpretability; the distribution of 
statistical methods related to data distribution may vary 
depending on different muscles or subjects. Unlike most 
previous studies that analyze signal amplitude in either the 
time or frequency domains, this paper focuses on examining 
the variance of the signal, specifically its heteroskedasticity. In 
1982 [23], Engle proposed the autoregressive conditional 
heteroskedasticity (ARCH) model to analyze inflation and was 
awarded the Nobel Prize in Economic Sciences in 2003 for 
this contribution. Later, Rasool et al. [24] extracted the 
conditional heteroskedasticity from sEMG signals and realized 
the muscle activation segmentation based on the generalized 
ARCH (GARCH) model. Furthermore, Rasool et al. [25] 
realized the application of parameters of the GARCH model 
for enabling gesture classification.  

Guided by these preceding ideas and foundations in signal 
variance analysis, this research investigated conditional 
heteroskedasticity in sEMG signals. Consequently, a 
simplified model with fixed parameters is proposed to 
accelerate the computational calculations. Furthermore, the 
likelihood of conditional heteroskedasticity (LCH), extracted 
from the GARCH model, is proposed as a novel feature for 
MAO detection in online applications. Experimental 
verification has shown that this method has lower detection 
delay and is independent of subject and muscle. It also 
exhibited a strong ability to suppress noise. 

The remainder of this article is organized as follows: Section 
II details the analysis of the sEMG signal using the 
autoregressive and GARCH model, whereby the order of 
model which reflects heteroskedasticity is determined. Section 
III proposes the LCH feature and derives the calculation 
formulae in detail. In Section IV, the proposed features and 
MAO detection framework are verified on open-source 
datasets, and a horizontal comparison is made. This 
comparison between various methods is also performed to 
establish the efficacy of the proposed technique. Section V 
provides a discussion of the research, and a summarizing 
conclusion is presented in Section VI. 

II. ANALYSIS OF SEMG SIGNALS BY ARIMA-GARCH 

MODEL 

As a seemingly random time series, sEMG signals are 
typically analyzed by an autoregressive integrated moving 
average model (ARIMA). To develop a method to distinguish 
between resting states and motion states, sEMG signals of 
these two conditions were modeled by ARMIA analysis, and 
their similarities and differences were compared. Two sEMG 
signal trials were randomly selected as cases to analyze. A 
window length of 200 ms was selected, a value which 
corresponds to most situations within the sEMG-based 
interface. The relevant formulae of specific hypothesis testing 
methods and evaluation indexes are generally recognized and, 
therefore, will not be included here. 

The ARIMA model can be simplified as autoregressive 
moving average model (ARMA) model if the time series is 
stable, therefore, the initial step was to assess the stability of 
the original sEMG signals: the Augmented Dickey-Fuller 
(ADF) test was utilized for this purpose. When evaluating for 
both the resting and motion states, the ADF results showed 
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that the testing could not reject the original hypothesis, hence 
both signals were considered stable. Therefore, the ARMA 
model was taken forward for modeling. Specific orders of the 
ARMA model were then determined based on the 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) of the signal segment, and the ACF of the 
squared signal segment. The results of the process on the 

squared signal characterize the high-order autocorrelation. For 
details on the specific analysis criteria, refer to [26]. 

Fig. 1a presents the results of the ACF and PACF analysis, 
where the truncation and exponential attenuation emerge to a 
certain extent. The ARMA model can be further simplified to 
an autoregressive (AR) model. The absolute value of the ACF 
and PACF being greater than the blue threshold lines is 
considered significant. As a supplement to the ACF and PACF 
functions, the AR model order can be further determined with 
the use of the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC), which are shown in Fig. 
1b.  

Considering it for use in online applications, specifically the 
online parameter identification of AR models, the order 
should, therefore, be kept as small as possible. Based on the 
described analysis, and results shown in Fig. 1a and Fig. 1b, a 
10-order AR model was established as a unified model of 
sEMG signals in both the resting and motion states. All the 
model coefficients were determined as being significant, as 
verified using the MATLAB Econometrics Toolbox. Although 
this approach may not be extremely accurate, this verification 
method was deemed suitable for the task objectives, and 
appropriate for the subsequent analysis of heteroskedasticity. 
The original signals (in blue) and fitting residuals, or named 
innovations (in red), of the 10-order AR model are shown in 
Fig. 1c. Note the difference in the order of magnitude in the 
vertical axis between resting (left) and motion states (right).  

Much of the previous research simply considers the signal 
amplitude when modeling an sEMG signal, and so settles with 
the AR model processing technique. However, the non-
stationary sEMG signal is indicative of heteroskedastic 
properties. The ARCH model can simulate the volatility of a 
series. It determines the autoregressive order based on the 
innovations, using a process similar to that described above. 
The sequence initially needs to be tested for stationarity, and 
then by a Lagrange multiplier (LM) test to determine whether 
there is an ARCH effect. The ACF, PACF, and Ljung-Box 
(LB) test results demonstrated that the innovation of sEMG 
signals in the resting state could be regarded as white noise, 
while sEMG signals in the motion state showed an ARCH 
effect with a relatively higher order. Fig. 1d illustrates that the 
higher order autocorrelation of the innovation of the signal 
was stronger in the motion state. For example, in the 20th 
order, the ACF and PACF results in the motion state were still 
significant.  

Four randomly selected sEMG signal trials (see Section III 
for further details on the dataset used) were modeled and 
analyzed. The corresponding innovation for a segment 
representing the motion state, and related statistical results are 
shown in Fig. 2. For each signal example, the plots shown, 
from the top-down, are the innovation, histogram, and 
Quantile-Quantile (QQ) plots, respectively. Based on this 
graphical verification, the innovation of sEMG signals 
modeled by the AR(10) model satisfied the hypothesis that the 
ARCH model assumes that the innovation is white noise.  

For simulating the innovation of the AR model, a high-order 
ARCH model can be established based on the previously 
described analysis. However, the GARCH model, which can 
effectively fit a heteroskedasticity function with long-term 
autocorrelation, is proposed based on the same reasoning for 

Fig. 1. The process of establishing the ARIMA-ARCH model. The left 
column is a segment of sEMG signal in the resting state, while the right 
column is in the motion state. (a) ACF and PACF analysis on raw signals. (b) 
AIC and BIC analysis for the determination of model order. (c) Raw sEMG 
signal segments and innovation of the AR model. (d) ACF and PACF analysis 
on the innovation. (e) Conditional variance reflecting heteroskedasticity. 
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the ARCH model, while also effectively reducing the model 
order. Thus, a GARCH(1,1) model was adopted to model the 
innovation of sEMG signals in this research. 

The heteroskedasticity of the signals is shown in Fig. 1e. A 
difference in the order of magnitude on the vertical axis is 
highlighted in red. This amplitude difference emphasizes that 
the resting state and the motion state were homoskedastic and 
heteroskedastic, respectively. 

To this point, a method for the statistical modeling of surface 
EMG signals has been described: that is, a general model in 
the form of an AR(10)-GARCH (1,1) model. It should be 
emphasized that, in the resting state of signals, the parameters 
of the GARCH model may show no significance. In other 
words, the model is completely arbitrary. This difference is the 
basis for the subsequent classification between the motion and 
resting states.  

 

III. FORMULA DERIVATION AND LCH FEATURE 

It was observed that the heteroskedasticity model of the 
sEMG signals in the resting state differed from that in the 
motion state. Accordingly, an MAO detection scheme was 
proposed based on this phenomenon. This section goes on to 
describe the methods and associated formula derivations in 
detail.  

A. Parameter Solving  

This sub-section introduces the model and corresponding 
parameter identification method. All vectors are notated in 
bold text for differentiation, 𝑥௡, 𝑛 = [1,2, … , 𝑁] is the 
windowed sEMG signals and N is the window length. The 
offset of the average value is removed from the signals in each 
window. Thus, the general AR-GARCH model can be 
expressed as: 

 
𝒀 = 𝑿𝑨 + 𝜺 

𝜺𝒕 = 𝝈𝒕𝒆𝒕 

𝝈𝒕
𝟐 = 𝜸 + ෍ 𝜶𝒑𝜺𝒕ି𝒑

𝟐

𝒎

𝒑ୀ𝟏

+ ෍ 𝜷𝒒𝝈𝒕ି𝒒
𝟐

𝒏

𝒒ୀ𝟏

 
(1) 

where 𝑨 is coefficient vector composed of p-order AR model 

coefficients 𝑎௣ ; 𝜀௧  is innovation trace; 𝜎௧  is the time-varying 
conditional variance of 𝜀௧; 𝛼௣  and 𝛽௤  are the m-order and n-
order regression coefficients of GARCH(m, n) ; 𝛾 is an offset 
parameter in GARCH model; 

 

𝒀 = ൣ𝑥௣ାଵ, 𝑥௣ାଶ, … , 𝑥ே൧
ᇱ
 

𝑿 = ൦

𝑥௣ 𝑥௣ିଵ ⋯ 𝑥ଵ

𝑥௣ାଵ 𝑥௣ ⋯ 𝑥ଶ

⋮ ⋮  ⋮
𝑥ேିଵ 𝑥ேିଶ ⋯ 𝑥ேି௣

൪

ᇱ

 

𝑨 = ൣ𝑎଴, 𝑎ଵ, … , 𝑎௣൧
ᇱ
 

𝜺 = ൣ𝜀௣ାଵ, 𝜀௣ାଶ, … , 𝜀ே൧
ᇱ
 

(2) 

and  
𝒆𝒕~𝑵(𝟎, 𝟏) (3) 

is white noise. 
Considering the analysis described in Section II, the 

following values were used in this study: p = 10, m = 1, n = 1, 
and 𝑡 = [11,12, … , 𝑁].  

In AR models, the least squares method is often used for 
online parameter identification, which is defined as 𝑨෡ =
(𝑿′𝑿)ି𝟏𝑿′𝒀  where hatted symbols represent an estimated 
value. After substituting ‘A’ into equation (1) to get 𝜺, then the 
GARCH(1,1) model may be established on the 𝜀௧ sequence. 

The parameter set to be identified is 𝜃଴ = {𝛾，𝛼଴，𝛽଴}. The 
residual can be simplified by recursion: 

 

𝜎௧
ଶ = 𝛾 + 𝛼଴𝜀௧ିଵ

ଶ + 𝛽଴𝜎௧ିଵ
ଶ 

= 𝛾 + 𝛼଴𝜀௧ିଵ
ଶ + 𝛽଴(𝛾 + 𝛼଴𝜀௧ିଶ

ଶ + 𝛽଴𝜎௧ିଶ
ଶ) 

= 𝛾(1 + 𝛽଴) + 𝛼଴(𝜀௧ିଵ
ଶ + 𝛽଴𝜀௧ିଶ

ଶ) + 𝛽଴
ଶ𝜎௧ିଶ

ଶ 
= ⋯ ⋯ 

= 𝛾൫1 + 𝛽଴ + ⋯ + 𝛽଴
௧ିଶ

൯ + 𝛼଴(𝜀௧ିଵ
ଶ + 𝛽଴𝜀௧ିଶ

ଶ + ⋯

+ 𝛽଴
௧ିଶ𝜀ଵ

ଶ) + 𝛽଴
௧ିଵ𝜎ଵ

ଶ 

(4)

According to the constraints that 𝛽଴ ∈ [0,1)  and the 
properties of series expansion, it can be derived that: 
 

𝜎௧
ଶ =

𝛾

1 − 𝛽଴

+ 𝛼଴ ෍൛𝛽଴
௝ିଵ𝜀௧ି௝

ଶൟ

௧ିଵ

௝ୀଵ

 (5) 

Let 𝑉௧(𝜃) = 𝜎௧
ଶ representing the function of conditional 

variance. On the other hand, 𝜎௧ = 𝑉௧
ଵ/ଶ(𝜃), so that: 

 𝜀௧ = 𝑉௧
ଵ/ଶ(𝜃)𝑒௧ (6) 

According to (3), and denoting the probability density 
function as 𝑓, then: 

න 𝑓(𝑒௧) d𝑒௧ = 1 

න 𝑉௧
ିଵ/ଶ(𝜃)𝑓(𝜀௧𝑉௧

ି
ଵ
ଶ(𝜃)) d𝜀௧ = 1 

(7) 

Equation (7) indicates that, for 𝜀௧, its conditional probability 
density when observing information before t-1 is 

𝑉௧
ି

భ

మ(𝜃)𝑓(𝜀௧𝑉௧
ି

భ

మ(𝜃)) . The conditional probability density 
function is equal to the likelihood function in value, which is 
recorded as L, so the log likelihood function is:  

ln 𝐿 = ෍ ln ቈ𝑉௧
ି

ଵ
ଶ(𝜃)𝑓 ቆ𝜀௧𝑉௧

ି
ଵ
ଶ(𝜃)ቇ቉

ே

௧ୀଵଵ

 (8) 

Fig. 2. Examples of test of normality for the innovations of an AR10 model 
on sEMG signals in the motion state. 
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= ෍ − ൤
1

2
ln 𝑉௧ − ln 𝑓 ൬𝜀௧𝑉௧

ି
ଵ
ଶ൰൨

ே

௧ୀଵଵ

 

The gradient of the objective function is used in the 
optimization algorithm. Thus, the derivative of (8) is: 

 
−

d ln 𝐿

d 𝜃
= ෍ ቎

1

2

𝑉௧
ᇱ

𝑉௧

−
𝑓ᇱ(𝜀௧𝑉௧

ି
ଵ
ଶ)

𝑓(𝜀௧𝑉௧
ି

ଵ
ଶ)

−
1

2
 𝜀௧𝑉௧

ି
ଷ
ଶ𝑉௧

ᇱ቏

ே

௧ୀଵଵ

 

= ෍
1

2
ቐ

𝑉௧
ᇱ

𝑉௧
቎1 + 𝜀௧𝑉௧

ି
ଵ
ଶ

𝑓ᇱ(𝜀௧𝑉௧
ି

ଵ
ଶ)

𝑓(𝜀௧𝑉௧
ି

ଵ
ଶ)

቏ቑ

ே

௧ୀଵ

 

= ෍
1

2
൜1 − 𝐻 ൤𝜀௧/𝑉௧

ଵ
ଶ(𝜃)൨ൠ

𝑉௧
ᇱ(𝜃)

𝑉௧(𝜃)

ே

௧ୀଵଵ

 

(9) 

where 

 𝑉௧
ᇱ(𝜃) = ቈ

ଵ

ଵିఉబ
, ෍ ൛𝛽଴

௝ିଵ𝑋௧ି௝
ଶൟ

௧ିଵ

௝ୀଵ
,

ఊ

(ଵିఉబ)మ +

𝛼଴ ෍ ൛(𝑗 − 1)𝛽଴
௝ିଶ𝑋௧ି௝

ଶൟ
௧ିଵ

௝ୀଵ
቉

ᇱ

  

(10)

 𝐻[𝑥] = 𝑥(−
𝑓ᇱ(𝑥)

𝑓(𝑥)
) (11)

𝐻 is the ‘score function’ for the M-estimation in the scale 
model [27]. According to the M-estimation theory, the quasi-
MLE estimation is realized when setting 𝐻[𝑥] = 𝑥ଶ, and so 
the calculation can be simplified. 

The maximum likelihood method can be realized to 
estimate the parameters with (8) and (9). A sequential 
quadratic programming (SQP) algorithm may be adopted as a 
solver here to ensure the possibility of online calculation. 

According to the assumptions, 𝑓  conforms to a standard 
Gaussian distribution, which was verified by the results of the 
statistical testing presented in Fig. 2. Therefore, (8) can be 
further reduced to: 

ln 𝐿 = ෍ − ቈ
1

2
ln(𝜎௧

ଶ) +
1

2

𝜀௧
ଶ

𝜎௧
ଶ

+ ln(2𝜋)቉

ே

௧ୀଵଵ

 (12) 

The log-likelihood value can then be calculated within each 
window according to (12). So far, the model parameters 𝜃଴

෢ 
can be estimated online via a maximum likelihood estimation 
within each window.  

B. Feature and Classifier  

According to the previously described analysis, an sEMG 
signal in the motion state has observable heteroskedasticity, in 
comparison with the resting state which tends towards 
homoskedasticity. Based on the assumption of the GARCH 
model, both 𝜀௧  and 𝑒௧  comply with a standard normal 
distribution. Thus, the sEMG signals corresponding to a 
muscle’s motion state would be directly reflected in the signal 
heteroskedasticity. As such, when the variance shows 
heteroskedasticity, to meet the distribution assumption of 𝜀௧, 
the distribution of 𝑒௧  will inevitably be affected. Specifically, 
in the motion state, the parameters of the GARCH model 
should have a lower likelihood value, lower logarithmic 
likelihood value, and larger LCH value. Therefore, the LCH 
value was proposed as a feature for detecting muscle 
activation. This value would reflect two relatively stable 

modes, representing the motion state and the rest state, with 
different amplitudes. When the muscle activation state 
changes, the LCH value will gradually change from one stable 
state to another, demonstrating a ‘bistable’ characteristic. The 
specific calculation formula of the LCH is (13), being a 
simplification of Eq. (12), as follows: 

𝐿𝐶𝐻 = ෍ [ln(𝜎௧
ଶ) + 𝜀௧

ଶ/𝜎௧
ଶ]

ே

௧ୀଵଵ

 (13) 

Because it is a one-dimensional scalar value, only threshold 
(OT) classifiers may be utilized to detect the instance of 
muscle activation. A basic OT classifier is commonly 
described as: 
 𝑇ℎ = 𝜇௕௔௦௘௟௜௡௘ + 𝑘 ∗ 𝜎௕௔௦௘௟௜௡௘  (14) 
where k is the multiplier, typically with a value ranging from 3 
to 15, which affects the sensitivity. The values 𝜇  and 𝜎 
represent the mean and variance, respectively, which need to 
be initialized. It is recommended to use signal samples within 
the initial few windows after the system is powered on, which 
can be considered as being in a resting state. The 
corresponding flowchart of this method is shown in Fig. 3. 
The step of the sliding window should be as small as feasible, 
such as selecting a single sample, to facilitate the timely 
update of LCH features. 

 

C. Model Simplification for Online Calculation 

Online parameter identification of 𝜃଴
෢ poses a computational 

challenge to real-time detection of muscle activation and, in 
some cases, may not converge to the global optimal solution. 
For that reason, this section describes the investigation of 
fixed 𝜃଴

෢ parameters, rather than the use of online parameter 
optimization. From the perspective of MAO detection, the 
accuracy of the 𝜃଴

෢  estimation is insignificant as it merely 
forms an intermediate step.  

The GARCH(1,1) model has three parameters, where the 
first, 𝛾 , can be considered as an offset. In this paper, the 
innovation is considered as white Gaussian noise, and its 
offset bias can be approximately assumed as zero, therefore, γ 
is fixed as zero for simplicity. 

Subsequently, the relationship between the parameters and 

 

 
Fig. 3. Flowchart of the proposed MAO detection framework. 
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LCH characteristics was explored to find the internal rules for 
simplifying the parameter identification. For the two example 
signal segments presented in Fig. 1, the LCH values were 
calculated using a range of possible  𝛼଴  and 𝛽଴  parameter 
values, the results of which are shown in a mesh plot and 
contour subplot in Fig. 4. The x-axis and y-axis give the 
values of the parameters 𝛼଴ and 𝛽଴, ranging from 0 to 1, and 
the z-axis shows the LCH value. The LCH value has no unit, 
and the absolute value of the amplitude has no explicit 
meaning, and therefore only reflects information when under 
direct comparison. The mesh plots in the first row (Fig. 4a) 
show a global perspective, indicating that if the two 
parameters of the GARCH model were set to zero, there 
would be a large scope for optimization of the likelihood value. 
The remaining region of the parameter space shown in Fig. 4a, 
tended to be flat at this scale. The second row of plots (Fig. 4b) 
show a local enlargement, examining the regions near the 
extreme value. The macroscopic flat region had a clearer 
gradient when enlarged, suggesting the availability of a global 
optimal solution. Fig. 4c provides two-dimensional plots from 
the top view, with only the LCH values near the extreme point 
being retained. It was found that the position on the 
approximate diagonal line reached the extreme value, and the 
gradient in this direction was very small. LCH values in the 
motion and rest states reflected similar changes, and reached 
the extremum at close locations. Therefore, the α and β were 
manually fixed to values of 0.1 and 0.9, avoiding online 
parameter iterative optimization which, thereby, saves on 

computational calculation efforts. For brevity, the use of fixed 
GARCH(1,1) model parameters to calculate the LCH value 
sequence will hereafter be referred to as LCH, while the 
method that requires online optimization shall be noted as 
LCH-Opt. 

This analysis was performed based only on the two 
examples mentioned previously. Therefore, having fixed the 
parameters based on this analysis, irregularities in the signal 
may lead to sudden changes in the LCH value, which may 
pose as noise when performing classification through an OT 
method. Hence, to smooth the LCH value, an 11-order median 
filter was used to avoid potential sudden changes in the signal. 
Taking a trial of sEMG data from Dataset I as an example 
(details of which are described in the following section), the 
LCH method, LCH-Opt method, and effect of the median 
filtered LCH with a threshold classifier were compared. The 
results are shown in Fig. 5. The visual detection results, based 
on empirical observations, are provided by the dataset and will 
be detailed in the following chapter. Note that some extreme 
values of the LCH result, that are greater than the vertical axis 
upper boundary, are not displayed. 

 

IV. EXPERIMENTAL VERIFICATION 

A. Datasets Used for Validation 

The MAO detection method proposed in this paper was 
verified on two public datasets, published by the same author 
in 2017 (these sEMG datasets are available online from 
https://github.com/TenanATC/EMG). The two datasets share 
the same experimental protocol and are referenced as Dataset I 
and Dataset II within this paper. To summarize, eighteen 
participants covering different ages and genders were recruited 
to carry out elbow flexion and knee extension tasks using their 
dominant limb. The subjects were seated in a stationary chair 
for both tasks. A 2.3 kg load was applied to the subject’s ankle 
or wrist on the target side to improve the efficacy of the 
muscle contraction. Each trial was repeated three times at a 

 

Fig. 5. Example of the proposed method for MAO detection, combining the 
LCH feature and only threshold (OT) classifier. 

Fig. 4. Results of the LCH using different values of the parameter set,
{𝛼଴, 𝛽଴} in the GARCH(1,1) model. (a) Mesh plot. The step size is 0.02. (b) 
Contour plot. Only the values near the extreme point are retained. (c) Two-
dimensional projection of the subgraph (b). 
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self-selected exercise pace, with at least 1 min of rest. After 
removing five failures, the dataset provides a total of 103 
sEMG signal trials. Each trial captures a duration of 
approximately 3 to 5 seconds, encompassing the sEMG 
signals from the target muscle as it transitions from a resting 
to an activated state. 

For the sEMG measurement, Ag/AgCl electrodes were used 
(B&L Engineering, Tustin, CA) with a circular diameter of 10 
mm, and a 35 mm interelectrode distance. The EMG recording 
was characterized by the following parameters: gain 
330x, >100 MΩ, 95 dB CMRR, and a 10 Hz to 3.13 kHz 
bandwidth. The electrodes were attached to the target muscle, 
determined via palpation: Biceps Brachii for elbow flexion 
and Vastus Lateralis for knee extension. The reference 
electrode was placed on the ipsilateral patella as a ground. The 
sEMG signals were sampled at 2048 Hz and pre-processed 
using a band-pass filter with a 10-1000 Hz passband. Detailed 
descriptions can be found in [28], [29]. 

The distinctive feature of this dataset is that a time value of 
the corresponding ‘ground truth’ for the onset of each muscle 
contraction is also provided as a benchmark. Differences in 
amplitude within the time domain of the signal can be visually 
identified by the human eye to determine the moment of 
muscle activation. The benchmark values were established by 
visual assessment on the raw sEMG signal trials, whereby 
three researchers labeled each trial twice within a week, so 
that each sEMG signal was visually inspected six times in a 
randomized and double-blind fashion. Hence, specifically, the 
study identifier and the performed movement were unknown 
to the assessors. The mean of the six visually appraised MAO 
instants was thereby adopted as a benchmark value, provided 
within the dataset, with which to compare different muscle 
activation detection methods.  

Consequently, Dataset I has been broadly referenced and 
provides a convenient methodology for comparing the 
proposed MAO detection technique with other existing 
methods. Similarly, the method proposed in this paper was 
also tested on Dataset II, using the same parameters as those 
used for Dataset I, to demonstrate its wider efficacy. 

B. Validation Content and Selected Parameters 

In this implementation, the window length used was 400 
sample points, corresponding to approximately 200 ms, which 
is a commonly used scale value in sEMG-based interfaces. 
The step size was set at 1 sample point, so that the LCH value 
would be calculated for each new sample acquisition (loaded 
from the Dataset) without utilizing subsequent information, 
which is called pseudo-online analysis. The threshold 
classifier was initialized using the LCH values determined 
from the first 200 samples, and subsequently commenced 
evaluating the muscle activation in pseudo-real-time. The 
instant in which the signal exceeded the threshold for the first 
time was recorded as the detection result, and the error value 
was obtained by comparing this with the corresponding 
benchmark value. For comparison, the error values from all 
the trials were statistically evaluated using the mean value, 
standard deviation (SD), median value, and interquartile range 
bounds—specifically, the 25th percentile (IQR-25), and 75th 
percentile (IQR-75). 

In the following text an abbreviated notation is used to 

define the overall detection method: the acronym before the 
plus sign represents the utilized feature or preprocessing 
method applied to the sEMG signal, while the acronym after 
the plus sign represents the classifier type. To investigate the 
behavior of the LCH+OT method under noisy conditions, 
sEMG signal trials were further contaminated by various 
degrees of added noise. White Gaussian noise having the same 
length as the signal trials with a zero mean was generated 
using the MATLAB Communications Toolbox. After five 
different levels of noise were added, the signal-to-noise ratio 
(SNR) was conditioned to -1, -2, -5, -10, and -20 dB, 
respectively, hence the power of the added noise was 
approximately 1.25, 1.58, 3.16, 10, and 100 W, given that the 
power of the signal trials was 1 W. For each noise level, 20 
different sequence seeds were generated by MATLAB to 
simulate different noise environments. The 103 trials from the 
dataset were then superimposed with the same 20 types of 
noise to achieve the target SNR. Therefore, each sEMG trial 
generated 20 sequences using this process. The LCH+OT and 
LCH-Opt+OT methods were then evaluated under the various 
simulated noisy conditions. The average of detected instants 
from the 20 sequences was saved as the detection result of one 
trial for a given SNR. 

C. Other Methods for Comparison 

Five recent studies were analyzed and have been listed for 
comparison.  

The first of these referred studies reports the results 
achieved by the following five algorithms [13]: (1) a method 
based on the wavelet transform process and likelihood-based 
test statistic, WT+TS [19]; (2) a low-pass filter and only 
threshold technique, LPF+OT [15]; (3) a method using a 
TKEO preprocessor and classifier based on Bayesian change-
point detection [18] with various posterior probability, 
TKEO+BCD [28], [29]; (4) a method based on the sum of 
TKEO-conditioned data points, TKEO+CUSUM, and 
segmented regressions (SR) finding elbow points in the scree 
plot, named SPE. The classifier used has many other 
variations, such as SPE-RefineElbow; (5) a method alternating 
the classifier to the profile likelihood maximization [30], 
TKEO+PLM. When the data distribution uses a different type 
of probability density function, a variation of this method is 
derived, such as PLM- Laplacian (PLM-Lap) and PLM-
Gaussian (PLM-Gau).  

The second reference study proposed a method named 
PROLIFIC [12]. An approach grounded on the discrete 
Fibonacci search method, PLM-DFS, or namely PROLIFIC 
was established utilizing the TKEO preprocessor and PLM 
method. This study also compared several variants using 
different probability density functions. 

The third study [31] provides MAO detection results 
achieved by the following four algorithms: (1) threshold and 
post-processor, TP [17]; (2) a continuous wavelet 
decomposition, CWD + TP [32]， or namely WT + TP; (3) 
the cumulative sum algorithm [14], CUSUM; (4) the 
PROLIFIC method proposed in the aforementioned paper [12]. 
The filtering procedure, ETKEO was also ascertained to be 
better than TKEO in this study.  

The fourth referenced work [33] compares the four existing 
methods from the first study with a new method, WT+OT. 
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Specifically, an index based on the square of the absolute 
value of the WT coefficient and a threshold using the global 
information was proposed for MAO detection. 

Lastly, the fifth study proposed a new method; a machine 
learning based, online classifier, ML, [21] and compared it 
with the existing four methods. The input feature combines 
LPF, the root mean square (RMS), and WT.  

Based on the described previous investigations, the methods 
used for comparison in this paper were listed in Table I. The 
methods which demonstrated a poor performance in the 
previous  studies were excluded from comparison in this paper, 
for example: (1) “general time series mean/variance, 
sequential and batch processing of parametric and 
nonparametric tools” in [28]; (2)  BCD-60, BCD-95, SPE-
MultiThresholdElbow, PLM-Gaussian or other distributions 
from [13]; (3) PLM-DFS-Lap or other distributions from [12].  

V. RESULT 

A. Comparison of Detection Methods 

As an open-source dataset, various other studies have 
verified their methods on Dataset I and obtained results with 
similar evaluation indexes. The outcomes from  

Several of these methods were verified on a subset of 
Dataset I, in which researchers selectively screened for signals 
with relatively high noise content via certain criteria, such as 
having an SNR < 8. Hence, the results from such subsets are 
inconsistent among studies as the calculation methods may 
differ. Moreover, the result of MAO detection using such a 
subset is likely to be relatively poor as it would be exclusively 
evaluated in noisy conditions.  

This paper labels several of the described methods as offline 
methods, which would be inapplicable to EMG-based 
interfaces requiring real-time analysis. Here, offline methods 
indicate a ‘noncausal system’, whereby only after the 
complete signal trial is acquired, could such a method detect 

MAO, or offset, using the comparison between the rest and 
motion states to optimize the sudden change. The advantage of 
the research described in this paper, however, is the 
applicability of the detection method to online applications.  
As such, the results are not directly compared with offline 
methods, in terms of the evaluation indexes, as evidently, in 
having the global time series data available for post-
processing analysis, offline methods are often significantly 
more effectual. 

Table I presents a comparison between detection methods. 
Note that these results are based on the absolute magnitude of 
the error, therefore, any MAO instances detected prior to the 
benchmark time specified in Dataset I, were assessed as errors 
with the same scale as MAO instances detected after the 
benchmark value. The results were obtained from the 
evaluation of the different methods on Dataset I, and the index 
values of the compared methods were copied from the “Result 
Reference”. The upper section of the table presents online 
detection methods, while the lower section describes offline 
methods. In the final column labelled ‘Note’, a ‘P’ represents 
the use of a subset from Dataset I, and ‘OFF’ indicates use of 
an offline method. Additionally, a red background color in the 
numeric cells of the table indicates the comparatively best 
results, while a blue cell background indicates a poorer 
performance. This colormap is normalized for each column.  

In general, the proposed LCH-based MAO detection 
method is superior to the existing online detection algorithms, 
as compared with recent studies, achieving a performance 
similar to the referenced offline methods. Furthermore, solely 
considering the online methods, the proposed technique 
performs best in the table based on the evaluation indexes of 
mean error, SD, median error, and IQR-75 values. However, 
the LCH detection method demonstrates a mediocre 
performance for the IQR-25 index. This is related to the use of 
an online median filter, which introduces inherent delays. 

WT+ML is an improved version of WT+OT for an online 

Table I.  Comparison of different MAO detection algorithms assessed on the same open-source dataset (Dataset I [26]) from the perspective of five evaluation 
indexes: mean, standard deviation (SD), median, the upper quartile (IQR-75), and the lower quartile (IQR-25) of the errors. 

Preprocessor/Feature Classifier Mean SD Median IQR-25 IQR-75 Method Reference Result Reference Note Better 

WT TS 235 182 209 70 354 Killick et al. in 2013 [19] TNSRE 2018 [13] A,ON 

 

LPF OT 204 138 178 100 272 Hodges et al. in 1996 [15] TNSRE 2018 [13] A,ON 

TKEO BCD-75 115 203 39 9 119 Barry et al. in 1993 [18] TNSRE 2018 [13] A,ON 

ETKEO TP 134.2 203.6 69.3 31.5 146.5 Bonato et al. in 1998 [17] TMRB 2020 [31] P,ON    

ETKEO+WT TP 129.1 192.3 78.6 25.2 146.5 Merlo et al. in 2003 [32] TMRB 2020 [31] P,ON    

LPF+WT+RMS ML 92.1 120.3 54.2 13.2 93.9 Nardo et al. in 2022 [21] SENSORS 2022 [21] P,ON    

LCH OT 65.2 58.1 44.9 15.9 98.5 This paper This paper A,ON 

LCH-OPT OT 55.8 43.3 50.2 21.4 77.4 This paper This paper A,ON 

          

WT OT 34.7 61.3 10 3 27.8 Nardo et al. in 2022 [33] ACCESS 2022 [33] P,OFF 

TKEO+CUSUM SR 77 96 42 11 94 Selvan et al. in 2018 [13] TNSRE 2018 [13] A,OFF 

TKEO PLM-Lap 46 81 21 4 46 Zhu et al. in 2006 [30] TNSRE 2018 [13] A,OFF 

TKEO PLM-DFS-Gau 43 49 30 5 64 Suviseshamuthu et al. in 2020 [12] ACCESS 2020 [12] A,OFF 

ETKEO+CUSUM OT 115.5 114.8 78.6 40.3 100.3 Riedel et al. in 1994 [14] TMRB 2020 [31] P,OFF 

ETKEO PLM-DFS-Lap 122.2 236.1 54.9 24.9 125.5 Suviseshamuthu et al. in 2020 [12] TMRB 2020 [31] P,OFF Worse 

P: only a part of Dataset I where trials with lower SNR was used.        ON: online method. 
A: all trials were used.                    OFF: offline method that is unsuitable for use in online applications. 
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application [21] as published recently, and demonstrates the 
latest in powerful methods with the help of a data-driven 
approach. The relative difficulty in achieving online 
application methods versus offline is reflected in the 
comparison of the tabulated results between these two 
different methodologies. As a preprocessing method, the use 
of ETKEO has greatly improved performances and, 
correspondingly, has been widely used. However, as 
highlighted in Table I, the LCH method proposed in this paper 
demonstrates better and more effective results than ETKEO. 
Only the OT classifier was applied and tested with the LCH 
preprocessing method due to its simplicity of implementation. 
Though, as with ETKEO, LCH has the potential for 
combination with multiple different classification methods, 
where other classifiers may be advantageous than OT. This 
should, therefore, be investigated in subsequent research. 

B. Detailed Results on LCH  

1) Comparison of LCH and LCH-Opt 
The distribution of the MAO detection errors using the LCH 

and LCH-Opt methods, as evaluated on Dataset I, is shown in 
Fig. 6. Note that this figure illustrates the calculated error as a 
signed value, rather than its absolute magnitude, while the data 
listed in Table I provides evaluation indexes based on the 
absolute value of the error. Therefore, Fig. 6 highlights that 
the proposed MAO detection method, for some trials, 
generated MAO instance results ahead in time of the 
benchmark value provided by Dataset I, as assessed via visual 
inspection. These earlier detection instances may be 
reasonable, assuming that there is no sudden change in the 
signal amplitude, but the signal’s internal mode may be 
prematurely altered which would not be detected by the 
investigators, but may have been extracted by the algorithm. 
Overlayed on the error distribution plot in Fig. 6 is a box-plot: 
the red line represents the mean value, and the red shaded area 
illustrates the 95% confidence interval of the mean. The red 
dotted line denotes the median value and the blue line 
represents the SD. These results indicate that the use of LCH-
Opt narrowed the error distribution and reduced the extreme 
values in comparison to the LCH method. Hence, Fig. 6 
indicates that the offline simplification of LCH-Opt, to the 
LCH method, reduces the performance. 

 
The statistical chart of LCH values is shown in Fig. 7. The 

solid lines and underlying shadows represent the mean and 
standard derivation, respectively, of all 103 trials from Dataset 
I. All trials were aligned on the horizontal axis by the 
benchmark values from Dataset I. The average LCH value 
before 0 s is used as the offset to normalize the curve on the 

vertical axis. This operation achieves translation without 
scaling. Fig. 7 compares LCH and LCH-Opt and reveals that 
their trends are almost identical. Hence, the statistical 
performance of LCH is similar to that of LCH-Opt, though its 
variance in the resting state is slightly larger. An approximate 
threshold, and corresponding detection result are also shown 
in the figure, indicated by the dashed, horizontal, or vertical 
lines, respectively. The simulated threshold value was 
calculated by the sum of the mean and 2.5  variance, within 
the initial several windows. This result verifies that online 
optimization improves the stability and MAO detection 
performance. 

 

 
2) Influence of Different Parameters 

Fig. 8 compares LCH values using three different window 
lengths applied to signals from Dataset I. It can be seen that 
they share the same trend. Although the longer the window 
length, the greater the absolute difference of LCH before and 
after the MAO, the relative difference remains similar. The 
longer the window length, the smoother the LCH, resulting in 
less jitter. Although most of the results in this paper were 
obtained with a 200 ms window length, this figure suggests 
that the window length has little effect on the LCH feature. 

After varying the LCH window lengths to 50 ms, 100 ms, 
150 ms, and 200 ms, we conducted a statistical analysis on the 
MAO detection errors. It was examined that the data 
distribution does not satisfy normality (p = 0.001) and 
homogeneity of variance (p = 0.000). Therefore, the 
nonparametric Friedman's test was conducted and produced a 
p-value of 0.14, suggesting that the window length does not 
significantly influence the MAO detection performance when 
using LCH. Additionally, upon conducting multiple 

 

Fig. 8. Trends of LCH using different window lengths. 
. 

 

 
Fig. 7. Statistical chart of LCH and LCH-Opt on Dataset I. 

 

Fig. 6. Error distribution of LCH and LCH-Opt evaluated on Dataset I. 
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comparisons and paired t-tests between any two groups, no 
significant differences were observed. For instance, the 
comparison between the 50 ms and 200 ms groups yielded a p-
value of 0.65. For real-time application contexts, the window 
length can be tailored based on the signal sampling rate or 
other specific needs without compromising the efficacy of the 
selected features and methodologies. 

The scaler k value in OT is usually set based on experience. 
Several k values were evaluated, and the corresponding results 
are shown in Fig. 9. It can be seen that 4.5 is the proper k 
value and is consistent within the expected range of 3 to 15. 
The quantitative results using a k value of 4.5 are consistent 
with that of the LCH results shown in Table I.  

 
3) Calculation Consumption 

Based on Eq. (13), the LCH computation entails a 
cumulative sum operation, with the overall computation 
related to the window length. When tested on an older laptop 
equipped with a 1.6 GHz Intel i5-8250U CPU and operating 
within a Matlab script environment, the computation times for 
window lengths of 60, 80, 100, 200, and 400 sample points 
were approximately 0.18, 0.35, 0.57, 2.0, and 7.2 ms, 
respectively. This data can be modeled by a quadratic function 
𝑦 = 0.0004𝑥ଶ + 0.0019𝑥 − 0.0345, resulting in an R2 value 
of 0.9999. Thus, in terms of window length n, the algorithmic 
complexity can be represented as O(n^2). Another evaluation 
was conducted on an embedded controller with a 1.7 GHz 
CPU, operating under a C++ programming environment and 
achieving a real-time control frequency of 1000 Hz. The real-
time operation system cannot accommodate algorithms with 
computation durations exceeding 1 ms. For LCH window 
lengths of 60, 80, and 100 sample points, the control 
algorithm's computation times were approximately 0.27, 0.49, 
and 0.72 ms. While the computational burden of LCH-Opt is 
notably higher than that of LCH, it is not the primary concern 
for the online applications discussed in this paper. Even 

though LCH has a greater computational consumption 
compared to others, its computation duration remains within 
the microsecond range, rendering it apt for online applications. 
Given the balance between enhanced accuracy and minimized 
detection latency, the computational demand is considered 
justifiable. 
4) Noise Insensitivity 

After adding several levels of pseudo-random Gaussian 
white noise to the signals from Dataset I, the errors of MAO 
detection via the LCH-based method are presented in Fig. 10. 
Orange shading in the extreme right of the horizontal axis 
represents samples with an onset detection delay exceeding 
250ms, which was considered as a failure. A significant 
difference only exists between the levels with no added noise 
and those with an SNR of -20 dB (p=0.02) when evaluated by 
a paired student’s t-test.  

 
Fig. 11 shows the trend of LCH after adding noise. Since 

there are five levels of noise with 20 types of random seed, the 
LCH curve is double averaged from 5×20 samples and then 
counted from 103 trials in Dataset I. Therefore, its mean value 
is smoother, but not robust, and its variance is smaller, but 
without specific meaning. This graph reflects the influence of 
noise on the mean value, in that the noise reduces the absolute 
difference of LCH between the resting state and motion state, 
but does not overly affect the trend. The impact of noise on 
LCH-Opt has not yet been tested due to the requirement for 
large-capacity computing. According to Fig. 10 and Fig. 11, 
additional noise has little impact on the LCH feature and 
detection result, indicating that LCH possesses a strong anti-
noise capability.  

 

C. Validation Results on the Dataset II 

All the previously described experimental verification 
measures were also conducted on Dataset II. There was no 
parameter optimization, such as for window length and k value 
in the OT, but the LCH method performance was better, 
reflecting that the signal quality of Dataset II itself is superior. 

 

 
Fig. 11. Effect of additional noise on the LCH value.  
 

 

 
Fig. 10. Effect of additional noise on the LCH-based MAO detection method. 
 

 
Fig. 9. Effect of k value in the threshold classifier on the MAO detection 
error. (a) Error distribution. (b) Absolute error distribution. 
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A merged figure with all the results of the tests on Dataset II is 
provided as Fig. 12, though no further description, or analysis 
will be given in detail.  

VI. DISCUSSION 

A. Universality of the Method 

Some previous research spliced data from resting and 
motion states to simulate sEMG signals [13], [28] where there 
is a sudden change in amplitude, indicating a change in muscle 
activation state. However, such data is considered of little 
meaning as the recruitment of motor units is a gradual process 
rather than an abrupt change. The foundation of MAO 

detection should be in extracting information from the signal 
that indicates the start of a neural impulse firing and 
subsequent recruitment of motor units. Such detailed signal 
features may be absent in spliced data. 

As discussed in Section II, only two segments of an sEMG 
trial were used to form the model analysis. However, Dataset I 
which was used to validate this method, has samples in 
various conditions, so its results can demonstrate the wider 
dependability of this method. Specifically, it contains data 
from two distinct motor tasks using different muscles, where 
subjects moved the corresponding joint at a voluntary speed. 
Therefore, the recorded sEMG trials exhibit different SNRs, 
ranging from approximately 1.6 to 27 dB. Hence, LCH, as an 
offline optimized version of LCH-Opt, demonstrates 
universality, and the parameter set {0,0.1,0.9}, represents the 
general conditions of the GARCH model for modelling a 
surface EMG signal. The results of the LCH method on 
Dataset I were acquired after a simple optimization of the k 
value used in the threshold classifier. 

When the proposed method was validated on Dataset II with 
identical model parameters, the effect was improved, outdoing 
the results from Dataset I. This indicates that all parameters, 
including the k value, are not the result of over-fitting, and that 
the proposed method has capability for generalization across 
different datasets. 

B. Model Properties 
The full GARCH model has many properties and 

constraints. The boundedness constraint, 𝛼଴ + 𝛽଴ < 1 , was 
ignored in this research. As the model will not be used for 
long-term predictions, the stability of the model was 
considered less important. Thus, these parameter constraints 
are ignored in the LCH-Opt and offline determination of 
model parameters, however, this does not affect its 
performance for MAO detection. Additionally, the parameter 
set is not necessarily restricted to the quoted values of 
{0,0.1,0.9}. Other parameter value sets, around the extreme 
value, were established as having the same results, for 
example, the value set {0,0.2,0.85}. 

LCH-Opt is equivalent to the LCH method, but uses 
parameter values found through the online identification of the 
GARCH model. Its value sequence is always smoother than 
that of the LCH method, having less noise. However, to 
improve the real-time performance, the online optimization 
process is omitted in the proposed LCH method, and instead a 
median filter is introduced to ensure the same effect. Another 
improvement on the LCH method is to remove the second 
term in Eq. (13), and only accumulate the logarithmic value of 
the variance, where the median filter can then be omitted. This 
is because the second term of the LCH calculation, comprising 
of a division operation, may easily amplify the error and 
thereby, generate additional noise.  

From the perspective of real-time performance, a shorter 
window length is beneficial for discarding historical 
information and updating the motion state, as well as reducing 
computational load. Therefore, even with the slightly longer 
window length of 200 ms used in Section V.A, satisfactory 
accuracy results can still be achieved, reflecting the 
effectiveness of the method. 

 

 
(a) 

(b) 

 
(c) 

 
(d) 

Fig. 12. Results of the experimental verification measures on Dataset II. (a) 
Error distribution of LCH and LCH-Opt. (b) Statistical chart of LCH and 
LCH-Opt. (c) Effect of additional noise on LCH-based MAO detection. (d) 
Effect of additional noise on LCH. 



  12 

The proposed LCH method performs mediocrely on the 
IQR-25 evaluation index, which is likely to be related to the 
inherent delay of online median filtering. As illustrated in Fig. 
6, the MAO detection results of this method generally provide 
an onset instance value earlier than the benchmark time 
determined by visual detection, thereby leading to an increase 
in the mean absolute error. While this may be because the 
threshold is low, and thus is wrongly detecting the onset 
prematurely within the rest state. It is certainly also possible 
that the true muscle activation onset instance may be earlier 
than is discernable by visual detection, particularly in any 
trials with low SNR. Although the signal may not exhibit a 
sudden change in amplitude, the difference in its intrinsic 
pattern is extracted by the algorithm, which may be enabling 
an earlier detection of muscle activation. 

As shown in Fig. 10, LCH was demonstrated as being 
relatively insensitive to noise. Two potential reasons for this 
are speculated: This method was developed to model the 
signal variance rather than the amplitude, so the amplitude, or 
power, of the noise has less influence on the MAO detection. 
Alternatively, according to Eq. (1) and (3), the innovation and 
error are viewed as white Gaussian noise. Additional white 
noise may have little effect on the absolute difference in LCH 
between the resting state and motion state, but will reduce its 
relative difference. Correspondingly, previous research has  
also revealed that the AR-GARCH model is insensitive to data 
noise[34]. The specific mechanism and impact may warrant 
further analysis. 

GARCH has also been used for signal segmentation in 
previous studies [35], for example, in methods based on test 
statistics [36] and the conditional variance [24], which are 
distinct methods from those discussed in this paper. This 
suggests that GARCH has a strong applicability for use in 
change point detection due to its usage in separate methods, 
emanating from different foundational work. 

C. Limitations and Future Work 

Eq. (13) shows that LCH is a cumulative sum of values from 
all windowed samples. Although it can be used in online 
applications, it demands greater computational effort than 
other methods, such as TKEO and LPF. Algorithms for 
providing additional enhancements need further research. It is 
found that if fixed AR coefficients (offline calculated from 
resting state) were used in pseudo-online MAO detection, the 
difference of LCH in resting and motion states will be 
widened.  

Although LCH is termed a feature in this paper, it can only 
be applied to MAO detection at present. The feasibility of this 
feature for a multi-classification task, such as gesture 
recognition, needs further investigation. 

The experimental verification process used in this paper is 
equivalent to pseudo-online analysis of datasets. In the future, 
the proposed method will be applied to the online control of an 
exoskeleton as a supplement to a physical HMI. While this 
method is also useful for offset detection and signal 
segmentation, as an HMI, it is best tuned to the detection of 
muscle activation onset with low latency requirements. 

The classifier type used alongside the LCH method was not 
investigated or compared in this paper. A basic threshold 
classifier, without adaptation, was utilized due to the 

simplicity and convenience of its implementation. The results 
of the LCH method in Table I may be further improved by 
also optimizing the classifier. A simple optimization could 
revise the TP by using a double threshold [17] or some form 
of post-processor. Hence, future research could focus on the 
exploration and application of alternative classifiers, such as 
BCD, PLM, or learning-based models such as temporal 
convolutional networks. 

VII. CONCLUSION 

This paper introduces a novel feature, LCH, for online 
muscle activation detection. Firstly, this paper analyzes and 
models sEMG signals based on the AR-GARCH model. Due 
to the existence of heteroskedasticity in the motion state, and 
recognition of its absence in the resting state, it was found that 
the likelihood of parameters of the GARCH model were 
different in the process of maximum likelihood estimation. 
Therefore, the described LCH-Opt method is proposed as a 
preprocessing feature for MAO detection. To simplify the 
calculations, the online model parameter estimation may be 
replaced by a fixed parameter set, and thus, the LCH method 
is subsequently derived. The proposed preprocessing feature, 
used in combination with a threshold classifier, was validated 
on two public sEMG datasets, and the corresponding results 
were directly compared with several other methods from 
previous research. As an online detection method, the MAO 
detection accuracy of this technique demonstrated an excellent 
performance compared to existing online methods. 
Additionally, the LCH method provides a further advantage in 
its insensitivity to noise. In summary, this paper provides 
results for the proposed LCH feature used for MAO detection 
and evaluated on experimental sEMG data, which 
demonstrates its strong applicability for use in online signal 
detection or segmentation, and corresponding future research.  

APPENDIX: ABBREVIATIONS 

The acronyms used in this paper are listed in Table II. 
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