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Abstract

The total cross section for QCD processes at the LHC can be expanded

perturbatively in the QCD coupling, αs, and then approximated by performing

calculations in quantum field theory to a fixed order. However, in the presence

of a large separation of energy scales, the convergence of this perturbative

expansion is known to be damaged as higher order corrections in αs become

more significant. High Energy Jets (HEJ) is a resummation framework designed

to include contributions from high energy logarithms in the ratio of centre of mass

energy to the transverse scale of particle produced to all orders in perturbation

theory. These logs can become significant at the LHC and future colliders, and

are significantly enhanced by the requirement of a large dijet invariant mass or

large rapidity separation common in vector boson fusion/scattering (VBF/VBS)

selection cuts.

The work collected together in this thesis was done to extend the HEJ description

of high energy collisions; both adding support for new, experimentally relevant

processes at leading-log (LL) accuracy and improving the understanding of the

currently supported processes. We present the first calculation of the leading

log description of same-sign WW boson production plus jets at the LHC, which

is important as a necessary background processes for vector boson scattering

and which has high energy logarithms which are directly enhanced by VBS cuts.

We compare the HEJ LL result to that of pure next-to-leading order and with

next-to-leading order matched parton shower using the setup of a recent CMS

experimental analysis.

We then present results from studies looking at the impact of higher order

corrections for two ongoing ATLAS experimental analyses. The setup of these

analyses have directly lead to improvements in the HEJ description of both pure

QCD jets and W plus jets which we describe in detail. Finally, we present a look

ahead to the impact on the perturbative expansion of QCD at future colliders
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with a higher centre of mass energy, where we expect the impact of higher energy

logarithms to be increasingly significant.

ii



Lay Summary

When differences arise between what we predict with theory and what we see

in experimental data at the Large Hadron Collider (LHC), the most interesting

outcome is the possibility of new physics. This could lead to the discovery of new

particles and interactions, fundamentally changing how we view the universe.

It is important then to be able to describe the currently known interactions

as accurately as possible so that any differences are not simply due to the

shortcomings of the theoretical descriptions.

The standard method for making theoretical predictions is to approximate a

result as a sum of terms where the first term in the sum is called the “lowest

order” approximation and is typically the simplest to compute. Each successive

term in the sum should be much smaller than those which came before, and

including more of these “higher order” corrections term by term should lead

to a more accurate prediction. However when using this method to descibe

particle collisions, we sometimes find that these higher order corrections are not

small compared to the lowest order approximation and can end up changing the

calculated result dramatically.

High Energy Jets (HEJ) is a framework designed to produce accurate theoretical

predictions for particle collisions by including significant parts from all of the

higher order corrections and has previously been shown to have good agreement

with data for certain experimental setups and measurements. In particular,

experimental studies of Vector Boson Scattering (VBS) looking at particle

collisions where there are twoW (or Z) bosons produced as intermediate particles.

In such studies, the choice of setup can end up increasing these higher order

corrections leading to a need for an alternative description.

The work collected together in this thesis was done to extend the HEJ description

of high energy collisions; both adding support for new, experimentally relevant
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processes and improving the understanding of the currently supported processes.

We present a calculation of same-sign WW boson production plus jets at the

LHC, which has higher order corrections which are directly enhanced by VBS

cuts on the particles involved. We compare the HEJ result to that from standard

methods using the setup of a recent CMS experimental analyses.

We then present results from studies looking at the impact of higher order

corrections for two ongoing ATLAS experimental analyses. The setup of these

analyses have directly lead to improvements in the HEJ description of both pure

QCD jets and W plus jets which we describe in detail. Finally, we present a look

ahead to the impact of higher order corrections at future colliders with a higher

collision energy, where we expect the impact of higher order corrections to be

increasingly significant.
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Chapter 1

Introduction

Our current understanding of particle physics at the smallest scales comes from

the Standard Model, a unification of three out of the four forces of nature:

Electromagnetism, the Strong nuclear force and the Weak nuclear force. We

describe the fundamental particles in the Standard Model, along with their

interactions, as a quantum field theory locally invariant under gauge symmetry

SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (1.1)

The first of these groups encodes the colour symmetry of the Standard Model

described by the theory of quantum chromodynamics (QCD), which details

the interactions of quarks and gluons and is parameterised by the strength of

the QCD coupling αs. Colour confinement tells us that coloured particles do

not exist as measurable states, but instead hadronise into colourless objects.

These colourless objects can then fragment back into colourless objects which

immediately hadronise again, resulting in collimated sprays in energy which we

call jets. The cross section for jets at the LHC is generally higher than for

interactions of colourless particles from the electroweak SU(2)L ⊗ U(1)Y sector

of the Standard Model [13], so an accurate description of processes involving jets

is important to cleanly study electroweak interactions and potential interactions

from Beyond the Standard Model (BSM) physics.

To calculate QCD interactions in perturbative quantum field theory, we calculate

the S-matrix via the Dyson expansion to a given order in the asymptotic series.

Each additional interaction in our scattering process will be suppressed by an
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additional power of αs compared to leading order. For example, if we look at 2→
2 scattering of QCD particles we can express an observable O as a perturbative

series in αs,

O = O0α
2
s︸ ︷︷ ︸

Leading order

+ O1α
3
s︸ ︷︷ ︸

Next-to-leading Order

+ · · ·+ Onα
(n+2)
s︸ ︷︷ ︸

(Next-to-)n Leading Order

+ . . . , (1.2)

where On is the value of the observable calculated at n-th order in the above

expansion. The convergence of this perturbative expansion can be damaged when

the suppression by αs in the (n + 1)-th term is not sufficiently smaller than the

n-th term. For QCD scattering in the high energy limit where the centre of mass

energy s is much larger than the transverse energy scale t, logarithms of the ratio

s over t appear to all orders of perturbation theory, damaging the perturbative

expansion above.

These logarithms can become enhanced as a direct result of experimental cuts,

such as in Vector Boson Fusion (V BF ) studies where cuts on the invariant mass

and rapidity separation of jets are used to distinguish between actual V BF

and QCD gluon fusion. These two components of pp → H + 2j are otherwise

indistinguishable in the final state, but studying the V BF component allows

us to probe the Higgs/vector boson vertex. It is important then to be able to

accurately describe the QCD sample which remains after V BF cuts which are

logarithmically enhanced.

The High Energy Jets (HEJ) formalism [14–16] captures the leading log behaviour

in QCD processes involving jets with the optional emission of a vector boson,

including virtual and real corrections to all orders in perturbation theory.

Within the HEJ framework, matrix elements are approximated in a form where

they are factorised into pieces which are independent of one another without

any approximations on the phase space integration. The work presented here

builds upon the HEJ formalism using the HEJ2 [17] software, looking at new

experimentally relevant processes and adding improvements from looking at

experimental setups in ongoing analyses. The HEJ approach has previously been

compared with data in experimental analyses involving jets [18–21], W or Z/γ

plus jets [22–25] and for H plus jets [26]. As part of the work presented in this

thesis, the HEJ2 software now also supports resummation with events containing

two same-sign W bosons plus jets [1] relevant for vector boson scattering (VBS)
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studies.

We will begin our discussions for this thesis in chapter 2 with a review of the

Standard Model using the Lagrangian formulation. We will discuss relevant

features of QCD and electroweak theory before moving on to discuss modern

technology for performing scattering calculations for hadron colliders. In

chapter 3 we will focus on the factorisation of scattering amplitudes in the high

energy limit and how we can perform high energy resummation using the HEJ

framework. For chapter 4 we will discuss Vector Boson Scattering, focusing on

constructing a leading log accurate amplitude for the QCDO(α2
Wα

2
s) contribution

using the HEJ framework. This result will then be compared to NLO using the setup

from a recent CMS analysis [27]. Finally for this study, we will discuss the impact

of NLO matching on a selection of experimental observables.

Chapter 5 will discuss the first of two HEJ resummed predictions for ongoing

ATLAS analyses, studying jets from QCD scattering at the LHC. We look

at the ratio of the inclusive three jet rate to the inclusive two jet rate, R32,

against a number of experimentally relevant observables. We compare the leading

logarithm resummed HEJ result (including resummation for some subleading

configurations) against the LO and NLO approximations for R32. We also calculate

the average number of jets against physical observables which are very sensitive

to higher jet multiplicities in some regions.

Chapter 6 will discuss the second of the two ATLAS analyses, this time looking

at the production of a vector boson plus jets with a large missing transverse

energy. This is important in order to cleanly study the signal region of neutrinos

+ jets relevant for dark matter studies at the LHC. Over the course of producing

predictions for this analysis, we developed a framework for performing HEJ

resummation when asymmetric jet cuts cause instabilities from unregulated soft

divergences. This chapter also provides an introduction to that framework in

the context of this analysis. We then compare our predictions with a MEPS@NLO

sample provided by ATLAS, discussing where differences are thought to be due

to shower effects or due to high energy logarithms.

Finally we will finish our discussion in chapter 7 where we will have a first look

at the impact of high energy resummation for W plus jets at a 100 TeV collider

using a range of jet p⊥ cuts. Chapter 8 is included as a summary of the content

discussed in this thesis, including a brief look at potential future studies.
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Chapter 2

Theoretical framework of modern

particle physics

2.1 Foundations of Quantum Chromodynamics

2.1.1 From Yang-Mills theory to the QCD Lagrangian

In this section, we will review the fundamentals of QCD needed to frame the

content that will appear in later sections. Throughout this section we will be

setting up our conventions for the rest of the work presented. We begin our

discussion with the Yang-Mills Lagrangian [28] for quark fields ψ(x), ψ̄(x) and

for gluon fields Aaµ in the SU(3) adjoint representation:

LYM = ψ̄(x)
(
i /D −m

)
ψ(x)− 1

4
F a
µνF

a;µν , (2.1)

where we use the standard convention of writing a slash in variables contracted

with the Lorentz matrices and,

• Dµ = ∂µ − igT aAaµ(x)

• F a
µν = ∂µA

a
ν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x)

• T a belongs to the fundamental representation of SU(3)

• fabc is the structure constants of the SU(3) Lie Algebra.
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The Lagrangian in eq. (2.1) is invariant under local gauge transformations:

Aaµ → A′aµ (x) = Aaµ(x) + fabcAbµ(x)αc(x) +
1

g
∂µα

a(x), (2.2)

for any local function α(x). To calculate some observable O in this theory, näıvely

we would consider the ratio,

〈O〉 =

∫
DψDψ̄DADαOeiS[ψ,ψ̄,A]∫
DψDψ̄DADαeiS[ψ,ψ̄,A]

, (2.3)

integrating over all possible α(x). However this will lead to an uncontrolled

divergence for large α(x) in both the numerator and the denominator of eq. (2.3)

which makes it impossible to calculate the observable. In practice to have

something useful for computations, we will impose a gauge-fixing condition

G(A) = 0. There are a couple of different examples given here to illustrate

this:

1. Covariant gauges with G(A) = ∂µAaµ(x) − wa(x), with a Gaussian wa(x)

with width ξ. This corresponds to introducing a term to the Lagrangian of

the form Lgauge fixing = − 1
2ξ

(∂µAaµ)2

2. Axial gauges with G(A) = nµAaµ(x)− wa(x), again with a Gaussian wa(x)

with width ξ, and introducing a fixed reference vector nµ.This corresponds

to introducing a term to the Lagrangian of the form Lgauge fixing =

− 1
2ξ

(nµAaµ)2

For the purposes of this document, we will choose to add to the Lagrangian the

gauge fixing term,

Lgauge fixing = −1

2
(∂µAaµ)2, (2.4)

which corresponds to the choice of a covariant gauge with ξ = 1 (Feynman

Gauge).

Finally we must add to our Lagrangian a term including Faddeev-Popov [29]

“ghost” terms which appear as a consequence of gauge fixing. When making our

gauge choice G(A) = 0, we can factor out an integral
∫
Dα from our path integral

introducing a Jacobian factor of det δG(A)
δα

. In the Faddeev-Popov procedure, we

associate this factor with a new fields c(x), c̄(x), the exact form of which depends

on our choice of Gauge. A full derivation of Faddeev-Popov ghosts is given in

reference [30, Chapter 16.2] however for this thesis we will not speak of them
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again after eq. (2.5) so we refrain from a deeper discussion here.

Combining everything together gives us the QCD Lagrangian we will use for our

theory,

LQCD = ψ̄(x)
(
i /D −m

)
ψ(x)− 1

4
F a
µνF

a µν︸ ︷︷ ︸
Yang-Mills

− 1

2
(∂µAaµ)2︸ ︷︷ ︸

Gauge-Fixing

− c̄a(x)(∂µDµ)ca(x)︸ ︷︷ ︸
Ghosts

.

(2.5)

This then lets us define the path integral for QCD as a functional of the source

fields J , η and η̄,

Z[J, η, η̄] =

∫
DψDψ̄DAei

∫
d4x[LQCD+Jµ(x)Aµ(x)+η̄(x)ψ(x)+η(x)ψ̄(x)] (2.6)

2.1.2 Feynman Rules for QCD

From the QCD Lagrangian given in eq. (2.5), we can deduce the Feynman rules

for the theory.

We can determine the quark propagator from looking at the inverse of the kinetic

term in the Lagrangian. Further Feynman rules can be computed by taking

functional derivatives of the generating function Z[η, η̄, J ]. For example we can

find the Feynman rule for the quark-gluon vertex by considering,

1

Z[0, 0, 0]

δ

δJµ

δ

δη

δ

δη̄
Z[J, η, η̄]→ igγµT aij. (2.7)

Table 2.1 contains all the relevant Feynman rules from QCD that will be used in

this thesis.

2.1.3 Running of the coupling

It is important at this stage to briefly mention the running of the coupling

αs :=
g2

4π
.

The SU(N) beta function governing the strength of the coupling at energy scale

µ is typically calculated as a perturbative expansion in αs. To first order it is
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Table 2.1: Relevant QCD Feynman Rules

Type Diagram Feynman Rule

Lepton Propagator
l

p

i /p+m

p2−m2

Quark Propagator
p

a b

q

i /p+m

p2−m2 δab

Gluon Propagator
p

µ, a ν, b
−i
[
gµν

p2 − (1− ξ) pµpν
(p2)2

]
δab

Quark-Gluon Vertex µ, a igγµT aij

3-Gluon Vertex

p1

p2

p3

µ, b

ν, c

ρ, a

gfabc [gµν(−p2 + p3)ρ + gνρ(−p3 − p1)µ

+gρµ(p1 + p2)ν ]
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Figure 2.1: Summary of different measurements of αs as a function of the energy
scale Q. As the energy scale increases and the length scale decreases the strength
of the coupling is also reduced. Reproduced from 2021 revision of Particle Data
Group summary of QCD [5].

given by [30, equation 16.85],

µdg(µ)

dµ
:= β(g) = −g(µ)3

16π2

(
11

3
CA −

4

3
TRnf

)
(2.8)

where nf is the number of quarks in the theory and CA = N is the value of the

quadratic Casimir operator in the adjoint representation and TR is defined to be

Tr(TaTb) = −TRδab and is dependent on the choice of representation. For a large

enough nf , the beta function will be positive and the coupling will increase at

large energy scales and will decrease as the energy scale gets smaller. Instead if

nf is small enough then the theory is asymptotically free, meaning that the beta

function is negative and the coupling decreases for high energies. For QCD, we

restrict our attention to the fundamental representation of SU(3) where the term

in the brackets in eq. (2.8) simplifies to,(
11− 2

3
nf

)
. (2.9)

So far there have been 6 flavours of quark discovered, which is indeed small enough
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for the model to be asymptotically free. This has been experimentally verified,

see e.g. fig. 2.1 which plots the coupling αs as a function of the energy scale as

measured through different processes.

2.1.4 Spinor-Helicity notation

Solving the Dirac Equation

It will prove convenient for calculations to introduce a compact notation here

for dealing with contractions of (massless1) Dirac spinors and gamma matrices.

Firstly, we look at the solutions to the Dirac equation
(
i/∂ −m

)
ψ = 0 which take

the form,

ψ(x) = us(p)e
−ip.x & ψ(x) = vs(p)e

+ip.x (2.10)

for positive and negative energy solutions respectively, with spin states s = ±.

These Dirac spinors, us(p) and vs(p), can then be written in terms of two sets of

normalised 2-component spinors, φ± and χ±,

us(p) =
√
E +m

(
φs

σ·p
E+m

φs

)
, vs(p) =

√
E +m

(
σ·p
E+m

χs

χs

)
. (2.11)

From these explicit formulae for us(p) and vs(p), we can derive the following

relationship between the spinors,∑
s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m. (2.12)

Helicity and chirality

We now move on to discussing helicity: the alignment of a particle’s spin with

its direction of momentum. A particle is said to have positive helicity if said

particle’s spin is in the direction of its momentum vector, and negative helicity if

the spin and momentum point in opposite directions. With the spinors defined

1Spinor-Helicity notation can be extended to include massive particles as shown in appendix
A2 in reference [31], but we will not require this extension for the work presented here.
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in eq. (2.11), we can define an operator related to the spin of the particle,

Σ̂i =

(
σi 0

0 σi

)
= − i

4
εijk[γj, γk], (2.13)

and then use this to define a helicity operator,

ĥ =
Σ̂ · p
|p| . (2.14)

If we act with this operator on the spinors defined in eq. (2.11), we find that they

are indeed eigenstates, with eigenvalues h = ±1.

We also introduce the concept of chirality which we define through the eigenvalues

of the operator γ5. For a given fermion ψ we define the particles chirality to be

equal to that of the sign of its eigenvalue when acted on by γ5. For a general

spinor, we can project out the left-handed and right-handed components using

the projection operators,

PR
L

=

(
1± γ5

2

)
, (2.15)

where γ5 = iγ0γ1γ2γ3. From this we define the spinors,

u±(p) = PR
L
u(p) v∓(p) = PR

L
v(p). (2.16)

The measured masses of the quarks (normally excluding the top quark) are small

enough that we will consider the spinors in the massless limit where the Dirac

equation is known to decouple into two separate Weyl equations. Furthermore,

we now have the equality

u±(p) = v∓(p), (2.17)

allowing us to combine the notations for quarks and anti-quarks.

We now define the brackets,

|p±〉 = u±(p) = v∓(p) 〈p±| = ū±(p) = v̄∓(p), (2.18)

which will be the notation adopted for the rest of this document. We further use

angle and square brackets to distinguish the two helicity products,

〈pq〉 = 〈p−||q+〉, [pq] = 〈p+||q−〉. (2.19)
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From these one can also define mixed bracket products using angled and square

brackets, but we will not need to use them here.

Spinor-Helicity identities

In this section we present a small collection of identities for massless theories

using the spinor-helicity framework. Firstly, we look at relations purely involving

quarks. The following will be useful in later sections:

/pi|pi〉 = 〈pi|/pi = 0, (2.20)

〈pipj〉[pjpi] = sije
iπφij , (2.21)

〈pi|γµ|pi〉 = 2pµi , (2.22)

〈pi|γµ|pj〉〈pk|γµ|pl〉 = 2[pipk]〈plpj〉, (2.23)

where φij is a phase factor which is equal to 0 if both particles are outgoing or

both incoming and 1 otherwise. The simplest proof of these identities is to prove

them in a given representation with a given convention for incoming and outgoing

spinors. Here we will use a chiral representation based on Pauli matrices for the

gamma matrices which we define in appendix A. As an example we will prove

here eq. (2.21) in our choice of representation where pa is chosen to be incoming

and in the positive direction and pb to be incoming and in the negative direction:

〈papb〉[pbpa] = 〈p−a p+
b 〉〈p+

b p
−
a 〉

= ū−(pa)u
+(pb)ū

+(pb)u
−(pa)

= (u−(pa))
†γ0u+(pb)(u

+(pb))
†γ0u−(pa)

=
√
p+
a p
−
b

√
p+
a p
−
b Using representation in appendix A

(2.24)

Now note that in our setup, all of the momentum of pa (pb) will be in the positive

(negative) z direction, so we can simplify further by writing our product in terms

of the energy of each particle,

〈papb〉[pbpa] = (Ea + Ea)(Eb − (−Eb)) = 4EaEb = sab, (2.25)

as expected.

Secondly we look at polarisation vectors for external gluons. These can be written
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as [31, equation 3.8],

ε+
µ (p, k) = +

〈k−|γµ|p−〉√
2〈kp〉

(2.26)

for positive helicity, and

ε−µ (p, k) = −〈k
+|γµ|p+〉√

2[kp]
(2.27)

for negative helicity. Here p denotes the gluon momenta and k denotes any

massless vector not parallel to p. Multiplying two of these together and summing

over helicities recovers the usual completeness relation,

∑
i=±

εiµ(p, k)εi∗ν(p, k) = −gµν +
pµkν − pνkµ

p · k . (2.28)

2.2 Fundamental results from Electroweak Theory

We now move on briefly from QCD to talk about some relevant points from

electroweak theory. We start by looking at a SU(2) × U(1) gauge theory as

introduced by Glashow, Weinberg and Salam [32–34] which not only described

the massless photon but also through the Higgs mechanism [35, 36], a massive W

boson (at the time known to be an intermediate particle in weak decay), and a

massive neutral vector boson which had not been experimentally observed at the

time.

Consider the Lagrangian for a scalar field,

LGSW = (Dµφ)†Dµφ+ µ2φ†φ− λ
(
φ†φ
)2
, (2.29)

where the covariant derivative is expressed in terms of SU(2) and U(1) gauge

bosons Aaµ and Bµ respectively,

Dµφ =
(
∂µ − igT aAaµ − ig′Y Bµ

)
φ. (2.30)

We now choose the field φ to have a vacuum expectation value of

〈φ〉 =
1√
2

(
0

v

)
, (2.31)

12



so that we can expand the field φ around this value as,

φ =
1√
2

(
0

v + h(x)

)
, (2.32)

and observe the effect this has on the Lagrangian when the gauge symmetry is

spontaneously broken. Choosing the generators of the SU(2) symmetry to be

T a = σa

2
, we can rewrite the covariant derivative term in the Lagrangian as [30,

equation 20.62],

∆L =
1

2

v2

4

[
g2
(
A1
µ

)2
+ g2

(
A2
µ

)2
+
(
−gA3

µ + g′Bµ

)2
]
. (2.33)

From this, we see that the fields A1
µ, A

2
µ, (gA

3
µ−g′Bµ) have now acquired masses as

a result of the gauge symmetry being spontaneously broken. We can now define

the three massive bosons to be [30, equation 20.63]:

W±
µ = 1√

2

(
A1
µ ∓ iA2

µ

)
with mass mW = g v

2
;

Z0
µ = 1√

g2+g′2

(
gA3

µ − g′Bµ

)
with mass mZ =

√
g2 + g′2 v

2
.

(2.34)

We still have a fourth vector field which remains massless, and we identify this

with the photon in this model,

Aµ =
1√

g2 + g′2

(
g′A3

µ + gBµ

)
. (2.35)

We will now add to our Lagrangian a kinetic term for these vector bosons, using

the notation that,

W a
µν = ∂µA

a
ν − ∂νAaµ − ig

[
Aaµ, A

a
ν

]
for the generators of SU(2), (2.36)

Bµν = ∂µBν − ∂νBµ for the generators of U(1). (2.37)

The gauge boson kinetic term in the Lagrangian is then,

LYM ;Bosons = −1

4
W a
µνW

a µν − 1

4
BµνB

µν . (2.38)

From eqs. (2.29) and (2.38) we can calculate the Feynman rules for the W , Z

and photon propagators in the theory in the same way as we did for QCD in

13



Table 2.2: Relevant Electroweak Feynman Rules involving W bosons

Type Diagram Feynman Rule

W Propagator
p

µ ν
−i 1

p2−m2
W+imWΓW

[
gµν − (1− ξW ) pµpν

p2−ξWm2
W

]

W -quark vertex µ

q

Q

−i g

2
√

2
γµ(1− γ5)VqQ

W -lepton vertex µ

l

νl

−i g

2
√

2
γµ(1− γ5)

4-W vertex ig2 [2gρµgσν − gρσgµν − gρνgσµ]

section 2.1.2. We will also need to calculate processes where the massive bosons

couple to quarks and charged leptons. For this we return to the kinetic terms for

the quarks, noting that we will have a similar term for leptons,

LF =
∑

quarks,q

iq̄ /Dq (2.39)

which includes interactions with the gauge boson fields through the covariant

derivative. The relevant Feynman rules involving W bosons from this section are

summarised in table 2.2, where we have introduced 2 parameters:

• ξW is a parameter fixed from the choice of gauge

• V is the relevant component of the CKM matrix[37], accounting for weak

flavour mixing.
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2.3 Framework for computation of theoretical

predictions at fixed order

2.3.1 Fixed order technology

We now discuss how one can use the theory of the Standard Model to calculate

predictions for collisions in hadron colliders. The total hadronic cross section

for P1, P2 → X can be expressed as an integral of the partonic cross section

pa, pb → X weighted by parton distribution functions (PDFs) of the Bjorken-x

variables xaP1 = pa, xbP2 = pb,

σ(P1, P2 → X) =

∫ 1

0

dxa

∫ 1

0

dxb f
(P1)(xa, Q

2)f (P2)(xb, Q
2)︸ ︷︷ ︸

PDFs

dσ̂ab(xaP1, xbP2)︸ ︷︷ ︸
Partonic cross section

.

(2.40)

The partonic level differential cross section is itself an integral of the squared

matrix element:

dσ̂ab(pa, pb) =

∫
dΦ
|M̄|2

2ŝ

=
∏

i,outgoing

∫
d3pi

(2π)32Ei

|M̄|2
2ŝ

(2π)4δ4

( ∑
outgoing

pi −
∑

incoming

pi

)
.

(2.41)

The squared matrix elements for SM processes can be computed from the

Feynman rules listed in tables 2.1 and 2.2, and in-practice these have already

been computed by matrix-element generators. It is also convenient for phase-

space sampling to rewrite the integral in eq. (2.40) purely in terms of the partonic

kinematic variables. In the example following, we will do this for W + n jets as

a precursor to the discussion on that process that will follow.

Consider the partonic process qQ → q′Q(W+ → )e+νe, where the incoming

particles have four-momenta,

pa =

(√
s

2
xa, 0, 0,

√
s

2
xa

)
pb =

(√
s

2
xb, 0, 0,−

√
s

2
xb

)
. (2.42)

The outgoing particles have momenta p1, p2, pe, pν . We start by re-deriving the

form of differential cross section in eqs. (2.40) and (2.41). The reciprocal incident
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flux for normalised states is given by,

σf =
1

4
√

(paµp
µ
b )2 −m2

am
2
b

=
1

4
√

(EaEb − pa · pb)2
(massless limit)

=
1

2ŝ

(2.43)

Then the total cross section is given by the integral over the degrees of freedom

of each particle in the final state including the above flux factor and an integral

over the momentum fractions in the incoming state,

σ =

∫
dxa

∫
dxb

∫
d3pe

(2π)32Ee

∫
d3pν

(2π)32Eν
×

∏
outgoing

∫
d3pi

(2π)32Ei
|M̄|2dσff(xa, Q

2)f(xb, Q
2)(2π)4δ4

( ∑
outgoing

pi −
∑

incoming

pi

)
.

(2.44)

For the outgoing momentum we split the spacial integral to isolate the z integral

along the beam axis, ∫
d3pi

(2π)32Ei
=

∫
d2pi

(2π)32

∫
dpi;z
Ei

. (2.45)

Then using the notation pi;z = pi,⊥(cosh(yi), cos(φ), sin(φ), sinh(yi)), we can

instead express our z integral as one over rapidity,∫
dpi;z
Ei

=

∫
dyi

dpi;z
dyi

1

Ei

=

∫
dyipi,⊥ cosh(yi)

1

Ei

=

∫
dyi,

(2.46)

where we will define the rapidity of an outgoing particle as a function of its

transverse momentum along the beam (z) axis,

yi =
1

2
log

(
Ei + pi;z
Ei − pi;z

)
. (2.47)
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We can also split the Dirac-delta into 3 parts: 1 over the transverse momenta

components, 1 over the z momenta and 1 over the energy,

δ4

( ∑
outgoing

pi −
∑

incoming

pi

)
=δ2

( ∑
outgoing

pi,⊥ −
∑

incoming

pi,⊥

)
×

δ

( ∑
outgoing

pi;z −
∑

incoming

pi;z

)
×

δ

( ∑
outgoing

Ei −
∑

incoming

Ei

)
.

(2.48)

We shall leave the transverse delta function alone and focus on the other 2

delta functions. From the definitions of the incoming momenta and momentum

conservation, we have the following identities,

√
s

2
(xa + xb) =

∑
outgoing

Ei,

√
s

2
(xa − xb) =

∑
outgoing

pz,i. (2.49)

Then we can manipulate the delta functions above to instead be expressed as

delta functions in the momentum fractions,

δ

( ∑
outgoing

pi;z −
∑

incoming

pi;z

)
δ

( ∑
outgoing

Ei −
∑

incoming

Ei

)

= δ

(√
s

2
(xa − xb)− pa;z − pb;z

)
δ

(√
s

2
(xa + xb)− Ea − Eb

)
=

4

s
δ

(
xa − xb −

2√
s

(pa;z − pb;z)
)
δ

(
xa + xb −

2√
s

(Ea − Eb)
)

≡ 4

s
δ (xa − xb −m(p)) δ (xa + xb − n(p))

=
4xaxb
ŝ

δ (xa − xb −m(p)) δ (xa + xb − n(p))

(2.50)
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Finally, with the form of the deltas we can perform the integrals over xa, xb,∫
dxadxbδ(xa + xb −m(p))δ(xa − xb − n(p))xaxbf(xa, Q

2)f(xb, Q
2)

=

∫
dxbδ((−xb +m(p))︸ ︷︷ ︸

From delta

−xb − n(p)) (−xb +m(p))︸ ︷︷ ︸
From delta

xbf((−xb +m(p))︸ ︷︷ ︸
From delta

, Q2)f(xb, Q
2)

=

∫
dxbδ(−2xb +m(p)− n(p))(−xb +m(p))xbf(−xb +m(p)), Q2)f(xb, Q

2)

=

∫
dxb

1

2
δ(xb −

m(p)− n(p)

2
)(−xb +m(p))xbf(−xb +m(p)), Q2)f(xb, Q

2)

=
1

2

−m(p)− n(p)

2︸ ︷︷ ︸
From delta

+m(p)

 ×
m(p)− n(p)

2︸ ︷︷ ︸
From delta

 f

−m(p)− n(p)

2︸ ︷︷ ︸
From delta

+m(p), Q2

 f

−m(p)− n(p)

2︸ ︷︷ ︸
From delta

, Q2


=

1

2
xa(p)xb(p)f(xa(p), Q

2)f(xb(p), Q
2)

(2.51)

where we have written x(p) to emphasise that the xa is calculated as a function

of the momenta integrated over. Putting this all together gives,

σ =

∫
dxa

∫
dxb

∫
d3pe

(2π)32Ee

∫
d3pν

(2π)32Eν
×

∏
outgoing

∫
d3pi

(2π)32Ei
dσff(xa, Q

2)f(xb, Q
2)(2π)4δ4

( ∑
outgoing

pi −
∑

incoming

pi

)

=

∫
d3pe

(2π)32Ee

∫
d3pν

(2π)32Eν

∏
outgoing

(∫
d2pi,⊥
(2π)3

∫
dyi
2

)
×

|M̄|2 1

2ŝ

4

ŝ

1

2
xa(p)xb(p)f(xa(p), Q

2)f(xb(p), Q
2)(2π)4δ2

( ∑
outgoing

pi,⊥ −
∑

incoming

pi,⊥

)
.

(2.52)

Then we have arrived at the equation we will use for numerically computing this
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cross section:

σ(qQ→q′Q(W+ →)e+νe) =

∫
d3pe

(2π)32Ee

∫
d3pν

(2π)32Eν

∏
outgoing

(∫
d2pi

(2π)3

∫
dyi
2

)

× |M̄|2 1

ŝ2
xa(p)xb(p)f(xa(p), Q

2)f(xb(p), Q
2)(2π)4δ2

( ∑
outgoing

pi,⊥ −
∑

incoming

pi,⊥

)
.

(2.53)

To calculate eq. (2.53) numerically we will make use of Monte-Carlo sampling

methods, where we generate momenta for the outgoing partons by sampling their

transverse momentum, angle of emission and rapidity (sampling “phase space”).

From there we can calculate the incoming momenta by momentum conservation

(delta function), to then evaluate the cross section contribution at that point in

phase space. Performing many such samples allows us to construct a numerical

estimate for the full cross section, correct in the limit as number of sample points

goes to infinity. In practice, for fixed order predictions presented in this study

we generate roughly 107− 109 events to achieve smooth differential distributions,

but this can vary wildly depending on the process and the phase space sampled

which depends on additional cuts and kinematic variables.

2.3.2 Quantifying the structure of the Proton with Parton

Distribution Functions

10 3 10 2 10 1 100

x

0.0

0.2

0.4

0.6

0.8

1.0
NNPDF4.0 NNLO Q= 3.2 GeV

g/10
uv
dv
s
u
d
c

(a)

10 3 10 2 10 1 100

x

0.0

0.2

0.4

0.6

0.8

1.0
NNPDF4.0 NNLO Q= 100.0 GeV

g/10
uv
dv
s
u
d
c

(b)

Figure 2.2: Plots showing the NNPDF4.0 fits for the structure of the proton at
(a) low (b) high energy scales as a function of momentum fraction x. Taken from
reference [6].
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As we saw in eq. (2.40), we need to be able to accurately describe the contents of

the proton at energy scale Q2 to be able to compute total cross sections with this

technology. These PDF description of the proton (or more generally hadrons)

are assumed to be universal, i.e. for a given hadron they are independent of

the scattering process and depending only on the momentum fraction x and

the energy scale Q2. Typically these are then produced in a global fit of many

observables simultaneously using a large experimental data set compromising of

data from multiple colliders. One example of a recent PDF fit is the NNPDF4.0

PDF set [6], which includes the plots of the proton structure shown in fig. 2.2 for

low and high values for Q2.

Once a PDF is described at a certain energy scale, it can be evolved to describe the

same PDF at other values of Q2. This evolution is described using the DGLAP

equation [38–40] which to leading order is given by:

∂

∂ logQ2

(
fq(x,Q

2)

fg(x,Q
2)

)
︸ ︷︷ ︸

Vector of quark and gluon PDFs

=
αs(Q

2)

2π

∫ 1

x

dz

z

(
Pqq(

x
z
) Pqg(

x
z
)

Pgq(
x
z
) Pgg(

x
z
)

)
︸ ︷︷ ︸

(2nf + 1)× (2nf + 1) Matrix of Splitting Kernels

(
fq(x,Q

2)

fg(x,Q
2)

)
,

(2.54)

where the splitting kernels appearing in the (2nf + 1) × (2nf + 1) matrix as a

function of number of fermions (nf ) above encode the kinematics of a quark/gluon

splitting into a quark/gluon with momentum fraction z and are given explicitly

during the discussion of parton showers in section 2.5.

In practice, we can select a PDF dataset for our calculation by interfacing with the

program LHAPDF [41] which allows us to switch PDFs easily to asses dependence

on the PDF choice made.
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2.3.3 Jet clustering and infrared safety

Figure 2.3: Display of a CMS event that occurred in 2016, with two very high
energy jets (> 3 TeV) depicted as orange cones. Taken from reference [7].

Colour confinement means that is impossible to directly observe quarks and

gluons, and instead one has to observe the hadrons they are confined to. In

high energy collisions it is common to observe collimated sprays of energy where

partons are continuously hadronising and then fragmenting back into partons (see

for example fig. 2.3). To deal with these quantitatively, we need a jet algorithm

which both defines jets and is also “IR safe” meaning that an additional soft or

collinear emission does not lead to a change in the set of jets defined. Here, we

will mention one such jet algorithm, the anti-kt algorithm, but there are in fact

many to choose from. For further discussion of jet algorithms for LHC collisions,

see all of reference [42] and further in reference [31, section 2.1.6].

The anti-kt algorithm is an example of a sequential recombination algorithm [42,

section 2.2] (c.f. cone algorithms), which combines objects which are within a

minimum distance in momentum space. In kt algorithms, we define the distance

for each of the objects, i, to be

diB = (pi⊥)2p, (2.55)
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and the distance between two such objects, i and j, as

dij = min
[
p2p
i⊥p

2p
j⊥
] ∆R2

ij

R2
0

, (2.56)

with ∆R2
ij = (∆yij)

2 + (∆φij)
2, the sum of the squared rapidity separation and

angular separation. These are computed for all particles and if dij < diB then we

combine i and j into the same jet. We then repeat this until all of the diB are larger

than all of the dij. The free parameters in this algorithm are the dimensionless p

and jet size R0. For the anti-kt algorithm, we choose p = −1, which corresponds

to favouring clustering between hard particles. Anti-kt is typically chosen by

ATLAS and CMS with jet size between roughly 0.4 and 0.7 [31, section 2.1.6.5].

In the simulations mentioned later, the jet clustering is done by interfacing with

the fastjet[43] software, where we can input our chosen R0 and jet algorithm.

2.4 Moving to Next-to-leading order accuracy

predictions

The presence of divergences when calculating observables to NLO accuracy poses

a problem for Monte-Carlo simulation. Whilst the UV and IR divergences will

always cancel according to the KLN [44, 45] theorem, subtracting one infinite

integral from another does not work numerically. If we look at the NLO expansion

of the total cross section,

σ(NLO) =

∫
dΦB( B︸︷︷︸

born level

+ V︸︷︷︸
virtual

) +

∫
dΦR R︸︷︷︸

real

, (2.57)

we have two integrals which both need to be evaluated, but both have divergences

that need to be controlled. Here we note the difference in the phase space in the

two integrals in eq. (2.57), denoted by dΦB for the born-level phase space and

by dΦR for the real emission phase space. In order for each of these terms to be

finite, and thus numerically integrable, we need to introduce so called “subtraction

terms” I and S which cancel each other when integrated,

0 =

∫
dΦBI −

∫
dΦRS, (2.58)
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we can add these terms to our equation for the NLO cross section (eq. (2.57)),

σ(NLO) =

∫
dΦB(B + V + I) +

∫
dΦR(R− S). (2.59)

Then as long as they are both constructed in a suitable way we can cancel

the divergent behaviour of both of the integrals, making them both finite and

therefore suitable for numerical integration. In future sections we will refer to the

parts of this calculation by single letters B, V, I, R, S. There are many algorithms

for creating the subtraction terms, such as Catani-Seymour dipole subtraction

[46]. For an example of this see reference [31, section 3.3.3.5]. Equation (2.59)

is then the method which is used by Monte Carlo event generators to calculate

the NLO cross section for a given process. It is not uncommon for us to need to

generate these contributions separately in a calculation where one or more of the

parts is numerically unstable.

2.5 All order corrections with Parton Showers

For some regions of phase space, we find that a separation of scales enhances

higher order contributions, slowing the convergence of the perturbative descrip-

tion. If we are in a region where higher order terms are enhanced, we can instead

look to try and include the enhanced behaviour to all orders in perturbation

theory by performing a resummation. This is the underlying idea of parton

showers (and in general analytic resummation, see reference [31, Chapter 5.2] for

more details). In particular, parton showers (PS) are used to provide all order

descriptions of soft and collinear emissions with logarithmic accuracy. Such soft

emissions can lead to logarithms in the ratio of final state partons which become

large when we compare these emissions with hard emissions. Since we are talking

about all orders in perturbation theory, we instead use the language ‘leading log’,

‘next-to-leading log’, etc for labeling the accuracy of our description. We can see

explicitly which terms are included to logarithmic accuracy by looking again at

our expression for the total inclusive cross section,

σinc = α2
s(K0)

+ α3
s (log (L)K1;1 +K1;0)

+ α4
s

(
log (L)2K2;2 + log (L)K2;1 +K2;0

)
+O(α5

s),

(2.60)
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Figure 2.4: Diagrams of the splitting functions. Taken from reference [8].

where L is the enhanced logarithm. The blue terms in eq. (2.60) correspond

to the terms included at leading log accuracy (including LO), and the terms in

orange contribute at next-to-leading log accuracy. This definition of logarithmic

accuracy will again be important in the discussion of the HEJ framework in the

next chapter where we resum high energy logarithms in s over t.

We now return to the splitting kernels first mentioned in section 2.3.2 which

will become important in our discussion of parton showers. Splitting kernels

are universal functions which are included in the kinematics for a QCD particle

emitting another QCD particle in the collinear limit. The functions Pxy(z)

indicate a splitting of x → y (which fix the type of the other emitted particle)

where y has momentum fraction z. The four splitting functions for QCD

involving quarks and gluons can be seen diagrammatically in fig. 2.4 and algebraic

expressions are given below.

Pqg(z) = TR
[
z2 + (1− z)2

]
, (2.61)

Pgq(z) = CF

[
1 + (1− z)2

z

]
, (2.62)

Pgg(z) = 2CA

[
z

(1− z)+

+
1− z
z

+ z(1− z)

]
+ δ(1− z)

11CA − 4nfTR
6

(2.63)

Pqq(z) = CF

(
1 + z2

1− z

)
+

, (2.64)

where we have introduced the plus prescription to regularise the divergence at
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(a) (b)

Figure 2.5: (a) Example born level process. (b) Example process which can be
reached by both a hard emission from an NLO calculation and from a parton
shower algorithm.

z = 1: ∫ 1

0

[g(z)]+f(z) =

∫ 1

0

g(z)f(z)−
∫ 1

0

g(z)f(1). (2.65)

The key point here is that these splitting functions are universal - meaning that

they are independent of how we produced particle x in the first place, i.e. the

hard scattering process. The splitting kernels allow us to define the Sudakov

form factor ∆(t, T ), which is defined to be the probability of no further emissions

between t and T . For QCD it is given by the expression,

∆xy(t, T ) = exp

{
−
∫ T

t

dt′

t′

∫ z+

z−

dz
αs
2π
Pxy(z)

}
, (2.66)

where z−, z+ are the limits on z set by the kinematics. This expression is very

useful as it allows us to come up with an algorithm for simulating a parton

shower. The basic method is to generate a random number, R, between 0 and

1 and compare that to the Sudakov form factor to determine whether or not we

have a resolvable emission. If we do, we can find tsplit by solving R = ∆xy(tsplit, T )

to determine the branching then we can repeat this procedure, setting T = tsplit

until there are no longer any resolvable emissions. Doing this, we find a ordered

list of emissions t1 > t2 > . . . which we will then use in the hadronisation step

to form hadrons, which we can then measure properties of and compare with

experiment.
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2.5.1 Matching and merging

In this section we will look at matching parton showers and NLO matrix element

calculations together in a consistent framework - MC@NLO, and then conclude this

chapter by briefly discussing combining MC@NLO samples together to produce a

merged sample through the MEPS@NLO method. Combining NLO and PS methods

is not a straightforward task due to the overlap in the phase spaces between the

two methods. For example, a scattering event at NLO includes a correction from

one real emission on top of the born level process. But this configuration can

also occur from a parton shower simulation with one splitting on one of the born

level partons (see fig. 2.5). This overlap can lead to a double counting in the

phase space which needs to be accounted for. Therefore a matching procedure

between NLO and PS simulations must be defined in such a way that we avoid

double counting (or missing) contributions that can appear in either method, thus

making sure that the algorithm is accurate at NLO accuracy. In order to ensure

this, it is necessary to split the emission phase space into two separate regions, a

soft/collinear region where emissions would be dealt with by the parton shower

and a hard region where emissions would be dealt with by the NLO matrix element.

We then also demand that the transition between these two regions is smooth.

Here we will describe the basics of MC@NLO matching. We use the notation in [47,

equation 4.5] to decompose the partonic differential cross section,

dσ̂ab = dσ̂
(b)
ab + dσ̂

(sv)
ab + dσ̂

(f)
ab + dσ̂

(c+)
ab + dσ̂

(c−)
ab , (2.67)

where the meaning of the superscripts is as follows:

• (b) indicates the Born-level 2→ 2 contribution.

• (sv) indicates the virtual corrections, also 2→ 2 but at order αS and with

the divergences removed via a subtraction term.

• (f) indicates the real emission 2 → 3 contribution with the divergences

removed via a subtraction term.

• (c±) indicates the contributions from initial state collinear divergences with

their appropriate counter terms to ensure they are finite.

Then, similar to eq. (2.59), we differentiate the phase space for 2 → 2

contributions and for 2 → 3 contributions by denoting the former by dφ2 and
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the latter by dφ3. This allows us to write an expression for the observable O

at NLO [47, equation 4.14] in terms of the unintegrated cross sections σab(x1, x2)

which include the PDF factors,

〈O〉 =
∑
ab

∫
dx1dx2dφ3

[
O(3)

dσ
(f)
ab

dφ3

∣∣∣∣∣
ev

+O(2)
1

I2

(
dσ

(b)
ab

dφ2

+
dσ

(sv)
ab

dφ2

)

+O(2̃)
1

I2

(
dσ

(c+)
ab

dφ2dx

∣∣∣∣∣
ev

+
dσ

(c−)
ab

dφ2dx

∣∣∣∣∣
ev

)
−O(2)

1

I2̃

(
dσ

(c+)
ab

dφ2dx

∣∣∣∣∣
ct

+
dσ

(c−)
ab

dφ2dx

∣∣∣∣∣
ct

)

− {O(2), O(2̃)}dσ
(f)
ab

dφ3

∣∣∣∣∣
ct

]
,

(2.68)

where the dependence on the 2→ n phase space is given by the term in brackets

in O(n), which represent the observable calculated in 2 → n kinematics and

the I’s are normalisation factors. The notation of {O(2), O(2̃)} indicates that

counter-terms need to be evaluated in both the soft and collinear regions.

We then proceed to match with the parton shower by substituting,

O(n)→ IMC(O, n), (2.69)

where IMC(O, n) is interpreted as the calculation of the observable with the LO +

parton shower Monte-Carlo with 2→ n kinematics. We will also in this procedure

add and subtract a term to cancel the low x divergences which takes the form,

IMC(O,n)
dσ̄ab
dφ3

∣∣∣∣
MC

. (2.70)

This lets us define the “master” equation for MC@NLO in QCD [47, equation 4.22],

dσ

dO
=
∑
ab

dz1dz2dφ3

{
IMC(O,3)

(
dσ̄

(f)
ab

dφ3

∣∣∣∣∣
ev

− dσ̄ab
dφ3

∣∣∣∣
MC

)

+ IMC(O,2)

[
− dσ̄

(f)
ab

dφ3

∣∣∣∣∣
ct

+
dσ̄ab
dφ3

∣∣∣∣
MC

+
1

I2

(
dσ̄

(b)
ab

dφ2

+
dσ̄

(sv)
ab

dφ2

)

+
1

I2̃

(
dσ̄

(c+)
ab

dφ2dx

∣∣∣∣∣
ev

+
dσ̄

(c−)
ab

dφ2dx

∣∣∣∣∣
ev

)
− 1

I2̃

(
dσ̄

(c+)
ab

dφ2dx

∣∣∣∣∣
ct

+
dσ̄

(c−)
ab

dφ2dx

∣∣∣∣∣
ct

)]}
.

(2.71)

In practice, we can use a procedure where we generate events and counter events,
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which we then combine to get the full integral above. In particular, we can then

get a prediction for the total integrated cross section by combining [47, equation

4.25],

σtot = IS + IH, (2.72)

where [47, equations 4.23,4.24],

IH =
∑
ab

∫
dz1dz2dφ3

(
dσ̄

(f)
ab

dφ3

∣∣∣∣∣
ev

− dσ̄ab
dφ3

∣∣∣∣
M

)

IS =
∑
ab

∫
dz1dz2dφ3

[
− dσ̄

(f)
ab

dφ3

∣∣∣∣∣
ct

+
dσ̄ab
dφ3

∣∣∣∣
MC

+
1

I2

(
dσ

(b)
ab

dφ2

+
dσ

(sv)
ab

dφ2

)
+

1

I2

(
dσ

(c+)
ab

dφ2dx

∣∣∣∣∣
ev

+
dσ

(c−)
ab

dφ2dx

∣∣∣∣∣
ev

)

− 1

I2

(
dσ̄

(c+)
ab

dφ2dx

∣∣∣∣∣
ct

+
dσ̄

(c−)
ab

dφ2dx

∣∣∣∣∣
ct

)]
.

(2.73)

A full description of the technicalities in implementing this is given in sections

4.5 and 4.6 of reference [47]. Observing that the matrix element calculation will

provide the best description of hard emissions, we can try to construct a procedure

for using the matrix element calculation when emissions are hard and using the

shower when emissions are soft and collinear. This is the main idea behind

multijet merging methods, which introduces a cut QC on emissions with partons

above the cut described by the matrix element and below the cut described by

the parton shower.

The MEPS@NLO method[48, 49] does this by combining towers of matrix elements

with increasing number of jets combined into one inclusive sample. This is

depicted pictorially in fig. 2.6. Similar to the construction of MC@NLO, one has

to be careful to avoid double counting or missing areas of phase space, the details

of which can be found in [31, Chapter 5.5.3].

Whilst not relevant for the HEJ description detailed in the next chapter, the

discussion of parton shower and multijet merged shower formalisms is important

in the later chapters for us to distinguish the effects of the parton shower

resummation and the resummation of high energy logarithms.
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Figure 2.6: Diagrammatic representation of towers of matrix elements calculated
at NLO which are combined into one inclusive MEPS@NLO sample. Taken from a
talk by Stefan Höche [9].
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Chapter 3

QCD physics in the high energy

limit: An overview of the High

Energy Jets framework

In this chapter we discuss the behaviour of QCD amplitudes for 2→ n scattering

in the limit of large separation of energy scales. We begin the discussion by

defining what we mean by “high energy limit” of particle scattering by looking at

Regge theory[50], a theory which predates the modern theory of QCD. We then

go on to show how we can build upon the ideas of Regge theory to construct

amplitudes which are accurate at leading logarithm in the high energy limit and

how these form the basis of the HEJ formalism. In contrast to what was discussed

in chapter 2 the logarithms discussed in this chapter arise in the high energy

limit for hard, wide-angled emissions and are thus the basis of a completely

separate discussion. Finally, we conclude by discussing how one can implement

resummation from fixed order event input using the HEJ2 software package.

3.1 Regge limits

We start by defining the Regge limit of scattering amplitudes where the centre of

mass energy is much larger than the transverse energy scale: ŝ � t̂. For 2 → 2

scattering this limit is equivalent to having a large rapidity separation in the final
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state as we will demonstrate. Firstly, we will again use the light-cone coordinates

p± = E ± pz, (3.1)

which allows us to re-express particle momenta as

p = (p+, p−, p⊥), (3.2)

with the dot product of two vectors now given by,

p · q =
1

2

(
p+q− + p−q+

)
− p⊥ · q⊥. (3.3)

Given these definitions, we can write the incoming momenta as

pa = (xa
√
s, 0, 0)

pb = (0, xb
√
s, 0),

(3.4)

and the outgoing momenta go from the form

p = p⊥(cosh(y), cos(φ), sin(φ), sinh(y)), (3.5)

to

p1 = (|p⊥|ey1 , |p⊥|e−y1 , p⊥)

p2 = (|p⊥|ey2 , |p⊥|e−y2 ,−p⊥).
(3.6)

We now explicitly compute expressions for the Mandlestam variables from the

expressions for momenta starting with ŝ,

ŝ = (p1 + p2)2

= 2p1 · p2

= (p+
1 p
−
2 + p−1 p

+
2 )− 2p1;⊥ · p2;⊥

=
(
|p⊥|2ey1−y2 + |p⊥|2ey2−y1

)
+ 2|p⊥|2

= |p⊥|2(2 cosh(∆y) + 2)

= 4|p⊥|2 cosh2

(
∆y

2

)
.

(3.7)

For the other two invariants, we choose to evaluate them in the zero momentum
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frame with xa = xb and y1 = −y2 = ∆y
2

,

t̂ = (pa − p1)2

= −2p1 · pa
= −p+

a p
−
1

= −xa
√
s|p⊥|e−y1

= −2|p⊥|2e
−∆y

2 cosh
∆y

2

û = (pb − p1)2

= −2p1 · pb
= −p−b p+

1

= −xb
√
s|p⊥|ey1

= −2|p⊥|2e
∆y
2 cosh

∆y

2
.

(3.8)

If we take the limit of large rapidity separation, ∆y →∞, we can see that

ŝ = p2
⊥e

∆y

|t̂| = p2
⊥

⇒ ∆y = log

(
ŝ

|t̂|

)
.

(3.9)

Thus the limit of large rapidity separation enforces the Regge limit ŝ � t̂. This

logarithm in eq. (3.9) is also the logarithm that causes issues in the perturbative

expansion of QCD in the high energy limit which we will discuss shortly. If we

want to extend this to 2→ n scattering, we will use the Multi-Regge-Kinematic

(MRK) limit which is the limit of strict rapidity ordering with large separation

between all final state particles, which also all have roughly equal transverse

momenta [14, section 2]:

y1 � y2 � · · · � yn |pi⊥| ≈ p⊥∀i. (3.10)

Computing the Mandelstam invariants for this process [51, section 3] shows that

this limit is equivalent to

ŝ� sij = 2pi · pj � p2
⊥, (3.11)

32



again stressing that the centre-of-mass energy is the largest of the energy scales

considered.

3.1.1 Regge limit of scattering amplitudes

In the Regge limit, it can be shown that the amplitude for 2 → 2 scattering, A,

can be written as a function of the energy scales, ŝ and t̂ [52, equation 5.3],

A(ŝ, t̂) ∼︸︷︷︸
ŝ→∞, t̂ fixed

ŝα(t̂), (3.12)

where α(t̂) is the leading t-channel singularity (singularity with largest real part)

of A, which corresponds to the spin of the exchanged particle of highest spin. For

2 → n parton scattering in the MRK limit, this corresponds to gluon exchange

between the two hardest jets.

We can explicitly write the negative helicity qQ→ qQ t-channel gluon exchange

contribution to the full amplitude using the Feynman rules in table 2.1 (initially

neglecting couplings and colour factors),

Mt = 〈p1|µ|pa〉
gµν

t̂
〈p2|ν|pb〉. (3.13)

From here we can make use of the identities given in eqs. (2.21) and (2.23) to

write this amplitude as,

Mt = 2
1

t̂
[p1p2]〈pbpa〉

High Energy≈ 2
ŝ

t̂
, (3.14)

where in the last step we have used that in the high energy limit we have

p1 ≈ pA ≈ p+ = (p+, 0, 0)

and

p2 ≈ pB = (0, p−, 0)

to combine the square and angled bracket terms into a ŝ. We can then combine the

contributions from all helicity configurations to write a square matrix element,now
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Figure 3.1: Example phase space explorer plot comparing leading order
(Madgraph) and the high energy limit given in eq. (3.16) as a function of rapidity
separation ∆y.

colour and helicity averaged, for quark-quark scattering [31, equation 5.154],

¯|M|2 =
C2
Fg

4
s

4

ŝ2 + û2

t̂2
(3.15)

As we saw in eq. (3.7), the invariants ŝ2 and û2 tend to the same value in the

MRK limit, which allows us to write the amplitude in a simple form

¯|M|2 =
C2
Fg

4
s

2

ŝ2

t̂2
. (3.16)

Numerically we can test this against leading order to make sure that this is indeed

the correct limit (fig. 3.1). In fact a consequence of Regge scaling is that when

we consider diagrams with t-channel gluon exchange for pp → jj scattering, we

find that in the high energy limit with ŝ = −û, they are in fact all related by

only a constant colour factor, i.e. [31, equation 5.159]

|Mqq′→qq′ |2 = |Mqq→qq|2 = |Mqq̄→qq̄|2 =
C2
Fg

4
s

2

ŝ2

t̂2

|Mqg→qg|2 =
CFCA

2
g4
s

ŝ2

t̂2

|Mgg→gg|2 =
C2
Ag

4
s

2

ŝ2

t̂2

(3.17)
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3.2 High Energy Jets

We now move on to discuss the High Energy Jets formalism [14–16], and the

procedure for which one can obtain a leading log prediction using the software

HEJ2 and fixed order event input.

3.2.1 Leading log description

As discussed in the previous sections, the 2 → n scattering amplitudes are

dominated in the MRK limit by t-channel octet exchange. As was shown in

reference [53] and as will be demonstrated in this chapter, these amplitudes

also factorise at the square matrix element level into a product of spinor string

contractions and t-channel pole. We will soon see that this factorisation can

be extended to higher multiplicities through use of effective emission vertices

[53]. These facts form the basis of the leading log HEJ description of the 2 → n

scattering amplitude depicted in fig. 3.5, and we will use a labelling convention

here to match this figure with pA and pB incoming and pi outgoing momentum

ordered in increasing/decreasing rapidity

First, we introduce currents which are functions of the incoming momenta, pA, pB,

and the outgoing momenta with the largest rapidity separation p1, pn. For qQ→
qQ scattering these take the form,

J1;µ = 〈p1|µ|pA〉
J2;µ = 〈pn|µ|pB〉

, (3.18)

where we will use Greek letters to be shorthand for gamma matrices with that

index. For 2→ 2 scattering then the full squared amplitude for quark scattering

is proportional to,

|M|2 ∝ J1;µJ
µ
2

t2
=
〈p1|µ|pA〉〈p2|µ|pB〉

t2
. (3.19)

A similar amplitude can be written for gluonic amplitudes with currents modified

to include gluons and polarisation vectors given in given in eqs. (2.26) and (2.27).

Moving beyond 2→ 2 scattering, for each additional parton in the final state we

will include a factor which we will call the Lipatov vertex [54, 55]. We will derive
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the form of the Lipatov vertex explicitly in the section which follows.

3.2.2 Motivating the Lipatov Vertex for real emissions

For a concrete example, we will derive the Lipatov vertex here for two to three

scattering qQ→ qgQ in the high energy limit.

pA

pB

p1

p2

(a)

pA

pB

p1

p2

pg

(b)

Figure 3.2: Diagrams which contribute to the process qQ→ qgQ at leading order.
(a) shows the 4 possible places where an extra emission (red) can be emitted off
of a quark leg and (b) contains the 3 gluon vertex contribution.

At leading order the 5 diagrams which contribute are given in fig. 3.2. Let us

first consider the contribution from one of the diagrams in fig. 3.2a, where the

additional emission is off of the pA quark line, which we will call D1. Utilising

the spinor-helicity notation defined earlier, we can write the contribution to the

amplitude as:

D1 = T1iT
d
iaT

d
2b

〈p1|µ|pA − pg|ν|pA〉
tAg

〈p2|µ|pB〉
tB2

(igs)
3εν(pg)

= T1iT
d
iaT

d
2b

〈p1|µ|pA|ν|pA〉 − 〈p1|µ|pg|ν|pA〉
tAg

〈p2|µ|pB〉
tB2

(igs)
3εν(pg)

(3.20)

Let us examine the long spinor string in the numerator more closely, the first

term can be rewritten as:

〈p1|µ|pA|ν|pA〉 = 〈p1|µ|pA〉〈pA|ν|pA〉 = 2pA;ν〈p1|µ|pA〉 (3.21)

And the second term can be written as:

〈p1|µ|pg|ν|pA〉 = 〈p1|µ|pg〉〈pg|ν|pA〉 (3.22)
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Let us examine how these terms compare in the high energy limit when contracted

with 〈p2|µ|pB〉. Using the Fierz Identity (eq. (2.23)) and writing the products in

terms of s invariants (eq. (2.21)) we see:

〈p2|µ|pB〉〈p1|µ|pA〉 = 2[pApB]〈p1p2〉 ∝
√
ŝ
√
ŝ = ŝ (3.23)

and

〈p2|µ|pB〉〈p1|µ|pg〉 = 2[pgpB]〈p1p2〉 ∝
√
ŝ
√
ŝgB, (3.24)

where ŝgB = (pg + pB)2.

From this we see that the second term is suppressed by a factor of
√

ŝgB
ŝ

. Now

if we impose the transverse momentum condition by letting all of the |p⊥| be

roughly equal we then can write this suppression as a function of the rapidity

separation of the final state partons. If we let the separation between the (p1, pg)

and (pg, p2) pairs each be ∆ then the suppression is:

√
ŝ
√
ŝgB =

√
|p⊥|e∆

|p⊥|e2∆
≈ e−

∆
2 . (3.25)

Then in the limit of strict rapidity ordering in the final state, ∆ → ∞ and

the second term in the difference of spinor strings in eq. (3.20) is exponentially

suppressed in ∆ compared to the first.

A similar argument can be made for neglecting one term in each of the diagrams

that contribute to fig. 3.2a. This lets us simplify these contributions from,

4∑
j=1

Dj =(igs)
3 T g1iT

d
iaT

d
2b ε1ν

〈1|ν|g〉〈g|µ|a〉+ 2pν1〈1|µ|a〉
s1gtb2

〈2|µ|b〉

+(igs)
3 T d1iT

g
iaT

d
2b ε1ν

2pνa〈1|µ|a〉 − 〈1|µ|g〉〈g|ν|a〉
tagtb2

〈2|µ|b〉

+(igs)
3 T g2iT

d
ibT

d
1a ε1ν

〈2|ν|g〉〈g|µ|b〉+ 2pν2〈2|µ|b〉
s2gta1

〈1|µ|a〉

+(igs)
3 T d2iT

g
ibT

d
1a ε1ν

2pνb 〈2|µ|b〉 − 〈2|µ|g〉〈g|ν|b〉
tbgta1

〈1|µ|a〉

, (3.26)
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where the blue terms are suppressed compared to the red terms, to:

4∑
j=1

Dj =− ig3
s 〈1|µ|a〉〈2|µ|b〉 ε1ν

×
(

2pν1
s1gtb2

T g1iT
d
iaT

d
2b +

2pνa
tagtb2

T d1iT
g
iaT

d
2b +

2pν2
ta1s2g

T g2iT
d
ibT

d
1a +

2pνb
tbgta1

T d2iT
g
ibT

d
1a

)
.

(3.27)

At this point, we will again switch to looking at momenta in terms of light cone

coordinates. In the high energy limit we can write eq. (3.27) as:

4∑
j=1

Dj = −ig3
s 〈1|µ|a〉〈2|µ|b〉 ε1ν

×
(

pν+
(p+ · pg)tb2

T g1iT
d
iaT

d
2b −

pν+
(p+ · pg)tb2

T d1iT
g
iaT

d
2b +

pν−
ta1(p− · pg)

T g2iT
d
ibT

d
1a −

pν−
ta1(p− · pg)

T d2iT
g
ibT

d
1a

)
.

(3.28)

At this point we can insert the definition of the Lie algebra,

[T a, T b]ij = ifabc(Tc)ij, (3.29)

to express our sum of the first 4 diagrams in the form:

4∑
j=1

Dj = ig3
s 〈1|µ|a〉〈2|µ|b〉 ε1νf

gdeT
e
1aT

d
2b

ta1tb2

(
pν+

(p+ · pg)
ta1 +

pν−
(p− · pg)

tb2

)
. (3.30)

We notice now that the the colour pre-factor is exactly the same as the pre-

factor for the diagram with the three gluon vertex (fig. 3.2b), which will allow

us to combine these terms in a simple way. We now turn our attention to what

happens to the three gluon contribution in the high energy limit. The diagram
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can be expressed as:

D5 = −ig3
s 〈1|ρ|a〉〈2|µ|b〉 ε1νf

gdeT
e
1aT

d
2b

ta1tb2

(
gρµ(q1 + q2)ν + 2gµνpρg − 2gνρpµg

)
(3.31)

→ −ig3
s 4pρ+p

µ
−e

iαε1νf
gdeT

e
1aT

d
2b

ta1tb2

(
gρµ(q1 + q2)ν +

4pµ+p
ν
− + 4pµ−p

ν
+

ŝ
pρg −

4pν+p
ρ
− + 4pν−p

ρ
+

ŝ
pµg

)
(3.32)

= −ig3
s 4eiαε1νf

gdeT
e
1aT

d
2b

ta1tb2

(
(p+ · p−)(q1 + q2)ν +

1

ŝ

{
4pµ+p

ν
−p

ρ
+p

µ
−p

ρ
g − 4pν+p

ρ
−p

ρ
+p

µ
−p

µ
g

})
(3.33)

= ig3
s 〈1|µ|a〉〈2|µ|b〉ε1νf

gdeT
e
1aT

d
2b

ta1tb2

(
−(q1 + q2)ν − 2(p+ · pg)

(p+ · p−)
pν− +

2(p− · pg)
(p+ · p−)

pν+

)
,

(3.34)

where in the last line we extracted a factor of 4(p+ ·p−) = 〈1|µ|a〉〈2|µ|b〉 from each

of the terms between the brackets. We can now write the full 2 → 3 amplitude

in the high energy limit as:

AqQ→qgQ =
5∑
j=1

Dj = ig3
s 〈1|µ|a〉〈2|µ|b〉 ε1νf

gdeT
e
1aT

d
2b

ta1tb2
Ṽ ν , (3.35)

with V ν being given by,

V ν =
pν+

(p+ · pg)
ta1−

pν−
(p− · pg)

tb2− (q1 + q2)ν +
2(p+ · pg)
(p+ · p−)

pν−−
2(p− · pg)
(p+ · p−)

pν+ (3.36)

Let us compare the squared eq. (3.35) with the squared qQ → qQ amplitude.

The colour and helicity summed and averaged qQ → qQ square matrix element

in the high energy limit is given by:

|M̄qQ→qQ|2 =
1

4(N2
C − 1)

||〈1|µ|a〉〈2|µ|b〉||2 ·
(
g2
sCF

1

t1

)
·
(
g2
sCF

1

t2

)
, (3.37)

whereas also in the high energy limit, the qQ→ qgQ square matrix element is:

|M̄qQ→qgQ|2 =
1

4(N2
C − 1)

||〈1|µ|a〉〈2|µ|b〉||2·
(
g2
sCF

1

t1

)
·
(
g2
sCF

1

t2

)
·
(
−g

2
sCA
ta1tb2

V νVν

)
.

(3.38)

Thus the qQ→ qgQ squared matrix element can be written as the product of the
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qQ → qQ squared matrix element and a term proportional to the square of the

V ν expression, which we will call the “Lipatov Vertex”. In practice we used the

symmeterised version of the Lipatov Vertex where we average over the incoming

and outgoing momenta:

V ρ (q1, q2) =− (q1 + q2)ρ

+
pρA
2

(
q2

1

pg · pA
+
pg · pB
pA · pB

+
pg · p2

pA · p2

)
+ pA ↔ p1

− pρB
2

(
q2

2

pg · pB
+
pg · pA
pB · pA

+
pg · p1

pB · p1

)
− pB ↔ p2,

(3.39)

From this we generalise to qQ → qg . . . gQ square amplitudes by keeping this

factorised approach and including an additional Lipatov vertex factor for each

additional gluon in the amplitude. This vertex can be verified to be correct by

comparing to LO matrix elements in the high energy limit. This forms the basis

on how we approximate real corrections to all orders in the MRK limit, we now

move on to discuss implementing the MRK limit to the virtual corrections as

well.

3.2.3 A brief aside on BFKL resummation

A related formalism for computing cross sections of high energy collisions is that of

Balitsky, Fadin, Kuraev and Lipatov (BFKL) [54, 56, 57]. In short, one calculates

cross sections using the integral form,

σ =

∫
d2ka
2πk2

a

∫
d2ka
2πk2

a

Φa(ka)Φb(kb)︸ ︷︷ ︸
Impact factors

G(ka, kb)︸ ︷︷ ︸
Scattering Green’s function

, (3.40)

where the integral is done over process dependent “Impact factors” and process

independent Green’s function describing the scattering process. This Green’s

function is traditionally calculated by assuming a strong ordering in rapidity in

the final state, and integrating over the rapidity differences between interactions.

Additional emissions are included through the use of an effective vertex (see next

section) appearing inside the Green’s function. Details on how one can perform

calculations within the BFKL framework can be found in references [58–60] and

in chapter 5 of [31].
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Figure 3.3: The one loop corrections to the gg scattering amplitude that
contribute at leading logarithm.

The main reasons to mention the BFKL factorisation is to stress although we

will use some of the BFKL terminology in later sections, the approach taken here

for the HEJ framework has the advantage of being fully factorisable at the level

of the square matrix element, and does not include any approximations on the

available phase space from fixed order. In particular we will label configurations

as “FKL” if they satisfy the following criteria:

1. The flavour of the most backward outgoing parton has to match the flavour

of the backward incoming parton.

2. The flavour of the most forward outgoing parton has to match the flavour

of the forward incoming parton.

3. All other outgoing partons have to be gluons.

This is motivated by these being the configurations which permit the maximum

number of t-channel gluons, i.e. the LL contribution.

3.2.4 Motivating the Lipatov Ansatz for virtual corrections

To motivate our treatment of the virtual corrections, we will look at the one loop

corrections to the 2→ 2 scattering. We will look here at gg, but one can repeat

a similar calculation in the other channels with gluon exchange as the important

physics here is in the poles of loop momenta.

From the Feynman rules given in table 2.1, we can calculate the the one loop

correction by combining the contribution from the diagram with two gluons
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exchanged in the t-channel with the contributions from the crossed diagram

(see fig. 3.3). Looking at the former first, we can write the amplitude in the

high energy limit as a colour piece and a kinematic piece [31, equation 5.187]

(neglecting external polarisation vectors),

M≈ g4
sf

aa′cfa
′d0c′f cb

′bf c
′d1b′︸ ︷︷ ︸

Colour piece

I︸︷︷︸
kinematic piece

, (3.41)

with the kinematic piece being given by an integral over loop momenta l [31,

equation 5.189],

4ŝ2

∫
d4l

(2π4)

[
1

(pa + l)2 ·
1

l2
· 1

(pb − l)2 ·
1

(q − l)2

]
. (3.42)

We can then evaluate the integral above, again in the high energy limit, to arrive

at a simple form for the diagram,

M≈ 16παs

CA
· faa′cfa′d0c′f cb

′bf c
′d1b′ · ŝ−t̂ log

ŝ

−t̂ ε(t̂), (3.43)

where we have introduced the function ε(t̂)1 which is given by[31, equation 5.193],

ε(t̂) = αsCAt̂

∫
d2l⊥
(2π)2

1

l2⊥(q − l)2
⊥
. (3.44)

The above integral expression is not finite, so we will need to make use of a

regularisation scheme. Introducing a regularisation scale µ to deal with the IR

divergence results in the expression we will define as,

ω0(q) := εreg(t̂) = −αsCA
4π

log

(
q2
⊥
µ2

)
. (3.45)

Returning to the one loop virtual correction, we can combine the eq. (3.43) with

the crossed diagram to obtain the full O(αs) virtual correction [51, equation 102],

M' −8παs
ŝ

t̂
fada

′
f bdb

′
ln

ŝ

−t̂ ε(t̂). (3.46)

1Note that this function is also commonly called α(t̂), but we have used the ε notation here
to avoid confusion with eq. (3.12)
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To extend this description to n-loops, we will employ the use of the Lipatov

Ansatz [54], which states that the leading log accurate virtual corrections in ŝ
t̂

can be included by performing the following replacement,

1

ti
→ 1

ti
exp [ω0(qi)(yi−1 − yi)] . (3.47)

One can check that performing this substitution on the 2 → 2 amplitude (∝ ŝ
t̂
),

will reproduce the kinematic terms in eq. (3.46) when we truncate the exponential

to first order in αs. It has been checked that this exponential form for the virtual

corrections in the high energy limit is valid even for subleading configurations

[14, 61–64].

3.2.5 HEJ resummation

In the remainder of this section and in the section which follows we will discuss

putting the pieces together in the HEJ formalism. Formally the leading-order

matched leading-log HEJ cross section for (2→ 2) scattering is given by,

σresum,match
2j =

∑
f1,f2

∑
m

m∏
j=1

(∫ pBj⊥=∞

pBj⊥=0

d2pBj⊥
(2π)3

∫
dyBj

2

)
(2π)4 δ(2)

(
m∑
k=1

pBk⊥

)

× xBa fa,f1(xBa , Q
B
a ) xBb fb,f2(xBb , Q

B
b )

∣∣∣Mf1f2→f1g···gf2

LO

({
pBj
})∣∣∣2

(ŝB)2

×(2π)−4+3m 2m

×
∞∑
n=2

∫ p1⊥=∞

p1⊥=p⊥,min

d2p1⊥
(2π)3

∫ pn⊥=∞

pn⊥=p⊥,min

d2pn⊥
(2π)3

n−1∏
i=2

∫ pi⊥=∞

pi⊥=λ

d2pi⊥
(2π)3

(2π)4 δ(2)

(
n∑
k=1

pk⊥

)

× Ty

n∏
i=1

(∫
dyi
2

)
Oemj

(
m−1∏
l=1

δ(2)(pBJl⊥ − jl⊥)

) (
m∏
l=1

δ(yBJl − yJl)
)
O2j({pi})

× (ŝB)2

xBa fa,f1(xBa , Q
B
a ) xBb fb,f2(xBb , Q

B
b )

xafa,f1(xa, Qa) xbfb,f2(xb, Qb)

ŝ2

∣∣∣Mf1f2→f1g···gf2

HEJ ({pi})
∣∣∣2∣∣∣Mf1f2→f1g···gf2

HEJ;LO

({
pBj
})∣∣∣2 ,

(3.48)

where,

• The first 2 lines (blue) represent the generation of f1f2 → f1g . . . gf2, m-jet
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input events with outgoing momenta pBj (here B is used to denote Born-level

rather than parton/jet labelling). In this form we perform the phase space

integration over particle transverse momenta and rapidity as described in

eq. (2.53) using the HEJ fixed order event generator or we use fixed order

input from another generator.

• Line 3 (pink) is simply a factor accounting for the different multiplicities

between fixed-order and resummation events.

• Lines 4-5 (red) represent the integration over the resummation phase space.

Here we again see integrals over the transverse momenta and rapidity of the

particles in the final state. We have also introduced a rapidity ordering

operator Ty, m-jet projector for the resummation phase space Oemj, 2-

jet projector for the Born phase space O2j and a soft p⊥ regulator λ for

additional radiation. The delta functions fix the relationship between the

resummation and fixed order momenta. The first sets each transverse fixed-

order jet momentum to be a function of the resummation momenta. The

second delta forces the rapidities of resummation and fixed-order jets to be

the same.

• Line 6 (purple) contains terms which reweight the PDFs to the resummation

phase space.

The helicity and colour summed matrix element
∣∣∣Mf1f2→f1g···gf2

HEJ ({pi})
∣∣∣2 is made

up of a current piece and Lipatov vertices for any additional emissions and the t̂

channel momenta have been replaced using the Lipatov Ansatz.

3.3 Summary of HEJ formalism and performing

resummation with the HEJ2 software package

We now discuss how one performs resummation in HEJ2 in practice. As input,

HEJ2 requires leading-order (LO) events, generated with e.g. Sherpa [65] or

MadGraph5 aMC@NLO [66]. For higher jet multiplicities exact fixed-order

generation becomes increasingly time consuming. To address this problem, HEJ2

includes the fast HEJ fixed-order generator HEJFOG based on the high-energy

approximation of the leading-order matrix elements.
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Using the kinematics of each (approximate or exact) input event, we identify

whether resummation is possible. Resummable event types include FKL classified

events as described in section 3.2.3 which are the configurations which encompass

the LL accuracy. We also label an event as resummable for some implemented NLL

configurations which will be outlined in the coming sections. For each event that

permits resummation, HEJ generates a number of events in the resummation phase

space, which include real and virtual corrections to all orders in the high-energy

limit using the Lipatov Vertex discussed in section 3.2.2 and the Lipatov Ansatz

discussed in section 3.2.4. Together with the unchanged non-resummable (NR)

input events, the generated resummation events are then passed on to any number

of output event files and/or analyses. This standard control flow is depicted in

figure 3.4. It can be modified through HEJ options, such that e.g. non-resummable

events are discarded.

Leading-order generator

Sherpa
MadGraph5 aMC@NLO

...

HEJFOG

HEJ

Output files

LHEF
HepMC

HDF5

Analyses

Rivet
Custom

resummable events

non-resummable events

approximated
LO eve

nts

LO
+ (N)LL

(N)LL

LO

Figure 3.4: Diagram representing the standard HEJ use case. Taken from reference
[2].

The first type of event kinematics for which resummation is implemented are

leading-logarithmic configurations defined as FKL configurations in section 3.2.3.

The criteria given remain the same in processes involving virtual photons and/or

Z bosons. For virtual W bosons, the incoming and outgoing flavours in criteria 1

and 2 only have to match up to the change induced by W boson couplings. In the

case of a final-state Higgs boson, configurations where the backward (forward)

incoming parton is a quark or antiquark and the most backward (forward)

outgoing particle is the Higgs boson are formally subleading. Nevertheless, we

also implement resummation for such configurations [26]. Depending on the

process, resummation is also implemented for two further types of next-to-leading-

logarithmic (NLL) configurations. These configurations differ from LL ones as

follows.

• Unordered gluon (UNO): Either the most forward or most backward

outgoing parton is a gluon, and the next outgoing parton in rapidity order
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Process pure LL LO + LL NLL

unordered gluon quark-antiquark

≥2 jets HEJ 2.0 HEJ 2.0 HEJ 2.0 HEJ 2.1
H + 1 jet — HEJ 2.2 N/A N/A
H + ≥2 jets HEJ 2.0 HEJ 2.0 HEJ 2.0 —
W + ≥2 jets HEJ 2.1 HEJ 2.1 HEJ 2.1 HEJ 2.1
Z/γ + ≥2 jets HEJ 2.2 HEJ 2.1 HEJ 2.1 —
W±W± + ≥2 jets — HEJ 2.2 — —

Table 3.1: Implemented processes and higher-order logarithmic corrections in
HEJ. The “pure LL” column lists processes implemented in the HEJFOG. The NLL

columns include both pure NLL and NLL matched to LO.

is a quark or antiquark whose flavour matches the one of the respective

incoming parton.

• Quark-antiquark (QQBAR): A pair of final-state gluons that are adjacent

in rapidity is replaced by a quark-antiquark pair.

Formally, these configurations contribute at NLL accuracy as they have one lower

power of s compared to strictly gluonic exchanges as seen from eq. (3.12). The

current status of the implemented resummation is summarised in table 3.1.

The resummation events generated for the LL and supported NLL configurations

are given a final matrix element weight of

|MHEJ|2
|MLO|2
|MHEJ,LO|2

, (3.49)

whereMHEJ is the all-order scattering matrix element in the high-energy approx-

imation, MHEJ,LO its leading-order truncation, calculated for the kinematics of

the input event and |MLO|2 is taken from the LO input and ensures LO accuracy

event by event.

To illustrate the structure of the HEJ matrix element, we first focus on LL

configurations in pure multijet production. We denote these configurations as

fafb → fa · · · fb, where fa is the flavour of the incoming parton in the backward

direction with momentum pa. Correspondingly, we use fb and pb for the flavour

and momentum of the forward incoming parton. The final state contains n

partons with momenta p1, . . . , pn, which we order by rapidity, viz. y1 < · · · < yn.

The most backward outgoing parton has flavour fa, the most forward one flavour
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(a) (b)

Figure 3.5: 2 → n scattering (a) in an FKL configuration (b) expressed as a
factorised amplitude in the HEJ formalism

fb, and all other outgoing partons are gluons. Using this notation, we can write

the general form of the squared HEJ matrix element as

∣∣∣Mfafb→fa···fb
HEJ

∣∣∣2 = Bfa,fb(pa, pb, p1, pn)

·
n−2∏
i=1

V(pa, pb, p1, pn, qi, qi+1)

·
n−1∏
i=1

W(qi⊥, yi, yi+1),

(3.50)

where qi = pa−
∑i

j=1 pj is the t-channel momentum after the emission of parton

i. Bfa,fb is derived from the modulus square of the Born-level matrix element for

the process fafb → fafb, V accounts for the real emission of the n − 2 gluons in

between fa and fb, andW incorporates the virtual and unresolved real corrections.

This can be seen diagrammatically in fig. 3.5, where we should stress that these

are not Feynman Diagrams but they are still used to express the structure of the

amplitudes.

The Born-level function Bfa,fb is given by

Bfa,fb(pa, pb, p1, pn) =
(4παs)

n

4(N2
C − 1)

Kfa

q2
1

Kfb

q2
n−1

‖Sfafb→fa···fb‖2, (3.51)

where αs is the strong coupling constant and NC = 3 the number of colours.

Kfa and Kfb are generalised colour factors depending on the respective parton

flavour and, in the case of gluons, also the parton momentum. For quarks and

antiquarks one finds Kf = CF =
N2
C−1

2NC
; the factor Kg for gluons is derived in [15].

47



Sfafb→fa···fb denotes the contraction of two currents:

‖Sfafb→fa···fb‖2 ≡ ‖ja · jb‖2 =
∑

λa=+,−
λb=+,−

|jµ,λa(p1, pa)j
λb
µ (pn, pb)|2, (3.52)

where jλµ is the current

jλµ(p, q) = ūλ(p)γµu
λ(q) (3.53)

for helicity λ. HEJ employs the symbolic manipulation language FORM [67] to

generate compact symbolic expressions for current contractions.

The real corrections are given by contractions of Lipatov vertices [68]:

V({p}) = − CA
q2
i q

2
i+1

Vµ({p})V µ({p}) (3.54)

where Vµ is given in eq. (3.39) and with CA = NC .

Finally, the virtual and unresolved real corrections W can be expressed in terms

of the regularised Regge trajectory ω0 defined in section 3.2.4:

W(qj⊥, yj, yj+1) = exp[ω0(qj⊥)(yj+1 − yj)]. (3.55)

The generalisations to NLL configurations and additional non-partonic final state

particles are derived in [1, 22, 25, 26, 68–70]. In all cases one finds a factorisation

into a Born-level function, resolved real emissions, and virtual and unresolved real

corrections. In the absence of interference, one recovers the same structure as in

equation (3.50). In particular, the functions V and W comprising the all-order

corrections are universal, whereas the Born-level function B is process dependent.

When testing a new process or looking at including higher log corrections inside

the HEJ framework we can look at phase space explorer plots such as fig. 3.1

and already published studies comparing to fixed order and data as test of

the consistency of the framework. HEJ has been validated against data in

experimental studies of pure multijet production [18–21], lepton pair production

via a virtual W boson, photon, or Z boson in association with two or more

jets [22–25], and Higgs boson production with jets [26].
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3.4 NLO bin-by-bin matching

Some observables (e.g. hardest jet p⊥) are usually described well by fixed

order calculation even before adding the higher order logarithms included in

HEJ resummation. In order to have valid predictions accross all of phase space,

including regions away from the high energy limit, we want to include these fixed

order contributions. In order to include the full NLO effects in the HEJ predictions,

we can make use of an NLO matching procedure to achieve predictions which are

NLO accurate with LL corrections. In this section we derive such a procedure,

starting with the total cross sections σ, and then generalising to each bin in each

histogram.

Starting with the fixed order results we can write,

σLOn-jet = f 2→n
n-jetα

n
s , (3.56)

for leading order, and

σNLOn-jet = f 2→n
n-jetα

n
s︸ ︷︷ ︸

σLOn-jet

+
(
f 2→n+1
n-jet + f 2→n+1

n+1-jet

)
αn+1
s , (3.57)

for next-to-leading order. Here we use the notation that f 2→n
k-jet represents 2 → n

partons clustered into k jets. Note the first term in the brackets in eq. (3.57)

contains the virtual one-loop corrections plus the contribution of 2 → n + 1

partons clustered into n jets.

The 2-jet inclusive cross section from HEJ contains contributions to all orders in

the coupling:

σHEJn-jet =
∞∑
n=2

∞∑
2≤m≤n

h2→n
m-jetα

n
s = h2→2

2-jetα
2
s +

(
h2→3

2-jet + h2→3
3-jet

)
α3
s +O(α4

s). (3.58)

The HEJ results are all currently matched to leading order meaning that for all

n, we have the condition,

f 2→n
n-jet = h2→n

n-jet. (3.59)

For our matching procedure, we will also need to consider HEJ truncated to NLO.

That is HEJ limited to 1 loop corrections and with no more than one additional
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emission,

σHEJ@NLO
2-jet = f 2→2

2-jetα
2
s + f 2→3

3-jetα
3
s + h2→3

2-jetα
3
s. (3.60)

From these definitions, we can define an NLO reweighting factor for 2 jets,

σNLO2-jet

σHEJ@NLO
2-jet

=
f 2→2

2-jetα
2
s + f 2→3

3-jetα
3
s + f 2→3

2-jetα
3
s

f 2→2
2-jetα

2
s + f 2→3

3-jetα
3
s + h2→3

2-jetα
3
s

. (3.61)

This expression can be simplified and expanded in powers of αs using the standard

expansion,
1

1 + kαs
=
∞∑
n=0

(−k)nαns , (3.62)

which allows us to write,

σNLO2-jet

σHEJ@NLO
2-jet

= 1 +
(
f 2→3

2-jet − h2→3
2-jet

) [ ∞∑
n=0

(
−f 2→3

3-jet − h2→3
2-jet

)n(
f 2→2

2-jet

)n+1 αn+1
s

]
. (3.63)

When multiplied by the HEJ prediction in eq. (3.58) we get a result which is

accurate to next-to-leading order,

σHEJ2-jet

σNLO2-jet

σHEJ@NLO
2-jet

= f 2→2
2-jetα

2
s +

(
f 2→3

2-jet + f 2→3
3-jet

)
α3
s︸ ︷︷ ︸

NLO accurate

+O(α4
s). (3.64)

We can also show that the reweighting factor in eq. (3.63) allows us to

maintain the LL accuracy of HEJ in the high energy limit. In the Regge limit,

the HEJ amplitudes tend to the same limit as fixed order and it must be

that
(
f 2→3

2-jet − h2→3
2-jet

)
→ 0. Thus the reweighting factor tends to 1 and we just

have the (LL accurate) HEJ result.

Equation (3.64) describes the matching of the total cross sections of HEJ to NLO,

but we can also make use of an analogous expression for NLO matching each bin

in a two-jet inclusive observable. The only thing then we have not discussed in

detail is how to obtain a prediction for HEJ@NLO from fixed order input. As of

HEJ2.2, the simplest way of doing this is to add the three jet leading order result

to to the exclusive 2j HEJ@NLO result obtained from using the following option in

the yaml config file:

NLO truncation:
enabled: true
\NLO order: 2 # number of jets
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This flag affects the HEJ resummation in two ways: the first is that it changes the

number of additional emissions in a resummation phase space point to be chosen

as 0 or 1 with equal probability instead of by a Poisson distribution around

an estimated mean. The second is that if the number of additional emissions

was chosen to be 0, truncate the exponential form of the virtual corrections

exp {α̂(q)∆y} to linear order 1 + α̂(q)∆y to account for one-loop corrections. If

the number of additional emissions was chosen to be 1, we instead truncate the

exponential to 0th order and multiply by 1.

We will see the impact of this matching procedure in the chapters which follow.
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Chapter 4

Leading Log description of

same-sign WW pair production +

jets

This chapter discusses the HEJ implementation of Same-SignWW pair production

in association with jets, available as part of the 2.2 release. Here we start with

a discussion of the experimental relevance of this process as a non-removable

background to Vector Boson Scattering studies. We then go on to derive the

relevant HEJ amplitudes for the process using the groundwork for the construction

of leading log accurate amplitudes laid out in the publication Constructing All-

Order Corrections to Multi-Jet Rates [14]. We then discuss the impact of these

logarithms, mirroring the setup of a recent CMS analysis [71]. Finally, we

conclude by discussing the impact of NLO matching in the HEJ prediction, using

the ideas outlined in section 3.4.
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4.1 Vector Boson Scattering and unitarity

(a)

(b) (c)

(d) (e)

Figure 4.1: Five processes contributing to longitudinally polarised W scattering
W+
LW

−
L → W+

LW
−
L at leading order (a) Involving the 4−V vertex (b,c) Involving

an intermediate Z boson or photon (d,e) Involving an intermediate Higgs boson

Firstly, we shall briefly discuss Vector Boson Scattering (VBS) as a process which

needs the contribution from Higgs couplings in order to be unitary. Vector boson

scattering describes the process V V → V V plus at least 2 jets where each V

may be a W or Z boson, and historically this was used by Lee, Quigg and

Thacker [72, 73] to impose an upper bound on the mass of the Higgs boson

of mh <
(

8π
√

2
3GF

)1/2

≈ 1 TeV (where GF is the Fermi constant). The two jets

here are important for the LHC and other pp colliders to be able to access the

V V → V V vertex. Looking initially at longitudinally polarised W scattering

W+
LW

−
L → W+

LW
−
L , there are 5 contributions at leading order we need to combine

depicted in fig. 4.1. The first comes from the 4 − V interaction which we shall

label iM4V . The second and third come from an exchange of Z/γ in the s

and t channels, labelled iMZ;s and iMZ;t respectively. Finally we will have the
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contribution with a Higgs boson exchange, again in the s and t channels which

we label iMh,s and iMh,t respectively. We will study these contributions starting

with momenta conventions as set out in reference [74], reproduced in fig. 4.1.

The momenta of the incoming/outgoing polarised W bosons (beam is in z-

direction) is given by,

p+ = (E, 0, 0, p), k+ = (E, p sin θ, 0, p cos θ)

p− = (E, 0, 0,−p), k− = (E,−p sin θ, 0,−p cos θ),
(4.1)

and the polarisation vectors are given by,

εL(p+) =
1

mW

(p, 0, 0, E), εL(k+) =
1

mW

(p, E sin θ, 0, E cos θ)

εL(p−) =
1

mW

(p, 0, 0,−E), εL(k−) =
1

mW

(p,−E sin θ, 0,−E cos θ).
(4.2)

Using the Feynman rule for the 4 − V vertex given in 2.2, we can write the

amplitude for the first diagram as,

iM4v = ig2 [2gσµgρν − gσρgµν − gσνgρµ] εL(p+)µεL(p−)νεL(k+)σεL(k−)ρ. (4.3)

Explicit calculation of the contractions of the polarisation vectors above, gives

the following expression for the amplitude (no approximations yet),

iM4v =
ig2

m4
W

[
2(p2 − E2 cos θ)2 − (p2 + E2)2 − (p2 + E2 cos θ)2

]
. (4.4)

We can then use the on-shell condition p2 = m2 to write a high energy

approximation of this amplitude,

iM4v = ig2 E
4

m4
W

[f1(θ)] + ig2 E
2

m2
W

[f2(θ)] +O
(

E

mW

0)
(4.5)
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where we have taken the limit E � mW and the fi are functions of the parameter

theta. We know that this is not the full amplitude, but if we were to just look at

eq. (4.5), we would see a scaling with the fourth power of Energy which means

the amplitude would clearly violate unitarity at high energies. Let us now add in

the contribution from Z/γ exchange to attempt to repair the unitarity violation.

Calculation of the four diagrams MZ;s, MZ;t (two diagrams each to account for

Z/γ) from the Feynman rules in tables 2.1 and 2.2 is straightforward but tedious.

The
(

E
mW

)4

terms actually cancel when combining amplitudes and we are left

with only a contribution which grows like
(

E
mW

)2

in the high energy limit [74,

equation 19],

iM4v + iMZ;s + iMZ;t = i
g2

4m2
w

[
s+ t+O(m2

w)
]
. (4.6)

However, this amplitude still grows with energy which hints that we are still

missing a contribution. Consider now the s-channel Higgs Boson exchange Mh,s

which can be written:

Mh,s = (igm2
W )gµνg

ρσ i

s2 −m2
h + iε

εµ(p+)εν(p−)ερ(k+)εσ(k−) (4.7)

which simplifies to a kinematic factor multiplied by a contraction of polarisation

vectors,

Mh,s =
−ig2m2

W

s2 −m2
h + iε

εµ(p+)εµ(p−)ερ(k+)ερ(k−). (4.8)

This can then be simplified further in the high energy limit E � mW , to get the

result:

Mh,s =
−ig2

4m2
W

s2

s2 −m2
h + iε

. (4.9)

So finally when we sum all of the contributions we get something which now does

not grow as a function of Energy in the high energy limit

iM4v + iMZ;s + iMZ;t + iMh;s + iMh;t ∼ O
(
E0

m0
W

)
. (4.10)
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Experimentally this is important, as studying vector boson scattering at high

energies therefore is a study into not only the 4 vector boson vertex but also the

electroweak Higgs couplings that are needed as a necessary background.

4.2 Same-Sign WW production in VBS studies

(a) (b)

(c)

Figure 4.2: Three processes contributing to pp → jjW±W± at (a) O(g4
w), (b)

O(g2
wg

2
HWW ), (c) O(g2

wg
2
s)

Moving on to now include the jets in our discussion of the process pp → jjV V

in the high energy limit. All possible V ∗V ∗ → V V processes can be inserted

between two quark lines to give this final state, as shown in fig. 4.2, which provides

a key opportunity to study the mechanism of electroweak symmetry breaking.

Observations of electoweak WWjj production was reported by both the ATLAS

[75] and CMS [76] collaborations. More recently this signal has been analysed in

more detail [77, 78] including data for differential distributions of the total cross

section.

In order to cleanly study the O(g4
w) and O(g2

wg
2
HWW ) contributions to the

amplitude, it is common to introduce VBS cuts to suppress the O(g2
wg

2
s)

contribution (hereby also referred to as the QCD contribution). However,

introducing such cuts directly leads to large logarithmic corrections to the QCD
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= +

Figure 4.3: Schematic illustration of the current, jWµ (pi, po, p`, p¯̀), defined in
Eq. (4.12) to describe the production of a W boson from a quark line with an
off-shell gluon (shown as a zigzag line).

contribution which still remains. Common VBS cuts include a restriction to

the dijet rapidity separation and dijet invariant mass for the hardest jets in

the sample, both of which will directly lead to an increase in the high energy

logarithms in s over t that are resummed in the high energy jets framework.

In the next section, we will outline how to describe these logs within the HEJ

framework.

4.3 Construction of the HEJ leading log amplitude

for same-sign WW production

We now begin the process of constructing the HEJ LL amplitude for the Same-

Sign WW process. At this point we will explicitly specify the process to be pp→
(W1 → `±1 ν`1)(W2 → `±2 ν`2)+ ≥ 2j, specifying explicitly the decay products of the

twoW bosons. As described in the previous chapter, for a given multiplicity, a HEJ

amplitude is built out of impact factors and Lipatov vertices. These multiplicities

are then combined with the Lipatov ansatz for virtual corrections in order to

achieve leading logarithmic accuracy in ŝ/p2
t at all orders in αs.

We begin with the impact factors which are independent of the number of gluons

in the amplitude and hence can be derived from the lowest order process where

they occur. The starting point is therefore the LO process:

q(pa)Q(pb)→ (W±
1 →)`(p`1)ν̄`(p¯̀

1
)(W±

2 →)`′(p`2)ν̄ ′`(p¯̀
2
)q′(p1)Q′(p2), (4.11)

where q and Q represent different quark or anti-quark flavours. There are eight

diagrams which contribute at LO, each similar to fig. 4.2c, which arise from the

qq′W vertices for each boson being assigned to different points on different quark

lines.

We define the following current to describe the production of a W boson from a
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quark line with an off-shell gluon, q(pi)→ (W → `¯̀)q′(po)g∗:

jWµ (pi, po, p`, p¯̀) =
g2
W

2

1

(p` + p¯̀)2 −m2
W + iΓWmW

[
ū−(p`)γαv

−(p¯̀)
]

×
(
ū−(po)γ

α(/po + /p` + /p¯̀)γµu
−(pi)

(po + p` + p¯̀)2
+
ū−(po)γµ(/pi − /p` − /p¯̀)γ

αu−(pi)

(pi − p` − p¯̀)2

)
,

(4.12)

as illustrated in fig. 4.3. The exact tree-level result can then be compactly

expressed as the following two contractions of two such currents:

iMHEJ,tree = g2
s

(
jWµ (pa, p1, p`1 , p¯̀

1
)gµνjWν (pb, p2, p`2 , p¯̀

2
)

q2

+
jWµ (pa, p1, p`2 , p¯̀

2
)gµνjWν (pb, p2, p`1 , p¯̀

1
)

q̃2

)
,

(4.13)

where q = pa−p1−p`1−p¯̀
1

and q̃ = pa−p1−p`2−p¯̀
2
. This amplitude remains exact

at O(α2
Wαs) within the HEJ framework. In particular, our full amplitudes already

achieve LO accuracy without the need for further matching with the exception of

channels with identical leptons or quarks. The extra contributions arising in these

special cases are suppressed in the MRK limit and do not affect the logarithmic

accuracy. They are nonetheless included through the fixed-order matching.

We now move on to construct the the Leading Logarithm accurate HEJ result

based of the ideas laid out in section 3.2. We write the amplitude as a sum of

two skeleton functions, each with its own tower of real and virtual corrections.

Interference between these is immediately included upon squaring the amplitude.

These skeleton functions are defined as

B = jWµ (pa, p1, p`1 , p¯̀
1
)gµνjWν (pb, pn, p`2 , p¯̀

2
),

B̃ = jWµ (pa, p1, p`2 , p¯̀
2
)gµνjWν (pb, pn, p`1 , p¯̀

1
),

(4.14)

which relate to the two possible combinations of leptons and quark lines. These

have corresponding planar t-channel momenta:

q1 = pa − p1 − p`1 − p¯̀
1
, qi = qi−1 − pi i = 2, ..., n− 1,

q̃1 = pa − p1 − p`2 − p¯̀
2
, q̃i = q̃i−1 − pi i = 2, ..., n− 1.

(4.15)

We refer to the corresponding momenta-squared as ti = q2
i and t̃i = q̃2

i for i =

1, ..., n − 1. We also define the rapidity differences of consecutive quarks/gluons
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Figure 4.4: Phase space explorer plots for uc → W+W+ + n jets for (a) 3 jets
and (b) 4 jets.

to be ∆yi = yi+1 − yi. The LL accurate matrix element is then given by

|MHEJ,reg

qQ→W±1 W±2 q′(n−2)gQ′
|2

= g4
s

CF
8Nc

(g2
sCA)n−2

×
(
|B|2

t1t(n−1)

exp(ω0(q(n−1)⊥)∆yn−1)
n−2∏
i=1

−V 2(qi, q(i+1))

tit(i+1)

exp(ω0(qi⊥)∆yi)

+
|B̃|2

t̃1t̃(n−1)

exp(ω0(q̃(n−1)⊥)∆yn−1)
n−2∏
i=1

−V 2(q̃i, q̃(i+1))

t̃it̃(i+1)

exp(ω0(q̃i⊥)∆yi)

+
2<{BB̃}√

t1t̃1

√
t(n−1)t̃b(n−1)

exp(ω0(
√
q(n−1)⊥q̃(n−1)⊥)∆yn−1)

×
n−2∏
i=1

−V (qi, q(i+1)) · V (q̃i, q̃(i+1))√
tit̃i

√
t(i+1)t̃(i+1)

exp(ω0(
√
qi⊥q̃i⊥)∆yi)

)
,

(4.16)

where V µ is defined in eq. (3.39). One can immediately check that at O(α4
Wα

2
s)

this exactly agrees with the summed, averaged and squared amplitude of

Eq. (4.13). One can extend this test to higher orders by comparing the result

of Eq. (4.16) with the virtual corrections removed (i.e. setting ω0(q2
⊥) = 0) at a

fixed order in αs to the corresponding LO result. In the MRK limit, these should

match. We illustrate this in figure 4.4 for squared matrix elements for sample

channels at α4
Wα

3
s and α4

Wα
4
s. For the 3 jet final state in figure 4.4(a), we use a
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momentum configuration of:

pi = pi;⊥(cos(φi), sin(φi), sinh(yi), cosh(yi))

pd;⊥ = p`;⊥ = pg;⊥ = 40 GeV

pν`;⊥ =
m2
W

2p`;⊥ (cosh (y` − yν`)− cos (φ` − φν`))
ps;⊥ = −(pd;⊥ + pe;⊥ + pνe;⊥ + pµ;⊥ + pνµ;⊥ + pg;⊥)

φd = 2π/3, φe = π/4, φµ = −π/2,
φνe = −π/4, φνµ = +π/2, φg = 0.4

yd = ye = yνe = ∆, ys = yµ = yνµ = −∆, yg = 0

(4.17)

For the 4 jet final state in figure 4.4(b) we use:

pi = pi;⊥(cos(φi), sin(φi), sinh(yi), cosh(yi))

pd;⊥ = p`;⊥ = pg1;⊥ = pg2;⊥ = 40 GeV

pν`;⊥ =
m2
W

2p`;⊥ (cosh (y` − yν`)− cos (φ` − φν`))
ps;⊥ = −(pd;⊥ + pe;⊥ + pνe;⊥ + pµ;⊥ + pνµ;⊥ + pg1;⊥ + pg2;⊥)

φd = π, φe = π/4, φµ = −π/2, φνe = −π/4
φνµ = +π/2, φg1 = π/2, φg2 = −π/3
yd = ye = yνe = ∆, ys = yµ = yνµ = −∆, yg1 = ∆/3, yg2 = −∆/3

(4.18)

The rapidity separation of the quarks and gluons is controlled by the parameter ∆

and hence the MRK limit is approached at the right-hand side of the plots. The

behaviour seen is not sensitive to the exact values of the transverse momentum or

the azimuthal angles. In both plots, we show the squared matrix element divided

by ŝ2, to achieve a finite non-zero value in the MRK limit. The exact LO result

(black, dotted line) and the approximation within HEJ (solid, red line) are very

similar throughout the range and converge to the same limiting value at large

∆. The plots also show the rich dynamics of the matrix elements which would

be missed at small values of ∆ if the limiting value was used throughout phase

space.

The LL accurate cross section is then given by the following sum over multiplicities

and integration over all phase space (where `l numbers the four leptons from the
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W decays):

σLLpp→W±W±+2j =
∑

f (A),f (B)

∞∑
n=2

n∏
i=1

(∫
d2pi⊥
(2π)3

∫
dyi
2

) 4∏
l=1

(∫
d2p`l⊥
(2π)3

∫
dy`l

2

)

×

∣∣∣MHEJ,reg

qQ→W±1 W±2 q′(n−2)gQ′

∣∣∣2
ŝ2

× xaf
(A)(xa, Qa) xbf

(B)(xb, Qb) (2π)4 δ2

(
n∑
k=1

pk⊥ +
4∑

m=1

p`m⊥

)
O2j({pj}).

(4.19)

We emphasise here that no approximation is made to the phase space being

integrated over, only within the matrix element itself. This integral can be

efficiently implemented in an exclusive Monte Carlo event generator giving

full flexibility to implement experimental cuts and distributions. Before this

integration, we first multiply the squared matrix element by reweighting factors

to implement fixed-order accuracy, as discussed in the next section.

4.3.1 Matching to Fixed Order

In the previous subsection, we have described how to construct the cross section

for pp → W±W±+ ≥ 2j at LL accuracy in ŝ/p2
t . In order to increase the

validity of the approach, we will supplement this with subleading terms which

will provide leading-order accuracy at each order in αs, up to the point where this

is computationally feasible. For this process, in this study, that is samples with 2,

3, 4, 5 and 6 jets at LO. We observe that the impact of adding higher multiplicity

fixed-order samples decreases with each multiplicity, and in particular that the 6-

jet sample has at most a few percent effect in any distribution so we are confident

that our results have converged.

The matching is then implemented using the methods of HEJ2 [79] which

reorganises the integral over phase space to supplement fixed-order samples

at each order with real and virtual corrections such that leading-logarithmic

accuracy is maintained at all orders in αs and additionally leading-order accuracy

is achieved for the n-jet components for n = 2–6. The fixed-order input is given

as Les Houches events and can be taken from any generator. In this study we

have used Sherpa [65] to generate the fixed-order input.
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Figure 4.5: Plot of cross section versus ∆R for pp→ W+W++2j using an example
experimental setup. In red is the full HEJ amplitude, in blue the interference
term from exchanging the two W bosons have been removed and in orange, the
subdominant WW configuration is removed.

Finally, we rescale all the final HEJ2 predictions to match the total cross section

to the inclusive NLO cross section for each scale choice. However, for the setup

described in section 4.4, and as discussed there, this turns out to have a negligible

impact in this case.

4.3.2 Impact of interference terms

One immediate question is whether or not we actually need to include the full

contribution from swapping the two W bosons from their generated configuration

and from the interference between the two configurations, i.e. do we need to

include all three of the terms in the brackets in eq. (4.16) in order to obtain a

reasonable prediction. Figure 4.5 shows the effect of including these three terms

when looking at the difference in R between the two W bosons. In red is the

full HEJ amplitude including all three terms, in blue the interference term from

exchanging the two W bosons have been removed and in orange, the subdominant

WW configuration is removed. From this we see that for regions of phase

space with low ∆R we lose as much as 30% in some of the bins from the full

HEJ prediction by removing the interference term. Removing the subdominant

configuration reduces the HEJ prediction by up to 50%. This makes sense, as for

some regions of phase space, where the W ’s are close together, the contribution
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Figure 4.6: Two processes contributing to the amplitude pp→ jj`¯̀ν`ν̄`, involving
(a) W+W− bosons (b) ZZ bosons.

swapping the two bosons will be around half of the full prediction. For this

reason, we include the full contribution from swapping the W bosons, including

interference, in the HEJ2 amplitude.

4.3.3 A comment on opposite-sign WW production

A natural question then, is can we extend this description to events with two W

bosons of different sign?

The problem is that at order O(α2
wα

2
s) there can be contributions from opposite-

sign WW events and from ZZ events, shown in fig. 4.6. In contrast, ZZ events

do not contribute at all to the amplitude for same-sign WW events at the same

order. We also have events where two W bosons are emitted from the same quark

leg. This makes opposite-sign WW more complicated as you necessarily have to

also study ZZ production. Therefore, we restricted the scope of this work to

solely include descriptions of same-sign WW events. However, the framework

for resumming the QCD logarithms is expected to be very similar, so there is no

conceptual reason why we couldn’t look at this process in the future.

4.4 Impact of Leading-Logarithm corrections

We will now show the predictions constructed and matched as described in the

previous section for observables commonly studied at the LHC for the process
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pp → W±W±+ ≥ 2j, where one W± decays in the electron channel and one in

the muon channel. We will compare these with an NLO calculation of the same

process (here taken from Sherpa [65] using COMIX [80] with the extension of

OpenLoops [81]) to assess the impact of the new LL corrections. Also included

for comparison is a calculation including MC@NLO matching [82] with the shower

generator CS Shower [83] packaged with Sherpa. We use the NNPDF3.0 NLO PDF

set [84] as provided by LHAPDF6 [85]. We choose the central factorisation and

renormalisation scale as the geometric mean of the transverse momenta of the

two leading jets, µF = µR =
√
p⊥;j1p⊥;j2 . These scales are varied independently

by a factor of two around this central value, with the constraint that their ratio is

kept between 0.5 and 2. The uncertainty bands shown in the plots are obtained

from the envelope of these variations.

In figures 4.9–4.13 we show distributions measured in a recent CMS analysis [27].

It is not meaningful to compare to the data points in that study as these include

the large O(α4
W ) contributions. The cuts applied to the predictions are listed in

Table 4.1. Those in the first group form the inclusive cuts which are applied to

all plots. The additional three criteria (below the second horizontal line) give the

extra cuts on leading dijet invariant mass, leading jet pseudorapidity separation

and the Zeppenfeld variable [86]

zl =
ηl − 1

2
(ηj1 + ηj2)

|ηj1 − ηj2|
, (4.20)

where j1 and j2 are the two hardest jets in the event. These cuts are used to try

to suppress the QCD contribution to this process. We will refer to them as “VBS

cuts” and will show results before and after these extra criteria. The output of

HEJ is exclusive in the momenta of all outgoing particles. Here we have used the

functionality of linking HEJ directly with Rivet[87] to apply the cuts and fill the

histograms.

Before discussing the distributions, we give the cross sections obtained at NLO,

with MC@NLO and with HEJ2 before and after the application of VBS cuts in

Table 4.2 for the central scale choice above. Both before and after VBS cuts the

values are remarkably similar for the central value of the renormalisation and

factorisation scales. This is a marked difference to other processes where similar

cuts have been applied. For example in pp→ H+ ≥ 2j despite relative agreement

at the inclusive level, the HEJ2 predictions were significantly more suppressed by

VBF cuts than those at NLO (by about a factor of 2) [69]. This result is sensitive
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Variable Selection Cut
Lepton pseudorapidity |ηl| < 2.5
Jet pseudorapidity |ηj| < 4.7
Leading/subleading lepton pT pT > 25/20 GeV
Missing transverse momentum Emiss

T > 30 GeV
Jet pT pT > 50 GeV
Lepton isolation ∆R(l, jet) > 0.4 o/w jet is removed
Di-lepton mass mll > 20 GeV
Di-lepton mass restriction |mll −mZ | > 15 GeV
Di-jet mass mj1j2 > 500 GeV
Jet rapidity separation |∆ηj1j2| > 2.5
Max lepton Zeppenfeld variable (Eq. 4.20) max(zl) < 0.75

Table 4.1: The selection cuts used in the analysis where the lepton cuts apply
only to the charged leptons. The last three rows define the additional VBS cuts.

Cross Section (fb) without VBS cuts, σincl with VBS cuts, σVBS σVBS/σincl

HEJ2 W+W+ 1.428± 0.002 0.1219± 0.0004 0.0854± 0.0003
NLO W+W+ 1.41± 0.05 0.12± 0.07 0.08± 0.02

MC@NLO W+W+ 1.285± 0.003 0.1033± 0.0006 0.0804± 0.0005
HEJ2 W−W− 0.6586± 0.0003 0.0402± 0.0001 0.0610± 0.0002
NLO W−W− 0.68± 0.02 0.04± 0.01 0.06± 0.02

MC@NLO W−W− 0.6186± 0.0004 0.0371± 0.0002 0.0600± 0.0002

Table 4.2: This table gives the total cross section calculated with the new
HEJ2 LO + LL predictions in this paper compared to the result at NLO accuracy,
both before and after the VBS cuts given in the text.

to the scale choice; in the window of variations we studied, the ratio between the

HEJ2 and NLO cross sections varies by as much as 22% in either direction. It is also

clear from the distributions that follow that this agreement is not flat in phase

space (even for the central scale choice), but arises from different regions where

the HEJ2 result is greater and less than NLO. In figure 4.7, we show the exclusive

jet rates. For only the inclusive selection criteria, we see a steady decrease at each

multiplicity, but in the HEJ2 predictions the 4-, 5- and 6-jet rates remain at 21%,

6% and 2% of the exclusive 2-jet rate respectively. After VBS cuts, the relative

importance of the higher multiplicity rates in the HEJ2 predictions is enhanced

with the 2-jet and 3-jet rates being very similar and the 4-, 5- and 6-jet rates now

increasing to 40%, 13% and 3% of the exclusive 2-jet rate respectively. In the NLO

sample after VBS cuts, the 3-jet rate is a third larger than the 2-jet rate for the

central scale choice. The scale variation bands here are very large; however, for

any one choice the 3-jet was always comparable to or greater than the 2-jet rate.

This is already one measure of the importance of the higher-order corrections in
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Figure 4.7: Exclusive jet rates for pp→ W±W±+ ≥ 2j, (a) without and (b) with
additional VBS cuts. In this figure and the remaining figures in this chapter, the
bands shown are scale variation bands obtained from varying the renormalisation
and factorisation scales around the central value.

αs (i.e. α4
s and above). The MC@NLO predictions show that the effect of adding a

parton shower to the NLO predictions is to distribute the 3-jet component among

the higher jet-rate bins. The large contribution to the cross section from events

with three or more jets suggests that additional jet vetoes could be used to further

suppress the relative QCD contribution to pp→ V V + 2j.

The jet rate plots are affected by the lepton isolation cut (see table 4.1). Any jet

which satisfies ∆R(l, jet) < 0.4 for any charged lepton is removed from the event,

but the event is still kept provided there are at least two further jets. This means

that events which arise from a theoretical calculation with e.g. 4 jets can appear

in the plot in the 2-jet or 3-jet bin. For comparison, we show the equivalent

plots from HEJ2 without lepton isolation applied in fig. 4.8. The differences with

only inclusive cuts are modest, with a slight decrease in the first bin and slight

increases in the higher bins. After VBS cuts, the effect is more pronounced. The

3-jet rate is now slightly above the 2-jet rate and there is then a bigger step

down to the 4, 5 and 6 jet rates which have each risen slightly from the values

after lepton isolation cuts. They are now 47%, 16% and 4% respectively of the

exclusive 2-jet rate compared to 40%, 13% and 3% after the lepton isolation cut

is applied.

Figure 4.9 shows the comparison for the difference in pseudorapidity between
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Figure 4.8: Exclusive jet rates for pp → W±W±+ ≥ 2j where the jet isolation
cut has been removed, (a) without and (b) with additional VBS cuts.

the two leading jets1. Here we see only modest differences in shape between the

two descriptions which are slightly enhanced once VBS cuts are applied in the

right-hand plot. However, any differences lie mostly within the scale variation

bands. Here, and in the remaining distributions, we observe only a small impact

of adding a parton shower to the pure NLO calculation, with no significant changes

in shapes of distributions.

Figure 4.10 exhibits greater differences in shape in the distribution of the

transverse momentum of the leading jet. For the inclusive cuts in (a), the HEJ2

prediction starts much lower than the NLO prediction but increases with respect

to it until the predictions cross around 200 GeV. Above this value the prediction

from HEJ2 falls more slowly leading to a prediction of a harder spectrum in

pj1;⊥. A very similar behaviour is seen in (b) after the application of VBS cuts.

This distribution clearly emphasises that the close agreement of the total cross

section values is a coincidence of the experimental setup used. If the transverse

momentum requirement of the jets had been larger, the HEJ2 cross section would

have also been correspondingly larger than that from NLO.

Similarly, in figure 4.11 we see that the HEJ2 and NLO predictions for the invariant

mass distribution of the two leading jets have a different shape with a ratio which

increases steadily from 0.5 at mj1j2 = 0 GeV to 1.4 by mj1j2 = 2 TeV where it

1We use pseudorapidity to match the convention in the Ref. [27]. In practice, there is little
difference in NLO and HEJ2 predictions when one chooses to use rapidity or pseudorapidity as
the parton multiplicity within a jet is relatively low in each case.
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Figure 4.9: The differential distribution in the pseudorapidity separation of the
two leading jets in pp → W±W±+ ≥ 2j, (a) without and (b) with additional
VBS cuts.
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Figure 4.10: The differential distribution in the transverse momentum of the
hardest jet in pp → W±W±+ ≥ 2j, (a) without and (b) with additional VBS
cuts.
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Figure 4.11: The differential distribution in the invariant mass of the two leading
jets in pp→ W±W±+ ≥ 2j, (a) without and (b) with additional VBS cuts.

roughly plateaus. A similar effect is seen after VBS cuts are imposed, although of

course here the lower region has been removed. The point where the predictions

cross has moved to a slightly higher value of mj1j2 as a result of the cuts on the

other variables which form part of the VBS cuts.

In figure 4.12, we show the distributions in the invariant mass of the two charged

leptons from the decays of the W bosons. This is related to the invariant mass of

the jets if one considers event topologies where the W bosons follow the direction

of the associated quark lines. For modest transverse momenta, the invariant mass

between particles is driven by their rapidity difference. The leptons, though, are

required to be more central than the jets and we see more modest differences

between the NLO and HEJ2 predictions.

The final distribution we show in this section is the Zeppenfeld variable ze of the

electron, defined in Eq. (4.20). This measures the relative position of the electron

in these events with respect to the jet system. Both before and after VBS cuts,

the predictions from NLO and from HEJ2 are in very close agreement, and the

ratio between the two remains largely flat throughout the region showing that

this variable is largely insensitive to the logarithmic corrections at higher orders

in αs.

In this section, we have compared the new predictions for pp→ e±νeµ±νµ+ ≥ 2j

available in HEJ2 (which include the leading logarithmic corrections in ŝ/p2
⊥ at

all orders in αs) with those obtained at next-to-leading order in QCD. We have

69



pp→ (W → eνe)(W → µνµ) + jets
LHC@13 TeV
anti-kt, R = 0.4, pj;⊥ > 50 GeV, |ηj| < 4.7

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
d
σ

d
m
ll

[f
b/

G
eV

]
NLO

HEJ

MC@NLO

0 500 1000 1500 2000 2500 3000 3500 4000
mll [GeV]

0.0

0.5

1.0

1.5

2.0

R
at

io
to

N
L

O

(a)

pp→ (W → eνe)(W → µνµ) + jets
LHC@13 TeV
anti-kt, R = 0.4, pj;⊥ > 50 GeV, |ηj| < 4.7

10−9

10−8

10−7

10−6

10−5

10−4

10−3

d
σ

d
m
ll

[f
b/

G
eV

]

NLO

HEJ

MC@NLO

0 250 500 750 1000 1250 1500 1750 2000
mll [GeV]

0.0

0.5

1.0

1.5

2.0

R
at

io
to

N
L

O

(b)

Figure 4.12: The differential distribution in the invariant mass of the two charged
leptons in pp→ W±W±+ ≥ 2j, (a) without and (b) with additional VBS cuts.
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Figure 4.13: The differential distribution in the Zeppenfeld variable for the
electron in pp→ W±W±+ ≥ 2j, without and with additional VBS cuts.
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seen close agreement in the total cross sections obtained in the two approaches at

the central scale choice, but a study of distributions in pj1;⊥, mj1j2 and mll show

large differences in shape which make this agreement appear to be a coincidence

of the specific values chosen in the experimental cuts.

4.5 Impact of NLO matching

We will now go on to briefly discuss the impact of the including full NLO accuracy

bin-by-bin in the HEJ LL prediction through NLO matching. The procedure is the

same as in section 3.4 and was first published in reference [10]. In this section we

will also compare the reweighting factors obtained here versus those included in

that study.

In practice, the W+W+ and W−W− contributions were matched to NLO

separately but we found little difference between the two, so here only the

combined result is presented for each distribution, however both lines are included

in the plots of the reweighting factors. Presented in figs. 4.14, 4.16, 4.18 and 4.20

are the NLO matched HEJ predictions compared to pure NLO for various kinematic

observables of experimental interest. Included for each distribution is a plot of

the reweighting factors,
σNLO2-jet

σHEJ@NLO
2-jet

and
σHEJ2-jet

σHEJ@NLO
2-jet

to make clear the differences between

full NLO, HEJ@NLO and LL.

Firstly, let us look at the matching for the dijet (pseudo-)rapidity separation

shown in fig. 4.14 and fig. 4.15. Looking at the NLO matched HEJ prediction, we

see that the result becomes very unstable beyond 5 units of rapidity, and diverges

from the NLO result. The reasons for this can be deduced from the plots of the

ratios
σNLO2-jet

σHEJ@NLO
2-jet

and
σHEJ2-jet

σHEJ@NLO
2-jet

. Looking at the first of these, we see that the ratio grows

rapidly as a function of rapidity separation. There are a few reasons contributing

to why this is the case, some of which we explain in more detail in chapter 6.

Whilst there are shared components between NLO and HEJ@NLO calculations, they

differ in both the treatment of the poles in the virtual corrections and the real-

collinear pieces. We also have to question to validity of the factorised approach

to describing the matrix element when the W boson is close to the opposite

quark/gluon line meaning that we no longer have distinct forward and backwards

pieces. This poses a problem for the NLO matching procedure as the rapidity

separation gets very large, but we expect that this will be solved once a full

treatment of NLL corrections (including impact factors) is included in HEJ2. In the
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Figure 4.14: The (a) differential distribution in the pseudorapidity separation
of the two leading jets in pp → W±W±+ ≥ 2j without additional VBS cuts.
The HEJ result here has been matched to NLO using the procedure outlined in

section 3.4. (b) ratio
σNLO2-jet

σHEJ@NLO
2-jet

and (c) ratio
σHEJ2-jet

σHEJ@NLO
2-jet

HEJ prediction, we also only generate additional emissions with rapidity between

the forward and backwards jets, which is not the case for the NLO prediction which

can have a large impact depending on the phase space region.

Such corrections we predict will be important in improving the description

this observable. Looking at the ratio
σHEJ2-jet

σHEJ@NLO
2-jet

, shows that the higher order log

corrections contribute significantly, meaning that the best prediction relies on

both NLO and LL corrections. This is a similar conclusion to what was seen in the

single W study shown in fig. 4.15 which is a good example of the universality of

QCD.

Secondly, we look at the transverse momentum of the leading jet in the event.

Figure 4.16 shows the differential distribution after the NLO matching alongside

the reweighting factors. In previous studies, the observable p1;⊥ has not shown
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Figure 4.15: Reweighting factors for dijet rapidity separation in single W plus
jets production, taken from reference2 [10]

strong dependence on higher order corrections from high energy logarithms, and is

thus described well at next-to-leading order. We can see this explicitly in fig. 4.16c

where the ratio which probes the effects of higher order HEJ corrections,
σHEJ2-jet

σHEJ@NLO
2-jet

,

rises very slowly as a function of p1;⊥. This leads to a HEJ matched prediction

which is very similar to the NLO prediction in fig. 4.16a, with the ratio between

the two being almost flat. Compare this to the equivalent plot in the single W

study, fig. 4.17b, where the ratio is also flat but falls as p⊥ increases rather than

increasing slightly. This could be due to a number of factors - for the single W

study, the centre of mass energy is lower at 7 TeV compared to 13 TeV in the

WW study and the selection cuts are different between the two studies. Also the

single W study includes subleading corrections described in section 5.3. The ratio

of
σNLO2-jet

σHEJ@NLO
2-jet

is very similar between the two studies (figs. 4.16b and 4.17a) with the

ratio starting large at low p1;⊥ before falling and flattening out for larger p1;⊥,

indicating the biggest differences between the two predictions is in the region of

phase space where the jets are close the jet cut.

Figure 4.18 shows the effect of NLO matching on the HEJ predictions for the cross

section as a function of dijet invariant mass. Here there is still a clear difference

between the HEJ and NLO predictions, with the HEJ line ending up roughly 50%

larger than NLO at largemjj. Looking at the
σHEJ2-jet

σHEJ@NLO
2-jet

reweighting factor in fig. 4.18c,

we can see that there is a large impact from including contributions from higher

order logarithms when mjj gets large.

Finally we look at the invariant mass between the two charged leptons shown

in fig. 4.20. This distribution requires at least two charged leptons so cannot

compare to single W results here. What we see from the ratio factor in fig. 4.20b

is that this observable is similar to the p⊥ observable in that it is less dependent

on the higher order logs than the rapidity observables and dijet invariant mass.
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Figure 4.16: The (a) differential distribution in the hardest jet transverse
momentum in pp → W±W±+ ≥ 2j without additional VBS cuts. The HEJ

result here has been matched to NLO using the procedure outlined in section 3.4.
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Figure 4.17: Reweighting factors for hardest jet transverse momentum in single
W plus jets production, taken from reference2 [10]
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Figure 4.18: The (a) differential distribution in the dijet invariant mass of the
two leading jets in pp → W±W±+ ≥ 2j without additional VBS cuts. The HEJ

result here has been matched to NLO using the procedure outlined in section 3.4.

(b) ratio
σNLO2-jet

σHEJ@NLO
2-jet

and (c) ratio
σHEJ2-jet

σHEJ@NLO
2-jet

(a)

LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4

100 200 300 400 500 600 700 800 900 1000
∆m12[GeV ]

0.0

0.5

1.0

1.5

2.0

H
E

J
/(
H
E
J

at
N

L
O

)

pp→ (W+ → e+νe) + 2j

pp→ (W− → e−ν̄e) + 2j

(b)

Figure 4.19: Reweighting factors for dijet invariant mass in single W plus jets
production, taken from reference2 [10]
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Figure 4.20: The (a) differential distribution in the invariant mass of the two
charged leptons in pp → W±W±+ ≥ 2j without additional VBS cuts. The HEJ

result here has been matched to NLO using the procedure outlined in section 3.4.

(b) ratio
σNLO2-jet

σHEJ@NLO
2-jet

and (c) ratio
σHEJ2-jet

σHEJ@NLO
2-jet

This leads to a matched HEJ prediction in fig. 4.20a which is very similar to

next-to-leading order and it is expected that these results will both be close to

data.

What is clear from looking directly at a leptonic observable in figs. 4.20b and 4.20c

is that there is a slight charge asymmetry between the final states that we don’t

see in the jet based observables. As the treatment of the charged leptons is the

same in HEJ2 for each charge, it is expected that this is directly an effect from

the differing PDFs for the allowed channels in each case.

2Note that the HEJ/HEJ@NLO ratio plots did not appear in the citation, but were included

as part of the study.
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4.6 Conclusions and future work

In this chapter, we have presented the first calculation of all leading logarithmic

contributions which scale as α4
Wα

k+2
s logk(ŝ/p2

t ) to the production of a same-sign

W -pair which decays leptonically, i.e. the QCD contribution to the process pp→
e±νeµ±νµ+ ≥ 2j. In order to separate the electroweak and QCD contributions

to this process, so-called VBS cuts are usually applied to require large invariant

mass and rapidity separation of the tagging jets. These cuts exactly select regions

of phase space where the logarithms above become important. To assess their

impact in pp→ e±νeµ±νµ+ ≥ 2j, we have compared our new predictions to those

obtained at NLO within the experimental setup of a recent 13 TeV CMS analysis.

We have found that the HEJ2 cross section is very close to the NLO prediction

both for inclusive cuts, and after VBS cuts have been applied. However, it is

clear from the distributions that this agreement arises from cancellations across

phase space rather than being true throughout. The distributions in transverse

momentum of the leading jet in figure 4.10, in invariant mass of the leading jets

in figure 4.11 and in invariant mass of the charged leptons in figure 4.12 show

clear differences in shape with differences of up to 50% between HEJ2 and NLO.

There are other distributions, ∆ηj1j2 and ze where the two sets of predictions

show close agreement, indicating that these distributions are more stable with

respect to higher-order logarithmic corrections.

Previous studies of this process have seen that the 3-jet component is significant

in typical experimental analyses, enhanced within VBS cuts. We also find this,

and that it extends beyond 3-jets. The exclusive jet components within HEJ2 are

matched to leading-order accuracy for 2–6 jets. We showed in figure 4.7 that the

VBS cuts do indeed increase the significance of the 3–6-jet components relative

to the 2-jet component. The contribution from 3-jets is similar to 2-jet in HEJ2

and greater than the 2-jet at NLO. The 4–6-jet components steadily decrease but

such that the 6-jet components still contributed at the order of a few percent in

some distributions.

We also isolated the effects of higher order corrections from next-to-leading order

corrections by using a matching procedure to match HEJ2 to NLO. By doing this

we showed we can reproduce the NLO behaviour well in observables where the

higher order corrections beyond next-to-leading order have a small effect on the

distributions (p⊥ and leptonic observables), but highlight the importance of these
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corrections in other observables (rapidity observables and dijet invariant masses).

We therefore conclude that logarithmic corrections of the form α4
Wα

k+2
s logk(ŝ/p2

t )

are numerically significant at the 13 TeV LHC, and should be included in accurate

modelling of the QCD background to vector boson scattering.
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Chapter 5

High Energy predictions for QCD

jets at LHC: A study with ATLAS

R32 team

This chapter includes the first of two LHC studies involving HEJ and ATLAS,

looking at the quantity R32 vs various observables of experimental interest.

We discuss here the motivation behind doing this study, the theoretical and

computational tools that went into making the HEJ predictions, and finally a

comparison to data and other Monte-Carlo predictions.

5.1 Measurements of experimental interest

5.1.1 The quantity R32

We define R32 as the ratio of the 3-jet inclusive cross section to the 2-jet inclusive

cross section:

R32 =
σinc

3j

σinc
2j

. (5.1)

Whilst this quantity makes sense to define for an inclusive prediction (e.g. HEJ

or using a multijet merged sample), one question that can immediately be asked

is how this quantity is defined at fixed order in αs? The simplest approximation

one can make is to calculate both the 2-jet cross section, σexc
2j , and 3-jet cross
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process known desired

pp→ 2 jets
NNLOQCD

NLOQCD + NLOEW

pp→ 3 jets NLOQCD + NLOEW NNLOQCD

Table 5.1: Precision wish list for jet final states, taken from the 2019 Les Houches
Standard Model Working Group Report [12]

section, σexc
3j , to leading order in αs and then take the ratio of the two,

RLO
32 =

σexc
3j

σexc
2j

. (5.2)

This is useful as a first approximation but as we will see, this approximation

can end up giving very different results from the NLO results or the all-orders

resummed results. The second approximation we will make is to perform the two

jet calculation of the cross section at next-to-leading order, σNLO
2j , which will let

us calculate the ratio,

R
LO/NLO
32 =

σexc
3j

σNLO
2j

. (5.3)

Finally we will also compare fixed order results with the three jet cross section

calculation also performed at next-to-leading order. This will let us calculate the

ratio,

RNLO
32 =

σNLO
3j

σNLO
2j

, (5.4)

and compare these to our other fixed order calculations to discern the stability

of the result. The NLO calculations presented here were performed using Sherpa

[88] and Openloops [89], which at time of writing includes NLO libraries for up to

and including three jets in pp collisions. Whilst 2-jet calculations at NNLOQCD

are available at time of writing, the NNLOEW corrections for 2 jets and both the

NNLOQCD and NNLOEW are not yet known for 3 jets (and above). pp → 3 jets

was highlighted in the 2019 Les Houches Standard Model Working Group Report

[12] as one of the processes which was desired to be calculated at higher accuracy

by the physics community (see table 5.1 for a summary). Once the analysis

discussed in this chapter is published, it will be interesting to see the effects of

NNLO corrections to the fixed order predictions.
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5.1.2 Profiles of average number of jets

Included also as part of the analysis is a study of the average number of jets versus

kinematic observables. Similar to the R32 ratio, these distributions will be highly

sensitive to higher jet multiplicities making them a good study of the accuracy of

physical predictions beyond leading order. For leading order two jets, the average

number of jets as a function of cross section or any kinematic observable will of

course always just be two, so we will focus here on how we can define this in a

consistent manor for NLO calculations and for all-order HEJ predictions.

For HEJ, the averaging is straightforward over the jet multiplicities:

〈N〉XS =
2σHEJ2j + 3σHEJ3j + 4σHEJ4j + . . .

σHEJ2j + σHEJ3j + σHEJ4j + . . .
=

∑∞
n=2 nσ

HEJ
nj∑∞

n=2 σ
HEJ
nj

, (5.5)

where each of the sigma represent the exclusive contribution to the total cross

section at that multiplicity. One can then extend this definition to be instead

for each bin in a distribution being studied, i.e. for each bin we can look at the

contribution to that observable from each jet multiplicity to calculate the average

number of jets versus the observable.

For NLO two jet calculations we first split the inclusive cross section into exclusive

2j and 3j pieces:

σNLO
2j−inc = σ2jNLO

2j−exc + σ2jNLO
3j−exc, (5.6)

and then go on to define the average number of jets as,

〈N〉XS =
2σ2jNLO

2j−exc + 3σ2jNLO
3j−exc

σNLO
2j−inc

= 2 +
σ2jNLO

3j−exc

σNLO
2j−inc

. (5.7)

Navely, one may expect the average number of jets using eq. (5.7) to be bound

by 2 below and 3 above. This however is not guaranteed to be the case. Looking

at the final expression in the equation,

σ2jNLO
3j−exc

σNLO
2j−inc

=
σ2jNLO

3j−exc

σ2jNLO
2j−exc + σ2jNLO

3j−exc

, (5.8)

this term is no longer bounded by one if σ2jNLO
2j−exc ends up being less than zero, which
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Variable Value
Jet p⊥ > 60 GeV
Jet R 0.4
Jet |ηmax| 4.4
HT2 > 250 GeV

Table 5.2: Table of phase space cuts used for the ATLAS R32 study.

can happen in an NLO calculation depending on the choice of subtraction terms,

factorisation scale and renormalisation scale. Whilst this behaviour is clearly

unphysical, it is unavoidable when looking at this sort of quantity in numerical

simulations.

5.2 Experimental and simulation setups

Before looking at the comparison of fixed order predictions, we will first go into

detail of the experimental setup for this analysis. The experimental cuts are

summarised in table 5.2. For each fixed order, jet clustering was performed using

the anti-kt algorithm [90] with jet parameter R = 0.4. Jets were required to have

transverse momentum greater than 60 GeV and have an absolute value of rapidity

less than 4.4. In addition, there was a requirement that each event must have at

least 2 jets passing the cuts described and the sum of the transverse momentum

of the hardest 2 jets must be above 250 GeV.

For the predictions shown in this section, the factorisation scale, µF , and

renormalisation scale µR were both chosen to be HT
2

(in Sherpa one sets µ2
F =

µ2
R =

H2
T

4
). To assess the impact of the scale choice, the central scale choices

(not squared) were independently varied by factors of 2 or 1/2, but with the ratio

between µF and µR being no more than 2. The interface to the parton distribution

was provided by LHAPDF [41], and the set used was NNPDF31 nlo as 0118

(LHAPDF number 303400) provided by the part of the 3.1 release of NNPDF

[91]. The analysis was performed using the Sherpa interface to rivet [92], using a

custom analysis.

In practice, a rapidity cut was introduced to improve the sampling over a large

rapidity range. In the Sherpa runcards, the difference in rapidity was restricted

to be below 5.2 units of rapidity for one sample and above 5.2 for a second

sample which were then combined. For the final predictions in this chapter it was
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Figure 5.1: Plot of the rapidity separation between the two hardest jets for 2 jet
fixed order sample split into three regions: (0, 5.2), (5.2, 7.9), (7.9+).

convenient to split this rapidity range further into (0, 5.2), (5.2, 7.9), (7.9+), as

shown in fig. 5.1 for the two jet sample. From this figure we see that the the cross

section falls sharply as a function of dijet rapidity separation, spanning 6 orders

of magnitude which is difficult for the phase space sampler to sample effectively

in one go. For the HEJ resummation discussed later, this method of splitting of

the phase space at born level and then combining is still valid as it is is equivalent

to splitting a rapidity integral in eq. (3.48),∫ 8.8

0

dy12 =

(∫ 5.2

0

dy12 +

∫ 7.9

5.2

dy12 +

∫ 8.8

5.2

dy12

)
. (5.9)

5.3 Logarithmically accurate predictions with High

Energy Jets

To perform high energy resummation with HEJ2, one starts with the fixed order

events taken from the Sherpa event generator and passes them to the main HEJ2

executable (discussed in detail in section 3.3. For this study the jets in the

fixed order events were clustered at 60 GeV to match the cut in the analysis,

but no additional requirement on HT2 was added at this stage. Starting with

leading order events for pp → jj, one then also generates leading order events
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Figure 5.2: HEJ2.1 includes support for resumming unordered emissions where
one parton is emitted outside of the forward backwards rapidity range of the
quarks.

for pp → j . . . j︸ ︷︷ ︸
n

for n = 3, 4, 5, . . . to also be passed to HEJ2. Typically one sees

the percentage contribution from each fixed order multiplicity to the inclusive

HEJ cross section decreases as you go to higher multiplicity1. For this study, it

was found that the contribution from the 6j fixed order events contributed about

0.12% to the inclusive HEJ prediction and did not have a discernible effect on any

of the shapes of the differential distributions. Therefore, we did not include any

corrections from 7 jet samples or above.

For each of the fixed order events passed to HEJ2, the event was classified as

being FKL, with a strict rapidity ordering between final state jets, being a NLL

correction with the rapidity ordering broken in one place else being labelled as

non-resummable and being passed directly to the analysis. For the FKL events,

HEJ2 generates a number of resummation phase space points with extra emissions

and calculates the square amplitude using the rules outlined in section 3.2. As of

HEJ2.1, resummation for diagrams including an unordered emission (fig. 5.2) or

a quark-antiquark vertex can be included.

In unordered events, the rapidity ordering is broken only by the unordered

emission but is otherwise intact. For the qq̄ emissions, there is a spin 1/2 particle

exchange in the t-channel which we know from the discussion on the Regge limit in

1An example we see where this isn’t quite true is VBS/VBF processes where the 3j
contribution can be higher than the 2j contribution.
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(a) (b)

Figure 5.3: Two processes involving qq̄ vertices that contribute to next-to-leading
logarithm which are included in the HEJ resummation.

section 3.1.1 is subleading compared to only spin 1 exchanges. These unordered

and quark-antiquark contributions thus are part of the NLL corrections to the

prediction.

Once these resummation events are generated, they are passed to the analysis

handler to be analysed further.

5.3.1 Lower energy jet contributions

For each fixed order event passed to HEJ2, a number of corresponding resumma-

tion events will be generated depending on the user input. Whilst it is guaranteed

that the number of jets in the resummation event and the rapidity of these jets

matches that in the fixed order input event, this is not generally the case for the

transverse momenta of jets nor the rapidity of other final state particles. The

reason for this is that the resummation events will include additional emissions

corresponding to the all order real corrections to the process.

A consequence of this is that there will be a contribution to the resummed

prediction from events where the resummation jets pass the transverse momentum

cuts, but the fixed order events contain jets which are slightly below the cuts.

Empirically, depending on the study we expect the contribution from these events

to be the order of a few percent per multiplicity, and at most about 10%. In

practice, one can include these contributions by setting the jet p⊥ cut in the fixed

order input to be lower than the analysis p⊥ cut, but doing this is very inefficient

for phase space sampling. The total cross section typically decays exponentially

as a function of jet p⊥, so the sampling will favour events with lower jet p⊥
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R32 Measurement Value
RLO

32 0.30999± 0.00003

R
LO/NLO
32 0.43± 0.13

RNLO
32 0.28± 0.27

RHEJ
32 0.271± 0.005

Table 5.3: Table of R32 values for different definitions of fixed order R32 and
for HEJ. Calculations are for the central scale choice only and errors quoted are
generation errors and not from scale variations. It is known that the generation
errors obtained for the NLO pieces are overestimated which affects the errors
quoted for the two NLO results presented here.

which will lead to a large number of discarded events that don’t pass the analysis

cuts. Instead, it is more efficient to generate a low statistics, lower p⊥ fixed order

sample separately from the main high statistics sample where the jet p⊥ cut for

the fixed order sample matches the analysis. As of HEJ2.2 [2] there is a flag,

require low pt jet: true

which is used to signal to HEJ2 to discard events where the fixed order event jets

all pass the p⊥ cuts in the analysis. For this study, the contribution from low p⊥

events was expected to be small as the analysis has an additional requirement that

HT2 > 250 GeV already requires that 2 jet events contain jets with transverse

momentum above the 60 GeV cut.

5.4 Comparison of fixed order and HEJ results

5.4.1 Comparison of R32 Measurements

The calculated central values for R32 are given in table 5.3. The scale errors

on the NLO calculations are known to be vastly overestimated and come from a

known issue in the way Rivet2 and Sherpa2 deal with errors in NLO calculations

(this has been fixed as part of 2.2.15 release). As we will see in the integrated

distributions, the NLO lines are actually pretty stable but do sometimes still have

large scale variation bands. We see from looking at the analysis data that the two

jet and three jet cross section are actually 30% smaller at NLO, which explains

the large increase in the value of R
LO/NLO
32 versus the other R32 measurements

presented. From LO to NLO we see a decrease in the predicted R32 value of about

9% coming from the decrease in the 3j cross section going from LO to NLO being
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larger than the decrease in the 2j cross section. Comparing HEJ and fixed order,

we see that the inclusive HEJ R32 central predicted value is about 12% lower than

that of LO and 4% lower than NLO.

5.4.2 Comparison of differential distributions for R32

Presented in figs. 5.4 to 5.6 are comparisons of R32 versus various kinematic

observables for LO, NLO and HEJ. For the leading order and HEJ predictions, the

scale variation bands tend to be of order a few percent, but in some regions can

increase to of order 10%. In contrast, the NLO scale variation errors are very large,

often encompassing the whole plot. This is due to a large scale error in the three

jet NLO sample from Sherpa, and a large scale error in the two jet NLO sample at

high energy (large ∆y12 and m12) indicating a perturbative instability. As such,

the plots shown in the rest of this chapter have the NLO scale bands omitted,

leaving only the central value.

Presented first in fig. 5.4 are rapidity distributions for ∆y12 and ∆yfb respectively.

For the ∆y12 distribution, the lines are somewhat similar, with the HEJ prediction

being slightly lower than LO and very similar to LO until we get to high rapidities,

where the LO prediction falls sharply. The cross section as a function of ∆y12

falls sharply when the hard jets are no longer central, and even more sharply

when looking at more than 2 jets. This leads to the LO result in R32 falling to

0 as we reach the maximum allowed rapidity separation. For the ∆yfb we see

very different behaviour where all three predictions are similar for ∆yfb < 2 but

while the HEJ and NLO results level off, the LO result continues to rise sharply.

This shows that at large ∆yfb, there is a large contribution to the inclusive cross

section from events with more than two jets which is not accounted for at two jet

LO. Also the scale variation bands for the HEJ prediction end up being very small

for large ∆yfb, signifying a very stable prediction in this region.

Figure 5.5 shows R32 as a function of invariant mass using the two hardest jets

in fig. 5.5a and the maximum of the invariant masses in fig. 5.5b. For m12, the

central lines are all very similar in shape for LO, NLO and HEJ, with the HEJ

result being lower than the fixed order results and the difference increasing as

the invariant mass increases. For fig. 5.5b, this difference between LO and HEJ is

much larger with both results starting to fall by 7 TeV. This could be explained

as a lack of energy available for jets beyond the first two jets when the invariant

mass of the hardest 2 jets is so high. For this plot in particular, the NLO expansion
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Figure 5.4: Plot of R32 as a function of jet rapidity separation between jets for
(a) hardest two jets (b) most forward and backward jets. In red is the HEJ result
at LL with some NLL corrections included, in blue ratio of RLO

32 defined in eq. (5.2)
and in yellow the ratio RNLO

32 defined in eq. (5.4). The NLO lines have an adjusted
binning in the large rapidity regions to account for poor statistics.

struggles to give a stable result.

The plot of R32 versus HT2 is split into several regions depending on the transverse

momentum of the third hardest jet. The six plots in Figure 5.6 show these six

regions, with the y-axis scaled in each of the plots to see the behaviour clearly.

For each of these plots, there is a region at low HT2 which is not filled as the

jet clustering is done at 60 GeV which imposes a lower limit on the transverse

momentum of the third hardest jet. This is most prominent in fig. 5.6a which

shows behaviour down to HT2 = 1200 GeV. The differences in the predictions are

most pronounced in the first few of these plots where the p⊥ of the third jet is

lowest. In figure (a), the lines all start to plateau in the limit of large HT2, with a

clear hierarchy throughout LO > NLO > HEJ. As the limits on p3;⊥ increase, there

becomes a clear peak in the distribution. This makes sense as the cross section for

three jets is known to sharply decrease as a function of p3;⊥, so we would expect

to see the biggest values of R32 around where the third jet is near its minimum

value. For fig. 5.6b for example, at HT2 = 1200 GeV, the lower bound on p3;⊥

becomes the same as the jet cut and the upper bound is 120 GeV. The integral

of this region in p3;⊥ should be larger than the integrals of other regions the same

size - leading to a peak in R32. As the HT2 bands increase further the NLO and

HEJ lines start to become a lot more similar, until by fig. 5.6d the differences

between all three lines becomes minimal.

88



pp→ jets
LHC@13 TeV
anti-kt, R = 0.4, pj;⊥ > 60GeV

0 1000 2000 3000 4000 5000 6000 7000
M Jet12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d
σ
≥

3
j

in
c

d
M

J
et

12
/

d
σ
≥

2
j

in
c

d
M

J
et

12

HEJ pp→ jets

Born Level pp→ jets

NLO Level pp→ jets

(a)

pp→ jets
LHC@13 TeV
anti-kt, R = 0.4, pj;⊥ > 60GeV

0 1000 2000 3000 4000 5000 6000 7000
M jet max

0.0

0.2

0.4

0.6

0.8

1.0

1.2

d
σ
≥

3
j

in
c

d
M

je
t
m
a
x
/

d
σ
≥

2
j

in
c

d
M

je
t
m
a
x

HEJ pp→ jets

Born Level pp→ jets

NLO Level pp→ jets

(b)

Figure 5.5: Plot of R32 as a function of dijet invariant mass between jets for (a)
hardest two jets (b) jet pair with the largest invariant mass. In red is the HEJ

result at LL with some NLL corrections included, in blue ratio of RLO
32 defined in

eq. (5.2) and in yellow the ratio RNLO
32 defined in eq. (5.4). The NLO lines have an

adjusted binning in the large invariant mass regions to account for poor statistics.

5.4.3 Comparison of differential distributions for average

number of jets

Presented in this section in figs. 5.7 to 5.10 are plots of the average number of jets

in a prediction versus kinematic variables of experimental interest. To start with,

we again look at the rapidity distributions before moving on to looking at the

invariant mass distributions and concluding with HT2 and angular separation.

Figure 5.7 shows the average number of jets as a function of for ∆y12 and ∆yfb

respectively. For the chosen scale choice at y12 = 5.2 units of rapidity, we see

exactly the behaviour discussed around eq. (5.8) where the exclusive two jet rate

in the two jet NLO prediction becomes negative and the average number of jets

gets larger than 3 which is unphysical behaviour for a two jet NLO prediction.

This is driven by a large negative VI component in the two jet rate which is not

cancelled by the Born level result. At this point, the NLO scale variation bands

also become very large which can be seen in both fig. 5.7a and also in fig. 5.4a. For

the ∆yfb profile, we see the average number of jets rise almost linearly reaching

around 〈N〉 = 4 at 9 units of rapidity separation. This behaviour from about 4.5

to 9 units of rapidity can’t be predicted by pure NLO as it strongly depends on

contributions from higher jet multiplicities which can be captured with HEJ.

Figure 5.8 shows the average number of jets as a function of dijet invariant mass.

For both fig. 5.8a and fig. 5.8b, the exclusive two jet rate becomes negative at
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Figure 5.6: Plot of R32 as a function of sum of transverse momenta of the hardest
two jets, HT2, for (a) 60 GeV < p3;⊥ < 0.05HT2 (b) 0.05HT2 < p3;⊥ < 0.1HT2 (c)
0.1HT2 < p3;⊥ < 0.2HT2 (d) 0.2HT2 < p3;⊥ < 0.3HT2 (e) 0.3HT2 < p3;⊥ < 0.4HT2

(e) 0.4HT2 < p3;⊥ < 0.5HT2. In red is the HEJ result at LL with some NLL

corrections included, in blue ratio of RLO
32 defined in eq. (5.2) and in yellow the

ratio RNLO
32 defined in eq. (5.4).
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Figure 5.7: Plot of average number of jets as a function of jet rapidity separation
between jets for (a) hardest two jets (b) most forward and backward jets. In red
is the HEJ result at LL with some NLL corrections included and in yellow the NLO

mean number of jets defined in eq. (5.7). The NLO lines have an adjusted binning
in the large rapidity regions to account for poor statistics.

around 2 TeV which leads to an NLO prediction which goes above 3 for this region.

Before this point, the NLO prediction rises sharply as a function of invariant mass

for both plots. For m12, the HEJ prediction rises less sharply, softly peaking at

about 2.7 between 3 TeV and 4 TeV before slowly falling again. For maxmjj, the

HEJ result initially rises at a similar rate to the NLO result before peaking slightly

above 3 before falling below 3 again at 7 TeV.

Figure 5.9 shows the average number of jets versus HT2 displayed here as one plot

instead of the 6 different regions discussed when looking at R32. Here there is

closer agreement between HEJ and NLO compared to the other profiles discussed

here, with both peaking softly at 〈N〉 = 3 when HT2 = 2 TeV before falling

slowly.

Finally, we look at the average number of jets as a function of the angular

separation of the hardest two jets φ12. Figure 5.10 shows this for only the HEJ

prediction as the average number of jets goes above 3 almost immediately going

from either the left or right hand side of the plot. This plot is very sensitive to

higher order corrections, peaking at almost 〈N〉 = 5 which is far beyond what

is accessible to next-to-leading order. The reason for this sensitivity to higher

multiplicity is that the central φ12 ≈ 0 are not kinematically accessible at low

multiplicity.
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Figure 5.8: Plot of average number of jets as a function of dijet invariant mass
between jets for (a) hardest two jets (b) jet pair with the largest invariant mass.
In red is the HEJ result at LL with some NLL corrections included and in yellow
the NLO mean number of jets defined in eq. (5.7). The NLO lines have an adjusted
binning in the large rapidity regions to account for poor statistics.
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Figure 5.9: Plot of average number of jets as a function of the sum of the
transverse momenta of the hardest two jets, HT2. In red is the HEJ result at
LL with some NLL corrections included and in yellow the NLO mean number of jets
defined in eq. (5.7).
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Figure 5.10: Plot of average number of jets as a function of the angular separation
of the hardest two jets. In red is the HEJ result at LL with some NLL corrections
included.

5.5 Final thoughts and conclusions

In this chapter we presented the HEJ predictions for the 2023 ATLAS study

looking at the ratio R32 for QCD jets at the LHC, as well as looking at profiles of

the average number of jets versus various kinematic observables. Due to delays in

the analysis being published, we can only compare versus leading order or next-

to-leading order predictions where possible but even there we have seen some

significant deviations from the fixed order results for some distributions. In the

rapidity and the invariant mass distributions, the predictions were very different

at large rapidity separations/ large invariant mass with the ratio R32 making

clear the differences between the lines are not just from scale variation errors.

Some of the average number of jets plots also clearly highlight the dependence on

higher order corrections where the average number of jets goes above 3. These

corrections are included in HEJ in the leading log description of the process which

includes contributions from all jet multiplicities. We are keenly awaiting for

the analysis to be published to be able to compare with experimental data and

for theoretical physicists working on higher fixed order predictions to be able to

compare our predictions in regions where the higher order corrections are needed.
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Chapter 6

High energy predictions for Vector

Boson plus jets at LHC: A study

with ATLAS MET JETS analysis team

This chapter details the HEJ predictions for the ATLAS study involving jets with a

large missing transverse energy (E⊥;missing, or “MET”), highlighting in particular

the differences in the methodology from chapters 4 and 5. For this study, the HEJ

predictions were initially ≈ 40% larger than NLO or MEPS@NLO, which turned out

to be a result of treatment of events with the heterogeneous jet p⊥ cuts used in the

analysis. This chapter then also serves as a summary of the work done extending

the HEJ description to analyses with heterogeneous jet cuts, with the promise of

a better prediction once NLL impact factors are derived and implemented in the

HEJ2 code.

6.1 Setup of the experimental measurement

The goal of this ongoing experimental analysis is to produce a measurement of

large missing energy plus jets at a centre of mass energy of 13 TeV. “Large”

here is defined to be the region where the missing p⊥ is greater than 200 GeV.

In order to constrain the signal region of νν plus jets which is an important

probe of dark matter physics at the LHC[93], ATLAS also measured the control

regions of dilepton (ee and µµ) plus jets and single-lepton (eν, µν) plus jets. The
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(a)

(b)

Figure 6.1: Tables outlining the experimental setup for the large missing p⊥ study
focusing on selection cuts to (a) jets (b) leptons

measurement looks at a number of regions:

• An inclusive one-jet region

• An inclusive two-jet region

• An inclusive two-jet region with additional VBF cuts,

although we will only be looking at HEJ predictions for the two-jet inclusive and

VBF regions as the HEJ2 formalism requires at least 2 jets in the final state for

W and Z/γ plus jets predictions.

Outlined in fig. 6.1 is the experimental setup for the measurement which is

dependent on the number of identified leptons and the analysis region. The

two jet and VBF regions both require a missing p⊥ (p⊥ of identified leptons and
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Figure 6.2: Plot of cross section as function of dijet invariant mass from a study
of Higgs Boson plus jets comparing HEJ with vector boson fusion and gluon fusion
calculated at NLO. Reproduced from reference [11].

true “missing” momenta) to be larger than 200 GeV. There is also a requirement

that the missing momenta vector and each of the four hardest jets be separated

by more than 0.4 in azimuthal angle.

Jets are required to have an absolute rapidity less than 4.4 and the leading jet is

required to be above 110 GeV in the two-jet region and above 80 GeV in the VBF

region. The second hardest jet is required to be above 50 GeV and all additional

jets are counted above 30 GeV. Jets are classified in the analysis according to the

anti-kt algorithm with a jet parameter R = 0.4.

Furthermore, in the VBF region we have the additional restrictions that the

dijet invariant mass of the hardest two jets is above 200 GeV and the absolute

value of the rapidity separation of the hardest two jets is above 1. Both of these

cuts are known in VBF studies to restrict the phase space to a region where

QCD contributions are suppressed compared to the electroweak contribution.

See fig. 6.2 for an example of this from a recent review [11].

Then leptons are identified with absolute (pseudo-)rapidity below 2.5 for muons

and in the intervals 0 < |η| < 1.37 and 1.52 < |η| < 2.47 for electrons to

account for gaps in the detector. For one identified charged lepton, the transverse

momentum of an electron was required to be above 30 GeV and for a muon it

was required to be above 7 GeV. The ATLAS muon detector has two p⊥ triggers,

a large p⊥ trigger at 20 GeV and a low p⊥ trigger at 6 GeV, so this analysis

ends up pushing close to the limits of what is possible with the detector [94]. For

the region with 2 identified charged leptons the hardest lepton was required to
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have transverse momentum above 80 GeV and the second lepton was required

to be above 7 GeV. In addition for the two lepton region there was a restriction

that the dilepton invariant mass was between 66 GeV and 116 GeV in order

to restrict the contribution from photons decaying into lepton-antilepton pairs.

Finally for the one lepton region, there was a restriction on the transverse mass

of the electron to be between 30 GeV and 100 GeV, and for the (actual) missing

transverse momenta to be above 60 GeV for the electron channel.

The selection cuts used in this study for the charged leptons are very close to

the limits what is recorded with the triggers available. The reason for this is

to try and study the signal region of pure missing energy plus jets as cleanly as

the hardware will allow, with as much of the events as possible with identified

charged leptons included as part of the control regions.

6.2 Initial HEJ2 predictions for ATLAS MET JETS

analysis

In this section, we will look at the steps involved in making the HEJ predictions

for this analysis. Later on in this chapter, we will go into detail about some of

the changes to this methodology for two jet inclusive observables, which came

from an investigation into HEJ resummation with heterogeneous jet p⊥ cuts.

For this study, we look at making predictions for the one identified lepton and

two identified lepton regions. This meant looking at HEJ2 predictions for W plus

jets and Z plus jets, although cuts on leptons meant that there would be some

Z events where only one lepton would pass the analysis cuts and be classified

as an event with only one charged lepton. This effect was only possible in the

muon channel and was observed to be small compared to the contribution from

W events to these observables. Figure 6.3 shows the impact on an example

experimental observable. In red is the contribution from generated W plus jets

events, in blue is the contribution from Z plus jet events with only one identified

lepton in the analysis and in black is the combined result. For this distribution,

the contribution from Z events was exactly 0 for the electron channel and around

two percent for the muon channel. The highest we saw this contribution in any

bin in any of the observables studied was around 3%.

We start our procedure with fixed order input from Sherpa (2.2.12) [65] using
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Figure 6.3: Plots of the cross section as a function of dijet angular separation
highlighting the contribution of lepton isolation cuts in (a) electron channel (b)
muon channel.

matrix elements obtained from COMIX [80] given as Les Houches events.

The PDF used was NNPDF31 nlo as 0118 taken from the Sherpa interface to

LHAPDF [85]. For both W plus jets and Z plus jets, fixed order samples were

taken with number of jets ranging from two to five. Each of these jets were

required to have transverse momentum above 30 GeV and have an absolute value

of rapidity less than 4.4. Electron and muon decay channels were included at

the same time by using the particle containers 90 and 91 after removing the Tau

lepton channel from these containers.

The central scale choice used was,

µF = µR =

√
H2
T − p⊥`1 − p⊥`2 +m⊥`1`2

2
, (6.1)

where `1, `2 are the W decay products in W plus jets events and the charged

leptons in Z plus jets events and HT is the scalar sum of the transverse momenta

of all final state particles. When the transverse momenta of the charged leptons

and invariant mass of the leptons is small, this reduces to the commonly used scale

choice of HT/2. This scale choice was chosen by ATLAS for speed of calculation

and to reduce the fraction of events with negative weights, so we chose the same

central scale for the HEJ predictions. Since we knew this was the scale choice used

for the other predictions in this analysis, we used the same choice here to ensure

consistency across the predictions for a fair comparison. For scale variation bands
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Figure 6.4: Example fixed-order event jets with one jet passing the p⊥ > 110
GeV requirement and one passing the p⊥ > 50 GeV requirement.

shown in this chapter, the central factorisation and renormalisation scale choice

was varied independently by factors of 2.

In HEJ2, for each fixed order event in a resummable configuration, we attempt

to generate a number of events in the resummation phase space. Resummable

events currently include FKL events, events with an unordered gluon and W +

jets events with a qq̄ vertex. Any non-resummable events were passed directly

onto the analysis through the rivet (Rivet 3.1.5)[87] interface. Jet clustering was

done at 30 GeV using the kt algorithm [90] in the analysis before looking at

a higher p⊥ requirement on the leading and subleading jets. There was also a

contribution from so called “low pt” events discussed in section 5.3.1, where the

fixed order input jets were below 30 GeV but the resummation jets were above 30

GeV. Whilst this contribution has been important to include in previous studies,

the higher jet p⊥ cut on the leading and subleading jets in the analysis greatly

reduced this component in this study and was never seen to be more that 1% of

the combined result.

99



Figure 6.5: Example correction to the born level event (fig. 6.4) with an additional
emission above 30 GeV between jets.

6.3 HEJ Resummation with heterogeneous jet

samples

6.3.1 Classifying additional FKL emissions

Hard process and inclusive corrections

Let us begin this discussion by clearly defining what we mean by the hard process

and what should be included as inclusive corrections to the hard process. For the

examples shown here we define the hard process to be pp→ W (→ eνe)jj with one

jet required to have transverse momentum over 110 GeV and the other above 50

GeV (see fig. 6.4). Then any additional emissions will be part of the corrections

to the hard process. Depending on where we choose to cut the momentum of the

additional jets, the corrections can move between the bins in the exclusive jet

rates.

Suppose for example we have a correction in the form of an additional > 30 GeV

emission with rapidity somewhere between the two outer jets (see fig. 6.5). If

the jet clustering and resummation limit were set to below 30 GeV, then that

emission would be part of the 3 jet ME correction and would contribute towards

the 3j bin in the exclusive jet rates. However if one were to do jet clustering at a

value above 30 GeV, for example at 50 GeV, this emission would be part of the

HEJ resummation depicted in fig. 6.6b. In this case this would contribute to the

2j bin in the exclusive jet rates.

However for the second case with the emission below the resummation cut, we
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(a) (b)

Figure 6.6: Diagrams indicating the regions of phase space where HEJ will produce
extra emissions, Starting from the fixed order input in fig. 6.4, resummation is
allowed in the grey shaded area when the jet p⊥ in the HEJ config is set to (a) 30
GeV (b) 50 GeV.

(a) (b)

Figure 6.7: Diagrams showing an extra emission outside of the rapidity region
between the hardest jets at (a) 30 GeV (b) 50 GeV. Allowing the third jet to
have a low p⊥ will lead to a divergence which is not currently cancelled in the
HEJ procedure due to missing virtual corrections.

need to be sure we include the full virtual corrections to cancel the divergence

that occurs when that emission becomes infinitely soft. For the FKL emission

described here with the emission between the outer jets in rapidity, this is taken

care of in HEJ as the virtual corrections are included to cancel emissions between

the outer jets depicted by the shaded region in fig. 6.6.

Jets outside the yjj rapidity interval

This is not though the full picture as we can also have additional jets generated

outside of the region between the two hardest jets. Figure 6.7 depicts an

additional jet outside of the rapidity separation of the two leading jets. Allowing

the additional jet to get arbitrarily small will lead to a divergence in the

prediction as the virtual corrections required to cancel said divergence are not
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// get anti−kT 0.4 jets
Jets jets = apply<FastJets>(event, "Jets").jetsByPt(Cuts::pT > 10∗GeV && ↪→

↪→ Cuts::absrap < 4.4);

Jets rapjets = jets;
sort(rapjets.begin(), rapjets.end(), rapOrder);

// Middle jet cut
size_t snjets = rapjets.size();
double j_pt1 = rapjets[0].pT();
double j_pt2 = rapjets[snjets−1].pT();

if ((j_pt1 < 50 ∗ GeV || j_pt2 < 50 ∗ GeV ) || (j_pt1 < 110 ∗ GeV && ↪→
↪→ j_pt2 < 110 ∗ GeV)){ vetoEvent; }

Figure 6.8: Code snippet from the modified ATLAS MET JETS analysis which
restricted the sample to only include events where the outer jets in rapidity are
above 50 GeV and at least one is above 110 GeV.

yet implemented (c.f. fig. 6.6). Requiring the p⊥ cut on the third jet to be the

same as the cut on the second leading jet (see fig. 6.7b) however, can lead to

an event where the outer jets are still above 50 and 110 GeV, and thus has the

appropriate virtual corrections included.

For a consistent, numerically stable HEJ prediction we need to include in the

resummation events where the outer jets in rapidity meet the jet p⊥ cuts of 50

and 110 GeV to ensure the virtual corrections are included for when the additional

jet(s) become soft. In the next section we look at how we can do this in practice

and the effect that different p⊥ cuts on the additional emissions have on the

exclusive jet rates.

6.3.2 Numerical testing of the HEJ descriptions

Testing the FKL description

To see the contribution from FKL events where the third jet is in a region without

the full virtual corrections like in fig. 6.7a, we first create a modified version of

the analysis with an additional requirement that the outer jets in rapidity are

above 50 GeV, and that at least one of those is above 110 GeV. Figure 6.8 gives

an example of how this can be done for the 10 GeV analysis.

Figure 6.9a is a plot of the exclusive jet rates for three different jet p⊥ samples -

10 GeV, 30 GeV, 50 GeV where the requirements on the outer jets are unchanged.
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Figure 6.9: Combined two and three-jet exclusive jet rates from HEJ2, reweighing
the FKL events and discarding everything else. The N GeV line uses a fixed
order sample at N GeV and has the HEJ resummation jets at N GeV. (a) Uses
a modified version of the ATLAS MET JETS analysis, with the jet cut adjusted (b)
Requires that the outer jets in rapidity satisfy the cuts on the two jet sample.
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Figure 6.10: Combined σexc2j + σexc3j jet rates against configuration options for 10,
30 and 50 GeV jets. The FKL, FKL+UNO and FKL+QQBAR differ only in the
3j contribution, whereas there are contributions from non-resummable events to
both the 2j and 3j rate.

The fixed order input jet p⊥ minimum is set to the same value as the resummation

jet p⊥ minimum which is the same value as what is used in the jet clustering in the

analysis. Shown on the righthand side of the plot are the integrated rates for each

line. We compare this with Figure 6.9b which has the additional restriction on

the rapidity of the third jet. The difference between the plots is that in (b) events

are removed when a third jet causes the outer jets to not pass the 110/50 GeV

cuts. We see that as the p⊥ used in the jet clustering decreases, the contribution

from such events increases so that at 10 GeV this contributes as much as 30%

of the combined two and three jet rates. We see from figure (a) that the three

jet rate (and thus the cross section) starts to rise significantly at 10 GeV and we

expect that if we lowered the p⊥ cut further that we would see rapid growth as

we approach the uncontrolled soft divergence.

Checking the stability of the NLL and non-resummable descriptions

We now move on to discuss the impact of restricting the third jet to be between

the hardest two jets in rapidity for reweighting unordered and qqbar events, and

for adding back in the non-resummable component. We continue to focus here

on the process of W plus jets where resummation is implemented for UNO and

QQBAR event types.

104



Figure 6.10 shows the combined σexc2j +σexc3j jet rates against configuration options

for three different choices of minimum jet p⊥. From left to right we start

with the FKL description {FKL: reweight, UNO: discard, QQBAR: discard,

NR: discard} and then add in the unordered emissions {FKL: reweight, UNO:

reweight, QQBAR: discard, NR: discard}, and then further add in the qqbar

emissions {FKL: reweight, UNO: reweight, QQBAR: reweight, NR: discard}.
Then finally for the farthest right bin, we add back in the non-resummable

contributions {FKL: reweight, UNO: reweight, QQBAR: reweight, NR: Keep},
matching the NLL config options used in the full HEJ prediction. Included also is

the total NLO cross section as a dotted black line. This is not used here as part

of the HEJ prediction, and we do not expect to reproduce the NLO cross section in

HEJ, but this is included to show how using a low jet p⊥ cut takes the prediction

far away from NLO.

For this particular setup, going from the FKL only configurations to FKL +

UNO, we see an increase of 10% for the 50 GeV jets, increasing to 26% for 30

GeV jets and to 41% for the 10 GeV jets. Adding in the QQBAR events sees a

further increase of a few percent for all of the jet p⊥ cuts shown.

Looking at the final FKL+UNO+QQBAR+NR bin (the full NLLHEJ prediction)

clearly illustrates that there is a divergence currently unaccounted for, with the

combined jet rates going from ≈ 4000 pb for 50 GeV jets, to ≈ 4600 pb for 30

GeV jets, and finally to ≈ 6100 pb for 10 GeV jets. This is clearly an effect from

uncontrolled soft (and collinear) divergences. The question is, can we make our

prediction more stable by changing which events we attempt to resum in HEJ ?.

Figure 6.11 is the same plot as fig. 6.10, but with the additional requirement on

the rapidity of the third jet (see fig. 6.8). With this additional requirement, the

increase from FKL only to FKL+UNO is still 10% for the 50 GeV jets, but is

now only an increase of 13% for 30 GeV jets and 6% for 10 GeV indicating a

much more stable prediction compared to fig. 6.10. Indeed, when we look at the

full FKL+UNO+QQBAR+NR configuration (the full HEJ NLL prediction), we

see remarkable agreement between the three lines which are all within errors of

each other. This indicates a very stable prediction and is evidence that previously

we were sensitive to an uncontrolled soft divergence which was severely damaging

the convergence of the HEJ predictions.

A full breakdown of contributions from different configurations without this

additional requirement on the rapidity of the third jet is given in the table in
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Figure 6.11: Combined σexc2j + σexc3j jet rates against configuration options for
10, 30 and 50 GeV jets with the additional requirement that the third hardest
jet be between the two hardest jets in rapidity. The FKL, FKL+UNO and
FKL+QQBAR differ only in the 3j contribution, whereas there are contributions
from non-resummable events to both the 2j and 3j rate.

fig. 6.12.

6.3.3 Correct treatment of non-FKL events

In creating the lines for fig. 6.11, we assumed that the treatment for NLL events

(UNO/QQBAR) should be the same as that of the FKL events. In this section

we look at these classifications in more detail, to try to come up with the closest

equivalent treatment. If we are looking to study the corrections to the hard

Figure 6.12: Table of exclusive 3j rates using the ATLAS MET JETS analysis with
modified p⊥ in jet clustering.
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(a) (b)

(c)

Figure 6.13: Example 3j unordered events, with the cut on the third jet being (a)
lower than that of the other jets, leading to an impact factor with non-uniform
cuts, (b,c) the same as the other jets, leading to an impact factor with uniform
jet p⊥ cuts.
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process described in section 6.3.1 and in fig. 6.4, then an unordered correction to

this process should have the same jet p⊥ cuts as the jets in the hard process.

This means for our example of 50 GeV jets with one jet also above 110 GeV, we

should allow unordered events with the additional jet also above 50 GeV. This

would then exclude events with a third jet below 50 GeV like the one depicted in

fig. 6.13a, but include events with a 50 GeV jet as part of an unordered current

with either the other > 50 GeV jet (fig. 6.13b) or with the > 110 GeV jet

(fig. 6.13c). As there is no resummation allowed between the component jets

in an unordered current, we don’t need to worry about the divergences which

arose in the FKL case. We do, however, need to make sure that the p⊥ limit for

resummation matches that of the 2j event and the FKL events in the 3j sample.

In practice, this means we should generate the fixed order samples with a

minimum p⊥, then match that p⊥ in the HEJ config file to be the same value,

but then we can use the 50 GeV analysis for the unordered 3j events, regardless

of this p⊥ choice. This ensures that all jets (the two hardest and the additional

jet) are above 50 GeV for the unordered description.

This will lead to events which look like fig. 6.13a, but then in the analysis get

classified as 2 jet events. We have choice here to add in an extra restriction

that there still be 3 jets in the final sample or just look at the 3j rate in the

analysis output. Both options will distort the result of the jet isolation cuts in

the ATLAS MET JETS analysis, but this effect was found to be very small: around

0.6% of the exclusive 2j rate was coming from 3j events with one jet vetoed.

In practice then, we implement a custom HEJ analysis which filters events from

the HEJ resummation before they reach the rivet analysis. We define a set of “test

jets” which we require to pass the jet cuts and then add to this set jets depending

on the identified configuration. For backward unordered emissions and backward

qq̄ emissions, we look at the first 2 and the final jet (ordered by rapidity), and for

forward unordered emissions and forward qq̄ emissions we look at the first jet and

final two jets (again ordered by rapidity). For central qq̄ emissions we require the

qq̄ jets to be above 50 GeV and then only test the outer jets in rapidity. Then

we demand that all of the test jets are above 50 GeV and at least one of the test

jets is above 110 GeV (80 GeV for VBF region), and give any of the events which

pass this restriction to the rivet analysis to be analysed further.
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Correct treatment of non-resummable events

At this stage we accept any non-resummable event which passes the analysis, with

the jet clustering set to match the fixed order input and the HEJ resummation.

6.3.4 Full breakdown of best ATLAS MET JETS description

To summarise this section and the previous section. For a fixed order input of

p⊥;in jets. At leading log for all n-jet samples we have

FKL events

• Resummation p⊥, p⊥;r = p⊥;in.

• In analysis, p⊥;analysis = p⊥;r,

• p⊥,ymax, p⊥,ymin > 50 GeV,

• max(p⊥,ymax, p⊥,ymin) > 110 GeV.

Non-Resummable events

• p⊥;analysis = p⊥;in,

• p⊥,leading > 110 GeV,

• p⊥,subleading > 50 GeV.

UNO/QQBAR events

• Resummation p⊥, p⊥;r = p⊥;in.

• In analysis, p⊥;analysis = p⊥;r,

• max({p⊥for jets in currents}) > 110 GeV,

• min({p⊥for jets in currents}) > 50 GeV,

• (if central qq̄) min({p⊥for jets in qq̄ vertex}) > 50 GeV,
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Figure 6.14: Combined σexc2j +σexc3j jet rates against configuration options for 10, 30
and 50 GeV jets using the breakdown of HEJ configurations in section 6.3.4. The
FKL, FKL+UNO and FKL+QQBAR differ only in the 3j contribution, whereas
there are contributions from non-resummable events to both the 2j and 3j rate.

6.3.5 Quantitative changes to the jet rates

Figure 6.14 shows the combined σexc2j +σexc3j jet rates against configuration options

for three different choices of minimum jet p⊥ with the configuration breakdown

outlined in the previous section. Shown also again is a black dashed line

representing the total NLO cross section. The non-resummable contribution here

includes contribution from 2j and 3j non-resummable events.

Looking at the full HEJ description on the furthest right, we see that the 50

GeV and 30 GeV lines are very similar in value and are below NLO. Adding in

the 4 and 5 jet FKL and non-resummable contributions increases the 30 GeV

cross section by roughly 10%, making the HEJ prediction 5% large than NLO (but

easily within error bars of each other with the current level of statistics). This

is similar agreement to what we have seen for other processes. The 10 GeV line

however is already much larger than NLO, but is still much smaller than it was

in fig. 6.10 indicating that there is a divergence in the non-resummable events as

one jet becomes soft. However as this is in the non-resummable contribution, we

do not have direct control over this divergence except to possibly remove the 3

jet non-resummable contribution entirely. Any difference in the non resummable

contributions of the 30 and 50 GeV samples cancels partly with the differences
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in the HEJ descriptions of those lines (in the third bin) leading to a very similar

result for 30 and 50 GeV jets.

6.4 Comparison of HEJ and multijet merged

predictions for selected experimental

observables

We now return to the initial task of making predictions for the ATLAS MET JETS

analysis. The setup for the analysis is given in section 6.1 and the setup for the

fixed order input is unchanged from what was described in section 6.2. From

the fixed order, we perform the resummation using HEJ2 calculating the FKL,

unordered/qq̄ and non-resummable components separately for both 2j and VBF

regions using the procedure outlined in section 6.3.4. These contributions were

then combined together to form the full HEJ prediction.

For some observables which we have previously seen to be minimally impacted by

resummation, we performed a matching to NLO using the procedure outlined in

section 3.4. This includes the two p⊥ observables and the missing energy, leaving

the jet rates, dijet rapidity separation, dijet angular separation and dijet invariant

mass observables matched only to LO. Figures 6.15 and 6.16 shows the reweighting

factors of
σNLO2-jet

σHEJ@NLO
2-jet

and
σHEJ2-jet

σHEJ@NLO
2-jet

respectively for the three NLO matched observables.

For each we see that the behaviour seen is similar to that of fig. 4.16 with the

NLO ratio being flat for large p⊥, showing that the HEJ prediction is not missing

any physics present in the NLO calculation in this region. For the HEJ ratios, we

see all the ratios rise slowly as p⊥ increases showing that these observables are

less sensitive to higher order corrections from high energy logarithms.

In this section we will compare the differences seen between HEJ and MEPS@NLO for

a selection of observables from this study. There are 52 plots we made predictions

for as part of this analysis: 2 different number of leptons × 2 different lepton

flavours × 2 different regions (2j/VBF) × 7 observables - 4 as they didn’t look at

rapidity plots in the 2j region. As such only a sample of each observable is shown

in this chapter. A full prediction with all of the plots is given as appendix B.

We start our discussion by looking at the cross section as a function of exclusive jet

rates depicted in fig. 6.17. In red is the MEPS@NLO line provided by ATLAS and in
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Figure 6.15: Plot of the ratio
σNLO2-jet

σHEJ@NLO
2-jet

for one identified electron in the final state

in the 2 jet region for (a) hardest jet transverse momentum (b) second hardest
jet transverse momentum (c) missing transverse momentum.
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Figure 6.16: Plot of the ratio
σHEJ2-jet

σHEJ@NLO
2-jet

for one identified electron in the final state

in the 2 jet region for (a) hardest jet transverse momentum (b) second hardest
jet transverse momentum (c) missing transverse momentum.
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Figure 6.17: Plot of the total cross section as a function of number of jets for the
ATLAS MET JETS study comparing HEJ and MEPS@NLO with one identified charged
lepton in the final state. Decay is in the electron channel and in the 2j region.
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Figure 6.18: Plot of the total cross section as a function of dijet angular
separation for the hardest two jets in the ATLAS MET JETS study comparing HEJ

and MEPS@NLO with one identified charged lepton in the final state. Decay is in
the electron channel and in the 2j region.

blue is the HEJ prediction. Note that although the MEPS@NLO matching procedure

is unitary - i.e. it doesn’t change the total cross section, the matching is done for

inclusive W and Z production and not inclusive W/Z plus two jet production.

This is important as contributions move between 0 and 1 jet rates to 2+ jet

rates and vice-versa. As a consequence of this and the requirement of having

at least two jets in the analysis, we do not expect that the MEPS@NLO and pure

NLO lines in any of these distributions to integrate to the same values. For this

distribution, each bin in the HEJ prediction will contain contributions from FKL

and non-resummable events, with the rates from three jets onwards also including

contributions from subleading configurations. The HEJ result is truncated at five

jets as it was found that the contribution from five jets to the total HEJ prediction

was around or below a percent. While we include contributions from higher jet

multiplicities using the HEJ fixed order generator, they are not shown on this plot

as they do not include contributions from non-resummable configurations which

cannot be generated by the HEJFOG so are not LO accurate. In each of the regions

studied, the jet rates (and thus the total cross section) was found to be higher in

HEJ compared to MEPS@NLO, despite the HEJ cross section being similar to pure

NLO.

This difference in the cross sections is the reason for the difference in the
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Figure 6.19: Plot of the total cross section as a function of dijet rapidity separation
for the ATLAS MET JETS study comparing HEJ and MEPS@NLO in the VBF region
with leptonic decay into muon + neutrino in the VBF region.

dijet angular separation observables depicted for one channel in fig. 6.18, which

otherwise has a flat ratio between HEJ and NLO. The angular separation plots were

found to be peaked either side of 0 for the 2j region with the VBF cuts pushing

the peaks further from the centre.

Figure 6.19 shows the cross section as a function of the dijet rapidity separation.

The authors of the analysis decided only to measure this distribution in the VBF

region so this is what we present here. In this plot we see a big difference in the HEJ

and MEPS@NLO predictions which we have come to expect from previous studies.

This is down to a number of factors - rapidity separation is known to be highly

sensitive to higher order logarithms that we resum in the HEJ framework (see the

discussion around fig. 4.14), especially when the separation becomes large. This

difference becomes more apparent when we introduce VBF cuts which we have

shown directly lead to an increase in the impact of the high energy logarithms.

As shown in previous studies, the ratio between HEJ and NLO remains flat as a

function of jet transverse momenta away from low values. It is interesting to see

then that the ratio remains roughly flat between HEJ and MEPS@NLO depicted in

fig. 6.20 for both the hardest jet p⊥ and the second hardest jet p⊥. This shows

that these observables (away from low values of p⊥) are not particularly sensitive

to the corrections from high energy logarithms or from the corrections from the

parton shower. The latter case is not particularly surprising as the physics from
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Figure 6.20: Plot of the total cross section as a function of the transverse
momentum of the (a) hardest jet (b) second hardest jet for the ATLAS MET JETS

study comparing HEJ and MEPS@NLO with one identified charged electron in the
final state. Decay is in the electron channel and in the 2j region.

the parton shower are most relevant for soft and collinear emissions.

Included also here is the same plot of transverse momenta of the hardest jets,

except this time for Z plus jets. Figure 6.21 shows the cross section as a function

of the hardest and second hardest jet momenta for the Z decaying in the electron

channel. Compared to the flat ratio we observed in the W plus jet plots discussed

previously, we see that the ratio here is almost linearly decreasing between the two

predictions. The MEPS@NLO line also peaks one bin earlier that the HEJ prediction.

At this point we have to ask the question if this difference is mainly due to effects

of high energy logarithms resummed by HEJ or due to parton shower merging.

Indeed we look at the difference between HEJ and pure NLO we see that the ratio

is again flat at high values of p⊥, similar to what was observed previously. The

difference here is really due to a difference in the NLO and MEPS@NLO predictions,

and the cause is not immediately obvious. It could perhaps be explained by

looking at the effect of the lower multiplicity samples included in the MEPS@NLO

calculation (which is based off of inclusive V production, not inclusive V plus

jets production) where tuning the parameters can move contributions between jet

multiplicities. Another explanation of the difference in behaviour here between W

and Z emissions could involve the large difference in the lepton cuts highlighted

in fig. 6.1b. Finally, we may need to look at PDF effects and the allowed channels

for W and Z production to further investigate the differences in these processes.
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Figure 6.21: Plot of the total cross section as a function of the transverse
momentum of the (a) hardest jet (b) second hardest jet for the ATLAS MET JETS

study comparing HEJ and MEPS@NLO with two identified charged electrons in the
final state. Decay is in the electron channel and in the 2j region.
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Figure 6.22: Plot of the total cross section as a function of the missing transverse
momentum for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with (a)
one (b) two identified charged lepton in the final state. Decay is in the 2j region.
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Figure 6.23: Plot of the total cross section as a function of the dijet invariant mass
for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with one identified
charged lepton in the final state. Decay is in the electron channel and in the 2j
region.

Next, we look at the cross section as a function of the “missing transverse

momentum” which in this case has been defined to be the combined contribution

from all neutrinos and all charged leptons identified in the event. Figure 6.22

shows this observable plotted for both W plus jets and Z plus jets to highlight

the differences between the two. For W plus jets we see the ratio rise significantly

with p⊥ whereas for Z plus jets the ratio falls and remains relatively flat.

Looking a little deeper, we can show that the ratio between HEJ and pure NLO is

actually pretty flat for both W and Z plus jets, but the ratio between NLO and

MEPS@NLO changes significantly for W plus jets instead of staying roughly flat for

Z plus jets. This difference then is mainly due to the effects of merging with the

parton shower and an asymmetry between the W and Z predictions, similar to

what was seen above in the p⊥ observables.

Finally, we look at the plot of the dijet invariant mass depicted in fig. 6.23. The

dijet invariant mass is an observable sensitive to both the p⊥ of the jets as well as

their rapidity difference, so in principle we should see effects here from both high

energy logarithms and logarithms resummed by the shower which will grow with

a large separation of transverse scales. In the large mjj region we are going to see

an impact from events with large rapidity separation which leads to large high

energy logarithms resummed in HEJ, but also we will have the impact from events
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with more than two jets where all the transverse momenta is clustered in two jets,

leaving further jets to be softer. This large difference in scales will lead to large

logarithms in the transverse scales which are resummed in the parton shower.

So the ideal prediction for this observable should really include contributions

resumming both high energy logarithms and logarithms in the transverse scales.

There is work ongoing on matching the HEJ formalism and parton shower

formalism in HEJ +Pythia [95], which has sometimes proved necessary to produce

the best possible predictions for observables like discussed above which are

sensitive to both effects.

6.5 Conclusions and summary of ATLAS MET JETS

study

In this chapter we have presented changes to the HEJ formalism for dealing

effectively with asymmetric jet cuts in the fixed order sample. We presented a

formalism for dealing with each of the identified types of kinematic configurations

and discussed how we can combine these together to consistently deal with the

HEJ resummation methods and the treatment of poles. It should be stated that

some of the shortcomings will be addressed by a full next-to-leading logarithm

resummation planned as part of an upcoming HEJ release.

We then discussed the impact of high energy corrections for an ongoing ATLAS

study into jets at the LHC with large missing energy due to the presence of a

W or Z/γ emission. This study in particular looked at multiple regions where

the jet cuts on the hardest jets were asymmetric requiring one to be above 50

GeV and the other to be above 80/110 GeV depending on the region. For this

study we looked at comparing the HEJ prediction using the formalism for dealing

effectively with asymmetric jet cuts we have constructed with the parton shower

matched result provided by ATLAS. In some observables we saw a significant

difference between the two which we sometimes deduced as the effect of high

energy logarithms, sometimes from the effect of the shower and sometimes the

effect of both.

We deduce then that both the shower corrections and high energy logarithms are

important for the best predictions for this analysis. Work is ongoing to construct

a framework for combining both of these corrections into one software package.
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Chapter 7

Impact of high energy resummation

at a future circular collider

In this chapter, we wrap up our discussion on High Energy Jets by having a first

look at the effect of HEJ resummation at a future circular collider (FCC). We start

by discussing briefly some of the relevant engineering predictions for a detector

in a future circular collider from recent reports [96–99] and how these will be

important in defining new limits on the phase space we can probe in experiment.

We then discuss the impact of high energy logarithms at such an FCC by looking

at the effect on distributions for W+ jets as we increase the centre of mass energy.

7.1 Considerations on construction of a future

circular collider

Proposed plans for a FCC [96] estimate a potential to reach a centre of mass

energy of 100 TeV and beyond with an integrated luminosity of around 20ab−1[97].

Such a collider would be used to search for and study BSM particles with masses

beyond what is capable of being produced at the LHC. However as we have already

seen at the LHC, QCD interactions are extremely important in describing the

phenomena at a pp collider, even whilst trying to probe the electroweak sector [98].

Important QCD effects include both “initial state” effects probing the structure

of the proton through the PDFs in the “ultra-low x region” of x < 10−5 [99], and

“final state” effects from enhanced QCD logarithmic corrections.
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CoM Energy and Jet cut σHEJ [pb] σNLO [pb] σHEJ/σNLO

13 TeV, p⊥ > 30 GeV
2.68× 105

±4.76× 104
2.83× 105

±1.08× 104
0.95
±0.17

50 TeV, p⊥ > 30 GeV
1.61× 106

±2.93× 105
1.46× 106

±4.92× 104
1.11
±0.20

100 TeV, p⊥ > 30 GeV
3.55× 106

±6.45× 105
3.10× 106

±1.21× 105
1.14
±0.21

100 TeV, p⊥ > 60 GeV
1.00× 105

±1.66× 105
1.01× 106

±2.77× 104
0.99
±0.17

100 TeV, p⊥ > 80 GeV
5.62× 105

±8.95× 104
6.02× 105

±1.68× 104
0.93
±0.15

Table 7.1: Table of inclusive cross sections for W plus jets at a range of centre of
mass energies and with a selection of minimum jet p⊥ cuts.

When discussing future colliders, it is also important to discuss the impact of the

additional phase space which proposed detectors will be able to probe. Proposed

targets for jet tracking have the desired rapidity detection as high as |y| ≈ 6 units

of rapidity in order to study the tails of distributions in VBF studies [97]. This

increase in rapidity will allow us to probe the very high ∆y separation between

jets where we have seen significant differences between HEJ resummed predictions

and fixed order where the high energy logarithms are enhanced.

Targets for the lepton calorimeters include detection of leptons with rapidity

|y| < 5, which will allow the study of collisions where there is a large separation

in rapidity between an emitted W boson and its parent quark line. This is a

significant increase from the LHC where region for lepton detection was quite

narrow. This increase will allow for a probe of the dependence on the prediction

of the position of W boson in rapidity relative to the QCD interactions.

With an increase to centre of mass energy also comes an increase in the pileup

at the collider, which will make signals of interest more difficult to cleanly study.

This will lead to the need for triggers which start at a higher energy that what

was needed at the LHC.

7.2 Impact of HEJ resummation at large

centre-of-mass energies

In this section we look at the HEJ leading log predictions forW plus jets a potential

future circular collider at
√
s = 100 TeV. The setup was designed to have minimal
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selection cuts on the phase space to be similar to a potential detector. Jets were

clustered with jet parameter R = 0.4 and with a range of minimum p⊥ cuts. Jets

were only counted if they had an absolute value of rapidity less than 4.7. W

bosons were required to decay in the electron channel where the electrons were

restricted to having p⊥ above 20 GeV and were required to have an absolute value

of rapidity less than 2.5.

The central scale choice was chosen to be µF = µR = HT/2 and scale errors shown

in this section are estimated by varying µF and µR independently by factors of

2, similar to what was done in other chapters.

The generation was done in a similar way to section 4.4, using Sherpa [65] and

COMIX [80] with the extension of OpenLoops [81] for NLO calculations. We used

the NNPDF3.1 NLO PDF set [91] as provided by LHAPDF6 [85].

Table 7.1 shows the total inclusive integrated cross section for HEJ, NLO and the

ratio between the two with errors quoted being from scale variations around the

central scale. From this table we can see the effect on the cross section when we

increase the centre of mass energy keeping the minimum jet p⊥ the same as well

as the effect of changing the jet p⊥ whilst keeping the centre of mass energy fixed

at 100 TeV. Referring back to eq. (2.53), the only part of the phase space integral

that is going to change if we increase the centre of mass energy is,

xa(p)xb(p)f(xa(p), Q
2)f(xb(p), Q

2). (7.1)

Another way of saying this is that changing our centre of mass energy will not

change our result for the matrix element calculation, but will allow us to both

probe a different region of the PDFs, and probe configurations which were not

kinematically accessible at 13 TeV. From fig. 2.2 we know that in the low x limit

the gluon PDF dominates over the u and d PDFs and increases sharply as x

decreases further. This explains why in table 7.1 we see the HEJ and NLO cross

sections increase as we increase the centre of mass energy. What is interesting is

that the HEJ result increases slightly more than the NLO result as we increase the

centre of mass energy. Going from 13 TeV to 100 TeV, the HEJ result increases

by a factor of about 13 whereas the NLO result increases by a factor of about 11.

This is in contrast to the effect of increasing the jet p⊥ cut at 100 TeV, where

the HEJ result falls faster as a function of jet p⊥ than NLO and we can see that at

p⊥ = 80 GeV the ratio of HEJ to NLO is the same (within errors) as the ratio at
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Figure 7.1: Plot of two, three and four jet rates in leading log resummed HEJ

prediction for W plus jets where jets are clustered at R = 0.4. The red line is
at
√
s = 13 TeV with jets counted above 30 GeV, whilst the other lines are at√

s = 100 TeV with jets counted above (dark blue) 30 GeV (yellow) 60 GeV
(light blue) 80 GeV.

13 TeV with a 30 GeV jet cut. Since most of the cross section in p⊥ distributions

appears in the low p⊥ region, it makes sense that the cross section decreases

sharply as we increase the jet p⊥ cut. Since HEJ will typically have more jets

counted than NLO, it makes sense that the HEJ prediction falls faster than NLO as

we increase the jet cut.

Figure 7.1 shows the cross section as a function of jet rates for HEJ calculated

at
√
s = 13 TeV with 30 GeV jets and

√
s = 100 TeV with 30, 60 and 80

GeV jets. The ratio plot shown is the ratio to the
√
s = 100 TeV, p⊥ > 80

GeV line. Immediately we see that ratio between the blue line and orange line

increases for higher jet multiplicities which is due to most of the cross section

being concentrated in the low p⊥ region. With each additional jet we are requiring

above 80 GeV, we are excluding the jets that would be counted 30-80 GeV range
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Figure 7.2: Plot of transverse momentum of the hardest jet in leading log
resummed HEJ prediction for W plus jets where jets are clustered at R = 0.4.
The red line is at

√
s = 13 TeV with jets counted above 30 GeV, whilst the other

lines are at
√
s = 100 TeV with jets counted above (dark blue) 30 GeV (yellow)

60 GeV (light blue) 80 GeV.

which contains a significant contribution to the cross section. We can also see that

the ratio between the
√
s = 13 TeV with 30 GeV jets line and the

√
s = 100 TeV

with 80 GeV jets line is roughly constant across the different jet multiplicities,

showing that the higher p⊥ cut ends up compensating for the increase in the

centre of mass energy.

Figure 7.2 shows the cross section as a function of the p⊥ of the hardest jet.

As we saw in table 7.1, the total cross section increased as a function of centre

of mass energy, so we expect the blue line to be much larger than the red line

and this is the case here with a similar shape between the two but with a slightly

different slope. Increasing the jet p⊥ cut going from the blue line to the yellow and

orange line shifts the peak of the distribution further from zero, but ultimately

the ratio between these 3 lines tends to a constant value for large enough p⊥.

Similar behaviour can be seen in fig. 7.3 when looking at the cross section as

a function of dijet invariant mass. We see biggest differences between the lines

occur in the low mjj region with the ratios tending to a flat value in the large

mjj region despite the fact that there are clear differences between the setups

when there is a large rapidity separation between jets (fig. 7.4). One could argue

that the reason that we don’t see significant differences at large mjj is due to the

computation limits of our simulation. At mjj < 4 TeV we are already spanning

6 orders of magnitude in the cross section, and including contributions with an
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Figure 7.3: Plot of invariant mass between the hardest two jets in leading log
resummed HEJ prediction for W plus jets where jets are clustered at R = 0.4.
The red line is at

√
s = 13 TeV with jets counted above 30 GeV, whilst the other

lines are at
√
s = 100 TeV with jets counted above (dark blue) 30 GeV (yellow)

60 GeV (light blue) 80 GeV.
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Figure 7.4: Plot of rapidity separation between the hardest two jets in leading
log resummed HEJ prediction for W plus jets where jets are clustered at R = 0.4.
The red line is at

√
s = 13 TeV with jets counted above 30 GeV, whilst the other

lines are at
√
s = 100 TeV with jets counted above (dark blue) 30 GeV (yellow)

60 GeV (light blue) 80 GeV.

125



high enough invariant mass where we see significant impact from large ∆yjj jets

would be computationally challenging.

7.3 Conclusions and final remarks

In this chapter we discussed the impact of the increase in centre of mass energy

in going from the LHC to a potential FCC. Such an upgrade will hopefully also

come with improvements to detectors allowing us to probe never before accessible

regions of phase space which are important for certain physical processes. In

comparing HEJ and fixed order, we saw larger differences in the total integrated

cross sections between the two as we increased the centre of mass energy but this

difference was reduced as we increased the jet p⊥ cut.

This increase in available phase space will be particularly important for VBS and

VBF studies, where we have seen a large impact of high energy logarithms at high

jet rapidity separation. We expect that similar to the LHC, studies of VBS/VBF

at a FCC will see that high energy logs from QCD topologies will be important

in accurately describing the tails of differential distributions.
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Chapter 8

Summary and future studies

In order to cleanly study electroweak interactions and search for BSM physics

at hadron colliders, an accurate description of QCD phenomena is necessary. In

this thesis we have studied the perturbative stability of QCD in the limit of high

energy scattering using the High Energy Jets formalism. Our discussions began

in chapter 2 where we presented a brief overview of the Standard Model and

the technology required for performing amplitude calculations. We presented our

conventions and tools that would be important for framing the work presented

in the following chapters in a broader context. In chapter 3 we presented an

overview of the HEJ methodology for resumming large logarithms in ŝ
t̂

that appear

to all orders in perturbation theory and which can damage the QCD perturbative

expansion. We discuss how to construct amplitudes which are exact in the high

energy MRK limit including leading log accurate contributions from all order real

and virtual corrections. It is this framework that we build upon in chapters 4

to 6 where we look at extending the HEJ description to include resummation for

new, experimentally relevant processes and setups.

In chapter 4, we presented an approach to resumming logarithms of the form

α4
Wα

k+2
s logk(ŝ/p2

t ) which appear in the QCD contribution to same sign WW

pair production as a form of vector boson scattering. In studies of vector boson

scattering it is common to introduce cuts on the rapidity separation and invariant

mass between the hardest jets in order to try and separate the contribution from

pure electroweak interactions and those involving QCD interactions. However

these cuts directly enhance the logarithmic contributions in the QCD perturbative

expansion, making them important to include in the QCD contribution that
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remains after the cuts. To study the effect of these logs we implemented same sign

W pair resummation in the latest version of HEJ2 and compared the resummed

predictions to that of next-to-leading order for the process pp→ e±νeµ±νµ+ ≥ 2j

using the setup of a recent CMS analysis. We found that although the total cross

sections of the two methods were very similar, this was due to cancellations

across phase space with this particular setup. When we looked at distributions

of experimental observables, we found that there were some that were sensitive

to higher order corrections, particularly in the tails of the distributions. We

further found that the effect of the VBS cuts was significant in the breakdown

of the perturbative expansion. We saw that for this study the three jet rate

(without lepton isolation cuts) was now slightly larger than the two jet rate with

the four jet rate only being suppressed by a factor of about a half compared to

the two jet rate. Finally, we looked at the impact of matching the HEJ resummed

predictions to NLO in order to include full NLO accuracy as well as the LL accuracy.

We concluded the chapter by discussing which of the observables studied were

sensitive to NLO corrections, which were sensitive to LL corrections and which

were sensitive to both or neither.

In chapter 5 we presented the results for the first of two ongoing ATLAS analyses

sensitive to higher order corrections beyond next-to-leading order. We described

the way in which we can produce a ratio of the inclusive 3-jet rate to the inclusive

2-jet rate, R32 for a HEJ leading log accurate resummed prediction and for fixed

order to compare the two as a function of a selection of experimental observables.

Due to delays in the analysis being published outside of our control, we were not

able to compare with data at the time of writing so could only compare against

fixed order calculations. However this still proved interesting to discuss as there

were distributions where there were significant differences in shape between HEJ

and fixed order where the errors from varying the central scale choice typically

underwent a large amount of cancellation when taking the ratio R32 for HEJ

predictions, leading to a line with relatively small variation bands. We also

studied as part of this analysis the effect of the setup on predicting the average

number of jets as a function of the same experimental observables discussed in

the R32 distributions. Here we again saw significant differences in shape between

HEJ and NLO, even when restricting the scope of the comparison to where the

lines stayed below what was physical of the NLO prediction (〈N〉 = 3). We also

saw that some observables were sensitive to corrections from events with up to 5

jets, well beyond what is currently achievable with fixed order methodology.
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The results from the second of these studies was presented in chapter 6, where

we looked at the effect on vector boson (W or Z/γ) plus jets where there is large

missing energy in the event. This setup is important to accurately describe as

it is a necessary background to the signal process of neutrinos + jets (or any

other unseen particle), used as a probe of dark matter at the LHC. As with the

previous chapter, due to delays in the analysis being published, we were not able

to compare with data at the time of writing. We were however able to compare

with a high statistics multijet merged sample provided by members of the ATLAS

collaboration. This study was important to discuss as initially it highlighted the

need for a improved HEJ prescription for dealing with setups with heterogeneous

jet cuts. Therefore we spent some time in this chapter discussing these changes

in detail for future studies. We then moved on to discuss the differences between

the HEJ resummed prediction and the multijet merged prediction. Due to the

large number of observables and regions of interest in this analysis, we discussed

a representative selection of distributions in the main text, but included the full

array of distributions as an appendix. In the discussions around the plots, we

aimed to describe where differences were due to enhanced high energy logarithms

and which were due to shower corrections included in the multijet merged sample.

In particular we looked at a region where VBF cuts were applied (similar to the

VBS cuts discussed in chapter 4), which as we have already seen, directly increase

the impact from high energy logarithms in damaging the QCD perturbative

expansion.

Finally, in chapter 7 we presented a short look at the impact of high energy

logarithms at a future circular collider with centre of mass energy of 100 TeV.

Such a collider will allow us to probe never before accessible regions of phase

space, extending the upper bounds of various kinematic observables where we see

the biggest differences between HEJ and fixed order calculations. We found that

directly increasing the centre of mass energy whilst keeping everything else in

the setup the same lead to the the HEJ prediction moving further away from the

next-to-leading order prediction, but increasing the jet p⊥ requirement brought

the predictions for jet rates back together. We finished this chapter by looking

at how some experimentally relevant distributions were affected by the change

in centre of mass energy and jet p⊥ cut to probe how we expect our resummed

prediction to be affected going from the LHC to a future collider.

The work presented in this thesis goes towards improving the logarithmic

description of QCD scattering processes using the high energy jets framework
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at both the LHC and at future hadron colliders. Myself and my collaborators

eagerly await the results from the experimental analyses discussed in chapters 5

and 6 which will hopefully be published in the near future. We hope that the

results presented here will help to accurately describe QCD topologies needed as

a background to probes of both the electroweak sector of the Standard Model

and beyond the Standard Model, where new physics is waiting to be discovered.
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Appendix A

Spinor representations

We use the following (chiral) representation for the spinors similar to reference

[14]. Note that the sign conventions here make this representation different from

the chiral representation found in other texts, e.g in reference [30, Appendix A2].

For outgoing particles with 4-momentum p, p± = E ± pz and p⊥ = px + ipy, we

use

u+(p) =


√
p+

√
p− p1

|p⊥|
0

0

 and u−(p) =


0

0√
p−

p∗⊥
|p⊥

−√p+

 . (A.1)

For incoming particles with 4 -momentum p moving in the + direction, we use:

u+(p) =


√
p+

0

0

0

 and u−(p) =


0

0

0

−√p+

 . (A.2)

For incoming particles with 4-momentum p moving in the - direction, we use:

u+(p) =


0

−√p−
0

0

 and u−(p) =


0

0

−√p−
0

 . (A.3)
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We use the following representation for the gamma matrices:

γ0 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , γ1 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 ,

γ2 =


0 0 0 i

0 0 −i 0

0 −i 0 0

i 0 0 0

 , γ3 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 .

(A.4)

From this, we can write the fifth gamma matrix as

γ5 = iγ0γ1γ2γ3


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 (A.5)
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Appendix B

Full collection of predictions for the

ATLAS MET JETS analysis

Presented here is the full HEJ prediction for the ATLAS MET JETS study. Please

refer to chapter 6 for a discussion of a representative sample of the plots shown

here and a discussion some of the behaviour seen.
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Figure B.1: Plot of the total cross section as a function of number of jets for
the ATLAS MET JETS study comparing HEJ and MEPS@NLO with one identified
charged lepton in the final state. Decay is in the (a) electon channel, 2j region
(b) muon channel, 2j region (c) electron channel VBF region (d) muon channel,
VBF region
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Figure B.2: Plot of the total cross section as a function of number of jets for
the ATLAS MET JETS study comparing HEJ and MEPS@NLO with two identified
charged leptons in the final state. Decay is in the (a) electon channel, 2j region
(b) muon channel, 2j region (c) electron channel VBF region (d) muon channel,
VBF region
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Figure B.3: Plot of the total cross section as a function of dijet angular separation
for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with one
identified charged lepton in the final state. Decay is in the (a) electon channel,
2j region (b) muon channel, 2j region (c) electron channel VBF region (d) muon
channel, VBF region
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Figure B.4: Plot of the total cross section as a function of dijet angular separation
for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with two
identified charged leptons in the final state. Decay is in the (a) electon channel,
2j region (b) muon channel, 2j region (c) electron channel VBF region (d) muon
channel, VBF region
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Figure B.5: Plot of the total cross section as a function of dijet rapidity separation
for the ATLAS MET JETS study comparing HEJ and MEPS@NLO in the VBF region
with leptonic decay into (a) electon + neutrino (b) muon + neutrino (c) electron
+ antielectron (d) muon + antimuon
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Figure B.6: Plot of the total cross section as a function of the transverse
momentum of the hardest jet for the ATLAS MET JETS study comparing HEJ

and MEPS@NLO with one identified charged lepton in the final state. Decay is in
the (a) electon channel, 2j region (b) muon channel, 2j region (c) electron channel
VBF region (d) muon channel, VBF region
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Figure B.7: Plot of the total cross section as a function of the transverse
momentum of the hardest jet for the ATLAS MET JETS study comparing HEJ

and MEPS@NLO with two identified charged leptons in the final state. Decay is in
the (a) electon channel, 2j region (b) muon channel, 2j region (c) electron channel
VBF region (d) muon channel, VBF region
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Figure B.8: Plot of the total cross section as a function of the transverse
momentum of the second hardest jet for the ATLAS MET JETS study comparing
HEJ and MEPS@NLO with one identified charged lepton in the final state. Decay
is in the (a) electon channel, 2j region (b) muon channel, 2j region (c) electron
channel VBF region (d) muon channel, VBF region
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Figure B.9: Plot of the total cross section as a function of the transverse
momentum of the second hardest jet for the ATLAS MET JETS study comparing
HEJ and MEPS@NLO with two identified charged leptons in the final state. Decay
is in the (a) electon channel, 2j region (b) muon channel, 2j region (c) electron
channel VBF region (d) muon channel, VBF region
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Figure B.10: Plot of the total cross section as a function of the missing transverse
momentum for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with
one identified charged lepton in the final state. Decay is in the (a) electon channel,
2j region (b) muon channel, 2j region (c) electron channel VBF region (d) muon
channel, VBF region
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Figure B.11: Plot of the total cross section as a function of the missing transverse
momentum for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with
two identified charged leptons in the final state. Decay is in the (a) electon
channel, 2j region (b) muon channel, 2j region (c) electron channel VBF region
(d) muon channel, VBF region
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Figure B.12: Plot of the total cross section as a function of the dijet invariant
mass for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with one
identified charged lepton in the final state. Decay is in the (a) electon channel,
2j region (b) muon channel, 2j region (c) electron channel VBF region (d) muon
channel, VBF region
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Figure B.13: Plot of the total cross section as a function of the dijet invariant
mass for the ATLAS MET JETS study comparing HEJ and MEPS@NLO with two
identified charged leptons in the final state. Decay is in the (a) electon channel,
2j region (b) muon channel, 2j region (c) electron channel VBF region (d) muon
channel, VBF region
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