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the ampere-hour integration method [7] is simple and easy to 
estimate, the output depends on the initial value, and errors 
accumulate with the integration, resulting in inaccurate 
estimates. ECM is usually combined with a Kalman filter 
(KF) to estimate SOE [8, 9]. For example, Lai et al. [10] 
proposed a novel SOE method using a particle filter (PF) and 
extended Kalman filter (EKF) insensitive to uncertain total 
available energy loss and ambient temperatures, and the 
maximum error is less than 3%. Although the method based on 
ECM can improve the estimation accuracy of SOE, the 
accuracy of the ECM model will directly affect the 
estimation accuracy, which requires much time to establish the 
mode. The neural network model [11] does not require the 
construction of ECM and has good generalization ability for 
different battery types. 

Recurrent neural networks (RNN) can well characterize 
sequence problems, introduce the concept of "memory," and 
fully capture the influence of other moments on the output of 
the current moment [12, 13]. Due to the problems of gradient 
disappearance and long-term dependence of RNN, long-period 
memory (LSTM) is proposed. LSTM introduces cell states 
based on traditional RNN, which can select and save input 
information [14, 15]. Although GRU, as a variant of LSTM, 
has similar functions, GRU has a more straightforward 
structure, which can improve the estimated speed of the 
model [16-18]. To further improve the accuracy of the 
algorithm and reduce the influence of noise interference on 
the result, a hybrid method [19, 20] combining a neural 
network model and filtering algorithm can be constructed. 
Compared with other literature [21-23], most are based on 
one-way LSTM or GRU combined with an improved KF 
algorithm. This paper fully explores the data series' 
characteristics, improves the model's memory ability, and 
proposes the BiGRU-TSVSF algorithm based on the KF 
algorithm. The main contributions of this paper are as follows. 

(1) Build a bidirectional GRU model for multi-directional 
information "memory". 

(2) Construct SVSF based on a time-varying bounded layer 
for smooth denoising of nonlinear solid data. 

(3) Experimental analysis based on different temperatures 
and working conditions proved the accuracy and robustness of 
the algorithm. 
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Abstract—The accurate estimation of state of energy (SOE) is 

the key to the rational energy distribution of lithium-ion battery 

based energy storage equipment. This paper proposes an 

improved bidirectional gate recursive element combined with a 

time-varying bounded layer based smooth variable structure 

filtering algorithm. First, based on the solid temporal nature of 

the estimated parameters, a BiGRU neural network structure is 

constructed to strengthen further the influence of past and 

future information on the current estimates. Then, based on the 

traditional variable structure filtering, a time-varying bounded 

layer smoothing mechanism with saturation restriction (TS-

VBL) is proposed to smooth the output of BiGRU to obtain a 

more accurate estimate. Finally, the test was conducted under 

15℃ hybrid pulse power characterization (HPPC) and 35℃ 

Beijing bus dynamic stress test (BBDST). Compared with other 

algorithms, the BiGRU-TSVSF algorithm has a minor maximum 

estimation error of 0.00495 and 0.00722, respectively. The 

experimental results show that the algorithm has high precision 

and robustness and is of great value to the energy storage 

research of energy storage equipment. 

Keywords-state of energy; smooth variable structure 
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I. Introduction

In the past, society's massive consumption of energy 
not only brought the world energy crisis and caused 
severe environmental pollution. Lithium-ion batteries are 
widely used as energy storage equipment sources due to 
their advantages of green environmental protection, 
low energy consumption, and long cycle life. Among 
them, the most typical is the research and development 
of new energy vehicles [1]. However, with the extensive 
promotion and use of products using lithium-ion 
batteries as energy storage devices, there have been false 
energy displays, fast power consumption, and even 
explosions due to overcharge and over-discharge or 
environmental factors [2, 3]. 

The accurate and effective estimation of SOE can 
better solve the problem of battery energy distribution and 
ensure the safe operation of the battery. Standard SOE 
estimation methods include ampere-hour product (AHI), 
battery equivalent circuit model (ECM) based method, 
neural network model, and other methods [4-6]. Although 



II. Mathematical analysis

A. bidirectional gate recurrent unit

GRU is simple in structure and can reflect the time series
problem well. It can solve the gradient problem of traditional 
RNN and the problem of a small information range. However, 
a single GRU can only take information from one direction and 

preserve it as a "memory." To improve the accuracy of SOE 
estimation, a BiGRU network model is constructed in this paper. 
Capture information from both positive and negative directions 
and determine the output value at the current moment, thereby 
strengthening the influence of past and future information on 
the output. The structure of BiGRU is shown in Figure 1. 
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Figure 1. Improved RNN structure diagram. (a) GRU single-celled structure. (b) BiGRU. 

As can be seen from Figure 1(b), the GRU consists of a reset 
gate and an update gate. It can be seen from Figure 1(c) that the 
current hiding layer state ht and the current input xt, and the 

forward hiding layer state ℎ⃑ 𝑡  and forward hiding layer state 

ℎ⃐⃑𝑡  are jointly determined by three states. The hidden layer
formula is shown in Formula 1. 

{

ℎ⃑ 𝑡 = 𝐺𝑅𝑈(ℎ⃑ 𝑡−1, 𝑥𝑡)

ℎ⃐⃑𝑡 = 𝐺𝑅𝑈(ℎ⃐⃑𝑡+1, 𝑥𝑡)

ℎ𝑡 = 𝑤𝑡ℎ⃑ 𝑡 + 𝑣𝑡 ℎ⃐⃑𝑡 + 𝑏𝑡

(1) 

Where, 𝑤𝑡   and 𝑣𝑡  are the weights of the forward and
reverse hidden states respectively, and 𝑏𝑡  is the bias

corresponding to the hidden layer state at time t. 

B. Improved Smooth variable structure filtering based on time-

varying boundary layer

The Smooth bounded layer principle (SSVSF) is introduced
into the SVSF algorithm, which can not only be applied to 
nonlinear solid systems but also solve the problem of filtering, 
which is not apparent due to the measurement noise and 
inappropriate initial conditions in the KF algorithm. In addition, 
the SSVSF algorithm uses the smooth bounded layer to smooth 
and filter the results effectively. Also, it ensures the stability of 
the estimation process, avoiding the problem of SVSF 
estimation trajectory oscillation. The algorithm principle 
diagram of SSVSF is shown in Figure 2(a). 
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Figure 2. Improved SVSF algorithm. (a) SSVSF algorithm principle diagram. (b) TSVSF algorithm principle diagram. 

In Figure 2(a), 𝛽 represents the initial existential boundary 
and 𝜑  represents the smooth boundary. It can be seen that 
when 𝛽 ≤ 𝜑 , the estimated state trajectory is stable output. 
However, when 𝛽 ≥ 𝜑 , the output of the estimated state 
trajectory fluctuates sharply, which will lead to the reduction of 
output accuracy. To solve the above problems, based on the 
smooth bounded layer, this paper introduces the principle of 
time-varying bounded layer (TVBL) to form the TSVSF 
smooth filtering algorithm, which restricts the smooth bounded 
layer, to ensure the smooth output of the estimated results. The 

principle is shown in Figure 3(b). As can be seen from it, when 
the boundary of the smooth bounded layer deviates from the 
standard trajectory, the limiting layer will conduct real-time 
saturation restriction to keep the estimated trajectory in a stable 
state so that the SOE estimate after accurate filtering can be 
obtained. The calculation process is mainly divided into four 
steps, as shown below. 

The first step is the prediction stage. 



{

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘

�̂�𝑘+1|𝑘 = 𝐶�̂�𝑘+1|𝑘

𝑒𝑘+1|𝑘 = 𝑧𝑘+1 − �̂�𝑘+1|𝑘

𝑆𝑘+1 = 𝐶𝑃𝑘+1|𝑘𝐶
𝑇 + 𝑅

𝐸𝑘+1 = |𝑒𝑘+1|𝑘| + 𝛾|𝑒𝑘|𝑘|

(2) 

Where, �̂�𝑘+1|𝑘 is the state estimation matrix; 𝑃𝑘+1|𝑘 is the

covariance matrix; �̂�𝑘+1|𝑘  is the measurement estimation

matrix; 𝑒𝑘+1|𝑘  is a new information or measurement error;

𝑆𝑘+1 is defined as the measurement error covariance matrix.
𝐸𝑘+1 is defined as the variable of error; A is the transfer matrix
of state x from k-1 to time k; B is the input matrix; C is the 
measurement matrix 𝛾 is a positive diagonal matrix where the 
elements satisfy 0 < 𝛾𝑖𝑖 < 1.

The second step is to calculate a smooth boundary layer. 

𝜓𝑘+1 = ((𝑑𝑖𝑎𝑔(𝐸𝑘+1))
−1𝐶𝑃𝑘+1|𝑘𝐶

𝑇𝑆𝑘+1
−1 )−1 (3) 

The third step, calculate the gain. In this step, different gain 
calculation formulas must be selected according to the size of 
the smooth bounded and restricted layers. 

𝐾𝑘+1 = 𝐶−1𝑑𝑖𝑎𝑔(𝐸𝑘+1)𝜓𝑘+1
−1 (4) 

The width of the smooth bounded layer is smaller than that 
of the limiting layer, and the gain is calculated as shown in 
Formula 5. 

𝐾𝑘+1 = 𝐶−1𝑑𝑖𝑎𝑔((𝐸𝑘+1

∘ 𝑠𝑎𝑡(𝑒𝑘+1|𝑘, 𝜓))[𝑑𝑖𝑎𝑔(𝑒𝑘+1|𝑘)]
−1 (5) 

The fourth step, update the stage. 

{

𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝑘+1𝑒𝑘+1|𝑘

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶)𝑇 + 𝐾𝑘+1𝑅𝐾𝑘+1
𝑇

�̂�𝑘+1|𝑘+1 = 𝐶𝑥𝑘+1|𝑘+1

𝑒𝑘+1|𝑘+1 = 𝑧𝑘+1 − �̂�𝑘+1|𝑘+1

(6) 

C. Overall structure of BiGRU-TSVSF algorithm

To obtain accurate SOE estimates, the BiGRU-TSVSF
combined algorithm is proposed. The battery's current, voltage, 
and temperature data tested under specific conditions are used 
as inputs to the BiGRU model. The trained BiGRU model 
collects the information before and after and outputs the SOE 
with the current input values. At this time, the SOE value may 
cause the curve to produce burrs due to the internal 
uncertainties of the model, and the error value becomes more 
extensive. Therefore, the SOE output of BiGRU is taken as the 
input of TSVSF and smoothed to reduce the error and improve 
the model's accuracy. The overall framework of the BiGRU-
TSVSF algorithm is shown in Figure 3. 
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Figure 3. BiGRU-TSVSF algorithm framework 

To further analyze the accuracy of the estimated results, this 
paper uses mean square error (MSE) and mean absolute error 
(MAE) as evaluation indicators to compare and analyze the 
results. Their expression is shown in Formula 7. 

{

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

(7) 

Where, 𝑦𝑖  indicates the true value. �̂�𝑖  is the estimate; 𝑦�̅�

is the average. 



III. Experimental analysis

A. Lithium-ion battery test platform design

The ternary material has replaced the previously widely
used lithium cobalt oxide cell, which is widely used in high-
tech equipment. This research is based on a 72Ah ternary 

lithium-ion battery cycle charging and discharging experiment. 
The experimental configuration is divided into five parts: 
temperature test chamber, charge and discharge test, lithium-
ion battery, PC, and BMS. The lithium-ion battery test platform 
is shown in Figure 4. 

Figure 4. Lithium-ion battery test platform 

B. Comparative analysis of SOE estimation results

This paper uses HPPC at 15℃ and BBDST at 35℃ as
training data and test data of the BiGRU network model. 
Among them, SOE and theoretical SOE values in the training 
data are obtained by integrating 1 as the initial value. To further 

reflect the performance of this algorithm, the SOE output values 
of GRU, BiLSTM, and BiGRU were also obtained and 
compared in this experiment under the condition that the model 
hyperparameters and the number of iterations were consistent. 
SOE estimation results are shown in Figure 5. 

(A) 35℃BBDST-15℃HPPC. (a) SOE result. (b) Error comparison. 

(B) 15℃HPPC-35℃BBDST. (a) SOE result. (b) Error comparison.

Figure 5. The comparison of algorithm GRU, BiLSTM, BiGRU, and BiGRU-TSVSF under different working conditions 

The comparison graph of the four algorithms shows that the 
bidirectional network has higher estimation accuracy than the 
unidirectional network. The comparative analysis of errors 
shows that the SOE estimation errors of GRU and BiGRU are 
0.0463 and 0.0298 under HPPC and 0.0683 and 0.0466 under 
BBDST. Compared with the output error of BiLSTM and 
BiGRU, their SOE estimation results are familiar. Under HPPC 
and BBDST, the maximum error of BiLSTM and BiGRU is 
0.0274,0.0298, and 0.0486, 0.0466, respectively, and the 
difference between them is minimal. However, compared with 
BiLSTM, BiGRU has a more straightforward structure and 
faster model estimation speed, so it is a good choice for this 

study. In addition, by comparing the SOE estimation results and 
errors of BiGRU and BiGRU -TSVSF, it is evident that the 
TSVSF algorithm proposed in this paper can perform smooth 
filtering operations on SOE from the BiGRU model. Finally, 
the HPPC and BBDST estimation error reaches 0.00495 and 
0.00722, respectively. The SOE error analysis of different 
algorithms proves that this algorithm has high precision and 
robustness. To further reflect the performance of the algorithms, 
this study also conducted a comparative analysis of the 
performance indicators of MSE and MAE for the four 
algorithms, as shown in Figure 6. 



Figure 6. MSE and MAE results under HPPC and BBDST conditions. (a) The results of MSE. (b) The results of MAE. 

According to the MSE and MAE results of the four 
algorithms under different working conditions, it can be seen 
that this algorithm is the minimum value under both working 
conditions. The smaller the value, the smaller the output error 
of the model and the better the fitting effect with the theoretical 
value. Under HPPC and BBDST, the MSE values of the 
BiGRU-TSVSF algorithm are 0.0018% and 0.0014%, and the 
MAE values are 0.353% and 0.311%. The experimental results 
show that the proposed BiGRU-TSVSF algorithm can be 
applied to complex processes at different temperatures, and the 
SOE estimation accuracy is high. 

IV. Conclusion

To accurately estimate the SOE of lithium-ion batteries 
under various complex conditions, improve the efficiency of 
energy storage distribution to ensure the safe operation of the 
battery system. In this paper, an improved BiGRU-TSVSF 
algorithm is proposed. The mechanism of bidirectional 
information capture satisfies the nature of SOE's time series 
data. The SOE output of BiGRU is filtered and denoised by the 
SVSF algorithm with a time-varying bounded layer. HPPC at 
15°C and BBDST test data at 35°C are used for interactive data 
estimation to improve the model's generalization ability. Under 
HPPC conditions, the maximum error, MSE, and MAE of the 
BiGRU-TSVSF algorithm are 0.00495, 0.0018%, and 0.0014%, 
respectively. Under BBDST conditions, the maximum error, 
MSE, and MAE of the BiGRU-TSVSF algorithm are 0.00722, 
0.353%, and 0.311%, respectively. This algorithm has the best 
performance index compared with GRU, BiLSTM, and BiGRU. 
Experimental results show that this algorithm has high accuracy, 
robustness, and generalization ability. This algorithm can be 
applied to SOE estimation and other state parameters of 
lithium-ion. 
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