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A B S T R A C T

This paper addresses the challenge of subsampling large datasets, aiming to generate a smaller dataset that
retains a significant portion of the original information. To achieve this objective, we present a subsampling
algorithm that integrates hierarchical data partitioning with a specialized tool tailored to identify the most
informative observations within a dataset for a specified underlying linear model, not necessarily first-order,
relating responses and inputs. The hierarchical data partitioning procedure systematically and incrementally
aggregates information from smaller-sized samples into new samples. Simultaneously, our selection tool
employs Semidefinite Programming for numerical optimization to maximize the information content of the
chosen observations. We validate the effectiveness of our algorithm through extensive testing, using both
benchmark and real-world datasets. The real-world dataset is related to the physicochemical characterization
of white variants of Portuguese Vinho Verde. Our results are highly promising, demonstrating the algorithm’s
capability to efficiently identify and select the most informative observations while keeping computational
requirements at a manageable level.
1. Motivation

Subsampling has emerged as a highly effective strategy for address-
ing challenges associated with big (and large) datasets. Over time,
numerous subsampling methodologies have emerged to tackle this
issue. Diverse techniques and models, such as leverage sampling in
linear regression, have been repeatedly introduced in the literature,
as evidenced by reviews by Stewart [1] and Yao and Wang [2]. In
practical terms, subsampling is a statistical technique employed to
extract a smaller, representative sample from a larger dataset while
minimizing information loss. Its primary objective is to retain the
majority of the essential information present in the original dataset by
carefully selecting observations or records to form a smaller sample,
often referred to as a subsample or data subset. This approach proves
particularly valuable when dealing with extensive datasets, as it fa-
cilitates more manageable data analysis techniques. Frequently, data
quality is degraded by the deficiency of information value due to the
non-controlled experimental conditions under which observations are
obtained. Furthermore, when the number of observations is substantial,
even unimportant variables can become statistically significant.

To address the challenge of subsampling from large datasets, a
variety of methods have been developed, as exemplified by the work
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of Mahoney [3], Drineas et al. [4], Ma et al. [5] and Wang [6],
among others. These methods share a common underlying principle:
the utilization of sampling criteria that ensure a high degree of similar-
ity between the descriptive statistics of the sample and those of the
entire population. Several strategies have been employed to achieve
this goal: (i) leverage scores: Ma et al. [5] introduced the concept of
leverage scores as a means to guide subsampling; (ii) optimal Poisson
subsampling: Yu et al. [7] put forward an optimal Poisson subsampling
approach, offering another avenue to address this challenge; and (iii)
asymptotic distribution in linear regression: Ma et al. [8] find the
asymptotic distribution of the sampling estimator within the context
of linear regression. In addition to these developments, there exists a
rich historical context concerning the use of information-theoretical
criteria for subsampling. Pioneering work by Wynn [9,10], Fedorov
[11] and Pronzato [12], among others, has paved the way for further
advancements in the field. Given the growing importance of this topic,
further contributions have emerged. Some authors have proposed meth-
ods that combine information criteria with linear regression models,
as exemplified by the work of Deldossi and Tommasi [13], Reuter
and Schwabe [14] and Wang et al. [15]. Additionally, fully Bayesian
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experimental designs have been developed, aiming, as a comprehensive
approach to addressing the subsampling problem, to maximize the
utility function representing the Shannon information gain [16].

The concept of utilizing information-theoretical criteria to identify
a subset of observations that maximizes the information content is
appealing, as it aligns with the core principle of subsampling: reduc-
ing the size of the dataset while retaining substantial information.
Moreover, this approach offers a solution based on the optimal de-
sign of experiments, a problem that can be effectively tackled using
various systematic algorithmic tools. Several algorithms have proven
useful in this context, including: (i) Semidefinite Programming: as
illustrated by Duarte et al. [17] provides a systematic approach to
address this challenge; (ii) Second Order Cone Programming: Sagnol
[18] demonstrated the efficacy of Second Order Cone Programming
in optimizing experimental designs; and (iii) Mixed Integer Linear
Programming: Vo-Thanh et al. [19] have successfully employed Mixed
Integer Linear Programming techniques for this purpose. Furthermore,
the ever-increasing computational power at our disposal enables the
utilization of Bayesian experimental designs through simulation. Re-
searchers can harness this power to explore such designs, as exemplified
by the work of Huan and Marzouk [20], Overstall and Woods [21].

While the concept is undeniably appealing, the challenges asso-
ciated with handling large datasets persist, despite the advances in
optimization algorithms and computational capabilities. Even when
employing algorithms of polynomial complexity (referred to as P-type
algorithms) to tackle optimization problems, the large volume of data
can still present limitations, particularly when working in batch mode.
To mitigate these challenges, a common strategy involves the use of
data partitioning, as exemplified by Mahmud et al. [22]. Data partition-
ing serves as a pivotal technique, allowing for the organization of vast
datasets into manageable subsets. This not only enhances the tractabil-
ity of the problem, as demonstrated by Singh et al. [23], but also paves
the way for the integration of information across these subsets using
hierarchical approaches and iterative procedures. In practical terms,
information gleaned from a specific level of analysis is passed on to the
subsequent level, as articulated by Stergiou and Poppe [24]. Through
this iterative process, a representative data subset that encapsulates the
essence of the original dataset is progressively obtained. Finally, Wang
et al. [25] introduced the Information-Based Optimal Subdata Selec-
tion (IBOSS) algorithm, which exhibits connections with our proposed
algorithm. These are discussed in Section 6.

Our paper is centered on the subsampling of extensive datasets
which we assume are characterized by linear relationships between
response variables and covariates. To address this challenge, we em-
ploy a comprehensive approach that combines hierarchical strategies
with data partitioning based on optimal design of experiments. This
approach enables us to identify the most informative observations
within smaller subsets of the original dataset. The selection of these
informative observations is guided by optimality information criteria,
which allow us to make judicious choices. To optimize the information
content within each subset, we utilize optimality criteria and Semidef-
inite Programming (SDP) formulations to find the most informative
observations. In our investigation, we focus on the most commonly used
optimality criteria, namely D-, A-, and E-criteria, owing to their simplic-
ity and the ease with which they can be translated into tractable SDP
formulations. The results depend both on the optimality criterion and
the assumed linear model. The output is a subset of observations and
the optimal experimental design for this subset. We discuss applications
of this design in Section 6.

1.1. Novelty statement and organization

This paper presents several novel contributions: (i) automated sub-
sampling approach: We introduce an innovative, computationally auto-
mated method for subsampling large datasets; (ii) a hierarchical-based
2

strategy: Our approach incorporates a hierarchical framework that
combines data partitioning with the optimized selection of the most
informative observations through SDP; (iii) application to a benchmark
test: We apply our algorithm to a benchmark test, demonstrating its
practical utility and effectiveness; and (iv) impact analysis: We conduct
a detailed analysis to evaluate the influence of both partition size and
the prior sorting of observations based on response variables on the
performance of the algorithm. This analysis sheds light on key factors
affecting the effectiveness of the proposed method.

The paper is organized as follows. Section 2 introduces the back-
ground and the notation used to formulate the problem of the choice
of the most informative observations, as well as the fundamentals of
Semidefinite Programming used to compute the support points and the
hierarchical partitioning of data. Section 3 introduces the algorithm
proposed to automate the subsampling. Comparisons for different se-
tups using a benchmark dataset are presented in Section 4. Section 5
demonstrates the application of the algorithm to a real dataset related
to data characterizing physicochemically white variants of Portuguese
Vinho Verde. Section 6 reviews the formulation and offers a summary
of the results obtained with the proposed tool.

2. Notation and background

In our notation bold face lowercase letters represent vectors, bold
face capital letters stand for continuous domains, blackboard bold
capital letters are used to denote discrete domains and capital letters
are adopted for matrices. The transpose operation of a matrix or vector
is represented by ‘‘⊺’’. The trace of a matrix is represented by tr(∙), and
hcat(𝐴,𝐵) represents the horizontal concatenation of two matrices with
equal number of rows into one, and vcat(𝐴,𝐵) stands for the vertical
concatenation of matrices with equal number of columns.

In Section 2.1, we present the key measures employed for evaluating
experimental designs. In Section 2.2, we introduce the foundational
concepts of SDP. Following that, in Section 2.3, we provide a com-
prehensive overview of the fundamental aspects of hierarchical data
partitioning.

With a slight abuse of notation, let 𝐷 = hcat(𝑌 ,𝑋) ∈ R𝑛0×(𝑛r+𝑛c) be a
arge dataset comprising 𝑛0 observations of 𝑛r+𝑛c variables. The matrix
∈ R𝑛0×𝑛r contains as lines the vectors 𝐲𝑖 ∈ R1×𝑛r of the observed

response variables, 𝑖 = 1,… , 𝑛0. Additionally, matrix 𝑋 ∈ R𝑛0×𝑛𝑐 ,
contains the input variables, with 𝑖th row 𝐱𝑖 ∈ R1×𝑛c representing the
measurements of the 𝑛c covariates and constant terms (if any) for the
𝑖th observation, 𝑖 = 1,… , 𝑛0. A subset of size 𝑛𝑙 < 𝑛0, 𝑙 > 0 of the origi-
nal dataset is denoted by 𝐷strip = hcat(𝑌 strip, 𝑋strip) ∈ R𝑛𝑙×(𝑛r+𝑛c), where
𝑌 strip and 𝑋strip are defined correspondingly. Notice that the number
of observations in our algorithm is indexed by an iterative procedure
where the hierarchical level, indexed to counter 𝑙, is increased; here 𝑛0
holds for the observations in the original data matrix which corresponds
to level 𝑙 = 0, and 𝑛𝑙 , 𝑙 ∈ {1,… , 𝐿} for the number of observations of
the stripped data in the remaining hierarchical levels, with 𝐿 indicating
the total number of hierarchical partition levels required.

To maintain generality, we focus on a single response variable and
𝑛c regression factors. We describe the relationship between the response
and covariates using a linear model:

𝑦𝑖 = 𝛽0 + 𝛽𝛽𝛽 𝐱⊺𝑖 + 𝜖c = 𝜃𝜃𝜃 𝐡⊺(𝐱𝑖) + 𝜖𝑖. (1)

Here, 𝜃𝜃𝜃 = {𝛽𝑖|𝑖 ∈ {0,… , 𝑛c}} ∈ R1×(𝑛c+1), is the vector of regression
coefficients. The vector 𝐡(𝐱𝑖) ∈ R1×(𝑛c+1), where 𝐡(𝐱𝑖) = (1, 𝐱𝑖), contains
the measurements for the regressors, augmented by the constant 1. For
simplicity, we compactly refer to 𝐡(𝐱𝑖) as 𝐡𝑖.

Given a data matrix with 𝑛0 observations, a design 𝜉 with 𝑛𝑘 < 𝑛0
support points is a vector of 𝑛0 weights 𝑤𝑖 (𝑖 ∈ {1,… , 𝑛0}), that are
greater than zero for the (𝑛𝑘) observations that form the support of
𝜉 and are equal to zero for all the other observations in the dataset.
The global Fisher Information Matrix corresponding to model (1) for
a design 𝜉 on the original dataset is given by

(𝜉|𝑋) = −E
[

𝜕
(

𝜕(𝜉)
⊺

)]

= 𝑛0 ⋅
𝑛0
∑

𝑤𝑖 𝑀(𝐱𝑖) = 𝑛0 ⋅
𝑛0
∑

𝑤𝑖 𝐡⊺𝑖 𝐡𝑖, (2)

𝜕𝜃𝜃𝜃 𝜕𝜃𝜃𝜃 𝑖=1 𝑖=1
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where 𝑀(𝐱𝑖) denotes the elemental FIM at 𝐱𝑖 ∈ 𝑋,  represents the
log-likelihood, and E[∙] stands for the expectation. It is worth noting
that 𝑋 can be replaced by 𝑋strip and 𝑛0 by 𝑛𝑙 in subsequent hierarchical
partition levels.

In our iterative procedure for subset selection we find optimum
designs for subsets of size 𝑛𝑥. We would like to find an exact design
or each subset, that is one for which some weights 𝑤𝑖 are zero and
he other weights are equal and sum to one. The support points of this
esign then form part of a subset for the next level of iteration. Such
n exact design problem is computationally forbidding. We therefore
olve the computationally easier continuous or approximate optimum
esign problem for which 𝑤𝑖 ≥ 0 and ∑𝑛𝑥

𝑖=1 𝑤𝑖 = 1. These weights are
then rounded to give exact designs. The details are in Section 3.1.

2.1. Measuring design efficiency

Here, we establish the metrics for assessing the efficiency of an
experimental design 𝜉 relative to a reference design 𝜉ref . These results
are used repeatedly in the subsequent sections of the paper. We define
the p−efficiency of a design 𝜉 wrt 𝜉ref (p = {D,A,E}) as follows:

Eff𝐷(𝜉, 𝜉ref ) =
(

det[(𝜉|𝑋)]
det[(𝜉ref |𝑋)]

)1∕(𝑛c+1)
(3a)

Eff𝐴(𝜉, 𝜉ref ) =
tr[(𝜉ref |𝑋)−1]
tr[(𝜉|𝑋)−1]

(3b)

Eff𝐸 (𝜉, 𝜉ref ) =
𝜆min[(𝜉|𝑋)]

𝜆min[(𝜉ref |𝑋)]
(3c)

where, 𝜆min[∙] denotes the minimum eigenvalue.
In Section 4 we take 𝜉ref to be the optimal continuous design for

the optimal subset ‘‘stripped’’ from the original dataset. Practically, 𝜉ref
can be sub-optimal if the design space is continuous but is globally
optimal for the set of observations forming the dataset. The tabulated
efficiencies of our designs will therefore be less than one.

2.2. Semidefinite programming

In this Section, we introduce the fundamentals of Semidefinite Pro-
gramming. This class of (convex) mathematical programming methods
is employed to solve the optimal experimental design problems, given
the discrete design domain X𝑛 populated with 𝑛 experimental candidate
points.

Let S𝑛𝜃+ be the space of 𝑛𝜃 × 𝑛𝜃 symmetric positive semidefinite
matrices, and S𝑛𝜃 the space of 𝑛𝜃 ×𝑛𝜃 symmetric matrices. A convex set
𝐒 ⊂ R𝑛𝜃 is considered semidefinite representable (SDr) when for all 𝜁𝜁𝜁 ∈
𝐒, the projection of 𝜁𝜁𝜁 onto a higher-dimensional set 𝐒exp can be precisely
characterized using Linear Matrix Inequalities (LMIs). A SDr set is
always a convex set given by finitely many polynomial inequalities
(of strict and non-strict nature) involving semidefinite matrices [26,
§3]. In turn, a convex (or concave) function 𝜑 ∶ R𝑚1 ↦ R is SDr if
and only if the epigraph of 𝜑, {(𝑡, 𝜁𝜁𝜁 ) ∶ 𝜑(𝜁𝜁𝜁 ) ≤ 𝑡}, or the hypograph,
{(𝑡, 𝜁𝜁𝜁 ) ∶ 𝜑(𝜁𝜁𝜁 ) ≥ 𝑡}, respectively, are SDr and can be cast by LMIs [26,27].
The values, 𝜁𝜁𝜁 , that optimize specific SDr functions are then formulated
as semidefinite programs of the form [27, §4.6.2]:

max
𝜁𝜁𝜁

𝐝⊺ 𝜁𝜁𝜁 (4a)

s.t.
𝑚1
∑

𝑖=1
𝜁𝑖 𝑀𝑖,𝑗 +𝑀0,𝑗 ⪯ 0, 𝑗 ∈ {1,… , 𝑘} (4b)

𝑀0 𝜁𝜁𝜁 ⪯ 𝜌 (4c)

𝑀𝑖,𝑗 ∈ S𝑘+, 𝑖 ∈ {0,… , 𝑚1}, 𝑗 ∈ {1,… , 𝑘}. (4d)

In our design context, the decision variables in vector 𝜗𝜗𝜗 are the
weights of the design 𝑤𝑖, 𝑖 ∈ {1,… , 𝑛}, and other required auxiliary
variables, and 𝐝 is a vector of known constants that depends on the
design problem. Semidefinite positive matrices 𝑀𝑖,𝑗 , 𝑖 ∈ {1,… , 𝑚1}, 𝑗 ∈
3

{1,… , 𝑘} contain elemental FIMs and other matrices produced by the
reformulation of the function 𝜑(𝜉) into LMIs. The problem of calculating
an optimal design for a pre-specified set of candidate experimental
points X𝑛 = {𝐱1,… , 𝐱𝑛} is solved with the formulation (4a)–(4d)
complemented by the linear constraints on the weights: (i) 𝑤𝑖 ≥ 0; and
(ii) ∑𝑛

𝑖=1 𝑤𝑖 = 1.
Ben-Tal and Nemirovski [26] provide a list of SDr functions useful

for solving continuous optimal design problems with SDP formulations,
see Boyd and Vandenberghe [27, §7.3]. Recently, Sagnol [28] showed
that each criterion in the Kiefer class of optimality criteria is SDr
for all rational values of 𝛿 ∈ ( − ∞, 0[ and general Semidefinite
Programming formulations exist for them. Here, 𝛿 is the coefficient
in the Kiefer general class of criteria 𝛷𝛿 [29]. Notice that, in (3),
A-optimality corresponds to 𝛿 = −1, E-optimality to 𝛿 → −∞ and
D-optimality to 𝛿 → 0. Practically, the problem of finding optimal
approximate experimental designs for the most common convex (or
concave) criteria can be formulated as a Semidefinite Programming
problem falling into the general representation, see Vandenberghe and
Boyd [30] and Duarte and Wong [31] among others.

2.3. Hierarchical partitioning

In this Section we present the fundamentals of dataset partitioning,
which serves two primary objectives: (i) reducing the computational
complexity in the search for a set of candidate observations for sub-
sampling; and (ii) ensuring a comprehensive analysis of the calculated
subsample and so hopefully of the entire dataset. In the context of
our discussion, ‘‘data partitioning’’ refers to the division of the dataset
into distinct, subsets, characterized by tables featuring an equivalent
number of columns and a limited number of rows. As datasets grow
in size to a point where they, along with their associated processing
metadata, exceed cache capacity, partitioning becomes instrumental
in enhancing the performance of critical database operations. These
operations encompass tasks such as joins, aggregations, and sorts,
as emphasized by Lin et al. [32]. Furthermore, the application of
hierarchical partitioning enables the efficient management of diverse
segments and the subsequent merging of results into a consolidated
dataset, as detailed in the work by Sasaki [33].

We employ the same nomenclature as introduced in Section 2;
𝐹 0,𝑛𝑥
𝑘 = (𝑌 𝑛𝑥

𝑘 , 𝑋𝑛𝑥
𝑘 ) denote the 𝑘th subset of the original dataset 𝐷,

comprising a fixed number 𝑛𝑥 of consecutive observations. Likewise, as
for the original dataset, we define 𝐹 𝑙,𝑛𝑥

𝑘 = hcat(𝑌 𝑙,𝑛𝑥
𝑘 , 𝑋𝑙,𝑛𝑥

𝑘 ) ∈ R𝑛𝑥×(𝑛c+𝑛r )

with 𝑋𝑙,𝑛𝑥
𝑘 and 𝑌 𝑙,𝑛𝑥

𝑘 containing observations for the regressors and the
responses respectively, within the 𝑘th subset (of size 𝑛𝑥) of a reduced
dataset 𝐷𝑙,strip available at the hierarchical level 𝑙. Let 𝑛𝑙 denote the size
of the reduced dataset 𝐷𝑙,strip, available at the hierarchical level 𝑙; then
the total number of subsets 𝐹 𝑙,𝑛𝑥

𝑘 of 𝐷𝑙,strip is 𝑚𝑙 = ⌈𝑛𝑙∕𝑛𝑥⌉, where ⌈∙⌉
represents the ceiling operator.

Each data subset 𝐹 𝑙,𝑛𝑥
𝑘 undergoes a selection process employing an

SDP-based tool, resulting in the identification of the most informative
observations. This process leads to the creation of ‘‘stripped’’ data
subsets characterized by a reduced number of observations 𝑛𝑙𝑘 < 𝑛𝑥
denoted as 𝐹 𝑙,strip

𝑘 , 𝑘 ∈ {1,… , 𝑚𝑙}. In other terms, 𝑛𝑙𝑘 is the number
of observations within the 𝑘th dataset that optimizes 𝐹 𝑙,𝑛𝑥

𝑘 at the 𝑙th
hierarchical level. Subsequently, 𝑙 is increased by 1 and the ‘‘stripped’’
data subsets, 𝐹 𝑙−1,strip

𝑘 , 𝑘 ∈ {1,… , 𝑚𝑙−1}, are combined to form an
extended dataset 𝐷strip,𝑙 = vcat(𝐹 𝑙−1,strip

1 ,… , 𝐹 𝑙−1,strip
𝑚𝑙−1

) which can then
be subjected to further partitioning if necessary. The number of ob-
servations retained in 𝐷𝑙,strip is represented as 𝑛𝑙 =

∑𝑚𝑙−1
𝑘=1 𝑛𝑙−1𝑘 . The

hierarchical level at convergence is denoted as 𝑙∗ and the size of the
respective ‘‘stripped’’ dataset as 𝑛𝑙∗ .

The number of required partition levels is unknown initially, as it
hinges on the unpredictability of the number of support points needed
to optimize information extraction from each data subset. To address
this lack of knowledge, we employ the following rule for increasing
the partition level: when 𝑚 = ⌈𝑛 ∕𝑛 ⌉ > 2, 𝐷𝑙,strip is divided into slots
𝑙 𝑙 𝑥
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Fig. 1. Data partitioning-based algorithm. The ‘‘other subsets’’ each provide a 𝐹 0,𝑚𝑙
𝑖 data matrix.
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omprising 𝑛𝑥 observations each and we increment the hierarchical
evel by one. Conversely, if the condition does not hold, the final
ierarchical level 𝑙∗ is reached. The dataset 𝐷𝑙∗ ,strip of size 𝑛𝑙∗ is not
artitioned and it undergoes one final iteration through the Selection
ool to obtain a final optimum design. In other words, we raise the
artition level when the number of selected observations exceeds twice
he value of 𝑛𝑥; otherwise, the dataset undergoes a last round of
nformation-maximizing selection.

To address potential numerical errors, we introduce a lower thresh-
ld, denoted as ‘‘tol’’, to the weights of individual observations obtained
y solving the SDP problem, represented as 𝑤𝑖. This ‘‘tol’’ value is
onsistently set to 1 × 10−4 in all subsequent problems investigated in
his study. In Fig. 1, we present an illustrative overview of our hier-
rchical data partitioning approach. Within this diagram, the Selection
ool symbolizes the SDP solver module employed to determine the
ptimal design of experiments within the set of candidate observations
, excluding observations with weights below ‘‘tol’’.

. Algorithm for model subsampling

In this Section we introduce the framework proposed for data
ubsampling and performance measurement.

.1. Finding alphabetic optimal experimental designs via semidefinite pro-
ramming

This Section presents the formulations for obtaining optimal alpha-
etic designs using SDP, as illustrated by the Selection tool in Fig. 1.
DP can pose computational challenges, particularly when dealing with
substantial number of candidate observations. However, it offers the
4

dvantage of ensuring the identification of the global optimum within
grid of discrete candidate points. The Semidefinite Programming

ormulations for all the criteria share a common structure, as outlined
n Eqs. (4a)–(4d). Detailed formulations for the D-, A-, and E-optimality
riteria, which are currently considered state-of-the-art, are provided in
ppendix.

In our work, we addressed the Semidefinite Programming problems
tilizing the cvx environment in conjunction with the Mosek solver,

renowned for its efficient Interior Point algorithm [34]. To ensure
computational precision, we set both relative and absolute tolerances
of the SDP solver at 1 × 10−5. Subsequently, we filter observations, re-
taining only those with 𝑤𝑖 values greater than or equal to the tolerance
threshold ‘‘tol’’.

In essence, we keep observations in datasets 𝐹 𝑙,𝑛𝑥
𝑘 that result from

he SDP treatment, where 𝑤𝑖 ≥ tol, while discarding others. To guaran-
ee that the sum of weights equals 1 after the sweeping operation, we
ormalize the distribution of 𝑤’s. The number of observations extracted
rom each dataset is determined by the relation

𝑙
𝑘 =

𝑛𝑥
∑

𝑖=1
1𝑤𝑖≥tol, 𝑘 ∈ {1,… , 𝑚𝑙}, 𝑙 ∈ {1,… , 𝐿}. (5)

The SDP-based tool facilitates the generation of subsampling sets
that do not necessarily coincide with exact designs. By ‘‘exact design’’,
we refer to a design where all the weights are rational numbers,
whereas ‘‘approximate designs’’ encompass designs that incorporate
weights falling within the non-rational range in [0, 1]. To generate
exact designs from previous approximate designs obtained via SDP one
can employ the rounding procedure introduced by Pukelsheim and
Rieder [35], provided that the total number of observations equals 𝑛𝑙.
All computations presented in this paper were executed on a 64-bit
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Windows 10 operating system running on an Intel Core i7 machine
clocked at 2.80GHz.

.2. Hierarchic partitioning tool

This Section introduces the algorithm designed for subsampling.
nitially, Algorithm 1 provides a description of the Selection tool, which
ccomplishes several tasks: solving the SDP problems for each data
artition (as discussed in Section 3.1), normalizing the weights, and
alculating equivalent exact designs from approximate designs. It is
mportant to note that the acronym MIO stands for ‘‘Most Informative
bservations’’.

Algorithm 1 Selection of the most informative observations in each
dataset 𝐹 𝑙,𝑛𝑥

𝑘 .

procedure SelectObservations(Input: Criterion, 𝑘, 𝑛𝑥 , 𝐹
𝑙,𝑛𝑥
𝑘 ,tol; Output:𝑛𝑙𝑘 , 𝜉𝑙𝑘)

Compute single observation FIM’s
Solve the SDP problem
Find observations with 𝑤𝑖 ≥ tol; 𝐬 ≡ {𝑖 ∶ 𝑤𝑖 ≥ tol}
𝑤𝑖 ← 𝑤𝑖∕

∑

𝐬 𝑤𝑖 ⊳ Re-normalize the weights
𝐹 𝑙,strip
𝑘 ← {𝐹 𝑙,𝑛𝑥

𝑘,𝑖 ∶ 𝑖 ∈ 𝐬} ⊳ Build the set of MIO

𝜉𝑙𝑘 ← (𝐹 𝑙,strip
𝑘 ;𝐰)

if Exact designs then
Set 𝑁 ← card(𝐬)
𝜉𝑙𝑘 ← (𝐹 𝑙,strip

𝑘 ;𝐰), 𝐰 = 𝐧∕𝑁 ∈ [0, 1] ⊂ Z ⊳ Rounding
end if

end procedure

Algorithm 2 outlines the hierarchical partition tool, which is
chematically depicted in Fig. 1. This procedure comprises an external
oop in which 𝑙 is iterated as needed and an internal loop that iterates
hrough the data subsets generated through partitioning. The iteration
oncludes when the number of observations has been reduced to 𝑛0 ≤
2 ⋅ 𝑛, at which point a final selection process is executed.

Algorithm 2 Hierarchical data partitioning algorithm.
procedure HierarchicalPartitioning(Input: Criterion, 𝐷, 𝑛0 , 𝑛𝑥; Output: 𝑛𝑙 , 𝐷strip,𝑙)

tol← 1 × 10−4

𝑙 ← 0, 𝑚←⌈𝑛0∕𝑛𝑥⌉
while 𝑛0 > 2 𝑛𝑥 do

for 𝑘 ∈ {1,⋯ , 𝑚𝑙} do
SelectObservations (Criterion,𝑘, 𝑛𝑥 , 𝐹

𝑙,𝑛𝑥
𝑘 , tol; 𝑛𝑙𝑘 , 𝜉

𝑙
𝑘) ⊳ Find MIO

end for
𝑙 ← 𝑙 + 1
𝐷strip,l ← Vertical concatenation of 𝐹 𝑙−1,strip

𝑘 , 𝑘 = 1,⋯ , 𝑚𝑙

𝑛𝑙 ←
∑𝑚𝑙−1

𝑘=1 𝑛𝑙−1𝑘
𝐷 ← 𝐷strip,l

𝑛𝑙−1 ← 𝑛𝑙
end while
𝑘 ← 1
SelectObservations (Criterion,𝑘, 𝑛𝑥 , 𝐹

𝑙,𝑛𝑥
𝑘 , tol; 𝑛𝑙𝑘 , 𝜉

𝑙
𝑘) ⊳ Find MIO

𝑙 ← 𝑙 + 1
𝐷strip,l ← Vertical concatenation of 𝐹 𝑙−1,strip

𝑘 , 𝑘 = 1,⋯ , 𝑚𝑙

𝑛𝑙 ←
∑𝑚𝑙−1

𝑘=1 𝑛𝑙𝑘
end procedure

4. Application examples

In this Section, we apply the formulations of Section 3 to assess the
effectiveness of our proposed subsampling approach for large datasets.
Initially, we apply our algorithm to a benchmark dataset, previously
examined in Deldossi and Tommasi [13]. We evaluate the performance
of our algorithm in Section 4.1. Subsequently, in Section 4.2, we
expand its application to investigate the influence of partition size and a
preliminary sorting step of observations based on the response variable,
used in the initial partitioning process. We also analyze the impact
of assuming a quadratic model to represent the relation between the
response and the covariates.

The dataset used for testing comprises 𝑛0 = 1 × 106 observations.
Each observation contains one response and 𝑛c = 10 covariates. These
covariates were generated through random sampling, following distinct
distributions:
5

1. 𝑥𝑖, 𝑖 ∈ {1, 2, 3} follows uniform distributions in the interval [0, 5],
i.e. (𝑥1, 𝑥2, 𝑥3) ∼ (𝑈 [0; 5], 𝑈 [0; 5], 𝑈 [0; 5]);

2. 𝑥𝑖, 𝑖 ∈ {4, 5, 6, 7} follows a multivariate normal distribution with
𝜇𝜇𝜇1 = (0, 0, 0, 0) and covariance matrix

𝑉1 =

⎛

⎜

⎜

⎜

⎜

⎝

9 −1 −1 −1
−1 9 −1 −1
−1 −1 9 −1
−1 −1 −1 9

⎞

⎟

⎟

⎟

⎟

⎠

,

i.e. (𝑥4, 𝑥5, 𝑥6, 𝑥7) ∼ 𝑁(𝜇𝜇𝜇1, 𝑉1);
3. 𝑥𝑖, 𝑖 ∈ {8, 9} follows a Student t distribution with 3 degrees of

freedom, 𝜇𝜇𝜇2 = (0, 0) and covariance matrix

𝑉2 =
(

4.0 0.5
0.5 4.0

)

,

i.e. (𝑥8, 𝑥9) ∼ 𝑡3(𝜇𝜇𝜇2, 𝑉2);
4. 𝑥𝑖, 𝑖 ∈ {10} follows a Poisson distribution with 𝜆 = 5, i.e. 𝑥10 ∼

𝑃 (𝜆).

The linear model, as expressed in Eq. (1), used for
enerating the response variable is defined by 𝜃𝜃𝜃 =
0.25, 0.3, 0.2, 0.1, 0.35, 0.28, 0.16, 0.05, 0.08, 0.17, 0.06)⊺, where the first
omponent corresponds to 𝛽0, and the subsequent components
orrespond to the remaining coefficients associated with the
forementioned random variables. Thus, the size of the FIM is
c + 1 = 11. The observational noise 𝜖c is characterized by a normal
istribution with mean 0 and a standard deviation of 0.2, represented
s 𝑁(0, 0.2).

To enhance the clarity of the forthcoming tables and figures, we will
efine the following terms:

(i) 𝜉ori: This represents the uniform design derived from the original
dataset 𝑋, and it can be expressed as 𝜉ori = (𝑋⊺,𝐰), with 𝑤𝑖 =
1∕𝑛0, 𝑖 ∈ {1,… , 𝑛0};

(ii) 𝜉appr : This denotes the approximate optimal design obtained for
the stripped dataset 𝑋strip,𝑙 at convergence using Algorithm 2.
Specifically, 𝜉appr is defined as ((𝑋strip,𝑙)⊺,𝐰), with 𝐰 calculated
through SDP;

(iii) 𝜉exac: This holds for the exact optimal design obtained for the
stripped dataset 𝑋strip,𝑙 at convergence. It can be expressed as
𝜉exac = ((𝑋strip,𝑙)⊺,𝐰), where 𝐰 is determined by rounding the
SDP-obtained optimal design, while considering the allocation
of 𝑛𝑙 observations; and

(iv) 𝜉unif : This represents the uniform optimal design for the stripped
dataset 𝑋strip,𝑙 at convergence, and is expressed as 𝜉unif =
((𝑋strip, 𝑙)⊺,𝐰), where 𝑤𝑖 = 1∕𝑛𝑙 , 𝑖 ∈ {1,… , 𝑛𝑙}.

To evaluate the efficiency of designs, we consider 𝜉appr as the reference
as it provides the optimal allocation of observations, maximizing the
information contained within the original dataset.

4.1. Reference scenario

Here, we employ the algorithm on the dataset, 𝐷, defined above
which contains 𝑛0 = 1 × 106 observations, and we set the initial number
of partitions, 𝑚0, to 100 which yields 𝑛𝑥 = 1 × 104.

Table 1 presents the outcomes achieved for 𝐷 as detailed above.
In this table, Column 1 represents the chosen optimality criterion
employed in our algorithm. Column 2 contains 𝑙∗, the number of
iterations (hierarchical levels of partitioning) necessary to solve the
problem. Column 3 specifies the count of sampling points within the
final dataset (i.e., the size of the subsample derived from the original
dataset). Moving forward, Column 4 is for the CPU time, Column 5
quantifies the efficiency of the original dataset in comparison to the
approximate design, while Column 6 gives the efficiency of the ex-

act design obtained through rounding. Finally, Column 7 elucidates
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Table 1
Results of the subsampling procedure applied to dataset 𝐷 (𝑛0 = 1 × 106 , 𝑚0 = 100, 𝑛𝑥 = 1 × 104). The reference design
in Eq. (3) is 𝜉appr . The number of iterations at convergence is 𝑙∗.

Optimality
criterion

𝑙∗ 𝑛∗𝑙 CPU time (s) Eff(𝜉orig , 𝜉appr ) Eff(𝜉exac , 𝜉appr ) Eff(𝜉unif , 𝜉appr )

D- 3 36 498.53 0.2881 0.8868 0.8868
A- 3 39 512.11 0.1699 0.6318 0.6318
E- 3 27 481.12 0.0839 0.3335 0.3335
the efficiency of the corresponding uniform design. These efficiency
measurements are calculated using Eqs. (3a)–(3c).

To find exact designs from approximate designs we need to set the
number of experiments. Here, we take the number of experiments to
be the number of support points of the approximate designs, that is
𝑛𝑙∗ . Since the primary rule of rounding is allocating an observation to
each support point, the exact and uniform designs are often close.

A manifestation of the closeness of the designs in Table 1 is the
identity of the numbers in the last two columns. Unless some design
points have 𝑤𝑖 < 𝑡𝑜𝑙 the allocation is unitary. If some 𝑤𝑖 < 𝑡𝑜𝑙, we can
have support points with 0 replication and others with replication 2.

ue to the small value of tolerance considered, 1 × 10−4, this situation
as not occurred here, nor in the results shown in Tables 2–5.

The number of observations in the subsampling approach remains
onsistently close to 40 for all the optimality criteria we analyzed,
hat is roughly four times 𝑛𝑐 . The efficiencies are below 1.0 since
he subsampled observations are chosen to be more informative on
per-observation basis. However, the amount of information derived

rom the complete dataset surpasses that of the subsample datasets.
s expected, due to the rounding process, the efficiencies of the exact
esigns are lower than their approximate counterparts. This difference
s particularly pronounced when we consider the E-optimality criterion.

Figs. 2(a)–2(c) depict the weight distributions of the optimal designs
btained through Algorithm 2, presenting the approximate, exact, and
niform designs. Note that the weights of observations excluded from
he subsampling set are set to zero. The rounded optimum designs con-
ain around 20 support points, with the exact design for E-optimality
eing smallest.

To assess the optimality of the formulations used for identifying
he most informative observations within data subsets, we conducted a
omparative analysis between our SDP-based tool and the randomized
xchange algorithm (REA) proposed by Harman et al. [36], imple-
ented in the R language, as detailed in Harman and Filová [37].
his comparison focused on D-optimal and A-optimal designs and was
estricted to the approximate designs generated for the initial data
ubset (𝑘 = 1) at the first partition level (𝑙 = 0) with 𝑛𝑥 = 100 (implying
0 = 1 × 104) for the example presented above. For both optimality cri-
eria considered, our designs exhibited remarkable efficiency, slightly
utperforming the designs obtained using the REA. The efficiency of the
-optimal design achieved through the REA relatively to the equivalent
DP-based design was 0.9974, while the efficiency of the A-optimal
esign to our SDP-based design was 0.9884. It is important to note that
omparing computational efficiency presents challenges. Nevertheless,
ur experiments demonstrate that the REA outperforms the SDP-based
ool in terms of speed for this particular dataset. In both algorithms the
ize of the optimal subsample is determined by the design algorithm,
ather than being pre-specified.

.2. Extensions

In this Section we extend the application of the algorithm intro-
uced in Section 3.2 by examining three key aspects: (i) we investigate
he influence of partition size on the final subsample; (ii) we assess
he effects of ordering the data based on the response variable, so
eplacing contiguous partitions with partitions corresponding to strata
f the response. It is worth noting that this technique is not applicable
6

o time series data but can be valuable for unordered data structures;
Fig. 2. Results for simulated dataset (𝑛0 = 1 × 106, 𝑚0 = 100). Weights for (a)
D-optimality criterion; (b) A-optimality criterion; (c) E-optimality criterion.
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Table 2
Results of the subsampling procedure applied to dataset 𝐷 (𝑛0 = 1 × 106 , 𝑚0 = 200, 𝑛𝑥 = 5 × 103). The reference design
in Eq. (3) is 𝜉appr . The number of iterations at convergence is 𝑙∗.

Optimality
criterion

𝑙∗ 𝑛∗𝑙 CPU time (s) Eff(𝜉orig , 𝜉appr ) Eff(𝜉exac , 𝜉appr ) Eff(𝜉unif , 𝜉appr )

D- 3 36 572.55 0.2881 0.8868 0.8868
A- 3 41 564.59 0.1699 0.6452 0.6452
E- 3 25 523.48 0.0841 0.4107 0.4107
Table 3
Results of the subsampling procedure applied to dataset 𝐷sorted (𝑛0 = 1 × 106 , 𝑚0 = 100, 𝑛𝑥 = 1 × 104) after sorting based on
the response variable. The reference design in Eq. (3) is 𝜉appr . The number of iterations at convergence is 𝑙∗.

Optimality
criterion

𝑙∗ 𝑛∗𝑙 CPU time (s) Eff(𝜉orig , 𝜉appr ) Eff(𝜉exac , 𝜉appr ) Eff(𝜉unif , 𝜉appr )

D- 3 42 484.89 0.2858 0.8709 0.8709
A- 3 37 483.89 0.1749 0.6442 0.6442
E- 3 28 493.14 0.0870 0.3445 0.3445
f
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and (iii) we explore the impact of employing quadratic polynomials
instead of first-order models in Eq. (1).

Table 2 displays the outcomes for the identical dataset, where again
𝑛0 = 1 × 106, but now 𝑚0 is increased to 200 with 𝑛𝑥 being 5 × 103.
These results exhibit strong agreement with those presented in Table 1;
the efficiencies are similar. This finding serves as evidence that the
algorithm can identify the most informative observations, and that, as
expected, this capability remains consistent regardless of the partition
size. The CPU times increase around 10% for all optimality criteria.

To investigate the impact of selecting initial partitions based on
distinct strata of the response variable, we initially arrange the ob-
servations in ascending order using a sorting tool. In this process, 𝐷
is transformed into 𝐷sorted ≡ {𝑌 sorted, 𝑋sorted} ∈ R𝑛0×(𝑛r+𝑛c), and this
sorted dataset is subsequently subjected to the algorithm. Similarly to
reference scenario we set 𝑚0 = 100; consequently, 𝑛𝑥 is set to 1 × 104.
This approach results in a reduction of information within each stratum
while simultaneously increasing the information available in the final
sample (at convergence). Table 3 presents the outcomes for 𝑋sorted, and
these results closely align with those in

Table 1, providing evidence for the minimal impact of the ordering
procedure on the final subsample.

We now turn our attention to a quadratic model expressed as

𝑦𝑖 = 𝛽0 + 𝛽𝛽𝛽 𝐱⊺𝑖 + 𝛾𝛾𝛾 𝐱⊺𝑖 ◦𝐱
⊺
𝑖 + 𝜖𝑖 = 𝜃𝜃𝜃 𝐡⊺(𝐱𝑖) + 𝜖𝑖. (6)

where ◦ stands for the elementwise product of vectors and 𝐱⊺𝑖 ∈ R𝑛c , 𝑖 ∈
{1,… , 𝑛0}.

Our objective is to identify the optimal design for estimating the
2 ⋅ 𝑛c + 1 = 21 coefficients of this model using an expanded matrix
of explanatory variables denoted as 𝐷expd. Here, 𝜃𝜃𝜃 is the vector of
regression coefficients defined as 𝜃𝜃𝜃 = hcat(𝛽𝛽𝛽, 𝛾𝛾𝛾) ∈ R1×(2𝑛̇c+1), and 𝐡(𝐱𝑖) is
the basis expansion given by 𝐡(𝐱𝑖) ≡ (1, 𝐱𝑖, 𝐱𝑖◦𝐱𝑖) ∈ R1×(2⋅𝑛c+1). To create
the expanded dataset, we augment the original dataset by including
the squares of the columns of matrix 𝑋. Specifically, the inputs dataset
s represented as 𝑋expd ≡ {𝐱𝑖,𝑗 , 𝐱2𝑖,𝑗 |𝑖 ∈ {1,… , 𝑛c, }, 𝑗 ∈ {1,… , 𝑛0}}.
onsequently, the dataset subjected to subsampling is referred to as
expd ≡ hcat(𝑌 ,𝑋expd) ∈ R𝑛0×(𝑛r+2⋅𝑛c).

Due to the larger size of the Fisher Information Matrices (FIMs),
he computational processing time increases to approximately 4 times
er data partition. The size of the optimal subsets also increases. The
esults are detailed in Table 4, revealing an increase in the D-optimality
fficiency of 𝜉appr relatively to uniform design obtained by consider-
ng all the observations. Specifically, on a per-observation basis, the
-optimal approximate design provides nearly 9 times the informa-

ion found in the original data, the A-optimal design offers roughly
∕0.1978 ≈ 5 times more information, and the E-optimal design delivers
bout 1∕0.0814 ≈ 12 times more information. These comparisons assess
he optimality of designs obtained through the subsampling algorithm
hen compared to the original datasets, where all observations have
7

qual weight. g
Notably, when considering A- and E-optimality criteria, their ef-
iciencies closely match those presented in Tables 1–3. In contrast,
he D-optimal efficiency for the quadratic model is appreciably higher.
urthermore, the loss of efficiency in exact and uniform designs relative
o approximate designs is more pronounced. In each case, the size of
he final subsample is at least twice as large as that achieved with
he first-order model (as indicated in Columns 3 of Tables 1–4), and
he CPU time required is approximately 5 times greater for all criteria.
n summary, employing quadratic models to represent the relationship
etween the response and the covariates enhances the information con-
ent within the final subsample, attributable to the increased number
f selected observations.

. Application to a real dataset

We have employed our proposed methodology on a real-world
ataset, specifically referring to white variants of Portuguese Vinho
erde. This particular type of wine, known as a ‘‘young wine’’, is

ypically released between three to six months after the grapes are
arvested. Additional information about Vinho Verde is at http://www.
inhoverde.pt/en/ as well as in the work by Cortez et al. [38].

The dataset comprises 11 covariates that provide a physicochemical
haracterization of the wine, along with one response variable that
uantifies its quality through sensory testing. In total, the dataset
ncompasses 4898 wines. To rigorously evaluate our methodology in
his scenario, we followed the step-by-step process outlined in Section
ection 4:

(i) initially, we set the number of observations in each partition,
denoted as 𝑛𝑥, to 490, which leads to 𝑚0 = 10 partitions;

(ii) we, then conducted an assessment of the impact of the subsam-
ple size by halving the value of 𝑛𝑥, resulting in 𝑛𝑥 = 245 and
𝑚0 = 20, while keeping the other parameters fixed;

(iii) the dataset was subsequently sorted based on the output vari-
able, and the resulting structure was subjected to our proposed
methodology, maintaining 𝑛𝑥 at 490 (equivalent to 10 strata);

(iv) lastly, we employed a quadratic polynomial model (see Eq. (6)),
which naturally increased the number of parameters to be
estimated, specifically to 2 ⋅ 𝑛c + 1 = 23 where 𝑛c = 11.

his systematic approach enabled us to thoroughly evaluate the effec-
iveness and reliability of our methodology across various conditions
nd configurations.

Fig. 3 illustrates the weights for D-optimal (Fig. 3(a)), A-optimal
Fig. 3(b)), and E-optimal (Fig. 3(c)) designs when 𝑛𝑥 is set at 490 with
0 equal to 10. The exact designs again agree with the uniform designs

n each case.
In Table 5, we present a comparison of the subsampling sets
enerated for all simulated scenarios. For all optimality criteria, the

http://www.vinhoverde.pt/en/
http://www.vinhoverde.pt/en/
http://www.vinhoverde.pt/en/
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Table 4
Results of the subsampling procedure applied to dataset 𝐷expd (𝑛0 = 1 × 106 , 𝑚0 = 100, 𝑛0 = 1 × 104) considering the quadratic
model (6). The reference design in Eq. (3) is 𝜉appr . The number of iterations at convergence is 𝑙∗.

Optimality
criterion

𝑙∗ 𝑛∗𝑙 CPU time (s) Eff(𝜉orig , 𝜉appr ) Eff(𝜉exac , 𝜉appr ) Eff(𝜉unif , 𝜉appr )

D- 3 207 2189.67 0.1123 0.7641 0.7641
A- 3 99 2796.94 0.1978 0.5695 0.5695
E- 3 79 1882.45 0.0814 0.4402 0.4402
Table 5
Results of the subsampling procedure applied to dataset related to the characterization of white variants of Portuguese Vinho
Verde. The reference design in Eq. (3) is 𝜉appr .

Optimality
criterion

𝑙 𝑛𝑙 CPU time (s) Eff(𝜉orig , 𝜉appr ) Eff(𝜉exac , 𝜉appr ) Eff(𝜉unif , 𝜉appr )

𝑛 = 490, 𝑚0 = 10, first-order model

D- 2 21 12.16 0.2702 0.9275 0.9275
A- 2 26 14.23 0.1318 0.8475 0.8475
E- 2 24 11.86 0.0721 0.4555 0.4555

𝑛 = 245, 𝑚0 = 20, first-order model

D- 2 21 23.77 0.2699 0.9316 0.9316
A- 2 26 26.73 0.1323 0.8221 0.8221
E- 2 21 21.72 0.0729 0.4376 0.4376

𝑛 = 490, 𝑚0 = 10, after sorting based on response variable, first-order model

D- 2 24 12.56 0.2688 0.8964 0.8964
A- 2 26 14.70 0.1322 0.8447 0.8447
E- 2 24 11.72 0.0769 0.4988 0.4988

𝑛 = 490, 𝑚0 = 10, after dataset expansion, quadratic model

D- 2 57 28.53 0.1794 0.8807 0.8807
A- 2 68 54.59 0.1193 0.5998 0.5998
E- 2 38 19.58 0.0778 0.4120 0.4120
number of subsampling points for first-order-based models is consis-
tently around 20. Remarkably, the trends observed in the simulated
dataset align with those in this specific dataset: (i) both exact and uni-
form designs yield subsamples with lower information per observation
compared to the approximate design; (ii) all design criteria produce
subsamples with higher information density per observation than the
original dataset, although the absolute information amount in the latter
is greater; (iii) for the quadratic model, the number of observations
within subsample sets nearly doubles that obtained for the first-order
model, except for the E-optimality criterion; (iv) the efficiencies of
the designs for the quadratic model are notably higher than those for
the first-order model; (v) notoriously, the uniform design, including
all observations, is less efficient here than when a first-order model is
considered. The reduction in efficiency is due to the increased efficiency
of the approximate design relative to that for the first-order model. This
consistent pattern highlights the robustness and generalizability of our
findings across different datasets and models.

6. Conclusions

We have considered the problem of subsampling large datasets, a
task of paramount importance in light of the vast amount of infor-
mation generated in today’s world. Effectively managing the original
data without sacrificing significant underlying insights is imperative.
To address this challenge, we have adopted an approach grounded in
information criteria for the purpose of selecting the most informative
observations within a sample. Our approach is rooted in linear models
between the response and input variables. We have demonstrated its
adaptability on both first-order and quadratic models.

Our procedure provides an optimum subset of the data of size 𝑛𝑙∗
and an optimum design based on this subset. The parameter estimates
from this design can be used to fit a linear model to any subset; plots
of residuals against fitted values can then be used to check whether
the data are homogeneous. For example, in Section 4.2 we ordered
the data by response value. This had no effect on the analysis of our
8

homogeneous simulated data. But if there were outliers in the data,
their presence would be indicated by plots of residuals from subsets
of differing sorted order. Close to optimal subsets can be investigated
by considering subsets for which 𝑙 = 𝑙∗ − 1. Subsets of a few thousand
are sufficiently small that their properties can be thoroughly checked
using, for example, the methods for monitoring robust regression of
[39]. Such procedures include the properties of the response variables
in subset selection.

In Section 1 we mentioned the recent work of Wang et al. [25] who
introduced the Information-Based Optimal Subdata Selection (IBOSS)
algorithm, which exhibits connections with our proposed algorithm.
IBOSS employs a partition-based selection approach to identify observa-
tions with extreme values which, based on a bound of the determinant
of a Hadamard matrix [40,41], are deemed to be the most informative.
The selection process unfolds iteratively, wherein a predetermined
number of samples, linked to the extreme values of the first covariate,
are initially selected. Subsequently, this procedure is replicated for
the remaining covariates by replacing observations in the chosen set
by others while upholding a consistent sample size. In essence, this
algorithm aligns with D-optimality criteria commonly applied in exper-
imental design, particularly when the goal is to identify a set of points
with associated binary variable weights to describe the allocation of
observations. This problem shares similarities with the optimization
of sensor placement in distributed systems, as discussed by Uciński
and Patan [42],Schäfer [43], and can be effectively addressed through
the utilization of Mixed Integer Semidefinite Programming (MISDP)
solvers, see Gally et al. [44],Duarte [45]. However, if the connections
are many, the differences are also noticeable. Specifically, (i) our algo-
rithm incorporates observations into the subsample by quantifying the
information contained within each observation, thus accounting for the
information across all covariates simultaneously; (ii) it utilizes state-of-
the-art convex solvers to deterministically select the most informative
observations; (iii) the subsample size is not predetermined but dynam-
ically emerges as a result of the algorithm’s observation selection, and
tends to be minimally supported; and (iv) other optimality criteria can

be easily applied to guide the selection process.
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Fig. 3. Results for a real dataset characterizing white variants of Portuguese Vinho
erde (𝑛0 = 4898, 𝑚0 = 10). Weights for (a) D-optimality criterion; (b) A-optimality
riterion; (c) E-optimality criterion.

From a numerical perspective, we have tackled the problem of
ubset selection by employing SDP formulations within the space of
vailable observations, as elucidated in Section 2.2. We avoid the
omplexity and prohibitive time of computation from simultaneous
onsideration of all observations in the dataset, by introducing a novel
pproach based on hierarchical partitioning. Our tool for implement-
ng this methodology is presented in Section 2.3. The algorithms
9

integrating both procedures are detailed in Section 3.2. The pro-
posed tool partitions the original dataset into slices and identifies the
most informative observations within each one. Subsequently, these
selected observations are integrated into a ‘‘stripped’’ dataset, and this
iterative process continues until the number of observations in the
‘‘stripped’’ dataset is small enough to be analyzed by customary statis-
tical methods. Ultimately, each chosen observation should significantly
contribute to representing the underlying information within the data.
We successfully tested the proposed tool with a benchmark and a real-
world dataset. The real-world dataset is related to the physicochemical
characterization of white variants of Portuguese Vinho Verde.

It is clear from our results that the mathematical programming
ools we have used enable us to efficiently address massive datasets
ith data mining techniques within reasonable computational times.
hen confronted with big datasets, hierarchical partitioning offers a

aluable approach to surmount the complexities resulting from the high
imensionality. As we have demonstrated, subsampling based on in-
ormation criteria represents a natural and numerically robust method
or extracting significant observations, since it relies on a transparent
etric to measure the information contained within each data point

nd accordingly allows choice of individual observations. An exciting
venue to extend this work involves exploring nonlinear models, such
s Gaussian kernel regression models.
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Appendix

A.1. Formulations to determine the optimal allocation via semidefinite
programming

Here, we list the SDP formulations for the D–, A– and E–optimality
criteria. The first three were introduced in Vandenberghe and Boyd [30,
46] and Ben-Tal and Nemirovski [26]. We start with the formulation
for D-optimal designs:

Opt ≡ max
𝜉,𝐵

𝑡 (A.1a)

s.t.
(

𝑀(𝜉) 𝐵⊺

𝐵 diag(𝐵)

)

⪰ 0𝑛𝜃 (A.1b)

𝑡 ≤
𝑛𝜃
∏

𝐵1∕𝑛𝜃
𝑖,𝑖 (A.1c)
𝑖=1
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O

O

R

𝑘
∑

𝑖=1
𝑤𝑖 = 1 (A.1d)

0 ≤ 𝑤𝑖 ≤ 1, 𝑖 ∈ {1,… , 𝑘}. (A.1e)

The formulation for computing A-optimal designs is:

pt ≡ min
𝜉,𝐵

𝑡 (A.2a)

s.t.
(

𝑀(𝜉) 𝐼𝑛𝜃
𝐼𝑛𝜃 𝐵

)

⪰ 02×𝑛𝜃 (A.2b)

𝑡 ≥
𝑛𝜃
∑

𝑖=1
𝐵𝑖,𝑖 (A.2c)

𝑘
∑

𝑖=1
𝑤𝑖 = 1 (A.2d)

0 ≤ 𝑤𝑖 ≤ 1, 𝑖 ∈ {1,… , 𝑘}, (A.2e)

Finally, for E-optimal designs, we have:

pt ≡ max
𝜉,𝑡

𝑡 (A.3a)

s.t. 𝑀(𝜉) − 𝑡 𝐼𝑛𝜃 ⪰ 0𝑛𝜃 (A.3b)
𝑘
∑

𝑖=1
𝑤𝑖 = 1 (A.3c)

0 ≤ 𝑤𝑖 ≤ 1, 𝑖 ∈ {1,… , 𝑘}. (A.3d)
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