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Background and Objectives: One of the more significant obstacles in classification of skin cancer is the presence of 
artifacts. This paper investigates the effect of dark corner artifacts, which result from the use of dermoscopes, on 
the performance of a deep learning binary classification task. Previous research attempted to remove and inpaint 
dark corner artifacts, with the intention of creating an ideal condition for models. However, such research has 
been shown to be inconclusive due to a lack of available datasets with corresponding labels for dark corner 
artifact cases.
Methods: To address these issues, we label 10,250 skin lesion images from publicly available datasets and 
introduce a balanced dataset with an equal number of melanoma and non-melanoma cases. The training set 
comprises 6126 images without artifacts, and the testing set comprises 4124 images with dark corner artifacts. 
We conduct three experiments to provide new understanding on the effects of dark corner artifacts, including 
inpainted and synthetically generated examples, on a deep learning method.
Results: Our results suggest that introducing synthetic dark corner artifacts which have been superimposed onto 
the training set improved model performance, particularly in terms of the true negative rate. This indicates 
that deep learning learnt to ignore dark corner artifacts, rather than treating it as melanoma, when dark corner 
artifacts were introduced into the training set. Further, we propose a new approach to quantifying heatmaps 
indicating network focus using a root mean square measure of the brightness intensity in the different regions of 
the heatmaps.
Conclusions: The proposed artifact methods can be used in future experiments to help alleviate possible impacts 
on model performance. Additionally, the newly proposed heatmap quantification analysis will help to better 
understand the relationships between heatmap results and other model performance metrics.

1. Introduction

The first recorded example of using microscopy dates back to 1655 
where Pierre Borel observed capillaries of the nailbed under a micro-
scope. Ever since this moment there have been many studies resulting 
in improvements to the process, including the use of different immer-
sion fluids to make the upper layers of the epidermis more translucent 
to improve examination. Portable devices were not available until 1990 
where Kreusch and Rassner developed a portable stereomicroscope ca-
pable of magnification from 10-40x [9]. The downside to this device 
is that it was much more expensive than the devices used previously. 
These early advancements led to the development of the hand-held der-
matoscope [9]. The use of a dermatoscope gives the dermatologist the 
ability to magnify and view features of the lesion that were obscure 
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or invisible to the naked eye allowing for a more accurate diagnosis 
[22].

Dark corner artifacts (DCA), also known as vignettes [35], in skin 
lesion images can be defined as regions around the edges of the im-
age which are dark in appearance which can vary in size and inten-
sity. This phenomenon is a result of the circular shape of the der-
moscopic lens when pressed against the skin during a dermatological 
examination. DCA are not always present in dermatological images. 
Variations in dermatoscope calibration, camera zoom levels, and post-
processing, as manually determined by the examining dermatologist, 
are the main contributing factors in the presence and degree of DCA 
[1].

Another type of DCA appears when a non-contact dermatoscope is 
used to take an image of a lesion located on a non-flat surface of skin, 
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Fig. 1. Illustration of Contact vs Non Contact border artifact.

such as the ear. In this example, the non-ear region is black due to 
the focus, exposure and white balance settings of the camera. A card 
is often placed around the ear (and similar areas of the body such as 
nose and digits) if the exposure or focus is incorrect due to the camera’s 
attempt to balance all parts of the image. Fig. 1 shows examples of 
both types of artifacts. Additionally, if the nevi of the lesion is large, 
the dermatologist may not be able to capture the entire lesion when 
zoomed-in to remove the DCA from the image - this happens regardless 
of the model of the dermatoscope.

The cost of dermatoscopes may be linked to the number of fea-
tures available on the device, however, cost is not directly associated 
with the presence of DCA. The most expensive devices may exhibit 
DCA, while cheaper ones may not, and vice versa. An example of this 
is the DermLite HÜDⓇ, which is one of the cheapest dermatoscopes. 
This device provides a rectangular view of the lesion, and is therefore 
easy to remove DCA. Zoom settings used to remove DCA are a fea-
ture only of the camera used to acquire the skin lesion photograph, 
and not the dermatoscope itself. Cropping of DCA is common practice 
in dermascopy, which may include cropping of small regions of the 
dermoscopic view. Some of the publicly available datasets [52] per-
form pre-possessing to normalise colours and provide zoomed images 
to reduce the presence of the DCA when possible as a form of natural 
augmentation.

Dermoscopic images found in the ISIC datasets are sourced from a 
variety of dermoscopes and cameras. They may include transparency 
slide scans, dedicated dermoscopy cameras, video stills, fixed focus de-
vices, lenses of differing diameter (10 mm to 30 mm), shape and quality. 
Some are plastic while others are glass, may be scratched or dirty, and 
may have been acquired with or without immersion contact fluid. Most 
ISIC images were acquired using direct contact with skin and lesion, 
with rare cases showing non-contact.

The use of dermoscope devices is known to cause numerous varia-
tions in contrast which may result from the use of unpolarised and cross-
polarised light. Variations in illumination, and noise [17,3] may also be 
present, amongst other types of artifacts. Researchers have become in-
creasingly focused on the effect of artifacts in recent years, however, 
such studies are limited, and tend to focus mainly on the effects of hair 
[26,5]. Studies which focus on detection of melanoma and other skin le-
sion pathologies have become a significant field of research, especially 
following the rise in the use of deep learning [15,8,7,16,39,25,24]. 
However, despite the acknowledgement of the presence of artifacts in 
the associated datasets, solutions are either not explored [31,56] or are 
limited [38].

Previous solutions in preventing overfitting in deep learning focused 
on the collection of more data, or utilising various data augmentation 
techniques. These methods include standard transformation of images, 
removal of artifacts (inpainting methods) and generation of synthetic 
data. The most popular methods used to overcome the effect of artifacts 
on skin lesion images on deep learning models has been by the propo-
sition that artifacts should be removed, often with the use of inpainting 
methods. Although these studies [55,50] achieved some improvement 
in accuracy, it is unclear if this process is a friend (removed and in-
painted artifacts) or a foe (removed and inpainted important features). 

Additionally, this process involved localisation and inpainting of ar-
tifacts, which is usually computationally expensive and inaccurate as 
there is no ground truth to evaluate performance. Due to these reasons, 
focusing on the occurrence of DCA, we propose to superimpose DCA 
and train a deep learning network to learn these types of artifacts. The 
aim of this paper is to answer the following questions in binary classifi-
cation of melanoma and non-melanoma:

1. What is the effect of DCA in skin lesion binary classification?
2. Will inpainting algorithms improve the accuracy of skin lesion bi-

nary classification?
3. Which data augmentation method provides the best results: in-

painted DCA or superimposed synthetic DCA?
4. Will the deep learning algorithm learn to ignore DCA like the der-

matologists?

The main contributions of this paper are as follows:

• Introduction of a new DCA split balanced dataset which we make 
available to the research community. To assist in answering re-
search questions (1) and (2), we curate a new dataset to allow for 
fair comparison. To date, there are no publicly available DCA split 
balanced datasets.

• A proposed realistic DCA data augmentation method and compare 
its performance with a binary DCA data augmentation method 
[38]. We investigate different DCA augmentation techniques to 
study the effect of DCA inpainting versus the effect of superim-
posing DCA as in research question (3).

• A quantitative measure is proposed to evaluate the visualised acti-
vation maps that are commonly used in deep learning research. We 
measure the differences between deep learning methods when per-
forming inference on images with DCA, and draw a new perspec-
tive in handling DCA which can be used in other artifact-related 
research.

2. Related work

The study of external ocular images or external photographs [2] in 
deep learning has gained popularity in explainability analysis. These 
experiments share a common goal to increase the trustworthiness of 
deep learning algorithms by indicating the area of interest used for 
prediction, rather than the background. There are several imaging do-
mains with external ocular images, including dermoscopic [9], exter-
nal eye photography [2], ophthalmic and endoscopy images [48], and 
colonoscopy images [29]. As each of these domains are device specific 
and application specific, this paper focuses on dermoscopic images for 
skin cancer analysis.

Tschandl et al. [53] conducted experiments using the ISIC datasets 
[19,12,11,52,13,45] to compare the diagnostic accuracy of deep learn-
ing algorithms with human readers for all clinically relevant types of 
benign and malignant pigmented skin lesions. Their findings showed 
that classifiers often had good performance when tested on data that 
is similar to the training data but performed worse or failed on out of 
distribution examples.

Han et al. [21] conducted multi-class classification experiments for 
12 classes of skin diseases. They used a fine-tuned ResNet-152 model 
which was trained on a number of skin lesion datasets. This work high-
lighted the challenges inherent in the use of different datasets, and 
showed that deep learning predictions can be at least as accurate as 
dermatologists. These findings were further supported in subsequent 
studies [20,23]. However, more recent works, such as those by [33], 
found that a deep learning model which demonstrated superior per-
formance in experimental studies performed poorly when compared to 
specialists in real-world settings. Such findings suggest that caution is 
required when extrapolating results of experimental studies to clinical 
practice.
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Sies et al. [49] investigated the effect of small, medium, and large 
DCA on the performance of a market-approved CNN (Moleanalyzer-
Pro©, FotoFinder Systems) for skin lesion classification which provided 
malignancy scores in the range of 0 to 1. They observed that for 
small and medium DCA cases the system gave comparable diagnostic 
performance as control cases (those without DCA). However, predic-
tion results for the large DCA cases showed a significant decrease in 
specificity performance, indicating that the CNN was less robust in 
its ability to correctly reject when a patient did not present a malig-
nancy.

Nauta et al. [34] observed that artifacts can lead to shortcut learn-
ing. Their work focused on detecting and quantifying shortcut learning 
in trained classifiers for skin cancer diagnosis using the ISIC datasets. 
They trained a standard VGG16 skin cancer classifier with data split so 
that elliptical colour patches were present only in the benign images. 
They inserted colour patches onto images which did not already have 
them and used inpainting to automatically remove patches from im-
ages to assess the effect on predictions. They found that the classifier 
would partly base its benign predictions on the presence of the coloured 
patches, and that artificially inserting coloured patches into malignant 
images resulted in shortcut learning leading to a significant increase in 
misdiagnosis.

Zand et al. [54] conducted experiments to reduce the severity of sev-
eral types of artifacts in the ISIC-2017 dataset by cropping lesions into 
rectangles, which reduced the amount of artifacts present in each im-
age. However, although they report good accuracy results (0.8893), this 
work did not observe the effect of individual artifacts on classification. 
Cassidy et al. [10] trained a wide range of CNN architectures for bi-
nary and multi-class classification using the ISIC datasets and observed 
through the use of Grad-CAM heatmap visualisation that classifiers 
would frequently focus on artifacts such as air pockets, hair, immersion 
fluid, measurement overlays, and physical rulers. Such artifacts were 
shown to have negative effects on classification performance, most crit-
ically in cases where melanoma would be misclassified.

Early attempts to address the impact of DCA were conducted by 
[50]. They performed simple rectangular cropping to remove DCA and 
inpainting of hairs. However, this may result in the removal of lesion 
details where the lesion is not centred within the image, or if the lesion 
details naturally extend beyond the rectangular crop.

Pewton and Yap [38] observed the effects of DCA on the ISIC image 
datasets. They found that DCA that occupied a large percentage of the 
image influenced the classification of melanoma vs non-melanoma with 
a bias towards the melanoma class. DCA were annotated and dynamic 
masking and removal methods were proposed. The methods proposed 
were evaluated with a variety of deep learning architectures, with re-
sults showing that the predictive accuracy was comparable, however 
the network activations showed a large improvement in focus towards 
lesion regions when images containing DCA were passed through DCA 
removal methods.

Ramella [41] created a method to detect DCA regions in skin lesion 
images as a pre-processing step which would be performed prior to 
detection and removal of hair from the images. This was achieved by 
using the saliency [40,42] and proximity of the DCA to the image frame. 
Their method was developed as part of a larger workflow to improve 
hair detection and subsequent removal.

While the focus of this paper is on the appearance of artifacts, we 
note that there are other issues which could also limit the research in 
this field. The main challenges include the use of machine and deep 
learning algorithms and the use of mobile applications. We refer read-
ers with interest in these topics to recent review papers, such as [4] and 
[47] which focused on reviewing the use of machine learning and deep 
learning in skin lesion detection and classification. Additionally, we re-
fer to [27] and [28] who focused on the use of mobile applications in 
skin cancer recognition.

Fig. 2. Example images from the training set (clean) and the testing set (DCA).

3. Methods

This section describes the data curation processes used to introduce 
a DCA split balanced dataset, a proposed data augmentation method, 
i.e., introduction of realistic DCA, and the experimental settings used to 
evaluate the hypothesis.

3.1. DCA split balanced dataset

To further understand the capabilities of deep learning networks for 
DCA in binary classification (melanoma vs non-melanoma), and the 
effect of the removal methods, proposed by [38], on classification, a 
new balanced dataset is formed based on the publicly available dermo-
scopic datasets (comprising polarised, unpolarised, and a combination 
of both). Our proposed dataset consists of 10,250 skin lesions images, 
with a training set without DCA (clean images) and a testing set with 
DCA. Fig. 2 shows examples of images from both the training set (clean 
images) and the testing set (DCA images). This dataset will enable us to 
observe the performance of the deep learning algorithm on images with 
different distributions [53]. Additionally, the training set without DCA 
will enable us to superimpose synthetic DCA to study the differences 
between different DCA types. The testing set with DCA will be used to 
study the effect of DCA removal and inpainting algorithms (as proposed 
in [38]).

The baseline testing set has been created by including all DCA im-
ages from the ISIC balanced dataset proposed by [10] and separating 
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Fig. 3. Illustration of the t-SNE distribution for the curated balanced datasets: (a) Training set (train and val): clean datasets (without DCA) curated from ISIC and 
Fitzpatrick 17k datasets, a comparison between melanoma (mel) and others (oth); and (b) Testing set: datasets with DCA, curated from ISIC and Fitzpatrick 17k, 
a comparison of different sizes of DCA. In (a) green regions represent melanoma, and red regions represent ‘other’. In (b) green regions represent large DCA, red 
regions represent medium DCA, and blue regions represent small DCA.

Table 1

Summary of the DCA Split Balanced Dataset which contains a total of 10,250 
images. Mel - melanoma; Non-Mel - Non-melanoma.

Training set Testing set (DCA sizes)

Train Val Small Medium Large Other

Mel 2756 307 909 488 423 242
Non-Mel 2756 307 909 488 423 242

by DCA size categories (small, medium, large and others) into an indi-
vidual testing set. As there are more melanoma images containing DCA 
than non-melanoma, the non-melanoma category is padded with 1493 
images that had been excluded from the original ISIC balanced dataset 
[10]. The images used for padding are manually selected and measured 
using the DCA masking process proposed by [38]. The result of this pro-
cess produces balanced testing sets where all images in each category 
contain DCA.

With all DCA images extracted into testing sets, the training and val-
idation sets are unbalanced. These sets contain 1493 fewer melanoma 
images overall compared to non-melanoma images. In efforts to rebal-
ance the dataset, melanoma images from the Fitzpatrick 17k dataset 
[18] have been inspected to determine if they are dermatoscopic images 
and if they contain DCA. Of the 16,529 images contained within the 
Fitzpatrick 17k dataset, 490 images are annotated as being melanoma 
by the dataset curator. Of these 490 melanoma images, we annotated 
220 of these images to be free from DCA and usable in the DCA Split 
Balanced Dataset.

Following the incorporation of the Fitzpatrick 17k dataset into the 
training/validation sets, the sets required rebalancing. To rebalance the 
dataset, all of the melanoma images are shuffled to ensure a good dis-
tribution and then split using the holdout method. The training set 
contains 90% of the melanoma images, whilst the validation set con-
tains the further 10%. As per the melanoma images, the non-melanoma 
images are shuffled. As there are many more non-melanoma images 
than melanoma - the extra non-melanoma images are removed to leave 
an equal number of images per class. The non-melanoma images are 
then split in the same way as the melanoma images.

Table 1 shows the final distribution of balanced training, valida-
tion and testing sets, with 5512, 614 and 4124 images, respectively. 
Although more images within the training sets would be desirable, there 
are a limited number of publicly available melanoma datasets contain-
ing DCA-free images.

Fig. 3 illustrates the distribution of curated datasets from ISIC and 
Fitzpatrick 17k, i.e., the balanced train/val datasets without DCA, and 
the distribution of test datasets with different sizes of DCA.

3.2. Recreating a realistic DCA

Our experiments utilise two types of synthetic DCA: (1) binary DCA 
as proposed by [38], and (2) a proposed more realistic DCA. Fig. 4
illustrates the processes to create a realistic DCA.

Building on the DCA masks extraction process by [38], the mask 
is applied to an image which is then processed using a Gaussian blur. 
Once a blurred image is generated, the original centre point and ra-
dius is extracted from the original DCA mask. The radius of the circle 
is reduced to determine the gradient of the transitional area between 
the image and DCA. Using this modified radius, a new mask is gener-
ated. The newly generated mask is used to determine the area of a new 
image which should contain the data from the blurred image, and the 
remaining area to contain data from the original unblurred image. The 
final stage involves the merging of the Gaussian blurred image and the 
reduced mask.

Fig. 5 illustrates the t-SNE plot of the datasets. It is noted that with 
superimposed of augmented binary DCA and realistic DCA, the distribu-
tion of the data changes, which demonstrate the importance to further 
study the effects of DCA in skin cancer analysis. When visually compar-
ing Fig. 5(b) to Fig. 5(c), the two distributions are more separable when 
we augmented DCA on mel, this a result of mel tending to be darker in 
colour. However, this observation is inconclusive as it is limited by the 
datasets used in the experiment.

3.3. Classification

To evaluate the effect of DCA on binary classification, Inception-
ResNetV2 [51] was selected for our experiments, as this network was 
the best overall performing network in our prior work on DCA [38]. 
Our intention is not to produce the best classification algorithm, but to 
investigate on the new strategy of our proposed dataset and training ap-
proaches. The three models are trained by using three types of training 
and validation sets: (1) clean (original images without DCA), (2) binary 
DCA (original images superimposed with binary DCA), and (3) realistic 
DCA (original images superimposed with realistic DCA).

The models were trained with no pre-trained weights to a maximum 
of 200 epochs, and early stopping after 10 epochs if no validation accu-
racy increase is achieved. The models were trained using a batch size of 
64 with stochastic gradient descent as the optimiser. The model exhibit-
ing the highest validation accuracy was saved. No model fine tuning 
was completed to ensure fairness and equality between the three mod-
els trained. The hardware configuration used to train all of the networks 
was an AMD Ryzen 7 3700X 8-core 16-thread 4.4 GHz CPU with 16 GB 
DDR4 3000 MHz Dual-Channel RAM and an NVIDIA Geforce RTX 3090 
FE 24 GB GDDR6X GPU. The software configuration used was Python 
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Fig. 4. Illustration of our proposed realistic DCA creation process. First, the input image (a) and input mask (b) are combined to generate a binary mask image (c). 
Then, the binary mask is passed through a Gaussian blur (d). Finally, the input image and the Gaussian blur image are combined using a reduced mask (e) as a 
filter. Any pixels in the filter that is contained within the circle are replaced with the original input image, and pixels outside are replaced with the Gaussian blurred 
image equivalent. The final output is the combined output (f).

Fig. 5. The effects of DCA augmentation on the datasets used in our experiments using t-SNE plot: (a) An illustration of clean (train/val datasets) vs DCA augmented 
train/val datasets (binary DCA and realistic DCA); (b) An illustration of augmented DCA on melanoma (mel) and clean others (oth) distributions; and (c) An 
illustration of augmented DCA on oth and clean mel. In (a) green regions represent clean (non-DCA), red regions represent binary DCA, and blue regions represent 
realistic DCA. In (b) green regions represent binary DCA for melanoma, and red regions represent clean ‘other’ (non-DCA). In (c) green regions represent binary DCA 
‘other’, and red represents melanoma clean (non-DCA).

Table 2

Trained model metrics for each training set. Acc - accuracy, AUC - Area Under 
the Curve.

Training dataset Best epoch Val Acc Val AUC

Clean 29 0.82 0.88
Binary DCA 15 0.81 0.88
Realistic DCA 30 0.81 0.89

3.9.7, TensorFlow GPU 2.9.0-dev20220203, CUDA 11.2.1, and cuDNN 
8.1 running on Windows 10.

Table 2 shows the overall model accuracy achieved with the valida-
tion set across each of the models trained.

3.4. Experiments

To provide an in-depth understanding of the effect of DCA, we 
conduct three experiments. In Experiment I, we test the clean model 
on the testing set with DCA, the testing set with DCA inpainted by 
Navier-Stokes (NS), and the testing set with DCA inpainted by Telea. 
Experiment II studies the effect of superimposed synthetic DCA (binary 
DCA and realistic DCA) training models on the testing set, i.e., the bi-
nary DCA model and realistic DCA model are tested on the testing set. 
Due to the varied size of DCA, we report the detailed results according 
to each category. Experiment III investigates the performance of Binary 
and Realistic DCA models on the testing set with DCA removal and in-
painted by NS and Telea.

3.5. Performance metrics

For evaluation on the binary classification task, common perfor-
mance metrics including Accuracy (Acc), True Positive Rate (TPR, also 
known as sensitivity), True Negative Rate (TNR, also known as speci-
ficity), Precision, F1-Score, and Area under the Receiver Operating 
Curve (AUC) are used. To further elaborate on the differences between 
the network performance of the different models, Grad-CAM [46] is 
used to extract the network activation gradients from the last con-
volutional layer of each network. The gradients extracted produce a 
heatmap to show which parts of an image the network focuses on to 
determine the classification result. For our experiments, a class im-
plementation of Grad-CAM created by [44] has been used. Within the 
resulting heatmaps, the bright yellow regions are areas used heavily by 
the network for prediction.

We propose a new quantitative method by introducing intensity 
measures for prediction activation heatmaps. To quantify the area tar-
geted by the heatmaps produced for the Grad-CAM experiments, the 
heatmaps for all test sets across all networks are extracted from the test 
predictions. The corresponding mask for each of the images is used to 
segregate the two areas in the image - the external section of the image 
is the DCA region, and the internal section of the image is the area in 
which the lesion resides.

As the areas of the image that are focused on by the network are 
brighter than those that are not - the brightness values make it pos-
sible to measure the difference that each method has made on the 
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Fig. 6. Illustration of different superimposed DCA sizes on skin lesion images. 
The first row shows the original images from the training set. The second row 
shows the superimposed binary DCA, and the third row shows the superimposed 
realistic DCA.

corresponding heatmaps. Using the internal and external areas of the 
heatmap image, the root mean square (RMS) contrast and the average 
brightness value is calculated for each heatmap. This process was com-
pleted using the ImageStat method which is part of the Pillow Python 
library [30]. RMS contrast is not dependent on the spatial distribution 
or the angular frequency content of contrast in the image, and is de-
fined as the standard deviation of pixel intensities [37]. The relevant 
mathematical expression for RMS contrast is as follows:

𝑅𝑀𝑆 =

√√√√√ 1
𝑀𝑁

𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

(𝐼𝑖𝑗 − 𝐼)2 (1)

where intensities 𝐼𝑖𝑗 are the 𝑖-th 𝑗-th element of the two-dimensional 
image of size 𝑀 by 𝑁 . 𝐼 is the average intensity of all pixel values in 
the image. The image 𝐼 is assumed to have pixel intensities normalized 
in the range of [0, 1].

4. Results

This section presents the results of our proposed synthetic DCA and 
experiment I-III.

4.1. Synthetic DCA

Fig. 6 shows an example of superimposed the binary DCA and real-
istic DCA on a clean image from training set.

As can be seen in Fig. 6, the proposed realistic DCA method produces 
visually effective results for each of the DCA sizes. Fig. 7 presents a close 
up visual patch comparison (35x35 px) of a true DCA (real DCA from 
the testing set), a binary DCA superimposed on an image from training 
set, and a realistic DCA superimposed on a similar image from training 
set. It can be clearly seen that the realistic DCA has a smooth transition 
into the DCA region from the image, much like the true DCA image 
whereas the binary DCA forms a distinct solid boundary between lesion 
and DCA region.

4.2. Experiment I: the effect of DCA on skin lesions classification

Table 3 shows the evaluation metrics for the clean model (with-
out DCA) on the testing set (with DCA). Due to the composition of the 
training set, it is expected that the results will be mostly predicted as 

Table 3

The performance of the clean model on the test set (Original); test set with 
DCA inpainted by Navier-Stokes (NS); and test set with DCA inpainted by Telea 
(Telea).

Test set Metrics

Acc TPR TNR Precision F1 AUC

Original 0.57 0.90 0.23 0.54 0.68 0.61
NS 0.59 0.86 0.31 0.56 0.68 0.64
Telea 0.59 0.84 0.34 0.56 0.67 0.65

Table 4

The effect of DCA according to DCA size on the performance of the clean model 
on the test set (Original); test set with DCA inpainted by Navier-Stokes (NS); 
and test set with DCA inpainted by Telea (Telea).

Test set - DCA size Metrics

Acc TPR TNR Precision F1 AUC

Original - small 0.59 0.86 0.32 0.56 0.68 0.63
NS - small 0.58 0.87 0.30 0.55 0.67 0.62
Telea - small 0.58 0.86 0.30 0.55 0.67 0.62

Original - medium 0.57 0.91 0.24 0.54 0.68 0.64
NS - medium 0.58 0.90 0.26 0.55 0.68 0.65
Telea - medium 0.59 0.88 0.30 0.56 0.68 0.66

Original - large 0.51 0.99 0.01 0.50 0.67 0.58
NS - large 0.62 0.81 0.43 0.59 0.68 0.67
Telea - large 0.61 0.72 0.50 0.59 0.65 0.68

Original - other 0.58 0.90 0.26 0.55 0.67 0.65
NS - other 0.57 0.87 0.27 0.54 0.67 0.65
Telea - other 0.57 0.87 0.27 0.54 0.67 0.64

melanoma, with high sensitivity (TPR) but low specificity (TNR), as il-
lustrated in the first row of Table 3. This result is aligned with previous 
research which indicates that superficial spreading melanoma are dark 
brown or black in appearance [43]. After removal of DCA by inpainted 
with Navier-Stokes and Telea, we observed marginal improvement to 
TNR, Precision, F1-Score and AUC.

To further support the efficiency of DCA removal methods on the 
testing set, the performance of all test sets with different DCA sizes are 
compared. Table 4 shows the performance of the clean model evaluated 
on the test set.

The results are comparable across the ‘small’ and ‘other’ DCA sizes, 
however the medium and large DCA sizes show a more notable increase 
in accuracy, TNR and precision. The largest accuracy increase is seen in 
the large DCA test sets where the NS inpainting method achieves 11% 
greater accuracy compared to the baseline test set containing original 
DCA images. Another observation is that the Original large DCA has 
0.01 TNR, which means almost all the large DCA were classified as 
melanoma. With Telea inpainting, the TNR improved 49%, with 0.50 
TNR.

4.3. Experiment II: the effect of superimposed DCA

When comparing the overall accuracy performance of the original 
test set across the 3 networks in Table 5, an accuracy increase of 3% is 
seen when the images are predicted using the model trained with binary 
DCA, and an increase of 4% when predicted with the model trained with 
realistic DCA. The performances across the original test set also shows 
a significant increase in TNR on the realistic DCA model - meaning that 
there is less of a blanket classification of melanoma across the network. 
Due to the variance of predictions made, this model also suffers from 
a reduction in TPR when compared to the predictions made with the 
cleanly trained model.

To further investigate the performance differences across the differ-
ent models and test sets, metrics were then generated for all test sets 
across all DCA sizes. Table 6 shows the metrics that were generated 



Computer Methods and Programs in Biomedicine 244 (2024) 107986

7

S.W. Pewton, B. Cassidy, C. Kendrick et al.

Fig. 7. A visual comparison (close-up 35 × 35 pixels) of true DCA and sythnetic DCAs. (Left) True DCA from the test set; (Middle) Binary DCA superimposed onto 
an image in the training set as proposed by [38]; (Right) Our proposed realistic DCA on an image in the training set. Note that visually, our proposed realistic DCA 
closely resembles the true DCA.

Table 5

The performance of all trained networks (clean model, superimposed binary 
DCA model and superimposed realistic DCA model) on the test set.

Model Metrics

Acc TPR TNR Precision F1 AUC

Clean 0.57 0.90 0.23 0.54 0.68 0.61
Binary DCA 0.60 0.91 0.29 0.56 0.70 0.66

Realistic DCA 0.61 0.73 0.49 0.59 0.65 0.66

Table 6

The performance of all trained networks (clean model, superimposed binary 
DCA model and superimposed realistic DCA model) on the test set with different 
DCA sizes.

DCA size Model Metrics

Acc TPR TNR Precision F1 AUC

Small Clean 0.59 0.86 0.32 0.56 0.68 0.63
Binary DCA 0.61 0.90 0.33 0.57 0.70 0.67

Realistic DCA 0.60 0.85 0.35 0.57 0.68 0.65

Medium Clean 0.57 0.91 0.24 0.54 0.68 0.64
Binary DCA 0.63 0.94 0.31 0.58 0.72 0.68
Realistic DCA 0.64 0.75 0.53 0.62 0.68 0.70

Large Clean 0.51 0.99 0.01 0.50 0.67 0.58
Binary DCA 0.55 0.96 0.13 0.53 0.68 0.62
Realistic DCA 0.60 0.39 0.80 0.66 0.50 0.63

Other Clean 0.58 0.90 0.26 0.55 0.67 0.65
Binary DCA 0.60 0.83 0.36 0.57 0.67 0.67

Realistic DCA 0.58 0.81 0.35 0.56 0.66 0.65

for the original DCA sets across each of the models and Fig. 8 shows 
a line graph comparing the model accuracy performance between the 
different DCA sizes. Full model performance metrics generated across 
the three networks are available on our GitHub repository: https://
github .com /mmu -dermatology -research /dca _artifact _removal.

As can be seen in Table 6 and Fig. 8, the overall accuracy has in-
creased for each of the test sets when the network is trained using both 
binary and realistic DCA. The largest accuracy increase can be seen for 
the large DCA test sets where the network trained with realistic DCA 
shows an increase in accuracy of 9%. Significant increases can also be 
seen for TNR on medium and large augmented DCA models indicating 
that more non-melanoma images were correctly classified.

Fig. 8 shows that network accuracy performance was equal to or 
improved from the baseline DCA set tested on the cleanly trained net-
work. The binary DCA model shows the best overall accuracy for both 
the small and ‘other’ sized DCA test sets, the realistic DCA showed the 
best overall accuracy for the medium sized test set, and the Telea in-
painted images on the clean model showed the best overall accuracy 
for the large test set (Realistic DCA). Although both of the results for 
the large testing set from the models trained on synthetic DCA images 
improves from the baseline performance - the models still appear to be 
hindered due to the large DCA size.

Fig. 8. Model accuracy for small, medium, large, and other DCA sizes.

Fig. 9. Illustration of Grad-CAM results on a small DCA image for clean, binary, 
and realistic DCA models.

Fig. 9 shows the output results of a small DCA image across each of 
the three networks. The activations on the heatmap generated from the 
clean model focus largely on the area of the lesion, however, the top-left 
corner also exhibits significant focus. When comparing the results from 
the cleanly trained model with the results generated from the binary 
and realistic DCA trained models, the corner region becomes less of an 
area of interest when DCA is used for training. Although improvement 
can be seen in the activation area where the lesion is located, activations 

https://github.com/mmu-dermatology-research/dca_artifact_removal
https://github.com/mmu-dermatology-research/dca_artifact_removal
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Fig. 10. Illustration of Grad-CAM results on a medium DCA image for clean, 
binary, and realistic DCA models.

Fig. 11. Illustration of Grad-CAM results on a large DCA image for clean, binary, 
and realistic DCA models.

are still partially present on the dark regions. The network showing the 
best activations for small DCA images is the realistic DCA model.

Fig. 10 shows the output results of a medium DCA image across each 
of the three networks. The network activations on the cleanly trained 
model mostly focus on the upper corners of the image for medium sized 
DCA. When compared to the results from the binary and realistic DCA 
models, we observe that the network is able to effectively ignore the 
majority of the DCA region. The activations for the binary and realistic 
DCA models are similar, though the binary DCA activations appear to 
encapsulate the lesion more finely and ignore more of the DCA region 
than the model trained on realistic DCA. Both the binary and realistic 
DCA model results show a large improvement in the focus of activations 
for medium DCA images.

Fig. 11 shows similar results to Fig. 10 for large DCA. The model 
trained on a clean dataset almost entirely focuses on the DCA region, 
while the models trained on binary DCA and realistic DCA show a large 
improvement on the focus towards the activations. The results for both 
DCA trained models are both similar, with the binary DCA image show-

Fig. 12. Illustration of Grad-CAM results on a DCA image from the ‘other’ cate-
gory for clean, binary, and realistic DCA models.

Table 7

The performance of the best TNR from the inpainted method and the superim-
posed method on the test set with different DCA sizes.

DCA size Method Metrics

Acc TPR TNR Precision F1 AUC

Small Inpainted 0.58 0.87 0.30 0.55 0.67 0.62
Superimposed 0.60 0.85 0.35 0.57 0.68 0.65

Medium Inpainted 0.59 0.88 0.30 0.56 0.68 0.66
Superimposed 0.64 0.75 0.53 0.62 0.68 0.70

Large Inpainted 0.61 0.72 0.50 0.59 0.65 0.68

Superimposed 0.60 0.39 0.80 0.66 0.50 0.63

Other Inpainted 0.57 0.87 0.27 0.54 0.67 0.65
Superimposed 0.60 0.83 0.36 0.57 0.67 0.67

ing a smaller surface area of activations as opposed to the realistic DCA 
model. Both DCA models show significant improvements on large DCA 
images when compared to the results from previous experiments using 
small and medium DCA.

Fig. 12 shows the output results for a ‘other’ DCA image across each 
of the three networks. Strong activations for both the model trained on 
the clean dataset and the model trained on realistic DCA are clearly 
visible. The heatmap generated from the model trained on binary DCA 
images completely loses focus on the lesion area. Between the results 
from the clean model and the realistic DCA model, the activations in 
the clean model are more strongly focused on the area of interest.

4.4. Experiment III: DCA removal testing set vs superimposed synthetic 
DCA training set

To understand the differences in model performance between the 
DCA removal processes and superimposed synthetic DCA in the train-
ing process, it is necessary to cross compare the results produced across 
each of the models. From Experiment I and II, we observed that both 
approaches resulted in improved accuracy, TNR and precision. There-
fore, we compare their performance on different DCA sizes based on 
the best TNR from each approach. Table 7 compares the results. Over-
all, the superimposed synthetic DCA training model performed the best 
in accuracy, TNR, and precision. However, the method using inpainted 
achieved a superior result in TPR.

Fig. 13 and Fig. 14 show the different results generated for the 
inpainted DCA images using the Navier-Stokes and Telea inpainting 
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Fig. 13. TPR plots for result metrics generated across each trained network.

Fig. 14. TNR plots for result metrics generated across each trained network.

methods against the results generated for DCA images tested within 
the models trained on superimposed synthetic DCA images.

It can be seen that the results generated for the inpainted test sets 
are comparable to the results generated on the DCA test sets on mod-
els trained with synthetic DCA. Both methods produce similar accuracy 
improvements overall. In terms of TPR, the binary baseline model out-
performs the other models for small and medium DCA sizes, while the 
clean baseline model performs best for large and other models. The re-
alistic DCA model shows the largest decrease in TPR, however it also 
shows the largest increase in TNR. This suggests that the model is able 
to identify more features within non-melanoma images. The clean and 
binary models show the most notable drops in TNR for large DCA, both 
with < 0.20 TNR, a difference of > 0.60 compared to the best perform-
ing model (realistic DCA).

To further confirm and compare the differences between the meth-
ods, Fig. 15 shows the output of Grad-CAM heatmap activations across 
the different networks. Each column in this figure shows a different 
method used for evaluation, and each pair of rows in the figure repre-
sent the testing set and the activations shown with Grad-CAM.

Several observations are noted in Fig. 15. Without any bias, we se-
lected the images randomly from each DCA size. Firstly, we can see 
that when comparing the performance on small DCA, every method im-
proved the focus of the network and expanded the focus from the upper 
left corner to the rest of the image. It is difficult to determine the most 
efficient method from the results generated for this particular example 
of small DCA as none of the results show a perfect focus area. When 
analysing the performance on medium DCA, it can be seen that all eval-
uation methods showed a large improvement on the original network 
activations. For each of the methods the focus is taken away from the 
DCA and distributed across the image. The method showing the best fit-

Fig. 15. Grad-CAM heatmap results to visually compare activations of different 
models on the test set with small (S-DCA), medium (M-DCA), large (L-DCA), and 
other (O-DCA) DCA sizes. Clean Model (CM) is the model (clean images) used 
for classification on the test set (with DCA); Navier-Stokes (NS) is the model 
used for classification on the test set inpainted by Navier-Stokes; Telea (Tel) is 
the model used for classification on the test set inpainted by Telea; Binary (Bin) 
is the model (clean images superimposed with synthetic binary DCAs) used for 
classification on the test set (with DCA); and Realistic (Real) is the model (clean 
images superimposed with synthetic realistic DCAs) used for classification on 
the test set (with DCA).

ting activations to what are expected can be seen in the results from the 
model trained on realistic DCA.

When comparing the activations for the large DCA test sets, a sce-
nario similar to the medium DCA results is observed where the activa-
tions are mostly focused on the DCA region on the baseline results with 
the clean model, whereas most other methods manage to disrupt this 
focus and focus more on the areas of interest. The method displaying 
the best overall focus is the model trained on binary DCA, where the ac-
tivations focus almost entirely on the central region of the image. The 
results for the DCA consuming less than 1% of the image do not dis-
play much variability compared to the baseline generated on the clean 
model with original data. This is due to the minimal area that the DCA 
occupies.

4.5. DCA removal combined with synthetic training

When evaluating the networks across each of the testing sets, the 
images inpainted with both Navier-Stokes and Telea methods were also 
used to evaluate both of the models trained on synthetic DCA images. 
Table 8 shows the results generated from evaluating the Binary DCA 
and Realistic DCA with images inpainted from both methods.
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Table 8

Performance evaluation of the superimposed synthetic DCA training models on DCA inpainted 
testing sets. It is noted that the superimposed binary DCA model performed better in TPR, but 
the superimposed realistic DCA model performed better in TNR on the original test set than the 
inpainted images.

Model used Test set Metrics

Acc TPR TNR Precision F1 AUC

Binary DCA Original - small 0.61 0.90 0.33 0.57 0.70 0.67
NS - small 0.61 0.89 0.33 0.57 0.70 0.67
Telea - small 0.61 0.89 0.34 0.57 0.70 0.67

Original - medium 0.63 0.94 0.31 0.58 0.72 0.68
NS - medium 0.63 0.91 0.36 0.59 0.71 0.70
Telea - medium 0.64 0.89 0.40 0.60 0.71 0.71

Original - large 0.55 0.96 0.13 0.53 0.68 0.62
NS - large 0.65 0.73 0.56 0.62 0.67 0.69
Telea - large 0.64 0.65 0.62 0.64 0.64 0.71

Original - oth 0.60 0.83 0.36 0.57 0.67 0.67
NS - oth 0.59 0.81 0.38 0.56 0.67 0.66
Telea - oth 0.59 0.81 0.38 0.56 0.67 0.66

Realistic DCA Original - small 0.60 0.85 0.35 0.57 0.68 0.65
NS - small 0.60 0.85 0.34 0.56 0.68 0.65
Telea - small 0.60 0.85 0.35 0.57 0.68 0.65

Original - medium 0.64 0.75 0.53 0.62 0.68 0.70
NS - medium 0.63 0.87 0.39 0.59 0.70 0.67
Telea - medium 0.63 0.84 0.43 0.60 0.70 0.68

Original - large 0.60 0.39 0.80 0.66 0.49 0.63
NS - large 0.59 0.60 0.58 0.59 0.60 0.64
Telea - large 0.60 0.49 0.70 0.62 0.55 0.64

Original - oth 0.58 0.81 0.35 0.55 0.66 0.65
NS - oth 0.57 0.79 0.36 0.55 0.65 0.64
Telea - oth 0.57 0.79 0.36 0.55 0.65 0.64

As can be seen in Table 8, the accuracy for superimposed binary DCA 
increases but the accuracy for superimposed realistic DCA decreases 
when comparing original test sets with inpainted test sets. For medium 
DCA test sets, the realistic DCA model achieved the best result on orig-
inal test set. In contrast, the binary model achieved better results when 
evaluated using inpainted images. The largest discrepancy is exhibited 
in the large DCA test set, where the binary DCA model achieved the best 
result in TPR of 0.96, but the poorest result in TNR of 0.13. When eval-
uating with inpainted images, a large increase in TNR for binary DCA 
model can be seen.

To determine the significance of these results, we calculate the p-
value for the F1-scores using analysis of variances (ANOVA) single 
factor statistical analysis with an alpha value of 0.05. In this analy-
sis, we compared the binary DCA with the realistic DCA F1-scores. The 
analysis shows that 𝑝 = 0.0406, indicating that the differences between 
the F1-score values are significant.

Fig. 16 shows the different heatmaps generated for an image con-
taining a medium DCA and Fig. 17 shows the different heatmaps gener-
ated for an image containing a large DCA. The same image is inpainted 
and examined again in each network to determine the differences in ac-
tivations. The activations for the ‘small’ and ‘other’ DCA sizes do not 
show significant differences. To aid the comparison between the base 
test set and the inpainted test sets, the model trained on binary DCA us-
ing the baseline test set is used as it produces the best TPR across each 
of the DCA sizes present as seen in Table 8.

It can be seen that the activations for both inpainting methods pro-
duce similar results for each of the DCA images sizes. For the medium 
Binary Base, Clean, and Binary NS/Telea images, the activations are 
generalised around both lesion and DCA regions, while the medium Re-
alistic activations show significantly more concentrated focus towards 
the lesion region. For large Binary Base, Clean, and Binary NS/Telea, 
the activations are generally more focused on the lesion regions, with 
the large Realistic images showing a much more generalised spread of 
activations across lesion and DCA. Whilst the overall performance of 
the networks appears to improve when inpainted images are evaluated 

Fig. 16. Grad-CAM results for medium inpainted images on networks trained 
with synthetic DCA. Tel - Telea.

on a network trained by images containing synthetic DCA, the class ac-
tivation maps show that the area in which the network is focused is not 
as targeted on the lesion regions as the intended test sets.

4.6. Heatmap contrast and brightness intensity measures

Table 9 shows a breakdown of heatmap contrast and brightness in-
tensity measures for all images for each DCA size and all models. We 
observe from the heatmap intensity results that almost all models show 
a clear bias towards focussing on internal lesion regions, with the ex-
ception of the clean original small, medium, and large models which 
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Fig. 17. Grad-CAM results for large inpainted images on networks trained with 
synthetic DCA. Tel - Telea.

show a clear bias of network focus towards the external DCA regions 
(shown in the negative mean difference values). The clean original 
small model shows a slight bias towards external DCA regions (RMS 
mean diff = -2.50, avg. brightness mean diff = -0.53), while the clean 
original medium model (RMS mean diff = -40.28, avg. brightness mean 
diff = -40.57) and the clean original large model (RMS mean diff = -
44.87, avg. brightness mean diff = -48.44) show large biases towards 
external DCA regions (> -40).

The model with the highest RMS contrast and highest average 
brightness intensity bias towards internal (lesion) regions is the binary 
DCA original large model (RMS mean = 136.85, avg brightness mean 
= 135.22). These results correlate with the TPR for this model (Ta-
ble 8) which has the highest TPR (0.96). However, the correlation is not 
present for accuracy, TNR, precision, and AUC, which were shown to 
be the lowest reported metrics for this model. This is likely to be a con-
sequence of the binary DCA original large model comprising of mostly 
melanoma examples, which makes TPR occurrences more prevalent.

The model with the highest RMS mean and highest average bright-
ness mean for external DCA regions is the clean original large model 
(RMS mean = 148.46, avg brightness mean = 146.95). These results 
correlate with the TPR (0.39) and F1-score (0.49) results for this model 
(Table 8), which shows the lowest results for these metrics, indicating 
that the model was focussed more on external DCA regions.

The model with the highest RMS mean difference and highest aver-
age brightness mean difference is the clean Telea ‘other’ model (RMS 
mean diff = 26.02, avg brightness mean diff = 27.23). The intensity 
metrics for this model indicate that it showed the highest shift in net-
work focus towards internal (lesion) features. However, this shift alone 
was not sufficient enough to provide it with the highest overall scores 
in accuracy, TPR, TNR, precision, F1-score, and AUC.

4.7. Test results for external test sets

In this section we explore the ability of the clean, binary, and re-
alistic models to detect other skin diseases and two external non-skin 
lesion datasets. These experiments can help to determine if these mod-
els are also affected by the presence of DCA. Fig. 18 demonstrates the 
output results of pyogenic granuloma and sebaceous hyperplasia using 
the three networks. For the clean model, we observe that the network 
activations focus mostly on the DCA regions. When compared to the 
results from the binary and realistic DCA models, we observe that the 
networks are able to effectively ignore the majority of the DCA regions.

For additional experiments, we used the test sets from the endo-
scopic SLAM dataset (EndoSLAM) [36], and the diabetic retinopathy 
dataset [14]. Both of these datasets exhibit naturally occurring DCA, 
which makes them ideal candidates for further investigation. Fig. 19
shows the output results of the other two external datasets on differ-
ent domains using three networks. The network activations on the clean 
trained model indicate that most focus is directed to DCA regions. When 
compared to the results from the binary and realistic DCA models, we 
observe that the findings are aligned with the results for skin diseases, 
as presented in the previous experiment.

5. Discussion

Between Fig. 9, Fig. 10, Fig. 11, and Fig. 12 the Grad-CAM heatmap 
activations show relatively similar results across each of the DCA sizes 
fed into the network. For the small, medium and large DCA, improve-
ments in the focus of the activations can be seen for both of the models 
trained on binary and realistic DCA. Both models exhibit similar re-
sults. Results for DCA covering less than 1% of the image show similar 
or worse activations on models trained with DCA images when compar-
ing to the clean model.

We observe that the binary DCA model achieved better TPR than the 
realistic DCA model in our experiments, but it did not outperform the 
clean model. A possible reason for this could be that the gradient in-
herent in the smooth transitions between skin and DCA may represent 
an introduction of further complex features that creates an additional 
learning challenge to the network. However, with the use of super-
imposed realistic DCA, a notable improvement in TNR and precision 
indicate the network was able to learn to handle the DCA and was ca-
pable of reducing the biases of classifying DCA as melanoma.

Other studies, such as those by [32], demonstrated that removal 
of some surrounding features via cropping, when used in combination 
with other techniques such as ensembling, does not necessarily result 
in a deterioration in model performance. We therefore suggest that 
removal of some surrounding features, either by cropping, or by the 
introduction of DCA, may be beneficial to model performance. How-
ever, this is likely to be dependent on how much of the surrounding 
features are removed or obfuscated by DCA, and how much of the le-
sion is centred within the image.

During our analysis of the DCA images, we observed that there may 
be some edge cases where DCA occluded outer sections of the lesion. 
For future work, it may be useful to identify all such cases and analyse 
the possible effect they may have on classification tasks.

During our analysis of the heatmaps for the skin lesion images, we 
observed that many of the heatmaps showed that networks would focus 
on DCA regions. We hypothesised that the DCA regions may exhibit arti-
facts that were not visible to the human eye and were causing networks 
to focus on these areas. For example, we speculated that there may be 
JPG artifacts present within the DCA areas that introduced additional 
complex features into the DCA regions, or that the DCA region did not 
comprise of only black pixels. To test for this, we performed an addi-
tional analysis on images taken from the clean large DCA model. Images 
were selected from the test results of this model as it exhibited a heavy 
bias towards classifying almost all test images as melanoma. We ad-
justed the contrast of the original lesion images which naturally exhibit 
DCA. This process revealed that many lesion images with DCA exhibited 
complex pixel patterns that radiate outwards from the border regions 
between lesion area and DCA area that would not ordinarily be visible 
to the human eye. Due to the uniformity of these pixel patterns around 
the lesion / DCA borders, we speculate that these patterns are the result 
of light leakage from the dermoscope. Many dermoscope models are 
equipped with a built-in array of LED lights that surround the perime-
ter of the lens. Fig. 20 shows test images together with corresponding 
increased contrast images and Grad-CAM heatmap activation images 
from the clean large DCA model. The extent to which the light leak-
age is present can vary between examples. This may be due to the use 
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Table 9

Contrast and brightness intensity measures according to DCA size. RMS - root mean square; mean difference = 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑚𝑒𝑎𝑛 − 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑚𝑒𝑎𝑛

(highest value shows a higher ratio of activations in the target area; positive for lesion area and negative for DCA area); Std - standard deviation.

Model Used Test Set RMS Avg. Brightness

Internal External Internal External

Mean ⇑ Std ⇓ Mean ⇓ Std ⇓ Diff (Mean) Mean ⇑ Std ⇓ Mean ⇓ Std ⇓ Diff (Mean)

Clean Original - small 111.10 22.85 113.60 23.10 -2.50 107.43 23.21 107.96 23.57 -0.53
NS - small 125.07 14.22 107.11 27.06 17.96 121.25 15.60 102.14 27.51 19.11
Telea - small 125.12 14.13 107.05 27.18 18.07 121.28 15.51 102.12 27.64 19.16

Original - medium 89.82 14.24 130.10 7.89 -40.28 85.04 14.81 125.61 9.00 -40.57
NS - medium 123.69 15.42 115.37 19.44 8.32 120.35 16.57 110.86 20.19 9.49
Telea - medium 125.10 14.97 115.06 19.94 10.04 121.84 16.15 110.58 20.70 11.26

Original - large 103.59 10.07 148.46 6.89 -44.87 98.51 10.65 146.95 7.82 -48.44
NS - large 132.14 17.52 115.95 17.23 16.19 130.03 18.69 111.67 18.07 18.36

Telea - large 132.26 17.18 116.78 17.69 15.48 130.14 18.30 112.53 18.62 17.61

Original - oth 124.23 14.34 99.18 28.46 25.05 120.18 15.53 93.93 28.67 26.25
NS - oth 124.84 14.31 98.88 28.18 25.96 120.82 15.57 93.64 28.36 27.18
Telea - oth 124.81 14.30 98.79 28.19 26.02 120.78 15.56 93.55 28.39 27.23

Binary DCA Original - small 132.79 11.00 111.27 23.86 21.52 129.88 11.93 106.24 24.92 23.64

NS - small 132.40 10.84 112.95 24.74 19.45 129.43 11.71 108.13 25.93 21.30
Telea - small 132.23 10.83 113.14 25.02 19.09 129.23 11.69 108.40 26.25 20.83

Original - medium 135.98 10.67 111.41 13.70 24.57 133.84 11.52 106.79 14.07 27.05

NS - medium 134.52 11.01 117.09 16.56 17.43 132.20 11.86 112.85 17.34 19.35
Telea - medium 134.30 10.88 118.40 17.54 15.90 131.94 11.73 114.27 18.50 17.67

Original - large 136.85 12.71 114.98 14.08 21.87 135.22 13.46 110.93 14.64 24.29

NS - large 135.34 15.42 120.65 17.64 14.69 133.53 16.32 116.98 18.46 16.55
Telea - large 133.78 16.08 123.18 18.69 10.60 131.85 17.06 119.70 19.70 12.15

Original - oth 130.74 10.41 109.04 32.06 21.70 127.27 11.03 104.42 33.83 22.85
NS - oth 130.82 10.89 109.06 32.16 21.76 127.37 11.52 104.46 33.95 22.91

Telea - oth 130.81 10.97 109.06 32.23 21.75 127.34 11.61 104.47 34.02 22.87

Realistic DCA Original - small 130.83 11.24 111.81 24.62 19.02 127.66 12.28 106.73 25.38 20.93

NS - small 130.17 11.16 112.31 25.38 17.86 126.93 12.14 107.47 26.28 19.46
Telea - small 130.23 11.11 112.20 25.63 18.03 126.98 12.10 107.35 26.55 19.63

Original - medium 130.95 12.29 118.04 16.91 12.91 128.32 13.26 113.74 17.61 14.58
NS - medium 131.61 12.57 118.56 16.27 13.05 129.19 13.46 114.12 16.90 15.07
Telea - medium 132.58 11.92 118.89 16.91 13.69 130.17 12.81 114.48 17.64 15.69

Original - large 130.29 17.74 123.03 14.72 7.26 128.26 18.83 119.59 15.54 8.67
NS - large 136.25 15.52 118.74 13.16 17.51 134.54 16.54 114.66 15.78 19.88

Telea - large 135.18 15.53 120.55 16.21 14.63 133.31 16.59 116.68 17.06 16.63

Original - oth 129.19 10.81 108.41 27.92 20.78 125.67 11.51 103.62 29.27 22.05
NS - oth 129.42 11.50 108.20 27.89 21.22 125.90 12.23 103.41 29.25 22.49

Telea - oth 129.47 11.53 108.34 27.97 21.13 125.95 12.28 103.56 29.35 22.39

Fig. 18. Illustration of Grad-CAM results on other skin diseases for the clean, binary, and realistic DCA models: (a) pyogenic granuloma, and (b) sebaceous 
hyperplasia.
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Fig. 19. Illustration of Grad-CAM results on external datasets for clean, binary, and realistic DCA models: (a) endoscopic SLAM dataset (EndoSLAM) [36] and (b) 
diabetic retinopathy dataset [14].

of different dermoscope models (size and quality), dermoscope settings, 
or the amount of pressure applied to the skin during an examination. 
If a dermoscope is powered by a battery, the amount of light leakage 
may also be affected by battery power levels which would affect the 
intensity of light being emitted by the device.

We note that at present, the ability to quantify heatmaps in clas-
sification tasks may be limited in that the ground truth labelling does 
not specify exactly where in the image the lesion is present. Moreover, 
the method may be of more use in scenarios where ground truth delin-
eation is available, such as those found in segmentation tasks. However, 
the task covered by this present paper utilises masks that have been gen-
erated to produce DCA which give an approximate indicator as to where 
the skin lesion is present, i.e., within the masked lesion region. This al-
lows for an approximate calculation of heatmap intensity in relation to 
lesion regions.

We observe from the images in Fig. 20 that most examples show that 
the network focused mainly on the surrounding DCA regions, includ-
ing areas of light leakage, regardless of the prediction result. We draw 
two conclusions from this: (1) the network would use outer regions of 
the image to form both correct and incorrect predictions that may be 
due to the presence of black pixels, the complex features introduced 
by the light leakage, or a combination of both, and (2) the network 
may be learning spurious correlations between the features in the DCA 
and light leakage areas within the DCA, hence the apparent randomness 
of the results. As shown in Fig. 20, we indicate the brightest (blue cir-
cles) and darkest (red circles) regions of the heatmap activation images, 
with bright regions representing the highest levels of network focus, and 
dark regions indicating the lowest levels of network focus. In these ex-
amples, lesion details are present in the outer regions of the lesion area 
which are positioned close to the DCA regions. It may therefore be pos-
sible that although the network appears to be focusing mostly on DCA 
regions, for correct predictions the network is able to determine class 
using those lesion features that are close to the DCA perimeter. Fig. 21
shows the heatmaps from Fig. 20 with masks applied to show that the 
network still directs some of its focus towards the actual lesion regions.

The DCA and light leakage results shown in Fig. 20 clearly illustrate 
that the clean large DCA model is still prone to focusing on pure black 
DCA regions and light leakage regions to make correct and incorrect 
classification predictions. These results also indicate that the shift in 
activations causes the model to focus significantly less on the actual 
lesion regions. In the examples shown, the areas with the most focus 
all have light leakage artifacts present to varying degrees and varying 
levels of visual complexity.

While existing research attempted to remove artifacts and focused 
on creating improved deep learning models for melanoma classifica-

Fig. 20. Illustration of predictions on test images from the clean large DCA 
model. Images shown are the original unaltered test images (1st column), orig-
inal images with increased contrast to expose light leakage (2nd column), and 
the corresponding prediction heatmaps (3rd column). The first row shows true 
positives, the second row shows true negatives, and the third column shows 
false negatives. Blue circles indicate the brightest region of the heatmap, red cir-
cles indicate the darkest region of the heatmap. Brightest and darkest heatmap 
regions were obtained using the minMaxLoc function in the OpenCV library [6].

tion, we emphasise on better understanding of the data and behaviour 
of the learning process, which are the keys to provide new insights 
into skin lesion analysis. Existing research shows that the limited work 
focusing on DCA is mostly inconclusive, mainly due to a lack of pub-
licly available datasets with DCA cases with corresponding DCA labels 



Computer Methods and Programs in Biomedicine 244 (2024) 107986

14

S.W. Pewton, B. Cassidy, C. Kendrick et al.

Fig. 21. Illustration of Grad-CAM heatmaps with the original generated masks 
overlaid to show network activation levels within lesion regions. Heatsmaps 
were taken from inference results for the clean large DCA model.

to support the task. Therefore, we introduce a new curated balanced 
dataset with an equal number of melanoma and non-melanoma cases, 
drawn from publicly available skin lesion image datasets, which con-
sists of 6126 training images without DCA and 4124 test images with 
DCA.

We investigated the effect of DCA in dermoscopic images in 
melanoma classification by producing a baseline result using the pro-
posed training and test sets. As expected, we achieved high TPR and 
poor TNR, this is due to the tendency of the model to classify DCA as 
melanoma. We compared two data augmentation techniques, i.e., in-
painted DCA and generated synthetic DCA. We demonstrated that DCA 
removal and inpainting methods improved the results marginally and 
proposed a new strategy to address the negative effect of DCAs, i.e., su-
perimposed synthetic DCAs in the training set to train the deep learning 
model. In addition to existing Binary DCAs, we developed a new syn-
thetic DCA method (namely, Realistic DCA) to improve the realism of 
the DCA appearance when compared to naturally occurring DCA. We 
present results from experiments performed on these two artificially 
generated DCA types and demonstrate their effect in comparison to in-
painting of real DCA. Our results indicate that binary DCA provided the 
highest TPR but realistic DCA provided the highest TNR. Our experi-
ments showed that the removal and inpainting of DCAs is not the sole 
solution to improve the performance of deep learning models. Instead, 
our experiments using superimposed synthetic DCAs improved the TNR 
and precision of melanoma classification. We recommend further inves-
tigation to focus on superimposed DCA rather than DCA removal and 
inpainting as the latter is computationally expensive, achieved marginal 
improvement, and it is not clear of what new element was introduced in 
the inpainting process. Moreover, a notable improvement in TNR and 
precision when using superimposed synthetic DCAs provide some early 
indication of the capability of such a proposal to reduce the biases of 
classifying DCA as melanoma.

We interpreted the performance of the deep learning model on dif-
ferent settings by using Grad-CAM heatmap visualisation and its asso-
ciation with the dermoscopy light leakage. We observed that the DCA 
regions may exhibit artifacts that were not visible to the human eye 
where the deep learning model might tend to use those features for 
decision making. Another interesting observation is that although the 
focus is on the region of interest (skin lesions), there is an apparent ran-
domness in the predictions due to the challenging nature of melanoma 
classification.

We developed a new quantitative method based on heatmap contrast 
and brightness intensity measures to increase the understanding of the 
differences between internal and external DCA regions. Our method for 
quantifying Grad-CAM heatmap activation images shows a good corre-
lation between heatmap contrast and brightness intensity and recorded 
metrics such as accuracy and F1-score. This measure can be used in 
other research domains where heatmap visualisation is used. As exter-
nal ocular images exist in different imaging for other applications, such 
as eye imaging and colon imaging, this study potentially can be ex-
panded in other domains. All relevant source code and guidelines to 
obtain the dataset will be made available upon acceptance of the pa-
per.
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