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Abstract

Spiking Neural Networks (SNNs) are biologically-plausible models that can run on

low-powered non-Von Neumann neuromorphic hardware, positioning them as promis-

ing alternatives to conventional Deep Neural Networks (DNNs) for energy-efficient

edge computing and robotics. Over the past few years, the Gradient Descent (GD) and

Error Backpropagation (BP) algorithms used in DNNs have inspired various training

methods for SNNs. However, the non-local and the reverse nature of BP, combined

with the inherent non-differentiability of spikes, represent fundamental obstacles to

computing gradients with SNNs directly on neuromorphic hardware. Therefore, novel

approaches are required to overcome the limitations of GD and BP and enable online

gradient computation on neuromorphic hardware.

In this thesis, I address the limitations of GD and BP with SNNs by proposing

three algorithms. First, I extend a recent method that computes exact gradients with

temporally-coded SNNs by relaxing the firing constraint of temporal coding and allow-

ing multiple spikes per neuron. My proposed method generalizes the computation of

exact gradients with SNNs and enhances the tradeoffs between performance and vari-

ous other aspects of spiking neurons. Next, I introduce a novel alternative to BP that

computes low-variance gradient estimates in a local and online manner. Compared to

other alternatives to BP, the proposed method demonstrates an improved convergence

rate and increased performance with DNNs. Finally, I combine these two methods and

propose an algorithm that estimates gradients with SNNs in a manner that is compatible

with the constraints of neuromorphic hardware. My empirical results demonstrate the
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effectiveness of the resulting algorithm in training SNNs without performing BP.
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Chapter 1

Introduction

Over the past decades, Deep Neural Networks (DNNs) trained with the well-established

Gradient Descent (GD) and the Error Backpropagation (BP) algorithms have become

the workhorse of modern machine learning. These powerful computational models

have started a new era of artificial intelligence, enabling computers to perform various

challenging tasks with state-of-the-art performance such as computer vision (Krizhevsky,

Sutskever and Hinton 2012b; Szegedy, Toshev and Erhan 2013), natural language pro-

cessing (Vaswani et al. 2017; Devlin et al. 2018; Brown et al. 2020), or reinforcement

learning (Mnih et al. 2013, 2016). However, the hardware and energy cost of DNNs

represent a significant challenge in terms of sustainability and restrict the practical

applicability of deep learning in resource-limited environments such as low-powered

edge devices (Daghero, Pagliari and Poncino 2021). Therefore, exploring more energy-

efficient alternatives to DNNs is crucial to address the environmental cost of machine

learning and provide sustainable solutions for edge computing.

One possible alternative to DNNs is Spiking Neural Networks (SNNs). Inspired

by the dynamics of biological neurons and offering a greater computational power

than DNNs (Maass 1997), SNNs process information through discrete spatio-temporal

events known as spikes rather than continuous activations. More importantly, spikes

1



CHAPTER 1. EXACT GRADIENTS OF SNNS 2

enable efficient event-driven implementations of neural networks on massively paral-

lel neuromorphic hardware that only consumes a fraction of the power required by

DNNs on von Neumann computers (Furber et al. 2014; Höppner et al. 2022; Akopyan

et al. 2015; Schemmel et al. 2010; Pehle et al. 2022; Davies et al. 2018; Frady et al.

2022). Therefore, SNNs represent promising alternatives to DNNs for energy-efficient

machine learning and low-powered edge computing. However, the lack of general-

purpose training algorithms that can match the performance of DNNs trained with GD

and BP while also being compatible with neuromorphic hardware significantly limits

the widespread adoption of SNNs (Grüning and Bohté 2014). Therefore, the explo-

ration of novel training algorithms compatible with neuromorphic hardware represents

one major step towards the adoption of neuromorphic computing for real-world ma-

chine learning applications.

One fundamental obstacle to the application of GD and BP to SNNs is the non-

differentiability of spikes. Unlike DNNs where gradients can be computed by differ-

entiating the continuous activations of neurons, the discrete activation of spiking neu-

rons is generally not differentiable (Bohté, Kok and Poutré 2000; Shrestha and Orchard

2018). Many alternatives have been proposed to address this issue and compute approx-

imate gradients of SNNs. For instance, surrogate derivatives can be used to replace the

inexisting derivative between spikes and the membrane potential (Shrestha and Orchard

2018; Zheng et al. 2020; Wu et al. 2018). While these methods achieve performance

close to that of DNNs, they often backpropagate errors even when no spike occurs, con-

tradicting the event-based nature of neuromorphic hardware. In contrast, other methods

compute approximate gradients by propagating errors through spike timings, making

them particularly suitable for neuromorphic hardware (Göltz et al. 2021). However,

the absence of a closed-form solution for spike timings represents a major obstacle in

deriving exact gradients for SNNs (Mostafa 2016; Comsa et al. 2020; Göltz et al. 2021;

Wunderlich and Pehle 2021; Lee, Haghighatshoar and Karbasi 2023) and event-based

methods often have to rely on approximations (Bohté, Kok and Poutré 2000; Jin, Zhang
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and Li 2018).

In addition to the lack of differentiability of spikes, the BP algorithm represents

one of the major obstacles to the computation of gradients on neuromorphic hardware.

When computing gradients of SNNs with BP, the states of neurons are first stored dur-

ing a forward pass and then unfolded through both time and space to propagate errors

in reverse during a backward pass (Rumelhart, Hinton and Williams 1986; Shrestha

and Orchard 2018; Göltz et al. 2021; Wunderlich and Pehle 2021). However, neuro-

morphic hardware operate in real-time and are thus unable to propagate information

in reverse, as required by BP. Moreover, they exclusively perform computations with

locally available information, such as pre-synaptic and post-synaptic spikes, thereby

avoiding the bottlenecks created by data transfers between processing elements and

memory (Sze et al. 2017; Schuman et al. 2022). Therefore, storing the states of neu-

rons for the backward pass of BP not only violates the locality principle inherent to

neuromorphic hardware but also substantially increases the risk of introducing memory

bottlenecks causing processing latency and significant power consumption (Horowitz

2014; Sze et al. 2017; Schuman et al. 2022).

1.1 Thesis Contributions

The aim of this thesis is to address the challenges associated with the computation of

gradients on neuromorphic hardware. More particularly, I propose three algorithms:

• I extend Fast & Deep (Göltz et al. 2021), an algorithm that isolates closed-

form solutions for post-synaptic spike timings and computes exact gradients of

temporally-coded SNNs. The proposed algorithm generalizes the computation

of exact gradients to SNNs firing multiple spikes per neuron. By relaxing the

spike constraint associated with temporal coding, my method achieves improved

tradeoffs between performance, convergence, energy efficiency, latency and ro-

bustness to noise and weight quantization when compared to the original Fast &
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Deep algorithm.

• I introduce the Forward Direct Feedback Alignment (FDFA), a novel method that

combines Activity-Perturbed Forward Gradients (Ren et al. 2023) with Direct

Feedback Alignment (Nøkland 2016) and Momentum to estimate the derivatives

between output and hidden neurons as feedback connections. By computing low-

variance gradient estimates without performing backpropagation, the proposed

FDFA algorithm improves the performance and convergence of DNNs compared

to other online and local alternatives to BP.

• I propose the Spiking Forward Direct Feedback Alignment (SFDFA) algorithm, a

spiking adaptation of the FDFA algorithm. By using additional payloads carried

by spikes called grades and by computing local gradients during the inference,

the proposed SFDFA algorithm estimates gradients of SNNs in a local and online

manner that complies with the constraints of neuromorphic hardware. When

compared to Direct Feedback Alignment, the SFDFA algorithm offers advantages

both in terms of performance and convergence.

These algorithms collectively aim to provide novel perspectives for training SNNs.

By addressing the fundamental challenges associated with local and online gradient

computations, my work represents a promising direction for fast, performant, energy-

efficient and robust trainings of SNNs on neuromorphic hardware.

1.2 Thesis Outline

The rest of this thesis is structured as follows:

• In Chapter 2, I review the relevant literature forming the technical background of

this thesis. I provide an overview of biological neurons, deep neural networks,

and spiking neural networks including neuron models, network architectures,

hardware accelerations neural coding, and training methods. Finally, I review
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various gradient-based optimization techniques and the two main approaches for

automatic differentiation.

• In Chapter 3, I start by reviewing the Fast & Deep (Göltz et al. 2021) algorithm

applied to temporally-coded SNNs. I then introduce my extension of Fast &

Deep that relaxes the spike constraint of temporal coding and computes gradients

with multiple spikes per neuron. I finally compare my proposed method with

the original Fast & Deep algorithm on multiple criteria such as convergence,

likelihood, performance, sparsity, classification latency, and robustness to noise

and weight quantization. In addition, I investigate the role of weight initialization

in Fast & Deep and highlight several tradeoffs between these different aspects.

• In Chapter 4, I first review the Forward Gradient (Baydin et al. 2022) algorithm

and its variants for DNNs (Silver et al. 2021; Ren et al. 2023) as well as the

Direct Feedback Alignment (Nøkland 2016) algorithm. I then introduce our For-

ward Direct Feedback Alignment (FDFA) algorithm and provide both theoretical

and empirical results demonstrating the advantages of my method in terms of

performance and convergence compared to other alternatives to BP.

• In Chapter 5, I review the application of Direct Feedback Alignment to SNNs and

introduce our Spiking Forward Direct Feedback Alignment (SFDFA) algorithm.

I describe how the local gradient of post-synaptic spikes can be computed in an

online manner and show the existence of critical points causing gradient explo-

sions. I then propose an ad-hoc solution to these critical points and derive an

eligibility trace for neuromorphic hardware compatibility. Finally, I compare the

proposed SFDFA algorithm with Direct Feedback Alignment and demonstrate

the advantages of my method in terms of performance and convergence.



Chapter 2

Literature Review

In this chapter, we give an overview of the relevant literature that forms the technical

background of this thesis. We start by providing a brief overview of biological neurons

in Section 2.1. In Sections 2.2, we give a brief history of artificial neural networks,

introduce different architectures used in modern deep learning as well as the possible

hardware acceleration for DNNs. In Section 2.3, we describe several popular spiking

neuron models, and discuss the different simulation techniques and hardware accelera-

tion for SNNs. Then, we review methods of spike coding as well as unsupervised and

supervised approaches for training SNNs. Finally, we review in Sections 2.4 and 2.5

gradient-based optimization and automatic differentiation techniques respectively.

2.1 The Brain

The human brain is capable of performing a broad range of complex cognitivee tasks

such as vision, motor control, sound recognition, speech, or planning with a power con-

sumption of only 20 Watts (Balasubramanian 2021). For comparison, standard comput-

ers consume, on average, 80 Watts. With its estimated 86 billion neurons and kilometers

of connections per cubic millimeter, the human brain is a powerful and energy-efficient

structure (Gerstner and Kistler 2002; Azevedo et al. 2009; Gerstner et al. 2014).

6
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2.1.1 Structure and Dynamics of Biological Neurons

Figure 1: Reproduction of a drawing of a single neuron by Ramón y Cajal. This figure
depicts the dendrites, the soma, and the axon of the neuron as well as a schematic of
an action potential recorded by an electrode placed at the axon. Figure from (Gerstner
et al. 2014).

Neurons are the fundamental processing units of the brain. They are composed of

synapses, a cell body (or soma), and an axon. Synapses are the inputs of the neuron.

They receive information from other neurons and transmit them to the soma through the

dendrites. The soma integrates input stimuli and exhibits important non-linear dynam-

ics. When input stimuli are strong enough to excite the soma past a certain threshold, an

output signal is emitted and delivered to downstream neuron through the axon (Kandel,

Schwartz and Jessell 1991; Gerstner and Kistler 2002; Gerstner et al. 2014). See Figure

1 for a schematic representation of a single biological neuron.

The signals transmitted between neurons are composed of short and discrete elec-

trical pulses referred to as action potentials or spikes (see Figure 1 for a schematic rep-

resentation). Occurring in time, sequences of action potentials emitted by pre-synaptic

neurons (or spike trains) cause complex biochemical reactions that trigger extracellular

ion influxes into the soma. This leads to voltage changes in the membrane potential
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of the neuron, depending on the strengths of its synaptic connections. In the absence

of stimulus, the membrane potential relaxes to its resting potential due to ion leakage.

Referred to as Post-Synaptic Potential (PSP), this voltage response to a pre-synaptic ac-

tion potential can either be excitatory (i.e. induces a positive charge) or inhibitory (i.e.

induces a negative charge). When the membrane potential reaches the firing thresh-

old of the neuron, an action potential is released through the axon, and the membrane

potential returns to its resting potential for further spike integration (Kandel, Schwartz

and Jessell 1991; Gerstner and Kistler 2002; Gerstner et al. 2014).

2.1.2 Information Coding

Biologial neurons can exhibit a large range of spiking behaviors. However, it is still

unclear how neurons encode information in the brain. Two main theories are at the

center of debates: rate coding or spike time coding (Brette 2015; Gautrais and Thorpe

1998).

Rate Coding

In rate coding, the information carried by a neuron is defined by its firing rate over

a period of time (Brette 2015). The firing rate f of a neuron is represented by the

temporal average of the spike count n, such as:

f = n

T
(1)

where T is the time period of the measurement.

Alternatively, information can be encoded through the firing rate of a give popula-

tion of neurons. (Brette 2015). This encoding mechanism is commonly referred to as

population coding.

However, computing neurons firing rates requires a large temporal window T which

is in contradiction with the fast responses observed in the brain (Thorpe, Delorme and
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Van Rullen 2001a). For example, it has been shown that the brain of primates can re-

spond to visual stimuli in only 100-150ms (Thorpe and Imbert 1989). As information

about stimuli would cross approximately 10 layers of neurons, Thorpe and Imbert ar-

gued that each neuron would have to respond under 10ms which is too fast for their

average firing rate (≈ 100 Hz). This suggests that information might be carried by

spike timings rather than firing rates.

Temporal Coding

In the theory of temporal coding, the firing rate defines the rate of information rather

than encoding stimuli (Brette 2015). Instead, spikes encode stimuli through their rel-

ative timings (Brette 2015; Thorpe, Delorme and Van Rullen 2001a). Such a coding

scheme maximizes the amount of information carried by individual spikes as only a

single action potential per neuron is sufficient to process inputs (Thorpe, Delorme and

Van Rullen 2001a). This also allows fast information processing that could explain the

observed response time of the brain (Thorpe and Imbert 1989; Thorpe, Delorme and

Van Rullen 2001a).

For example, in First Time Latency coding or Time-To-First-Spike (TTFS), informa-

tion is encoded through the relative latency between spikes and stimuli, as observed in

both the auditory (Furukawa and Middlebrooks 2002) and visual (Reich, Mechler and

Victor 2001) systems. However, most studies of TTFS assume an independent stimulus

onset in the brain which, in most situations, does not exist (Phillips 1998).

Other studies have suggested that the order in which neurons spike could encode in-

formation (Gautrais and Thorpe 1998). Thus referred to as Rank Order Coding (ROC),

such coding scheme is decorrelated from the stimulus onset and is believed to be more

robust to spike jitter than TTFS (Gautrais and Thorpe 1998).

Finally, Phase-of-Firing is another form of temporal coding where information is

temporally coded with respect to the oscillations of the neural population. In this case,

the synchronous population firing is considered to be a reference offset for the relative
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timings of spikes (Chase and Young 2007).

2.1.3 Biological Plasticity

Figure 2: Temporal requirements of synaptic changes ∆wij between a pre-synaptic
neuron j firing at time tfj and a post-synaptic neuron i firing at time tfi in cultured
hippocampal neurons. Long-Term Potentiation (LTP) occurs if the pre-synaptic spike
shortly precedes the post-synaptic spike. Long-Term Depression (LTD) occurs if the
pre-synaptic spike is fired after the post-synaptic spike. Figure from (Gerstner and
Kistler 2002) and data points from (Bi and Poo 1998).

When an axon of cell A is near enough to excite cell B and repeatedly or persis-
tently takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that A ‘s efficiency, as one of the cells firing B, is increased”

Hebb (1949)

The underlying mechanisms of learning in the brain is not yet fully understood to

this day and remain a topic of ongoing research. However, numerous theories and in

vivo studies have provided valuable insights into fundamental plasticity mechanisms

of the brain that are considered to be essential for learning. For example, Hebb intro-

duced in 1949 the Cell Assembly Theory or Hebbian Learning whereby neurons that
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exhibit synchronous firing undergo synaptic strengthening, highlighting an important

mechanism underlying learning in the brain.

While Hebb’s postulate describes the conditions in which synaptic strengthening

occurs, it neglects the temporal aspects of plasticity Gerstner and Kistler (2002). Mul-

tiple in vivo studies of synaptically connected neurons have enabled high-resolution

recordings of the temporal requirements of Hebbian learning in the brain (Levy and

Steward 1983; Magee and Johnston 1997; Bi and Poo 1998). Figure 19 depicts these

temporal dependencies between pre-synaptic and post-synaptic neurons recorded in

cultured hippocampal neurons (Bi and Poo 1998). It shows that positive change of

weights or Long-Term Potentiation (LTP) occurs if the pre-synaptic spike occurs shortly

before the post-synaptic spike. In contrast, a decrease in synaptic efficiency or Long-

Term Depression (LTD) occurs if the pre-synaptic spike is fired after the post-synaptic

spike. More importantly, the strength of these changes depends on the relative timing

between the pre-synaptic and post-synaptic spikes, exponentially decreasing as the rela-

tive difference in timing increases. Known as Spike Time-Dependent Plasticity (STDP),

these observations align with Hebb’s theory of learning as only pre-synaptic spikes

that occur before action potentials contribute to synaptic growth (Gerstner and Kistler

2002).

2.2 Artificial Neural Networks

The idea of reproducing the brain’s computational behaviors to give computers the ca-

pability to learn has been a topic of interest since as early as 1943. Since, multiple ab-

stracted mathematical models of neurons and training algorithms have been proposed.

In this section, we give a brief history and a detailed description of these neuron models.
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Figure 3: Illustration of the McCulloch-Pitts neuron model. Here, the neuron receives
three binary inputs x1, x2, and x3 that are summed and then passed through a threshold
function to produce a binary output y.

2.2.1 The McCulloch-Pitts Neuron

In 1943, McCulloch and Pitts proposed the first computational model of a neuron that

implements boolean logic functions. Named the McCulloch-Pitts (MCP) neuron, it is

composed of n excitatory inputs xexc ∈ {0, 1}n,m inhibitory inputs xinh ∈ {0, 1}m that

are aggregated then passed through a linear threshold gate function Θ(x) producing a

single binary output y ∈ {0, 1} (McCulloch and Pitts 1943), such as:

s :=
n∑

j=1
xexc
j −

m∑

j=1
xinh
j

y := Θ (s− ϑ)
(2)

where ϑ ∈ R+ is the threshold of the neuron and

Θ(x) :=





1 if x > 0

0 otherwise
(3)

is the Heavyside step function. The McCulloch-Pitts neuron model is capable of com-

puting simple linear binary functions such as the OR and AND gates but is incapable

of performing non-linear functions such as the exclusive OR (or XOR). Therefore,

its computational power is only limited to manually designed and linearly separable
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boolean tasks. While the MCP neuron has represented an important step towards the

development of artificial neural networks, no learning mechanism has been introduced

with the model, limiting its applicability to complex problems.

2.2.2 The Perceptron

1

x1

x2

∑
b

w1

w2

y

Figure 4: Illustration of the Perceptron. Here, the neuron receives two real-valued
inputs x1 and x2 and a bias b is added (represented as an additional connection with
a constant input of 1). All inputs are scaled by their corresponding weights, summed
together then passed through a threshold function to produce a binary output y.

Algorithm 1: Perceptron algorithm
1: Input: Training data D = {xi, ŷi}ndata

i=1
2: Randomly initialize w and b.
3: repeat
4: {Loop through training samples}
5: for i = 1, ndata do
6: y ← Θ (w · xi + b) {Infer neuron}
7: if yi = 1 and y = 0 then
8: w ← w + xi {False negative}
9: end if

10: if yi = 0 and y = 1 then
11: w ← w − xi {False positive}
12: end if
13: end for
14: until converged

In 1958, Rosenblatt proposed the Perceptron based on the MCP neuron model and
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Hebb findings on synaptic efficiency and plasticity. In contrast with the MCP neuron

model, the Perceptron uses real-valued inputs x ∈ Rn and weights w ∈ Rn between

the inputs and the neuron, representing synaptic strengths. Unlike the MCP, the per-

ceptron does not use absolute inhibition, meaning that synapses are capable of freely

transitioning between being inhibitory and excitatory, and vice versa. Moreover, a bias

b ∈ R is introduced in the model, which corresponds to the negative of the MCP thresh-

old ϑ. The result of the weighted sum between the inputs and the weights is then passed

through the Heavyside step function to produce a binary output, such as:

y := Θ



n∑

j=1
wj xj + b


 (4)

In vector form, Equation 4 is written as:

y = Θ (wx+ b) (5)

Note that the threshold ϑ of the MCP model (Equation 2) is replaced by the trainable

bias b in the equation of the Perceptron.

In addition to these modifications, Rosenblatt proposed a training algorithm called

the Perceptron algorithm (see Algorithm 1). Intuitively, the Perceptron algorithm mod-

ifies the weights when samples are misclassified. When a false negative prediction

occurs (i.e. the target is positive but the prediction is negative), the dot product between

the inputs x and the weights w is negative but needs to be positive. Therefore, the in-

puts x are added to the weights to reinforce the result of the dot productw·x. Inversely,

when a false positive prediction occurs (i.e. the target is negative but the prediction is

positive), the dot product between the inputs x and the weightsw is positive but needs

to be negative. Therefore, the inputs x are subtracted from the weights, which increases

the result of the dot product w · x.

While the Perceptron algorithm is capable of learning to perform binary classifica-

tion, it is limited to data that is linearly separable by a hyperplane (Rosenblatt 1958;
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Minsky and Papert 2017; Bishop 1995). To enable the Perceptron to classify non-

linear data, successive layers of neurons can be stacked, resulting in what is known as

a Multi-Layer Perceptron (MLP) (see Figure 5 for an example). In theory, the MLP

has the capability to approximate any boolean function as long as the hidden layers

are sufficiently large (Bishop 1995). However, the original Perceptron algorithm was

designed for single-layer networks and does not contain a learning rule for hidden neu-

rons, as the contributions of hidden neurons to the network outputs are not evident.

Commonly referred to as the credit assignment problem, this issue can be overcome by

using differentiable activation functions instead of the Heaviside step function.

2.2.3 Continuous Neurons and Error Backpropagation

Figure 5: Example of a fully-connected neural network with two layers (MLP).

To overcome the credit assignment problem in MLPs, Rumelhart, Hinton and Williams

proposed in 1986 the Backpropagation (BP) algorithm, which uses the chain rule with

continuously-activated neurons to backpropagate output errors to hidden neurons.

Formally, we denote by W (l) ∈ Rnl×nl−1 the weights and by b(l) ∈ Rnl the biases

for the lth layer with nl neurons. In contrast to the original Perceptron model, which
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Figure 6: Illustration of a continuously-activated artificial neuron. Here, the neuron
receives two real-valued inputs x1 and x2 and a bias b is added (represented as an
additional connection with a constant input of 1). All inputs are scaled by their cor-
responding weights, summed together then passed through a continuous and differen-
tiable activation to produce a real-valued output y.
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Figure 7: Sigmoid activation function (Figure 7a) and its first order derivative (Figure
7b). The sigmoid function monotonically increases and saturates to 0 and 1. This
causes its derivative to vanish as x tends towards −∞ and∞.
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Algorithm 2: Error Backpropagation (BP) algorithm given a single training
sample. Here � is the Hadamard product (or elementwise product) and σ′(x)
is the first order derivative of σ(x).

1: Input: Training sample {x, ŷ}
2: y(l) ← x {Set inputs}
3: {Forward pass}
4: for l = 1, L do
5: y(l) ← σ

(
W (l)y(l−1) + b(l)

)
{Infer each layer}

6: end for
7: δ(L) ← ∂L(x)

∂y(L) {Compute output errors}
8: {Backward pass}
9: for l = L, 1 do

10: ∇W (l) ← δ(l) � σ′
(
W (l)y(l−1) + b(l)

) (
y(l−1)

)T
{Compute weights gradient}

11: ∇b(l) ← δ(l) � σ′
(
W (l)y(l−1) + b(l)

)
{Compute bias gradient}

12: δ(l−1) ←
(
W (l)

)T
δ(l) � σ′

(
W (l)y(l−1) + b(l)

)
{Backpropagate errors to

upstream layer}
13: end for
14: return

{
∇W (1),∇W (2), · · · ,∇W (L)

}
and

{
∇b(1),∇b(2), · · · ,∇b(L)

}

uses a binary activation function, the neurons introduced in (Rumelhart, Hinton and

Williams 1986) use a continuous and differentiable activation function σ(x). Using a

vector representation, the activations y(l) for the lth layer are defined as:

y(l) := σ
(
W (l)y(l−1) + b(l)

)
(6)

where y(0) := x are the inputs and σ(x) is elementwise. In MLPs, the activation

function σ(x) is defined as a logistic function, such as the sigmoid:

σ(x) := 1
1 + e−x

(7)

See Figure 7 for a visualization of the sigmoid function.

By defining a differentiable loss function L(x) measuring the prediction errors, a
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gradient∇W (l) of the loss function can be computed, such as:

∇W (l) := ∂L(x)
∂W (l)

= ∂L(x)
∂y(L)

∂y(L)

y(l)
∂y(l)

∂W (l)

= δ(l) ∂y
(l)

∂W (l)

(8)

where δ(l) are the error for the neurons of the layer l. For the output layer L, these

errors are defined as the derivative of the loss function:

δ(L) := ∂L(x)
∂y(L) (9)

For hidden layers l < L, output errors can be sequentially backpropagated to hidden

layers using the chain rule, such as:

δ(l) = ∂L(x)
∂y(L)

∂y(L)

y(l)

= ∂L(x)
∂y(L)

∂y(L)

y(L−1) · · ·
∂y(l+1)

y(l)

= δ(l+1)∂y
(l+1)

y(l)

(10)

See Algorithm 2 for the full algorithm given a single training sample. Finally, the

weights are updated using a gradient-based optimization algorithm — see Section 2.4

for details.

By effectively solving the credit assignment problem in MLPs, the error backprop-

agation algorithm has represented a significant turning point in the development of

artificial neural networks. Nowadays, BP remains widely used and is considered to be

the workhorse of modern deep learning. Its popularity and widespread usage attest its

fundamental importance in training neural networks.
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2.2.4 The Fundamental Deep Learning Problem
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Figure 8: ReLU activation function (Figure 8a) and its first order derivative (Figure 8b).
The sigmoid function monotonically increases and saturates to 0 and 1. This causes its
derivative to vanish as x tends towards −∞ and∞.

Until the 1990s, artificial neural networks were mostly kept shallow, as in MLPs

(Schmidhuber 2015). In fact, several works in the late 1980s have established universal

approximation theorems stating that any multivariate continuous function can be ap-

proximated by a network of sigmoid neurons with bounded depths and arbitrary width

(Cybenko 1989; Hornik, Stinchcombe and White 1989; Hecht-Nielsen 1989; Hornik

1991). Moreover, while BP is able to train neural networks that contain many layers

— thus referred to as Deep Neural Networks (DNNs) — it was found to be difficult

in practice (Schmidhuber 2015). In 1991, Hochreiter identified that, when using lo-

gistic activation functions in DNNs, cumulative backpropagated errors either grow out

of bound or shrink rapidly, causing the now famous exploding or vanishing gradients

problem (Hochreiter 1991), also referred to as the Fundamental Deep Learning Prob-

lem (Schmidhuber 2015).

One of the main causes of vanishing gradients is the nature of logistic functions

and, more precisely, their derivatives. For example, Figure 7a shows that the sigmoid

function saturates in 0 and 1 as its input tends towards −∞ and∞ respectively. This
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causes its derivative (Figure 7b) to vanish, decreasing towards 0 in these limits. There-

fore, errors backpropagated to upstream neurons also vanish and prevent the weights

from changing their values (Basodi et al. 2020).

Many solutions to the vanishing gradient problem have been proposed (Schmidhu-

ber 1992; Nair and Hinton 2010; Glorot, Bordes and Bengio 2011; Ioffe and Szegedy

2015; Basodi et al. 2020). In particular, the choice of the activation function seems to

be important to avoid vanishing gradients. For example, the use of the Rectified Linear

Unit (ReLU) activation function and its variants — e.g. Leaky ReLU or the Scaled Ex-

ponential Linear Unit (SELU) — have empirically demonstrated major improvements

over the logistic functions in DNNs (Nair and Hinton 2010; Glorot, Bordes and Bengio

2011) and are, to this day, widely used in modern deep learning.

Formally, the ReLU activation function is defined as follows:

σ(x) := max (0, x) =





0 if x < 0

x otherwise
(11)

Figure 8 visually shows this function and its derivative. In essence, the ReLU activa-

tion is linear for positive inputs and outputs zero for negative inputs. This causes its

derivative to only saturate in negative values and output a constant for positive values,

thus reducing the impact of vanishing gradients (Nair and Hinton 2010; Glorot, Bordes

and Bengio 2011; Basodi et al. 2020).

Another technique widely used in modern DNNs to avoid exploding gradients is

Batch Normalization (BN) (Ioffe and Szegedy 2015). In BN, the inputs of each layer

are normalized to reduce their variance. This prevents the neurons from receiving inputs

with large bounds and, consequently, avoids saturating the activation function (Ioffe and

Szegedy 2015; Basodi et al. 2020).

By effectively solving the vanishing and exploding gradient problem, these methods

have enabled the exploration and the successful training of deeper neural architectures,

including Convolutional Neural Networks and Recurrent Neural Networks.
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2.2.5 Convolutional Neural Networks

Figure 9: Illustration of the two dimensional neuron layout in the Neocognitron model.
Here, individual neurons are connected to a sub-area of their two-dimensional inputs,
locally detecting spacial features. Figure from (Fukushima 1988).

Figure 10: Example of a convolutional neural network. This network contains two
convolutional layers, each followed by a max pooling layer. The outputs of the last
pooling layer are then flattened and fed to two fully connected (dense) layers.

Inspired by the fact that neurons in the visual cortex individually respond to small

regions of the visual receptive field (Hubel and Wiesel 1968), the principle of locally

extracting spatial features in input patterns was first introduced with the Neocogni-

tron in 1980 (Fukushima 1988). The Neocognitron model organizes neurons in a two-

dimensional grid. These neurons then extract visual features from specific sub-areas

of their inputs, similar to receptive fields found in the visual cortex (see Figure 9).

By successively stacking such layers, the Neocognitron forms a network that closely

resembles the hierarchical model of the visual cortex proposed by Hubel and Wiesel,

thereby laying the foundation for the development of modern Convolutional Neural
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Figure 11: Example of a two-dimensional convolution performed with a single 2×2×1
filter on a 4 × 4 × 1 input map with a stride of 1 and no padding, no bias, and a linear
activation function. This convolution results in a 3× 3× 1 output map of activations.
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Networks (CNNs).

In 1989, Yann Le Cunn successfully trained the first competition-winning CNN for

classifying handwritten digits (MNIST) (LeCun, Cortes and Burges 2010) using BP

(LeCun et al. 1989) which was then used to recognize hand-written ZIP code numbers.

The following years, the same CNN was used for medical image segmentation (Zhang

et al. 1991) as well as breast cancer detection (Zhang et al. 1994), establishing CNNs

as a fundamental approach in the field of computer vision.

Often used in signal processing, convolution is a mathematical operation expressing

the relation between a signal function and a kernel function. Denoted by ∗, convolution

is defined as the integral of the product between the kernel function g(t) and the signal

f(t) (Smith 1997), such as:

(f ∗ g) (t) =
∫ ∞

−∞
g (τ) f (t− τ) dτ (12)

In essence, the convolution operation filters the signal with the kernel function given a

shift t. This represents the base principle of convolutional layers in CNNs.

In a convolutional layer with index l, nl trainable three-dimensional discrete filters

G(l) ∈ Rkl×kl×dl−1 (also known as convolution kernels) of width and height kl and

depth dl−1 are individually convolved along the horizontal and vertical axis of a discrete

input map Y (l−1) ∈ Rwl−1×hl−1×dl−1 of width wl−1, height hl−1 and depth dl−1 (O’Shea

and Nash 2015; Alzubaidi et al. 2021). For the first convolutional layer of a CNN,

Y (l−1) = X is defined as the input image, and dl−1 represents the number of channels

in the input image, which is 1 for grayscale and 3 for RGB images. A stride sl is also

defined to represent the number of pixels that are skipped when convolving filters, thus

controlling the overlap of kernels during the convolution. Moreover, a padding of size

pl is added at the border of the input map to control the size of the output map (O’Shea

and Nash 2015; Alzubaidi et al. 2021). It is common to fill these additional pixels with

zeros but other methods exist such as average padding.

Using these parameters, the widthwl — and, similarly, the height hl — of the output
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map Y (l) is calculated as follows:

wl = wl−1 − kl + 2pl
sl

+ 1 (13)

The depth dl = nl of the output map then equals the number of filters nl in the layer.

Assuming that the stride is sl = 1 is one, the activation y(l)
i,j,z of the neuron at the position

i, j and z in the output map is:

y
(l)
i,j,z = σ




kl∑

u=0

kl∑

v=0

dl−1∑

w=0
y

(l)
i+u, j+v, w g

(l)
u, v, w + b(l)

z


 (14)

where b(l) ∈ Rnl are trainable biases. See Figure 11 for an example of two-dimensional

convolution performed by a convolutional filter.

Convolutional layers are commonly followed by pooling layers that aim to gradu-

ally reduce the dimensionality of the representation (O’Shea and Nash 2015; Alzubaidi

et al. 2021). Pooling layers also perform a two-dimensional convolution operation

but, unlike convolutional layers, they do not contain any trainable parameter as they

solely sub-sample the input map. Several types of pooling layers have been introduced

(Alzubaidi et al. 2021) including the widely used max pooling and average pooling.

Pooling is often performed with a kernel size of 2 and a stride of 2, scaling down the

input map by 25% of its original size (O’Shea and Nash 2015).

CNNs are therefore built by successively stacking convolutional and pooling layers

to extract spatial features. To perform classification, fully connected layers can then be

connected to the flattened output of the last convolutional — or pooling — layer. See

Figure 10 for an example of CNN.

One of the main advantages of CNNs is that weights from filters are shared within

the neuron of a convolutional layer, significantly reducing the memory requirements

compared to fully connected layers. Moreover, convolutional layers are translation

invariant — or shift invariant — meaning that, unlike fully connected DNNs, the model

is not affected by a translation of its inputs. This makes CNNs better at generalizing
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on spacial data than fully connected networks and less likely to overfit on visual data

(Alzubaidi et al. 2021). However, because the weights are shared between neurons and

are no longer local, CNN are not considered as biologically plausible.

2.2.6 Recurrent Neural Networks

y(l−1)(t)

y(l)(t)

W (l)

U (l)

(a) RNN

y(l−1)(t − 1)

y(l)(t − 1)

W (l)

U (l)

y(l−1)(t)

y(l)(t)

W (l)

U (l)

y(l−1)(t + 1)

y(l)(t + 1)

W (l)

U (l) U (l)
... ...

(b) Unfolded RNN

Figure 12: Computational graph of a recurrent layer in a compressed form (Figure 12a)
and unfolded through time (Figure 12b). At each time step, neurons receive inputs from
upstream layers as well as the states of neurons from the previous time step.

Both standard DNNs and CNNs are successful in processing static data such as

images. However, they are incapable of efficiently processing sequences of data such

as text, sound, or videos (Lipton, Berkowitz and Elkan 2015; Yu et al. 2019) – at least

in their standard forms. In contrast, Recurrent Neural Networks (RNNs) are cyclic

architectures that are specifically designed to process temporal sequences.

RNNs are composed of standard artificial neurons augmented with an internal state

(i.e. memory), introducing a discrete notion of time (Lipton, Berkowitz and Elkan

2015; Yu et al. 2019). Formally, the activations y(l)(t) of the recurrent layer l at time

step t is:

y(l)(t) = σ
(
W (l)y(l−1)(t) +U (l)y(l)(t− 1) + b(l)

)
(15)
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where U (l) ∈ Rnl×nl are the recurrent connections. Here, both the inputs y(l−1)(t) at

the current time and the activations y(l)(t − 1) of the layer at the previous time step

are taken into account in the computation, giving recurrent neurons the capability of

memorizing information from the past. See Figure 12 for a visual representation of a

recurrent layer.

When trained using BP, the dynamics of RNNs are typically unfolded through time

(see Figure 12b). Therefore, errors flow backward both spatially (i.e. from post-

synaptic neurons to pre-synaptic neurons) and temporally (i.e. from the current time

step to previous time steps). In this context, error backpropagation is often referred to

as Backpropagation Through Time (BPTT) (Werbos 1990).

Despite their relative successes (Karpathy, Johnson and Fei-Fei 2015; Yu et al.

2019), standard recurrent neurons are only capable of handling short-term dependen-

cies. As the time gap between the current time step and the relevant input increases,

they face increasing difficulty in retaining information, making them less suitable for

long-term memory tasks (Yu et al. 2019; Hochreiter and Schmidhuber 1997). More-

over, recurrent cells are particularly subject to the vanishing and exploding gradients

problem due to their large temporal depth when trained with BPTT (Hochreiter 1991;

Hochreiter and Schmidhuber 1997).

To address these issues, the Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber 1997) and the Gated Recurrent Unit (GRU) (Cho et al. 2014) cells have

been proposed and successfully applied to many practical sequence learning tasks such

as speech recognition (He and Droppo 2016; Graves, Jaitly and Mohamed 2013) and

machine translation (Cho et al. 2014; Sutskever, Vinyals and Le 2014). To improve the

memory capacity of RNNs, LSTM and GRU cells introduce specific gates that control

what information should be stored, forgotten, and output (Hochreiter and Schmidhuber

1997; Cho et al. 2014; Lipton, Berkowitz and Elkan 2015; Yu et al. 2019). In essence,

these gates help to mitigate the vanishing and exploding gradients problem by allowing
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neurons to propagate unchanged gradients that are not exponentially decayed (Hochre-

iter and Schmidhuber 1997).

2.2.7 Hardware Acceleration

DNNs are computationally demanding to evaluate, especially during training, due to

the large numbers of Multiply-Accumulate (MAC) operations required by matrix mul-

tiplications. Furthermore, the sequential nature of multicore Central Processing Units

(CPUs) makes them inherently inefficient for evaluating DNNs, leading to computa-

tional bottlenecks. Therefore, many massively parallel and dedicated hardware are

used in practice to infer and train DNNs.

Graphical Processing Units

Graphical Processing Units (GPUs) have emerged as a reference hardware for deep

learning (Shawahna, Sait and El-Maleh 2019). While originally designed for com-

puter graphics applications, modern GPUs have been widely adopted in deep learning

for their highly parallel architecture. Modern GPUs contain multiple parallel cores,

each capable of executing thousands of parallel threads simultaneously (Bhattacharya

2021; Talib et al. 2020). For example, standard DNNs can be accelerated up to 10

times on GPUs when compared to CPUs (Steinkraus, Buck and Simard 2005; Buber

and Diri 2018; Gyawali 2023). This large parallelization capability enables GPUs to

efficiently handle the computational requirements of deep learning algorithms, making

them the primary choice for training large-scale DNNs despite their significant energy

consumption (Shawahna, Sait and El-Maleh 2019). Consequently, many deep learning

frameworks and libraries have adopted GPUs as hardware acceleration (Abadi et al.

2015; Paszke et al. 2019).
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Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are dynamic devices containing programmable

arrays of logic gates as well as reconfigurable connections. Configurable using a Hard-

ware Description Language such as VHDL or Verilog, they offer great degrees of par-

allelism, execution speed, and versatility, as required by DNNs (Shawahna, Sait and

El-Maleh 2019; Bhattacharya 2021; Talib et al. 2020). Moreover, FPGAs benefit from

lower energy consumption and lower cost than GPUs, making them particularly suitable

for deep learning applications on low-powered devices (Shawahna, Sait and El-Maleh

2019; Bhattacharya 2021). However, the specialized expertise required for hardware

design significantly limits the widespread adoption of FPGAs for deep learning.

Application-Specific Integrated Circuits

Often prototyped with FPGAs, Application-Specific Integrated Circuits (ASICs) are

high-density integrated circuits for custom applications (Bhattacharya 2021). Due to

their high degree of parallelism, low surface area, and low energy consumption, ASICs

are particularly suitable for low-powered edge devices (Talib et al. 2020). However,

the high costs associated with designing and manufacturing ASICs make them less

accessible than FPGAs and GPUs. In addition, ASICs cannot be altered or improved

after fabrication, further limiting their practicality (Talib et al. 2020).

Recently, Google has developed and released in the cloud the Tensor Processor

Unit (TPUs), an ASIC processor dedicated to efficient machine learning computation

(Jouppi et al. 2017). More specifically, TPUs are designed to perform high-speed MAC

operations, making the inference and training of DNNs up to 10 times faster than GPUs

(Wang, Wei and Brooks 2019).
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Figure 13: Comparison of different spiking neuron models according to their biological
plausibility and computational complexity. In this figure ”# of FLOPS” refers to the
numbers of floating point operations required to simulate 1ms with the model. Figure
from (Izhikevich 2004).

2.3 Spiking Neural Networks

Unlike neurons used in DNNs, spiking neurons are biologically plausible neuron mod-

els that aim to capture the dynamics of real cortical neurons. Instead of processing

information through abstracted rate codes, Spiking Neural Networks (SNNs) process

information through precise sequences of asynchronous events over time called spikes

(Gerstner and Kistler 2002; Brette 2015).

Originally designed for neuroscience purposes to accurately model the intricate dy-

namics of biological neurons (Hodgkin and Huxley 1952), SNNs recently gained atten-

tion and interest with the development of ultra low-powered neuromorphic hardware.

Referred to as the third generation of artificial neural networks (Maass 1997), SNNs

have also been proven to be universal approximators (Zhang and Zhou 2022) and are

known to have at least the same computational power as DNNs (Maass 1997) making

them attractive alternatives to DNNs. Therefore, the exploration of SNNs extends be-

yond modeling biological neurons and aims to exploit their distinct characteristics for

energy-efficient and bio-inspired machine learning.
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Figure 14: Schematic diagram of the circuit defining the Hodgkin-Huxley neuron
model (Hodgkin and Huxley 1952). The membrane potential u(t) is represented by
the voltage across the capacitor C. Here, RNa = 1

gNa
, RK = 1

gK
and RNa = 1

gL
are the

resistance values for the sodium, potassium, and leak channels respectively.

In this section, we review diverse spiking neuron models with varying levels of

biological plausibility and computational complexity (see Figure 13 for a comparison)

and discuss the software simulation and hardware acceleration of SNNs. Finally, we

introduce different spike coding schemes and review both unsupervised and supervised

learning algorithms.

2.3.1 Hodgkin–Huxley Model

Proposed in 1952 by Hodgkin and Huxley, the Hodgkin–Huxley (HH) neuron is a

conductance-based model that represents the voltage-gated ion channels and leak chan-

nel of neurons (Hodgkin and Huxley 1952). It is essentially defined by the electrical

circuit shown in Figure 14. Formally, by denoting by C the capacitance of the neuron,

by gNa, gK and gL the sodium, potassium and leak conductance and by ENa, EK and

EL their respective equilibrium potentials, the dynamic of the membrane potential of an

HH neuron is defined by the follow system of Ordinary Differential Equations (ODEs)

(Hodgkin and Huxley 1952):

C
du(t)

dt = −gNam(t)3h(t) (u(t)− ENa)−gKn(t)4 (u(t)− EK)−gL (u(t)− EL)+I(t)

(16)
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where

dn(t)
dt = αn(t) [1− n(t)]− βn(t) n(t)

dm(t)
dt = αm(t) [1−m(t)]− βm(t) m(t)

dh(t)
dt = αh(t) [1− h(t)]− βh(t) h(t)

(17)

and

αn(t) = 0.01 u(t) + 10
exp

(
u(t)+10

10

)
− 1

βn(t) = 0.125 exp
(
u(t)
80

)

αm(t) = 0.1 u(t) + 25
exp

(
u(t)+25

10

)
− 1

βm(t) = 4 exp
(
u(t)
18

)

αh(t) = 0.07 exp
(
u(t)
20

)

βh(t) = 1
exp

(
u(t)+30

10

)
+ 1

(18)

Here, the time-dependent variables n(t), m(t), and h(t) describe the opening and clos-

ing of the voltage-dependent channels. All functions in Equation 18 are defined as in

the original HH model paper (Hodgkin and Huxley 1952). However, simpler variations

of the model exist (Koslow and Subramaniam 2005).

The HH neuron is considered to be the most biologially plausible neuron model

making it particularly relevant for investigating the dynamics of biological neurons

(Izhikevich 2004). However, it is one of the most computationally expensive neurons

to implement, with around 1200 Floating Point Operations (FLOPS) required for only

1 millisecond of simulation (Izhikevich 2004) – see Figure 13 for a comparison with

other neuron models. Therefore, the HH model is too complex to be efficiently used in
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the context of machine learning.

2.3.2 Izhikevich Model

Proposed in 2003, the Izhikevich neuron model is a popular simplification of the Hodgkin–Huxley

neuron that retains a high degree of biological plausibility while being computationally

more efficient (see Figure 13) (Izhikevich 2003). Formally, it is defined by the follow-

ing system of ODEs:

du(t)
dt = 0.04 u(t)2 + 5 u(t) + 140− v(t) + I(t)

dv(t)
dt = a [b u(t)− v(t)]

(19)

where u(t) is the membrane potential in volt, v(t) is the membrane recovery variable

and I(t) is the input current in in volt per second (Izhikevich 2003). When the mem-

brane potental reaches 30 mV, both u(t) and v(t) are reset as follows:

if u(t) ≥ 30 mV, then





u(t)← c

v(t)← v(t) + d

(20)

Here, a describes the time scale of the recovery variable (a typical value is a = 0.02), b

is the sensitivity of the recovery variable (a typical value is b = 0.2), c is the reset value

of the membrane potential after a post-synaptic spike (a typical value is c = −65mV)

and d is the reset value of the recovery variable (a typical value is d = 2) (Izhikevich

2003).

By choosing different values of its parameters, the Izhikevich neuron model can

exhibit various firing patterns (Izhikevich 2003). Moreover, it only requires 13 FLOPS

per millisecond of simulation which is 92 times more computationally efficient than

the HH neuron model (Izhikevich 2004). The Izhikevich model thus represents a good

compromise between computational cost and biological plausibility.
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Figure 15: Schematic diagram of the parallel Resistor-Capacitor circuit that defines the
membrane potential behaviour of the Leaky Integrate-and-Fire neuron model.

2.3.3 Leaky Integrate-and-Fire Model
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Figure 16: Illustration of the exponential α function (Figure 16a) and its corresponding
PSP kernel ε (Figure 16b). Here, τ = 10ms, τs = 5ms and C = ττs

τ−τs = 10ms.

The Leaky Integrate-and-Fire (LIF) model is one of the least biologically plau-

sible spiking neuron models — see Figure 13. However, due to its simplicity and

computational efficiency, it is one of the most widely used models in computational

neurosciences (Izhikevich 2004). It is electrically represented by a parallel Resistor-

Capacitor circuit driven by a time-dependent input current I(t) – see Figure 15. The

membrane potential u(t) of the LIF neuron is defined by the voltage across the capac-

itor C. When a current I(t) is injected into the circuit, it charges the capacitor leading
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to an increase in voltage. When this input current vanishes, the capacitor C discharges

through the parallel resistor R until its voltage u(t) reaches some resting potential urest,

provided by an optional battery (Gerstner et al. 2014).

By using the law of current conservation, the current Ii(t) injected into the neuron

i splits as follows:

Ii(t) = ICi (t) + IRi (t) (21)

where

IRi (t) = ui(t)− urest

R
(22)

is, according to the Ohm’s law, the current flowing through the resistor R and

ICi (t) = C
dui(t)

dt (23)

is the current flowing through the capacitor C.

By combining Equations 21, 22 and 23, we find the following ODE describing the

dynamic of the membrane potential ui(t) over time (Gerstner et al. 2014):

τ
dui(t)

dt = − [ui(t)− urest] +R Ii(t) (24)

where τ = RC is the membrane time constant of the neuron expressed in seconds.

Similarly to DNNs, SNNs are typically connected through synapses represented by

weights. By denoting Pi = {j | j is connected to i} as the set of pre-synaptic neu-

ron indices connected to the post-synaptic neuron i and Tj =
{
tkj | 1 < k < nj

}
=

{t | uj(t) = ϑ} as the set of nj spike timings fired by j, the synaptic current Ii(t) in-

jected into the post-synaptic neuron i is defined according to the spatio-temporal activ-

ity of its pre-synaptic events, such as:

Ii(t) :=
∑

j∈Pi
wi,j

∑

tkj∈Tj
Θ
(
t− tkj

)
α
(
t− tkj

)
(25)
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where

Θ(x) =





1 if x ≥ 0

0 otherwise
(26)

is the Heavyside step function that only triggers events that occurred in the past, wi,j ∈
R is the strength of the synaptic connection between the post-synaptic neuron i and

the pre-synaptic neuron j, and α is a function that defines the temporal impact of input

spikes onto the current. One common choice for α is the following low-pass filter:

α(t) := A exp
(−t
τs

)
(27)

where τs is the synaptic time constant controlling the duration of the pre-synaptic spike

integration and A is the current induced by the pre-synaptic spike, expressed in Amps.

Figure 16 illustrates the shapes produced by Equations 27 and the membrane potential

after receiving a pre-synaptic spike. The PSP in the LIF neuron is characterized by two

phases: a short raising phase where the membrane potential increases rapidly, and a

decay phase where the membrane potential slowly decreases.

Finally, when the value of the membrane potential ui(t) reaches a given threshold

ϑ ∈ R at time t, a post-synaptic spike at time is emitted at the output of the neuron and

the membrane potential is reset to its resting potential, such as:

if ui(t) ≥ ϑ, then ui(t)← urest (28)

With only 5 FLOPS required per millisecond of simulation, the LIF neuron is the most

popular model for machine learning applications (Izhikevich 2004). Because of its sim-

plicity and resemblance with the continuously-activated neurons of DNNs, it is widely

implemented in hardware implementations of SNNs.
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2.3.4 Spike Response Model

The Spike Response Model (SRM) is a generalization of the LIF neuron. Rather than

making the membrane potential voltage-dependent, the SRM model directly depends

on time, making derivations with the membrane potential easier than differential equa-

tions.

Formally, the membrane potential ui(t) of a SRM neuron i is defined as Gerstner

and Kistler (2002):

ui(t) =urest +
∑

j∈Pi
wi,j

∑

tzj∈Tj
Θ
(
t− tzj

)
ε(t− tzj)

−
∑

tki ∈Ti
Θ
(
t− tki

)
η(t− tki )

(29)

where t is the current time, tzj is the kth spike fired by the pre-synaptic neuron i, tki is the

kth post-synaptic spike of the neuron i, η models the reset after firing, ∆ϑ = ϑ− urest is

the amplitude of the reset and ε is the PSP kernel describing the temporal response of

the membrane potential to pre-synaptic spikes.

Because the LIF neuron is a special case of SRM, it is possible to map the former

in the latter Gerstner and Kistler (2002). By integrating Equation 24 with the initial

condition ui(0) = urest, the following kernels are found Gerstner and Kistler (2002):

ε(t) = 1
C

∫ ∞

0
exp

(
−t′
τ

)
α (t− t′) dt′

η(t) = ∆ϑ exp
(−t
τ

) (30)

where ∆ϑ = ϑ− urest.

Finally, by defining the α function as in Equation 27, the PSP kernel ε takes the

following bi-exponential form:

ε(t) = A

C

ττs
τ − τs

[
exp

(−t
τ

)
− exp

(−t
τs

)]
(31)
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See Figure 16b for a visualization of this function.

2.3.5 Simulations

I(t − ∆t)

u(t − ∆t)

W

I(t)

u(t)

W

I(t + ∆t)

u(t + ∆t)

W

... ...

y(t − ∆t) y(t) y(t + ∆t)
∆ϑ ∆ϑ ∆ϑ ∆ϑ

(1 − ∆t) (1 − ∆t) (1 − ∆t) (1 − ∆t)

Figure 17: Computational graph of a clock-based simulation of neurons’ membrane
potentials. At each time step t, the membrane potential u(t−∆t) at the previous time
step t − ∆t is decayed, and the input current I(t) is integrated. If an output spike
y(t−∆t) was produced at the previous time step, the membrane potential is reset using
a negative current ∆ϑ.

Due to their intrinsic temporal dimension, spiking neurons inherently require more

computational resources compared to traditional DNNs. Furthermore, conventional

Von Neumann computers are not explicitly designed to efficiently solve systems of

ODEs. As a result, two main approaches have been developed to efficiently simulate

SNNs, namely clock-based and event-based simulations (Brette et al. 2007).

Clock-based simulations are the most common approaches. These techniques in-

volve discretizing the continuous dynamics of the membrane potential, typically using

the Euler method for the numerical integration of ODEs. For example, the LIF neuron

(see Equation 24) can be discretized to form the following recurrent function:

ui(t) = (1−∆t) ui(t−∆t) + 1
C

∆t Ii(t)−∆ϑ y(t−∆t) (32)
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where ∆t > 0 is the size of the time step and

y(t) =





1 if u(t) ≥ ϑ

0 otherwise
(33)

is the threshold function. Figure 17 illustrates the recurrent computation of the discrete

LIF neuron.

By dividing the dynamic into a finite number of time steps, the resulting discrete

membrane potential takes a recurrent form that resembles the recurrent cells of RNNs

— see Section 2.2.6 — making clock-based simulations relatively simple to implement.

However, clock-based neurons suffer from inaccuracies due to the local truncation error

of the Euler method (Butcher 2016), especially if the time step is chosen to be large. In

addition, spike timings are inherently constrained to a grid of discrete times, thus losing

in temporal precision (Mo and Tao 2022). To make clock-based simulations more ac-

curate, the size of the time step can thus be chosen small, but at the cost of an increased

number of time steps and, consequently, an increase in computational requirements

(Brette et al. 2007; Mo and Tao 2022). Moreover, discrete simulations update the states

of neurons even when no event occurs. Because SNNs are highly sparse, this leads to

many unnecessary operations that are performed during the simulation.

In contrast, event-based simulations are asynchronous algorithms developed for

precise evaluations of SNNs (Brette et al. 2007; Mo and Tao 2022). These meth-

ods typically iterate through the ordered set of spikes, update the states of neurons

at each event, and calculate the precise timings of post-synaptic spikes (Brette et al.

2007). Event-based simulations offer numerous advantages such as exact spike timing

computations and efficient processing of sparse data. However, implementing event-

based simulations can be more complex than clock-based approaches. Moreover, the

time complexity of event-based simulations scales with the number of events received

and emitted, which can result in slower execution for SNNs with complex connections

(Brette et al. 2007).
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Therefore, while event-based simulations provide precise temporal computations

and efficient processing for sparse SNNs, they may not always be the optimal choice.

The selection of simulation methods should consider the specific requirements, network

structure, and tradeoffs between accuracy and computational efficiency for the given

model.

2.3.6 Hardware Acceleration

Because of their increased complexity, SNNs are inherently more computationally de-

manding than DNNs. Therefore, specific hardware can be used to take advantage of the

parallel aspect of SNNs and accelerate their simulations and training.

Graphical Processing Units

Similarly to DNNs, SNNs can benefit from the massively parallel aspect of GPUs for

fast evaluations (Brette and Goodman 2012). In particular, discretized SNNs are eas-

ily implementable as RNNs using standard deep learning libraries — for instance, see

the PyTorch (Paszke et al. 2019) implementation of SLAYER (Shrestha and Orchard

2018). GPUs thus offer enough flexibility to experiment with new spiking neuron mod-

els, simulation techniques, and training algorithms. However, as SNNs are computa-

tionally more expensive than DNNs, their implementations on GPUs usually consume

considerable amounts of power when compared to other alternative hardware.

Field-Programmable Gate and Analog Arrays

FPGAs are also popular approaches for low-powered hardware acceleration of spiking

neurons. Many FPGA implementations of SNNs and training algorithms have been

proposed (Neil and Liu 2014; Fang et al. 2019; Lee et al. 2020; Pham et al. 2021),

sometimes leading to a 10 times speedup and up to 200 times gain in energy consump-

tion when compared to GPUs (Fang et al. 2019). Alternatively, Field Programmable

Analog Arrays (FPAAs) can be used for SNN simulations (Rocke et al. 2008). Due to
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their analog aspect, FPAAs are naturally capable of solving complex systems of ODEs

at high speed and with lower power consumption than FPGAs (Hasler 2020), making

them particularly suitable for SNNs. However, FPAAs remain relatively uncommon,

primarily due to their inherent complexity and the limited number of manufacturers

producing them.

Neuromorphic Hardware

SNNs can be implemented in non-Von Neumann, massively parallel, and scalable ded-

icated ASICs known as neuromorphic hardware. These ultra low-powered hardware

can either be digital, like Intel’s Loihi (Davies et al. 2018) and its newer version Loihi

2 (Frady et al. 2022), IBM Truenorth (Akopyan et al. 2015), SpiNNaker (Furber et al.

2014), and SpiNNaker 2 (Höppner et al. 2022) from the University of Manchester, or

analog/mixed-signal, such as BrainScaleS-1 (Schemmel et al. 2010) and BrainScaleS-2

(Pehle et al. 2022) developed by a European consortium. Neuromorphic chips are com-

posed of several neurocores, each containing a certain amount of addressable neurons

and synapses that receive and transmit spikes through the Address Event Representa-

tion (AER) protocol (Sivilotti 1991). More importantly, neuromorphic hardware are

event-driven. They update the states of neurons only when spikes are received, and col-

locate processing elements with memory to mitigate memory bottlenecks and reduce

costly data movements inherent to Von Neumann architectures (Bouvier et al. 2019;

Schuman et al. 2022). For example, it has been shown that neuromorphic hardware are

capable of being more than 1000x more energy-efficient than GPUs on certain tasks

(Rao et al. 2022). Due to the simplicity of some models (e.g. see the LIF neuron in

Section 2.3.3), the resources necessary to build spiking neurons are reduced to adders

for spike integration, comparators for thresholds, and a local memory for storing the

membrane potentials (Bouvier et al. 2019). Moreover, recent neuromorphic hardware

implement new features to enhance the computational power of SNNs. For example, in

Loihi 2 Frady et al. (2022) or SpiNNaker Furber et al. (2014); Höppner et al. (2022),
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spikes are not only restricted to binary values but can also carry an additional 32-bit

payload. Referred to as graded spikes, they can be used to encode the amplitude of

spikes and increase the amount of transmitted information or for learning purposes.

Therefore, by combining event-based processing with high parallelism, locality, and

scalability, neuromorphic hardware represent promising alternatives for low-powered

machine learning.

2.3.7 Spike Coding

Figure 18: Different rate and temporal spike coding schemes. Figure from (Auge et al.
2021).

Unlike DNNs, SNNs receive spike trains as inputs instead of real numbers. How-

ever, many real-world data are represented by real numbers and thus required to be

converted into spikes before being used for inference. SNNs also produce spike trains

at their outputs which require to be converted back to real numbers for post-processing.

Like the brain — see Section 2.1.2 for details —, a large variety of spike coding

schemes are available — see Figure 18 — and many are better suited for some types

of data than others (Auge et al. 2021). All spike coding schemes for SNNs can be

classified into two main categories: rate coding and temporal coding schemes. In the
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following, we describe two of the most popular spike coding schemes used in SNNs,

namely Spike Count and Time-to-First-Spike coding.

Spike Count Coding

In Spike Count coding, real-valued information are proportionally encoded by the num-

ber of spikes fired by input neurons. Formally, spikes can be generated at regular inter-

vals inversely proportional to the input firing rate:

∆t = 1
f

(34)

Here, ∆t is the Inter-Spike Interval (ISI) and f is the firing rate of the input neuron,

calculated as:

f = fmin + x g (35)

where x ∈ [0, 1] is the normalized input signal and fmin > 0 is the minimum firing rate

and g > 0 is a gain scaling the firing rate.

Alternatively, input spikes can be generated following a homogeneous Poisson ran-

dom process (Heeger et al. 2000). In this case, the probability density function for the

ISI ∆t is (Heeger et al. 2000):

p (∆t) = fe−f∆t (36)

For decoding, the output firing rate of a neuron can be converted to a positive real value

as follows:

y = ymin + f g

= ymin + n

T
g

(37)

where y is the decoded value, f is the firing rate of the output neuron, ymin is a bias, n

is the number of spikes fired by the neuron, T is the simulation duration and g is a gain
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scaling the decoded value.

Due to its redundance of spikes, rate coding has the advantage of being robust to

noise (Guo et al. 2021). However, processing rate codes with spiking neurons requires

the integration of several spikes over time which increases the inference time of SNNs

(Guo et al. 2021).

Time-To-First-Spike Coding

Time-To-First-Spike (TTFS) coding is one of the most popular temporal coding schemes

in SNN. In TTFS, real values are encoded by the timing of spikes, with early spikes

representing higher values than late spikes.

Formally, the spike time t encoding the normalized real value x ∈ [0, 1] can be

computed as:

t = T (1− x) (38)

where T is the duration of the encoding window.

For decoding, the output spike time t can be converted to a real value y as follows:

y = ymax − t g (39)

where ymax is the maximum decoded value and g > 0 is a gain. Note that, in this

equation, high values of t results in low values of y.

TTFS benefits from several advantages when compared to spike count coding. For

example, it is known to be particularly fast to process as most of the information is

carried by early spikes. Moreover, because TTFS encodes information with a single

spike, it has the advantage of producing sparse and energy-efficient (Guo et al. 2021).

Finally, from a pure information point of view, temporal coding schemes such as TTFS

are capable of encoding more bits of information than rate codes (Thorpe, Delorme and

Van Rullen 2001b). However, this single spike emitted by TTFS makes the coded in-

formation sensitive to noise as even a small perturbation in spike timing can drastically
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change the encoded value (Guo et al. 2021; Park, Lee and Yoon 2021).

2.3.8 Unsupervised Learning
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Figure 19: Illustration of STDP according to the relative temporal distance between
a pre-synaptic spike fired at time tzj and a post-synaptic spike fired at time tki . In this
figure, A+ = 1, A− = 0.5 and τ+ = τ− = 0.1. The blue line corresponds to LTP,
increasing the connection between the two neurons, and the red line corresponds to
LTD, decreasing the connection.

Unsupervised Learning has emerged as a prominent approach to achieve biologi-

cally plausible learning in SNNs. Neurons trained with unsupervised learning rules aim

to identify patterns from their inputs and learn meaningful representations of unlabeled

data. The features learned through unsupervised learning can then be used as inputs to

other tasks such as supervised classification (Diehl and Cook 2015; Deng and Li 2021;

Lee et al. 2018) or simply be useful by themselves for data clustering (Smith 2020;

Diamond, Schmuker and Nowotny 2019).

Spike Time-Dependent Plasticity (STDP) is by far the most popular approach for

unsupervised learning in SNNs. Inspired by Hebb’s postulate on synaptic strengthening

as well as in-vivo observation of plasticity – see Section 2.1.3 for details – the STDP

rule describes the changes of weight that occur at synapses according to the relative

timings between pre-synaptic and post-synaptic spikes (Gerstner and Kistler 2002).
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Formally, given the timing tzj of the zth spike fired by the pre-synaptic neuron j and

the timing tki of the kth spike fired by the post-synaptic neuron i, the change of weight

caused by this pair of spike timings is defined by the following rule (Gerstner and

Kistler 2002):

STDP
(
tzj , t

k
i

)
=





A+ exp
(
tki−tzj
τ+

)
if tzj ≤ tki

−A− exp
(
tzj−tki
τ−

)
otherwise

(40)

where A+ and A− are two parameters controlling the strength of LTP and LTD respec-

tively and τ+ and τ− are time constants controlling the size of the temporal window.

See Figure 19 for a visual representation of this learning rule.

Using the rule defined in Equation 40, the total change of weight ∆wi,j between the

post-synaptic neuron i and the pre-synaptic neuron j is:

∆wi,j =
∑

tzj∈Tj

∑

tki ∈Ti
STDP

(
tzj , t

k
i

)
(41)

STDP reinforces or weakens connections based on the causal relationship between the

timing of pre and post-synaptic spikes. However, STDP cannot be applied repeatedly

in the same direction without making the network activity fall into complete silence

— also referred to as the dead neuron problem — or into an epileptic state where all

neurons fire at a high frequency due to overly large weights. Therefore, additional

mechanisms such as bounds on weights, weight normalization, synaptic competition,

or homeostatic control are often required to keep weights and firing rates within rea-

sonable ranges (van Rossum, Bi and Turrigiano 2000; Diehl and Cook 2015; Deng and

Li 2021; Lee et al. 2018; Dong et al. 2023; Mozafari et al. 2019).

Finally, due to its biological plausibility and its online aspect, many implementa-

tions of STDP have been proposed in neuromorphic hardware (Schemmel et al. 2010;

Davies et al. 2018; Pehle et al. 2022), giving SNNs the capability of performing feature

learning on the edge.
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2.3.9 Supervised Learning

In contrast with unsupervised learning, Supervised Learning aims to learn a general

mapping function between given inputs and desired outputs. However, the computation

of gradients of SNNs is not as straightforward as it is with DNNs due to the non-

differentiable nature of spikes. Therefore, supervised learning with SNNs is notably

more challenging as in DNNs.

In this context, many supervised learning techniques have been proposed with dif-

ferent degrees of biological plausibility and compatibility with neuromorphic hardware.

Reward-Modulated Spike Time-Dependent Plasticity

The unsupervised STDP rule — see Section 2.3.8 — can be adapted into a three-factor

learning rule that modulates the change of weights with reward signals (Mozafari et al.

2019; Juarez-Lora et al. 2022). Originally designed for biologically plausible reinforce-

ment learning (Juarez-Lora et al. 2022), Reward-Modulated STDP (RSTDP) is also

used to solve supervised learning tasks (Mozafari et al. 2019; Nobukawa, Nishimura

and Yamanishi 2019).

Instead of directly changing the weights, RSTDP accumulates the STDP traces into

an eligibility trace ei,j associated with the weight wi,j , such as:

ei,j =
∑

tzj∈Tj

∑

tki ∈Ti
STDP

(
tzj , t

k
i

)
(42)

When a reward signal ri is emitted, a change of weight is triggered by scaling the

eligibility trace with the reward, such as:

∆wi,j = ri ei,j (43)

As STDP, RSTDP has the benefit of being compatible with neuromorphic hardware.
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However, the RSTDP rule is often only applied to output neurons to perform classifi-

cation as assigning rewards to hidden neurons is inherently more complex than output

neurons. Therefore, SNNs trained with RSTDP strongly rely on unsupervised learning

in their hidden layers, causing a significant performance gap with DNNs trained with

BP (Mozafari et al. 2019; Nobukawa, Nishimura and Yamanishi 2019).

Surrogate Gradients

−1 −0.5 0.5 1

0.5

1

u(t) − ϑ

p(t)

Figure 20: The spike escape rate function p(t) defines the probability of state change
(from spiking to non-spiking or non-spiking to spiking) as a function of the difference
between the membrane potential and the threshold as a time t. Here α = 1 and β = 8.

Many gradient-descent methods for SNNs adopt clock-based strategies where the

discrete spatio-temporal dynamics of SNNs are unfolded into RNNs (Shrestha and Or-

chard 2018; Zheng et al. 2020; Wu et al. 2018) — see Section 2.2.6. Such methods

use BPTT to backpropagate errors backward in time and use various surrogate deriva-

tives to overcome the discontinuous aspect of spikes and spatially backpropagate errors

(Shrestha and Orchard 2018; Zheng et al. 2020; Wu et al. 2018). For example, SLAYER

(Shrestha and Orchard 2018) defines the surrogate derivative of the neuron output with

respect to the internal membrane potential as the spike escape rate function p(t), such

as:

p(t) = 1
α

exp (−β |u(t)− ϑ|) (44)
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where α > 0 and β > 0 are parameters respectively controlling the amplitude and

the decay rate of the function. See Figure 20 for an illustration of this function. This

function represents the probability density function for the state change of the neuron —

i.e. from spiking to non-spiking or non-spiking to spiking – at a given time. It increases

when the membrane potential u(t) is near the threshold ϑ as a slight disturbance in the

membrane potential is likely to induce a state change. However, the function decreases

as the membrane potential deviates further from the threshold, as it would require larger

perturbations to trigger a change of state (Shrestha and Orchard 2018).

Surrogate gradients can train SNNs with performance comparable to DNNs (Shrestha

and Orchard 2018; Zheng et al. 2020; Wu et al. 2018). Moreover, they are less prone

to the dead neuron problem since spiking activity is not necessary to obtain a gradi-

ent. However, there are certain drawbacks associated with their use. First, surrogate

gradients require unfolding network dynamics into discrete RNNs, leading to redun-

dant and memory-intensive computations. This inefficiency arises because errors are

backpropagated even in the absence of spikes. Second, surrogate methods use BPTT

to backpropagate errors backward through space and time. Therefore, they cannot be

directly implemented in neuromorphic systems as they do not permit backward compu-

tation. Instead, they can be used in the loop, where membrane potentials are recorded

at regular intervals during the inference on neuromorphic hardware, and gradients are

computed offline on a traditional von Neumann computer (Cramer et al. 2022b). How-

ever, when it is supported by the neuromorphic hardware, recording membrane poten-

tials significantly increases the amount of data movements to off-chip DRAM memory

leading to increased energy consumption (Christensen et al. 2022).

Exact Event-Based Gradients via Implicit Functions

In contrast with clock-based surrogate gradients, event-based methods compute gradi-

ents by propagating errors from spike timing to spike timing Bohté, Kok and Poutré

(2000); Jin, Zhang and Li (2018); Göltz et al. (2021); Wunderlich and Pehle (2021).
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Θ

u(t)

t

∆t

∆u(t)

Figure 21: The linear relationship between the spike timing and the membrane potential
assumed in SpikeProp (Bohté, Kok and Poutré 2000). Here, u(t) is the membrane
potential, t the spike time, Θ the threshold, ∆u(t) the change in membrane potential
and ∆t the change in spike timing. The solid and dashed lines respectively represent
the membrane potential before and after applying the perturbation.

Due to their event-based aspect, these methods only require spike timings to compute

gradients, thus requiring less memory and making them particularly suitable for in-the-

loop training with neuromorphic hardware (Göltz et al. 2021). However, the lack of a

closed-form solution for the spike timings represents a major obstacle to the compu-

tation of explicit gradients in SNNs Göltz et al. (2021); Wunderlich and Pehle (2021).

Nevertheless, the Implicit Function Theorem (Margossian and Betancourt 2022) — see

Theorem 1 — allows for an implicit expression of the gradient.

Theorem 1 (Implicit Function Theorem (Margossian and Betancourt 2022)). LetF (x, y)

be a differentiable function in the neighborhood of (x0, y0) ∈ R2. We suppose that

F (x, y) = 0. If ∂F (x,y)
∂y

6= 0,then there exists a function g(x) defined on an interval I

containing x0 such as F (x, g(x)) = 0, g(x) = y, and

∂g(x)
∂x

= −
∂F (x,y)
∂x

∂F (x,y)
∂y

(45)
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By application of Theorem 1, the gradient of spike timings can implicitly be com-

puted without knowing the true relationship between the membrane potential and the

spike time, such as:
∂tki
∂wi,j

= − 1
∂ui(tki )
∂tki

∂ui
(
tki
)

∂wi,j
(46)

The implicit gradient defined in Equation 46 was first proposed in SpikeProp (Bohté,

Kok and Poutré 2000) and its variants (Schrauwen and Van Campenhout 2004; Booij

and tat Nguyen 2005; McKennoch, Liu and Bushnell 2006; Ghosh-Dastidar and Adeli

2009). They assumed that, for an infinitesimal region ε around the post-synaptic spike,

the membrane potential could be approximated by a linear function of time — see Fig-

ure 21 for a visual representation of this linear relationship. However, recent works

(Wunderlich and Pehle 2021; Lee, Haghighatshoar and Karbasi 2023) have demon-

strated that Equation 46 is not an approximation but is an exact gradient of spike timings

that can be evaluated by adjoint dynamical systems during the backward pass (Wunder-

lich and Pehle 2021) or in an event-based manner (Zhang and Li 2020; Lee, Haghigh-

atshoar and Karbasi 2023).

Exact Event-Based Gradients via Time Constants Constraints

Instead of implicitly computing gradients, recent works have successfully derived closed-

form solutions of spike timings by constraining the time constants of the LIF neuron

(Mostafa 2016; Comsa et al. 2020; Göltz et al. 2021). The method, named Fast &

Deep, proposes three different constraints to isolate analytical expressions of spikes

and compute exact gradients.

The first constraint consists of making the membrane time constant τ → ∞ tend

towards infinity (Göltz et al. 2021). By doing so, the first term of the PSP kernel ε —

see Equation 31 — tends towards one and the function reduces to PSP kernel of the
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non-Leaky Integrate and Fire (nLIF) neuron:

ε(t) = A

C
τs

[
1− exp

(−t
τs

)]
(47)

which can easily be solved for post-synaptic spikes (Mostafa 2016; Göltz et al. 2021).

The second constraint sets the membrane potential time constant τ = τs equal to the

synaptic time constant τs (Göltz et al. 2021). According to Hôpital’s rule, in the limit

of τ → τs, the PSP kernel of the LIF neuron reduces to the following alpha function

(Comsa et al. 2020; Göltz et al. 2021):

ε(t) = A

C
t exp

(−t
τ

)
(48)

By adopting this PSP kernel, a differentiable closed-form solution for the spike timing

can be found by solving the equation u(t) = ϑ using the main branch of the Lambert

W function (Corless et al. 1996; Comsa et al. 2020; Göltz et al. 2021).

Finally, the last constraint consists of setting the membrane time constant τ = 2τs
as twice the synaptic time constant τs (Göltz et al. 2021). By using such constraint, we

can show that:

exp
(−t
τs

)
= exp

(−2t
2τs

)
= exp

(−2t
τ

)
= exp

(−t
τ

)2
(49)

meaning that the PSP kernel ε reduces to a second degree polynomial:

ε(t) = A

C

ττs
τ − τs

[
exp

(−t
τ

)
− exp

(−t
τ

)2]
(50)

which can be solved using the quadratic formula (Göltz et al. 2021).

These three constraints have mainly been proposed in the context of temporally-

coded SNNs (Mostafa 2016; Comsa et al. 2020; Göltz et al. 2021) and have demon-

strated promising performances on simple benchmark datasets. Moreover, the existence

of analytical solutions for the post-synaptic spikes makes these methods particularly
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suitable for efficient simulations of SNNs as no numerical solver is required. Finally,

their event-based nature also makes them suitable for in-the-loop training where only

spike timings are available (Göltz et al. 2021). However, they cannot be directly imple-

mented on neuromorphic hardware due to the non-local and reverse aspects of BP.

2.4 Gradient-Based Optimization

Gradient-based algorithms are the most popular methods to perform optimization of

differentiable functions and, by far, the most common training techniques for artificial

neural networks (Ruder 2017). In this section, we introduce the Gradient Descent algo-

rithm and some of its variants that are used to update the weights of neural networks.

2.4.1 Gradient Descent

The Gradient Descent (GD) algorithm — also referred to as Batch Gradient Descent or

Vanilla Gradient Descent – is the simplest form of first-order optimization algorithms.

Let f(x,y) : Rm → R be a differentiable parametrized function with parameters

θ ∈ Rn, inputs x and target y from a dataset D = {(xi,yi)}ndata
i=1 of size ndata. We also

denote by ∇θ =
[
∂f(x,y)
∂θ1

, ∂f(x,y)
∂θ2

, · · · , ∂f(x,y)
∂θn

]
the gradient of f(x,y), defined by all

the first order derivatives of the function with respect to its parameters. In GD, param-

eters are iteratively updated by taking steps in the opposite direction of the expected

gradient (Ruder 2017), such as:

θ ← θ − η E
(x,y)∈D

[∇θ] (51)

where η ∈ R+ is a learning rate controlling the step size of the parameters update.

However, evaluating the expected gradient E
(x,y)∈D

[∇θ] at every step of GD is com-

putationally expensive, particularly if the size of the dataset D is large (Ruder 2017).
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2.4.2 Stochastic Gradient Descent

To reduce the computational cost of GD, parameters can be updated in a stochastic

manner by choosing a random sample from the dataset and taking a step in the opposite

direction of the gradient (Ruder 2017). Thus referred to as Stochastic Gradient Descent

(SGD), weights are updated as follows:

θ ← θ − η ∇θ (52)

Note that, in contrast to GD, SGD does not average gradients. In addition to being

more computationally tractable, SGD thus benefits from a greater convergence rate than

GD (Bubeck 2015). However, while SGD is guaranteed to converge with sufficiently

small learning rates (Robbins and Monro 1951), theoretical analyses have shown that

the convergence rate of SGD depends on the variance of the estimates (Bubeck 2015;

Bottou, Curtis and Nocedal 2018; Murata 1999; Moulines and Bach 2011; Needell,

Srebro and Ward 2016; Chee and Toulis 2018; Gower et al. 2019; Faghri et al. 2020).

Gradients exhibiting low variance have less variability and are more consistent, leading

to better convergence than those with high variance. Moreover, another limitation of

SGD is that it has difficulties converging when the surface of the function curves more

sharply in some dimensions than others (i.e. ravines) (Sutton 1986; Ruder 2017). This

often results in strong oscillation in the parameter space and, consequently, a slow

convergence towards the local optimum (Sutton 1986; Ruder 2017).

2.4.3 Mini-Batch Gradient Descent

To reduce the impact of gradient variance on the rate of convergence while retaining

the computational tractability of SGD, an expected gradient can be computed over a

random mini batch of samples B ⊂ D, such as:

θ ← θ − η E
(x,y)∈B

[∇θ] (53)
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Thus referred to as Mini-Batch Gradient Descent (Mini Batch GD), this method com-

bines the computational advantages of SGD with the stability of GD (Ruder 2017) and

typically benefits from better convergence than SGD (Bubeck 2015).

2.4.4 Stochastic Gradient Descent with Momentum

Inspired by Newton’s laws of motion, Stochastic Gradient Descent with Momentum

(SGD-M) adds momentum to the gradient to reduce the oscillations in SGD (Qian

1999).

Formally, SGD-M is performed by introducing a first-order moment m that com-

putes an exponential average of the gradient over the previous updates, such as:

m← αm+∇θ

θ ← θ − η m
(54)

where 0 < α < 1 is the friction coefficient, typically set to 0.9.

Intuitively, the moment term of SGD-M increases in dimensions with consistent

directions and reduces in oscillating dimensions (Ruder 2017). By reducing oscillations

and accelerating the gradient, SGD-M benefits from a greater convergence rate than

SGD (Bubeck 2015) but introduces a bias in the weight updates (Defazio 2020).

2.4.5 RMSProp

Root Mean Squared Propagation (RMSProp) is a gradient-based optimization tech-

nique that introduces adaptive learning rates for each parameter (Ruder 2017).

Formally, RMSProp computes a moving average of the squared gradient and scales

the gradient by the square root of this moving average, such as:

vi ← β vi + (1− β)∇θ2
i

θi ← θi −
η√
vi + ε

∇θi
(55)
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where 0 < β < 1 is the friction coefficient and ε is a smoothing term used to avoid

divisions by zero, typically set to 10−8.

By scaling individual learning rates by the root mean squared gradient, RMSProp

essentially ensures that each parameter is updated with a similar magnitude, making

the method invariant to the scaling of gradients (Ruder 2017).

2.4.6 Adam

The Adaptive Moment Estimation (Adam) is a popular method for training neural net-

works that combines the benefits of both SGD-M and RMSProp (Kingma and Ba 2017).

In addition to computing the first-order moment of the gradient, Adam also stores an

exponentially decaying average of the gradient magnitude, as in RMSProp. Moreover,

the author observed that both the first and second moments of the gradient are biased

toward zero during the initial steps. Therefore, they introduce a bias correction for each

moment to counteract the effect of initialization biases. Finally, weights are updated by

following the direction of the first moment of the gradient and scaling the learning rate

by the estimated magnitude, such as:

mi ← β1 mi + (1− β1)∇θi
vi ← β2 vi + (1− β2)∇θ2

i

m̂i = mi

1− βt1
v̂i = vi

1− βt2
θi ← θi −

η√
v̂i + ε

m̂i

(56)

where mi and vi are respetively the first and second moment of the gradient, β1 and

β2 are their respective decay factors, m̂i and v̂i are the bias-corrected first and second

moment of the gradient, t is the current update step, and ε is the smoothing term used

to avoid divisions by zero. The author also proposed default values of β1 = 0.9, β2 =
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0.999 and ε = 10−8 (Kingma and Ba 2017).

2.5 Automatic Differentiation

v3v1x1

v2x2 v4

v5 y

Figure 22: Computational graph of y = f(x1, x2) = x1x2 − ln(x2), inspired from
Baydin et al. (2017). See the Forward Primal Trace column in Table 1 for the definitions
of the intermediate variables.

Automatic Differentiation (AD) is an ensemble of techniques used to efficiently

and accurately evaluate derivatives of functions. Widely used in machine learning for

gradient computation, the basic idea of AD is to represent complex functions, such

a neural networks, into sequences of simple arithmetic operations (such as addition,

subtraction, multiplication, and division) and elementary functions (Margossian 2019).

This allows efficient and accurate computations of derivatives by repeatedly applying

the chain rule to these simple operations.

We take as an example the following function of two inputs x1 and x2:

y = f(x1, x2) = x1x2 − ln(x2) (57)

This function can be represented as a computational graph of elementary operations

(Bauer 1974), as illustrated by Figure 22. This computational graph is evaluated by a

Forward Primal Trace or Evaluation Trace, represented by a list of elementary oper-

ations called a Wengert List (Wengert 1964). The left column of Table 1 shows how

Equation 57 is represented as such.

To compute derivatives of y with respect to x1 and x2, two main approaches can be

used: Reverse-Mode AD and Forward-Mode AD.
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2.5.1 Reverse-Mode Automatic Differentiation

Table 1: Reverse-Mode Automatic Differentiation of y = f(x1, x2) = x1x2 − ln(x2)
evaluated at x1 = 7 and x2 = 3. The arrows on the sides of the table indicate the order
of evaluation. Table inspired from (Baydin et al. 2017).
wwwwwwwwwwwwwwwwwwwwww�

Forward Primal Trace Reverse Adjoint Trace
v1 = x1 = 7 x′1 = v′1 = 3
v2 = x2 = 3 x′2 = v′2 = 7.333
v3 = v1 × v2 = 7× 3 v′1 = v′3

∂v3
∂v1

= v2 = 3
v′2 = v′2 + v′3

∂v3
∂v2

= 0.333 + v1 = 7.333
v4 = ln(v2) = ln(3) v′2 = v′4

∂v4
∂v2

= 1
v2

= 0.333
v5 = v3 + v4 = 21 + 1.098 v′3 = v′5

∂v5
∂v3

= v′5 × 1 = 1
v′4 = v′5

∂v5
∂v4

= v′5 × 1 = 1
y = v5 = 22.098 v′5 = y′ = 1

~wwwwwwwwwwwwwwwwwwwwww

Reverse-Mode AD — also known as the Adjoint Method — is the most widely used

type of automatic differentiation in modern machine learning. It propagates derivatives

backward through the computational graph, from outputs to inputs (Baydin et al. 2017;

Margossian 2019). Reverse-Mode AD is therefore a two-phase process. First, the func-

tion is evaluated during the forward pass, saving intermediate variables vi and recoding

their dependencies. Then, derivatives are computed by propagating, in reverse, adjoint

variables v′i = ∂yj
∂vi

(Baydin et al. 2017). See Table 1 for an example of Reverse-Mode

AD applied to the function defined in Equation 57. Nowadays, Reverse-Mode AD is

widely used to perform error backpropagation in neural networks.

2.5.2 Forward-Mode Automatic Differentiation

In Forward-Mode AD, each evaluation of the function f(x1, x2) also computes a tangent

trace with respect to a single input by applying the chain rule as the computational graph

is evaluated. This can be performed by evaluating the function using Dual Numbers

(Baydin et al. 2017). Formally, a dual number has the following form:

v + v′ε (58)
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Table 2: Forward-Mode Automatic Differentiation of y = f(x1, x2) = x1x2 − ln(x2)
evaluated at x1 = 7 and x2 = 3. The arrows on the sides of the table indicate the order
of evaluation. Table inspired from (Baydin et al. 2017).
wwwwwwwwwwwwwwww�

Forward Primal Trace Forward Tangent Trace
v1 = x1 = 7 v′1 = x′1 = 0ε
v2 = x2 = 3 v′2 = x′2 = 1ε
v3 = v1 × v2 = 7× 3 v′3 = x′1

∂v3
∂v1

+ x′2
∂v3
∂v2

= 0ε× 3 + 1ε× 7 = 7ε
v4 = ln(v2) = ln(3) v′4 = v′2

∂v4
∂v2

= 1ε× 1
3 = 0.333ε

v5 = v3 + v4 = 21 + 1.098 v′5 = x′3
∂v5
∂v3

+ x′4
∂v5
∂v4

= 7ε+ 0.333ε = 7.333ε
y = v5 = 22.098 y′ = v′5 = 7.333ε

wwwwwwwwwwwwwwww�

where, v ∈ R is the primal number, v′ ∈ R is the tangent value and ε is a nilpotent

number such as ε 6= 0 and ε2 = 0. In practice, dual numbers are represented by a pair

(v, v′) in memory. Simple operations with dual numbers thus conveniently perform

first-order differentiation. For example:

(v + v′ε) + (u+ u′ε) = (v + u) + (v′ + u′)ε

(v + v′ε)(u+ u′ε) = (vu) + (vu′ + v′u)ε
(59)

and applying a differentiable function f to a dual number leads to the following trans-

formation:

f(v + v′ε) = f(v) + f ′(v)v′ε (60)

where f ′(v) is the first order derivative of f .

Table 2 shows an example of Forward-Mode AD applied to the function defined

in Equation 57. In this example, the tangent trace for the input variables v1 and v2 are

initialized to 0 and 1 respectively. By computing the tangent trace along with the primal

trace using dual numbers, the derivative ∂y
∂x2

is produced at the output, without having to

propagate derivatives backward (Baydin et al. 2017). However, unlike Reverse-Mode

AD, only a single tangent is produced per evaluation, which means that n evaluations of

the function are required to compute the full gradient, where n is the number of inputs

to the function.
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2.6 Chapter Summary

In Section 2.1, we briefly reviewed the structure and dynamics of biological neurons,

introduced the two main theories of information coding, and discussed plasticity in the

brain.

Moving to Section 2.2, we explored the historical evolution of artificial neural net-

works, from the McCulloch-Pitts Neuron to the continuously activated neuron model

used in modern deep learning. More specifically, we introduced the BP algorithm,

which plays a crucial role in computing gradients to update the weights of DNNs

through gradient-based optimization techniques, as described in Section 2.4. Often

implemented using Reverse-Mode AD, as detailed in Section 2.5, BP effectively ad-

dresses the error credit assignment problem and is considered to be the workhorse of

high-performance deep learning. In addition, we discussed the fundamental deep learn-

ing problem causing vanishing that hinders the convergence of DNNs and introduced

various solutions available to overcome this issue and enable the training of deeper net-

works. We then described various network architectures that have been made possible

by these solutions, namely CNNs, and RNNs. Finally, we discussed the different hard-

ware that can be used to accelerate the inference and training of DNNs such as GPUs,

FPGAs, and ASICs.

In Section 2.3, we introduced the more biologically plausible SNNs as an alternative

to DNNs for low-powered computation. More precisely, we introduced various spiking

neuron models with different complexities, including the computationally efficient LIF

neuron and its mapping to the SRM model. We then explored the range of hardware

options available for the acceleration SNNs. SNNs become particularly advantageous

when implemented on energy-efficient neuromorphic hardware. Finally, we discuss

the benefits and disadvantages of spike count coding over TTFS and introduce several

unsupervised and supervised methods for training SNNs.

Current state-of-the-art results with SNNs are achieved through various adaptations

of BP and GD to SNNs that overcome the non-differentiability of spikes. For instance,
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the recent Fast & Deep algorithm, introduced in Section 2.3.9, uses specific constraints

to isolate closed-form solutions of spike timings and compute exact gradients of SNNs.

However, the Fast & Deep algorithm has only been benchmarked on temporally-coded

networks and is yet to be generalized to SNNs firing multiple spikes per neuron. One

other challenge associated with GD in SNNs is the non-local and reverse aspects of

BP that are incompatible with the local and online constraints of neuromorphic hard-

ware. Because of this limitation, GD is primarily suited for unadapted von Neumann

architectures, resulting in computationally expensive and energy-consuming training of

SNNs.



Chapter 3

Exact Gradients of Spiking Neural

Networks

The contributions of this chapter are:

• I introduce an extension of the Fast & Deep algorithm that relaxes the firing

constraint of temporally-coded SNNs and computes the exact gradients of un-

constrained SNNs.

• I compare temporally-coded SNNs trained with Fast & Deep and unconstrained

SNNs trained with the proposed method on several criteria such as convergence

likelihood, performance, rate of convergence, classification latency, and robust-

ness to noise and weight quantization.

• I investigate the role of weight initialization in temporally-coded SNNs and high-

light tradeoffs between performance, sparsity, classification latency, and robust-

ness.

61
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3.1 Introduction

Inspired by DNNs, supervised learning in SNNs is mostly performed with various adap-

tations of the gradient descent and BP algorithms. However, the discontinuous aspect

of spikes makes the computation of exact gradients of SNNs more challenging than

DNNs.

Surrogate gradients are popular approaches to overcome the non-differentiability of

the threshold function in SNNs (Shrestha and Orchard 2018; Zheng et al. 2020; Wu

et al. 2018). These methods typically model the probability of state transition (i.e.

from spiking to non-spiking or non-spiking to spiking) to allow errors to be tempo-

rally backpropagated through the membrane potential dynamics using BPTT (Shrestha

and Orchard 2018) — see Section 2.3.9 for more details. While these methods allow

for high-performance training of SNNs, they are known to perform many unnecessary

steps and require recording the states of neurons at each time step, which is generally

not provided by neuromorphic hardware or, when possible, represents a major source

of energy consumption. Therefore, surrogate gradient methods are mostly limited to

offline training.

In contrast, event-based gradient descent techniques for SNNs compute gradients by

propagating errors through spike timings. The inherently event-driven nature of these

methods makes them particularly suitable for in-the-loop training with neuromorphic

hardware as they exclusively rely on spike timings to compute gradients (Göltz et al.

2021). However, the absence of a closed-form solution for spike timings represents a

major obstacle to the computation of exact gradients (Mostafa 2016; Comsa et al. 2020;

Göltz et al. 2021; Wunderlich and Pehle 2021; Lee, Haghighatshoar and Karbasi 2023).

Solutions have been proposed to either sidestep the lack of analytical solution by

computing implicit gradients (Wunderlich and Pehle 2021; Lee, Haghighatshoar and

Karbasi 2023) or isolate specific analytical solutions for spike timings imposing con-

straints on the model parameters (Mostafa 2016; Comsa et al. 2020; Göltz et al. 2021).
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For instance, the Fast & Deep algorithm (Göltz et al. 2021) introduces closed-form so-

lutions for spike timings by using various time constant constraints. This allows for the

computation of exact gradients and enables the training of fast, energy-efficient, and

robust SNNs. However, in its original version, the Fast & Deep algorithm uses SNNs

temporally coded with TTFS — see Section 2.3.7 for details — which are known for

their advantages in terms of inference speed and energy-efficiency but also for their

various limitations.

First, the firing constraint imposed on neurons using TTFS coding limits their ca-

pacity to transmit information. In the spike-based theory of neural coding (Brette 2015),

each spike carries some amount of information. Firing rates relates to the rates of infor-

mation that are transmitted by neurons. Therefore, limiting the number of spikes that

neurons can fire also limits their information capacity. For this reason, SNNs using a

single spike per neuron do not perform as well as SNNs allowing multiple spikes per

neuron (Jin, Zhang and Li 2018; Zhang and Li 2019; Shrestha and Orchard 2018; Lee,

Delbruck and Pfeiffer 2016; Zhang et al. 2022). Fast & Deep is no exception to this

limitation as it does not reach the performance of ANNs on simple benchmark datasets

such as MNIST (Göltz et al. 2021).

Second, limiting neurons to fire only once also makes them unable to respond to

several different patterns in time. SNNs are capable of responding to many spatio-

temporal patterns occurring at different timings making them computationally power-

ful. Intuitively, neurons that fire only once are not capable of responding to recurrent

patterns in time once their single spike has been fired. This limitation becomes partic-

ularly significant since certain types of data contain many repetitive patterns, such as

sound or videos. Therefore, by constraining neurons to only fire a single spike, Fast &

Deep restricts the computational capabilities of SNNs.

Finally, temporal coding schemes such as TTFS are particularly subject to the ef-

fects of substrate noise of analog neuromorphic hardware (Guo et al. 2021; Park, Lee
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and Yoon 2021). More particularly, the only spike fired by neurons in temporally-

coded SNNs is strongly affected by spike jitter where spikes are shifted by small tem-

poral perturbations. This weakness can have a drastic impact on the performance of

temporally-coded SNNs if not addressed (Park, Lee and Yoon 2021).

Motivated by these limitations, I propose to relax the single spike constraint im-

posed by Fast & Deep to allow the generation of multiple spikes per neuron in SNNs,

which I refers to as unconstrained SNNs. To understand the benefits of relaxing this

constraint, I conduct several empirical experiments to explore the relationships between

performance, energy consumption, speed, and noise robustness when using temporally-

coded and unconstrained SNNs. The rest of this chapter is therefore structured as fol-

lows:

• I first review the underlying cause behind the absence of a general closed-form

solution for spike timings as well as one of the solutions proposed by Fast & Deep

(Göltz et al. 2021). In addition, I review how the Fast & Deep algorithm back-

propagates errors through spikes and computes exact gradients in temporally-

coded SNNs.

• Then, I introduce my generalization of the Fast & Deep algorithm to uncon-

strained SNNs. By taking into account all the spatio-temporal dependencies be-

tween spikes, I highlight the fact that errors are backpropagated through two

distinct paths due to the addition of reset in the computational graph and describe

how errors are backpropagated in unconstrained SNNs to compute exact gradi-

ents.

• I describe the experimental settings used to produce my empirical results includ-

ing network architectures, loss functions, weight initializations, hyperparameters,

and hardware acceleration.

• I finally empirically compare Fast & Deep with the proposed method on multi-

ple criteria such as convergence likelihood, performance on benchmark datasets,
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convergence rate, sparsity, classification latency, and robustness to noise and

weight quantization. Moreover, I investigate the role of weight initialization in

TTFS SNNs and highlight several tradeoffs between these different aspects.

3.2 The Lack of Closed-Form Solution for Spike Tim-

ings

I now consider the LIF neuron model as described in Section 2.3.3 and, more specifi-

cally, its mapping in the SRM model as described in Section 2.3.4. Using the α function

defined in Equation 27, the temporal impact of incoming pre-synaptic spikes onto the

membrane potential is described by the following bi-exponential PSP kernel:

ε(t) = Θ (t) A
C

ττs
τ − τs

[
exp

(−t
τ

)
− exp

(−t
τs

)]
(61)

For simplicity, we will assume that A
C

ττs
τ−τs = 1 Volt. Therefore, using Equation 31 as

PSP kernel and the constants constraint, the membrane potential ui(t) of the ith neuron,

as defined by the SRM model, becomes:

ui(t) =urest +
∑

j∈Pi
wi,j

∑

tzj∈Tj
Θ
(
t− tzj

) [
exp

(
tzj − t
τ

)
− exp

(
tzj − t
τs

)]

−∆ϑ

∑

tki ∈Ti
Θ
(
t− tki

)
exp

(
tki − t
τ

) (62)

where ∆ϑ = ϑ− urest.

To be able to differentiate spike timings and compute exact gradients of SNNs, we

first need to isolate a closed-form solution of each post-synaptic spike tki when the

membrane potential crosses the threshold, such as:

ϑ = ui(tki ) (63)
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However, it appears that the PSP kernel defined in Equation 31 has no general closed-

form solution. This is because it is defined as a difference of exponential functions,

which is known to have no general closed-form expression. The lack of a closed-

form solution for post-synaptic spike timings is therefore the major obstacle to the

computation of exact gradients in SNNs (Wunderlich and Pehle 2021).

3.3 Closed-Form Solution by Time Constant Constraints

Until recently, the lack of a closed-form solution for spike timings was seen as a major

obstacle to the differentiation of spike timings. However, recent works have success-

fully derived exact expressions of spikes allowing the computation of exact gradients

(Mostafa 2016; Comsa et al. 2020; Göltz et al. 2021). These methods use constraints

between the membrane and synaptic time constants to isolate a closed-form solution of

post-synaptic spike timings. In particular, the recent Fast & Deep (Göltz et al. 2021)

method proposed three different constraints: τ →∞ (i.e. no leak), τ = τs and τ = 2τs.

In the following, I will only focus on the last constraint τ = 2τs because of its simplic-

ity.

Formally, by constraining the membrane time constant τ = 2τs as twice the synaptic

time constant, the following Equation holds:

exp
(−t
τ

)2
= exp

(−t
τs

)
(64)

Therefore, Equation 63 can be written as a quadratic equation (Göltz et al. 2021), such
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as:

ϑ = ui
(
tki
)

⇔ ϑ = urest +
∑

j∈Pi
wi,j

∑

tzj∈Tj
Θ
(
tki − tzj

) [
exp

(
tzj − tki
τ

)
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(
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(65)

where aki , bki are two coefficients associated with the post-synaptic spike at time tki ,

defined as:

aki :=
∑

j∈Pi
wi,j

∑

tzj∈Tj
Θ
(
tki − tzj

)
exp

(
tzj
τs

)
(66)

and

bki :=
∑

j∈Pi
wi,j

∑

tzj∈Tj
Θ
(
tki − tzj

)
exp

(
tzj
τ

)
−∆ϑ

∑

tzi∈Ti
Θ
(
tki − tzi

)
exp

(
tzi
τ

)
(67)

Because, Equation 65 is a polynomial of degree 2, we can use the quadratic formula to

find a closed-form solution for tki . Therefore, by choosing the solution that corresponds

to the rise of the membrane potential (Göltz et al. 2021), Equation 65 has the following
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solution:

exp
(
−tki
τ

)
= bki + xi

2aki

⇔tki = τ ln
(

2aki
bki + xki

) (68)

where

xki :=
√(

bki
)2 − 4aki ∆ϑ (69)

This demonstrates that specific analytical solutions for spike timings can be isolated.

In particular, these solutions are differentiable. Therefore, exact gradients of SNNs can

be computed.

3.4 Exact Gradients of Temporally-Coded Spiking Neu-

ral Networks

In addition to the closed-form solution of spike timings previously introduced, the Fast

& Deep algorithm computes exact gradients of temporally-coded SNNs (Göltz et al.

2021). More precisely, it computes exact gradients of spiking neurons by differentiating

the closed-form solution of their spike timings and backpropagating errors backward

through space and time from spike to spike.

Formally, given a differentiable loss L, the gradient is defined by all the partial

derivative ∂L
∂wi,j

with respect to the weights, such as:

∂L
∂wi,j

=∂L
∂ti

∂ti
∂wi,j

=δi
∂ti
∂wi,j

(70)

where

δi := ∂L
∂ti

(71)
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is the error backpropagated to the spike time ti = t1i . Here, I dropped the spike index

for conciseness.

Because a closed-form solution for spike timings exists if τ = 2τs, it is possible to

differentiate the post-synaptic spike ti with respect to the weight wi,j , such as:

∂ti
∂wi,j

= ∂ti
∂ai

∂ai
∂wi,j

+ ∂ti
∂bi

∂bi
∂wi,j

= Θ (ti − tj)
[
∂ti
∂ai

exp
(
tj
τs

)
+ ∂ti
∂bi

exp
(
tj
τ

)] (72)

where
∂ti
∂ai

= τ

ai

[
1 + ∆ϑ

xi
exp

(
ti
τ

)]
(73)

and
∂ti
∂bi

= − τ
xi

(74)

3.4.1 Error Backpropagation in Temporally-Coded Spiking Neu-

ral Networks

To compute the error δi associated to the hidden spike time ti, the output errors δo = ∂L
∂to

is recursively backpropagated backward through time and space using BP. By denot-

ing Hi = {j | i is connected to j} as the set of downstream neurons connected to the

neuron i, the error δi for the hidden neuron i is computed as:

δi =
∑

j∈Hi

∂tj
∂ti

δj (75)

where

∂tj
∂ti

= ∂tj
∂aj

∂aj
∂ti

+ ∂tj
∂bj

∂bj
∂ti

= Θ (tj − ti)wi,j

 ∂tj
∂aj

exp
(
ti
τs

)

τs
+ ∂tj
∂bj

exp
(
ti
τ

)

τ




(76)
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After computing the gradient, weights can thus be updated using a gradient-based opti-

mization algorithm — see Section 2.4 for details.

By using TTFS coding, Fast & Deep is capable of training low-latency SNNs pro-

ducing fast predictions and promising results on benchmark datasets. Moreover, Fast &

Deep is particularly suitable for in-the-loop training as it only requires spike timings. In

addition, the algorithm has shown robustness to the substrate noise of the mixed-signal

Brainscale-2 neuromorphic hardware during in-the-loop training (Göltz et al. 2021).

Therefore, Fast & Deep represents a promising approach for supervised learning in

SNNs.

3.5 Exact Gradients of Unconstrained Spiking Neural

Networks

In this section, I introduce my extension of the Fast & Deep algorithm that relaxes the

constraint on the firing of temporal coding and describe how errors are backpropagated

through spikes in unconstrained SNNs.

I first derive the exact gradient of unconstrained SNNs, defined by all the partial

derivatives ∂L
∂wi,j

of a differentiable loss function L with respect to the weights. In

an unconstrained SNN, each post-synaptic spike tki of a neuron i receives errors and

contributes to the computation of the gradient. Therefore, the partial derivatives ∂L
∂wi,j

composing the gradient are defined as the sum over the post-synaptic spikes, such as:

∂L
∂wi,j

=
∑

tki ∈Ti

∂L
∂tki

∂tki
∂wi,j

=
∑

tki ∈Ti
δki

∂tki
∂wi,j

(77)

where

δki := ∂L
∂tki

(78)
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is the error backpropagated to the kth spike time tki of the neuron i.

By using the closed-form solution for the spike time (Equation 68), we can thus

differentiate each post-synaptic tki with respect to the weight wi,j:

∂tki
∂wi,j

= ∂tki
∂aki

∂aki
∂wi,j

+ ∂tki
∂bki

∂bki
∂wi,j

=
∑

tzj∈Tj
Θ
(
tki − tzj

) [ ∂tki
∂aki

exp
(
tzj
τs

)
+ ∂tki
∂bki

exp
(
tzj
τ

)] (79)

where
∂tki
∂aki

= τ

aki

[
1 + ∆ϑ

xki
exp

(
tki
τ

)]
(80)

and
∂tki
∂bki

= − τ

xki
(81)

3.5.1 Error Backpropagation in Unconstrained Spiking Neural Net-

works

Time
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Intra-neuron
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Figure 23: Illustration of error backpropagation through spikes. This figure represents
a three-layered network where the spike trains of only one neuron per layer are shown.
The grey arrows represent the error coming from the loss function, the dashed blue
arrows are the errors backpropagated from the downstream spikes (i.e. inter-neuron de-
pendencies) and the red arrows are the error backpropagated from the future activity of
the neuron due to the recurrence of the reset function (i.e. intra-neuron dependencies).
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As in Fast & Deep, output errors can recursively be backpropagated backward

through time and space using the error backpropagation algorithm. However, addi-

tional dependencies between post-synaptic spikes are present in unconstrained neurons

due to the reset of the membrane potential. More precisely, errors are backpropagated

through two distinct paths: from post-synaptic to pre-synaptic spikes (or inter-neuron

dependencies), and through post-synaptic to post-synaptic spikes (or intra-neuron de-

pendencies).

Inter-neuron dependencies arise due to the causal interactions between pre-synaptic

and post-synaptic neurons. In essence, errors are spatially backpropagated to pre-

synaptic spikes that have a causal relationship with post-synaptic spikes — see the

dashed blue arrows in Figure 23. On the other hand, intra-neuron dependencies arise

due to the causal interactions between post-synaptic spikes. More precisely, the reset

of the membrane potential caused by post-synaptic spikes temporally influences sub-

sequent spikes. Errors are therefore backpropagated within the post-synaptic spikes of

the same neuron — see red arrows in Figure 23.

Formally, the error δki computed through error backpropagation can be decomposed

into two error components:

δki :=∂L
∂tki

=
∑

j∈Hi

∑

tzj∈Tj

∂L
∂tzj

∂tzj
∂tki

︸ ︷︷ ︸
Inter-Neuron

+
∑

tzi∈Ti

∂L
∂tzi

∂tzi
∂tki

︸ ︷︷ ︸
Intra-Neuron

=φki + µki

(82)

where φki is the error backpropagated through the synapses (inter-neuron dependencies)

and µki is the error backpropagated through the reset of the membrane potential (intra-

neuron dependencies). In contrast with my method, Fast & Deep only propagates errors

through inter-neuron dependencies as the membrane potential of constrained neurons

is never reset.
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Inter-Neuron Dependencies

The inter-neuron error φki has different definitions for output neurons and hidden neu-

rons. For output neurons o, the inter-neuron error φko received by the kth spike of the

neuron o is defined as the derivative of the loss function as no inter-neuron backpropa-

gation is required:

φko := ∂L
∂tko

(83)

For hidden neurons, the inter-neuron error φki is defined as the sum of all errors back-

propagated from the downstream spikes that have been emitted since the time of firing

tki , such as:

φki =
∑

j∈Hi

∑

tzj∈Tj

∂tzj
∂tki

δkj (84)

where

∂tzj
∂tki

=
∂tzj
∂azj

∂azj
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∂tzj
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tzj − tki

)
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
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exp
(
tki
τs

)

τs
+
∂tzj
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exp
(
tki
τ

)

τ




(85)

Essentially, the way errors backpropagate through inter-neuron dependencies in uncon-

strained SNNs is similar to the original Fast & Deep algorithm. The only difference

lies in the fact that, in unconstrained SNNs, errors are backpropagated from multiple

spikes instead of a single one.
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Intra-Neuron Dependencies

When firing, each post-synaptic spike affects the membrane potential of the neuron

due to the reset. This creates temporal intra-neuron dependencies between causal post-

synaptic spikes. Consequently, computing the intra-neuron error µki requires backprop-

agating errors from all the future spike activity of the neuron. Formally, µki is defined

as a sum over all errors backpropagated from the post-synaptic spikes occurring after

tki , such as:

µki =
∑

tzi∈Ti

∂tzi
∂tki

δzi (86)

where

∂tzi
∂tki

= ∂tzi
∂azi

∂azi
∂tki

+ ∂tzi
∂bzi

∂bzi
∂tki

= Θ
(
tzi − tki

) ∆ϑ

xzi
exp

(
tki
τ

) (87)

If evaluated as written, Equation 86 implies a quadratic complexity O (n2) where n is

the number of post-synaptic spikes fired by the neuron. However, every reset has the

same impact on the membrane potential i.e. an instantaneous negative voltage of size

∆θ = ϑ− urest. Therefore, the computation of µki can be factorized as follows:

µki =∆ϑ exp
(
tki
τ

) ∑

tzi∈Ti
Θ
(
tzi − tki

) δzi
xzi

=∆ϑ exp
(
tki
τ

)
βk+1
i

(88)

where

βki = βk+1
i + δki

xki
(89)

is a recursive term that can be accumulated in linear time O(n) during the backward

pass. Therefore Equation 88 allows for a linear error backpropagation through intra-

neuron dependencies that significantly reduces the computational cost of the algorithm
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compared to Equation 86.

3.6 Experimental Settings

In this section, I describe the experimental settings used to produce my empirical re-

sults, including the benchmark datasets, encoding and decoding techniques, network

architectures, loss functions, the different hyperparameter values as well as my custom

event-based simulator for GPU.

3.6.1 Benchmark Datasets

Table 3: Descriptions of the benchmark datasets used in my experiments.

Dataset Name Train Samples Test Samples Classes Description

MNIST 60 000 10 000 10
28x28 images of handwritten
digits

EMNIST 112 800 18 800 47
28x28 images of handwritten
digits and letters

Fashion MNIST 60 000 10 000 10 28x28 images of clothes

SHD 8 156 2 264 20
700 channels recordings
of spoken digits by an
artificial cochlea

To evaluate the performance of the proposed method and compare it with the orig-

inal Fast & Deep, I selected four benchmark datasets, namely the Modified National

Institute of Standards and Technology (MNIST) dataset (LeCun, Cortes and Burges

2010), the Balanced Extended MNIST (EMNIST) dataset (Cohen et al. 2017), the Fash-

ion MNIST dataset (Xiao, Rasul and Vollgraf 2017) and the Spiking Heidelberg Dataset

(SHD) (Cramer et al. 2022a). See Table 3 for a detailed description of each dataset.

3.6.2 Encoding

To encode the pixel values of static images (e.g. MNIST, EMNIST, and Fashion

MNIST) into spikes that can be used as inputs of SNNs, I applied the TTFS coding
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scheme — see Section 2.3.7 for details — with an encoding window of T = 100 ms.

For pixel values of 0 (i.e. black), no spikes were generated. In this way, TTFS therefore

produces sparse temporal encoding of grayscale images that are fast to process in my

event-based simulator. For the SHD dataset, I used the spike trains as provided by the

dataset.

3.6.3 Network Architectures

To benchmark the proposed method, I used two types of architectures, namely fully-

connected SNNs and convolutional SNNs. Fully connected SNNs are, like their DNNs

counterparts, composed of successive layers where each neuron is connected to all the

neurons of the previous layer.

Convolutional SNNs are also similar to CNNs with the exception of their pooling

layers. Weights are spatially shared between the neurons of convolutional spiking lay-

ers. However, max pooling and average pooling are not directly applicable to spike

trains. Therefore, I adopt the aggregation pooling method (Shrestha and Orchard 2018)

which consists of aggregating the spike trains of a sub-region into a single spike train.

3.6.4 Decoding and Loss Functions

Because of its constraint on spikes, class predictions in Fast & Deep are given by the

first spike emitted by the output layer of SNNs, such as:

p = arg min
o

to (90)

where p is the prediction label and to is the only spike fired by the output neuron o.

During the training of TTFS SNNs, I adopted the same Softmax Cross Entropy loss
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function as the original Fast & Deep work (Göltz et al. 2021). It is defined as:

L :=−
∑

o

ŷo log



exp
(
−to
τL

)

∑
o′ exp

(−to′
τL

)




= log


∑
o exp

(
−to
τL

)

exp
(−tŷ
τL

)




= log
[∑

o

exp
(
−to − tŷ

τL

)]

(91)

where ŷ is the target label, τL is the loss time constant and

ŷo =





1 if o = ŷ

0 otherwise
(92)

In contrast with Fast & Deep, neurons in my unconstrained SNNs can fire multiple

spikes, allowing more freedom in the choice of spike decoding schemes and loss func-

tions. Therefore, I adopted a spike count decoding for the outputs of my unconstrained

SNNs, leading to the following predictions:

p = arg max
o

no (93)

where p is the predition label and no is the spike count for the output neuron o.

Finally, I used the following Mean Squared Error loss function to train my SNNs

to match a desired firing count, such as:

L := 1
2
∑

o

(ŷo − no)2 (94)

where ŷo is the spike count target for the output neuron o.
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3.6.5 Update Method and Hyperparameters

I used the Adam (Kingma and Ba 2017) algorithm — see Section 2.4.6 for details —

to update the weights of SNNs with the computed gradients. I used the default values

of β1 = 0.9, β2 = 0.999 and ε = 10−8 (Kingma and Ba 2017), a batch size of 50 for

fully connected SNNs, a batch size of 20 for convolutional SNNs and used a learning

rate of λ = 0.003 for image classification and λ = 0.001 for audio classification with

the SHD dataset.

Experimental conditions were standardized for both Fast & Deep and my method,

except for weight distributions and thresholds. I used a synaptic time constant of

τs = 130 ms for image classification and τs = 100 ms for the SHD dataset. Two uni-

form weight distributions (wi,j ∼ U(−1, 1) and wi,j ∼ U(0, 1)) were used to evaluate

Fast & Deep, to measure the effect of initial weight distributions on the different eval-

uation criteria. My method was solely assessed using wi,j ∼ U(−1, 1), as using only

positive weights lead to excessive spiking activity, hindering computational and energy

efficiency. Thresholds were manually tuned to find the best-performing networks and

kept fixed during training.

I used a time constant of τL = 5 ms for the softmax cross entropy loss function of

Fast & Deep. For my method, I choose a spike count target of 15 for the target label

and 3 for the others.

All these parameters were choosen manually during my experiments to obtain the

best performing SNNs.

3.6.6 Event-Based Simulations on GPU

Equation 68 provides a closed-form solution of the spike time that can be used to infer

the spike trains of the neurons. In configurations where there is no lateral interaction

within a layer, neurons’ spike trains can be computed in parallel. Therefore, I have

developed my own custom event-based Python simulator accelerated with GPUs.
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In this simulator, spike trains are evaluated for the entire simulation layer after layer

to be able to provide the full set of spike trains to the next one. Pre-synaptic events

are therefore sorted in time which allows the computation of post-synaptic spikes by

iterating through the ordered set of pre-synaptic events. However, there is no known

method to predict the number of spikes that neurons will fire. Memory must therefore

be allocated before the inference as GPUs do not allow dynamic memory allocation

during kernel executions. For this reason, a spike train buffer of size nmax is allocated

for each neuron before the inference, thus allowing a given maximum number of spikes

per neuron. In my experiments with my method, nmax = 30 was choosen sufficiently

large to allow multiple spikes per neuron. For Fast & Deep, nmax = 1 was set to one to

constraint neurons to fire at most one spike.

All the inference and backpropagation logic was implemented in custom Cuda ker-

nels in C and interfaced with Python using CuPy (Okuta et al. 2017), a Numpy (Harris

et al. 2020) compatible library for GPU-accelerated computing in Python.

3.7 Empirical Results

In this section, I compare the proposed method with Fast & Deep, initialized with

two different weight distributions (i.e. wi,j ∼ U(−1, 1) and wi,j ∼ U(0, 1)). This

evaluation was conducted based on multiple criteria including convergence likelihood,

performance on benchmark datasets, convergence rate, sparsity, classification latency,

as well as robustness to noise and weight quantization.

3.7.1 Convergence Likelihood

When a temporally-coded SNN is used to perform classification, only the first spike of

each neuron contributes to the computation. Therefore, only the information carried

by pre-synaptic spikes occurring before the first spike of a neuron is captured by the
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Figure 24: Example of classification of two simple patterns (Figures 24a and 24b)
where relevant information is carried by the two last spikes. When using TTFS coding
(Figure 24c), neurons can miss the relevant information if they spike too early and never
converge. By using unconstrained SNNs (Figure 24d), neurons can fire several spikes,
thus increasing the likelihood of convergence.
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Figure 25: Average accuracy achieved by different initial weight distributions for a
single-spike model (Figure 25a) and a multi-spike model (Figure 25b) on the simple
spatio-temporal pattern classification problem shown in Figure 24.

gradient. If during training – or simply at the initialization – neurons fire before the rel-

evant information of the input pattern, learning is never achieved because the important

features are not captured – see Figure 25a. On the other hand, a neuron model that fires

multiple times is more likely to spike after the relevant information and thus achieve

learning – see Figure 25b. Therefore, unconstrained SNNs are, in theory, more likely

to converge than TTFS models.

To empirically validate this phenomenon, I measured the convergence likelihood of

both TTFS and unconstrained models on a simple spatio-temporal pattern classification

problem with different initial weight distributions. In this task, four input neurons

generate a single spike each forming two different spatio-temporal patterns that must

be classified. The first two spikes are always generated at the same timings in both

patterns while the last two spikes are emitted at different timings and thus contain all

the relevant information about the class — see Figures 24a and 24b. For each evaluated

distribution, I trained two spiking neurons initialized with a normal weight distribution

to classify these spatio-temporal patterns (i.e. one neuron per class) 100 times and

computed the probability that neurons correctly classify the patterns. Figure 25 shows
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my results. To achieve convergence using a single spike per neuron, the distribution

of the weights must be restricted to a small region of the weight distribution plane,

otherwise, the weights are either too low to produce a spike or too high which makes

the neurons fire earlier than the relevant spikes. However, the multi-spike model shows

better convergence properties as it can discharge after the last input spikes, even if it

already fired. This shows that, under some circumstances, multi-spike neurons may

have better convergence capabilities than single-spike neurons as they can learn with a

broader range of weight distribution.

3.7.2 Performance

Table 4: Performances comparison between Fast & Deep and my method on the
MNIST, EMNIST, Fashion-MNIST, and Spiking Heidelberg Digits (SHD) datasets.
The initial weight distribution used in each column is specified in the first row of the
table. Conv. refers to a convolutional SNN with the following architecture: 15C5-P2-
40C5-P2-300-10.

Dataset Architecture
Fast & Deep
U(−1, 1)

Fast & Deep
U(0, 1)

My Method
U(−1, 1)

MNIST
800-10 96.76 ± 0.17% 97.83 ± 0.08% 98.88± 0.02%
Conv. 99.01 ± 0.16% 99.22 ± 0.05% 99.38± 0.04%

EMNIST 800-47 69.56 ± 6.70% 83.34 ± 0.27% 85.75± 0.06%
Fashion MNIST 400-400-10 88.14 ± 0.08% 88.47 ± 0.20% 90.19± 0.12%

SHD 128-20 33.84 ± 1.35% 47.37 ± 1.65% 66.8± 0.76%
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Table 5: Performances of several methods on the MNIST dataset. Results for Fast &
Deep and my method are highlighted in bold.

Method Arch. Test accuracy

T
T

FS

Fast & Deep (Göltz et al. 2021) 350 97.1 ± 0.1%

Wunderlich & Pehle (Wunderlich and Pehle 2021) 350 97.6 ± 0.1%

Alpha Synapses (Comsa et al. 2020) 340 97.96%

S4NN (Kheradpisheh and Masquelier 2020) 400 97.4 ± 0.2%

BS4NN (Kheradpisheh, Mirsadeghi and Masquelier 2021) 600 97.0%

Mostafa (Mostafa 2016) 800 97.2%

STDBP (Zhang et al. 2022) 800 98.5%

Fast & Deep (Göltz et al. 2021)
(my implementation)

800 97.83± 0.08%

U
nc

on
st

ra
in

ed eRBP (Neftci et al. 2017a) 2x500 97.98%

Lee et al (Lee, Delbruck and Pfeiffer 2016) 800 98.71%

HM2-BP (Jin, Zhang and Li 2018) 800 98.84 ± 0.02%

This work 800 98.88± 0.02%

Table 6: Performances of several methods on the EMNIST dataset. Results for Fast &
Deep and my method are highlighted in bold.

Method Arch. Test accuracy

T
T

FS Fast & Deep (Göltz et al. 2021)
(my implementation)

800 83.34± 0.27%

U
nc

on
st

ra
in

ed eRBP (Neftci et al. 2017a) 2x200 78.17%

HM2-BP (Jin, Zhang and Li 2018) 2x200 84.31 ± 0.10%

HM2-BP (Jin, Zhang and Li 2018) 800 85.41 ± 0.09%

This work 800 85.75± 0.06%
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Table 7: Performances of several methods on the Fashion-MNIST dataset. Results for
Fast & Deep and my method are highlighted in bold. The recurrence column indicates
if the model contains recurrent connections.

Method Arch. Reccurent Test accuracy

T
T

FS

S4NN (Kheradpisheh and Masquelier 2020) 1000 7 88.0%

BS4NN (Kheradpisheh, Mirsadeghi and Masquelier 2021) 1000 7 87.3%

STDBP (Zhang et al. 2022) 1000 7 88.1%

Fast & Deep (Göltz et al. 2021)
(my implementation)

2x400 7 88.28± 0.41%

U
nc

on
st

ra
in

ed HM2-BP (Jin, Zhang and Li 2018) 2x400 7 88.99%

TSSL-BP (Zhang and Li 2020) 2x400 7 89.75 ± 0.03%

ST-RSBP (Zhang and Li 2019) 2x400 3 90.00 ± 0.14%

This work 2x400 7 90.19± 0.12%

Table 8: Network architectures used in Table 9. 15C5 represents a convolution layer
with 15 5x5 filters and P2 represents a 2x2 pooling layer.

Network Name Architecture

Net1 32C5-P2-16C5-P2-10
Net2 12C5-P2-64C5-P2-10
Net3 15C5-P2-40C5-P2-300-10
Net4 20C5-P2-50C5-P2-200-10
Net5 32C5-P2-32C5-P2-128-10
Net6 16C5-P2-32C5-P2-800-128-10
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Table 9: Performances of several methods on the MNIST dataset with Spiking Con-
volutional Neural Networks. The network topologies are given in Table 8. The DA
column indicates if the model has been trained with data augmentation to improve the
performance.

Method Arch. DA Test accuracy

T
T

FS

Zhou et al (Zhou et al. 2021) Net1 3 99.33%
STDBP (Zhang et al. 2022) Net6 3 99.4%
Fast & Deep (my implementation) Net3 3 99.22± 0.05%
Fast & Deep (my implementation) Net3 3 99.46± 0.01%

U
nc

on
st

ra
in

ne
d

Lee et al (Lee, Delbruck and Pfeiffer 2016) Net4 3 99.31%
HM2-BP (Jin, Zhang and Li 2018) Net3 3 99.42% ± 0.11%
TSSL-BP (Zhang and Li 2020) Net3 7 99.50 ± 0.02%
ST-RSBP (Zhang and Li 2019) Net2 3 99.50 ± 0.03%
ST-RSBP (Zhang and Li 2019) Net3 3 99.57 ± 0.04%
This work Net3 7 99.38± 0.04%
This work Net3 3 99.60± 0.03%

Table 10: Performances of several methods on the Spiking Heidelberg Digits (SHD)
dataset. Results for Fast & Deep and my method are highlighted in bold. The recurrence
column indicates if the model contains recurrent connections.

Method Arch. Recurrence Test accuracy

T
T

FS Fast & Deep (Göltz et al. 2021)

(my implementation)
128 7 47.37± 1.65%

U
nc

on
st

ra
in

ed Cramer et al. (Cramer et al. 2022a) 128 7 48.10 ± 1.6%

Cramer et al. (Cramer et al. 2022a) 128 3 71.4 ± 1.9%

This work 128 7 66.79± 0.66%

To assess the performance of the proposed method, I trained fully connected SNNs
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Figure 26: Spiking activity of hidden neurons in an SNN trained with my method
(Figure 26b) and Fast & Deep (Figures 26c and 26d) given a spoken ”zero” (Figure
26a) from the SHD dataset. TTFS neurons in Fast & Deep mainly respond to early
stimuli, missing most of the input information. In contrast, my method allows for
multiple spikes per neuron which enables them to capture all the information from the
inputs. This demonstrates the importance of relaxing the spike constraint of TTFS when
processing temporal data.
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on the MNIST (LeCun, Cortes and Burges 2010), EMNIST (Cohen et al. 2017), Fashion-

MNIST (Xiao, Rasul and Vollgraf 2017) datasets the Spiking Heidelberg Digits (SHD)

dataset (Cramer et al. 2022a) as well as Convolutional SNNs on MNIST. I compared

my results to those obtained using the original Fast & Deep algorithm. Table 4 sum-

marizes the average test accuracies of both methods given the considered initial weight

distributions. For completeness, a comparison of Fast & Deep and my method with

other spike-based BP algorithms can be found in Tables 5, 6, 7, 10 for each dataset.

Firstly, it should be noted that the Fast & Deep algorithm generally achieves better

performance when the weights are initialized with positive values, which is consistent

with the choice of weight distribution made by Göltz et al. (2021). Secondly, the pro-

posed method demonstrates superior performance compared to the Fast & Deep algo-

rithm, with improvement margins ranging from 1.05% on MNIST to up to 2.41% on the

more difficult EMNIST dataset. This is not surprising given that unconstrained SNNs

are known to perform better compared to TTFS networks (Jin, Zhang and Li 2018;

Zhang and Li 2019; Shrestha and Orchard 2018; Lee, Delbruck and Pfeiffer 2016;

Zhang et al. 2022). With random elastic deformation (Castro, Cardoso and Pereira

2018) data augmentation, my model is capable to improve its performance from 99.38%

to 99.60% on MNIST, thus slightly outputforming the 99.57% achieved by ST-RSBP

with the same architecture (see Figure 9). Moreover, my method outperforms by up to

20% Fast & Deep on the SHD dataset with a single hidden layer of 128 neurons. Note

that no recurrent connection was used in these experiments. To understand the rea-

son for this performance gap, I analyzed the spiking activity in the hidden layers after

training. Figure 26 shows that TTFS neurons only respond to early stimuli. In tem-

poral coding, high-valued information is encoded by early spikes. As demonstrated in

Section 3.7.1, training with a one-spike constraint is energy efficient but tends to make

SNNs spike as early as possible, thus missing the information occurring later. In con-

trast, neurons trained without spike constraint can respond throughout the duration of

the sample, thus capturing all the information despite an increased total of spikes fired.
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This highlights the importance of firing more than once and demonstrates that a tradeoff

exists between performance and energy consumption when processing temporal data.

3.7.3 Convergence Rate
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Figure 27: Evolution of the test accuracy of both Fast & Deep and my method on the
MNIST dataset with the same learning rate. The unconstrained SNN trained with my
method benefits from a higher convergence rate than the temporally-coded networks
trained with Fast & Deep.

The rate of convergence, or convergence rate, measures how quickly the loss func-

tion is minimized by a training algorithm. To understand the difference in training

speed of each algorithm, I measured in Figure 27 the evolution of the test accuracy

of TTFS SNNs trained with Fast & Deep and an unconstrained SNN trained with my

method on the MNIST dataset.

We can observe that the temporally-coded SNN initialized with positive weights

converges faster than the TTFS network initialized with both negative and positive

weights. This suggests that the initialization of weights in temporally-coded SNNs

not only influences their performance but also their convergence rate.

In contrast, the unconstrained SNN trained with my method converges significantly

faster than both TTFS SNNs. This shows that my method is capable of reaching desired

accuracies in fewer epochs compared to Fast & Deep. This also suggests that there is
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Figure 28: Comparison of the population spike count and the number of active neurons
in fully connected SNNs trained using Fast & Deep and the proposed method on the
MNIST dataset. These results indicate that the sparsity of SNNs after training depends
on the weight distribution, with the SNN initialized with only positive weights appear-
ing to be less sparse than those initialized with both negative and positive weights.
Additionally, the proposed method demonstrates a similar level of sparsity and fewer
active neurons as Fast & Deep for the same initial weight distribution, despite the re-
laxed constraint on neuron spike counts.

a direct correlation between the convergence rate and performance and implies that

discriminative features are likely learned earlier during training.

3.7.4 Sparsity

Achieving high sparsity in trained SNNs is critical for energy efficiency, as neuromor-

phic hardware only consumes energy at spike events.

Figure 28 shows the population spike counts of fully connected SNNs trained on

MNIST using both methods. It appears that the initial weight distribution plays an

important role in the final sparsity level of the trained SNNs. In the analyzed case,

SNNs initialized with positive weights appear to be less sparse after training than SNNs

initialized with both negative and positive weights.

While the proposed method allows for an increased number of spikes per neuron,

which implies more energy consumption, I found that it can achieve similar sparsity as
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Figure 29: Figures 29a and Figure 29b show the average spike count of hidden neurons
trained with Fast & Deep on the MNIST dataset, while Figure 29c shows the average
spike count of hidden neurons trained with the proposed method. Each row corresponds
to the average activity over all the test samples of a particular digit. As TTFS networks
mainly encode information temporally, we observe that neurons trained with Fast &
Deep fire indiscriminately in response to stimuli, making it difficult to differentiate the
labels from the mean spike count, regardless of the initial weight distribution. However,
the proposed SNN training method results in a different distribution of firing activity.
More precisely, key neurons respond selectively to particular digits, while most of the
other neurons remain mostly silent.
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Figure 30: Influence of the output threshold on the sparsity of a 2-layer SNN trained on
MNIST with my method. Figure 30a illustrates that a lower output threshold results in
fewer spikes generated after 1 epoch. Figure 30b indicates that decreasing the output
threshold increases the initial activity in the output layer, thereby leading to a greater
number of negative errors transmitted during the backward pass (as shown in Figure
30c). This, in turn, leads to a decrease in the weights in the hidden layer, as depicted in
Figure 30d.
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TTFS networks initialized with both negative and positive weights while performing

better than TTFS networks initialized with positive weights only (see Figure 28 and

Table 4). This suggests that the proposed method can offer improved tradeoffs between

accuracy and sparsity.

To understand why my method can achieve such levels of sparsity despite not im-

posing any constraints on neuron firing, I analyzed the average activity in each net-

work. Figure 29 shows that neurons trained with Fast & Deep fire indiscriminately

in response to any input digit, which is characteristic of temporal coding where infor-

mation is represented by the timing of spikes, rather than the presence or absence of

spikes. In contrast, SNNs trained with my method exhibit a different distribution of

firing activity, with certain key neurons selectively responding to specific digits. Figure

28 indicates that only 7% of neurons trained with my method are active during infer-

ence (i.e. neurons that fire at least once). In comparison, the SNN trained with Fast

& Deep and initialized with both negative and positive weights has 24% of its neurons

firing. Therefore, the reduced proportion of active units in my method compensates

for the increased number of spikes per neuron, leading to fewer spikes emitted in the

network.

I found during my experiments that the sparsity of SNNs trained with my method

was also influenced by the choice of threshold values. More precisely, we observed that

decreasing the output threshold resulted in a reduction of activity in the network, as il-

lustrated in Figure 30a. This decrease in activity occurred because the output neurons

fired more often, which is illustrated in Figure 30b. The increased number of output

spikes caused the loss function to produce more negative errors, which resulted in neg-

ative changes in weights in the hidden layer. However, lowering the threshold has a

dual impact on activity: it increases the firing rates at initialization but also contributes

to producing more negative errors, which can decrease activity during learning. While

controlling sparsity using thresholds is trivial in shallow SNNs, a fine balance between

thresholds has to be found to control sparsity in Deep SNNs, making it challenging to
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Figure 31: Figure 31a shows the evolution of the average prediction confidence during
simulations on the MNIST test set. To produce this figure, I measured the probability of
predictions at a time t being equal to the final predictions at the end of the simulations.
The vertical dotted line represents the end of input spikes. The initial weight distri-
bution seems to have a crucial impact on the latency of predictions. More precisely,
negative initial weights produce confidence earlier than positive initial weights. There-
fore, simulation time can be reduced to further improve sparsity. Figure 31b shows
the relationship between spike count and accuracy as the simulation time increases. It
demonstrates that the duration of simulation can be used as a post-training method to
further reduce energy consumption while maintaining high performance.

achieve sparsity with larger architectures. However, my findings suggest that threshold

values play a crucial role in determining the sparsity of unconstrained SNNs and can

be seen as a way to control activity without the need for firing rate regularization.

3.7.5 Prediction Latency

I also investigated the prediction latency of SNNs trained using different methods. This

corresponds to the amount of simulation time needed by the models to reach full con-

fidence in their predictions and determines the simulation duration required to achieve

high accuracy.

Figure 31a shows the averaged prediction confidence over time for SNNs trained

using each method. I found that when initialized with only positive weights, Fast &
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Deep achieved high confidence on predictions after more than 150ms. However, when

initialized with both negative and positive weights, both Fast & Deep and the proposed

method achieved confidence earlier (in 20ms and 50ms, respectively). This suggests

that initialization has a significant impact on prediction latency. However, SNNs trained

with the proposed method are slightly slower than TTFS networks trained with Fast &

Deep for the same weight distribution due to the increased spike count per neuron.

Despite this difference, the short latency of these networks allows for shorter sim-

ulation durations, which can further improve sparsity without affecting performance.

In Figure 31b, I show the relationship between population spike count and accuracy

for each SNN as simulation time increases from 0 to 200 milliseconds. This demon-

strates that, by reducing the simulation time, SNNs can become more sparse while

maintaining high performance. Therefore, the sparsity-accuracy tradeoff can be further

improved after training by adjusting the simulation duration. This also demonstrates

that my method can align with the level of the sparsity of Fast & Deep while still per-

forming better.

3.7.6 Robustness to Noise and Weight Quantization

Analog neuromorphic hardware are inherently noisy and are often limited to specific

ranges and resolutions of weights. Having a model that is robust to noise and weight

quantization is therefore important to achieve high performance on such systems. To

assess the robustness of each method, I measured the impact of spike jitter, weight clip-

ping, and weight precision on their accuracy. In these experiments, performance was

normalized with the maximum accuracy of each method to better compare variations.

Figure 32a shows the impact of spike jitter on the performance of each method.

These results were produced by artificially adding noise to spike timings with a normal

distribution N (0, σ) during training. When initialized with both negative and positive

weights, Fast & Deep appears to be less robust than using only positive weights. With

negative weights, only a fraction of neurons transmit information which leads to an
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Figure 32: Figure 32a shows the effect of spike jitter on the performance of each
method. This was achieved by introducing artificial noise to the spike timings, follow-
ing a normal distribution N (0, σ). Figure 32b displays the impact of weight clipping,
which involved restricting weights to the range [−wclip, wclip] during training. Lastly,
Figure 32c demonstrates the effect of weight precision, which was obtained by dis-
cretizing weights into 2n+1 − 1 bins (n bits plus one bit for the sign of the synapse)
within the range [−1, 1]. Overall, my method was found to be more resilient to noise
and reduced weight precision than Fast & Deep.
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increased sparsity, as illustrated in Figure 28. Therefore, introducing noise to spike

timings significantly impacts performance. In contrast, positive weights ensure consis-

tent network activity and redundancy in transmitted information. SNNs initialized with

positive weights are thus less affected by spike jitter. However, SNNs trained with Fast

& Deep remain susceptible to noise, even with positive initial weights. Perturbations in

spike timing still have a critical impact on temporal coding. In contrast, the proposed

method demonstrates greater robustness to spike jitter than Fast & Deep, with minimal

variation observed. This is a result of the redundancy created by the multiple spikes

fired by neurons.

In Figure 32b, I demonstrate the effect of weight range on performance by clipping

weights between the range [−wclip, wclip] during training. The performance of Fast &

Deep initialized with positive weights degrades when wclip is lower than 1.5. However,

both my method and Fast & Deep exhibit robustness to reduced weight ranges when ini-

tialized with both negative and positive weights. This suggests that weight distribution

may play a role in the network’s resilience to limited weight ranges.

Finally, Figure 32c shows the performance of each method with reduced weight

resolutions from 2 to 5 bits (results with float precision are also given as a reference). It

highlights that Fast & Deep is less robust to reduced weight precision than my method,

particularly with negative weights. In contrast, my approach is only slightly impacted

by the decreased precision, even when reduced to as low as 2 bits.

3.8 Discussion

In this chapter, I proposed an extension of the Fast & Deep algorithm that relaxes

the constraint on firing in TTFS and generalizes the computation of exact gradients

of SNNs. I explored how the initial weight distribution affects the tradeoffs between

performance and various other aspects of SNNs such as sparsity, classification latency,

and robustness to noise and weight quantization. I finally compared the improvements



CHAPTER 3. EXACT GRADIENTS OF SNNS 97

of the proposed method with the original Fast & Deep algorithm on those tradeoffs.

First, I found that initializing Fast & Deep with positive weights leads to better gen-

eralization capabilities compared to initializing with both negative and positive weights.

This observation is consistent across the benchmarked datasets, as shown in Table 4.

However, relaxing the spike constraint improves the overall performance and conver-

gence rate of SNNs, at least on the benchmark problems I considered. This result was

expected before my experiments since BP methods that use multiple spikes per neuron

generally perform better than methods that impose firing constraints (Jin, Zhang and

Li 2018; Zhang and Li 2019; Shrestha and Orchard 2018; Lee, Delbruck and Pfeiffer

2016; Zhang et al. 2022).

My experiments also demonstrate that the weight distribution significantly influ-

ences the sparsity of Fast & Deep. We observed that SNNs with positive weight ini-

tialization tend to be less sparse than those initialized with weights between -1 and 1.

However, the former consistently outperforms the latter in terms of performance. This

highlights the accuracy-sparsity tradeoff often observed when training SNNs (Yin et al.

2023; Li et al. 2021). The quasi-dense activity provided by positive weights explains

the difference in sparsity, as shown in Figure 29b. In contrast, initializing Fast & Deep

with both negative and positive weights leads to fewer active neurons due to the inhibi-

tion provided by negative weights. Additionally, neurons trained with Fast & Deep fire

indiscriminately to stimuli, suggesting a pure temporal representation of information,

whereas neurons trained with the proposed method selectively respond to their inputs

and exhibit a different distribution of activity, as shown in Figure 29c. the proposed

method allows for a different distribution of the spike activity, whereby key neurons

can fire more often than others, while irrelevant neurons may not spike at all. This en-

ables my method to achieve a level of sparsity comparable to Fast & Deep, as illustrated

in Figure 28.

To achieve a high degree of sparsity without firing rate regularization, thresholds

can be tuned to indirectly influence spiking activity through learning. Decreasing
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thresholds increases the firing rate of downstream layers, resulting in more negative

errors at outputs and consequently, negative weight changes in hidden layers, as shown

in Figure 30. This mechanism offers a natural way to control sparsity in unconstrained

SNNs without requiring any regularization technique. By leveraging this principle, I

was able to train shallow SNNs with a sparsity level similar to Fast & Deep while

achieving higher performance. This implies that allowing multiple spikes per neuron

has the potential to enhance the accuracy-sparsity tradeoff and prompts further inves-

tigation into the effectiveness of TTFS in achieving efficient computation. However,

finding thresholds that lead to high sparsity is more difficult when networks become

deeper due to the fluctuations in the firing rates of each layer. The factors that influ-

ence sparsity in unregularized SNNs are currently not fully understood and present an

opportunity for future research to investigate how to naturally achieve sparsity in deep

architectures.

In addition to performance and sparsity, I measured the prediction latency of each

method, which is the waiting time required before the system can make reliable pre-

dictions. I found that the speed of classification was primarily driven by the weight

distribution. Figure 31a shows that both Fast & Deep and my method achieve similar

latencies when initialized between -1 and 1, with a slight advantage for Fast & Deep.

However, when initialized with only positive values, Fast & Deep requires more simu-

lation time to achieve full confidence in predictions. Low latency is advantageous not

only in terms of inference speed but also in improving energy efficiency. If predictions

occur early enough, the duration of simulations can be significantly reduced, limiting

the number of spikes fired by neurons. In Figure 31b, I demonstrated that reducing the

simulation time can lead to a reduction in computational cost for both Fast & Deep and

my method while maintaining the same performance. This shows that prediction la-

tency, energy consumption, and performance are closely related and that unconstrained

SNNs trained with the proposed method can offer better tradeoffs between these as-

pects than TTFS SNNs trained with Fast & Deep. By reducing the latency, the sparsity
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of SNNs can therefore be increased, leading to potential gains in energy efficiency on

neuromorphic hardware.

The final characteristic that I investigated is the robustness to noise and weight

quantization that are inherent to analog neuromorphic hardware. The timing of spikes

is a critical factor for the performance of TTFS SNNs as it carries most of the informa-

tion. Therefore, perturbations in these timings and weight constraints can significantly

affect the reliability of the feature extraction. In contrast, the proposed method benefits

from an increased number of spikes per neuron, providing redundancy that enhances

resilience to noise and weight constraints. For instance, Figure 32a demonstrates that

my method is less impacted by perturbations in spike timings than Fast & Deep. This

suggests that the proposed method has the potential to provide more stable learning on

analog neuromorphic hardware than Fast & Deep.



Chapter 4

Low-Variance Gradient Estimates

without Backpropagation

The contributions of this chapter are:

• I propose the Forward Direct Feedback Alignment algorithm, a method that uses

Activity-Perturbed Forward Gradients and Momentum to estimate the derivatives

between output and hidden neurons as direct feedback connections and train

DNNs without performing error backpropagation.

• I analytically demonstrate that the momentum introduced by the proposed method

quadratically reduces the estimation variance of the gradient. I show that, com-

pared to other Forward Gradient methods, my algorithm produces gradient esti-

mates that exhibit significantly lower variance, thus improving the rate of conver-

gence.

• I empirically validate my theoretical results, demonstrating the effectiveness of

the FDFA algorithm in reducing the variance of gradient estimates and enabling

faster convergence than other Forward Gradient methods.

• I compare the FDFA algorithm with Forward Gradient and Direct Feedback

100
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Alignment methods and demonstrate performance that my algorithm achieves

performance that is closer to BP with both DNNs and CNNs.

• I empirically demonstrate that gradient estimates of FDFA better follow the direc-

tion of steepest descent than random Direct Feedback Alignment and the Direct

Kolen-Pollack algorithms, thus explaining the differences in convergence rate ob-

served in my experiments.

4.1 Introduction

Loss

W (2) W (3)

W (2) W (3)W (1)

Figure 33: Illustrations of the error backpropagation (Figure 33) in a DNN. Solid arrows
represent forward inference paths and dotted arrows represent error backpropagation
paths. During the backward pass, errors are sequentially backpropagated to hidden
layers.

The error Backpropagation (BP) algorithm is the most widely used method to com-

pute the gradients of neural networks. Despite its success, BP has certain limitations

that restrict its efficiency, scalability, and, more importantly, its applicability to neuro-

morphic hardware.

First, the sequential propagation of errors in BP — see Figure 33 — significantly

constrains the parallelization of the backward pass and limits the full exploitation of

computing resources. Often referred to as Backward Locking (Nøkland 2016; Launay

et al. 2020; Huo et al. 2018), this problem inherently leads to time-consuming gradient

computation and strongly limits the scalability of BP.
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Second, during the backward pass, the BP algorithm reuses the (forward) weights of

the network to propagate errors to upstream layers. Naively, this can be implemented by

delivering error signals through a decoupled feedback circuit that has the same weights

as the forward connections (Lillicrap et al. 2020). However, this approach requires the

weights to be transported from the forward to the feedback network before propagating

errors. Known as the weight transport problem, this is the main reason for the biolog-

ical implausibility of BP (Grossberg 1987; Lillicrap et al. 2020, 2016; Nøkland 2016;

Akrout et al. 2019) and represents one of the major sources of energy consumption

during learning on DNN accelerators due to the costly transports of information (Kwon

et al. 2020).

Finally, when applied to SNNs, BP backpropagates errors backward through time

and space, requiring saving spike events in memory and unfolding neuron dynamics

during the backward pass. However, the biological constraints inherent to neuromor-

phic hardware only allow learning rules that use information that is locally available

to the neurons at a given time and location. As a result, such hardware is unable to

propagate information backward through time and space, making BP impractical for

neuromorphic learning.

The limitations of the BP algorithm thus represent major challenges for the efficient

training of neural systems. As such, there is a growing need for local, parallel, scalable

alternatives to BP that could train neural systems without the need for global knowledge

of the network. More importantly, the development of such algorithms could support

the design of novel learning rules compatible with neuromorphic hardware.

In this context, many alternatives to BP have been proposed (Hjelm et al. 2019;

Löwe, O’ Connor and Veeling 2019; Belilovsky, Eickenberg and Oyallon 2019; Nøkland

and Eidnes 2019; Mostafa, Ramesh and Cauwenberghs 2018; Jaderberg et al. 2017;

Hinton 2022; Jabri and Flower 1992; Le Cun, Galland and Hinton 1988; Wen et al.

2018; Baydin et al. 2022; Silver et al. 2021; Ren et al. 2023; Lillicrap et al. 2016;

Nøkland 2016; Webster, Choi and Ahn 2021; Han and jun Yoo 2019; Crafton et al.
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2019). Among these alternatives, feedback-based learning methods, such as Direct

Feedback Alignment (Nøkland 2016), and techniques using Forward-Mode Automatic

Differentiation (Forward-Mode AD) — see Section 2.5.2 for details —, such as For-

ward Gradients (Baydin et al. 2022; Silver et al. 2021; Ren et al. 2023), have recently

gained attention.

Forward Gradient algorithms (Baydin et al. 2022) represent promising alternatives

to BP. They are capable of computing unbiased gradient estimates of DNNs along with

the forward pass without requiring error backpropagation, thus overcoming many of

the limitations associated with the BP algorithm. However, in large DNNs, Forward

Gradients suffer from high variance which has a detrimental effect on convergence.

(Ren et al. 2023; Silver et al. 2021). While SGD is guaranteed to converge for unbiased

gradient estimators with sufficiently small learning rates (Robbins and Monro 1951),

theoretical analyses have shown that its convergence rate directly depends on the vari-

ance of the gradient estimates (Bubeck 2015; Bottou, Curtis and Nocedal 2018; Murata

1999; Moulines and Bach 2011; Needell, Srebro and Ward 2016; Chee and Toulis 2018;

Gower et al. 2019; Faghri et al. 2020). Therefore, gradient estimators with low variance

have less variability and are more consistent, leading to better convergence than those

with high variance.

One approach for reducing the variance of Forward Gradients is to perturb neuron

activations instead of weights, as in Activity-Perturbed Forward Gradients (Ren et al.

2023). Because DNNs typically have fewer neurons than weights, perturbing neurons

result in estimating fewer derivatives through forward gradients, leading to lower vari-

ance. While this approach reduces the variance of the estimates, the large number of

neurons in DNNs still affects convergence. As a solution, local greedy loss functions

can be used to further reduce the variance, where each loss function trains only a small

portion of the network. However, this method circumvents large variances by ensuring

that each local loss function only trains a small number of neurons. In the case where

layers contain large numbers of neurons — as in convolutional layers —, the method
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still suffers from high variance. Therefore, alternative solutions should be found to

better reduce the variance of forward gradients in DNNs.

In this chapter, I propose the Forward Direct Feedback Alignment (FDFA) algo-

rithm, a method that combines Activity-Perturbed Forward Gradient (Ren et al. 2023)

with Direct Feedback Alignment (Nøkland 2016) and momentum to compute low-

variance gradient estimates. My method addresses the limitations of BP by avoiding

sequential backpropagation of error, solving the weights transport problem, and com-

puting low-variance gradient estimates in a way that could be compatible with neuro-

morphic hardware. The rest of this chapter is structured as follows:

• I first review the Forward Gradient algorithm (Baydin et al. 2022) and its DNN

applications (Silver et al. 2021; Ren et al. 2023) as well as Direct Feedback

Alignment (Nøkland 2016), which form the technical foundation of the FDFA

algorithm.

• I then describe the proposed FDFA algorithm that uses forward gradients to esti-

mate derivatives between output and hidden neurons as direct feedback connec-

tions.

• I provide theoretical results showing that the gradient estimates computed by

the proposed FDFA method exhibit lower variance than other Forward Gradient

methods.

• I describe the experimental settings used to produce my empirical results.

• Finally, I provide empirical results demonstrating the effectiveness of FDFA in

reducing the variance of gradient estimates and enabling fast convergence with

DNNs. I show that, compared to other Forward Gradient and Direct Feedback

Alignment methods, FDFA achieves better performance with both fully con-

nected and convolutional neural networks.



CHAPTER 4. LOW-VARIANCE GRADIENT ESTIMATES WITHOUT BP 105

4.2 Forward Gradient

v

Jd · v

w1

w2

(a)

w1

w2

(b)

Figure 34: Figure 34a: Projection of the Jacobian J at w onto a given direction v.
The vector d · v is obtained by scaling the direction v by the directional derivative d
evaluated at w in the direction of v. Figure 34b: The expected directional derivative
(green arrow), computed by averaging directional gradients (red arrows) over many
random directions (black arrows), is an unbiased estimate of the true gradient (blue
arrow).

The Forward Gradient (FG) algorithm (Baydin et al. 2022; Silver et al. 2021) is a

recent weight perturbation technique that uses Forward-Mode AD (Margossian 2019)

— see Section 2.5.2 — to estimate gradients without backpropagation. Consider a dif-

ferentiable function f : Rm 7→ Rn and a vector v ∈ Rm, Forward-Mode AD evaluates

the directional gradient d = J · v of f in the direction v. Here, J ∈ Rn×m is the Jaco-

bian matrix of f , and d is obtained by computing the matrix-vector product between J

and v during the function evaluation.

By sampling each element of the direction vector vi ∼ N (0, 1) from a standard

normal distribution and multiplying back each computed directional derivative by v, an

unbiased estimate of the Jacobian is computed:

E [d⊗ v] = E [(J · v)⊗ v] = J (95)

Here, ⊗ is the outer product. See (Baydin et al. 2022) or Theorem 2 for the proof of



CHAPTER 4. LOW-VARIANCE GRADIENT ESTIMATES WITHOUT BP 106

unbiasedness and Figure 34 for a visual representation of forward gradients.

Theorem 2. Unbiasedness of Forward Gradients (Baydin et al. 2022) Let x ∈ Rn be

a vector of size n and v ∈ Rn be a random vector of n independent variables. If

v ∼ N (0, I) follows a multivariate standard normal distribution, then:

E [(x · v)x] = x (96)

Proof. Focusing on the ith element, we have:

E [(x · v) vi] = E




n∑

j=1
xjvjvi




= E
[
xiv

2
i

]
+

n∑

j=1
j 6=i

E [xjvjvi]

= xiE
[
v2
i

]
+

n∑

j=1
j 6=i

xjE [vj]E [vi]

(97)

However, we know that vi ∼ N (0, 1). Therefore, E [vi] = 0 and E [v2
i ] = E [vi]2 +

Var [vi] = 1. Using these properties, Equation 97 reduces to:

E
x,v

[(x · v) vi] = xi (98)

and

E
x,v

[(x · v)v] = x (99)

which concludes the proof.

4.3 Weight-Perturbed Forward Gradient

When the FG algorithm is applied to DNNs, a random perturbation matrix V (l) ∈
Rnl×nl−1 is drawn from a standard normal distribution for each weight matrix W ∈
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Algorithm 3: Weight-Perturbed Forward Gradient algorithm (Baydin et al.
2022) with a fully-connected DNN.

1: Input: Training data D
2: Randomly initialize w(l)

ij for all l, i and j.
3: repeat
4: {Inference (sequential)}
5: for x in D do
6: y(0) ← xs
7: d(0) ← 0
8: for l = 1 to L do
9: Sample V (l) ∼ N (0, I)

10: a(l) ←W (l)y(l−1)

11: y(l) ← f
(
a(l)

)

12: d(l) ←
(
W (l)d(l−1) + V (l)y(l−1)

)
� σ′

(
a(l)

)

13: end for
14: d← ∂L(x)

∂y(L) d
(L)

15: {Weights updates (parallel)}
16: for l = 1 to L do
17: W (l) ←W (l) − λV (l)d
18: end for
19: end for
20: until E [L(x)] < ε

Rnl×nl−1 of each layer l ≤ L. Because weights are perturbed, the algorithm is thus

referred to as Weight-Perturbed Forward Gradient (FG-W) (Ren et al. 2023). By doing

so, Forward-Mode AD computes the directional derivative dFG of the loss L (x) along

the drawn perturbation, such as:

dFG−W =
L∑

l=1

nl∑

i=1

nl−1∑

j=1

∂L (x)
∂w

(l)
i,j

v
(l)
i,j (100)

where v(l)
i,j is the element of the perturbation matrix V (l) in row i and column j, associ-

ated with the weight w(l)
i,j .

Thus refered to as Weight-Perturbed Forward Gradient (FG-W) (Ren et al. 2023),

the gradient estimate gFG−W(W (l)) for the weights of the layer l is obtained by scaling
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its perturbation V (l) matrix with the directional derivative dFG−W:

gFG−W
(
W (l)

)
:= dFG−WV (l) (101)

See Algorithm 3 for the full algorithm applied to a fully connected DNN.

It is essential to understand that the directional derivative dFG−W, takes the form of

a scalar. This scalar is defined as the result of the vector product between the true gradi-

ent and the given direction that is implicitly evaluated with Forward-Mode AD. Unlike

Reverse-Mode AD, where the individual explicit derivatives constituting the gradient

are accessible, Forward-Mode AD does not provide them directly. Therefore, multiply-

ing the directional derivative by the given direction is an essential step for computing an

unbiased approximation of the gradient. For more details, refer to (Baydin et al. 2022).

However, it has been previously shown that the variance of FG-W scales poorly

with the number of parameters in DNNs which impacts the convergence of SGD (Ren

et al. 2023).

4.4 Activity-Perturbed Forward Gradient

To address the variance issues of Weight-Perturbed FG, Ren et al. proposed the

Activity-Perturbed FG (FG-A) algorithm that perturbs neurons activations instead of

weights. A perturbation vector u(l) ∈ Rnl is drawn from a multivariate standard normal

distribution for each layer l ≤ L. Forward-Mode AD thus computes the following

directional derivative:

dFG−A =
L∑

l=1

nl∑

i=1

∂L (x)
∂y

(l)
i

u
(l)
i (102)

where y(l) are the activations of the lth layer. Note that directional derivatives computed

in the FG-A algorithm are defined as the sum of all neurons rather than all weights. The
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Algorithm 4: Activity-Perturbed Forward Gradient algorithm (Ren et al.
2023) with a fully-connnected DNN.

1: Input: Training data D
2: Randomly initialize w(l)

ij for all l, i and j.
3: repeat
4: {Inference (sequential)}
5: for all x in D do
6: y(0) ← xs
7: d(0) ← 0
8: for l = 1 to L do
9: Sample v(l) ∼ N (0, I)

10: a(l) ←W (l)y(l−1)

11: y(l) ← σ
(
a(l)

)

12: d(l) ←
(
W (l)d(l−1)

)
� σ′

(
a(l)

)

13: if l < L then
14: d(l) ← d(l) + v(l)

15: end if
16: end for
17: d← ∂L(x)

∂y(L) d
(L)

18: {Weights updates (parallel)}
19: for l = 1 to L do
20: W (l) ←W (l) − λ

(
d(L)v(l) � σ′

(
a(l)

))
⊗ y(l−1)

21: end for
22: end for
23: until E [L(x)] < ε

activity-perturbed forward gradient gFG−A
(
W (l)

)
is then:

gFG−A
(
W (l)

)
:=
(
dFG−Au(l)

) ∂y(l)

∂W (l) (103)

where ∂y(l)

∂W (l) are local gradients computed by neurons with locally-available informa-

tion. See Algorithm 4 for the full algorithm applied to a fully connected DNN.

This method reduces the number of derivatives to estimate since the number of neu-

rons is considerably lower than the number of weights (see Table 11 for an example).

Consequently, the method leads to lower variance than FG-W (Ren et al. 2023).

FG-A demonstrated improvements over FG-W on several benchmark datasets (Ren
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Table 11: Number of neurons and number of parameters in fully-connected DNNs with
different depths. In this example, I consider a 784 input network with hidden layers of
800 neurons and 10 outputs.

Depth N. Neurons N. Params
2 Layers 810 636K
3 Layers 1610 1.2M
4 Layers 2410 1.9M

et al. 2023) but still suffers from high variance as the number of neurons in DNNs

remains large. To avoid this issue, Ren et al. proposed the Local Greedy Activity-

Perturbed Forward Gradient (LG-FG-A) method, which uses local loss functions to

partition the gradient computation and decrease the number of derivatives to estimate.

By adopting this local greedy strategy, LG-FG-A greatly improved the performance of

Local MLP Mixers, a specific architecture that uses shallow multi-layer perceptrons to

perform vision without having to use convolution. However, no results were reported

for conventional fully-connected or convolutional neural networks, where the number

of neurons per layer is larger than in MLP Mixers.

4.5 Direct Feedback Alignment

Loss

W (2) W (3)W (1)

B(3)

B(2)

B(1)

Figure 35: Illustrations of the Direct Feedback Alignment algorithm applied to a DNN.
Solid arrows represent forward inference paths and dotted arrows represent error back-
propagation paths.

While BP relies on symmetric weights to propagate errors to hidden layers, it has
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been shown that weight symmetry is not mandatory to achieve learning (Lillicrap et al.

2016). For example, FA has proven that random fixed weights can also be used for

backpropagating errors and still achieve learning (Lillicrap et al. 2016). Therefore,

by not reusing the network weights, FA effectively overcomes the weight transport

problem. However, the algorithm still backpropagates errors sequentially which limits

its parallelization.

DFA takes the idea of FA one step further by directly projecting output errors to

hidden layers using fixed linear feedback connections (Nøkland 2016) — see Figure

35. Feedback matrices B(l) ∈ RnL×nl replace the derivatives ∂y(L)

∂y(l) of output neurons

with respect to hidden neurons. The approximate gradient gDFA
(
W (l)

)
for the weights

of the hidden layer l is then computed as follows:

gDFA
(
W (l)

)
:= ∂L (x)

∂y(L) B
(l) ∂y

(l)

∂W (l) (104)

In DFA, feedback matrices for hidden layers are chosen to be random and kept fixed

during training. For the output layer, the identity matrix is used as no propagation of

errors is required.

The success of DFA depends on the alignment between the forward and feedback

weights, which results in the alignment between the approximate and true gradient

(Lillicrap et al. 2016; Nøkland 2016; Refinetti et al. 2021). When the angle between

these gradients is within 90 degrees, the direction of the update is descending (Lillicrap

et al. 2016; Nøkland 2016).

DFA can scale to modern deep learning architectures such as Transformers (Launay

et al. 2020) but is unable to train deep convolution layers (Launay, Poli and Krzakala

2019) and fails to learn challenging datasets such as CIFAR-100 or ImageNet with-

out the use of transfer learning (Bartunov et al. 2018; Crafton et al. 2019). However,

recent methods to learn symmetric feedback such as the Direct Kolen-Pollack (DKP)

algorithm (Webster, Choi and Ahn 2021) showed promising results with convolutional

neural networks due to improved gradient alignments.
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Algorithm 5: Forward Direct Feedback Alignment algorithm with a fully-
connected DNN.

1: Input: Training data D
2: Randomly initialize w(l)

ij for all l, i and j.
3: InitializeB(l) = 0 for all l.
4: repeat
5: {Inference (sequential)}
6: for all x in D do
7: y(0) ← xs
8: d(0) ← 0
9: for l = 1 to L do

10: Sample v(l) ∼ N (0, I)
11: a(l) ←W (l)y(l−1)

12: y(l) ← σ
(
a(l)

)

13: d(l) ←
(
W (l)d(l−1)

)
� σ′

(
a(l)

)

14: if l < L then
15: d(l) ← d(l) + v(l)

16: end if
17: end for
18: e← ∂L(x)

∂y(L)

19: {Weights updates (parallel)}
20: W (L) ←W (L) − λ e⊗ y(L−1)

21: for l = 1 to L− 1 do
22: B(l) ← (1− α)B(l) − α

(
d(L) ⊗ v(l)

)

23: W (l) ←W (l) − λ
(
eB(l) � σ′

(
a(l)

))
⊗ y(l−1)

24: end for
25: end for
26: until E [L(x)] < ε

4.6 Forward Direct Feedback Alignment

In this section, I describe the proposed Forward Direct Feedback Alignment (FDFA)

algorithm which uses forward gradients to estimate derivatives between output and hid-

den neurons as direct feedback connections.

Similarly to FG-A, we sample perturbation vectors u(l) ∈ Rnl for each layer l ≤ L

from a multivariate standard normal distribution. However, in contrast to FG-A, we use

the directional derivatives that are computed at the output layer rather than at the loss
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function, such as:

dFDFA =
L−1∑

l=1

nl∑

i=1

∂y(L)

∂y
(l)
i

u
(l)
i (105)

which produces a vector of directional derivatives. Note that only partial derivatives of

the network outputs with respect to the activations of hidden neurons are considered, as

represented by feedback connections in DFA. Output neurons are updated using a fixed

identity feedback matrix as no error backpropagation is required.

Rather than relying solely on the most recent forward gradient, as in FG-W and FG-

A, it is possible to obtain a more accurate estimate of ∂y(L)

∂y(l) by averaging the forward

gradient over the past training steps.

Formally, we define an update rule for the direct feedback connections of DFA that

performs an exponential average of the estimates, such as:

B(l) ← (1− α)B(l) + α dFDFA ⊗ u(l) (106)

where 0 < α < 1 is the feedback learning rate. Equation 106 can also be re-written in

a form compatible with the stochastic gradient descent algorithm:

B(l) ← B(l) − α∇B(l) (107)

where

∇B(l) = B(l) − dFDFA ⊗ u(l) (108)

In essence, Equation 107 minimizes the following Mean Squared Error (MSE) function:

LB (x) = E
[
L−1∑

l=1

nL∑

o=1

nl∑

i=1

(
B

(l)
o,j − dFDFA

o u
(l)
i

)2
]

(109)

where dFDFA
o u

(l)
i is the target value for the optimized feedback connection B(l)

o,j . The

global minimum of this loss function occurs at the point where all feedback connections
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are equal to the expected derivative between output and hidden neurons, such as:

B
(l)
o,i = E

[
dFDFA
o u

(l)
i

]
= E

[
∂y(L)

o

∂y
(l)
i

]
(110)

for all output o and all hidden neuron i of all hidden layers l < L. Therefore, the FDFA

algorithm is a dual optimization procedure where both loss functions L(x) and LB(x)

are minimized concurrently: weights are updated with direct feedbacks to minimize

prediction errors and feedbacks connections converge towards the derivatives between

output and hidden neurons. In the case where output neurons are linear, the penultimate

feedback matrix becomes symmetric with the output weight matrix:

E
[
B(L−1)

]
= E

[
∂y(L)

∂y(L−1)

]
= W (L) (111)

In this particular case, gradient estimates become mathematically equivalent to BP. For

lower hidden layers, feedback matrices linearly approximate the non-linear derivatives

between output and hidden neurons, which introduces a bias in the gradient estimates.

This is because the feedback learning rule introduced in FDFA acts as momentum for

these derivatives (see Equation 106), which is known to mitigate the effect of gradient

variance on convergence at the cost of increased bias (Defazio 2020).

Finally, the FDFA gradient estimate gFDFA
(
W (l)

)
for the weightsW (l) of the hid-

den layer l is computed as in DFA. Formally, output errors are linearly projected onto

hidden neurons using the feedback matrix B(l), such as:

gFDFA
(
W (l)

)
:= ∂L (x)

∂y(L) B
(l) ∂y

(l)

∂W (l) (112)

The FDFA gradient estimate is then used to update the weights of the network with

stochastic gradient descent, such as:

W (l) ←W (l) − λ gFDFA
(
W (l)

)
(113)
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Table 12: Theoretical gradient estimation variance produced by the FG-W, FG-A and
FDFA algorithm given a single input sample.

Algorithm Local Estimation Variance
BP 7 0

FG-W

3

O (n1n0)
FG-A O (n1)
DFA 0

FDFA (α→ 0) 0

where λ > 0 is a learning rate. Note that other gradient-based optimization techniques

can also be applied for both feedback and forward weight updates in place of SGD, such

as Adam (Kingma and Ba 2017) — see Section 2.4 for details about other gradient-

based optimization algorithms.

The full algorithm applied to a fully connected DNN is given in Algorithm 5.

4.7 Theoretical Results

In this section, I investigate and compare the theoretical variance of FG-W, FG-A,

and the proposed FDFA algorithm to understand their potential differences in terms

of convergence. All my theoretical results have been summarized in Table 12.

I first start by decomposing the variance of unbiased gradient estimates.

4.7.1 Variance Decomposition of Unbiased Gradient Estimates

Following (Wen et al. 2018) and (Ren et al. 2023), it can be shown that the variance of

unbiased gradient estimates can be decomposed into two terms.

Proposition 3. (Wen et al. 2018; Ren et al. 2023) Let W (1) ∈ Rn1,n0 be the hidden

weights of a two-layer fully-connected neural network. We denote by x the independent

input samples and by v(1) the independent random perturbations used to estimate the

gradients of the hidden layer. The variance of a gradient estimate g
(
w

(1)
i,j

)
for the
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hidden weight w(1)
i,j can be decomposed into two parts:

Var
[
g
(
w

(1)
i,j

)]
= z1 + z2 (114)

where

z1 := Var
x

[
E
v(1)

[
g
(
w

(1)
i,j

)
| x
]]

(115)

and

z2 := E
x

[
Var
v(1)

[
g
(
w

(1)
i,j

)
| x
]]

(116)

The first term z1 defined in Proposition 3 corresponds to the gradient variance from

data sampling. This term vanishes with the size of the batch in the case of mini-batch

learning (Wen et al. 2018; Ren et al. 2023). The second term z2 corresponds to the ex-

pected additional variance produced by the stochastic estimation of the gradient, which

scales differently for each algorithm. In the case of BP and DFA, this term equals zero

as both algorithms are deterministic. In (Ren et al. 2023), a third term z3 was consid-

ered, which corresponds to the correlation between gradient estimates. However, this

term is zero in the case where perturbations are independent (Ren et al. 2023).

The only terms that differ between the variance of FG-W, FG-A, and FDFA is z2.

Therefore, we are interested in comparing the gradient estimation variance z2 of each

algorithm with the proposed FDFA algorithm to gain insight about their convergence

rates.
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4.7.2 Estimation Variance of Weight-Perturbed Forward Gradi-

ents

To find the theoretical estimation variance of FG-W, we first start by deriving the vari-

ance of forward derivatives.

Lemma 4. Let x ∈ Rn be a vector of size n and v ∈ Rn be a random vector of

n independent variables. If v ∼ N (0, I) follows a multivariate standard normal

distribution, then:

Var [(x · v) vi] =x2
i + ‖x‖2

2 (117)

Proof. Because the elements of x are considered as constants and all the elements of v

are independant from each other, the variance of (x · v) vi decomposes as follows:

Var [(x · v) vi] =Var



n∑

j=1
xjvjvi




=
n∑

j=1
x2
j Var [vjvi]

(118)

We can show that if j 6= i:

Var [vjvi] =E
[
(vjvi)2

]
− E [vjvi]2

=E
[
v2
i

]
E
[
v2
j

]
− E [vi]2 E [vj]2

=1

(119)

and if j = i:

Var
[
v2
i

]
=E

[(
v2
i

)2
]
− E

[
v2
i

]2

=E
[
v4
i

]
− E

[
v2
i

]2

=2

(120)
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as E [v2
i ]

2 = Var [vi]2 = 1 and E [v4
i ] = 3Var [vi] = 3.

Therefore, by plugging Equations 119 and 120 into Equation 118, we find:

Var [(x · v) vi] =
n∑

j=1
x2
j Var [vjvi]

=x2
iVar

[
v2
i

]
+

n∑

j=1
j 6=i

x2
jVar [vjvi]

=2x2
i +

n∑

j=1
j 6=i

x2
j

=x2
i +

n∑

j=1
x2
j

=x2
i + ‖x‖2

2

(121)

which concludes the proof.

By applying Lemma 4, we can derive the theoretical estimation variance of FG-W.

Proposition 5. Estimation Variance of Weight-Perturbed Forward Gradients

LetW (1) ∈ Rn1,n0 be the hidden weights of a two-layer fully connected neural network

evaluated with an input sample x ∈ Rn0 . We denote by gFG−W
(
w

(1)
i,j

)
the weight-

perturbed forward gradient for the weight w(l)
i,j . We also assume that all derivatives(

∂L(x)
∂w

(l)
i,j

)2

≤ β are bounded and that all the elements of the perturbation matrix V (2)

for the weights of the output layer are 0. If each element v(1)
i,j ∼ N (0, 1) of V (1) follows

a standard normal distribution, then:

Var
v(1)

[
gFG−W

(
w

(1)
i,j

)
| x
]

=

∂L(x)
∂w

(1)
i,j




2

+
∥∥∥∥∥
∂L(x)
∂W (1)

∥∥∥∥∥

2

2

=O (n1n0)

(122)

in the limit of large n1 and large n0.
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Proof. By application of Lemma 4, we know that:

Var
v(1)

[
gFG−W

(
w

(1)
i,j

)
| x
]

=Var
v(1)



n1∑

k=1

n0∑

l=1

∂L(x)
∂w

(1)
k,l

vk,l vi,j




=

∂L(x)
∂w

(1)
i,j




2

+
∥∥∥∥∥
∂L(x)
∂W (1)

∥∥∥∥∥

2

2

(123)

However, in the limit of large n0 and large n1:

∥∥∥∥∥
∂L(x)
∂W (1)

∥∥∥∥∥

2

2
=

n1∑

i=1

n0∑

j=1


∂L(x)
∂w

(1)
i,j




2

= O (n1n0) (124)

Therefore, we conclude that:

Var
v(1)

[
gFG−W

(
w

(1)
i,j

)
| x
]

= O (n1n0) (125)

Proposition 5 shows that the variance estimate of FG-W scales linearly with the

number of parameters in the network. This highlights the convergence issues of FG-W

in large DNNs.

4.7.3 Estimation Variance of Activity-Perturbed Forward Gradi-

ents

I now derive the estimation variance of the FG-A algorithm.

Proposition 6. Estimation Variance of Activity-Perturbed Forward Gradients

LetW (1) ∈ Rn1,n0 be the hidden weights of a two-layer fully connected neural network

evaluated with an input sample x ∈ Rn0 . We denote by gFG−A
(
w

(1)
i,j

)
the activity-

perturbed forward gradient for the weight w(l)
i,j . We also assume that all derivatives(

∂L(x)
∂w

(l)
i,j

)2

≤ β are bounded and that all the elements of the perturbation vector u(2) for
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the activations of the output layer are 0. If each element u(1)
i ∼ N (0, 1) of u(1) follows

a standard normal distribution, then:

Var
v(1)

[
gFG−A

(
w

(1)
i,j

)
| x
]

=


(
∂L(x)
∂y

(1)
i

)2

+
∥∥∥∥∥
∂L(x)
∂y(1)

∥∥∥∥∥

2

2




 ∂y

(1)
i

∂w
(1)
i,j




2

= O (n1)

(126)

in the limit of large n1 and large n0.

Proof. Starting from the variance of gFG−A
(
W (1)

)
, we have:

Var
v(1)

[
gFG−A

(
w

(1)
i,j

)
| x
]

=Var
v(1)



(
n1∑

k=1

∂L(x)
∂y

(1)
k

u
(1)
k

)
u

(1)
i

∂y
(1)
i

∂w
(1)
i,j




=Var
v(1)

[
n1∑

k=1

∂L(x)
∂y

(1)
k

u
(1)
k u

(1)
i | x

]
 ∂y

(1)
i

∂w
(1)
i,j




2 (127)

as the partial derivative ∂y
(1)
i

∂w
(1)
i,j

is considered as constant.

By applying Lemma 4, we obtain:

Var
v(1)

[
gFG−A

(
w

(1)
i,j

)
| x
]

=


(
∂L(x)
∂y

(1)
i

)2

+
∥∥∥∥∥
∂L(x)
∂y(1)

∥∥∥∥∥

2

2




 ∂y

(1)
i

∂w
(1)
i,j




2

=

∂L(x)
∂w

(1)
i,j




2

+
∥∥∥∥∥
∂L(x)
∂y(1)

∥∥∥∥∥

2

2


 ∂y

(1)
i

∂w
(1)
i,j




2 (128)

Finally, we can show that

∥∥∥∥∥
∂L(x)
∂y(1)

∥∥∥∥∥

2

2
=

n1∑

i=1

(
∂L(x)
∂y

(1)
i

)2

= O (n1) (129)

Therefore:

Var
v(1)

[
gFG−A

(
w

(1)
i,j

)
| x
]

= O (n1) (130)
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Proposition 6 shows that the estimation variance of the FG-A algorithm only scales

linearly with the number of neurons in the network and is invariant to the number of

weights per neuron. This represents a significant improvement compared to the FG-W

algorithm which scales with the number of parameters in the network.

4.7.4 Estimation Variance of Forward Direct Feedback Alignment

Gradients

I now derive the estimation variance of the proposed FDFA algorithm.

Proposition 7. Estimation Variance of Forward Direct Feedback Alignment Gradients

Let W (1) ∈ Rn1,n0 be the hidden weights of a two-layer fully connected neural net-

work evaluated with an input sample x ∈ Rn0 . We denote by gFDFA
(
w

(1)
i,j

)
the FDFA

gradient estimate for the weight w(l)
i,j and assume that all the elements of the perturba-

tion vector u(2) for the activations of the output layer are 0. We also assume that all

derivatives
(
∂L(x)
∂w

(l)
i,j

)2

≤ β are bounded and that the feedback matrixB(1) converged to

∂y(2)

∂y(1) = W (1), making the gradient estimates unbiased. If each element u(1)
i ∼ N (0, 1)

of u(1) follows a standard normal distribution, then:

Var
v(1)

[
gFDFA

(
w

(1)
i,j

)
| x
]

= α2 Var
v(1)

[
n1∑

k=1

∂y(1)
o

∂y
(1)
k

u
(1)
k u

(1)
i | x

]
 ∂y

(1)
i

∂w
(1)
i,j




2

(131)

and

lim
α→0

Var
v(1)

[
gFDFA

(
w

(1)
i,j

)
| x
]

= 0 (132)



CHAPTER 4. LOW-VARIANCE GRADIENT ESTIMATES WITHOUT BP 122

Proof. Starting from the gradient estimate gFG−A
(
w

(1)
i,j

)
, we have:

gFDFA
(
w

(1)
i,j

)
=

n2∑

o=1

∂L(x)
∂y

(2)
o

b
(1)
o,i

∂y
(1)
i

∂w
(1)
i,j

=
n2∑

o=1

∂L(x)
∂y

(2)
o

(
α

n1∑

k=1

∂y(1)
o

∂y
(1)
k

u
(1)
k u

(1)
i + (1− α) ∂y

(2)
o

∂y
(1)
i

)
∂y

(1)
i

∂w
(1)
i,j

= (1− α) ∂L(x)
∂w

(1)
i,j

+ α
n1∑

k=1

∂y(1)
o

∂y
(1)
k

u
(1)
k u

(1)
i

∂y
(1)
i

∂w
(1)
i,j

(133)

Because both ∂L(x)
∂w

(1)
i,j

and ∂y
(1)
i

∂w
(1)
i,j

are constants, the variance of gFDFA
(
w

(1)
i,j

)
given an input

sample x reduces to:

Var
v(1)

[
gFDFA

(
w

(1)
i,j

)
| x
]

=Var
v(1)


(1− α) ∂L(x)

∂w
(1)
i,j

+ α
n1∑

k=1

∂y(1)
o

∂y
(1)
k

u
(1)
k u

(1)
i

∂y
(1)
i

∂w
(1)
i,j

| x



=Var
v(1)


(1− α) ∂L(x)

∂w
(1)
i,j

| x



+ Var
v(1)


α

n1∑

k=1

∂y(1)
o

∂y
(1)
k

u
(1)
k u

(1)
i

∂y
(1)
i

∂w
(1)
i,j

| x



=α2 Var
v(1)

[
n1∑

k=1

∂y(1)
o

∂y
(1)
k

u
(1)
k u

(1)
i | x

]
 ∂y

(1)
i

∂w
(1)
i,j




2

(134)

Therefore:

lim
α→0

Var
v(1)

[
gFDFA

(
w

(1)
i,j

)
| x
]

= lim
α→0

α2 Var
v(1)

[
n1∑

k=1

∂y(1)
o

∂y
(1)
k

u
(1)
k u

(1)
i | x

]
 ∂y

(1)
i

∂w
(1)
i,j




2

=0

(135)

which concludes the proof.

Proposition 7 demonstrates that the estimation variance of the FDFA algorithm

scales quadratically with the feedback learning rate α. This means that, in the limit
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Table 13: Descriptions of the benchmark datasets used in my empirical experiments.

Dataset Name Train Samples Test Samples Classes Description

MNIST 60 000 10 000 10
28x28 images of handwritten
digits

Fashion MNIST 60 000 10 000 10 28x28 images of clothes

CIFAR10 60 000 10 000 10
32x32 images of vehicles
and animals

CIFAR100 60 000 10 000 100
32x32 images of various
vehicles, animals, plants,
objects...

Tiny ImageNet
200

100 000 10 000 200
64x64 images of various
vehicles, animals, plants,
objects...

of α→ 0, the estimation variance of FDFA quadratically decreases towards zero. This

gives the FDFA algorithm the potential to benefit from significantly lower variance than

FG-W and FG-A and, consequently, greater convergence rates.

4.8 Experimental Settings

I now describe the experimental settings used to produce the empirical results, includ-

ing the benchmark datasets, the network architectures, the loss function, the different

hyperparameter values as well as the software and hardware setup.

4.8.1 Benchmark Datasets

To evaluate the performance of the proposed FDFA algorithm and compare it with

other alternatives to BP, I selected several datasets widely adopted as standard bench-

marks and expressing increasing levels of difficulty, namely MNIST (LeCun, Cortes

and Burges 2010), Fashion MNIST (Xiao, Rasul and Vollgraf 2017), CIFAR10 and CI-

FAR100 (Krizhevsky, Hinton et al. 2009), and Tiny ImageNet 200 (Le and Yang 2015).

See Table 13 for a detailed description of each dataset. We used the original train/test

split of each dataset.
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4.8.2 Network Architecture

I benchmarked each training method with several architectures including fully-connected

DNNs and CNNs. More precisely, I trained fully-connected DNNs with 1, 2, and 3

hidden layers. In addition, I trained shallow CNNs with the following architecture:

15C5-P2-40C5-P2-128-10 where 15C5 represents 15 5x5 convolutional layers and P2

represents 2x2 max pooling layers. Finally, I trained AlexNet (Krizhevsky, Sutskever

and Hinton 2012a) networks, composed of the 8 following layers:

64C11-P3-192C5-P3-384C3-256C3-256C3-P3-4096-4094-100

I removed the dropout layer in AlexNet as I found that it negatively affects feedback

learning. Finally, I also added batch normalization (Ioffe and Szegedy 2015) after each

convolutional layer of AlexNet to help training.

Neurons in each benchmarked DNN use the ReLU activation function in the hidden

layers and linear activations in the output layer. For LG-FG-A, additional local linear

outputs with their loss function were added after each layer l < L− 1 to perform local

greedy learning (Ren et al. 2023)

4.8.3 Loss function

In every DNN, I applied a softmax operation at the outputs, such as:

pi :=
exp

(
y

(L)
i

)

∑nL
j=1 exp

(
y

(L)
j

) (136)

where p(L)
i represent the class probability for the output i. I then defined a Cross-

Entropy loss function using the output class probabilities computed by the softmax

operation, such as:

L (x) =−
nL∑

i=1
ŷi log (pi) (137)
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where ŷi one if i is the index of the target label and zero otherwise. This function

corresponds to the Softmax Cross-Entropy loss widely used for classification in modern

deep learning. However, note that any differentiable loss functions can be used instead

of the softmax cross entropy, such as the MSE.

4.8.4 Update Method and Hyperparameters

In BP, FG-W, FG-A, LG-FG-A, DKP, and FDFA, forward weights were initialized with

the uniform Kaiming initialization (He et al. 2015). For FDFA, feedback connections

were initialized to 0. For Random DFA, forward weights were initialized to 0 and feed-

back weights were drawn from a uniform Kaiming distribution and kept fixed during

training.

I train 5 times each network over 100 epochs with Adam (Kingma and Ba 2017) —

see Section 2.4.6 for details. I also used Adam for the updates of feedback matrices in

the FDFA and DKP algorithms. Adam was used because it is invariant to rescaling the

gradient (Kingma and Ba 2017), making it a good optimization method to benchmark

convergence with gradient estimators that exhibit different scales.

I used a learning rate of λ = α = 10−4 and the default values of the parameters

β1 = 0.9, β2 = 0.999 and ε = 10−8 in Adam. No regularization or data augmentation

has been applied in any experiment. Finally, I used learning rate decay with a decay

rate of 0.95 after every epoch.

In this work, all hyperparameters, including α and λ were manually tuned. I found

that, in many cases, better convergence behaviors were achieved if α ≤ λ. This moti-

vated my choices for the learning rates of FDFA.

4.8.5 Software and Hardware

All my experiments have been performed with the PyTorch (Paszke et al. 2019) library

in Python. BP was implemented by using reverse-mode AD. The FG-W, FG-A, and
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LG-FG-A algorithms were implemented using the forward-mode AD recently released

in PyTorch. DFA and DKP were implemented by creating specific PyTorch functions

with custom backward behaviors. Finally, my FDFA algorithm was implemented by

combining the custom function used for implementing DFA with forward-mode AD.

All experiments were accelerated using GPUs.

4.9 Empirical Results

I now present my empirical results with the proposed FDFA algorithm and other local

alternatives to BP. I compare the performance and convergence rate of the proposed

FDFA method with various local alternatives to BP related to my algorithm, including

weight-perturbed Weight-Perturbed Forward Gradient (FG-W), Activity-Perturbed For-

ward Gradient (FG-A), Local-Greedy Activity-Perturbed Forward Gradient (LG-FG-

A), Random Direct Feedback Alignment (DFA) and the Direct Kolen-Pollack (DKP)

algorithm. In addition, I provide numerical verification of my theoretical results — see

Section 4.7 — and analyze the relationship between the variance of gradient estimates

and the convergence rate. Finally, I compare the gradient alignment occurring in DFA,

DKP, and the proposed FDFA algorithm.

4.9.1 Performance

For each method, average test performance over 10 training runs is reported in Tables

14, 15, and 16.

Overall, the weight-perturbed FG-W algorithm achieves poor generalization com-

pared to BP. More importantly, its performance significantly decreases with the size

of the network and the complexity of the task. For example, the method is unable to

converge with AlexNet on the CIFAR100 or Tiny ImageNet 200 datasets with 3.43%

and 0.70% test accuracy respectively. The FG-A method slightly improves the general-

ization of forward gradients but still fails to match the performance of BP. The greedy
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Table 14: Performance of fully-connected DNNs with different depths. LG-FG-A was
not evaluated with two-layers DNNs as these networks are not deep enough to require
greedy learning.

Depth Method Local MNIST Fashion MNIST CIFAR10

2 Layers

BP 7 98.25 ± 0.04% 89.37 ± 0.09% 56.20 ± 0.12%
FG-W

3

85.87 ± 0.25% 77.72 ± 0.18% 30.47 ± 0.32%
FG-A 93.39 ± 0.06% 84.73 ± 0.14% 47.39 ± 0.23%
DFA 98.04 ± 0.07% 88.67 ± 0.12% 54.80 ± 0.22%
DKP 98.12 ± 0.05% 89.09 ± 0.11% 55.41 ± 0.18%
FDFA 98.21 ± 0.02% 89.27 ± 0.07% 55.74 ± 0.14%

3 Layers

BP 7 98.39 ± 0.06% 90.01 ± 0.08% 56.66 ± 0.18%
FG-W

3

82.36 ± 0.48% 73.94 ± 0.57% 27.52 ± 0.34%
FG-A 90.86 ± 0.17% 82.21 ± 0.13% 43.39 ± 0.14%
LG-FG-A 91.64 ± 0.07% 82.41 ± 0.13% 43.08 ± 0.18%
DFA 98.18 ± 0.06% 89.19 ± 0.13% 54.20 ± 0.11%
DKP 98.28 ± 0.06% 89.63 ± 0.12% 55.15 ± 0.24%
FDFA 98.30 ± 0.04% 89.82 ± 0.13% 55.70 ± 0.15%

4 Layers

BP 7 98.46 ± 0.05% 89.99 ± 0.15% 56.92 ± 0.19%
FG-W

3

80.03 ± 0.62% 71.72 ± 0.63% 25.17 ± 0.32%
FG-A 83.40 ± 1.33% 77.62 ± 0.25% 35.53 ± 0.21%
LG-FG-A 86.89 ± 0.90% 77.98 ± 0.21% 34.56 ± 0.34%
DFA 98.15 ± 0.05% 89.15 ± 0.09% 53.61 ± 0.16%
DKP 98.27 ± 0.05% 89.48 ± 0.09% 54.35 ± 0.21%
FDFA 98.32 ± 0.05% 89.56 ± 0.11% 54.97 ± 0.19%

Table 15: Performance of a shallow CNN (15C5-P2-40C5-P2-128-10 where 15C5 rep-
resents 15 5x5 convolutional layers and P2 represents a 2x2 max pooling layer) on the
MNIST, Fashion MNIST and CIFAR10 datasets.

Method Local MNIST Fashion MNIST CIFAR10
BP 7 99.32 ± 0.03% 92.10 ± 0.16% 68.11 ± 0.57%

FG-W

3

87.63 ± 1.20% 74.93 ± 0.55% 33.10 ± 0.37%
FG-A 96.63 ± 0.31% 82.71 ± 0.89% 42.51 ± 0.32%

LG-FG-A 95.42 ± 0.72% 79.96 ± 0.94% 37.74 ± 2.41%
DFA 98.80 ± 0.08% 89.69 ± 0.22% 58.14 ± 0.94%
DKP 99.08 ± 0.03% 90.39 ± 0.25% 60.30 ± 0.34%
FDFA 99.16 ± 0.03% 91.54 ± 0.11% 66.96 ± 0.70%
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Table 16: Performance of AlexNet (Krizhevsky, Sutskever and Hinton 2012a) trained
on the CIFAR100 and Tiny ImageNet 200 datasets with the official train-test split.

Method Local CIFAR100 Tiny ImageNet
BP 7 60.43 ± 0.35% 40.55 ± 0.31%

FG-W

3

3.43 ± 0.43% 0.70 ± 0.09%
FG-A 15.84 ± 0.32% 3.52 ± 0.32%

LG-FG-A 15.27 ± 0.29% 2.90 ± 0.14%
DFA 35.75 ± 0.58% 17.47 ± 0.34%
DKP 49.15 ± 0.34% 25.36 ± 0.82%
FDFA 57.27 ± 0.11% 36.47 ± 0.40%

approach used in LG-FG-A further improves performance when the number of neu-

rons per layer is relatively low, as in fully connected networks for MNIST and Fashion

MNIST. However, the method does not perform as well as FG-A on networks that con-

tain large layers such as convolution. This suggests, that LG-FG-A is most suitable

for specific architectures where each local loss function sends error signals to a small

number of neurons.

DFA achieves performance closer to BP than forward gradient methods. However, it

fails to scale to AlexNet on CIFAR100 and Tiny ImageNet 200, as observed in previous

work (Launay, Poli and Krzakala 2019; Bartunov et al. 2018; Crafton et al. 2019). The

performance of DFA is increased by the DKP algorithm but a gap still exists with BP,

especially on difficult tasks such as CIFAR100 and Tiny ImageNet 200. In contrast, the

proposed FDFA method performs closer to BP than DFA and DKP on all benchmarked

networks and datasets. For example, my method doubles the test accuracy of DFA and

improves by at least 10% the performance of DKP on Tiny ImageNet 200.

4.9.2 Convergence

To evaluate the convergence improvements of my method, I measured the evolution of

the training loss and test accuracy during the training process. As shown in Figure 36,

the FG-W algorithm converges slowly compared to both DFA and BP. Although FG-A

slightly improves the convergence of FG-W, it was still unable to converge as quickly as



CHAPTER 4. LOW-VARIANCE GRADIENT ESTIMATES WITHOUT BP 129

0 20 40 60 80 1000

1

2

3

Epoch

L
os

s

0 20 40 60 80 1000

1

2

3

Epoch

L
os

s

BP
FG-W
FG-A
DFA
DKP
FDFA

(a) Fully-Connected (b) Convolution

0 20 40 60 80 10020

30

40

50

60

Epoch

A
cc

ur
ac

y
(%

)

0 20 40 60 80 10020

40

60

Epoch

A
cc

ur
ac

y
(%

)

(c) Fully-Connected (d) Convolution

Figure 36: Training loss and test accuracy of a 2-layer fully-connected network (Figures
36a and 36c) and a CNN (Figures 36b and 36d) trained on the CIFAR10 dataset. FDFA
has a similar convergence rate as BP on fully connected networks. With CNNs, FDFA
is not able to overfit the training data. However, my method has the highest convergence
rate compared to FG-W, FG-A, and DFA.

BP and DFA. Both the DKP and FDFA algorithms showed better convergence rates than

FG-W, FG-A, and DFA. However, DKP seems to be unable to reduce the loss as low as

BP with convolutional layers. Finally, the proposed FDFA algorithm achieved a similar

convergence rate as BP with fully connected networks and substantially improved the

convergence rate of DFA and DKP with CNNs.
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Figure 37: Variance of the FG-W (red triangles) and FG-A (blue squares) gradient
estimates as a function of the number of neurons n1 (Figure 37a) and number of inputs
n0 (Figure 37b) in a two-layer fully connected network. Each point was produced by
computing the variance of gradient estimates over 10 iterations on the MNIST dataset.
The pixels of input images were duplicated, to increase the number of inputs n0. The
red and blue lines were fitted using linear regression. The slope a and the asymptotic
standard error of each line are given with the same color. These figures show that
the variance of FG-W scales linearly with the number of neurons and inputs while the
variance of FG-A only scales linearly with the number of neurons.

4.9.3 Variance

Numerical verifications for the scaling of the gradient estimate variance in FG-W and

FG-A (Propositions 5 and 6 respectively) are provided in Figure 37. These values were

computed by varying the number of neurons as well as the number of inputs in a fully

connected DNN and computing the variance of gradient estimates over 10 iterations on

the MNIST dataset. A linear regression was then performed on the log-scaled values

to determine the power relationship between the number of neurons or the number of

inputs and the variance of the gradient estimates.

Figure 37 shows that the variance of FG-W and FG-A scales differently with the

number of neurons and parameters in the network. FG-W scales linearly with the num-

ber of parameters and FG-A scales linearly with the number of neurons. This indicates

that, in large DNNs, gradient estimates provided by the FG-W algorithm have a larger
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Figure 38: The variance of FDFA gradient estimates as a function of the feedback
learning rate α in a two-layer fully connected network. Each point was produced by
computing the variance of gradient estimates over 10 iterations of the MNIST dataset.
The blue line was fitted using linear regression. The slope a and the asymptotic standard
error is given with the same color. This figure shows that the variance of FDFA scales
quadratically with α.

variance than FG-A estimates. However, as DNNs also contain large numbers of neu-

rons, the variance of FG-A remains high.

In addition, numerical verifications for the scaling of the gradient estimate variance

in FDFA (Propositions 7) are given in Figure 38. Similarly to Figure 37, these values

were computed by varying the feedback learning rate α in a fully connected DNN and

computing the variance of gradient estimates over 10 iterations on the MNIST dataset.

A linear regression was then performed on the log-scaled values to determine the power

relationship between α and the variance of the gradient estimates.

Figure 38 empirically shows that the gradient estimation variance of FDFA esti-

mates quadratically vanishes as α tends towards zero. Therefore, by choosing values

of α close to zero, the variance of FDFA estimates approaches the variance of the true

gradient. This confirms the theoretical result found in Propositon 7.

To better understand the impact that the gradient variance has on the convergence

rate of SGD, I conducted an experiment where I measured the training loss of DNNs

after one epoch as a function of variance. I simulated the variance of forward gradients

by injecting Gaussian noise into the gradient computed with BP. By increasing the



CHAPTER 4. LOW-VARIANCE GRADIENT ESTIMATES WITHOUT BP 132

101 102 103
10−0.5

100

Normalized variance

L
os

s

BP + Gaussian Noise
FG-W
FG-A
FDFA

Figure 39: Correlation between the normalized variance of gradient estimates and the
loss of a two-layer network with 1000 hidden neurons, following a single training epoch
on the MNIST dataset. The variance of BP was artificially increased by adding Gaus-
sian noise to the gradients to simulate the stochasticity of forward gradients. All gra-
dient variances were normalized with the expected squared norm of the gradient esti-
mates to ensure invariance to the amplitude. Pairs of variance-loss for the FG-W, LGA,
and FDFA algorithms are represented in green, red, and blue, respectively. This figure
shows that the differences in convergence are solely due to the variance of the gradient
estimates.

standard deviation of the injected noise, I artificially generated gradients with varying

levels of variance. I then trained a two-layer DNN with these noisy gradients and

measured the loss after one epoch of training on the MNIST dataset.

Figure 39 illustrates that the variance strongly influences the training loss achieved

after one epoch, as low-variance gradients tend to converge towards lower loss values

compared to high-variance gradients. Hence, in this context, variance is the determin-

ing factor for convergence. Additionally, Figure 39 shows the variance and loss values

associated with the FG-W, FG-A, and FDFA algorithms. Notably, all data points align

with the line formed by the noisy BP. This shows that the differences in gradient vari-

ance are solely responsible for the differences in convergence among the FG-W, FG-A,

and FDFA algorithms.
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Figure 40: Layerwise alignment between gradient estimates and the true gradient com-
puted using BP. These figures show that the proposed FDFA method (Figure 40c) pro-
duces gradient estimates that better align with the true gradients than DFA (Figure 40a)
which suggests improved descending directions.

4.9.4 Gradient Alignment in Feedback Methods

In my experiments, I observed that the proposed FDFA algorithm exhibits better con-

vergence compared to DFA, despite having similar variance. This suggests that their

gradient estimation variance alone does not fully explain the difference in convergence

between these two algorithms.

Both FDFA and DFA exhibit different degrees of biasedness. On the one hand,

the FDFA algorithm introduces bias through its feedback learning rule, which acts as

momentum for the derivatives between output and hidden neurons. On the other hand,

DFA uses random feedback connections, resulting in strongly biased gradient estimates.

Therefore, I conjecture that the disparity in convergence between DFA and the proposed

FDFA algorithm can be attributed to their respective bias.

To test this, I measured the bias of each method during training by recording the

angle between the true gradient and the averaged gradient estimates produced by DFA,

FDFA, and the DKP algorithm. This measure, often referred to as gradient alignment

(Refinetti et al. 2021; Webster, Choi and Ahn 2021), indicates the extent to which the

expected gradient estimate deviates from the true gradient.
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Figure 40 shows the evolution of the layer-wise gradient alignment of each algo-

rithm in a 5-layer fully connected DNN trained on the MNIST dataset during 100

epochs. This figure shows that the proposed FDFA method achieves faster alignment

with the true gradient compared to DFA and DKP, which suggests earlier descending

updates. Remarkably, the alignment of the gradient in FDFA is globally enhanced by

30 degrees in comparison to DFA and DKP. This significant improvement suggests that

my method provides less biased gradient estimates. Thus, these findings strongly sup-

port the fact that the differences in convergence between DFA, DKP, and FDFA can be

attributed to their respective levels of biasedness.

4.10 Discussion

The various limitations of BP, and particularly its incompatibility with neuromorphic

hardware, highlight the need for alternative training methods. As a result, the explo-

ration of local, parallel, and online alternatives to BP has gained significant importance.

In this chapter, I proposed the FDFA algorithm that combines the FG-A algorithm

with DFA and momentum to train DNNs without relying on BP. The algorithm in-

volves a dual optimization process where weights are updated with direct feedback

connections to minimize classification errors, and derivatives are estimated as feedback

using activity-perturbed forward gradients. My experiments showed that the FDFA

gradient estimate closely aligns with the true gradient, particularly in the last layers.

However, the sole differences between the FDFA estimate and the true gradient are the

feedback connections replacing the derivatives between outputs and hidden neurons.

Hence, the convergence of feedback connections toward these derivatives is the only

factor responsible for this gradient alignment. We can thus conclude that the proposed

feedback learning rule is capable of learning the relevant derivatives to approximate BP.

Moreover, the averaging process introduced in my feedback learning rule acts as mo-

mentum for the derivatives estimates between output and hidden neurons. My results
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demonstrated that the introduced momentum significantly reduces the gradient estima-

tion variance compared to other forward gradient methods. Consequently, my method

provides more accurate gradient estimates, leading to improved convergence and better

performances on several benchmark datasets and architectures.

Using the proposed method, feedback connections in the penultimate layer become

equal to the output weights. This results in gradient estimates that are equivalent to BP.

However, in deeper layers, feedback connections linearly approximate the non-linear

derivatives between output and hidden neurons, introducing a bias. To address this bias,

the FDFA algorithm could be adapted to Feedback Alignment, where feedback matrices

replace the weights during the backward pass of BP, rather than direct connections

between output and hidden layers. Although this modification would lower biasedness

and better approximate BP without requiring weight transport, it would come at the cost

of increased computation time due to backward locking. This highlights a particular

tradeoff between computation cost and biasedness in FDFA. Future work could explore

novel ways to leverage this biasedness without hindering the parallel aspect of FDFA.

It is also important to note that, while both DFA and the proposed FDFA algorithm

similarly compute gradient estimates, they differ fundamentally in their respective def-

initions of the feedback connections. In DFA, feedback connections are initialized ran-

domly and remain fixed throughout training, thereby introducing a substantial bias into

its pseudo-gradient. In contrast, my FDFA algorithm learns to represent the derivatives

between output and hidden neurons as feedback connections. This distinction results in

gradient estimates that align more closely with the steepest descent direction compared

to DFA. This difference in biasedness was empirically verified in Figure 40 by mea-

suring the angle between the gradient estimate of each algorithm and the true gradient

computed with BP. As shown in Table 12, DFA and FDFA have the same variance in

the limit of small feedback learning rates (i.e. 0). Hence, their divergence lies solely in

their respective biases. I observed in my experiments that this difference in bias consis-

tently influences both the rate of convergence and the performance of DNNs on various
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benchmark datasets. Therefore, by providing an update direction closer to the direction

of steepest descent, the proposed FDFA algorithm demonstrates the ability to converge

faster and achieve greater performance than DFA.

Finally, while methods relying on feedback connections showed better performance

than forward gradients methods, the use of feedback matrices increases the number of

weights to store in memory and ultimately poses a significant memory limitation, es-

pecially as networks grow larger. This highlights another important tradeoff between

memory usage and performance. Future work could explore mechanisms such as sparse

feedback matrices (Crafton et al. 2019) or reduced weight precision (Han and jun Yoo

2019) to mitigate the memory impact of the proposed FDFA algorithm, further enhanc-

ing its practicality and scalability.

The FDFA algorithm thus represents a promising local alternative to error back-

propagation, effectively resolving backward locking and the weight transport problem.

Its ability to approximate backpropagation with low variance not only opens new pos-

sibilities for the creation of efficient and scalable training algorithms but also holds

significant importance in the domain of neuromorphic computing. By solely propa-

gating information in a forward manner, the FDFA algorithm aligns with the online

constraints of neuromorphic systems, presenting new prospects for developing algo-

rithms specifically tailored to meet the requirements of these hardware. Therefore, the

implications of my findings highlight the potential of FDFA as a promising direction

for online learning in neuromorphic systems.



Chapter 5

Online Gradient Estimates of Spiking

Neural Networks

The contributions of this chapter are:

• I propose the Spiking Forward Direct Feedback Alignment (SFDFA) algorithm,

an adaption of Forward Direct Feedback Alignment to SNNs that estimates the

weights between output and hidden neurons as feedback connections.

• I describe how exact local gradients of spikes can be computed in an online

manner while taking into account the intra-neuron dependencies between post-

synaptic spikes and derive a dynamical system for neuromorphic hardware com-

patibility.

• I show the existence of critical points where local gradients explode numerically.

I identify the cause of the problem and propose an ad-hoc solution to avoid gra-

dient explosions.

• I compare the SFDFA algorithm with DFA and show that the proposed algorithm

achieves higher performance and convergence rates.

137
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5.1 Introduction

In the context of SNNs, random feedback learning, and particularly the DFA algorithm

— see Section 4.5 for details — are popular alternatives to BP for online gradient ap-

proximation (Neftci et al. 2017b; Bellec et al. 2020; Rostami et al. 2022; Lee et al.

2020; Shrestha et al. 2019, 2021). For example, the Event-Driven Random Backprop-

agation (eRBP) (Neftci et al. 2017b) and the e-prop (Bellec et al. 2020; Rostami et al.

2022) algorithms use random feedback connections to send error signals to hidden neu-

rons at every time steps, thus continuously accumulating gradients during the inference.

However, these algorithms constantly project errors to hidden neurons which can lead

to significant computation and energy consumption on hardware.

Alternatives such as the Spike-Train Level Direct Feedback Alignment (ST-DFA)

(Lee et al. 2020) or the Error-Modulated Spike-Timing-Dependent Plasticity (EMSTDP)

(Shrestha et al. 2019, 2021) algorithms accumulate local changes of weights during the

inference and send a single error signal to hidden neurons through random direct feed-

backs connections. These approaches are ultimately more energy-efficient as the error

projection is only performed once, thus requiring fewer operations. Moreover, be-

cause they solve many of the limitations of BP, spiking DFA algorithms have been suc-

cessfully implemented on various neuromorphic hardware and demonstrated promising

performance and lower energy consumption compared to offline training on GPUs (Lee

et al. 2020; Shrestha et al. 2021; Rostami et al. 2022).

I demonstrated in Chapter 4 that the strong bias introduced by the random feed-

back connections affects the convergence rate of DFA. While the algorithm relies on

the alignment between weight and feedback connections (Nøkland 2016; Refinetti et al.

2021), my experiments demonstrated that practical alignment tends to be limited due to

the lack of flexibility in the feedback connections, thus leading to biased approximate

gradients that deviate from the direction of steepest descent — see Section 4.9.4. In

contrast, the FDFA algorithm proposed in Chapter 4 allows for greater flexibility in
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feedback connections by introducing a learning mechanism that estimates the deriva-

tives between output and hidden neurons, leading to gradient estimates that better fol-

low the direction of steepest descend and improved convergence rates. Therefore, sim-

ilar feedback learning mechanisms could be proposed to improve the convergence of

DFA in SNNs.

In this chapter, I propose the Spiking Forward Direct Feedback Alignment (SFDFA)

algorithm, an adaptation of the FDFA for online training of SNNs. Using graded spikes

to propagate additional information during the inference, the proposed SFDFA algo-

rithm estimates the derivatives between output and hidden neurons as feedback con-

nections, thus improving convergence when compared to spiking DFA. The rest of this

chapter is structured as follows:

• I first review how the DFA algorithm can be used to train SNNs without relying

on error backpropagation.

• Based on my findings in Chapters 3 and 4, I introduce the SFDFA algorithm,

a spiking adaptation of the FDFA algorithm to compute gradient estimates of

SNNs without error backpropagation. I then describe how the local gradients of

spikes can be computed in an online manner and demonstrate the existence of

critical points causing gradient explosions. I thus propose an ad hoc solution to

these critical points and derive a dynamical system for the computation of local

gradients on neuromorphic hardware.

• I describe the experimental settings used to produce my empirical results.

• Finally, I investigate the cause of the critical points in the exact local gradient of

spikes and demonstrate the effectiveness of the modified local gradient in avoid-

ing gradient explosions. I then compare the performance and convergence rate of

the SFDFA algorithm with DFA and BP on several benchmark datasets as well

as the weight and gradient alignment of DFA and SFDFA.
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5.2 Spiking Direct Feedback Alignment

The computation of spike errors in SNNs relies on information that is not available in

real-time, thus representing an obstacle for online computation. However, an approxi-

mation of BP can be computed in an online manner by using a spiking implementation

of DFA.

Similarly to DNNs — see Section 4.5 for details —, we define a random matrix B

representing the feedback connections between output and hidden neurons. Assuming

that a single error signal is sent at the end of the inference, the error δDFA
i received by

the hidden neuron i is computed as (Neftci et al. 2017b; Bellec et al. 2020; Rostami

et al. 2022; Lee et al. 2020; Shrestha et al. 2019, 2021):

δi :=
∑

o

bo,i δo (138)

where δo is the errors attributed to the output neuron o. Note that because feedbacks are

neuron-specific and not spike-specific, all post-synaptic spikes fired by a neuron receive

the same error signal from feedbacks, therefore δki := δi ∀ tki ∈ Ti. For conciseness,

I thus dropped the spike index from δki . In essence, Equation 138 computes a linear

projection of output errors with the feedback matrix B. As in DNNs, the elements of

this feedback matrix are randomly drawn and kept fixed during training.

Finally, using the projected errors δDFA
i , the approximate gradient gDFA (wi,j) com-

puted by DFA is computed as follows (Neftci et al. 2017b; Bellec et al. 2020; Rostami

et al. 2022; Lee et al. 2020; Shrestha et al. 2019, 2021):

gDFA (wi,j) = δi∇locwi,j (139)

Here, ∇locwi,j is the total local gradient for the weight wi,j , locally computed by the

neuron in an online manner during inference. It is defined as follows in event-based
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settings:

∇locwi,j =
∑

tki ∈Ti
∇locw

k
i,j (140)

where ∇locw
k
i,j is the local gradient for the spike timing tki . Many definitions exist for

these local gradients of spikes. For example, the gradient of the membrane potential

at spike times (Lee et al. 2020) or surrogate local gradients (Bellec et al. 2020) can be

used. Other works, such as EMSTDP (Shrestha et al. 2021), use biologically-plausible

local gradients like STDP — see Section 2.3.8 — or simple accumulations of the num-

ber of pre-synaptic spikes as in eRBP (Neftci et al. 2017b).

DFA sidesteps the need for backpropagating errors backward through space and

time and allows for online error computation. In addition, because all post-synaptic

spikes receive the same projected error, a local gradient of spikes can be locally com-

puted during the inference without immediately requiring an error signal. For this rea-

son, DFA has been successfully implemented in several neuromorphic hardware (Lee

et al. 2020; Shrestha et al. 2021; Rostami et al. 2022).

5.3 Spiking Forward Direct Feedback Alignment

When applied to DNNs, the FDFA algorithm propagates directional derivatives

alongside neuron activations which are used to estimate derivatives between output

and hidden neurons as direct feedback connections. However, the propagation of in-

formation differs significantly between spiking and continuously-activated neurons. In

SNNs, spikes represent the sole carriers of information while rate-based neurons are

continuously activated. Therefore, it becomes necessary to adapt the FDFA algorithm

from its original design for continuously activated neurons to one suitable for discrete

spiking activations. In the following, I introduce the SFDFA algorithm. I then describe

how local gradients can be computed in an online manner, propose an ad hoc solu-

tion to gradient explosions caused by critical points in the local gradient, and derive a

dynamical system for compatibility with neuromorphic hardware.
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Algorithm 6: Inference of a single hidden neuron i with the Spiking Forward
Direct Feedback Alignment algorithm.

1: Input: The neuron index i, the neuron weights w, the reset current
∆ϑ = ϑ− urest, the random perturbation p ∼ N (0, 1) and the set Tpre of
pre-synaptic graded spikes

(
j, tzj , d

z
j

)
∈ Tpre sorted in time where j is a

pre-synaptic neuron index, tzj is a timing and dzj is a spike grade.
2: Initialize: the factors a = 0 and b = 0, the spike count k, the local gradient
∇locw = 0, the set of output events Tpost = {}, the internal directional derivatives
s = 0, and the local derivatives synaptic traces f = 0 and h = 0.

3: for all
(
j, tzj , d

z
j

)
in Tpre do

4: fj ← fj exp
(
tzj
τs

)
{Update local derivative traces}

5: hj ← hj exp
(
tzj
τ

)

6: a← a+ wj exp
(
tzj
τs

)
{Integrate pre-synaptic spike into quadratic factors}

7: b← b+ wj exp
(
tzj
τ

)

8: s← s+ wj d
z
j {Update internal directional derivative}

9: if the neuron fires a valid spike then
10: continue
11: end if
12: t← τ ln

(
2a

b+
√
b2−4a∆ϑ

)
{Compute post-synaptic spike timing}

13: t′ ← − τ

aki exp(−tτs )
[
h exp

(
−t
τ

)
− f exp

(
−t
τs

)]
{Compute spike derivative}

14: ∇locw ←∇locw + t′ {Update local gradient}
15: h← h− ∆ϑ

τ
exp

(
t
τ

)
t′ {Apply recurrence}

16: b← b−∆ϑ exp
(
t
τ

)
{Reset of membrane potential}

17: d← s+ p if k = 0 else s {Compute directional derivative as spike grade}
18: add (i, t, d) to Tpost

19: end for
20: return Tpost,∇locw

Algorithm 7: Weights update of a single hidden neuron i with the Spiking
Forward Direct Feedback Alignment algorithm.

1: Input: the neuron weights w, the local gradient∇locw, the feedback connections
b, the random perturbation p, the output directional derivatives d, the output errors
δ and the learning rates λ and α.

2: w ← w − λ δb∇locw {Update weights}
3: b← (1− α) b+ α pd {Update feedback conneections}
4: return w, b
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When using DFA with SNNs, feedback connections essentially replace the inter-

neuron dependencies of spikes. As FDFA estimates the expected derivatives between

hidden and output neurons, a spiking adaptation of the algorithm would estimate the

expected derivative between output and hidden spike timings, such as:

E
x, tzo, t

k
i

[
∂tzo
∂tki

]
= E

x, tzo, t
k
i


Θ

(
tzo − tki

)
wo,i



∂tzo
∂azo

exp
(
tki
τs

)

τs
+ ∂tzo
∂bzo

exp
(
tki
τ

)

τ





 (141)

Here, x is an input sample from a dataset. It is important to note that the expectation is

not solely taken over the dataset but also encompasses the post-synaptic spikes of both

the neuron i and the output neuron o. This distinction arises from the fact that neurons

can generate multiple spikes, yet they possess only a single linear feedback connection

shared by all their spikes.

If the neuron i shares a direct connection with the output neuron o, Equation 141

decomposes as follows:

E
x, tzo, t

k
i

[
∂tzo
∂tki

]
=wo,i E

x, tzo, t
k
i


Θ

(
tzo − tki

)


∂tzo
∂azo

exp
(
tki
τs

)

τs
+ ∂tzo
∂bzo

exp
(
tki
τ

)

τ







=wo,i E
x

[f (To, Ti)]

(142)

where

f (To, Ti) = E
tzo∈To

E
tki ∈Ti


Θ

(
tzo − tki

)


∂tzo
∂azo

exp
(
tki
τs

)

τs
+ ∂tzo
∂bzo

exp
(
tki
τ

)

τ





 (143)

is a function of the spike trains To and Ti accounting for the temporal relationship be-

tween spikes. Due to the inherent variability in spike counts and spike timings, this

function exhibits significant variance, which can impact the convergence of the deriva-

tive estimates. Therefore, to mitigate the influence of large variance on the convergence

of feedback connections, I exclude the temporal relationships between spikes from the



CHAPTER 5. ONLINE GRADIENT ESTIMATES OF SNNS 144

derivative estimates and only estimate the weights between hidden and output neurons.

Formally, we draw a random perturbation p1
i ∼ N (0, 1) for the first spike t1i of each

hidden neuron i. For all the other post-synaptic spikes, i.e. when k > 1, the spike

perturbations pki = 0 are set to zero. We then denote as dki the grade of the spike — i.e.

an additional payload value carried by spike events, see Section 2.3.6 for more details

— fired at time tki by the neuron i. It is defined as:

dki = si
(
tki
)

+ pki (144)

where si(t) is a variable defined for each neuron, updated as follows when a pre-

synaptic spike is received at time tzj from a neuron j:

si (tzi )← si (tzi ) + wi,j d
k
j (145)

and is reset to zero when a post-synaptic spike is received.

In essence, si(t) accumulates the spike grades dzj propagated by pre-synaptic neu-

rons over time, during inference. When a post-synaptic spike is fired, si(t) is then

propagated to downstream neurons through spike grades, along with perturbations pki .

Spike perturbations are only drawn for the first spikes of neurons as they are more likely

to have a causal relationship with downstream spikes.

Therefore, a directional derivative do can be computed for each output neuron o by

summing all the output spike grades. In the case of two-layers fully connected SNN



CHAPTER 5. ONLINE GRADIENT ESTIMATES OF SNNS 145

and assuming that all hidden spikes are causal to output spikes, it is:

do =
∑

tko∈To
dko

=
∑

i∈Po
wo,i

∑

tzi∈Ti
dzi

=
∑

i∈Po
wo,i

∑

tki ∈Ti
pki

=
∑

i∈Po
wo,i p

1
i

(146)

Note the similarity with the directional derivative computed in FDFA — see Equation

105.

Multiplying do by the perturbation p1
i thus leads to an unbiased estimate of the

weight wo,i, such as:

E
[
do p

1
i

]
=E


∑

j∈Po
wo,j p

1
j p

1
i




=
∑

j∈Po
wo,j E

[
p1
j

]
E
[
p1
i

]

=wo,i

(147)

As in FDFA, we define an update rule for the feedback connection bo,i that performs an

exponential average of the weight estimate, such as:

bo,i ← (1− α) bo,i + α do p
1
i (148)

where 0 < α < 1 is the feedback learning rate.

This update rule can also be written in a form compatible with stochastic gradient

descent:

bo,i ← bo,i − α∇bo,i (149)
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where

∇bo,i = bo,i − do pki (150)

The feedback matrix is used to linearly project output errors and compute error signals

for hidden neurons, such as:

δi :=
∑

o

bo,i δo (151)

The gradient estimate gSFDFA (wi,j) is then computed as in DFA, such as:

gSFDFA (wi,j) = δi ∇locwi,j (152)

where

∇locwi,j =
∑

tki ∈Ti
∇locw

k
i,j (153)

and ∇locw
k
i,j is the local gradient for the spike timing tki .

Finally, the computed gradient estimate is used to update the weights using any

gradient-based optimization algorithm such as SGD:

wi,j ← wi,j − λ gSFDFA (wi,j) (154)

where λ > 0 is the learning rate. See Algorithms 6 and 7 for more details about the

inference and weight updates with the SFDFA algorithm.

5.3.1 Online Local Gradients

As described in Chapter 3, errors in BP are spatially backpropagated from post-synaptic

to pre-synaptic spikes through inter-neuron dependencies due to synaptic interactions

between neurons and temporally propagated from post-synaptic to post-synaptic spikes

through intra-neuron dependencies due to the reset of the membrane potential. As they

cannot be evaluated in an online manner, the inter-neuron dependencies are essentially

replaced by the direct feedback connections in SFDFA. On the other hand, the recurrent
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intra-neuron dependencies can be included in the computation of the local gradients of

spikes without violating the online computation requirements, such as:

∇locw
k
i,j := ∂tki

∂wi,j
+
∑

tzi∈Ti

∂tki
∂tzi



∂tzi
∂wi,j

+
∑

tyi ∈Ti

∂tzi
∂tyi

[
∂tyi
∂wi,j

+ . . .

]


= ∂tki
∂wi,j

+
∑

tzi∈Ti

∂tki
∂tzi
∇locw

z
i,j

= τ

aki

[
1 + ∆ϑ

xki
exp

(
tki
τ

)] ∑

tzj∈Tj
Θ
(
tki − tzj

)
exp

(
tzj
τs

)

− τ

xki

∑

tzj∈Tj
Θ
(
tki − tzj

)
exp

(
tzj
τ

)
+
∑

tzi∈Ti
Θ
(
tzi − tki

) ∆ϑ

xki
exp

(
tzi
τ

)
∇locw

z
i,j

= τ

aki

[
1 + ∆ϑ

xki
exp

(
tki
τ

)]
fki −

τ

xki
hki

(155)

where

fki =
∑

tzj∈Tj
Θ
(
tki − tzj

)
exp

(
tzj
τs

)
(156)

and

hki =
∑

tzj∈Tj
Θ
(
tki − tzj

)
exp

(
tzj
τ

)
−
∑

tzi∈Ti
Θ
(
tki − tzj

) ∆ϑ

τ
exp

(
tzi
τ

)
∇locw

z
i,j (157)
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only contain sums over previous pre-synaptic and post-synaptic events which satisfies

the conditions for online computation. However, to reduce the computational require-

ments of the local gradient evaluation, Equation 155 can be further simplified by re-

introducing the post-synaptic spike time tki into the equation:

∇locw
k
i,j =

exp
(
−tki
τs

)

exp
(
−tki
τs

) τ

aki


1 +

exp
(
−tki
τ

)

exp
(
−tki
τ

)∆ϑ

xki
exp

(
tki
τ

)

 f

k
i −

exp
(
−tki
τ

)

exp
(
−tki
τ

) τ

xki
hki

= τ

aki exp
(
−tki
τs

)


1 + ∆ϑ

xki exp
(
−tki
τ

)


 f

k
i exp

(
−tki
τs

)
− τ

xki exp
(
−tki
τ

) hki exp
(
−tki
τ

)

(158)

Then we can isolate an expression for xki exp
(
−tki
τ

)
, such as:

tki = τ ln
(

2aki
bki + xki

)

⇔ exp
(
tki
τ

)
= 2aki
bki + xki

⇔ exp
(
tki
τ

)
exp

(
−tki
τ

)
= exp

(
−tki
τ

) exp
(
−tki
τ

)

exp
(
−tki
τ

) 2aki
bki + xki

⇔ exp
(
tki − tki
τ

)
=

2aki exp
(
−tki
τs

)

(
bki + xki

)
exp

(
−tki
τ

)

⇔1 =
2aki exp

(
−tki
τs

)

(
bki + xki

)
exp

(
−tki
τ

)

⇔xki exp
(
−tki
τ

)
= aki exp

(
−tki
τs

)
−∆ϑ

(159)
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as of the constraint between the synaptic and membrane time constant τ = 2τs ⇔
exp

(
−tki
τ

)2
= exp

(
−tki
τs

)
— see Chapter 3 for details — and

u(tki ) = bki exp
(
−tki
τ

)
− aki exp

(
−tki
τs

)
= ∆ϑ

⇔bki exp
(
−tki
τ

)
= aki exp

(
−tki
τs

)
+ ∆ϑ

(160)

Therefore, the local gradient∇locw
k
i,j of spikes simplifies to:

∇locw
k
i,j = τ

aki exp
(
−tki
τs

)



aki exp

(
−tki
τs

)
−∆ϑ

aki exp
(
−tki
τs

)
−∆ϑ

+ ∆ϑ

aki exp
(
−tki
τs

)
−∆ϑ


 f

k
i exp

(
−tki
τs

)

− τ

aki exp
(
−tki
τs

)
−∆ϑ

hki exp
(
−tki
τ

)

= τ

aki exp
(
−tki
τs

)
−∆ϑ

[
fki exp

(
−tki
τs

)
− hki exp

(
−tki
τ

)]

(161)

which requires 8 floating point operations (FLOPS) to evaluate instead of 10 in Equa-

tion 155. In this Equation, both factors τ
aki

[
1 + ∆ϑ

xki
exp

(
tki
τ

)]
and τ

xki
of fki and hki

respectively reduce to the same factor τ

aki exp
(
−tk
i

τs

)
−∆ϑ

which is thus computed only

once without requiring xki .

5.3.2 Critical Points of Local Gradients

I now show the existence of critical points where the local gradients of spikes diverge

towards infinity and propose a simple ad-hoc solution to avoid gradient explosions.

Knowing that xki exp
(
−tki
τ

)
≥ 0⇔ aki exp

(
−tki
τ

)
≥ ∆ϑ, the factor τ

aki exp
(
−tk
i

τs

)
−∆ϑ

in Equation 161 contains a critical point where its value diverges towards infinity as
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(red line) and the modified factor τ
x

as a function

of x = aki exp
(
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)
. As aki exp

(
−tki
τs

)
approaches ∆ϑ, the original factor diverges

towards infinity while the modified factor is bounded.

aki exp
(
−tki
τs

)
approaches ∆ϑ (see Figure 41). This situation occurs when the mem-

brane potential barely crosses the threshold, resulting in the quadratic form of ui(t) = ϑ

having a single real solution — i.e. xki = 0. This phenomenon introduces critical points

in the parameter space, where the gradient grows exponentially. These critical points

have been identified in other works on exact gradients of spikes (Wunderlich and Pehle

2021; Takase et al. 2009a,b). A common solution to mitigate gradient explosion is

adding additional mechanisms to limit the size of the gradient such as gradient clipping

(Wunderlich and Pehle 2021; Hong et al. 2020). However, gradient clipping requires

computing the norm of the gradient, which cannot be locally performed on neuromor-

phic hardware. In this work, I propose a simple modification of the local gradient to

remove the cause of the critical points.

Formally, we drop ∆ϑ from Equation 161, such as:

∇locw
k
i,j := τ

aki exp
(
−tki
τs

)
[
fki exp

(
−tki
τs

)
− hki exp

(
−tki
τ

)]

(162)
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Here, τ

aki exp
(
−tk
i

τs

) ≤ τ
∆ϑ

has an upper bound and does not diverge towards infinity (see

Figure 41). Dropping the term ∆ϑ from the equation provides a natural bound without

requiring additional mechanisms such as gradient clipping, which should improve the

stability of the weights updates. While this creates an additional bias in the gradient

estimates, this should not differ from the bias introduced by the feedback connections.

5.3.3 Neuromorphic Hardware Compatibility

The local gradient in Equation 162 is adapted for computation on von Neumann com-

puters. Therefore, to make the SFDFA algorithm compatible with neuromorphic hard-

ware, we derive an eligibility trace that can be evaluated with a system of ordinary

differential equations on hardware.

Formally, Equation 162 can be written as:

∇locw
k
i,j = τ

aki exp
(
−tki
τs

)
[
fki exp

(
−tki
τs

)
− hki exp

(
−tki
τ

)]

=− τ

aki exp
(
−tki
τs

)
[
hki exp

(
−tki
τ

)
− fki exp

(
−tki
τs

)]

=− τ

Ii(tki )
ei,j(tki )

(163)

where

Ii(t) =aki exp
(−t
τs

)

=
∑

j∈Pi
wi,j

∑

tzj∈Tj
Θ
(
t− tzj

)
α
(
t− tzj

) (164)

is the synaptic current at the spike time — see Equation 25 in Section 2.3.3 —, which
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is computed by the LIF neuron, and

ei,j(t) =
∑

tzj∈Tj
Θ
(
t− tzj

) [
exp

(
tzj − t
τ

)
− exp

(
tzj − t
τs

)]

︸ ︷︷ ︸
ε(t−tzj)

−
∑

tzi∈Ti
Θ
(
t− tzj

)
∆ϑ exp

(
tzi − t
τ

)

︸ ︷︷ ︸
η(t−tzi )

∇locw
z
i,j

τ

(165)

is an eligibility trace computed over time that coincides with the desired expression

required by the local gradient at the spike time tki . We can observe that Equation 165

has a form that is similar to the mapping of the LIF neuron to the SRM model — see

Section 2.3.4 for details. Therefore, this expression can be implemented on neuromor-

phic hardware using a LIF model — see Section 2.3.3 for details — at each synapse

and locally be used at post-synaptic spike times for the computation of local gradients.

5.4 Experimental Settings

In this section, I describe the experimental settings used to produce my empirical re-

sults, including the benchmark datasets, encoding and decoding, network architectures,

the loss function, hyperparameters as well as the software and hardware settings.

5.4.1 Benchmark Datasets

I evaluate the performance of the proposed SFDFA algorithm as well as BP and DFA

in SNNs with the same four benchmark datasets as in Chapter 3, namely MNIST, EM-

NIST, Fashion MNIST and the SHD dataset — see Section 3.6.1 for details about these

datasets.

5.4.2 Encoding

I used the same encoding as in Chapter 3. See Section 3.6.2 for details.
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5.4.3 Network Architectures

I benchmarked my method with fully-connected SNNs of different sizes. For MNIST

and EMNIST, I used two-layer SNNs with 800 hidden neurons, for Fashion MNIST, a

three-layer SNN with 400 hidden neurons per hidden layer, and a two-layer SNN with

128 hidden neurons for the SHD dataset.

5.4.4 Decoding and Loss Function

I used a spike count strategy to decode the output spike counts of the SNNs. I then

used a spike count Mean Squared Error loss function for training. See Section 3.6.4

for more details about spike count decoding and spike count Mean Squared Error loss

function.

5.4.5 Firing Rate Regularization

Without additional constraint, neurons may exhibit high firing rates to achieve lower

loss values which could increase energy consumption and computational requirements.

To prevent this issue, I implemented a firing rate regularization that drives the mean

firing rate of neurons towards a given target during training. By incorporating firing

rate regularization, the neural network is encouraged to find a balance between learning

from the data and avoiding high firing rates. This can lead to improved generalization,

reduced energy consumption, and enhanced stability.

Formally, a penalty term for high firing rates is added to the loss function, such as:

Lreg(x) = L(x) + β
∑

i

(
E
x

[ni]− n̂
)2

(166)

where β > 0 is a constant defining the strength of the regularization and E
x

[ni] is the

mean firing rate of the hidden neuron i. The mean firing rate can be estimated in an

online manner by computing a moving average or an exponential average of the firing
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rate over the last inference. If batch learning is used, a mean firing rate can be computed

from the batch.

5.4.6 Update Method and Hyperparameters

I used the Adam (Kingma and Ba 2017) algorithm — see Section 2.4.6 for details —

to update both the weights and the feedback connections. I used the default values of

β1 = 0.9, β2 = 0.999 and ε = 10−8 (Kingma and Ba 2017) and a batch size of 50 for

fully-connected SNNs. I used a learning rate of λ = 0.003 for image classification and

λ = 0.001 for audio classification with the SHD dataset. In addition, I used a feedback

learning rate of α = 10−4 in every experiment. These hyperparameters were choosen

manually to produce the best performance on each task.

Experimental conditions were standardized for BP, DFA and SFDFA. I used the

same hyperparameters as the method proposed in Chapter 3 — see Section 3.6.5 for

details.

5.4.7 Event-Based Simulations on GPU

To simulate and train SNNs, I reused the event-based simulator introduced in Chapter

3 — see Section 3.6.6 for details. I adapted the GPU kernels related to the inference to

compute local gradients as well as directional derivatives in an online manner. More-

over, I replaced the code performing error backpropagation with feedback learning.

Similarly to neuromorphic hardware, my simulator never backpropagates errors back-

ward through time and performs all computations in an online manner.

5.5 Empirical Results

I now present my empirical results with the proposed SFDFA algorithm. I empirically

highlight the critical points in the exact local gradient of spikes and demonstrate the

effectiveness of the modified local gradient in preventing gradient explosions. I then
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Figure 42: Gradient fields of a single neuron computed using the exact local gradients
(Figure 42a) and the modified local gradients (Figure 42b). I can observe that the exact
local gradient contains critical points where the norm is abnormally large compared
to neighboring regions. However, with the modified local gradients, the norm of the
gradient is consistent throughout the weight space, mitigating the gradient explosion
caused by the critical points. The red crosses at wi,1 = 2.5 and wi,2 = 2.0 correspond
to the critical point visualized in Figure 43.

compare the performance and convergence rate of SFDFA with DFA and BP on several

benchmark datasets as well as the weight and gradient alignment of DFA and SFDFA.

5.5.1 Critical Points Analysis

I now analyze the stability of the exact local gradient of spikes and compare it with the

modified local gradient, defined in Equation 162.

Figure 42 shows the respective gradient fields computed using the exact and mod-

ified local gradients. These figures have been produced by varying the weights of a

two-input neuron receiving four pre-synaptic spikes and evaluating the local gradient

∇locw with the exact derivative of spikes (Equation 161) and with the modified local

gradient (Equation 162). It can be observed in Figure 42a that the exact local gradient

contains several critical points where its norm is significantly larger than neighboring
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vectors.

To investigate the cause behind these large norms, I examined the neuron’s internal

state over time at one of these critical points (marked in red in Figure 42). Figure 43

depicts the temporal evolution of the membrane potential, input current, factor τ
Ii(t)−∆ϑ

,

and the computed local gradient. Notably, it can be observed that the last post-synaptic

spike fired by the neuron narrowly crosses the threshold (i.e. hair trigger) due to a low

input current. This low current leads to the factor τ
Ii(t)−∆ϑ

becoming large due to its

divergence when Ii(t) approaches ∆ϑ (see Figure 41). Consequently, the local gradient

at this spike time significantly increases.

On the other hand, Figure 42 demonstrates that the proposed modified local gradi-

ent maintains a consistent norm across the weight space without any instability points

where the norm deviates abnormally from neighboring vectors. Additionally, Figure

43 illustrates that, at the spike time when the membrane potential narrowly reaches the

threshold, the modified factor τ
Ii(t) exhibits a significantly lower value compared to the

original factor τ
Ii(t)−∆ϑ

. This is because the modified factor is upper-bounded, as shown

in Figure 41. As a result, the contribution of this spike to the modified local gradient is

substantially reduced in comparison to its contribution to the exact local gradient.
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Figure 43: Evolution over time of the membrane potential (Figure 43a), input current
(Figure 43b), gradient factors (Figure 43c) and local gradients (Figure 43d) at an in-
stability point (wi,1 = 2.5 and wi,2 = 2.0 in Figure 42). Here all vertical dotted lines
correspond to post-synaptic spike times. The red lines in both Figures 43c and 43d rep-
resent the original factor and local gradient, while the blue lines represent the modified
factor and local gradient. These figures show that the last post-synaptic spike fired by
the neuron occurs when the membrane potential narrowly reaches the threshold. This
narrow threshold crossing is attributed to the low input current Ii(t) which causes large
factors τ

Ii(t)−∆ϑ
and consequently large local gradients. In contrast, the modified factor

τ
Ii(t) restricts the amplitude of the factor, thereby moderating the scale of the gradient.
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To assess the impact of critical points on the convergence of SNNs, I conducted an

experiment using the MNIST dataset. Identical SNNs were trained, both containing

two layers of fully connected neurons and sharing the same hyperparameters. These

networks were initialized with identical weights, differing only in the type of local

gradient used for training. One network was trained with the exact local gradient, while

the second network was trained with the modified gradient defined in Equation 162.

Figure 44 shows the evolution of the training loss, training accuracy, test loss, and

test accuracy for each network during the training of each network. It can notably be

observed that the network trained with the modified local gradient converges slightly

faster than the SNN trained with the exact local gradient. This suggests that the modi-

fied gradient mitigates the impact of instabilities on convergence, leading to enhanced

learning.
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Figure 44: Evolution of the training accuracy (Figure 44a), test accuracy (Figure 44b),
train loss (Figure 44c) and test loss (Figure 44d) during the training of a two-layers
SNN on the MNIST dataset. Red lines correspond to the metrics of the SNN updated
using the exact local gradient while blue lines correspond to the metrics of the SNN
updated using the modified local gradient defined in Equation 162. These figures show
that the modified gradient converges slightly faster than the exact local gradient.

5.5.2 Performance

In order to evaluate the efficiency of the proposed SFDFA method, I conducted a com-

parative analysis of its performance against BP and DFA. To ensure a fair comparison,

I maintained uniformity across all hyperparameters, maintaining consistency with the

experiments conducted in Chapter 3.

Table 17 summarizes the performance of each method on each dataset. We can
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Table 17: Average best test performance of BP, DFA and the proposed SFDFA on the
MNIST, EMNIST, Fashion MNIST and SHD datasets.

Dataset Architeture BP DFA SFDFA
MNIST 800-10 98.88 ± 0.02% 98.42 ± 0.06% 98.56 ± 0.04%

EMNIST 800-47 85.75 ± 0.06% 79.48 ± 0.11% 82.33 ± 0.10%
Fashion MNIST 400-400-10 90.19 ± 0.12% 89.41 ± 0.12% 89.73 ± 0.17%

SHD 128-20 66.79 ± 0.66% 52.70 ± 2.30% 54.63 ± 1.16%

observe that both the DFA and SFDFA algorithms achieve test performance similar

to that of BP for the MNIST, EMNIST, and Fashion MNIST datasets. However, for

the SHD dataset, neither algorithm attains a level of accuracy comparable to BP. This

indicates that the direct feedback learning approach with a single error signal fails to

effectively generalize when applied to temporal data.

Despite this limitation, the proposed SFDFA algorithm consistently outperforms

DFA across all benchmarked datasets. However, there remains a noticeable gap be-

tween the performance of SFDFA and BP, particularly as the complexity of the task

increases. These results thus align with the observations made regarding the FDFA

algorithm in Chapter 4.

5.5.3 Convergence

The FDFA algorithm introduced in Chapter 4 demonstrated improvements in terms of

convergence compared to DFA. To evaluate if this is also the case in SNNs, I recorded

the train loss, train accuracy, test loss, and test accuracy of SNNs trained with the DFA

and SFDFA algorithms on each dataset.
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Figure 45: Evolution of the averaged train accuracy (Figure 45a), test accuracy (Figure
45b), train loss (Figure 45c) and test loss (Figure 45d) during the training of two-layers
SNNs on the MNIST dataset. Black dashed lines correspond to BP. Blue and red solid
lines correspond to the SFDFA and DFA algorithms respectively.
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Figure 46: Evolution of the averaged train accuracy (Figure 45a), test accuracy (Figure
45b), train loss (Figure 45c) and test loss (Figure 45d) during the training of two-layers
SNNs on the EMNIST dataset. Black dashed lines correspond to BP. Blue and red solid
lines correspond to the SFDFA and DFA algorithms respectively.
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Figure 47: Evolution of the averaged train accuracy (Figure 45a), test accuracy (Figure
45b), train loss (Figure 45c) and test loss (Figure 45d) during the training of two-layers
SNNs on the Fashion MNIST dataset. Black dashed lines correspond to BP. Blue and
red solid lines correspond to the SFDFA and DFA algorithms respectively.
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Figure 48: Evolution of the averaged train accuracy (Figure 45a), test accuracy (Figure
45b), train loss (Figure 45c) and test loss (Figure 45d) during the training of two-layers
SNNs on the Spiking Heidelberg Digits dataset. Black dashed lines correspond to BP.
Blue and red solid lines correspond to the SFDFA and DFA algorithms respectively.

Figures 45, 46, 47 and 48 show the evolution of the different metrics with the

MNIST, EMNIST, Fashion MNIST and SHD datasets respectively. In these figures, the

metrics recorded in Chapter 3 for BP are also given as a baseline. It can be observed

that a gap exists in both the train and test loss between the BP and DFA algorithms. In

contrast, the train and test loss for the proposed SFDFA algorithm closely follow the

loss values of BP, indicating similar convergence rates. Interestingly, during the initial

stage of training, both the train and test accuracies of the SFDFA algorithm increase

faster than both BP and DFA. This behavior is particularly prominent in Figures 45 and
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Figure 49: Layerwise alignment between spiking gradient estimates and the true gra-
dient computed using BP. These figures show that the SFDFA algorithm (Figure 49b)
aligns better with the true gradient than DFA (Figure 49a), especially in layers close to
the outputs.

48. However, in the later stage of training, the test accuracy of SFDFA plateaus while

the test accuracy of BP continues to improve. This suggests that the proposed SFDFA

algorithm does not generalize as much as BP on test data. However, compared to DFA,

the test accuracy of the SFDFA algorithm increases significantly faster, especially on

temporal data (see Figure 48). These results on convergence align with the results ob-

served with the FDFA algorithm on DNNs in Chapter 4. From a general point of view,

the SFDFA algorithm seems to improve the rate of convergence of DFA, especially as

the task increases in difficulty.

5.5.4 Weights and Gradient Alignment

Similarly to Section 4.9.4, I measured the bias of the gradient estimates by recording

the layerwise alignment between the approximate gradients and the true gradients com-

puted using BP. For this experiment, I trained a 4-layer SNN on the MNIST dataset for

30 epochs using both the DFA and SFDFA algorithms to compute gradient estimates. I

then calculated the angles between these estimates and the true gradient computed by
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Figure 50: Evolution of the alignment between the output weights and last hidden layer
feedbacks in a 4-layer SNN trained on MNIST with DFA (red line) and SFDFA (blue
line). The weights and feedback connections align faster and better with the SFDFA
algorithm than with DFA. Moreover, the weights alignment in SNNs correlates with
the gradient alignment (see Figure 49).

BP.

The evolution of the resulting angles during training is given in Figure 49. It can be

observed that the gradient estimates provided by FDFA align faster and exhibit a lower

angle with respect to BP when compared with DFA. This indicates that the proposed

SFDFA algorithm achieves a lower level of bias earlier than DFA, with weight updates

that better follow BP. This result is consistent with the observations made with the

FDFA algorithm in Chapter 4. However, it is important to note that the gap in alignment

between SFDFA and DFA diminishes with the depth of the layer. Specifically, when

comparing the alignments of the third layer (i.e. closest to the output) trained with

SFDFA and DFA, the former demonstrates significantly better alignment. However,

in the case of the first layer, both methods exhibit similar levels of alignment. This

suggests that the benefits of SFDFA become more pronounced in layers close to the

outputs.

In contrast with the FDFA algorithm which estimates derivatives, the SFDFA al-

gorithm approximates the derivatives of spikes by estimating the weights connections

between hidden and output neurons. Therefore, in addition to the layerwise gradient
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alignment, I measured the angle between the vectors represented by the output weights

and the vector represented by the feedback connections for the last hidden layer. Also

known as weight alignment, it is believed to be the main source of gradient alignment in

DFA (Refinetti et al. 2021). Figure 50 shows the evolution of the alignment between the

flattened output weights and the flattened feedback connections to the last hidden layer.

The alignments for deeper hidden layers were ignored as the exact forward weights for

these layers are unknown. We can see in this figure that the output weight and the feed-

back connections trained with the SFDFA algorithm align faster and better than those

trained with DFA. Moreover, we can observe that the weight alignment correlates with

the gradient alignment of the third layer in Figure 49. This suggests that estimating the

forward weights as feedback connections makes the approximate gradients align with

the true gradients.

5.6 Discussion

In this chapter, I proposed the SFDFA algorithm, a spiking adaptation of FDFA that

trains SNNs in an online and local manner. The proposed algorithm computes local

gradients of post-synaptic spikes by taking into account all intra-neuron dependencies

and uses direct feedback connections to linearly project output errors to hidden neu-

rons without unrolling the neuron’s dynamics through space and time. Similarly to the

FDFA algorithm, SFDFA estimates the derivatives between hidden and output neurons

as feedback connections by propagating directional derivatives as spike grades during

the inference. More precisely, SFDFA estimates the weights between output and hid-

den and ignores the temporal relationships between spikes to avoid large variances that

could hinder the convergence of feedback connections.

I also demonstrated the existence of critical points where the norm of the exact

local gradient diverges towards infinity. These critical points have previously been

discovered in other formulations of exact gradients (Takase et al. 2009a,b; Wunderlich
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and Pehle 2021) of spikes. In my work, I identified the cause of these critical points in

the computation of the exact local gradients and proposed a simple modification of the

derivatives that suppresses gradient explosions. While this ad hoc solution introduces

an additional bias to the gradient estimates, I showed that it enabled faster convergence

of SNNs than the exact gradient when trained with SFDFA. This implies that the rate of

convergence of my algorithm benefits from the improved stability of the modified local

gradient.

My empirical results showed that the proposed SFDFA consistently converges faster

and achieves higher performance than DFA on all benchmark datasets. However, while

my method also performs better than DFA on the SHD dataset, a significant gap still

exists with BP. This suggests that the learning procedure used in both DFA and SFDFA

has limitations when applied to highly temporal data. Therefore, future work could ex-

plore alternative update methods to improve this performance gap with BP on temporal

data.

In my experiments, I measured the alignment between the approximate gradients

computed by DFA and SFDFA and the true gradient computed by BP. My results

showed that the approximate gradients computed by the proposed SFDFA algorithm

align faster with the true gradient than DFA. This suggests that weights are updated

with steeper descending directions in SFDFA than in DFA. This could explain the in-

creased convergence rate experienced by my algorithm. However, we observed that

the gradient estimates in SNNs align less than the FDFA algorithm applied to DNNs.

This weak alignment can be explained by two factors. First, by bounding the local

derivatives, the modified local gradient of my method slightly changes the direction

of the weight updates. Second, the complex temporal relationships between spikes are

ignored in the computation of the directional derivatives to avoid introducing large vari-

ances in the feedback updates. Ignoring these temporal relationships could make the

approximate gradients further deviate from the true gradient.
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In addition to the gradient alignment, I measured the alignment between the net-

work weights and feedback connections in both DFA and SFDFA. I observed a stronger

difference in weight alignment between DFA and SFDFA than in gradient alignment.

This could be explained by the fact that my method estimates the weight connections

between output and hidden neurons as feedback rather than derivatives. In particular,

we observed that the weight alignment of SFDFA correlates with the gradient align-

ment of the last layer, suggesting that estimating weights contributes to the gradient

alignments. However, it is still unclear why deeper layers fail to align more than in

DFA. Future work could therefore focus on improving the gradient alignment of deep

layers to improve the rate of convergence as well as the performance of SNNs when

trained with SFDFA.

From an engineering point of view, the local gradients of spikes can be locally com-

puted by neurons by implementing dedicated circuits that evaluate the dynamical sys-

tem derived in Section 5.3.3. Moreover, the computation and propagation of directional

derivatives during the inference can be implemented through the grades of spikes. Spike

grades are features that have recently been added to several large-scale neuromorphic

platforms such as Loihi 2 (Frady et al. 2022) and SpiNNaker (Furber et al. 2014). Tra-

ditionally used to modify the amplitude of spikes for computational purposes, my work

instead proposes the use of spike grades for learning purposes. Finally, direct feedback

connections have widely been implemented on various neuromorphic platforms, thus

supporting the hardware compatibility of SFDFA.

Therefore, by successfully addressing the limitations of BP, the proposed SFDFA

algorithm represents a promising step towards the implementation of neuromorphic

gradient descent. While there are still areas for improvement and exploration, my find-

ings contribute to the growing body of knowledge aimed at improving the field of neu-

romorphic computing.
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Discussion

The lack of differentiable spikes and the limitations of BP represent the main obstacles

to the application of gradient descent on neuromorphic hardware. This thesis addresses

these challenges by extending Fast & Deep (Göltz et al. 2021) to SNNs producing

multiple spikes per neuron and by proposing a novel algorithm that computes gradient

estimates in an online manner without relying on BP. By combining these two solutions,

I proposed an algorithm that addresses the online requirements and local constraints of

neuromorphic hardware.

Introduced in Chapter 3, my first proposed method relaxes the spike constraint of

temporal coding in Fast & Deep (Göltz et al. 2021) to compute exact gradients of un-

constrained SNNs. By allowing multiple spikes per neuron instead of a single one, my

extension both increases the rate of information propagated by neurons and the like-

lihood of convergence. As shown by my empirical experiments, relaxing the single

spike constraint enables improved tradeoffs between accuracy, convergence, sparsity,

classification latency, and robustness to noise and weight quantization when compared

to temporally-coded SNNs trained with Fast & Deep. However, while my empirical

experiments demonstrated promising results, the non-local and backward aspects of

BP make its implementation too costly on neuromorphic hardware, if not entirely im-

practical. Therefore, the use of exact gradients is mainly limited to offline training

170
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or in-the-loop, where the inference is performed on neuromorphic hardware and the

gradients are computed on von Neumann computers.

To overcome the limitations of BP, many alternatives have previously been pro-

posed such as Forward Gradients (Baydin et al. 2022) or Direct Feedback Alignment

(Nøkland 2016). However, these methods suffer from slow convergence, either be-

cause of high variance limiting the rate of convergence of SGD, or because of signifi-

cant biases making the gradient estimates deviate from the direction of fastest descent.

In Chapter 4, I proposed the Forward Direct Feedback Alignment (FDFA) algorithm,

a novel local and online alternative to BP combining Forward Gradients with Direct

Feedback Alignment and momentum. By using activity-perturbed Forward Gradients,

the proposed FDFA algorithm learns the derivatives between output and hidden neurons

as direct feedback connections. The feedback learning rule introduced in my approach

acts as a momentum that reduces the variance of the gradient estimates. In addition to

significantly improving the rate of convergence, the FDFA gradient estimates achieve

greater performance and update weights in a direction that better follows the direction

of steepest descent when compared to other alternatives to BP with DNNs.

Motivated by its performances with DNNs, I introduced in Chapter 5 a spiking

adaptation of the FDFA algorithm. Referred to as Spiking Forward Direct Feedback

Alignment (SFDFA), the proposed method computes local gradients of spikes in an

online manner and propagates directional derivatives through the grade of spikes, an

additional payload value carried by spike events. In addition, I demonstrated the exis-

tence of critical points causing gradient explosions. I thus proposed an ad-hoc solution

that bounds the local gradients of spikes and improves convergence despite an addi-

tional bias. Finally, I derived a dynamical system for the computation of local gradients

on neuromorphic hardware. my empirical results have demonstrated the advantages of

the SFDFA algorithms over DFA both in terms of convergence and performance.

In conclusion, by addressing the inherent lack of differentiable spikes and the lim-

itations of BP, this thesis introduces novel perspectives for neuromorphic-compatible
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gradient descent. Although a slight performance gap persists compared to backprop-

agation, the proposed method has demonstrated improved capabilities to train SNNs

with higher rates of convergence and increased performance when compared with the

widely-used DFA algorithm. Furthermore, my approach only performs computations in

a local and online manner that complies with the constraints and features of neuromor-

phic hardware. As such, my work not only represents a novel perspective for training

SNNs on neuromorphic hardware but also represents a promising energy-efficient al-

ternative to DNNs trained with BP for high-performance learning in edge computing.

In conclusion, this thesis addresses the inherent lack of differentiable spikes and the

fundamental challenges related to local and online gradient computations, presenting

novel perspectives for neuromorphic-compatible gradient descent. While a slight per-

formance gap persists compared to backpropagation, the proposed SFDFA algorithm

thesis showed promising capabilities in training SNNs with higher rates of conver-

gence. It also outperforms the widely-used DFA algorithm. Importantly, the proposed

approach estimate gradients in a local and online manner, aligning with the constraints

and features of neuromorphic hardware. Consequently, this work offers a unique per-

spective for SNN training on neuromorphic hardware.

6.1 Future Work

I now propose several directions of future research to further extend and improve the

proposed method.

6.1.1 Improving Learning with Spatio-Temporal Data

In Section 5.5, I showed that both the DFA and SDFDA algorithms are capable of train-

ing SNNs on static image datasets with performance close to BP. However, both fail to

reach the performance of BP on the SHD dataset which suggests a potential limitation

in training spatio-temporal data with direct feedback connections. I hypothesize that
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this limitation arises due to the nature of the error signals. In my experiments, a sin-

gle error signal was sent to neurons at the end of each simulation. However, previous

works with DFA have shown error signals that are frequently emitted during the infer-

ence can improve learning with long-term dependencies (Bellec et al. 2020; Rostami

et al. 2022). Therefore, future work could implement more frequent error signals to

improve the performance of the SFDFA algorithm with spatio-temporal data.

6.1.2 Spiking Forward Direct Feedback Alignment with Spike Time-

Dependent Plasticity

The SFDFA algorithm computes local gradients by accumulating the derivatives of

post-synaptic spikes. However, several neuromorphic hardware already integrate bio-

logically inspired learning mechanisms such as Spike Time-Dependant Plasticity (STDP)

or Reward-Modulated STDP (RSTDP) (Schemmel et al. 2010; Pehle et al. 2022; Davies

et al. 2018) — see Sections 2.3.8 and 2.3.9 for details. In addition to being biologically

plausible, STDP and R-STDP have the advantage of being computationally efficient

compared to the derivatives of post-synaptic spikes. Therefore, future work could ex-

plore the adaptation of the SFDFA algorithm with R-STDP. More particularly, local

gradients could be replaced by STDP traces computed during the inference, which

would then be modulated by the project error signals. This would reduce the com-

putational complexity of local gradients of spikes while increasing the compatibility

of SFDFA with neuromorphic hardware implementing biologically plausible learning

rules.

6.1.3 Implementation on Neuromorphic Hardware

While the proposed SFDFA algorithm has been designed according to the constraints

and features of neuromorphic hardware, all experiments of this thesis have been per-

formed on von Neumann computers and accelerated with GPUs. Therefore, future
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work could focus on implementing the proposed SFDFA on neuromorphic hardware

and benchmarking with real-world applications. Finally, because the derivative esti-

mates between output and hidden neurons in SFDFA rely on the use of graded spikes,

neuromorphic platforms already proposing graded events such as Loihi 2 (Frady et al.

2022) or SpiNNaker (Furber et al. 2014; Höppner et al. 2022) should be privileged.

If implemented on neuromorphic hardware, the SFDFA algorithm is anticipated to

exhibit higher energy consumption than DFA. This is attributed to the computational

demands associated with calculating directional derivatives and incorporating an addi-

tional feedback learning rule. However, the potential performance enhancement offered

by SFDFA in comparison to DFA introduces a noteworthy trade-off between accuracy

and energy consumption that could be the subject of future studies.

Additionally, there is an opportunity to enhance control over the firing rate of neu-

rons with feedback learning. Investigating strategies to reduce the spike count of the

neuron population is crucial, as the firing rate significantly influences energy consump-

tion in event-based neuromorphic hardware. Discovering more effective methods to

regulate the spike count holds the promise of advancing energy efficiency in these sys-

tems.
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