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Abstract. The state of charge estimation with high precision 

plays an important role in the usage of lithium-ion batteries in 

electronic vehicles. An improved genetic-backpropagation neural 

network (GA-BPNN) is proposed to predict the state of charge 

with high precision under complex working conditions. 

Specifically, the elite retention strategy is introduced to genetic 

operations to enhance the efficiency of the algorithm. Moreover, a 

further performance comparison of the improved GA-BPNN is 

achieved to prove its effectiveness. The experimental results show 

that the accuracy of the improved GA-BPNN is 7.92% and 6.71% 

under BBDST and DST working conditions, which are higher than 

that of traditional methods. 
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I. Introduction

With the growing awareness of environmental protection, 
recyclability and efficiency are important indicators for 
environmentally friendly applications[1, 2]. Thus, it is very 
important to monitor the status of lithium-ion batteries[3]. One 
of the important parameters is the state of charge (SOC), which 

can reflect the status of lithium-ion batteries directly[4]. For 
SOC estimation, including the Ampere-hour (Ah) integral 
method, model-based estimation methods, and data-driven 
estimation method [5]. This paper proposed the elite retention 
strategy to reduce the convergence time, which keep 30% 
population with best performance. Then the alternative method 
is proposed to establish the relationship between the fitness 
level of the new population to 𝑓′ and 𝑓𝑎.

II. An improved genetic-feed forward backpropagation neural

network 

A. Backpropagation neural network

BPNN is a multilayer feedforward network trained by error
backpropagation[6-7]. For SOC prediction, the number of 
implicit layers is determined according to Equation (1)[8], 

1/2( )h m n = + + (1) 

Then, a framework of 2-7-1 pattern of BPNN is established. 
The topology can be observed in Figure 1. 
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Figure 1. The topology of a three-layer BPNN 

B. An improved genetic-feed forward backpropagation neural

network

Introduced the elite retention method to keep 30%

population with best performance, then proposed an alternative 
method. The flow chart of the improved GA-BPNN is shown in 
Figure 2. 
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Figure 2. The flow chart of the improved GA-BPNN 

An alternative strategy is introduced to solve the problem of 
premature maturation, which can reduce the time to find the 
optimal and increase the speed of evolution. The alternative 
operation can be achieved by 𝑓′ and 𝑓𝑎 through the following
rules 
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which can speed up convergence and to improve the learning 

efficiency of the network by gradually decreasing T as the 
number of iterations increases. 

III. Experimental testing and analysis

A. Analysis of BBDST working condition

Following the pretreatment methods as proposed, the
BBDST data is divided into ten groups and each group has three 
parts. 70% is used to train the network, 15% is set as verification 
and testing of each group, and the results of a certain group are 
shown in Figure 3. 

(a) Training results (b)Verification results (c) Test results 

(d) Error curve (e) SOC estimation results (f) Error curves 

Figure 3. Test results under BBDST 

It can be observed from sub-Figure 3 (a) that in the training 
process, the improved GA-BPNN has better performance with 
the 𝑅2 at 0.97282 which is compared with BP at 0.58152 and
traditional GA-BPNN at 0.90141. 

B. Analysis of DST working condition

The curves of the three processes under the DST working
condition are shown in Figure 4. 
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(a) Training result (b) Verification result (c) Testing result

(d) Error curve (e) SOC estimation results (f) Error curves 

Figure 4. Curves under DST working condition 

In Figure 4, the 𝑅2  of the improved GA-BPNN reached
0.98046, compared with 0.53219 of BPNN and 0.91878 of 
traditional GA-BPNN. 

C. Result verification and comparison

It can be observed that the maximum estimation error of the

improved GA-BPNN is stably controlled within 0.0812%, 
which is 6.523% and 1.361% higher than those of the BPNN 
and traditional GA-BPNN, respectively. And the time 
consumption under two working conditions is recorded in 
Figure 5. 

(a) Time consumption under BBDST (b) Time consumption under DST 

Figure 5. Time consumption of processes 

In Figure 5, the improved GA-BPNN takes the half time in 
the process of training, verification, and testing, compared with 
BPNN, traditional GA-BPNN. 

IV. Conclusion

In this research, to achieve a high- precision state of charge 
estimation of lithium-ion batteries, an improved genetic 
algorithm-three-layer backpropagation neural network is 
established, which set the voltage, current as the input layer, and 
the SOC as the output layer. To improve the ability to avoid the 
local optimal, the genetic algorithm is analyzed to optimize the 
weights and thresholds of the backpropagation. The 
performance of the improved genetic algorithm-
backpropagation neural network is verified under complex 
working conditions, which is 7.92% and 6.71% higher than that 
of traditional GABPNN, respectively. 
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