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Editorial on the Research Topic

Microbial communities and functions contribute to plant performance

under various stresses

Plant-microbe interactions in natural and agricultural ecosystems have attracted

more attention than ever (Toju et al., 2018; Berg and Cernava, 2022). In fact, these

interactions are important to ecological functions and essentially relevant to the

ecological services that humans rely on Fester et al. (2014). Harnessing the benefits

of the interactions is one of the most considered and sustainable opportunities for

further crop improvements (Bailey-Serres et al., 2019). Nevertheless, additional stresses

due to anthropogenic activities are uncertain driving factors of ecological functions

and services (Crutzen, 2002; Rudgers et al., 2020; Berg and Cernava, 2022). Climate

change, agriculture-related stress, chemical pollution, and ozone depletion are typical

environmental stresses in the Anthropocene (McGill et al., 2015; Dietz, 2017; Cavicchioli

et al., 2019). These factors profoundly change the mode of plant-microbe interactions

(Berg and Cernava, 2022). A better understanding of the influencing mechanisms

and the ecological consequences are critical to maintaining sustainable natural and

agricultural ecosystems.

Due to the extremely complex processes within the tripartite system

(i.e., plant-microbiome-environment), harnessing repeatable and applicable benefits of

microbes is definitely still in its infancy. Repeatability and deterministic processes could

be observed under well-controlled experimental conditions, such as using a synthetic

community (SynCom) of microbes (Niu et al., 2017; Liu et al., 2019; Zhang J. et al.,

2021) to identify essential microbial mechanisms in facilitating plant performance,

e.g., regulating suitable levels of phytohormone (Finkel et al., 2020), adjusting root

endodermal permeability for nutrient acquisition (Salas-González et al., 2020), and

resisting fungal pathogen by establishing a stable bacterial community (Niu et al.,

2017). When it comes to the complex field condition, the coupled deterministic (e.g.,

environmental filters that select species with certain traits) and stochastic processes
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(chance events such as reproduction, death, and migration)

(Zhou and Ning, 2017) and the influence of nonculturable

microbial community (Lebeis, 2015) can often lead to difficulties

in predicting the beneficial effects on plants.

Can plant microbiome really helps plants perform better

in the way we desire, such as less disease and fertilizer

with more yield? The question has been investigated from

one-dimensional to multidimensional aspects: (1) symbiosis—

symbionts of plants such as mycorrhizal fungi and rhizobia

assist in nutrient acquisition and plant growth improvement

(Smith and Read, 2008; Martin et al., 2017); (2) recruitment—

protective microorganisms recruited by plants suppress the

pathogen (Berendsen et al., 2012); (3) plant holobiont (an

assemblage of species) and networking (i.e., microbe-microbe

interactions)—assembly pattern determines plant health and

fitness (Wei et al., 2015; van der Heijden and Hartmann, 2016;

Niu et al., 2017; Finkel et al., 2020; Salas-González et al., 2020;

Zhang L. et al., 2021). In the current Research Topic, Chen J.

et al. further reviewed that harnessing the benefits of microbes is

a promising approach to enhancing wheat performance under

environmental stresses. Under such a backdrop, the present

Research Topic collects studies investigating how microbes

influence plant responses under typical stresses and their

mechanisms, illustrating ongoing researches in this vivid and

attractive field. The present Research Topic is categorized into

sections considering different abiotic and biotic stress.

Agricultural activity-related stress

Agricultural activities such as continuous cropping,

fertilization, grazing, application of pesticides, use of plastic

products (leading to micro and nanoplastic pollution),

breeding, etc., are challenges for sustainable agriculture. The

current Research Topic collects 24 papers that consider, among

others, fertilization, continuous cropping, and grazing.

To improve crop yield, applying nitrogen (N) fertilizer in

soils is an efficient approach. However, N input and overuse

create N emission/leaching problems (Zhang et al., 2011) and

drastically alter soil microbial activities (Chen et al., 2019).

Nitrogen deposition due to air pollution is also an additional

source of N input (Adams et al., 2021). In the current Research

Topic, Gu et al. found that N application indeed changed

bacterial diversity and community structures of sugarcane

cropping systems. Excessive application of N fertilizers had

unexpectedly led to a lower yield. This also echoes Chen J. et al.’s

view that an optimized level of chemical input is needed to keep

useful microbe functioning.

Apart from fertilization, continuous cropping is common in

agriculture. Continuously planting the same or similar cultivars

in the same soils often leads to plant growth inhibition and

serious soil-borne diseases, which is known as continuous

cropping obstacle (CCO) (Shipton, 1977; Xiong et al., 2015).

The imbalance of soil microbiota with a reduced abundance

of beneficial microbes has been considered one of the major

reasons for CCO (Hiddink et al., 2010). Yuan et al. found that the

rhizosphere of soybean suffered fromCCO, showing an unstable

rhizosphere microbial community. Yu J. et al. also found that

CCO of garlic was related to more potential plant pathogens,

fewer plant growth promoters, and compromised microbial

diversity of soils. Chen D. et al. also observed similar alterations

in microbial functions in the tobacco fields. Taken together,

these results show a generalized phenomenon that continuous

cropping brings chemical stress and leads to the instability of

the microbial community. It provides further evidence that a

stable microbial network is critical to maintaining plant fitness

(Wei et al., 2015; van der Heijden and Hartmann, 2016; Niu

et al., 2017; Finkel et al., 2020; Salas-González et al., 2020;

Zhang L. et al., 2021). But we should note that the CCO is

plant species dependent (Yuan et al.). For instance, Yang et al.

reported that long-term (up to 30 years) alfalfa cultivation in the

field enhanced soil microbial diversity and bacterial networking,

higher than those short-term cultivations of meadows.

Overgrazing could lead to soil degradation, greenhouse gas

emission, water pollution, and loss of biodiversity (Springmann

et al., 2018; Wang et al., 2020). Grazing exclusion by fencing

is one of the simplest and most common practices to restore

degraded grassland. In addition to plant productivity and

diversity, researchers started to look at the effects of grazing

exclusion on soil microbial response. In the current Research

Topic, Wang et al. show that the 4-year grazing exclusion

did not increase the complexity and connectivity of bacterial

co-occurrence patterns indicating a longer term of grazing

exclusion is needed for soil restoration in terms of microbial

activities. The optimal duration of grazing exclusion seems

essential for the restoration depending on the type of ecosystem

(Li et al., 2018; Song et al., 2020).

Biotic stress

Plants can be infected by pathogens (i.e., bacteria,

fungi, viruses, and nematodes) and attacked by herbivore

pests (Atkinson and Urwin, 2012). The bacteria Ralstonia

solanacearum can cause wilt disease in tobacco. Tan et al.

investigated co-existence patterns of fungal communities in

the rhizosphere and endosphere of tobacco infected by R.

solanacearum. They found that the network structure was more

complex under infection than under healthy conditions. The

disease-resisting fungal genera may be suppressed due to the

complex networking. It may let us re-think whether a complex

microbial network is an indicator of a healthy plant holobiont.

The emission of volatile organic compounds (VOCs)

triggered by plant growth-promoting rhizobacteria (PGPR)

can resist herbivores. Herbivores can also induce plant

volatile production. Understanding such chemical-mediated
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plant-insect interactions is important to achieve sustainable

agriculture. Raglin et al. compared six maize genotypes with

or without PGPR and herbivores, and they found that plant

genotype was the main factor driving the levels and composition

of VOC. Inoculation of PGPR did not influence VOC emissions

but improved maize growth. It implies that plant genotypic

variation is the dominant factor controlling the bacteria-

mediated benefits. Although PGPR can improve plant growth, it

is also critical to know how such an “alien” species/community

affects the indigenous soil microbiota. Renoud et al. measured

plant performance and functional groups in soils grown

with maize in the fields and noted that inoculation of

PGPR enhanced maize growth, and the functional groups

were field-dependent.

Drought and flooding

Plant-microbe interactions under drought stress are a

popular research direction due to the widespread problem

of the water crisis (de Vries et al., 2020). It is commonly

reported that symbiotic fungi can alter soil water retention

characteristics due to the production of glomalin (a glue-

like substance) (Rillig and Mummey, 2006). In the current

Research Topic, Cheng et al. review the roles of arbuscular

mycorrhizal (AM) fungi (ancient and widespread symbiotic

fungi of land plants) in helping their plant hosts to resist

drought stress. Cheng et al. discuss the AM fungal diversity and

activity, symbiotic relationship, morphological, physiological,

and molecular mechanisms of AM fungi in assisting plant

drought resistance. An outlook for future research is also

provided. Not only fungi but also bacteria were considered

to resist drought stress. Armanhi et al. study the impact

of a synthetic community (SynCom) on the physiology and

response of maize under drought stress. Results suggest

SynCom inoculation reduced biomass loss and modulated vital

physiological traits, such as lower leaf temperature, reduced

turgor loss, and faster recovery upon rehydration. Gebauer

et al. also determined the effect of water deficit history on

soil microorganisms. They revealed interactive effects of soil

type and water deficit condition. The approach allowed us

to identify key microbial taxa promoting drought adaptation

and improve the understanding of drought effects on plant-

microbe interactions.

Different from the drought that leads to turgor pressure

loss, embolism, and closure of stomata, precipitation and

the subsequent flooding mostly increase the chance of leaf

pathogen infection (Aung et al., 2018) and decrease rhizosphere

oxygen levels hindering aerobic bacteria and mycorrhizal fungi

(Unger et al., 2009). Francioli et al. found that flooding

caused a significant reduction in wheat development and

dramatic shifts in bacterial community composition at each

plant growth stage, leading to detrimental effects on plant fitness

and performance.

Metal stress

Soil heavy metal pollution is widespread (Shi et al.,

2018). Heavy metals accumulated in crops pose significant

ecological and health risks (Zeng et al., 2019; Hu et al.,

2020). Cadmium (Cd) species in soils is an essential factor

in determining the risks. In the current Research Topic,

Hao et al. investigated the vertical profiles of Cd in rice

fields and found that soil pH, organic elements, and soil

microbes are important drivers of Cd speciation. To mitigate

Cd accumulation in rice, Kuang et al. applied lime and calcium-

magnesium phosphate (CMP) amendments to paddy soils to

reduce Cd bioavailability. The increased pH and phosphorus

(P) in soils contributed to the decreased bioavailability of

Cd and increased bacterial biodiversity. Also, Yu X. et al.

found that using a Cd-immobilizing bacterial agent together

with fermented organic matters in Cd-polluted soils could

reduce plant (Houttuynia cordata) Cd uptake. Such amendments

increased soil bacterial diversity.

Arsenic (As) pollution is also another classic and severe

environmental problem (Huang et al., 2019; Li et al., 2021).

Iron-oxidizing bacteria (FeOB) show the potential to mitigate

As pollution, because FeOB could oxidize Fe(II) and provide As

binding sites, which reduce As bioavailability (Emerson et al.,

2010). In the current Research Topic, Qian et al. investigated

the effect of FeOB inoculation on the As migration and

transformation in paddy soils. They found that inoculation

of Ochrobactrum sp. increased As proportion in the binding

fraction. The reduced As bioavailability in soils led to less As

uptake in rice tissues.

Copper (Cu) is another heavy metal of concern (Tani and

Barrington, 2005a,b; de Vries et al., 2013). The alfalfa-rhizobium

symbiosis can resist Cu stress, but the regulatory mechanism is

unclear. In the current Research Topic, Duan et al. assessed the

effects of rhizobium inoculation on the growth of alfalfa and

soil microbial characteristics under Cu stress. They found that

rhizobium inoculation markedly alleviated Cu-induced growth

inhibition in alfalfa by increasing the chlorophyll content,

height, and biomass, in addition to N and P contents. This

study provides insights into the mechanism of action of the

legume-rhizobium symbiotic system to mitigate Cu stress.

The stress of multiple metals presents a complex influence

on the plant holobiont. Metal stress is commonly the critical

factor inhibiting revegetation of mine tailings (Wong, 2003; Li,

2006). The tailing soil could be seriously poor in nutrients, which

complicates the revegetation process. Liu et al. investigated the

direct planting of Pennisetum giganteum into tailing sand with

the designed bio-matrix pots, which were made by mixing corn

cob powder and stalk powder. The P. giganteum could growwell,
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especially those in the bio-matrix pots, which hadmore nutrients

and suitable microbial communities. However, in terms of

ecological restoration, the key factors driving the recovery of

ecological functions are not still clear. By integrating the factors

of plant species, soil communities, and abiotic conditions, Zhu

et al. provide a conceptual framework considering the plant-

soil feedbacks (PSFs) (Bever, 1994; Rinella and Reinhart, 2018)

to guide a better understanding of the mechanisms of the

restoration process. Through this framework, we could enhance

our ability to predict and optimize above- and below-ground

communities for better restoring ecosystem functions.

Salinity and habitats or cultivation
type

Soil salinity is one of the most important abiotic factors

limiting plant productivity (Bernstein, 1975; Zhao et al.,

2020). Exposure to salts leads to osmotic and ionic stresses.

Salt-tolerant endophytes could assist plants in salt tolerance

through accumulating osmolytes, improving ion homeostasis

and nutrient uptake, and providing phytohormones (Otlewska

et al., 2020). In the current Research Topic, Szymańska et al.

found that the isolated salt-tolerant endophytes could promote

the growth of all tested plant species, suggesting a universal

ability of endophytes to assist plant salt tolerance.

Since the soil microbial community affects the growth,

quality, and yield of plants, understanding the microbial

ecology of the agroecosystem could provide hints for

sustainable agriculture. Kui et al. characterized the

microbiome of tea plantation soils (448 soil samples from

101 ancient tea plantations). The authors revealed that

the bacterial community was sensitive to environmental

factors while the fungal community was more responsive to

farmer intervention.

Among natural ecosystems, the mangrove ecosystems

represent unique and essential habitats serving as

sensitive areas for shoreline ecological functions (Lugo

and Snedaker, 1974). Mai et al. found that different

mangrove species harbor distinct microbial taxa in the

sediments. Specific microbial taxa associated with the

species R. apiculata contributed the highest functional

activities related to carbon metabolism, carbon fixation,

and methane metabolism. It indicates that mangrove-

microbe interaction is species-dependent regarding the

carbon cycle.

Summary and prospects

The Research Topic themed on Microbial communities

and functions contribute to plant performance under various

stresses brings a diverse research collection to this key

framework. The collection is not only targeting agricultural

production but also involves ecological restoration and

functions. The effects of microbes on plant performance

and their mechanisms are complex, and they mostly seem

site- and species-dependent, and comparability among

studies could be improved. Combined stresses, rather than

single stress, could be more typical in reality. Future studies

shall focus on theories with more fundamental biological

and ecological mechanisms for better generality leading to

possible application.
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