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Abstract

The yeast metabolic cycle (YMC) is a biological rhythm in budding yeast (Sac-

charomyces cerevisiae). It entails oscillations in the concentrations and redox

states of intracellular metabolites, oscillations in transcript levels, temporal par-

titioning of biosynthesis, and, in chemostats, oscillations in oxygen consumption.

Most studies on the YMC have been based on chemostat experiments, and it

is unclear whether YMCs arise from interactions between cells or are generated

independently by each cell. This thesis aims at characterising the YMC in single

cells and its response to nutrient and genetic perturbations. Specifically, I use

microfluidics to trap and separate yeast cells, then record the time-dependent

intensity of flavin autofluorescence, which is a component of the YMC.

Single-cell microfluidics produces a large amount of time series data. Noisy and

short time series produced from biological experiments restrict the computational

tools that are useful for analysis. I developed a method to filter time series, a

machine learning model to classify whether time series are oscillatory, and an

autocorrelation method to examine the periodicity of time series data.

My experimental results show that yeast cells show oscillations in the fluorescence

of flavins. Specifically, I show that in high glucose conditions, cells generate

flavin oscillations asynchronously within a population, and these flavin oscillations

couple with the cell division cycle. I show that cells can individually reset the
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phase of their flavin oscillations in response to abrupt nutrient changes, independ-

ently of the cell division cycle. I also show that deletion strains generate flavin

oscillations that exhibit different behaviour from dissolved oxygen oscillations

from chemostat conditions.

Finally, I use flux balance analysis to address whether proteomic constraints

in cellular metabolism mean that temporal partitioning of biosynthesis is ad-

vantageous for the yeast cell, and whether such partitioning explains the timing

of the metabolic cycle. My results show that under proteomic constraints, it is

advantageous for the cell to sequentially synthesise biomass components because

doing so shortens the timescale of biomass synthesis. However, the degree of

advantage of sequential over parallel biosynthesis is lower when both carbon and

nitrogen sources are limiting.

This thesis thus confirms autonomous generation of flavin oscillations, and sug-

gests a model in which the YMC responds to nutrient conditions and subsequently

entrains the cell division cycle. It also emphasises the possibility that subpopu-

lations in the culture explain chemostat-based observations of the YMC. Fur-

thermore, this thesis paves the way for using computational methods to analyse

large datasets of oscillatory time series, which is useful for various fields of study

beyond the YMC.

iv



Lay Summary

Living things have biological clocks that make sure that their processes happen

in a sequence. An example is the circadian rhythm, which makes sure that our

body’s processes happen at the correct times in a day. For example, the circadian

rhythm makes sure we sleep at night and are awake during daytime.

Baker’s yeast has a biological clock called the yeast metabolic cycle (YMC). Be-

cause of this cycle, as the yeast cell grows, its metabolism and the concentrations

of chemicals in the yeast cell changes over time. Most studies on the YMC have

focused on large cultures. So, we do not know whether the cells need to talk to

each other to generate the YMC, or whether each cell can generate the YMC

on its own. To study the YMC, I use a microfluidics platform that can separate

yeast cells. This platform allows me to monitor the changing fluorescence of a

metabolite, which is part of the metabolic cycle, by taking a time-lapse of images.

My experiments showed that when the yeast cells grow in beneficial conditions,

each cell generates its metabolic cycle in sync with cell division, but out-of-sync

with other cells. But, when I took away the cells’ nutrients, these cells started

generating their metabolic cycles in sync. Additionally, I showed that individual

cells behave differently from cells in large cultures.

Because my experiments produce a large amount of temporal data, I explored

ways to computationally analyse this data. I was able to teach a machine learning

algorithm, a common type of computer algorithm, to tell apart signals that

repeated in cycles from signals that did not.
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I then asked the question of: does it make sense for the yeast cell to make its

building blocks in sequence while it grows, or does it make more sense for it to

make all its building blocks in parallel? I solved a set of equations that describes

the chemical reactions that occur in the yeast cell to determine which reactions

fire the most when the cell has limited resources. The solutions of the equations

suggest that if the yeast cell makes the components of its biomass in sequence, it

saves time, but not when it has few nutrients in its environment.

To summarise, my thesis shows that each yeast cell generates its YMC on its

own and how it does so depends on which nutrients the cell grows on. My results

were different from studies based on large, bulk cultures. To explain both kinds of

results, there may be sub-populations of cells in bulk culture that may generate

metabolic cycles with different properties. Furthermore, my thesis shows that

computational methods can be used to analyse large amounts of temporal data,

and these methods are useful for studying time series in different fields.
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Chapter 1

Introduction

This thesis aims to understand how an organism adapts its metabolism and

cellular processes in response to external conditions, in the context of a biological

rhythm. Specifically, I use the yeast metabolic cycle (YMC) as a framework for

biological rhythms. My reasons are twofold: (a) biological rhythms are important

for coordination of responses and are present across kingdoms, (b) there are un-

answered questions about the mechanistic basis of the YMC and about reconciling

evidence from two types of experimental studies.

This thesis is divided into six chapters:

1. Chapter 1 discusses the background behind the yeast metabolic cycle, using

flavin autofluorescence as a way to monitor the yeast metabolic cycle, and

the use of genome-scale metabolic models and flux balance analysis to

investigate the metabolism of budding yeast.

2. Chapter 2 discusses the methods: single-cell microfluidics of yeast strains,

an automated image analysis pipeline, and time series analysis methods.

3. Chapter 3 presents results from single-cell microfluidics and fluorescence

microscopy to detect flavin-based metabolic cycles in yeast cells. I show that

the metabolic cycle and cell division cycle are autonomous and synchronise

in permissive conditions, while perturbations affect the relationship between

these two biological oscillators.

1



. Introduction 2

4. Chapter 4 discusses the analysis of oscillatory time series. Given the chal-

lenges of analysing noisy low-resolution time series, this deserves discussion

in its own right. This chapter explores processes to visualise groups in the

dataset, detecting rhythmicity, period estimation, and detecting synchrony.

5. Chapter 5 discusses using flux balance analysis to address whether pro-

teome constraints explain sequential scheduling of biosynthesis in the yeast

metabolic cycle.

6. Finally, Chapter 6 presents a conclusion based on the previous three results

chapters and suggests further avenues of study.

1.1 Biological rhythms

1.1.1 Biological basis of biological rhythms

Biological rhythms are repeating physiological or cellular processes. Biological

rhythms include the circadian rhythm, the cell division cycle, the glycolytic

cycle, and the yeast metabolic cycle. Genetic oscillators, biochemical oscillators,

and metabolic oscillators, all linked to a cellular redox cycle, govern biological

rhythms (Mellor, 2016). Biological rhythms can occur at different time scales,

from seconds, to ultradian cycles (more frequent than 24 hours), to circadian

rhythms (24 hours). Biological rhythms are important in temporally separating

physiological processes. This separation is instrumental in responding to external

conditions, including nutrient conditions, growth requirements, or the day-night

cycle.

To demonstrate the definition of biological rhythm, I discuss the cell division

cycle, which is well-characterised, and the glycolytic cycle, which is less well-

characterised.
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Cell division cycle

The cell division cycle is a series of cellular events that ensure that a parent cell

divides into two progeny cells. These events include cell growth and accumulation

of biomass, replication of genetic material with proofreading, and dividing the cell

into two compartments. In eukaryotes, the latter event consists of karyokinesis

(division of the nucleus) and cytokinesis (division of the cell). In budding yeast

(Saccharomyces cerevisiae), the cell division cycle is divided into the G1, S, G2,

and M phases (Fig. 1.1). In the gap phases (G1 and G2), the cell primarily grows

and accumulates biomass. The cell replicates DNA in the S phase and in the

M phase it conducts mitosis, in which chromosomes are segregated between the

progeny cells.

The cell division cycle is important in unicellular organisms such as budding

yeast because it is the mechanism by which the organism reproduces. Regulation

of the cell division cycle is thus important (a) because the cell must only divide

when necessary, (b) because the cell must have resources available for division

before it divides, (c) because the cell must ensure faithful replication of DNA

to prevent deleterious mutations in progeny cells, and (d) because the cell must

ensure that its components are divided equally between the two progeny cells so

that its progeny cells can function normally. The cell division cycle in budding

yeast has checkpoints between phases to ensure that biological events from the

previous phases are completed before the cell proceeds to the next phase. The

most important checkpoint is START in late G1 phase. Upon START, the cell

checks whether it has the resources needed to replicate, and if requirements are

met, it irreversibly commits to cell division. The cell division cycle in budding

yeast is also governed by a series of gene regulatory networks that interact in a

feedback loop, resulting in oscillatory expression of cyclin-CDK complexes that
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Figure 1.1: Overview of the cell division cycle in budding yeast. The cell division
cycle consists of G1, S, G2, and M phases (black arrows). The cell expresses
different cyclins (coloured curves), cell division cycle regulators, as it transitions
through different phases of the cell division cycle. Adapted from Adler et al.
(2022).
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regulate cellular events in a temporal manner (Adler et al., 2022; A. W. Murray,

2004; Orlando et al., 2008). Specifically, cyclins are proteins that sequentially

accumulate and are destroyed as the cell transitions through phases of the cell

division cycle. In budding yeast, these cyclins bind to and activate the cyclin-

dependent kinase (CDK) Cdc28, which is constitutively expressed. The different

cyclin-CDK combinations in each phase thus determines the events in the cell

(Adler et al., 2022):

1. In early G1, Cln3-Cdc28 phosphorylates Whi5, leading to activation of genes

that regulate budding and DNA replication.

2. In late G1, Cln1-Cdc28 and Cln2-Cdc28 hyperphosphorylates Sic1, leading

to activation of DNA replication which marks S phase.

3. In late S phase, Clb1-Cdc28 and Clb2-Cdc28 phosphorylates Ndd1, leading

to a feedback loop that activates entry into mitosis.

4. To exit mitosis, the cell activates a system to target Clb1 and Clb2 for

degradation.

To coordinate cell division and metabolism with nutrient availability, budding

yeast also has a system of cross-talk between nutrient signalling, growth, and the

cell division cycle (Ewald, 2018). The cell integrates information from nutrient-

sensing systems at START. In response to carbon deprivation, Cip1 delays START,

while Msa1/2 responds to nutrient depletion and blocks START. In addition,

Rim15 integrates information from the TOR and PKA pathways, which respond

to nutrient depletion and other stresses, and induces cell division cycle arrest.

Rim15 also responds to nutrient-poor conditions like non-fermentable carbon

sources by inducing an earlier entry into START.
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Furthermore, there is also evidence that sudden starvation at other phases affects

cell division cycle progression, for example, through the S-phase inhibitor Sic1.

The cell also coordinates internal nutrient stores with the cell division cycle.

During S/G2/M, Cdc28 activates the trehalase Nth1 so that the storage carbo-

hydrate trehalose can be liquidised to provide glucose for glycolysis (Ewald et al.,

2016). Additionally, during G1/S, Cdc28 activates the lipase Tgl4 to break down

storage lipids (Kurat et al., 2009). There is also evidence for an additional cyclin-

dependent kinase, Pho85 (Huang et al., 2007), which inhibits the expression of

genes involved in the phosphate starvation response in high levels of environ-

mental phosphate (E. M. O’Neill et al., 1996), and also has roles in inhibiting

glycogen synthase (Wilson et al., 1999).

Glycolytic cycle

The glycolytic oscillation is a biochemical oscillator in budding yeast, character-

ised by damped oscillations in the levels of glycolytic intermediates at a period of

40–50 seconds (Ghosh & Chance, 1964). These oscillations have been observed as

a response to high-glucose conditions and in anaerobic conditions. Later studies

show that levels of NADH (Lloyd, 2019; Olsen & Lunding, 2021), pH, and mito-

chondrial membrane potential (B. J. T. Dodd & Kralj, 2017) also oscillate at the

same frequency (Fig. 1.2).

Many hypotheses have been proposed to explain the existence of glycolytic oscilla-

tions, but there is no consensus (Lloyd, 2019), though Thoke et al. (2018) proposed

that these oscillations are the result of cells attempting to maintain a constant

low-entropy state while remaining metabolically active. Evidence shows that gly-

colytic oscillations are regulated through solely biochemical means. Specifically, a

high ADP/ATP ratio and the presence of fructose-1,6-bisphosphate activate the
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Figure 1.2: Glycolytic cycles are characterised by oscillations in NADH (orange)
and pH (blue) at a period of approximately 40–50 s, and are usually highly
damped. Adapted from B. J. T. Dodd and Kralj (2017).

activity of phosphofructokinase, which then controls the flux through glycolysis,

forming a negative feedback loop that causes oscillations (Ghosh & Chance, 1964;

Higgins, 1964). Such a biochemical mechanism would explain how oscillations are

sustained at a short timescale.

1.1.2 Mathematical basis of biological rhythms

The mathematical modelling of biological rhythms originated as simple systems

of ordinary differential equations to describe negative feedback control circuits

(Goodwin, 1965; Griffith, 1968). Experimental observations have then informed

the development of models with finer detail. Furthermore, subsequent studies have

modelled and synthesised artificial genetic circuits (Elowitz & Leibler, 2000).

The well-characterised cell division cycle has inspired models with a variety of ap-

proaches. Early models are based on a negative feedback loop of key components

as identified by experimental studies. For example, Goldbeter (1991) assumed a

minimal model of one cyclin, one kinase, and one protease to construct a negative
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feedback loop with a delay, giving rise to stable oscillations. Such a strategy

forms the basis of later models that incorporate more detail, including additional

control points of the cell division cycle (K. C. Chen et al., 2004), responses to

perturbations such as osmotic stress (Adrover et al., 2011), and relationship with

other oscillators like the circadian rhythm (Charvin et al., 2009; Droin et al., 2019;

Gérard & Goldbeter, 2012). More recent, comprehensive models include Adler et

al. (2022) which is based on a system of ordinary differential equations adapted

for the modelling to pheromone and osmotic shock responses, and Novak and

Tyson (2022), which models the cell division cycle as a series of switches between

two stable steady states whose behaviour is regulated by the CDK oscillator.

Models of glycolytic oscillations have less precision because the oscillation is less

well-characterised. Most models focus on few intermediates of glycolysis that

would explain the observed oscillations. Ghosh and Chance (1964) proposed a

simple biochemical mechanism governed by the action of phosphofructokinase,

dependent on the concentration of fructose-1,6-bisphosphate. Higgins (1964) then

tested this mechanism, by describing differential equations that model six chem-

ical reactions. Later, Termonia and Ross (1981) incorporated pyruvate kinase

kinetics and levels of AMP, ADP, and ATP as part of their kinetic model based on

Michaelis-Menten kinetics. Other studies focus on non-linear dynamics. Goldbeter

and Lefever (1972) models the product-activated phosphofructokinase reaction,

taking into account the allosteric nature of the enzyme. This model contains a

single positive feedback loop as a instability-generating mechanism in a bistability

model that explains oscillations. In Morán and Goldbeter (1984), the model

was modified to incorporate a reaction of product recycling into substrate to

explain birhythmicity, namely, the potential for oscillations of different amp-

litudes. Another development of the model includes a three-variable model that

represents two coupled reactions each under a positive feedback loop, explaining
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more complex oscillatory phenomena that could arise from pulsing of substrates

(Decroly & Goldbeter, 1982). In contrast to work that models the cell division

cycle, gene expression dynamics and the effects of perturbations have not been

incorporated in the modelling of the glycolytic cycle.

As biological rhythms are often coupled with each other, forced and coupled

oscillators have been modelled. If an oscillator is forced, it has a natural oscillation

frequency, but is forced from it due to an external force applied at a regular

interval. An example is the circadian clock, which is entrained to the light-dark

cycle (Goldbeter & Yan, 2022). Yeast glycolytic oscillations can also be entrained

via a periodic input of substrate (Boiteux et al., 1975).

Forced oscillators are closely linked to coupled oscillators, in which two oscillators

are coupled to each other by certain activation or deactivation events. Two

coupled oscillators tend to oscillate at a compromise frequency if the natural

frequencies of each are close enough to each other. Otherwise, complex oscillations

can occur: the oscillators lock to a rational ratio of frequencies — i.e. one oscillator

goes through p periods while the other goes through q periods. In this case, the

exact ratio depends on the ratio of the natural frequencies. Furthermore, in certain

cases, chaos can occur. There is a mathematical basis in Arnold tongues (Heltberg

et al., 2021). Experimental observations support this. For example, Charvin et

al. (2009) showed that externally forcing cell division cycles via glucose pulsing

leads to phase-locking of the cell division cycle oscillator only within a range of

extrinsic periods.
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1.2 Yeast metabolic cycle

1.2.1 Definition and description of the yeast metabolic cycle

The yeast metabolic cycle is an ultradian biological rhythm which has been

described to entail oscillations in oxygen consumption, metabolite concentrations,

transcript levels, and cellular events, at the population level. This yeast metabolic

cycle is linked to the cell division cycle, but operates autonomously.

Because the yeast metabolic cycle exhibits gene-expression, biochemical, and

metabolite oscillations, it can be considered as a type of biological rhythm.

Specifically, the yeast metabolic cycle has gene-expression oscillators as evidenced

by transcript cycling in its phases. Furthermore, it has biochemical oscillators

as evidenced by changes in dissolved oxygen in the chemostat. Finally, it has

metabolite oscillations as evidenced by changes in the levels of compounds that

undergo redox reactions like NADH/NADPH and flavins.

History of evidence for the yeast metabolic cycle

Aspects of the YMC have been observed over decades. Nosoh and Takamiya

(1962) discovered that synchronised S. cerevisiae cultures show oscillatory oxygen

consumption. Kaspar von Meyenburg (1969) showed that gas metabolism and

energy generation increase upon budding, while Mochan and Pye (1973) described

a high-amplitude respiratory oscillation following a substrate shift from glucose

to ethanol. Satroutdinov et al. (1992) were the first to describe the metabolic

components of a 40-minute YMC for cells in continuous culture. Tu et al. (2005)

first incorporated transcript cycling in the description of the YMC and defined

the YMC events based on a chemostat-based investigation of growth of budding

yeast on glucose-starved conditions.
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Phases of the yeast metabolic cycle

Based on chemostat studies, the YMC can be divided into two major phases:

an oxidative, high-oxygen consumption (OX/HOC) phase and a reductive, low-

oxygen consumption (RED/LOC) phase (Fig. 1.3).

Figure 1.3: Phases of the yeast metabolic cycle, with (left) high- (HOC) and
low-oxygen consumption (LOC) phases defined by changes in dissolved oxygen
concentration (dO2) over time in the chemostat and (right) oxidative (OX),
reductive-building (RB) and reductive-charging (RC) phases defined by cycling
of transcripts. Adapted from Mellor (2016).

Many authors (Causton, 2018; D. B. Murray et al., 2011; Slavov et al., 2011)

use oxygen consumption rates, evidenced by the change of dissolved oxygen

concentrations over time, as a basis to refer to the YMC as a two-phase cycle

(Fig. 1.4). In contrast, some authors (Machné & Murray, 2012) base their two-

phase model on the clustering of transcript level patterns. Krishna and Laxman

(2018) interpret the oxidative phase as a growth state, while the reductive phase

is a quiescent state.
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Figure 1.4: The yeast metabolic cycle has been described as spontaneous
respiratory cycles of 4–5 hours, as evidenced by regular oscillations of dissolved
oxygen in the chemostat, after a starvation period. Adapted from Tu et al. (2005).

In contrast to the two-phase model, some authors identify a three-phase model

with a reductive-building (RB) phase and a reductive-charging (RC) phase within

the reductive phase. This three-phase model is primarily based on cellular events,

including clustering of transcript trajectories (Tu et al., 2005) (Fig. 1.5) and of

metabolite concentration trajectories (Tu et al., 2007).

Figure 1.5: The yeast metabolic cycle is characterised by transcript cycling. Such
transcripts are divided into three clusters based on their patterns and phase
relationships. The peaking of these transcripts correspond to the three (OX, RB,
RC) phases of the yeast metabolic cycle. Adapted from Tu et al. (2005).
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Cellular processes occur with the phases of the metabolic cycle (Fig. 1.6). In the

oxidative phase, cells consume oxygen at a high rate as respiration, fermentation,

and energy-demanding processes like biosynthesis and gene expression occur.

Biosynthesis and associated gene expression are confirmed by increased tran-

scripts from genes encoding components of the translation machinery and amino

acid biosynthesis (Tu et al., 2005). ‘Redox state’ metabolites, including NADH,

NADPH, glutathione (Lloyd & Murray, 2005), and flavins (FMN and FAD) (D. B.

Murray et al., 2011) become most oxidised in this phase. As cells transition from

the oxidative to the reductive phase, 70% of metabolite concentrations peak, when

NAD(P)H autofluorescence peaks, and the DNA synthesis rate is at its maximum

(Lloyd & Murray, 2006).

Figure 1.6: The yeast metabolic cycle seen as sequential scheduling of cellular
processes into phases. Here, in the low-oxygen consumption (LOC) phase,
the cell accumulates carbohydrates, amino acids, and solutes. In contrast, in
the high-oxygen consumption (HOC) phase, the reverse is true: the cell uses
its accumulated resources for biosynthesis and translation. Once reserves are
exhausted, the cell resumes its LOC phase. Adapted from J. S. O’Neill et al.
(2020).
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In the reductive phase, cells consume oxygen at a low rate. During the reductive-

building phase, activities linked to mitochondrial growth occur. In the early

reductive-building phase, ethanol and acetate concentrations in the medium peak,

marking a transition from oxidative respiration to glycolytic metabolism (Tu et

al., 2007). There is evidence to suggest that activities linked to cell proliferation

— such as initiation of the cell division cycle, DNA replication, and spindle pole

activity — are gated to the reductive-building phase for both the short-period

and long-period YMC. Such evidence includes budding activity and the pattern

of the expression of YOX1, which encodes a cell division cycle repressor (Tu et al.,

2005).

Finally, during the reductive-charging phase, non-respiratory metabolism and

degradation processes occur to prepare the cell for the oxidative phase. This non-

respiratory metabolism includes glycolysis, ethanol and fatty acid metabolism,

and nitrogen metabolism. With these metabolic modes, under the regulation of

the transcription factors Msn2p and Msn4p (Kuang et al., 2017), acetyl CoA

accumulates so ATP can be produced in the oxidative phase (Tu et al., 2005).

After acetyl CoA levels reach a threshold, it promotes histone acetylation and thus

induces the oxidative phase. These metabolic pathways also optimise production

of NADPH — based on the induction of GND2 — to buffer against oxidative

stress in the oxidative phase. Genes associated with protein degradation, ubiquit-

inylation, peroxisomes, vacuoles, and the proteosome also peak in the reductive-

charging phase.

It has been hypothesised that gating activities linked to cell proliferation to

the reductive-building phase creates a temporal separation between oxidative

biochemical processes and the cell division cycle. This temporal separation may

prevent reactive oxygen species generated by oxidative process from damaging

DNA. However, measuring DNA content and oxygen consumption in cells grown
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at different growth rates showed that the S phase of the cell cycle may occur

in the oxidative phase if the cells have a slow growth rate (Slavov & Botstein,

2011). This may be explained by the YMC gating the early and late cell cycle

independently, as evidenced by periodic localisation of the anaphase-promoting

complex and mitotic exit activator Cdc14 phosphatase in metaphase-arrested cells

(Y. Lu & Cross, 2010) and, conversely, the persistence of NAD(P)H cycling upon

arresting of the late cell cycle by depletion of Cdc14 (Papagiannakis et al., 2017),

all observed in single cells. This evidence indicates that the gating between the

YMC and the cell cycle is flexible. Although there is no consensus on the function

of such flexible gating, gating can aid the allocation of metabolites to different

temporal phases of both cellular oscillators.

Single-cell studies of the yeast metabolic cycle

Most studies of the YMC arise from chemostat experiments, but few studies have

investigated the YMC in single-cell settings using microfluidic devices. Laxman

et al. (2010) was an early attempt at using microfluidics to address the bulk vs

single-cell issue. They cultured strains with fluorescent gene expression reporters

for each phase (OX, RB, RC) of the metabolic cycle by transferring cells from a

chemostat to a microfluidic device. The study showed that low glucose levels were

required for the synchrony of metabolic cycles across cells. This study also shows

the presence of quiescent cells, and then proposed that during OX phase, cells

decide whether to commit to cell growth or enter a quiescent state, leading to a

model of two sub-populations in the culture. However, it lacks quantitative time-

series analysis; rather, it reports qualitative interpretations of fluorescence images.

The microfluidic device did not truly physically separate each cell individually,

thus it was unable to eliminate the possibility of cell-to-cell communication via a

diffusible signalling chemical.
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Later microfluidics studies revealed additional features of the YMC in single

cells. Papagiannakis et al. (2017) revealed that YMCs are an intrinsic feature

of single cells and are autonomous with respect to the cell division cycle, based

on measurements of the level of ATP and of the combined level of NADH and

NADPH in single cells in microfluidic devices. Specifically, they showed that such

metabolic cycles synchronise with the cell division cycle at different compromise

periods as the carbon source changes, and that cell division cycle events are gated

to distinct phases in the metabolic cycle. Furthermore, such metabolic cycles can

progress without progress of the cell division cycle progress, both spontaneously

and under chemically induced G1 arrest.

In addition, by measuring flavin fluorescence in the cell, Baumgartner et al.

(2018) demonstrated that there is strong coupling between the YMC and the cell

division cycle across perturbations in nitrogen sources, showing that as nitrogen

sources become poorer, the coupled oscillations oscillated at longer periods and

spontaneous decoupling between the YMC and the cell division cycle became

more frequent. This study importantly also demonstrated that respiration is not

required for the YMC; evidence includes the observation that YMCs persist in

mutants deficient in oxidative phosphorylation, and that the cell division cycle

inhibitor rapamycin desynchronises the YMC and the cell division cycle.

More recently, Özsezen et al. (2019) extended the experimental data reported

by Papagiannakis et al. (2017) and estimated parameters of a Kuramoto model,

which suggested that the metabolic cycle separately gates START and the M

phases of the cell division cycle, and that the S phase oscillator follows START

without input from the metabolic cycle. This mathematical model of coupled

oscillators predicted that synchrony should be maintained if the period of the

metabolic cycle is perturbed; this prediction was validated experimentally using

nutrient shifts. Furthermore, the model predicted that perturbation of mitotic
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exit should still result in synchrony of the oscillators that remain and that addi-

tional removal S-phase exit should give a system that oscillates at a compromise

frequency; such predictions were validated by dynamic depletion of Cdc14 and

Cdc20.

Unlike chemostat-based studies, single-cell studies do not discuss phases as the

single-cell microfluidic set-up does not allow live monitoring of transcription, and

oxygen consumption rate can only be measured from chemostat cultures. Such

studies define the metabolic cycle as autonomous oscillations in metabolite levels

in individual cells over time (Fig. 1.7). In later chapters, I adhere to this single-

cell definition because I perform a single-cell study of the yeast metabolic cycle.

The two- or three-phase response as reported from chemostat-based studies may

result from cellular adaptation to glucose limitation in chemostat cultures, and it

is unknown whether these dynamics hold true in glucose-rich conditions, which

cannot be created in a chemostat (Slavov & Botstein, 2011).

Figure 1.7: The yeast metabolic cycle seen as coordinated cycling of metabolites
in the cell, generated autonomously of the cell division cycle, but are linked in
permissive conditions. Adapted from Zylstra and Heinemann (2022).
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Contrasting the yeast metabolic cycle with the glycolytic oscillation

The yeast metabolic cycle is longer and is more robust than a similar biological

oscillator, the glycolytic oscillation. The glycolytic oscillation has a period of

approximately 40 seconds (Olsen et al., 2009). In contrast, the yeast metabolic

cycle has been described, using various definitions, to either exhibit a 40-minute

short-period cycle (C. M. Li & Klevecz, 2006; Lloyd & Murray, 2005, 2007),

or a long-period cycle, which is most commonly described to be 4–5 hours (Tu

et al., 2005, 2007), but also ranges between 1.4 hours to 14 hours, depending

on the chemostat dilution rate (Beuse et al., 1998). Glycolytic oscillations are

highly damped, but yeast metabolic oscillations are robust, lasting for weeks

(Lloyd & Murray, 2007). Additionally, glycolytic oscillations have been observed

in anaerobic conditions (Lloyd, 2019), but yeast metabolic cycles have been ob-

served in aerobic conditions. Moreover, glycolytic oscillations are characterised by

fluctuations in NADH fluorescence and glycolytic intermediates. However, yeast

metabolic cycles consist of fluctuations in NADH fluorescence, flavin fluorescence,

and ATP concentrations as well as biosynthetic intermediates in TCA cycle,

amino acid, and nucleic acid metabolism (Tu et al., 2007).

1.2.2 Yeast metabolic cycles under perturbations

Perturbations in growth conditions can affect the length of the metabolic cycle

and its relationship with other cellular events. The long-period cycle may vary

from 1.4 to 14 hours under constant chemostat conditions with various changes in

nutrient media and dilution rates (Causton, 2018), although 24-hour cycles have

also been observed when temperature cycles were imposed, and immediately after

(Eelderink-Chen et al., 2010). The main nutrient perturbations that have been

studied are perturbations in carbon sources and in nitrogen sources.
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Perturbations in growth conditions

Perturbations in carbon sources are well-documented. Lower glucose concentra-

tions prolong the metabolic cycle, as evidenced by both chemostat studies that

assess the effect of changing the dilution rate (Burnetti et al., 2016; J. S. O’Neill et

al., 2020) and by single-cell studies that assess the effect of glucose concentrations

in the limiting region (Papagiannakis et al., 2017). For example, increasing the

dilution rate in chemostats increases the growth rate, and in turn decreases the

duration of the low oxygen consumption phase while the duration of the high

oxygen consumption phase holds constant (J. S. O’Neill et al., 2020; Slavov &

Botstein, 2011). This effect is pronounced in the region of glucose limitation; this

was evidenced by a small increase in metabolic cycle period in single cells when

the glucose concentration was decreased from 10 g L−1 to 0.05 g L−1 compared to a

large increase in period when glucose concentration was decreased from 0.05 g L−1

to 0.025 g L−1 (Papagiannakis et al., 2017).

Such experimental observations could by explained by models such as Jones and

Kompala (1999), which suggest that as the dilution rate is decreased, meta-

bolic oscillations acquire greater amplitudes and longer periods, but if it is low

enough, metabolism becomes entirely oxidative, and metabolic oscillations disap-

pear. However, non-fermentable carbon sources like pyruvate give long-duration

metabolic cycles in single cells, comparable to cells under limiting levels of glucose

(Papagiannakis et al., 2017).

In addition, bulk depletion or addition of a carbon source can reset the phase of

the YMC. Adding a bulk carbon source such as acetate, ethanol, or acetaldehyde

can reset the phase of the YMC (Krishna & Laxman, 2018; Kuang et al., 2017)

or eliminate it (Jones & Kompala, 1999).
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Perturbations in nitrogen sources are less well-studied. Baumgartner et al. (2018),

based on single-cell observations, suggest that decreasing nitrogen concentration

prolongs the YMC, as evidenced by longer flavin oscillations when cells are grown

on lower concentrations of yeast nitrogen base (YNB) media or on urea, a non-

preferred nitrogen source.

In addition, perturbations outside nutrient sources also affect the YMC. For

example, externally applied hydrogen peroxide, as a source of oxidative stress,

shifts the YMC to the oxidative phase (Amponsah et al., 2021). The oscillation

period is insensitive to temperatures from 25 °C to 35 °C and media pH values

from 2.9 to 6.0 (Lloyd & Murray, 2005) — though the period of dissolved-oxygen

oscillations decrease as pH decreases to below 2.9 and the oscillations disappear

when conditions are too acidic (J. S. O’Neill et al., 2020). Additionally, the

dissolved-oxygen oscillations are robust to media potassium ion concentrations

varying between 1 and 10 mM, but disappear when the potassium concentration

falls below 1 mM (J. S. O’Neill et al., 2020).

Genetic perturbations

Although the molecular basis of the yeast metabolic cycle is not well-characterised,

gene deletions shed light on it. Genes that control the cell division cycle and

metabolism have been deleted in various studies.

Several deletions have been shown to remove the metabolic oscillations in che-

mostats: zwf1∆ (Tu et al., 2007), gsy2∆, and gph1∆ (J. S. O’Neill et al., 2020)

(Figs. 1.8a–1.8b).
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(c)

(d)
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Figure 1.8: Effects of genetic perturbations on the yeast metabolic cycle, as
evidenced by the dissolved oxygen cycles of deletion strains observed in the
chemostat. (1.8a) zwf1∆ shows no dissolved oxygen cycles. Adapted from Tu et al.
(2007). (1.8b) gsy2∆ and gph1∆ show no dissolved oxygen cycles. Adapted from
J. S. O’Neill et al. (2020). (1.8c) rim11∆ shows shorter dissolved oxygen cycles.
Adapted from Causton et al. (2015). (1.8d) swe1∆ shows shorter dissolved oxygen
cycles and a modified coupling ratio between the metabolic and cell division
cycle oscillators. Adapted from Causton et al. (2015). (1.8e) tsa1∆ tsa2∆ shows
dissolved oxygen cycles of a different shape. Adapted from Causton et al. (2015).
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ZWF1 codes for glucose-6-phosphate dehydrogenase and is thus responsible for

entry into the pentose phosphate pathway and subsequently a major source of

NADPH generation. Therefore, deleting this gene may impair control of cellular

redox. However, because of its role, this gene deletion impairs adapting to oxidat-

ive and pH stress and also causes methionine auxotrophy, so it may be difficult to

draw conclusions from this deletion in particular. Furthermore, Idp2p and Ald6p

catalyse reactions that generate NADPH and have shown to compensate for the

loss of ZWF1 when cells are grown on lactate plates or on liquid cultures with

glucose as the carbon source (Minard & McAlister-Henn, 2005). This observation

therefore raises the question of just how important ZWF1 is to the yeast metabolic

cycle, and to what extent is NADPH generation needed for control of cellular

redox.

On the other hand, GSY2 has a role in glucose storage and GPH1 has a role in

glycogen mobilisation. The absence of dissolved oxygen cycles in the associated

deletions thus suggests that cycling of carbohydrate stores may be needed for

the function of the metabolic cycle. However, metabolic oscillations have been

observed in high-glucose conditions (Baumgartner et al., 2018; Papagiannakis et

al., 2017) in which glycogen synthesis is repressed. These observations therefore

suggest that glycogen cycling may play a more minor role in defining the yeast

metabolic cycle and another nutrient cycling phenomenon may be more respons-

ible.

In addition, MSN2 and MSN4 have been shown to regulate acetyl CoA accu-

mulation in the reductive-charging phase, as evidenced by the lack of YMCs

in deletion strains (Kuang et al., 2017). This observation suggests that genes

involved in signalling pathways also play an important role in the integrity of the

metabolic cycle.
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Additionally, other deletions have been shown to change the frequency or shape of

dissolved oxygen cycles. Causton et al. (2015) provide several examples, of which

I discuss rim11∆, swe1∆, and tsa1∆ tsa2∆.

Rim11p is the yeast homolog of the GSK3β serine/threonine kinase, which regu-

lates metabolism and plays a role in setting the speed of the circadian clock. The

RIM11 deletion has been shown to give shortened periods of dissolved-oxygen

metabolic cycles in the chemostat, thus pointing towards a common mechanism

for both biological oscillators (Fig. 1.8c).

Swe1p is a conserved cell division cycle regulator that functions at the G2/M

checkpoint and has roles in coupling the cell division cycle with the circadian

rhythm. Deleting SWE1 also resulted in shortened periods of dissolved-oxygen

metabolic cycles but with the same rate of DNA replication, suggesting a dysreg-

ulation in the coupling between the yeast metabolic cycle and the cell division

cycle (Fig. 1.8d).

Tsa1p and Tsa2p are paralogous cytoplasmic thioredoxin peroxidases that cooper-

ate in the peroxiredoxin-thioredoxin system to eliminate reactive oxygen species

and have been shown to be a marker for circadian rhythms. A double deletion

of the two genes still results in metabolic cycles, but with an additional burst in

high oxygen consumption during what would otherwise be the reductive-charging

phase, showing that the peroxiredoxin-thioredoxin system is instrumental in the

integrity of the yeast metabolic cycle (Fig. 1.8e). In addition, Amponsah et al.

(2021), using the chemostat, showed that the oxidation of peroxiredoxin cycles

during the YMC, with a corresponding cycling of hydrogen peroxide. They also

confirmed that inactivating peroxiredoxins disrupts the metabolic cycle and de-

couples it from the cell division cycle, through inducible degradation of an addi-

tional cytosolic peroxiredoxin Ahp1p.
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Taken together, these deletion studies show that regulators of other biological

rhythms and of redox metabolism play a role in the regulation of the YMC.

However, few genetic perturbation studies have been attempted in single-cell

studies. The most significant is in Baumgartner et al. (2018), in which by deleting

genes (atp5∆, cyt1∆) required for respiration, they showed that metabolic cycling

does not require respiration.

1.2.3 Modelling the yeast metabolic cycle

Mathematical models have been developed to explain the aspects of the YMC.

An early model is Jones and Kompala (1999) which uses differential equations to

simulate dynamic competition between three modes of metabolism: fermentation,

glucose oxidation, and ethanol oxidation. This model predicts spontaneous gener-

ation of oscillations in dissolved oxygen, cell mass, and storage carbohydrates in

continuous cultures. This prediction is consistent with chemostat-based studies of

the yeast metabolic cycle. Furthermore, the model predicts that, within a window

of dilution rate values, if the dilution rate decreases, then the dissolved oxygen

oscillations increase in amplitude and period. The increase in period agrees with

experimental studies such as J. S. O’Neill et al. (2020). However, the model also

predicts oscillations in the extracellular concentrations of glucose and ethanol.

In theory, such oscillations can only occur if there is a nutrient-consuming prey

species that is in turn consumed by two competing predators, or if there are two

competitors and an inhibitor added to the chemostat that inhibits only one of

the competitors (Smith & Waltman, 1995).

Krishna and Laxman (2018) use a frustrated bistability model to describe a

relaxation oscillator that explains how a population of yeast cells switches between

quiescent and growth states when faced with a limited amount of metabolic

resources. This model assumes that the cells retain hysteresis of their current state
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and posits that cells of two populations communicate through diffused acetyl-

CoA to sustain population-level oscillatory behaviour. Burnetti et al. (2016) also

propose that yeast cells committed to the metabolic cycle secrete metabolites

that induce other cells to enter the metabolic cycle, provided that they have

enough storage carbohydrates. Taken together, the models provide an attractive

cell-to-cell signalling explanation for the population-level behaviour observed in

the chemostat. However, such an explanation does not explain the presence of

metabolic cycling in single-cell conditions in which cells are physically separated

and thus signalling between cells cannot occur. Though, autonomous generation

of metabolic cycles and synchrony of metabolic cycles in a population can each

arise from mechanisms that are independent of each other.

Based on single-cell experimental observations, Özsezen et al. (2019) use a determ-

inistic Kuramoto model to explain the interaction between one metabolic oscil-

lator and three cell cycle oscillators at different stages. The study uses growth on

different carbon source conditions to determine parameters that define the natural

frequencies of the cell division cycle oscillators and the strength of the coupling

between the four oscillators. Parameter optimisation predicts that the metabolic

cycle most strongly influences the START point of the cell division cycle, and

more weakly influences the M and S phases, while the three stages of the cell

division cycle negligibly influence each other (Fig. 1.9). Under perturbations, the

model system remains stable but shows a shift in oscillation frequency, agreeing

with experimental observations, and also predicts the effects of Cdc20 and Cdc14

dynamic depletions. However, a key criticism of this model-based study is that

the Kuramoto model makes simplistic assumptions about the oscillators, which

may be unrealistic, given how little is known about the mechanistic basis of the

metabolic oscillator.
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Figure 1.9: The relationship between the yeast metabolic cycle and the cell
division cycle can be seen as a system of coupled oscillators. Namely, the
cell division cycle is modelled as three oscillators (START, S, M), and the
yeast metabolic oscillator (MET) gates entry into START and M phases, while
progression from START to S is independent of the metabolic cycle. Adapted
from Özsezen et al. (2019).

Taken together, modelling approaches have been able to predict some aspects of

the metabolic cycle. However, most models focus on specific aspects to the detri-

ment of other experimental observations, and none sufficiently reconcile observa-

tions from chemostat-based and single-cell studies. Constructing more accurate

models is complicated by the scant knowledge of the mechanistic basis of the

yeast metabolic cycle.

1.2.4 Big picture/Hypothesis: a nutrient sensor than entrains the

cell division cycle?

From existing evidence, we can create a big picture of the yeast metabolic cycle.

The yeast metabolic cycle is an autonomous biological oscillator that operates at

a range of frequencies in response to a range of permissive growth conditions, as

evidenced by how extreme conditions impair the oscillator. Based on chemostat-

based studies, such extreme conditions include poor nutrient quality, media being

too acidic, and potassium ion concentration being too low (J. S. O’Neill et

al., 2020). However, there is reason to believe that the metabolic oscillator can
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function in some conditions previously deemed to be unfavourable. For example,

single-cell studies show that yeast cells show metabolic oscillations in high-glucose

conditions. Within the permissive growth conditions, different conditions affect

the frequency of the metabolic cycle. For example, a low concentration of glucose

or nitrogen source results in longer cycles, and bulk addition of certain compounds

can reset the phase of the metabolic cycle. These observations support the idea

that the metabolic oscillator includes the functionality of a nutrient sensor.

The observations suggest that the yeast metabolic cycle creates windows of oppor-

tunities for the cell to commit to START if conditions are favourable, for example,

good carbohydrate or lipid stores. Thus, this oscillator acts as a timing mechan-

ism for cellular processes, most importantly, the cell division cycle, biosynthetic

processes, and redox reactions. The relationship between the metabolic cycle and

the cell division cycle is governed by the mathematical basis of coupled oscillators.

Specifically, there is a small window of frequencies in which both oscillators can

be phase-locked, but more complicated relationships, such as multiple metabolic

cycles per cell division cycle, may exist.

1.2.5 Disputes and unresolved questions with the yeast metabolic

cycle

Chemostat vs single-cell studies

There is a dispute of whether the same conclusions can be drawn from chemostat-

based studies and from single-cell based studies. Reconciling the two types of

studies is difficult because the readouts and conditions are different: chemostat

studies produce dissolved oxygen and transcript cycling readings, while single-

cell experiments cannot report on dissolved oxygen and chiefly report metabolite

cycling. This leads to differing definitions of the YMC. Some authors (Causton,
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2018; Laxman et al., 2010) only use the term metabolic cycle to refer to synchron-

ised cycles of dissolved oxygen concentrations observed in chemostat cultures

that must have gone through a starvation phase. In contrast, single-cell studies

(Baumgartner et al., 2018; Zylstra & Heinemann, 2022) define the metabolic

cycle as metabolite cycling and sequences of cellular events. This is because in

such settings, the cells are not synchronised by diffusible chemical signals and

dissolved oxygen concentrations cannot be measured. Additionally, these studies

do not include the requirement of a starvation phase as part of their definition as

they show that cell exhibit metabolite cycling even without having gone through

a period of starvation.

I argue that there are three caveats to chemostat-based studies: the experimenter

cannot assume that the chemostat is in steady-state, the chemostat obscures con-

tributions from sub-populations, and the chemostat imposes glucose starvation.

These caveats affect the interpretation of YMC studies.

There is a wide assumption that the chemostat is in steady-state, but it may

not be true. A mathematical model shows that levels of solutes change over time

(Jones & Kompala, 1999). In addition, observations of the metabolic cycle in

chemostats may reflect individual cells’ responses to the initial starvation imposed

at the start of chemostat-based studies. The subsequent response to regularly

changing media conditions could explain temporal segregation of physiological

processes in phases of the YMC, and may not reflect cell-autonomous behaviour.

In other words, the conditions of the chemostat may force the population of cells

to behave in a certain way. However, temporal segregation of physiological process

has also been reported in single-cell studies (Takhaveev et al., 2023), suggesting

that the cycling of solutes in the chemostat could affect some, but not all, temporal

aspects of the metabolic cycle.
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The chemostat obscures contribution of sub-populations of cells (Fig. 1.10). Bur-

netti et al. (2016) suggest that sub-populations within the yeast culture that

enter the yeast metabolic cycle in a staggered manner can be responsible for

the metabolic cycle and the cell division cycle appearing coupled one-to-one in

the chemostat while having different periods. This proposition was informed by

observing one pulse of DNA replication per YMC and observing that a fraction

of cells that exhibited the YMC initiated cell division. Contributions from sub-

populations of cells were further highlighted by Bagamery et al. (2020), who used

a microfluidic platform to show that a group of genetically identical yeast cells

divide themselves into two populations. Such a bet-hedging strategy results in

some percentage of the population surviving in a glucose-starved or a glucose-

rich condition, beneficial for long-term population survival. Taken together, it is

possible that phenotypically different sub-populations in the chemostat culture

may partially explain the observations in the chemostat so far.

In addition, there is the question of whether cells individually generate the meta-

bolic cycle or is a diffusible chemical responsible for synchrony, as proposed by

Krishna and Laxman (2018). Furthermore, Smith and Waltman (1995) showed,

theoretically, if a chemostat has two competing species, and an inhibitor which

inhibits one of the species is added, then the chemostat can generate oscillations.

In the case of the yeast metabolic cycle, the competitors can be genetically

identical sub-populations of the yeast cells that have different levels of sensitivities

to an inhibitor, perhaps a metabolic by-product. Bulk culture set-ups, including

chemostats, are not able to address questions about cell sub-populations and

autonomy of the metabolic cycle. However, single-cell set-ups may fill in such a

technical gap.
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Figure 1.10: Model for how sub-populations of cells may account for oscillations
of dissolved oxygen observed in the chemostat. Cells may enter the cell division
cycle (pink-blue-red lines), gated by the metabolic cycle, in a staggered manner,
and the combined effect of all cells may explain dissolved oxygen concentrations
(black lines, top row). HOC refers to the high oxygen consumption phase, while
LOC refers to the low oxygen consumption phase. Adapted from Mellor (2016).
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Finally, the chemostat imposes glucose starvation, and single-cell studies with

different carbon sources give a different picture in terms of metabolic require-

ments. Chemostat studies and related models suggest that glucose starvation

and oxidative metabolism are required for oscillations in dissolved oxygen level

that define YMCs. NAD(P)H oscillations have been recorded in non-fermentative

conditions, such as pyruvate or low-glucose media (Papagiannakis et al., 2017).

However, NAD(P)H (Özsezen et al., 2019; Papagiannakis et al., 2017) and flavin

(Baumgartner et al., 2018) oscillations still occur in constant high-glucose condi-

tions, and only within a window of periods, in contrast to the 1.4–14 hour range

reported for chemostat-based studies. Furthermore, ATP5 and CYT1 deletions

that impair oxidative respiration do not remove single-cell flavin-based metabolic

oscillations (Baumgartner et al., 2018), thus giving additional evidence that ox-

idative metabolism is not required for the YMC.

Single-cell microfluidic studies are well-positioned to address the limitations of the

chemostat, although there have been only few studies (Baumgartner et al., 2018;

Laxman et al., 2010; Özsezen et al., 2019; Papagiannakis et al., 2017), discussed

earlier in Section 1.2.1. These single-cell studies address a small fraction of the

knowledge covered by chemostat studies, and further such studies are required.

Molecular and genetic mechanisms

There are unknowns in the molecular mechanism that drives YMCs. Genome-

wide transcript cycling has two superclusters that correspond to the oxidative

and reductive-building phases (Machné & Murray, 2012). However, there has been

no genome-wide analysis of genes that influence cycling (Mellor, 2016), though

some genes seem to have key roles. Although proteome analysis has suggested
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two clusters of cycling proteins that correspond to the HOC and LOC phases

(J. S. O’Neill et al., 2020), the small proportion of cycling proteins relative to

the whole proteome suggests a post-translational regulation mechanism (Zylstra

& Heinemann, 2022), which is yet to be elucidated.

Metabolome cycling may play a role in the metabolic cycle and can explain se-

quential scheduling of biosynthesis, but the evidence so far is indirect as it is based

on the cell division cycle. Campbell et al. (2020) showed that lipid biosynthesis in

budding yeast is periodic with the cell division cycle and peaks during S phase,

as evidenced by an increase in the number of metabolites implicated in lipid

metabolism in such phases, based on metabolomics analysis of prototrophic cells

with synchronised cell division cycles. Ewald et al. (2016) also show that the cell

division cycle machinery regulates trehalose mobilisation, showing the coupling

between carbohydrate store levels and cellular oscillators. They also showed that

lipid metabolism increased during S/G2/M, likely due to the synthesis of new cell

membranes during bud growth, as evidenced by pathway enrichment analysis.

Based on the coupling between the yeast metabolic cycle and the cell division

cycle, lipid store cycling and, perhaps to a lesser extent, carbohydrate store cycling

are likely instrumental to the yeast metabolic cycle. Though, investigation of how

an impairment in lipid use affects the yeast metabolic cycle in single cells is needed

to prove that such cycles are responsible for the metabolic cycle.

1.2.6 Implications of the metabolic cycle

The YMC shares regulatory mechanisms with the cell division cycle and the

circadian rhythm, leading to the question of whether the metabolic cycle reflects

a fundamental system that serves as the evolutionary or functional origin of all

biological rhythms.
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Similar metabolic cycles have been described in other organisms. E. coli shows os-

cillations in NAD(P)H fluorescence coupled to its cell division cycle, as evidenced

by time-lapse microscopy of single cells (Zhang et al., 2018). Addition of glucose or

hydrogen peroxide to the medium results in global changes in autofluorescence,

reflecting a response to nutrient conditions. In addition, metabolic cycles have

been observed in mammalian cells. For example, Zhu (2022) describes a 12-hour

metabolic cycle in liver cells that includes sequential scheduling of metabolic

processes into energy homeostasis, genetic integrity maintenance processes, im-

mune response, and gene expression — linking the processes to the circadian

rhythm and the whole cycle to a more general 12-hour mammalian ultradian clock.

Importantly, this hepatic metabolic cycle operates independently from the spatial

organisation of cells in the liver, reminiscent of the cell-to-cell independence of

the yeast metabolic cycle. In addition, HeLa cells with synchronised cell division

have been shown to exhibit both NAD(P)H and ATP oscillations throughout

the cell division cycle (Ahn et al., 2017), but the literature is conflicted about

these oscillations’ dynamics across different mammalian cell types (Zylstra &

Heinemann, 2022). There is reason to believe that a wide range of organisms

exhibit biochemical phenomena similar to the yeast metabolic cycle, as the aims

of controlling cell division to match environmental conditions along with the

temporal coordination of biosynthesis and cellular redox state with cell division

should be fundamental goals that apply to multiple domains of life.

Metabolic oscillations may be the origins of biological timekeeping mechanisms.

Lloyd and Murray (2007) assert that ultradian oscillations form the basis of

longer-period biological oscillators like the circadian rhythm or the cell cycle,

based on temperature compensation and sensitivity of the period. Circadian

rhythms can occur in cells of eukaryotes without transcription (J. S. O’Neill &

Reddy, 2011; J. S. O’Neill et al., 2011), refuting the idea that gene circuits are
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responsible for such rhythms. Additionally, the eukaryotic cell cycle evolved before

cyclin-dependent kinases (Papagiannakis et al., 2017), so metabolic oscillations

may have served to regulate the cell cycle before cyclin-dependent kinases evolved.

Furthermore, YMCs share mechanisms with the circadian oscillator (Arata &

Takagi, 2019; Causton et al., 2015), suggesting a common evolutionary origin.

Thus, studying YMCs may shed light on the evolution of biological rhythms.

A question about operation principles that unites all biological oscillators is: why

have oscillations? The answers may differ for each type of biological oscillator.

The answer is clear for circadian rhythms: circadian clocks evolved as an adapt-

ation to the Earth’s 24-hour rotation, and allow organisms to match biological

processes that benefit from light or warmth to the time of day at which they

occur (Millar, 2004). The selective advantage of such a system is highlighted

by how circadian clocks of similar, negative-feedback gene circuit architectures

evolved independently at least four times across kingdoms (A. N. Dodd et al.,

2005). As a specific example, Arabidopsis thaliana plants with a clock period

matched to the environment contain more chlorophyll, fix more carbon, grow

faster, and survive better, as opposed to mutants with clock lengths that do not

match environmental light-dark cycles (A. N. Dodd et al., 2005). The explanation

is that light-harvesting complex proteins and chlorophyll are unstable in their

unbound state. So, synthesising these components in sync with the light-dark

cycle is advantageous for the plant. The plant can only synchronise synthesis with

the light-dark cycle with correct anticipation of dawn and dusk, and a circadian

clock that matches the environmental light-dark cycle allows this to happen.
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The importance of coordinating the sequence of events in the cell division cycle

was discussed in Section 1.1.1. Briefly, the cell division cycle is an energy-intensive

and resource-intensive process that engages all compartments of the cell. In

addition, maintaining genetic fidelity is important for ensuring that progeny

cells are functional; therefore, cells need a robust system of tight control of the

cell division cycle. The importance of the cell division cycle is highlighted by

the conserved design of the cell division cycle across kingdoms. For example,

cyclin-dependent kinases (CDKs) differ in their number in different organisms —

one classical CDK in budding yeast, but at least 11 classical CDKs in humans

(Malumbres et al., 2009) — but their structure and function are conserved.

The importance of linking the cell division cycle with cellular resource use is

highlighted by the cell’s systems of coupling the cell division cycle machinery with

metabolic processes (Salazar-Roa & Malumbres, 2017). In particular, oxidative

phosphorylation peaks upon S- and M-phase entry in plants and glycolysis peaks

upon S-phase entry in lymphocytes. In addition, the CDKs regulate cycles of

mitochondrial fusion and fission to ensure that mitochondria in the parent cell

are divided to progeny cells based on their volumes. The importance of the cell

division cycle control system is further highlighted by the result of impairments

in the genetic control of the cell division cycle: uncontrolled cell proliferation,

characteristic of cancers in multicellular organisms.

The question of ‘why have oscillations?’ has been asked of the yeast metabolic

cycle — specifically, why cycle metabolites and why cycle transcripts? It has been

proposed that cycling of metabolites and metabolic activity serve to create ‘just-

in-time’ biosynthesis of compounds when they are needed in the yeast metabolic

cycle (Zylstra & Heinemann, 2022). For example, the HOC phase of the metabolic

cycle is driven by the high energetic demands of protein synthesis in this phase,

which is closely linked to the G1 phase of the cell division cycle (J. S. O’Neill et al.,
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2020), and the evidence includes high protein synthesis rate and high ribosomal

protein abundance. The rationale for cycling transcripts is less clear, however.

Earlier studies propose that transcript cycling in clusters that peak according to

three metabolic cycle phases reflect the metabolic demands in each phase and the

translation of such transcripts lead to changes in metabolite concentrations (Tu et

al., 2005). However, Feltham et al. (2020) showed that although transcripts levels

cycle, protein levels chiefly remain constant, but post-translational modifications

cycle instead. This study then proposes that cyclic metabolic state changes cause

post-translational modifications which then coordinate the metabolic cycle with

cellular processes. The study therefore suggests that transcript cycling is effect

of the metabolic cycle and have roles in the chromatin environment. Further

clarification of the mechanistic basis of the yeast metabolic cycle is needed to

answer the ‘why have oscillations’ question.

1.3 Flavins and flavoproteins

1.3.1 Introduction to cellular autofluorescence

Cellular autofluorescence is the intrinsic fluorescence of a cell without fluorescent

tags. It is caused by the autofluorescence of compounds that have light emission

properties (Maslanka et al., 2018). Such endogenous fluorophores include co-

enzymes, vitamins, and amino acids with aromatic chemical groups, flavins being

one of them. However, autofluorescence poses a difficulty in cellular microscopy

because its wavelengths can overlap with other fluorophores and therefore it is

difficult to draw biochemical conclusions from the fluorescence signal alone. For

example, flavin autofluorescence overlaps with the spectrum of the fluorescent
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glucose analogue 6-NBDG (Maslanka et al., 2018), and thus interferes with studies

that use this analogue to study glucose uptake. Cellular autofluorescence can

indicate the physiology and metabolism of the cell. Autofluorescence thus offers

an easy way to monitor cell physiology without engineering genetic constructs.

1.3.2 Biochemical basis of flavins and flavoproteins

Flavins are a group of organic compounds that share an aromatic moiety that

allows redox reactions (Fig. 1.11). Specifically, the flavin moiety can exist in the

oxidised, semiquinone, or reduced states. Flavins thus function as electron carriers

in the cell.

Figure 1.11: Chemical structure of FMN and FAD, with redox states of the
aromatic flavin moiety shown. Adapted from Patel (2006).
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In S. cerevisiae, flavin is present as FMN and FAD, which function as prosthetic

groups in flavin-dependent proteins, or flavoproteins, whose genes account for

1.1% of the genome (Gudipati et al., 2014). FMN and FAD can be covalently

bound to these proteins or be free (Mewies et al., 1998). FAD is a co-enzyme and

has major roles in transferring electrons from the tricarboxylic acid cycle to the

mitochondrial electron transport chain.

Flavins in S. cerevisiae are derived from riboflavin (Fig. 1.12). Riboflavin can be

synthesised de novo from purine biosynthesis and the oxidative pentose phosphate

pathway (Fig. 1.13). Based on the metabolism of flavins, the cell only synthes-

ises new flavin for synthesis of FMN and FAD. Therefore, monitoring of flavins

monitors the combined pool of FMN and FAD in their oxidised states.

riboflavin riboflavin

flavin imaging

C, NC, N

FMN FAD

FMNH2 FADH2

Oxidised

Reduced

enzyme co-factors:
biosynthesis

redox

>

Figure 1.12: Simplified schematic of biosynthesis of flavins and detection of the
oxidation states in fluorescence microscopy.

From a technical standpoint, the redox states of flavins reflect the emission and ab-

sorption of electromagnetic radiation by the flavin moiety. The redox biochemistry

of flavins give rise to fluorescence, so monitoring flavin autofluorescence monitors

the redox state of the cell. Flavins, in their oxidised forms (FMN and FAD),

have a peak excitation frequency of ≈460 nm and a peak emission frequency of
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≈535 nm (Maslanka et al., 2018; Wagnieres et al., 1998), displayed in Fig. 1.14.

Comparison of in vivo autofluorescence in mammalian cells and the fluorescence

spectrum of riboflavin in PBS confirms this fluorescence behaviour (Aubin, 1979).

In contrast, the reduced forms FMNH2 and FADH2 have negligible fluorescence

(Masters, 1994). Both chemostat-based (D. B. Murray et al., 2011; Sasidharan

et al., 2012) and single-cell microfluidic studies (Baumgartner et al., 2018) have

monitored flavin autofluorescence to study the YMC.

Descriptions of key flavoproteins and their roles

Gudipati et al. (2014) describe 68 genes that code for 47 flavoproteins in budding

yeast (Fig. 1.15). Of these, 35 require FAD, 15 require FMN, and 3 require both.

In budding yeast, most flavins sit in the active site without covalent bonding. The

biochemical and enzymatic properties of many flavoproteins are poorly charac-

terised (Koch et al., 2017).

Figure 1.13: Reference pathway for biosynthesis of riboflavin and derivatives,
KEGG pathway database (Kanehisa et al., 2023).
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Figure 1.14: Fluorescence spectrum of riboflavin, (dotted line) excitation and
(solid line) emission spectra shown, FPbase (Lambert, 2023).

The most abundant flavoproteins catalyse redox reactions (Table 1.1). Specifically,

these reactions include reduction of reactive chemical species to respond to oxidat-

ive stress — though, not all enzymes involved in the response to reactive chemical

species have flavin co-factors. Additionally, the reactions include biosynthetic

reactions. Many of these reactions require NADPH or NADH to donate electrons,

suggesting a link between flavins and NAD(P)H in regulating the cellular redox

state. In particular, Oye2p catalyses the NADPH redox reaction, thus providing

a link between flavins and NAD(P)H. One exception flavoprotein is Ilv2p, which

does not catalyse a redox reaction. It has been hypothesised that an ancestral form

of Ilv2p catalysed a redox reaction, but the argument is weak because it is inferred

from the presence of FAD (Pang et al., 2002). To maintain the cellular redox state,

it is thus reasonable to assume that the redox equilibrium of all flavoprotein-

catalysed reactions are in the same direction at any point of the YMC. Supporting
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unknown function

Figure 1.15: Flavoproteins (blue bars) shown by abundance (Ho et al., 2018), with
Rps7ap (grey bar) shown as reference. Only the 17 most abundant flavoproteins
are shown.

this, Siano and Mutharasan (1989) show that NAD(P)H fluorescence and the

fluorescence of lipoamide dehydrogenase, a flavoprotein, indicate simultaneous

reduction in response to lowered dissolved oxygen. They further show redox

equilibrium in both fluorophores in response to glucose addition.

It is important to rule out the possibility that flavin cycling is merely a function

of the cell division cycle to make sure that flavin monitoring monitors the YMC.

None of these flavoproteins are strictly cell division cycle proteins, but this does

not exclude cycling of flavin autofluorescence linked to the cell division cycle. For

example, fatty acid synthesis proteins should cycle along with the cell division

cycle as cell synthesises more plasma membranes.
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Protein Name Reaction catalysed Reference

Fas1 beta subunit of fatty acid
synthetase

acetyl–CoA +
malonyl–CoA + NADPH +
ATP −−→ palmitate

Singh et al.
(2020)

Yhb1 nitric oxide oxidoreductase 2NO + 2O2 +
NAD(P)H −−→ 2NO3

– +
NAD(P)+ +H+

Bonamore
and Boffi
(2008)

Ura1 dihydroorotate
dehydrogenase

dihydroorotic acid +
fumarate −−→ orotic acid +
succinate

Zameitat
et al. (2007)

Pst2 NAD(P)H-quinone oxidore-
ductase

NAD(P)H + H+ +
quinone −−→ NAD(P)+ +
hydroquinone

Koch et al.
(2017)

Trr1 cytoplasmic thioredoxin re-
ductase

H+ + NADPH +
thioredoxin disulfide −−→
NADP+ + thioredoxin

Machado
et al. (1997)

Ilv2 acetolactate synthase 2 pyruvate −−→
2-acetolactate + CO2

Pang et al.
(2002)

Oye2 NADPH oxidoreductase NADPH + H+ +
acceptor −−→←−− NADP+ +
reduced acceptor

Odat et al.
(2007)

Dld3 2-hydroxyglutarate transhy-
drogenase

D–2-hydroxyglutarate +
pyruvate −−→
α-ketoglutarate + lactate

Becker-
Kettern et al.
(2016)

Pdx3 pyridoxine phosphate oxi-
dase

pyridoxamine 5-phosphate+
H2O + O2 −−→
pyridoxal 5-phosphate +
NH3 +H2O

Tsuge et al.
(1979)

Erg1 squalene epoxidase squalene + H+ +
NADPH + O2 −−→
2,3–oxidosqualene +
NADP+ +H2O

Satoh et al.
(1993)

Lpd1 dihydrolipoamide dehydro-
genase

dihydrolipoamide +
NAD+ −−→ lipoamide +
NADH+ +H+

Morrison
(2021)

Table 1.1: Roles of the most abundant flavoproteins.
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1.3.3 Flavins and flavoproteins in the yeast metabolic cycle

Flavin fluorescence can be used to monitor the metabolic cycle. The biological

basis of flavins justifies this use. Flavins are linked to NAD(P)H via nitric oxide

oxidoreductase (Yhb1p), as discussed in Section 1.3.2, and NAD(P)H cycles have

been implicated in bulk-culture (Tu et al., 2005) and single-cell (Papagiannakis et

al., 2017) studies of the YMC, as discussed in Section 1.2.1. The oxidation of flavin

is at its maximum at the start of the reductive state of the YMC, as evidenced

by how flavin fluorescence peaks just before dissolved oxygen concentration in

the chemostat (D. B. Murray et al., 2011; Sasidharan et al., 2012). Riboflavin

abundance in the cell has been shown to oscillate and peak in the oxidative state

of the YMC, while FAD abundance is at its maximum in the reductive-building

phase, as evidenced by metabolic profiling of extracts from chemostat cultures

taken at evenly-spaced intervals (Tu et al., 2007).

Flavoproteins may have roles linked to the YMC. The most abundant is Fas1p

(fatty acid synthetase). Because there is evidence that cycles of fatty acid stores

are implicated in metabolic cycling in yeast (Campbell et al., 2020), it is likely

that fatty acid synthetase is heavily implicated. Following this, the second most

abundant is Yhb1p, which may play a major role as discussed earlier.

So, for these reasons, I expect flavin autofluorescence to be oscillatory and be

a useful readout of the yeast metabolic cycle. Few studies have characterised

how such flavin oscillations respond to changing nutrient conditions or to gene

deletions. Thus, filling in this knowledge gap is an avenue for further research.

Nevertheless, there are caveats to using flavin autofluorescence. Riboflavin fluor-

escence is captured too, though its intracellular abundance is two orders of mag-

nitudes lower than that of FMN and that of FAD, and these two flavin derivatives

are present at the same order of magnitude (Tu et al., 2007). In addition, different
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concentrations of riboflavin influence the autofluorescence signal and influence the

physiological state of the cell (Maslanka et al., 2018). However, the experimenter

can eliminate the effects of riboflavin by using riboflavin-free minimal media

(Verduyn et al., 1992).

Additionally, flavin fluorescence is the aggregate of many flavoprotein compon-

ents. Therefore, it cannot be concluded that flavin fluorescence is the readout

of one protein in particular — one can only draw conclusions about the overall

redox state. Furthermore, the changes in flavin fluorescence can be because of

changes in the ‘flavin pool’ — the amount of flavin-derived moieties in a cell

across all their redox states — or due to global changes in intracellular flavin

redox state, as a function of intracellular redox state. Most studies assume a

constant flavin pool and see oscillations as periodic shifts in redox equilibrium.

These caveats are not unique to flavin fluorescence, but are shared limitations

with other autofluorescing cellular components like NAD(P)H, and the benefits

of having a non-invasive method to monitor cellular metabolism outweighs the

caveats.
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1.4 Flux balance analysis

1.4.1 Introduction to flux balance analysis

Metabolic network reconstructions are mathematical representations of a set of

metabolic pathways in a living organism. Usually, each metabolite is represented

as a node, and metabolites are connected to each other through reactions that are

represented as links (Palsson, 2015). This information can be represented in a two-

dimensional stoichiometric matrix, in which the rows of the matrix represent the

metabolites, the columns represent the reactions, and the values of each element

in the matrix show the stoichiometry of the reactions in the system.

For example, if reaction R1 is defined by:

1 M1 + 2 M2 −−→ 3 M3 (1.1)

the elements in the stoichiometric matrix that correspond to the metabolite-

reaction combinations (M1, R1), (M2, R1), and (M3, R1) are -1, -2, and 3, respect-

ively.

A genome-scale metabolic model is, in simple terms, a metabolic network recon-

struction that aims to cover every biochemical reaction in a living system that

is catalysed by a gene-encoded enzyme. In most of the reactions represented in

a metabolic network reconstruction, one or more chemical species react to create

a different set of chemical species as products. However, reactions in a metabolic

network reconstruction may include processes that are not chemical reactions.

Such processes may include exchange of nutrients, as well as a reaction that

models biomass formation.
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Flux balance analysis (FBA) is a mathematical method that finds the steady-state

flux of reactions through a metabolic network that is best for a given condition

(Orth et al., 2010). These metabolic fluxes represent rates of chemical reactions.

At its core, FBA is a method of solving the linear programming problem of finding

the flux values that optimise the output value of an objective function, subject

to biological constraints.

Mathematically, the linear programming problem of FBA can be expressed as:

max c⊺v (1.2)

subject to

Sv = 0

vi,min ≤ vi ≤ vi,max

(1.3)

where c is a vector of weights such that c⊺v defines the objective function, S

is the stoichiometric matrix, and v is the vector of fluxes. The expression vi,min

represents the lower bound and vi,max represents the upper bound for each flux vi

in v.

The objective function is given as the task of maximising a mathematical expres-

sion that is based on a subset of fluxes (Eq. 1.2). Most commonly, the objective

function is maximising the flux of the biomass reaction, thus optimising the

growth rate of the cell. The constraints for FBA are, in the most basic case,

imposed by two factors: the stoichiometric matrix and reaction flux bounds (Eq.

1.3). The stoichiometric matrix balances reaction inputs and outputs, while flux

bounds impose upper and lower limits on the fluxes of each reaction. These

constraints restrict the solution space for the FBA problem.
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FBA thus offers a computationally inexpensive way to simulate metabolism in

a living system, as opposed to solving a large set of differential equations that

describe the kinetics of biochemical reactions. Such differential equations can be

difficult to construct and parametrise.

1.4.2 Development of genome-scale metabolic models for bud-

ding yeast

Several versions of genome-scale metabolic models for Saccharomyces cerevisiae

have been developed since the first model, iFF708 (Förster et al., 2003), reviewed

in Y. Chen et al. (2022) (Fig. 1.16). Subsequent developments have included

the addition of new reactions, the addition of new cellular compartments, and

correcting gene-protein associations.

Figure 1.16: Timeline of development of genome-scale metabolic models of
Saccharomyces cerevisiae. Adapted from Y. Chen et al. (2022).

Initially, new models were built based on iFF708, adhering to BiGG conventions

(Norsigian et al., 2020). These models include iND750 (Duarte et al., 2004),

iLL672 (Nookaew et al., 2008), and iMM904 (Mo et al., 2009) and consist of

increasing numbers of reactions.
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Yeast1 (Herrg̊ard et al., 2008) became the first consensus genome-scale metabolic

model of budding yeast, combining knowledge from previous models in standard-

ised terminology; however, it was not until Yeast4 (Dobson et al., 2010) when

gaps in the network were filled and constraint-based simulations were possible.

More recent developments of consensus genome-scale metabolic models of budding

yeast created formalisms that are relevant to this thesis. Yeast5 (Heavner et al.,

2012) introduced ‘isa’ reactions and pseudometabolites to group specific lipid

species within a more general lipid class (Fig. 1.17). This formalism has two aims.

First, isa reactions account for generic chemical compounds, as opposed to specific

chemical species, represented in KEGG pathways of sphingolipid metabolism.

Such generic compounds include ‘complex sphingolipid’, ‘fatty acid’, and ‘acyl-

CoA’ rather than specific chemical species. Second, isa reactions create OR logic

in what constitutes biomass — in other words, users of the model can choose

whether one set of lipid species or another set forms part of biomass. This OR

logic accounts for different lipid species in aerobic and anaerobic growth. Yeast5

provides two biomass equations, one for aerobic growth and the other for an-

aerobic growth, that have different stoichiometric coefficients. The formalisms in

Yeast5 resemble that of iIN800 (Nookaew et al., 2008), which has two alternative

biomass reactions for carbon-limited and nitrogen-limited conditions.

Later, Yeast6 (Heavner et al., 2013) eliminated the separate biomass equations

for aerobic and anaerobic growth conditions. Subsequently, Yeast7 (Aung et al.,

2013) revised representation of fatty acid metabolism to correct for errors and

expanded the variety of glycerolipid and glycerophospholipid composition covered

by isa reactions.
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Figure 1.17: Illustration of isa reactions in Yeast5. (A) ‘Complex sphingolipid’
is a pseudometabolite that is comprised of two chemical species, MIPC and
M(IP)2C, and one pseudometabolite, IPC. To implement these relationships in
Yeast5, isa reactions are defined — e.g. ‘MIPC is a complex sphingolipid’. (B)
Another pseudoreaction is defined in order to define lipids as an a collective
of other compounds, complex sphingolipids among them. Here, ‘lipid’ is a
pseudometabolite. (C) The biomass reaction is defined with chemical species and
pseudometabolites as reactants and a ‘biomass’ pseudometabolite as the product.
Adapted from Heavner et al. (2012).
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The development of the most recent consensus model, Yeast8 (H. Lu et al., 2019),

included additional pseudometabolites, incorporating SLIMEr (Sánchez et al.,

2019), and improving the biomass reaction. First, in addition to lipids as in previ-

ous consensus models, Yeast8 includes pseudometabolites that represent proteins,

carbohydrates, DNA, RNA, cofactors, and ions, making it easy to study each

component of biomass separately. Second, SLIMEr (Splits Lipids Into Measurable

Entities) solves the problem of representing many possible lipid species in genome-

scale metabolic models through the addition of two types of pseudoreactions. Spe-

cifically, it creates SLIME reactions to split lipids into their basic components (e.g.

glycerol and fatty acid chains for triglycerides) and it creates lipid pseudoreactions

to impose constraints on lipid classes and acyl chain distribution to make the ratio

between each class match measured abundances. Third, the biomass reaction in

Yeast8 is improved by the addition of trace metal ions and cofactors, along with

re-scaling the stoichiometric coefficients in biomass composition and re-fitting the

growth-associated maintenance energy requirements, to preserve mass balance.

Consequently, Yeast8 is the most comprehensive genome-scale metabolic model

of budding yeast metabolism, with improved metabolic scope compared to earlier

models, closer to the real metabolic network.

1.4.3 Allocation of proteomic resources

Metabolism in microbes are subject to limited resources: metabolic building

blocks, energy currency, biosynthesis machinery, and spatial compartments (Elsem-

man et al., 2022). An important aspect of this resource limitation is a limited

proteome, implying that the cell must allocate its proteome to its proteins, as

evidenced by observations on how RNA-to-protein ratios affect growth rate (Scott

& Hwa, 2011).
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To account for limited proteomic resources, genome-scale metabolic models can

be extended. Here, I review two main approaches: minimising protein cost and

explicit addition of optimisation of resources to models (Adjavon, 2022).

Some adaptations of FBA include methods to ensure that the protein cost is

minimised during optimisation. These methods include three strategies: adding

an additional objective function, imposing additional constraints, and imposing

bounds on fluxes. Among studies that use additional objective functions, Schuetz

et al. (2012) tested setting reactions other than the biomass reaction as the

objective and showed that combining maximisation of ATP yield and of biomass

yield together with minimising the sum of absolute fluxes resulted in highest

optimality. Additionally, Wang et al. (2019) aimed to understand diauxie by

defining a new variable, enzyme utilisation efficiency, to be optimised. Enzyme

utilisation efficiency was defined based on carbon flux and an enzyme cost variable

derived from enzyme concentrations and molecular weights.

Alternatively, additional constraints can be imposed for the linear programming

problem in flux balance analysis. For example, Mori et al. (2016) proposed a

Constrained Allocation Flux Balance Analysis method, which divided the pro-

teome into four sectors and imposed the constraint that sum of fluxes in each

sector must be below a threshold value. Furthermore, bounds can be set directly

on fluxes. This approach was implemented in GECKO (Domenzain et al., 2022;

Sánchez et al., 2017), in which pseudoreactions were defined to model allocation

of an enzyme-available proteome pool to individual enzymes, and the size of the

proteome pool was set setting an upper bound on the flux of the corresponding

pseudoreaction.
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Rather than adding relatively small formalisms to FBA problems, the optimisa-

tion of resources can be explicitly added to models. This strategy includes two

deviations from ordinary flux balance analysis: resource balance analysis (Goelzer

et al., 2011) and DynamicME (Yang et al., 2019). Resource balance analysis

predicts the distribution of resources from the nutrient medium among cellular

subsystems by modelling the living system as an interconnection of subsystems

that compete for common resources. Thus, growth rate depends on resource

allocation among subsystems. Unlike ordinary FBA, resource balance analysis

predicts concentrations of metabolites in addition to fluxes, but still gives a

steady-state picture of metabolism. In contrast, DynamicME simulates changes

in metabolism and protein expression over time. To create dynamic simulations,

DynamicME expresses the stoichiometric matrix and flux bounds as functions of

growth rate, and to simulate optimisation of resources, it imposes macromolecular

crowding constraints.

In this thesis, GECKO is used to simulate allocation of proteomic resources be-

cause there is an easily available derivative of Yeast8 with the GECKO formalism

already applied. Furthermore, GECKO provides an easy way to control the size

of the enzyme-available proteome, thus making it easy to test the hypothesis of

whether the size of the proteome affects metabolic strategies in the budding yeast

cell.
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1.5 Aims of thesis and research questions

This thesis aims to address these research questions:

1. Do metabolic oscillations arise from communication between cells or from

external synchronisation?

2. If metabolic cycles are persistent across nutrient and genetic perturbations,

is it because metabolic cycles reflect sequential synthesis of biomass com-

ponents?

To test whether metabolic oscillations in chemostat-based studies arise from

communication between cells or from external synchronisation, I use a single-

cell microfluidics platform to monitor flavin-based metabolic cycles. I chose this

platform because it physically separates cells and has rapid media flow, and

both eliminate communication between cells that may occur in the chemostat.

Single-cell microfluidics alone cannot assess the role of communication between

cells without comparing with bulk-culture set-ups such as the chemostat or the

turbidostat. However, using such bulk-culture equipment is beyond the scope of

this thesis, and this thesis aims to address the first research question by comparing

single-cell results with corresponding chemostat-based results in the literature.

The observation that metabolic cycles are persistent across nutrient and genetic

perturbations gave rise to the second research question. To test whether this

persistence reflects sequential synthesis of biomass components, I use flux balance

analysis with an enzyme-constrained genome-scale metabolic model of budding

yeast. Specifically, I assess whether imposing a constraint on the proteome or

changing nutrient conditions leads to sequential synthesis of biomass components

taking less time than parallel synthesis of biomass components. Answering this

latter research question could lead to an understanding of the yeast metabolic

cycle as a fundamental metabolic adaptation to physiological constraints.



Chapter 2

Methods

2.1 Laboratory methods

2.1.1 Strains and media

The Saccharomyces cerevisiae strains used in this thesis are described in Table 2.1.

Name Background Genotype Origin Notes

FY4 FY4 — EUROSCARF Winston et al.
(1995)

htb2::mCherry FY4 HTB2::mCherry In-house,
CRISPR

—

BY4741 BY4741 MATa his3∆1
leu2∆0
met15∆0
ura3∆0

EUROSCARF Brachmann
et al. (1998)

zwf1∆ BY4741 zwf1∆::KAN Edinburgh Gen-
ome Foundry

Yeast deletion
collection

BY4742 BY4742 MATα his3∆1
leu2∆0 lys2∆0
ura3∆0

Bruce Morgan Calabrese et al.
(2019)

tsa1∆ tsa2∆ BY4742 tsa1∆::natNT2
tsa2∆::kanMX4

Bruce Morgan Calabrese et al.
(2019)

CEN.PK113-7D CEN.PK113-7D — Peter Kötter Nijkamp et al.
(2012)

Table 2.1: Strains used in this thesis.

54
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The minimal medium described by Verduyn et al. (1992) was used unless other-

wise stated. This minimal medium does not contain riboflavin, thus minimising its

effect on flavin autofluorescence imaging, and its composition is known and easily

controlled. Specifically, the composition of the carbon source-limiting medium is

described in Tables 2.2–2.4, and the media pH was adjusted to 6.0 using potassium

hydroxide, or sodium hydroxide for potassium-free media.

Reagent Concentration Remarks

KH2PO4 3 gL−1

MgSO4 · 7H2O 0.5 gL−1

(NH4)2SO4 5 gL−1

Tracemetals 1mLL−1 See Table 2.3
Vitamins 1mLL−1 See Table 2.4. Add upon use.
Carbon source variable Add upon use.

Table 2.2: Composition of base minimal medium. For potassium-free media,
replace KH2PO4 with 2.65 g L−1 NaH2PO4, which gives the same molarity.

Reagent Formula Concentration [g L−1]

EDTA C10H14N2Na2O8 · 2H2O 15.00
Zinc sulfate ZnSO4 · 7H2O 4.50
Manganese (II) chloride MnCl2 · 2H2O 0.84
Cobalt (II) chloride CoCl2 · 6H2O 0.30
Copper (II) sulfate CuSO4 · 5H2O 0.30
Sodium molybdate Na2MoO4 · 2H2O 0.40
Calcium chloride CaCl2 · 2H2O 4.50
Iron (II) sulfate FeSO4 · 7H2O 3.00
Boric acid H3BO3 1.00
Potassium iodide KI 0.10

Table 2.3: Composition of trace metal mix for minimal media described in
Table 2.2.

For auxotrophic strains, supplements were added according to Table 2.5. Then,

a carbon source is added as appropriate to create the growth medium.
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Reagent Formula Concentration [g L−1]

D-(+)-biotin C10H16N2O3S 0.05
D-panthothenic acid calcium
salt

Ca(C9H16NO5)2 1.00

Nicotinic acid C6H5NO2 1.00
myo-Inositol C6H12O6 25.00
Thiamine chloride hydrochloride C12H15ClN4OS ·HCl 1.00
Pyridoxal hydrochloride C8H12ClNO3 1.00
4-aminobenzoic acid C7H7NO2 0.20

Table 2.4: Composition of vitamin mix for minimal media described in Table 2.2.

Reagent Concentration [mgL−1]

histidine 125
leucine 500
tryptophan 75
methionine 100
uracil 150

Table 2.5: Supplements to minimal media for BY4741-background auxotrophic
strains, compositions derived from Pronk (2002). For BY4742-background strains,
replace methionine with 100 mg L−1 lysine-HCl.

2.1.2 Single-cell microfluidics

Cells were grown from colonies on solid agar in a liquid culture composed of min-

imal media formulation appropriate for the experiment, supplements appropriate

for the strain’s auxotrophy, and a carbon source (glucose or pyruvate) appropriate

for the experiment (see Section 2.1.1). The cells were incubated at 30 °C for 14 h

(overnight) if the carbon source is glucose or 48 h if the carbon source is pyruvate.

Subsequently, the cells were diluted so that the resulting culture had an OD600 of

0.10–0.20, and were then incubated for a further 4 h.
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To monitor metabolic cycles in single cells, ALCATRAS microfluidics (Crane

et al., 2014) devices were prepared and connected to syringes containing nutrient

media (Fig. 2.1). ALCATRAS microfluidic devices were made from polydimethyl-

siloxane (PDMS), with a 10:1 ratio between Sylgard 184 (Dow Corning) and

curing agent. The devices consist of chambers that contain of a dense array of

cell traps to trap parent cells, allowing approximately 100 traps to be imaged at

once using a 40 × objective lens magnification.

Figure 2.1: Overview of ALCATRAS microfluidic chip design. (A) Sample
brightfield image of cell traps in the chip, overlaid with fluorescence image of
Doa1p-GFP, to indicate cells (green). (B) Switching between media sources
(yellow to pink) occurs within 6 s. (C) Microfluidic chip design. (D) Switching
rate was assessed by imaging the fluorescence in the chamber whilst the input
medium was switched between a non-fluorescent medium and medium containing
0.1% fluorescein. (E) Trap dimensions, in micrometres. Adapted from Crane et al.
(2014).
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The pressure on the syringes were controlled automatically to achieve a constant

4 µL min−1 media flow, creating laminar flow. The shape of the traps allows parent

cells to be trapped in place, while progeny cells leave the trap after they bud from

parent cells as nutrient medium flows across the device. Specifically, when a cell

falls into a trap, the local pressure gradient changes to create a low-energy pocket

that keeps the cell trapped, as evidenced by a simulation of fluid dynamics given

the device design (Fig. 2.2).
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Figure 2.2: Fluid dynamic simulations of the ALCATRAS microfluic chip. (A)
Velocity of fluid (in units of µm s−1) as a function of spatial position in the device.
(B) Pressure of fluid (in units of Pa) as a function of spatial position in the device.
Adapted from Crane et al. (2014).

PDMS is known to absorb small, hydrophobic molecules (Toepke & Beebe, 2006),

and molecules with such properties are also known to adsorb onto the surface of

PDMS (N. Li et al., 2009). These physical interactions decrease the effective con-

centration of such molecules in the nutrient media. To decrease adsorption, a thin

layer of silane was evaporated onto the wafer before moulding of PDMS devices

(Crane et al., 2014), and during experimental set-up, bovine serum albumin was

added to create an additional coating on the internal surfaces of the microfluidic

device.
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To prepare for an experiment, a device’s multiple chambers were filled with growth

media supplemented with 0.05% w/v bovine serum albumin, which was added to

further decrease adsorption (Toepke & Beebe, 2006). Cells were then loaded into

the ALCATRAS chambers — different chambers can house cells from different

strains (Fig. 2.3). There are two syringes that can contain different media, and

in experiments that require different nutrient conditions at different times, the

ALCATRAS system is programmed to switch between the two syringes. The cells

and ALCATRAS chambers were located in an incubation chamber (Oko-labs)

that was maintained at 30 °C.

Figure 2.3: Overview of single-cell microfluidics set-up using the ALCATRAS
system. Cells are loaded into chambers within devices, where they are trapped
and separated (centre). The media composition the cells experience are controlled
with syringe pumps (left). Brightfield and fluorescent images are taken at regular
intervals, and then processed using aliby (Muñoz González, 2023) to obtain time
series of fluorescence intensity changes for each parent cell.

Microscopy was performed using a 40 × 1.4 NA oil immersion objective (Nikon),

and the Nikon Perfect Focus System was used to ensure consistent focus. X-Y

spatial positions were defined for each chamber to maximise spatial coverage of

the chamber while ensuring that the microscope takes less time to move positions
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and capture images than the interval period. Images were taken every 5 min,

and the duration of image acquisition varied for each experiment. Brightfield and

flavin images were captured in all strains and mCherry images were additionally

captured for the HTB2::mCherry strain. Five z-slices were taken for brightfield

images, with a spacing of 0.6 µm between slices. Fluorescence imaging was per-

formed with an OptoLED light source (Cairn Research), and LED voltage was

optimised for maximum signal intensity without LED cut-off prior to experiments.

For flavin imaging, the excitation filter was set to 430/24 (418 nm to 442 nm), the

emission filter was set to 535/30 (520 nm to 550 nm), and the exposure time was

60 ms. One z-slice was taken for each flavin image in each position. For mCherry

imaging, the excitation filter was set to (555 nm to 590 nm), the emission filter

was to set to 632/60 (602 nm to 682 nm) and the exposure time was 100 ms. Five

z-slices were taken for mCherry images, with a spacing of 0.6 µm between slices.

2.2 Image analysis methods

I used aliby (Muñoz González, 2023), an end-to-end Python-based software pack-

age developed for time-lapse microscopy, to process the microscope images in

order to obtain flavin and mCherry time series for further analysis.

aliby tracks tiles that correspond to a trap across time-lapse images to account

for expected spatial drifting in the microscope. It then uses BABY (Pietsch et al.,

2023) to segment the images of traps to identify the outlines of cells and to track

cells from one time point to another, creating a lineage of cells (Fig. 2.4). aliby

then overlays the cell outlines onto the fluorescence (flavin and mCherry) images
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to extract fluorescence intensity, and assigns a fluorescence value to each cell at

each time point based on the mean intensity of pixels within the cell’s outline. The

background fluorescence is also computed, based on the pixel intensity outside cell

outlines, and is then subtracted from the cell fluorescence.

Flavin fluorescence thus represents the oxidation of flavins throughout the yeast

metabolic cycle (see Section 1.3), and mCherry fluorescence thus represents the

amount of histone proteins as a proxy for cell division cycle progression (Garmendia-

Torres et al., 2018).
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(a)

(b)

Figure 2.4: (2.4a) Example time course of images from a microfluidics experiment,
processed by aliby (Muñoz González, 2023). Top row shows brightfield images
taken over time; only the first three time points are shown for illustrative purposes.
Here, BABY (Pietsch et al., 2023) segments brightfield images to obtain cell
outlines (blue and brown). Bottom row shows images from a sample fluorescence
channel taken over time. The cell outlines from image segmentation were overlaid
onto the fluorescence channel images so that the fluorescence intensity within each
cell can be extracted. (2.4b) The extracted values were then saved in an array
of numbers, with rows indicating cells (labelled by IDs) and columns indicating
time in minutes — each row thus represents a time series.
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2.3 Time series analysis methods

2.3.1 Data pre-processing

To filter out long-term trends that may confound analysis of oscillatory time

series, a high-pass Butterworth filter, with a critical frequency of 2.86 × 10−3 min−1,

corresponding to a period of 350 min, was applied to fluorescence time series

generated from aliby. Specifically, Figs. 3.2, 3.3–3.5, 3.10–3.13, 3.15, 3.17–3.18,

and 3.21–3.22 in Chapter 3 and all figures from Chapter 4 except for 4.1a are

derived from filtered time series. Section 4.2 further discusses the rationale for

this filtering method.

However, the long-term shifts of fluorescence intensities are important for inter-

preting some results based on imposing temporary environmental perturbations

on yeast cells. In such cases, such long-term shifts would be filtered away by the

high-pass Butterworth filter, and thus the filter was not applied. Specifically, Figs.

3.8–3.9, and 3.20 are derived from unfiltered time series.

2.3.2 Classical periodogram

To detect rhythmicity in time series, I computed the periodogram, based on the

classical (original) definition of the periodogram (Scargle, 1982; Schuster, 1898),

and by using the fast Fourier transform, then used a statistical test for rhythmicity

based on Glynn et al. (2006), described as follows:

1. Let the data have G cells. Let cell g = 1, . . . ,G have a time series with Ng

time points. The time series is thus denoted Yg(t) = yg(t1), . . . , yg(tNg).

2. For each time series, I define a range of test frequencies linearly from 1
Ng

to

the Nyquist limit (i.e. half the rate of image acquisition).
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With this definition, I compute the classical periodogram for each time

series, via the Fourier transform:

Pg(ω) =
Ng

2σ2

∣∣∣∣∫ ∞

−∞
Yge

−2πitdt

∣∣∣∣ , (2.1)

where σ2 is the sample variance of Yg. In this equation, the periodogram

is normalised by the coefficient Ng/2σ2 so that the area under the period-

ogram is constant across all time series. The Lomb-Scargle periodogram is

equivalent to the classical periodogram if the time points are equally spaced

(Lomb, 1976), as is the case for the vast majority of my data.

3. For each cell g, I denote the peak hg = maxj Pg(ω). The peak of the

normalised classical periodogram of each time series was used as a proxy

for the quality of oscillation.

4. I define an effective number of independent frequencies M = fmaxNg for

each time series, where fmax is the Nyquist limit (VanderPlas, 2018). I then

calculate the p-value of testing the null hypothesis that such a peak is due

to chance:

pg = 1− (1− e−hg)
M

(2.2)

This formula is based on the exponential distribution of the power at a

given frequency in the periodogram (Scargle, 1982).

5. I order the cells by p-values: p1 ≤ p2 ≤ · · · ≤ pG. This order thus ranks the

cells by oscillation quality.

6. To control the false discovery rate (Benjamini & Hochberg, 1995), I find k̂

according to:

k̂ = arg max
1≤k≤G

{k : pk ≤ qk/G} (2.3)

where q is a defined false discovery rate.
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7. Cells whose p-values correspond to p1, p2, . . . , pk̂ are thus denoted to have

statistically significant oscillatory behaviour for the false discovery rate q.

2.3.3 Autoregressive model

As an alternative method to detect rhythmicity in time series, I fitted an autore-

gressive model and used its parameters to compute an analytically-defined peri-

odogram, based on Jia and Grima (2020), as follows:

1. The algorithm relies on fitting a single time series n(0), n(1), . . . , n(M − 1)

with an autoregressive model AR(P ) with order P :

ϕ0nt + ϕ1nt−1 + ϕ2nt−2 + · · ·+ ϕPnt−P = θ0ϵt (2.4)

where ϵt is a white noise satisfying ⟨ϵt⟩ = 0, ϕ0 = 1, and ϕ1, . . . , ϕP are real

numbers such that the complex zeros of the polynomial Φ(z) =
∑P

k=0 ϕkz
k

lie outside the unit circle.

2. The sample mean of the time series is estimated by:

⟨n⟩ =
1

M

M−1∑
k=0

n(k) (2.5)

3. The sample autocorrelation function is estimated as:

Ri =
1

M

M−1−i∑
k=0

(n(k)− ⟨n⟩)(n(k + i)− ⟨n⟩) (2.6)
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4. The coefficients ϕ1, . . . , ϕP are estimated by solving the Yule-Walker equa-

tion: 

R0 R1 · · · RP−1

R1 R0 · · · RP−2

...
...

. . .
...

RP−1 RP−2 · · · R0





ϕ1

ϕ2

...

ϕP


=



R1

R2

...

RP


(2.7)

5. The parameter θ0 is estimated as:

θ20 = R0 −
P∑

k=1

ϕkRk (2.8)

6. The order P is determined by minimising the Akaike information criterion:

AIC(P ) = log θ20(P ) + 2
P

M
(2.9)

where θ0(P ) is the estimated θ0 (Eq. 2.8) for a specific P . In this step, P

is varied with 1 ≤ P ≤ 3
√
M , and the optimum order (P ) is the one that

gives the smallest value of AIC(P )

7. The power spectrum is thus estimated analytically using the parameters

found in earlier steps by:

G(ξ) =
1

2π
· θ20

|
∑P

k=0 ϕke−ikξ|2
,−π ≤ ξ ≤ π (2.10)

where ξ represents frequency.
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2.3.4 Precision and recall

To evaluate the performance of rhythmicity detection methods, precision and

recall are computed. The rhythmicity detection methods are seen as a binary

classifier that predicts a ‘positive’ or ‘negative’ label to each observation, and

these predicted labels are compared against true labels — in the context of this

thesis, manually-defined labels of whether a time series is oscillatory or not.

Given the confusion matrix:

Predicted labels
Positive Negative

True labels
Positive True positives (TP) False negatives (FN)
Negative False positives (FP) True negatives (TN)

Table 2.6: Confusion matrix

Precision is defined as:

Precision =
TP

TP + FP
(2.11)

And recall is defined as:

Recall =
TP

TP + FN
(2.12)

Precision and recall can be used with datasets with class imbalance, i.e. if the

two labels are not split evenly across observations.
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2.3.5 Cross-correlation function

To estimate the periodicity of signals and to detect the synchrony between two

types of signals, I adapted the cross-correlation function as used in Pietsch et al.

(2023), as follows:

1. Let the data have M cells. Each cell i in the population of M cells has a time

series x
(i)
1 , . . . , x

(i)
j , . . . , x

(i)
N of quantity x and a time series y

(i)
1 , . . . , y

(i)
j , . . . , y

(i)
N

of quantity y. Let both time series have a sampling interval of ∆t.

2. The deviation from the population mean for each time series is computed.

This population mean is calculated over replicates at each time point. The

caveat of this calculation is that the signals must be out-of-phase, and I

ensure this by generating synthetic signals with a random phase. Otherwise,

the underlying signal will be subtracted from all time series and the cross-

correlation of noise will be computed — this is undesired.

δx
(i)
t = x

(i)
t −

1

M

∑
j

x
(j)
t (2.13)

δy
(i)
t = y

(i)
t −

1

M

∑
j

y
(j)
t (2.14)

3. Based on Kiviet et al. (2014), the cross-covariance of the two time series x

and y at a time lag of r∆t, is thus given by:

C(i)
xy (r∆t) =


1

N−r

∑N−r
t=1 δx

(i)
t · δy

(i)
t+r if r ≥ 0

C
(i)
yx (−r∆t) if r < 0

(2.15)
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4. C
(i)
xx(0) and C

(i)
yy (0) thus give the variances of x and y. The cross-correlation

is thus given, with normalising by the standard deviation, by:

R(i)
xy(r∆t) =

C
(i)
xy (r∆t)√

C
(i)
xx(0)C

(i)
yy (0)

(2.16)

The autocorrelation of a time series x is thus the cross-correlation of the time

series with itself, i.e. R
(i)
xx(r∆t).

2.3.6 Generation of synthetic oscillatory data

To understand the effect of the shape and noise properties present in biological

time series on the cross-correlation function, I emulated such time series by

generating synthetic time series using the harmonic (sinusoid) and FitzHugh-

Nagumo oscillators (FitzHugh, 1961).

The harmonic oscillator y(t) is defined as the solution of:

d 2y

dt2
= −ω2y (2.17)

where the sole parameter ω represents the angular frequency.

The FitzHugh-Nagumo oscillator v(t) is defined as a solution of the system:

d v

dt
= v − v3

3
− w + RIext

τ
dw

dt
= v + a− bw

(2.18)

where RIext, τ , a, and b are constant parameters to be determined.
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In addition, I emulated noise by generating Gaussian and Gillespie noise.

Gaussian noise was generated by randomly drawing samples from the normal

distribution N (0, σ2). Here, σ denotes the standard deviation of the distribution

and thus controls the size of the noise.

Gillespie noise emulates noise from biological systems. Gillespie noise was gener-

ated using the direct method of the Gillespie algorithm (Gillespie, 1977) on the

birth-death process model (Appendix A.4).

The birth-death process is a simple stochastic model used for the modelling of

gene expression. The model describes a species that is produced at a linear birth

rate k0 and destroyed at a linear death rate d0, and is defined by the system of

equations Eq. 2.19:

R1 : ∅ k0−−→ P

R2 : P
d0−−→ ∅

(2.19)

To produce Gillespie noise, a stochastic simulation employing the direct method

of the Gillespie algorithm was performed on the birth-death process model with

defined k0 and d0 parameters. The final time was defined in such a way that allows

the trajectory of the amount of P over time to reach a steady state (Fig. 4.20b).

This time varied depending on the k0 and d0 values, but the final time of 1500

was chosen as it was long enough to have the trajectory reach steady state for

the k0 and d0 values used in this study.

The latter half of the trajectory was taken and then put on a grid with 1000

regularly-spaced time points, equal to the number of time points for the synthetic

oscillators (harmonic and FitzHugh-Nagumo). The time series was then normal-

ised by subtracting the mean (k0/d0) and then dividing by
√

1/d0 to create a time
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series representing Gillespie noise with mean 0 and standard deviation
√
k0. This

Gillespie noise thus has a standard deviation of noise amplitude A =
√
k0/d0 and

noise timescale τ = 1/d0 — in other words, the rate parameters of the birth-death

process control the noise properties of this Gillespie noise.

2.3.7 Signal-to-noise ratio

To evaluate the quality of oscillatory time series in a dataset and to indirectly

measure the amplitude of the oscillations, I computed a signal-to-noise ratio

for each time series. Assuming a constant noise introduced by the combina-

tion of intrinsic noise (stochasticity in biochemical processes) and extrinsic noise

(variations introduced by measurement instruments), a low signal-to-noise ratio

suggests a low oscillation amplitude, and the reverse is true for a high signal-to-

noise ratio.

The signal-to-noise ratio can be defined as follows:

Given a time series x(t) = x(t1), x(t2), . . . , x(tN), the normalised classical period-

ogram (Fourier spectrum) is given by

P (ω) =
N

2σ2

∣∣∣∣∫ ∞

−∞
x(t)e−2πitdt

∣∣∣∣ , (2.20)

where N is the number of time points in x and σ2 is the sample variance of x.

The periodogram P is defined as a function of the angular frequency ω.

A critical frequency ωc is then defined to divide signal and noise — that is, very

high-frequency components of the periodogram correspond to noise and lower-

frequency components correspond to the meaningful oscillations.
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The signal to noise ratio rs/n (Fig. 2.5) is thus defined as

rs/n =
s

n
(2.21)

where the signal s is defined as

s =

∫ ωc

0

P (ω)dω (2.22)

and the noise n is defined as

n =

∫ ∞

ωc

P (ω)dω (2.23)

(a) (b)

Figure 2.5: (2.5a) Illustration of signal-to-noise ratio. The signal-to-noise ratio
is defined (Eqs. 2.20–2.23) as the area under the periodogram below a cut-off
frequency (yellow) divided by the area under the periodogram above a cut-
off frequency (pink). (2.5b) Histogram of signal-to-noise ratios from a sample
experiment (n = 403).

In this thesis, I define ωc = 0.018 min−1, corresponding to a period of 55 min,

because this period is smaller than the periods of all oscillations of flavin auto-

fluorescence I observed in my experiments.
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2.4 Methods related to flux balance analysis

To evaluate biosynthesis strategies in the S. cerevisiae cell, I used the ecYeast8

(H. Lu et al., 2019) genome-scale metabolic model and performed flux balance

analysis.

2.4.1 ecYeast8 formalisms

The formalisms used in ecYeast8 differ from the usual formalisms used in genome-

scale metabolic models. ecYeast8 contains four formalisms relevant to this thesis:

1. The biomass reaction is defined by having ‘pseudometabolites’ as reactants

and a biomass species as a product. These pseudometabolites include lip-

ids, proteins, carbohydrates, RNA, DNA, ions, and cofactors. This is in

contrast to BiGG genome-scale models (Norsigian et al., 2020). In these

models, biomass reactions have chemical species as reactants, and each has

a stoichiometric coefficient that is equal to the species’ abundance in units

of mmol g−1
DW.

2. The pseudometabolites are defined by ‘isa’ reactions, which group specific

chemical species into classes of metabolites (Heavner et al., 2012). These re-

actions account for how some KEGG definitions of reactions require generic

compounds and these reactions also allow flexibility of biomass definition

in different growth conditions. The isa reactions have chemical species as

reactants, each with a stoichiometric coefficient representing the species’

abundance in units of mmol g−1
DW, and a pseudometabolite as a product. In

effect, the species abundance information is shifted one reaction away from

the biomass reaction.



2.4. Methods related to flux balance analysis 74

3. The models implements SLIMEr (Sánchez et al., 2019), which Splits Lipids

Into Measurable Entities, and adds constraints on lipid classes and acyl

chain distribution. This formalism is needed because species of lipid back-

bones and acyl chain can combine to form lipids in more than a thousand

ways, and the resulting lipid species are difficult to all be represented in a

genome-scale metabolic model. SLIMEr thus introduces reactions that split

lipids into their basic components and lipid pseudoreactions to preserve the

distribution of acyl chains. As a result, the definitions of lipids are flexible.

4. GECKO (Sánchez et al., 2017) was applied to Yeast8 to produce ecYeast8.

GECKO modifies the stoichiometric matrix of a genome-scale metabolic

model to account for enzyme abundances and kinetics. Specifically, it adds

to enzyme-catalysed reactions enzyme species with a stoichiometric coeffi-

cient derived from its kcat value. The formalism also adds reactions to model

drawing enzymes from a pool. GECKO simulates an upper limit of amino

acids available for enzyme production.

2.4.2 Computing molecular weights of pseudometabolites

To compute the synthesis time for each biomass component, the mass fractions of

each biomass component must be known. These quantities are typically stored as

molecular weights in a genome-scale model. As biomass components in ecYeast8

are pseudometabolites without specified molecular weights, I computed the mass

fractions of each biomass component based on their isa reactions (Appendix B.3).

Rather than using mass fractions based on experimental studies, I used mass frac-

tions based on the model because the mass fraction of each biomass component

varies according to strain and growth rate (Elsemman et al., 2022; Nilsson &

Nielsen, 2016).
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Table 2.7 summarises the molecular weight of the pseudometabolites. The ratio

between the molecular weights are similar to the ratio between the mass of each

class of macromolecule in the yeast cell dry weight shown by Canelas et al. (2011),

thus validating my calculations.

Metabolite
Computed molecular weight
(g mol−1)

Biomass composition
at growth rate 0.375 h−1

(g kg−1
DW)

Protein 504.37 505
Carbohydrate 350.37 237
RNA 64.04 105
Lipid 31.57 57
Cofactors 4.83
DNA 3.90 5
Ions 2.48

Total 961.57

Table 2.7: Computed molecular weights of bulk metabolites in ecYeast8, compared
to experimentally recorded biomass composition by Canelas et al. (2011).

Adding together molecular weights of pseudometabolites gave a molecular weight

of the biomass pseudometabolite of 961.57 g mol−1, close to the 966 g mol−1 com-

puted by Takhaveev et al. (2023) from a different genome-scale model. In theory,

this number should be 1000 g mol−1 because the stoichiometric coefficients of

the species that form biomass components are expressed in terms of mmol g−1
DW

(Palsson, 2015; Thiele & Palsson, 2010), but the deviation from 1000 could

be explained by the SLIMEr formalism. In addition, the sum of stoichiometric

coefficients is not always verified in genome-scale models (Chan et al., 2017).



Chapter 3

Microfluidics and fluorescence

microscopy for cellular metabolic

cycles

Few published studies have investigated the YMC in cells isolated from each

other (Baumgartner et al., 2018; Özsezen et al., 2019; Papagiannakis et al., 2017;

Silverman et al., 2010). Most studies instead have examined the YMC from a

population of cells in a chemostat (Amponsah et al., 2021; Causton et al., 2015;

Mellor, 2016; D. B. Murray et al., 2011; J. S. O’Neill et al., 2020; Tu et al., 2005,

2007). However, such chemostat-based studies are unable to account for cell-to-

cell heterogeneity. Furthermore, in such conditions, cell density and environmental

conditions are far removed from the natural habitat of budding yeast.

To reconcile the evidence about the characteristics of the yeast metabolic cycle

(YMC) from single-cell and chemostat experiments, I sought to use a single-

cell experimental platform to address whether cellular metabolic cycles confirm

chemostat-based studies.

In this chapter, I use single-cell microfluidics to physically separate budding yeast

cells. In these experiments, I use fluorescence microscopy to monitor the yeast

metabolic cycle and the cell division cycle.

76
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Specifically, I aim to evaluate these hypotheses:

1. Yeast cells independently generate yeast metabolic cycles. Each cell gener-

ates the metabolic cycle autonomously of other cellular oscillators, but the

metabolic cycle can phase-lock the cell division cycle.

2. The yeast metabolic cycle is retained in different nutrient and genetic

perturbations, but characteristics of the cycle change in response.

3. Flavin autofluorescence of single yeast cells recapitulate oscillations in dis-

solved oxygen in the chemostat. If there are discrepancies between these

two manifestations of the yeast metabolic cycle, they may be explained

by individual cells continuing to generate the metabolic cycle but without

synchrony between cells.

In this chapter, I show that metabolic cycles are generated autonomously and are

coupled to the cell division cycle in permissive conditions, confirming previous

single-cell studies (Özsezen et al., 2019; Papagiannakis et al., 2017). To decouple

the metabolic and cell division oscillators, confirming that the metabolic oscillator

is independently and autonomously generated, I used fast nutrient switching to

induce starvation. I further show that the metabolic cycle is robust across nutrient

and genetic perturbations, but with changes to its oscillatory parameters. Finally,

to address whether single-cell metabolic cycles confirm findings from chemostat-

based studies, I emulated situations known to affect dissolved-oxygen traces.

These situations include potassium deficiency and deletions of genes with roles in

metabolism and biological timekeeping.
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3.1 Coupled oscillations in permissive conditions

To show that metabolic cycles are generated autonomously and are coupled

to the cell division cycle, I replicated the single-cell flavin oscillations observed

by Baumgartner et al. (2018), using prototrophic FY4 cells engineered with an

HTB2::mCherry insertion. Replicating results from a previous flavin-based micro-

fluidics study is important to confirm that my use of ALCATRAS (Crane et al.,

2014) monitored the yeast metabolic cycle, especially given that the microfluidics

set-up differed from previous studies (Baumgartner et al., 2018; Papagiannakis

et al., 2017).

The HTB2::mCherry insertion allows monitoring phases of the cell division cycle

through quantifying the intensity of the fluorescence of the inserted protein over

time (Garmendia-Torres et al., 2018) (Fig. 3.1), while also allowing monitoring

flavin fluorescence by avoiding the overlap of flavin and GFP emission spectra.

Figure 3.1: (A) Engineering a fluorescent protein cassette fused to HTB2 (B)
allows the identification of phases of the cell division cycle through monitoring
changes in fluorescence of the fluorescent protein. Adapted from Garmendia-
Torres et al. (2018).
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Fig. 3.2 shows that oscillations in flavin fluorescence peak when a bud forms

shortly before G2/M, as evidenced by prototrophic FY4 HTB2::mCherry cells

grown in minimal medium supplemented with 20 g L−1 glucose. This figure also

shows that in some cases, a metabolic oscillation occurred without cell division

cycle progression or bud formation. Such cases, also revealed by Papagiannakis

et al. (2017) via cycles of NAD(P)H fluorescence, confirmed that the metabolic

cycle is generated autonomously from the cell division cycle.

⋆

Figure 3.2: Flavin fluorescence (blue, solid lines) and histone 2B (orange, dotted
lines) levels in a single, representative FY4 HTB2::mCherry cell grown in 20 g L−1

glucose. Vertical lines (black, dashed) indicate budding events. Star (⋆) indicates
a flavin oscillation without a corresponding cell division cycle.

As observed, oxidation of flavin upon budding was expected for these reasons:

1. Flavin fluorescence peaks (becomes most oxidised) and NAD(P)H fluores-

cence peaks (becomes most reduced) at the same time in chemostat cultures

(D. B. Murray et al., 2011).

2. NAD(P)H is in the reduced form when buds form (Papagiannakis et al.,

2017).

3. The flavoprotein lipoamide dehydrogenase, coded by the gene LPD1, is in

redox equilibrium with NAD(P)H (Siano & Mutharasan, 1989).



3.1. Coupled oscillations in permissive conditions 80

To quantify the period of the oscillators, I combined time series analysis methods.

Fig. 3.3 shows that flavin fluorescence oscillated at a period of approximately

90 min, based on the mean Fourier spectrum and median autocorrelation function.

Figs. 3.3b and 3.3d additionally show that the cell division cycle proceeded

at the same period, as evidenced by the autocorrelation function of mCherry.

The duration of the cell division cycles agrees with previously reported values

(Herskowitz, 1988).

To visualise the relationship between the metabolic cycle and the cell division

cycle, Fig. 3.4 shows that budding events synchronise with peaks in fluorescence

and that the cell division cycle varies between cells, with most just under 2 h,

agreeing with Fig. 3.3b (inset). The oscillatory shape of the median flavin fluor-

escence time series when aligned to the first budding event (Fig. 3.4b) further

confirms the synchrony between the metabolic cycle and budding events.

Finally, to quantify the relationship between the metabolic cycle and the cell

division cycle, I computed the cross-correlation function between the flavin and

mCherry signals across the population (Fig. 3.4c). The flavin signal peaks, on

average, precede the mCherry signal peaks by 5 min, as evidenced by the location

of the peak of the cross-correlation function that is closest to the vertical axis.

The cross-correlation function thus demonstrates the coincidence between peaks

of flavin oscillations and mitosis.
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Figure 3.3: (3.3a, 3.3c) Mean Fourier spectrum of flavin fluorescence time series
across cells. (3.3b, 3.3d) Median autocorrelation functions of flavin fluorescence
(blue) and histone 2B levels (orange) time series, along with (insets) the periods
of each oscillator across cells as determined by the frequency with the greatest
power in each signal’s Fourier spectrum. Data are from FY4 HTB2::mCherry cells
under 20 g L−1 glucose. Two experiment repeats shown: (3.3a)–(3.3b) are from the
first repeat, and (3.3c)–(3.3d) are from the second repeat.
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Figure 3.4: (3.4a) Heatmap showing the flavin fluorescence (pixels on a red-blue
scale) and budding events (black pixels) of each cell over time. Signals are aligned
by the first budding event. (3.4b) Median flavin fluorescence signal across cells,
aligned to first budding event (two repeats: n1 = 361, n2 = 144). (3.4c) Median
cross-correlation function between flavin and histone 2B signals (two repeats:
n1 = 392, n2 = 170). Data are from FY4 HTB2::mCherry cells in 20 g L−1 glucose.
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3.2 Decoupling between the metabolic and cell divi-

sion cycles

To provide additional evidence that cells generate metabolic oscillations autonom-

ously of the cell division cycle, I created a condition in which cells did not

undergo cell division. Specifically, I did so by inducing starvation: I cultured FY4

and HTB2::mCherry cells in 7.5 g L−1 glucose for 7 h, switching them to 0 g L−1

glucose for 8 h, and then resumed 7.5 g L−1 glucose for 7 h. This abrupt induction

of starvation is similar to experiments described by Bagamery et al. (2020), which

showed that a population of genetically identical budding yeast cells, upon glucose

starvation, formed two sub-populations that had different cellular physiology.

Fig. 3.5 shows that when cells were in high glucose, metabolic oscillations were

asynchronous, consistent with Section 3.1, Papagiannakis et al. (2017), and Baumgart-

ner et al. (2018). When cells grown in high glucose were abruptly starved of

glucose, the proportion of rhythmic cells dropped (87% to 12%, see Table 3.1);

among the rhythmic cells, flavin oscillations reset their phase and exhibited lower

amplitudes.

Fig. 3.6 further shows that during starvation, growth rate dropped and budding

events were sparse. The partial, rather than full, recovery of growth rate after

starvation may be explained by accumulated phototoxicity over the course of

the experiment generated by fluorescence imaging, with similar patterns across

all experiments. Alternatively, the partial recovery of growth rate could also be

explained by a memory of glucose starvation. In addition, the lower cumulat-

ive number of budding events in the HTB2::mCherry strain, consistent across

all experiments, may be explained by the increased phototoxicity generated by

mCherry imaging in five z-slices (Methods Section 2.1.2).
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(a)

high glucose starvation high glucose

(b)

Figure 3.5: (3.5a) Flavin fluorescence (blue, solid lines) and histone 2B (orange,
dotted lines) levels in a single, representative FY4 HTB2::mCherry cell. Vertical
lines (black, dashed) indicate budding events. Shading (yellow) indicates glucose
starvation. (3.5b) Heatmap showing the flavin fluorescence (pixels on a red-blue
scale) and budding events (black pixels) of each cell. Data are from FY4 and
HTB2::mCherry cells, subject to 7.5 g L−1 glucose for 7 h before being abruptly
switched to 0 g L−1 glucose for 8 h and then resumed to 7.5 g L−1 glucose for 7 h.
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(a) (b)

Figure 3.6: (3.6a) Mean growth rate, derived from changes in the sum of estimated
parent cell and bud volumes (shading: 95% confidence intervals) and (3.6b) mean
cumulative number of budding events per cell (shading: confidence intervals from
bootstrapping, n = 30) of FY4 (blue) and HTB2::mCherry (orange) strains over
time during the glucose-starvation experiment. Vertical lines (red) show changes
in the nutrient medium.

The results show that metabolic oscillations can be generated when the cell

division cycle is halted, providing strong evidence that the metabolic cycle is

generated autonomously and independently of the cell division cycle. In addition,

the results show that each cell can individually reset the phase of its metabolic

cycle in response to abrupt changes in environmental conditions. Similar phe-

nomena have been observed upon bulk addition of carbon sources (Krishna &

Laxman, 2018; Kuang et al., 2017).

Importantly, the results also suggest that diffusion of signalling chemicals between

cells is not required for generation of metabolic cycles. To prove this assertion,

a bulk-culture experiment, such as from a turbidostat or chemostat, should be

performed as a control. However, interpreting my single-cell microfluidics results

in conjunction with reports from analogous chemostat-based studies (Tu et al.,

2005) should still give strong evidence in support of the lack of requirement for

cell-to-cell signalling.
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The PDMS that forms the microfluidic devices may additionally affect results

because small, hydrophobic molecules are known to be absorbed by (Toepke

& Beebe, 2006) and adsorb onto the surface of (N. Li et al., 2009) PDMS.

Though, the PDMS in my experiments has been treated to reduce absorption

and adsorption (Crane et al., 2014). Additionally, Krishna and Laxman (2018)

propose that acetyl-CoA and NADPH may serve as signalling chemicals for the

metabolic cycles. Therefore, if absorption and adsorption still occur in my micro-

fluidic devices, these processes would remove such signalling chemicals, further

eliminating the possibility that signalling chemicals are required for generation of

metabolic cycles.

To show that my microfluidics set-up creates fluid flow in chambers that would

flush any signalling chemicals away from cells, making cell-to-cell communication

impossible, Fig. 3.7 shows that there is no gradient of response along the direc-

tion of fluid flow. Specifically, there is no significant correlation between spatial

position and the mean intensity of the raw flavin signal (x-axis: ρ = −0.11,

p = 0.10, y-axis: ρ = −0.0047, p = 0.95). Additionally, there is also no significant

correlation between spatial position and the period of flavin oscillations (x-axis:

ρ = −0.063, p = 0.44, y-axis: ρ = 0.016, p = 0.85).

To further demonstrate that fluid flow in my microfluidic devices eliminates cell-

to-cell signalling, further experiments can collect ‘spent medium’, i.e. nutrient me-

dium that has passed through a chamber that contains cells. This spent medium

can then be filtered and used as input nutrient media for a repeat experiment.

Such an experiment would show that no signalling molecule that can synchronise

metabolic cycles are in the spent medium.
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(a)

(b)

Figure 3.7: Relationship between the spatial (X, Y) position of trap and (3.7b)
the mean raw flavin signal across all time points, and (3.7b) the period of flavin
oscillation (first peak of autocorrelation function), for each parent cell, during
glucose starvation. Media flow is along the X axis.

Combined with results from the previous section, my data suggest that the

metabolic cycle responds to external conditions and allows the cell division cycle

to be initiated during a specific phase of the metabolic cycle, if conditions are

favourable for growth.
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If the metabolic cycle gates initiation of the early and late cell division cycle

(Özsezen et al., 2019), then a condition that creates unfavourable conditions for

cell division should lead to each cell progressing through its cell division cycle until

its next gap phase, before halting its cell division cycle. Depending on which phase

in the cell division cycle the cell happens to be in upon starvation, this next gap

phase can either be G1 or G2/M. To test this implication, Fig. 3.8 shows that

cells may remain in G1 during glucose starvation (Fig. 3.8a), as evidenced by

low mCherry intensity, or in G2/M (Fig. 3.8b), as evidenced by high mCherry

intensity.

(a)

(b)

Figure 3.8: Flavin fluorescence (blue, solid lines) and histone 2B (orange, dotted
lines) levels in two sample FY4 HTB2::mCherry cells in the glucose starvation
experiment. Vertical lines (black, dashed) indicates budding events. Shading
(yellow) indicate glucose starvation. (3.8a) is an example of a cell with a low
intensity of mCherry during starvation, while (3.8b) is an example with a high
intensity of mCherry. The flavin and mCherry time series were normalised to give
a mean of 0 and standard deviation of 1 so that they can be plotted on the same
vertical axes, but the high-pass Butterworth filter was not applied.
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Extending this investigation across a population of cells, Fig. 3.9b shows that

the distribution of mCherry intensity becomes broader during starvation before

resuming to a distribution resembling the initial condition upon restoration of

glucose. This observation can be explained by a larger proportion of cells in G2/M,

giving high mCherry intensity, in contrast to the usually short time cells spend

in G2/M relative to the rest of the cell division cycle (Fig. 3.1). In contrast, Fig.

3.9a suggests that during starvation, the distribution of flavin intensity became

narrower. In addition, the figure suggests that cells retain memory of starvation

— in other words, whether each cell has encountered starvation before influences

the cell’s metabolic cycle — as evidenced by how the flavin signals after starvation

were, overall, higher than before starvation.

(a) (b)

(c) (d)

Figure 3.9: Distributions of (3.9a) flavin and (3.9b) mCherry fluorescence over
time, for the glucose-starvation experiment. Vertical lines (red, dashed), indicate
times of medium changes. As a control, distributions of (3.9c) flavin and (3.9d)
mCherry fluorescence over time for the high glucose (20 g L−1) experiment are
also shown. Raw time series were used to calculate the distributions.
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3.3 Metabolic cycles in different genetic backgrounds

To show that the metabolic cycle is robust, I monitored flavin autofluorescence

signals from the auxotrophic BY4741 strain. Cells of this strain were grown in

minimal medium supplemented with uracil and the amino acids required for this

strain to grow, in addition to 10 g L−1 glucose as the carbon source. Showing that

metabolic cycles occur in an auxotroph is important because it shows that many

cellular aspects must be impaired for the cycle to disappear, thus suggesting

that the metabolic cycle is an intrinsic property of budding yeast. Similar to

FY4 HTB2::mCherry cells, BY4741 cells showed robust, consistent oscillations in

flavin fluorescence that peak upon budding (Fig. 3.10), although metabolic cycles

have a period of ≈75 min in this case. The shorter period may be explained by

a lack of burden caused by a lack of an mCherry insertion, and by nutritional

supplements.

FY4 and BY4741 both derive from the S288c background strain. To show that the

metabolic cycle is generated from a budding yeast strain other than S288c back-

ground strains, I performed a similar experiment with the prototrophic CEN.PK

strain grown in minimal medium. Showing that metabolic cycles additionally

occur in a different genetic background is important to emphasise that the cycles

are intrinsic to budding yeast. CEN.PK is an important background to consider

because it harbours genetic differences relative to S288c that results in physiolo-

gical differences, including biotin prototrophy and malate metabolism (Nijkamp et

al., 2012). Furthermore, CEN.PK has greater mitochondrial stability and a better

gene regulatory response to levels of oxygen, owing to the insertion mutation that
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Figure 3.10: (3.10a) Mean Fourier spectrum of flavin fluorescence time series
across cells. (3.10b) Median autocorrelation function of flavin fluorescence time
series, along with (inset) the periods across cells as determined by the frequency
with the greatest power in each signal’s Fourier spectrum. (3.10c) Heatmap
showing the flavin fluorescence (pixels on a red-blue scale) and budding events
(black pixels) of each cell. Signals are aligned by the first budding event. (3.10d)
Median flavin fluorescence signal across cells, aligned to first budding event. Data
are from BY4741 cells in 10 g L−1 glucose.
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deactivates the HAP1 gene in S288c (Gaisne et al., 1999). Fig. 3.11 suggests that

CEN.PK113-7D cells exhibited ≈90 min flavin oscillations that were synchronised

with budding events, similar to FY4 cells, thus further confirming the robustness

of the metabolic cycle across genetic backgrounds.
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Figure 3.11: (3.11a) Mean Fourier spectrum of flavin fluorescence across cells.
(3.11b) Median autocorrelation function of flavin fluorescence time series, along
with (inset) the periods across cells as determined by the frequency with
the greatest power in each signal’s Fourier spectrum. (3.11c) Median flavin
fluorescence signal across cells, aligned to first budding event. Data are from
CEN.PK113-7D cells in 10 g L−1 glucose.
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3.4 Metabolic cycles in different carbon sources

To show that the metabolic cycle responds to nutrient conditions and, accord-

ingly, adjusts the cell’s metabolism and cell division cycle, I cultured cells in

pyruvate and in a growth-limiting glucose concentration. These experiments are

important as they confirm conclusions about varying nutrient conditions made

by Papagiannakis et al. (2017), but using flavin autofluorescence. Specifically,

pyruvate provided an example of a non-fermentable carbon source to test whether

the switch from fermentative to respiratory metabolism affected the metabolic

cycle. Additionally, a growth-limiting glucose concentration emulated low-glucose

concentrations in a chemostat and was thus used to test whether long YMCs

observed in such conditions can be replicated in a microfluidics platform.

Fig. 3.12 shows that FY4 HTB2::mCherry cells had longer metabolic cycles and

cell division cycles (approximately 4 h) when grown in minimal media supple-

mented with 20 g L−1 pyruvate, compared to growth in high glucose. In addition,

fewer (42%, see Table 3.1) cells exhibited metabolic cycles than in high-glucose

conditions (87%). Furthermore, the synchrony between the metabolic cycle and

cell division cycle remained, but with a longer lag (60 min) of the mCherry signal

peak with respect to the flavin signal peak (Fig. 3.12c). Fig. 3.12a shows that the

longer cell division cycles were because of longer G1 phases but unchanged S/M

phases, as evidenced by the longer flat regions of the mCherry signal.
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Figure 3.12: (3.12a) Flavin fluorescence (blue, solid lines) and histone 2B (orange,
dotted lines) levels in a single, representative FY4 HTB2::mCherry cell grown in
20 g L−1 pyruvate. Vertical lines (black, dashed) indicate budding events. (3.12b)
Median autocorrelation functions of flavin fluorescence (blue) and histone 2B
levels (orange) time series, along with (inset) the periods of each oscillator across
cells as determined by the frequency with the greatest power in each signal’s
Fourier spectrum. (3.12c) Median cross-correlation function between flavin and
histone 2B signals. Data are from FY4 HTB2::mCherry cells in 20 g L−1 pyruvate.
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Fig. 3.13 shows that FY4 HTB2::mCherry cells had longer metabolic cycles when

grown in minimal media supplemented with 0.010 g L−1 glucose.
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Figure 3.13: (3.13a) Flavin fluorescence (blue, solid lines) and histone 2B (orange,
dotted lines) levels in a single, representative FY4 HTB2::mCherry cell grown in
0.010 g L−1 glucose. Vertical lines (black, dashed) indicate budding events. (3.13b)
Median autocorrelation functions of flavin fluorescence (blue) and histone 2B
levels (orange) time series, along with (inset) the periods of each oscillator across
cells as determined by the frequency with the greatest power in each signal’s
Fourier spectrum. Data are from FY4 HTB2::mCherry cells in 0.010 g L−1 glucose.
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Additionally, Fig. 3.14 shows that the growth rate and the rate of bud formation

of cells on limiting glucose was lower than on high glucose (20 g L−1).

(a) (b)

(c) (d)

Figure 3.14: Mean growth rate, derived from changes in the sum of estimated
parent cell and bud volumes (shading: 95% confidence intervals) of FY4 (blue)
and HTB2::mCherry (orange) strains over time, for (3.14a) the glucose-limiting
condition (0.010 g L−1) and (3.14b) the high glucose condition (20 g L−1). Simil-
arly, the mean cumulative number of budding events per cell (shading: confidence
intervals from bootstrapping, n = 30), of the same strains for (3.14c) the glucose-
limiting condition and (3.14d) the high glucose condition.

Furthermore, Fig. 3.15 shows that the amplitude of the flavin oscillations in this

glucose-limiting condition was low relative to other conditions, as evidenced by

the lower signal-to-noise ratios (two-sided Kolmogorov-Smirnov test: low-glucose

vs pyruvate p = 1.6 × 10−82, low-glucose vs high-glucose p = 1.9 × 10−171). The

low quality of signals was further supported by the low proportion (12%, see

Table 3.1) of cells manually scored as rhythmic.
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Figure 3.15: Distributions of signal-to-noise ratios of flavin signals from cells
in (yellow) 0.010 g L−1 glucose, (blue) 20 g L−1 pyruvate, and (orange) 20 g L−1

glucose. Vertical axis shows probability density, computed by dividing the number
of cells in each bin by the total number of cells and then by the bin width.

Finally, Fig. 3.13b suggests that measurements of the metabolic cycle and the

cell division cycle lost synchrony in limiting glucose. This was evidenced by an

approximately 2.5 h to 3 h average metabolic cycle, though not robust, but an

absence of consistent oscillations in mCherry intensity. This decoupling can be

explained by a lack of cell division cycle events.

3.5 Metabolic cycles persist in potassium-deficient me-

dia

To address whether single-cell flavin traces from microfluidic experiments re-

capitulate dissolved-oxygen yeast metabolic cycles in chemostats, I replicated

conditions of chemostat-based studies in which nutrient or genetic perturba-

tions severely affected the metabolic cycle. These nutrient conditions included

potassium deficiency and deletion strains included zwf1∆ and tsa1∆ tsa2∆. Rep-

licating conditions of chemostat-based studies is important in showing that the
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single-cell metabolic cycle and the chemostat metabolic cycle are the same cycle,

or to prove otherwise. Chemostat experiments obscure the behaviour of individual

cells, and single-cell microfluidics experiments can provide a bottom-up explan-

ation of high-level observations of the metabolic cycle in the chemostat. Such

single-cell experiments could address, for example, whether the cellular behaviour

of the yeast metabolic cycle explains the changes in dissolved-oxygen oscillations.

To test whether potassium deficiency eliminates metabolic cycles, I treated cells

with potassium-deficient minimal medium, replacing monopotassium phosphate

(KH2PO4) in the minimal medium with an equivalent molarity of monosodium

phosphate (NaH2PO4), as described in Table 2.2, with both media supplemented

with 20 g L−1 glucose as a carbon source. J. S. O’Neill et al. (2020) suggested that,

in chemostat cultures, as potassium in the nutrient medium is gradually replaced

with sodium, the period and amplitude of dissolved-oxygen oscillations decrease

until the oscillations disappear (Fig. 3.16).

Figure 3.16: Decreasing extracellular potassium (K+) concentration shortens,
then under 1 mmol dm−3, destroys metabolic oscillations in the chemostat.
Adapted from J. S. O’Neill et al. (2020).

Fig. 3.17a shows that FY4 HTB2::mCherry cells retained synchronised metabolic

cycles and cell division cycles when cells were abruptly switched from potassium-

containing to potassium-deficient minimal medium. Such cycles were longer and

were generated less reliably (40% manually scored as oscillatory, see Table 3.1)

as in the normal growth medium (Fig. 3.17b).
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Figure 3.17: (3.17a) Flavin fluorescence (blue, solid lines) and histone 2B (orange,
dotted lines) levels in a single, representative FY4 HTB2::mCherry cell. Vertical
lines (black, dashed) indicate budding events. Shading (yellow) indicates the
potassium-deficient period. (3.17b) Median autocorrelation functions of flavin
fluorescence (blue) and histone 2B levels (orange) time series, along with (inset)
the periods of each oscillator across cells as determined by the frequency with
the greatest power in each signal’s Fourier spectrum. Data are from FY4 and
HTB2::mCherry cells; autocorrelation functions only used time points from the
potassium-deficient condition (6 h to 16 h).
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In addition, the distribution of signal-to-noise ratios of time series before potassium-

deficiency and during potassium-deficiency were identical (Fig. 3.18; two-sided

Kolmogorov-Smirnov test, p = 0.10), indicating an unchanged amplitude of flavin

signal; however, the same was not true when comparing time series during potassium-

deficiency and after potassium-deficiency (two-sided Kolmogorov-Smirnov test,

p = 4.09× 10−7).
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Figure 3.18: Distributions of signal-to-noise ratios of flavin signals from cells
before, during, and after potassium-deficiency.

In addition, to test whether potassium deficiency affected cell growth and division,

Fig. 3.19a shows that growth rates recovered soon after a sharp decrease upon

the abrupt switch to the potassium-deficient medium. This global response across

cells is suggestive of an osmotic response as a result of intracellular potassium

leaking out the cell, though the change and recovery of growth rate is slower than

the change and recovery of cell volume in response to osmotic stress reported

by Granados et al. (2017). Fig. 3.19b further shows that the rate of budding

was unaffected during potassium-deficiency, in contrast to a pause under glucose

starvation (Fig. 3.6b).
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(a) (b)

Figure 3.19: (3.19a) Mean growth rate, derived from changes in the sum of
estimated parent cell and bud volumes (shading: 95% confidence intervals) and
(3.19b) mean cumulative number of budding events per cell (shading: confidence
intervals from bootstrapping, n = 30) of FY4 (blue) and HTB2::mCherry (orange)
strains over time during the potassium-deficient experiment. Vertical lines (red)
show changes in the nutrient medium.

Finally, in contrast to glucose starvation, Fig. 3.20 suggests that potassium defi-

ciency did not affect the time each cell spent in each phase of the metabolic and

cell division cycles as they progressed through growth.

(a) (b)

Figure 3.20: Distributions of (3.20a) flavin and (3.20b) mCherry fluorescence
over time, for the potassium-deficient experiment. Vertical lines (red, dashed),
indicate times of medium changes. Raw time series were used to calculate the
distributions.
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In summary, my results show that upon switching from potassium-containing to

potassium-deficient, sodium-containing media, cells’ growth rates briefly dropped,

but soon after, some cells resumed generating metabolic cycles and dividing in

synchrony. My observations also indicate that during potassium-deficiency, the

amplitude of metabolic oscillations remained constant, as evidenced by a lack of

statistically significant changes in the signal-to-noise ratio distributions of flavin

signals. These observations contrast J. S. O’Neill et al. (2020), which showed that

in chemostats, as the potassium concentration in the medium is decreased, the

amplitude of dissolved oxygen cycles becomes smaller until the cycles disappear.

The differences between my observations and J. S. O’Neill et al. (2020) may be

explained by the different experimental set-ups: if a population of cells generates

metabolic cycles less reliably and over a broader range of periods, as revealed by

the single-cell microfluidic set-up, then the combined effect of these cells in the

chemostat can be the loss of dissolved oxygen cycles that arise from synchronous

metabolic cycles. In addition, J. S. O’Neill et al. (2020) proposed that intracellular

carbohydrate or amino acid stores are responsible for metabolic cycles. This

leads to an alternative explanation for experimental discrepancies: these stores

can be sufficient to drive metabolic oscillations during a relatively short period

of potassium-deficiency in my experiment. Furthermore, the significance of the

potassium-deficient, sodium-containing nutrient condition is highlighted by the

toxicity of sodium ions for budding yeast (Ariño et al., 2010; Casey et al., 2013;

Watcharawipas et al., 2018).
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3.6 Metabolic cycles in deletion strains

To continue the investigation of whether single-cell flavin-based metabolic cycles

recapitulate dissolved-oxygen metabolic cycles, I investigated the zwf1∆ and tsa1∆

tsa2∆ deletion strains. The investigation of deletion strains is important as they

can lead to mechanistic explanations of the YMC.

To investigate whether the zwf1∆ strain shows abolition of the metabolic cycle

in single-cell microfluidics, I used a zwf1∆ strain with the BY4741 background.

Chemostat-based studies have suggested that in the zwf1∆ strain, metabolic

cycles are abolished but with little change in growth rate (Tu et al., 2007). Cells

were pre-cultured in 20 g L−1 pyruvate over 48 h and then cultured in 10 g L−1

glucose in the microfluidic device because higher glucose concentrations disfavour

growth in this strain. As the strain had an auxotrophic background, the required

nutrient supplements were also added. Fig. 3.21 shows that the zwf1∆ cells showed

oscillations of approximately 3 h, but with low robustness (56% manually scored as

oscillatory, see Table 3.1) and a wide distribution of signal-to-noise ratios, while

the reference BY4741 strain showed robust flavin oscillations of approximately

1.5 h. These results conflict with the results from the chemostat-based study (Tu

et al., 2007) that suggested that metabolic cycles are abolished in this strain.

To investigate whether the tsa1∆ tsa2∆ strain shows metabolic oscillations of a

different waveform in single-cell microfluidics, I used a tsa1∆ tsa2∆ strain with the

BY4742 background. Chemostat-based studies suggest that in the tsa1∆ tsa2∆

strain, metabolic cycles are shorter and exhibit an M-shaped dissolved oscillation

trace due to an additional dip of oxygen consumption in the reductive-charging

phase (Causton et al., 2015). To be consistent with zwf1∆, cells were pre-cultured

and cultured in the same conditions, but with the appropriate supplements for

the auxotrophy of BY4742.
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Figure 3.21: (3.21a) Flavin fluorescence (blue, solid lines) levels in a single,
representative zwf1∆ cell. Vertical lines (black, dashed) indicate budding events.
(3.21b) Mean Fourier spectrum of flavin fluorescence across cells. (3.21c) Median
autocorrelation function of flavin fluorescence time series, along with (inset) the
periods across cells as determined by the frequency with the greatest power in
each signal’s Fourier spectrum. (3.21d) Median flavin fluorescence signal across
cells, aligned to first budding event. (3.21e) Distribution of signal-to-noise ratios
of flavin signals from cells. Data are from zwf1∆ (BY4741) cells in 10 g L−1 glucose.
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Fig. 3.22 suggests that the metabolic cycles generated from the auxotrophic tsa1∆

tsa2∆ strain were not consistent. Supporting this is the fact that the fraction of

rhythmic cells fell from 83% in the parent strain to 32% in the tsa1∆ tsa2∆

strain (Table 3.1), though rhythmic cells exhibited oscillations with low noise, as

evidenced by relatively high signal-to-noise ratios (median = 2.2). Additionally,

the Fourier spectra (Fig. 3.22b) suggest that oscillations of around 2.5 h and 4 h

were prominent in the population. These two prominent periods were obscured

by the median fluorescence signal aligned by first budding event (Fig. 3.22d),

which merely suggests that a 3 h oscillation was prominent in the population,

and by the median autocorrelation function (Fig. 3.22c), which suggests that the

oscillations were not at a consistent frequency across the population, in contrast

to the BY4742 wild-type that showed robust 1.5 h oscillations.

Taken together, the flavin-based metabolic cycles from single-cell experiments

and the dissolved-oxygen cycles from chemostat experiments with zwf1∆ and

tsa1∆ tsa2∆ exhibited discrepancies. These discrepancies may be explained by

the physical separation between cells in the microfluidic device and the lack

of a glucose starvation treatment that is usually performed in chemostat-based

experiments. For zwf1∆, the population of cells in the single-cell microfluidic

device shows a heterogeneity of flavin signals, unlike the more homogeneous parent

BY4741 strain. Therefore, the absence of dissolved oxygen cycles observed in the

chemostat from this strain, as reported by Tu et al. (2007), may be the combined

effect of metabolic cycles of varies periods that are asynchronous due to the loss

of ability to reset phase in response to the glucose starvation at the beginning of

the chemostat experiment. For tsa1∆ tsa2∆, the population of cells in the single-

cell microfluidic device exhibits flavin signals that mostly fall under two main

periods. Therefore, the M-shaped oxygen cycles observed in the chemostat from
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Figure 3.22: (3.22a) Flavin fluorescence (blue, solid lines) levels in a single,
representative tsa1∆ tsa2∆ cell. Vertical lines (black, dashed) indicate budding
events. (3.22b) Overlaid Fourier spectra of flavin fluorescence across cells (n =
212). (3.22c) Median autocorrelation function of flavin fluorescence time series,
along with (inset) the periods across cells as determined by the frequency
with the greatest power in each signal’s Fourier spectrum. (3.22d) Median flavin
fluorescence signal across cells, aligned to first budding event. (3.22e) Distribution
of signal-to-noise ratios of flavin signals from cells. Data are from tsa1∆ tsa2∆
(BY4742) cells in 10 g L−1 glucose.
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this strain, as reported by Causton et al. (2015), may result from the additive

effect of two sub-populations of cells that each have a different natural metabolic

cycle period, and still retain the ability to reset phase in response to the glucose

starvation at the beginning of the chemostat experiment.

3.7 Discussion

3.7.1 Summary of results

To summarise the results in this chapter, Table 3.1 shows summary statistics

pertaining to the period of metabolic oscillations for each experiment discussed.

3.7.2 Interpretation of results

This chapter confirms the presence of flavin-based single-cell metabolic cycles,

and further confirms that they are autonomous and may gate the cell division

cycle across nutrient and genetic perturbations.

My work differs from Baumgartner et al. (2018), a similar single-cell microfluidics

study of flavin-based metabolic cycles, on several aspects. In Baumgartner et al.

(2018), a row of several cells can be physically touching within a cell trap; my

work uses a trap design that can separate single cells with more physical distance

and allow more media flow around the cells (Crane et al., 2014), and this design

better minimises cell-to-cell communication. Furthermore, the two cell division

cycle reporters that Baumgartner et al. (2018) used must be in separate cell

strains and can each only indicate single events — Whi5p localisation indicating

START and Nhp6a localisation indicating separation between parent and progeny

cell nuclei. In contrast, the Htb2p reporter in this chapter can alone indicate

three cell division cycle events: the G1-S transition, the S-G2/M transition, and



3.7. Discussion 108

Experiment
& section
referenced

Number of time
series

Number of
oscillatory time
series

Mean estimated
period & stand-
ard error of the
mean [min]

Notes

High glucose,
repeat 1 (3.1)

190 166 (87.4%) 115.7 ± 3.6

High glucose,
repeat 2 (3.1)

52 42 (80.8%) 111.9 ± 7.9 †

Glucose starva-
tion (3.2)

212 26 (12.3%) 117.3 ± 10.2 † Only time
points during
starvation used.

BY4741 (3.3) 298 246 (82.6%) 92.4 ± 2.6 ∗
CEN.PK (3.3) 29 6 (20.7%) 118.3 ± 24.7 †
Pyruvate (3.4) 360 152 (42.2%) 247.4 ± 6.2 ∗
Low glucose
(3.4)

1520 183 (12.0%) 193.6 ± 7.6 ∗

Potassium defi-
cient (3.5)

511 206 (40.3%) 132.8 ± 2.8 ∗ Only time
points during
potassium
deficiency used.

zwf1∆ (3.6) 112 63 (56.3%) 192.8 ± 7.7 ∗
tsa1∆ tsa2∆
(3.6)

212 67 (31.6%) 157.7 ± 7.7 ∗ Single value for
mean period
may not be
representative
because
population
likely contains
two dominant
periods.

Table 3.1: Summary statistics of time series of flavin oscillations for each exper-
iment. Oscillatory and non-oscillatory time series were human-labelled, and the
percentage of total time series that were labelled as oscillatory is shown. Periods
were estimated by finding the location of the first peak of the autocorrelation
function of each oscillatory time series. Two-sample independent t-tests for the
means were performed between the ‘high glucose, repeat 1’ experiment and other
experiments — ∗ indicates statistically significant differences, while † indicates
statistically insignificant differences (p = 0.05).

anaphase/cytokinesis, thus giving a more informative view of the cell division

cycle (Garmendia-Torres et al., 2018) In addition, Baumgartner et al. (2018)

and this chapter investigated different perturbations of the metabolic cycle. The

former investigated the effect of nitrogen sources and respiration-deficiency, while

my work investigated the effect of carbon sources, the effect of potassium, and
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deficiencies in redox regulation. Though, the presence of metabolic cycles in atp5∆

and cyt1∆ mutants (Baumgartner et al., 2018) and in high-glucose conditions

in this chapter support the assertion that respiration is not required for the

metabolic cycle.

My results suggest that yeast cells independently generate the metabolic cycle

which locks the cell division cycle in-phase. This conclusion was supported by the

observation that flavin cycles were asynchronous between cells and peaks coincide

with bud formation. These observations were consistent with Papagiannakis et al.

(2017) and Baumgartner et al. (2018).

Results in pyruvate additionally reveal that as the metabolic cycle lengthens, G1

lengthens but S/M stays the same length, suggesting a model in which a specific

phase of the metabolic cycle gates entry into the cell division cycle. Importantly,

metabolic cycles still occurred even when cells did not divide. This holds true for

one-off skipping of cell division and conditions in which cells pause cell division

for long periods of time.

My results additionally show that the metabolic cycle and the cell division cycle

can be decoupled, reinforcing the idea that the metabolic cycle is autonomous

from other cellular oscillators. In particular, I observed that single-cell flavin

oscillations could synchronise and reset phase in response to abrupt starvation,

while the cell division cycle was paused. This observation also suggests that

the metabolic cycle is individually generated across cells without the need of a

diffusible metabolite as proposed by Krishna and Laxman (2018). The conclusion

that the metabolic cycle is generated independently across cells is evidenced by

the continued presence of metabolic cycles during starvation even though the cells

were physically separated, with nutrient media perfused across them.
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The distributions of flavin and mCherry signals during starvation provided some

mechanistic basis for the coupling or decoupling between the two oscillators. This

observation suggests that if starvation occurs before START, the cell remains in

the G1 phase. Otherwise, the cell proceeds through the cell division cycle until it

pauses in the G2 phase. Such observations strengthen the idea that the metabolic

cycle independently gates the early (START) and the late (mitotic exit) phases of

the cell division cycle (Özsezen et al., 2019). However, the biochemical mechanism

by which the cell uses to reset the phase of its metabolic cycle remains unclear.

My observations confirm that cells adapt their metabolic cycle to nutrient condi-

tions: the metabolic cycle lengthened when cells were grown on pyruvate, while

the cycle exhibited a lengthened period and a lower amplitude when cells were

grown on low glucose. A possible explanation is that nutrient conditions that

favour respiration over fermentation — and thus slower growth rate — leads to

slower YMCs.

My results suggest discrepancies between chemostat and single-cell studies of the

metabolic cycle, in particular, with regards to potassium-deficient conditions and

the zwf1∆ and tsa1∆ tsa2∆ deletion strains. Such discrepancies warrant models

to explain the observations. Alternatively, these discrepancies may represent ad-

ditional cases in which the metabolic cycle is observed in single cells in conditions

previously thought to be unfavourable based on chemostat observations, as was

the case for metabolic cycles in high-glucose conditions.

I observed that metabolic cycles persist in potassium-deficient conditions, in con-

trast to J. S. O’Neill et al. (2020) which suggested that the oscillations disappear.

The disappearance of dissolved oxygen cycles can alternatively be explained by a

loss of synchrony in the population. However, while J. S. O’Neill et al. (2020)

gradually replaced potassium with sodium over a longer period of time, my
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experiments included an abrupt potassium depletion but over a shorter period

of time. Therefore, the carbohydrate or amino acid stores that J. S. O’Neill et

al. (2020) proposed were responsible for metabolic oscillations may still have

been sufficient to drive metabolic oscillations during potassium-deficiency in my

experiment.

I also observed that zwf1∆ exhibited metabolic cycles, though with varying amp-

litudes. This contrasts with Tu et al. (2007), which suggested that metabolic

cycles in this strain were abolished. To reconcile findings, a potential explanation

is that cells lose synchrony or the ability to reset phase, while growth is still

maintained. ZWF1 codes for glucose-6-phosphate dehydrogenase, which catalyses

the first step of the pentose phosphate pathway involving the reduction of NADP+

to produce NADPH, a key metabolite in the YMC (Nogae & Johnston, 1990).

Thus, it is expected that the zwf1∆ deletion should affect a broad range of

metabolic processes, including flavin oscillations, owing to the role of NAD(P)H

redox in the function of the most abundant flavoproteins (Gudipati et al., 2014).

However, some of the deleterious effects of zwf1∆ deletion may be compensated by

ALD6 and IDP2 as they also catalyse reactions that produce NADPH (Minard &

McAlister-Henn, 2005), therefore, explaining why growth is retained in the zwf1∆

strain.

My results additionally suggest that tsa1∆ tsa2∆ exhibits a range of metabolic

cycle frequencies. This observation can be reconciled with the M-shaped dissolved

oxygen cycles described by Causton et al. (2015) through a potential explanation:

there are at least two substantial cell populations that each produce a different

frequencies of metabolic oscillations, and the M-shaped waveform is the sum of the

effect of individual cells. TSA1 and TSA2 are paralogous genes that are involved

in redox metabolism. Specifically, these genes code for peroxiredoxins as part

of the peroxiredoxin-thioredoxin system, which functions to reduce intracellular
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reactive oxygen species (Wong et al., 2002). In addition, these genes have been

suggested to be linked to the circadian rhythm, as evidenced by an approximately

24 h oscillation in oxidation patterns (Edgar et al., 2012). Therefore, deletion of

these genes may lead to loss of regulation of timekeeping, leading to the different

oscillation frequencies.

Taken together, the discrepancies between chemostat and single-cell studies high-

light the role of sub-populations that cannot be captured in the chemostat, but

possibly in single-cell studies.

3.7.3 Study caveats and future directions

Characteristics of the single-cell metabolic cycle

Time series of NAD(P)H oscillations, especially if recorded alongside flavin in

the same cells, would strengthen the evidence that flavin autofluorescence oscilla-

tions are equivalent to the single-cell metabolic oscillations described by previous

microfluidics studies. Such data would also provide a novelty: two fluorophores

that act as read-outs of the metabolic cycle have, to my knowledge, never been

recorded from the same cell.

To explore the link between the components of flavin autofluorescence and cycling

of storage lipids as a proposed biochemical mechanism of the metabolic cycle, the

fas1∆ strain may be studied. FAS1 codes for the most abundant flavoprotein,

the beta subunit of fatty acid synthetase, which has a role in lipid metabolism

(Gudipati et al., 2014). The investigation may be strengthened with a rescue ex-

periment using lipid sources such as glycerol trihexanoate or glycerol trioctanoate.

This avenue of exploration may lead to additional insight on the biochemical basis

of the yeast metabolic cycle, which is still poorly characterised.



3.7. Discussion 113

To explore the conditions that make budding yeast cells reset their metabolic cycle

phases, future experiments may include adding carbon sources in bulk, using the

media-switching system of ALCATRAS. Such experiments could include acetate,

acetaldehyde, or ethanol (Krishna & Laxman, 2018; Kuang et al., 2017). Insights

from such experiments may lead to a broader understanding of the control of the

sequence of events in the metabolic cycle.

Chemostat vs single-cell

Additional nutrient conditions can be used to address the discrepancies between

the chemostat and single-cell microfluidics, namely, low glucose conditions and

feast-and-famine conditions.

Low glucose conditions emulate conditions in the chemostat and may lead to long

metabolic cycles, thus explaining why cycles with periods up to 14 h have been

observed in chemostats. However, the glucose concentrations in chemostats are

below the tolerance of measurement with current technologies; therefore, I propose

that the limiting concentration of 0.010 g L−1 is used. Experiments with deletion

strains can then be performed under these low-glucose conditions to investigate

whether such conditions lead to a closer equivalence between chemostat and

single-cell studies.

Feast-and-famine conditions have been modelled in chemostat cultivation of yeast

(Jones & Kompala, 1999). Further experiments can therefore use rapid media-

switching in ALCATRAS to produce regular glucose pulsing. In this type of ex-

periment, cells are fed with a glucose-limited medium for an amount of time, then

switched on to a glucose-rich medium for a short period of time (approximately

10 min), and the cycle repeats. The interval between glucose pulses can be varied

to investigate the effect of an external entraining mechanism on the system of

coupled oscillators that defines the yeast metabolic cycle. This design would be
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similar to Charvin et al. (2009), which investigated the effect of intervals of glucose

pulsing on the cell division cycle in budding yeast. A glucose pulsing experiment

can thus also lead to a mathematical model of coupled oscillations in the yeast

metabolic cycle.



Chapter 4

Analysis of oscillatory time series in

the yeast metabolic cycle

Short and noisy oscillatory time series are challenging to analyse to give usable

characteristics such as period and phase, especially because of the limited in-

formation they encode. Microfluidics experiments capture up to 5–10 periods of

metabolic cycles, so a Fourier spectrum gives period estimates at low resolution,

unless additional steps are taken, such as zero-padding the time series.

In addition, there is no standard method of analysing oscillatory time series

such as those that arise from the yeast metabolic cycle. This is evidenced by

the variety of methods previously used to analyse time series from single-cell

metabolic oscillations. Specifically, Papagiannakis et al. (2017) used a smoothing

spline to remove trends, the autocorrelation function and trough-to-trough inter-

vals to estimate periods, and a Cox proportional hazard model (Cox, 1972) to

characterise features of time series. In contrast, Baumgartner et al. (2018) used

the Savitzky-Golay filter to filter time series, used the autocorrelation function

along with both peak-to-peak intervals and trough-to-trough intervals to estimate

periods, and simple differences to quantify the synchrony between two types of

time series. Finally, Özsezen et al. (2019) used LOWESS spline fitting to remove

trends in time series.
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To characterise the properties of large sets of time series generated by microfluidics

experiments, I sought to develop a pipeline of time series analysis methods.

Here, I propose steps for the analysis of datasets of 100–1000 time series related

to the yeast metabolic cycle from single cells, using my experimental data as an

example case.

Specifically, this chapter focuses on:

1. Data cleaning: choosing data and filtering out long-term trends that may

confound analysis.

2. Visualising groups in a dataset: identifying groups within a population of

time series based on their similarities. Such a relationship may include

groupings or structures within the population of time series.

3. Detection of rhythmicity: determining whether a time series exhibits oscil-

lations.

4. Period estimation: identifying the period of a single time series.

5. Detection of synchrony: identifying whether two types of signal from the

same cell are synchronous, and to what extent.

In this chapter, I show that a high-pass Butterworth filter gives control over fre-

quencies when filtering out long-term trends. To discover structure within a data-

set, I show that UMAP, a dimension-reduction technique, and modularity clus-

tering, a community detection technique, led to similar groupings. Subsequently,

I compared three approaches to rhythmicity detection: a statistical test based on

a spectral method, model-fitting and analytically computing a periodogram, and

a simple machine learning model. To estimate the period and noise parameters

of time series, I then explored the effect of noise on the autocorrelation function

of synthetic time series. Finally, I used the cross-correlation function to detect

synchrony and to quantify the relationship between two types of oscillators.
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4.1 Analysing time series in a biological context

Previous studies have described computational pipelines that included mathem-

atical methods to analyse biological time series. Zieliński et al. (2022) described

a software pipeline (BioDare/BioDare2), catered to circadian rhythm studies, to

estimate the period and detect rhythmicity in time series. This pipeline includes

choices of methods to detrend and normalise time series, followed by a choice

of methods to estimate the period, phase, and amplitude of the time series.

Furthermore, the pipeline also includes statistical tests for the presence of an

oscillation in a time series: an implementation of the JTK CYCLE test (Hughes

et al., 2010) along with an empirical derivative (Hutchison et al., 2015).

The software BioDare2 builds upon Zieliński et al. (2014), which compared and

contrasted a set of period-estimation methods — FFT-NLLS, mFourFit, MESA,

the Enright periodogram, the Lomb-Scargle periodogram, and spectrum resampling

— to conclude with recommendations on time series analysis.

Studies of biological rhythms have used the BioDare pipeline to quantify features

of oscillations of fluorescence. These included using FFT-NLLS to calculate the

period and amplitude error of fluorescence in mouse brain sections to determ-

ine the mechanistic basis of the synchronisation of the suprachiasmatic nucleus

(Hamnett et al., 2019). Another study used linear detrending of data followed by

FFT-NLLS and spectral resampling to estimate the period and amplitude error of

delayed fluorescence of chloroplasts in Kalanchoe fedtschenkoi leaves to determine

whether phosphorylation of phosphoenolpyruvate affects robustness of circadian

rhythms (Boxall et al., 2017).
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In addition, Fulcher and Jones (2017) described a software pipeline, termed hctsa,

that computes over 7700 time series features for input time series. The resulting

feature matrix — a row for each time series and a column for each feature —

could then be used to identify sets of features that are useful to discriminate

between sets of time series or to identify clusters of time series based on their

properties. The publication then showed that hctsa could be used to distinguish

five Caenorhabditis elegans strains based on their movement patterns, and to

identify clusters in the feature space of time series of Drosophila melanogaster

movement patterns which correspond well to experimental groups. To reduce

computation time, Lubba et al. (2019) identified 22 features, termed catch22, of

hctsa that performed well in time series classification tasks based on 93 datasets

(Table A.1 in Appendix A.1).

Taken together, BioDare and hctsa serve as two examples of approaches to analyse

time series. However, these approaches overlap: the catch22 feature set, itself a

subset of hctsa, includes Fourier coefficients used in some BioDare methods. Addi-

tionally, catch22 includes and a periodicity measure based on the autocorrelation

function (Wang et al., 2007), similar to the period estimation method that will

be discussed in Section 4.5. Such overlaps in measures may mean that the use of

catch22 may reduce to a few measures equivalent to analysis using BioDare —

this implication is explored further in Section 4.4.3.
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4.2 Data cleaning: filtering out long-term trends

Biological time series often have long-term trends. In my study of the yeast

metabolic cycle, such trends include slow, global changes in flavin autofluor-

escence, which must be removed to uncover the periodic behaviour of flavin

autofluorescence that is a component of the metabolic cycle. To determine the

detrending method that is most appropriate for my data, I compared a frequency

filtering method with a sliding-window detrending method.

To demonstrate the use of a method that modifies the frequency profile of time

series to remove trends, Figs. 4.1a–4.1b show how a time series and its Fourier

spectrum changes after the application of a high-pass Butterworth filter with

a critical frequency of 2.86 × 10−3 min−1, corresponding to a period of 350 min.

Defining a signal filter offers direct control over frequencies. The critical frequency

was chosen as a reasonable upper limit of periods of the yeast metabolic cycle,

based on my observations in single-cell microfluidics experiments. Defining the

critical frequency in this way excludes the possibility of metabolic cycles that have

very long periods in favour of emphasising metabolic oscillations of an expected

frequency.

To show how sliding-window methods may adversely affect the frequency profile

of time series when used for detrending, I computed the Fourier spectrum of time

series detrended using the moving average method. Sliding-window methods are

common in detrending biological time series. For example, Cuny et al. (2022)

used a moving average: a constant, defined sliding window to smooth time series

of yeast cell mass during growth. Fig. 4.1c shows that the moving average method

introduced an artefact in the frequency spectrum near the reciprocal of the

window size and decreases the number of time points.
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(a)

(b)

(c)

Figure 4.1: (Left panels) Time series and (right panels) Fourier spectra corres-
ponding to (4.1a) a sample raw time series of flavin autofluorescence, (4.1b) the
time series processed by a high-pass Butterworth filter with a critical frequency
2.86 × 10−3 min−1, and (4.1c) the time series detrended using a moving average
(window size 30 time points). Arrow (↘) indicates artefact.
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4.3 Visualising groups in the dataset

To identify structures in datasets of time series, I implemented UMAP, a dimension-

reduction method, and modularity clustering, a graph-based clustering method.

Such data visualisation methods are important because the structures they show

may identify differences between groups that are biologically relevant — for

example, sub-populations of oscillations with similar properties. Previous efforts

in using computational methods to identify groups in a set of biological time series

include using k-means clustering to identify clusters of transcript cycling patterns

that correspond to phases of the YMC (Tu et al., 2005), development of a method

to cluster featurised multivariate time series based of videos of human motion

(Wang et al., 2007), and using signal entropy to featurise fMRI signals followed

by modularity clustering to partition the signals into brain regions (Shafiei et al.,

2019).

To demonstrate the data visualisation methods, I used time series of flavin auto-

fluorescence oscillations from one experiment with both the wild-type BY4741

strain (n = 206) and the mutant zwf1∆ strain (n = 425). These time series had

time points sampled every 5 min in the experiment, for a total of 163 time points.

I manually labelled the time series to indicate whether they were oscillatory or

not, with 142 of the 206 BY4741 time series classed as oscillatory and 224 of the

425 zwf1∆ classed as oscillatory.
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4.3.1 UMAP

UMAP (McInnes et al., 2020) is an unsupervised dimension reduction method

that can be used to visualise structure in a dataset. Specifically, UMAP aims to

find a manifold structure of the input observations and compute a low-dimensional

embedding that preserves the topological structure of the manifold. This embed-

ding thus serves as coordinates to plot the data onto a low-dimensional space.

To evaluate whether UMAP was able to discover a structure within the BY4741

& zwf1∆ dataset that corresponded to meaningful divisions, I featurised the time

series with catch22, then used UMAP to compute two-dimensional embeddings.

Fig. 4.2a demonstrates that UMAP suggested a small group of non-oscillatory

time series that differed markedly from the rest (∗ in figure), and a larger group

that was more similar to oscillatory time series (∗∗ in figure). However, the

figure also suggested that a third group of non-oscillatory time series occupied

the same region in embedding space as oscillatory time series. In addition, Fig.

4.2b demonstrates that UMAP suggested that the BY4741 time series were more

similar to each other than zwf∆ were to each other. This was evidenced by

how zwf1∆ occupied larger regions of the embedding space than BY4741. These

embeddings agreed with my observation that time series from the zwf1∆ strain

had a larger variety of shapes and oscillation quality than the BY4741 strain.

The overlaps between oscillatory and non-oscillatory time series and between

BY4741 and zwf1∆ time series in embedding space can be explained by two

factors: the characteristics of the time series themselves, or the UMAP algorithm.

To demonstrate that the characteristics of the time series contribute to their

groupings within the embedding space, Fig. 4.3 shows non-oscillatory time series

that correspond to the two regions described by Fig. 4.2a along with those that

occupy the same region of embedding space as oscillatory time series. This figure
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(a) (b)

Figure 4.2: UMAP embedding (n = 5, min dist = 0.5, d = 2, Euclidean distance
as the metric) of a dataset of time series featurised using catch22. Each node
represents a time series, coloured either by (4.2a) whether each is oscillatory or
not, human-labelled (∗ and ∗∗ indicating two groups of non-oscillatory nodes of
interest), or by (4.2b) strain (‘BY4741’ or ‘zwf1∆’).

suggests that the groups of interest were defined by the characteristics of the time

series. Specifically, Region 1 corresponds to non-oscillatory time series with very

high signal-to-noise ratios, Region 2 corresponds to non-oscillatory time series

with high signal-to-noise ratios, and Region 3 corresponds to time series with

inconsistent oscillatory behaviour. Such time series in Region 3 were labelled

non-oscillatory due to their inconsistent behaviour, but likely occupy the same

region in embedding space with oscillatory time series because they share similar

noise characteristics.

To further emphasise the role of the characteristics of the time series, Fig. 4.4

repeats the UMAP analysis, but on the first half of the time series. As the first half

of each time series is likely to have similar time series characteristics as the whole

time series, this figure provides further evidence to suggest that the characteristics

of each time series are the major determinant of each node’s position in the
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Figure 4.3: Sample non-oscillatory time series from regions of interest in UMAP
embedding space shown in Fig. 4.2. (4.3a) Non-oscillatory group (small group, ∗
in Fig. 4.2a). (4.3b) Non-oscillatory group (large group, ∗∗ in Fig. 4.2a). (4.3c)
Non-oscillatory time series that occupy the same region of embedding space as
oscillatory time series.
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(a) (b)

Figure 4.4: UMAP embedding (n = 5, min dist = 0.5, d = 2, Euclidean distance
as the metric) of a dataset of the first half of time series used in Fig. 4.2, featurised
using catch22. Each node represents a time series, coloured either by (4.4a)
whether each is oscillatory or not, human-labelled, or by (4.4b) strain (‘BY4741’
or ‘zwf1∆’).

embedding space. This conclusion is further evidenced by the continued presence

of a small group of non-oscillatory time series that differed substantially from the

rest and a larger group that was more similar to oscillatory time series (Fig. 4.4a),

similar to what is shown in Fig. 4.2a.

To improve the visualisation in Fig. 4.2, I performed a grid search of the n and

min dist UMAP hyperparameters (Appendix A.2) to find the best combination

that separates the groups of time series. Fig. 4.5 suggests that 50 ≤ n ≤ 150

and 0.25 ≤ min dist ≤ 1 resulted in a good separation between the BY4741

and zwf1∆ nodes. However, in this region, the two groups of non-oscillatory time

series marked by ∗ and ∗∗ in 4.2 were merged. Altogether, these non-oscillatory

time series were consistently displayed into groups separate from the rest as the

hyperparameters were varied.
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Figure 4.5: Grid search of UMAP hyperparameters: number of neighbours along
the horizontal axis and minimum distance along the vertical axis. Data points are
coloured according to category: grey indicates non-oscillatory time series, blue
indicates oscillatory time series from zwf1∆ cells, and orange indicates oscillatory
time series from BY4741 cells.
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Varying parameter values to obtain better separation between groups of time

series decreases the contribution of the UMAP algorithm to the overlap between

groups. However, some overlap between non-oscillatory and oscillatory time series

and between BY4741 and zwf1∆ time series remain, leading to the conclusion that

the characteristics of the time series are chiefly responsible for their positions

in embedding space. Thus, UMAP may have potential to visualise groups in a

dataset of time series that may not correspond to biologically relevant groups,

and this may lead to finding heterogeneity in time series among cells of the same

strain.

4.3.2 Graph-based clustering

Modularity clustering is a mathematical method that partitions a graph into

groups to optimise a ‘modularity’ value, defined so that the method finds a

trade-off between maximising the connections within a cluster and minimising

the connections between clusters (Newman, 2006). This optimisation problem

is computationally difficult, so approximations such as the Louvain algorithm

are needed for large networks (Blondel et al., 2008), with the Leiden algorithm

(Traag et al., 2019) subsequently developed to ensure that communities are well-

connected and to provide an optimum number of communities.

Furthermore, the intrinsic scale of modularity scales with the square root of the

number of connections in the network. Therefore, if the network is large, there is a

large resolution limit, preventing a modularity clustering algorithm from detecting

small-scale structures (Fortunato & Barthélemy, 2007; Traag et al., 2011). To

remedy this, algorithms that implement a resolution parameter (γ), were devised;

the value of this parameter thus controls the scale at which communities are

detected (Kumpula et al., 2007; Reichardt & Bornholdt, 2004).
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To assess the performance of a graph-based clustering method in identifying

clusters in time series data, I represented a dataset of time series as a graph

before using modularity clustering to identify clusters. Fig. 4.6 illustrates this

process, specifically:

1. Constructing a graph representation: Each time series was represented as

a vector of features in n-dimensional space, where n is the length of the

vector. Here, I represented each time series with a vector of 22 features using

catch22. The cosine distances between each pair of vector was computed,

and became the edge weights of a complete graph with each time series as

a node.

2. Pruning: The complete graph was pruned by deleting edges, so that each

node was connected to at least the k nearest neighbours. I used k = 10.

3. Modularity clustering: Modularity clustering was performed on the graph

to partition the pruned graph into communities. In this step, I used the

constant Potts model (Traag et al., 2011) and the Leiden algorithm (Traag

et al., 2019).

Fig. 4.7a shows that construction of a pruned graph based on similarities between

time series highlights two groups of non-oscillatory time series. Subsequently,

Figs. 4.7b–4.7d show that the resolution parameter (γ) controls the number of

communities detected. Non-oscillatory time series were assigned to a separate

group when γ = 0.01, and the two sub-groups of non-oscillatory time series

were separated when γ = 0.02; however, when γ = 0.03, the divisions changed.

The Leiden algorithm (Traag et al., 2019) suggested 10 as the optimal number

of communities, which was realised by γ = 0.02. For all γ values, modularity

clustering was able to further show communities among the oscillatory time series.
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Figure 4.6: Process of preparing a dataset of time series for modularity clustering.
(4.6a) Constructing a graph representation: each time series was featurised and
the cosine distances in feature space became edge weights. (4.6b) Pruning the
complete graph so that each node had at least the k nearest neighbours. (4.6c)
Modularity clustering, using the Leiden algorithm (Traag et al., 2019), to identify
communities. Fig. 4.6c is adapted from Newman (2006). In all subfigures, data
are synthetic and only serve to illustrate the process.
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Non-oscillatory

zwf1Δ

BY4741

(a)

(b) (c) (d)

Figure 4.7: Pruned graph of BY4741 and zwf1∆ time series from the same ex-
periment. (4.7a) Nodes coloured by group: grey, non-oscillatory; blue, oscillatory
zwf1∆; orange, oscillatory BY4741. Thickness of edges represent edge weights,
scaled by similarity found by cosine distances. Additionally, nodes coloured by
community as found by the constant Potts model (Traag et al., 2011) as the
resolution parameter (γ) was varied: (4.7b) γ = 0.01 (4 communities), (4.7c)
γ = 0.02 (10 communities), and (4.7d) γ = 0.03 (12 communities).
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However, such communities did not divide along the division between BY4741

and zwf1∆ cells, suggesting that time series features alone were not able to divide

these two strains. This agreed with my observation that some oscillatory zwf1∆

time series resembled BY4741 time series (Fig. 4.8).
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Figure 4.8: Sample time series from BY4741 and zwf1∆ cells. zwf1∆ sample 1
does not resemble the BY4741 sample, while zwf1∆ sample 2 does.

In sum, the general agreement between UMAP and modularity clustering shows

that the BY4741 & zwf1∆ dataset had internal structure defined by rhythmicity

of time series. However, it was not clear from UMAP whether there were sub-

populations among the BY4741 and zwf1∆ time series whose members exhibit

similar types of oscillations. In contrast, while modularity clustering suggests

that such sub-populations can be found based on connectivity between nodes,

the number of sub-populations depends on the value of a resolution parameter.
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4.4 Detection of rhythmicity

To identify metabolic cycles from flavin autofluorescence signals, it is important

to have a systematic method to determine whether a time series is oscillatory.

To determine the time series classification method that is most appropriate for

my data, I compared a spectral method, a model-fitting method, and a machine

learning method.

4.4.1 Spectral methods

In order to classify oscillatory and non-oscillatory time series, I modified a clas-

sifier based on a spectral method that included a statistical test (Methods Sec-

tion 2.3.2). This classifier was based on Glynn et al. (2006), which described

a method that employed the peak power from the Lomb-Scargle periodogram

(Lomb, 1976) to rank time series by the quality of oscillation and to perform a

statistical test to determine whether a time series is oscillatory or non-oscillatory

(Scargle, 1982), as shown by Eqs. 2.2–2.3.

Figs. 4.9–4.10 suggest that the best- and worst-ranked time series according to the

quality of their oscillatory signals conformed to subjective judgements of quality.

Highest-ranked time series resembled sinusoids and therefore led to periodograms

with a strong power corresponding to the frequency of the sinusoid that would

model the time series. Conversely, lowest-ranked time series resembled white noise

and led to periodograms with power equally spread across all frequencies, thus

bringing down the height of the highest peak. However, some time series with

irregular oscillations based on visual inspection (Fig. 4.9; ranks 2, 3) were given

higher ranks than those with more regular oscillations based on visual inspection,

thus calling into question the reliability of the ranking method.
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Figure 4.9: (4.9a) Best five time series in the zwf1∆ dataset and (4.9b) their
periodograms, ranked by the quality of oscillation based on the maximum power
in the periodogram (Glynn et al., 2006).
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Figure 4.10: (4.10a) Worst five time series in the zwf1∆ dataset and (4.10b) their
periodograms, ranked by the quality of oscillation based on the maximum power
in the periodogram (Glynn et al., 2006).
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To detect rhythmicity in one time series, Glynn et al. (2006) calculates the

probability of the null hypothesis that a peak in the periodogram occurs due to

chance. When extended across a population of time series, rhythmicity detection

by this method thus becomes a task of testing multiple hypotheses. Glynn et al.

(2006) thus proposed controlling the false discovery rate, defined as the proportion

of cases in which the null hypothesis is true among all hypotheses in which the test

is declared significant (see Methods Section 2.3.2, specifically Eq. 2.3). Controlling

the false discovery rate thus controls the expected proportion of oscillations that

are classified as oscillatory.

To assess the performance of this method as a classifier for rhythmicity detection,

Fig. 4.11 shows the receiver operating characteristic (ROC) curve, created as the

false discovery rate was varied. The area under the ROC curve (0.762) suggests

that the classifier performed modestly well, especially for a large (n = 425) dataset

of time series with a large variety of quality of oscillations.
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Figure 4.11: ROC curve of classifier based on Glynn et al. (2006) as the false
discovery rate was varied. The true positive rate and false positive rates were
computed based on the manual labels of the zwf1∆ dataset.



4.4. Detection of rhythmicity 136

4.4.2 Model fitting

To assess the performance of a time series classification method based on the

autoregressive model, I implemented the method described by Jia and Grima

(2020), used to characterise synthetic time series of stochastic, oscillatory gene

expression in a dividing cell. In the implementation of the autoregressive model

used by Jia and Grima (2020), each data point was expressed as a linear com-

bination of a number of data points that precede it, and model parameters led

to an analytical solution for the periodogram, thus giving an advantage over the

low-resolution Fourier spectrum (Methods Section 2.3.3). The resulting power

spectra fell into four categories, one of which (Type I) corresponded to a lack

of oscillations, characterised by an absence of a local maximum in the power

spectrum (Fig. 4.12). This method thus allows computing the frequency of the

oscillation from the location of the peak in the periodogram and quality of the

oscillation from the height of the peak.

Figure 4.12: Power spectra (a) analytically derived from fitting an autoregressive
model to time series (b) can be divided into four types. Type I lacks a local
maximum and is denoted as lacking oscillations. Figure adapted from Jia and
Grima (2020).
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(a)

period
= 446.0 min

period
= 75.2 min
(most likely period)

(b)

Figure 4.13: (4.13a) Sample time series (orange), with a fitted autoregressive
model (blue) of order 18 computed according to Jia and Grima (2020). (4.13b)
Periodogram defined based on parameters of the autoregressive model.

Fig. 4.14 shows that the autoregressive model was able to correctly identify a

time series as oscillatory at a period of 75.2 min, as evidenced by the location of

a peak in the periodogram that the model predicted.

To assess the performance of the use of the autoregressive model for rhythmicity

detection across a dataset, I extended this method across the zwf1∆ dataset,

treating Type I power spectra (Fig. 4.12) as non-oscillatory. The confusion matrix

(Table 4.1) suggests that the method leads to poor performance (precision =

0.532, recall = 0.629, no-skill classifier: precision = recall = 0.527, see Methods

Section 2.3.4 for definitions).

Predicted by AR model
Positive Negative Total

Human-defined labels
Positive 141 83 224
Negative 124 77 201

Total 265 160 425

Table 4.1: Confusion matrix to evaluate the performance of using the autoregress-
ive model (Jia & Grima, 2020) to detect rhythmicity in the zwf1∆ dataset.
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To find an explanation for the poor performance, I consider the false negatives (83

time series) and false positives (124 time series). To address the false negatives,

Fig. 4.14a shows that Type I power spectra have lower optimal orders of the

autoregressive model compared to Type II and Type III power spectra. With

lower orders, less information is used to inform the power spectrum, and therefore

it is more likely that the resulting power spectrum is of Type I.

A potential explanation for the false positives is that non-oscillatory time series

correspond to power spectra with multiple local maxima, as opposed to a single

local maximum that corresponds to the most likely period of an oscillatory time

series. Such power spectra with multiple local maxima were thus classified as

Types II or III. However, Fig. 4.14b shows that there is no relationship between

the number of local minima and whether a time series is oscillatory (contingency

table χ2 = 2.90, 3 degrees of freedom, p = 0.41). Thus, a better explanation is

needed to explain the false positives.
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Figure 4.14: (4.14a) Optimal order of autoregressive function fitted to time
series, categorised by whether they are non-oscillatory or oscillatory time series
(human-labelled) and the type of oscillation based on the analytical periodogram
derived from the autoregressive function (Jia & Grima, 2020). No oscillatory time
series have Type IV power spectra, thus not shown. (4.14b) Proportions of non-
oscillatory and oscillatory time series that have 0 to 3 local maxima in their
analytical periodograms.
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4.4.3 Machine learning

As an alternative to the mathematical methods previously discussed, I trained

a support vector classifier to classify oscillatory and non-oscillatory time series

from the zwf1∆ cells (Appendix A.3).

To ensure that the dynamic ranges of the fluorescence signals do not affect

rhythmicity detection, I normalised each time series xi(t1), . . . , xi(tj), . . . , xi(tN)

to produce a processed time series zi(t1), . . . , zi(tj), . . . , zi(tN) as follows:

zi(tj) =
xi(tj)− µi

σi

(4.1)

where µi is the mean value of xi computed across all time points, and σi is

the standard deviation of xi computed across all time points. As a result, each

normalised time series zi has a mean of 0 and a standard deviation of 1. From

this input data, 75% of the time series formed the training set.

To determine the most effective way to featurise the data, I computed the pre-

cision and recall (defined in Methods Section 2.3.4) of support vector classifiers

trained on data featurised using different methods. All support vector classifiers

were trained using a radial bias kernel, a kernel coefficient γ = 1/N , where N is

the number of features, and a regularisation parameter C = 10. Fig. 4.15 suggests

that featurisation using catch22 and the Fourier spectrum gave comparably high

performances, as evidenced by high precision and recall, and with a low degree of

overfitting, as evidenced by a small variation of both metrics across the rounds

of cross-validation.
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Figure 4.15: (Left) Precision and (right) recall from five-fold cross-validation of
support vector classifiers trained using different featurisation methods: using the
time points as features, using the power values in the Fourier spectrum as features,
and using catch22 features. As a control, the oscillatory and non-oscillatory labels
were randomly reassigned to the time series and the time points were used as
features.

To predict the probability that each time series was oscillatory, I used Platt

scaling (Platt, 1999) with the support vector classifier, as implemented by the

predict_proba method in the Python package scikit_learn. Platt scaling in-

volves finding parameters for a logistic sigmoid function which approximates

the posterior class probability for a binary classifier. Fig. 4.16 suggests that the

classifier performed well in discriminating between the two classes, as evidenced

by the U-shaped histogram of probabilities (Fig. 4.16a), in contrast to the control

(Fig. 4.16b).
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Figure 4.16: (4.16a) Histogram of probabilities of whether a time series in the
test data set is classified as oscillatory by the SVC (featurisation with catch22,
γ = 1/22, C = 10), and as a control (4.16b) with labels randomly reassigned.

In addition, Fig. 4.17 demonstrates that the probabilities can serve as a good

score to rank time series by oscillation quality.
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Figure 4.17: Sample time series arranged by probability that each is oscillatory,
as predicted by the support vector classifier.
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To assess whether a specific mathematical measure of rhythmicity within the

catch22 feature set is responsible for classification of time series, Fig. 4.18 evalu-

ates the catch22 features that were most influential for the classifier. To do so, I

used a Random Forest architecture with the same train-test split and featurisation

as the best-performing SVC model, so that I can compute the mean decrease

in accuracy as the value of each feature is randomly shuffled (Breiman, 2001).

Fig. 4.18 suggests that the importance of each feature in rhythmicity detection

was small and that there was no set of features that had significantly greater

importance than others. In other words, classification of rhythmicity did not

depend only on a few explicit mathematical measures of rhythmicity and adequate

classification was only possible when all features were combined. This suggests

that the use of catch22 does not reduce to a few features equivalent to analysis

using tools like BioDare (Zieliński et al., 2014).

4.5 Period estimation using the autocorrelation func-

tion

Estimating the period of oscillatory time series is important as it provides a

quantitative measure of how yeast metabolic cycles respond to genetic nutrient

perturbations, as was previously used by Papagiannakis et al. (2017). To show

that the autocorrelation function can be used to estimate the period and noise

properties of both symmetric and asymmetric oscillations, I adapted the auto-

correlation function as used by Pietsch et al. (2023) (Methods Section 2.3.5).

To calibrate the method, I generated synthetic oscillations — sinusoids and the

FitzHugh-Nagumo oscillator (FitzHugh, 1961) — to investigate the effect of their
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properties on the autocorrelation function. Subsequently, I applied the autocorrel-

ation function to characterise experimentally-recorded time series. Details on how

the sinusoids and the FitzHugh-Nagumo oscillators were defined can be found in

Methods Section 2.3.6.
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Figure 4.18: Permutation feature importance values of catch22 features in
classifying manually-scored oscillatory and non-oscillatory time series from the
zwf1∆ dataset, arranged by the mean decrease in accuracy when the feature of
interest is randomly shuffled (Breiman, 2001). To compute feature importance, a
random forest classifier was fitted to the training dataset. Error bars show inter-
trees variability.
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4.5.1 Effect of noise parameters on the autocorrelation function

of synthetic sinusoids

To compare the effect of Gaussian noise and Gillespie noise on the autocorrelation

function, I computed autocorrelation functions from a population of sinusoids

with either type of noise added via element-wise sums. Fig. 4.19b shows that the

autocorrelation function computed from a population of out-of-phase sinusoids

could be modelled by a cosine with the same period as the sinusoids. Following

this, Fig. 4.19d shows that the addition of Gaussian noise preserved the point

(0, 1), but the amplitude of the cosine that models the autocorrelation function

was decreased. Furthermore, the variation of the autocorrelation function among

time series at long lags was increased, as evidenced by the interquartile range,

because less data was used to compute the autocorrelation function at longer lags.

Gillespie noise is based on the birth-death process (Fig. 4.20), and its two para-

meters control noise parameters (Methods Section 2.3.6). Specifically, given a

birth rate k0 and a death rate d0, the noise has a standard deviation of noise

amplitude A =
√
k0/d0 and noise timescale τ = 1/d0.

Fig. 4.19f shows that when Gillespie noise was added to the sinusoids, the median

autocorrelation followed the exponential decay function y = e−2d0T , where T

represents lag. In addition, the locations of the peaks of the autocorrelation

function were preserved. The observation thus suggests that the death rate d0

parameter of Gillespie noise controlled the shape of the autocorrelation function.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: (4.19a) Sample sinusoids without noise, and (4.19b) its autocorrel-
ation function. (4.19c) Sample sinusoids with Gaussian noise defined by drawing
samples from N (0, σ2 = 3), and (4.19d) its autocorrelation function. (4.19e)
Sample sinusoids of with Gillespie noise (k0 = 5 and d0 = 0.05), and (4.19f) its
autocorrelation function. Red line is defined by y = e−2d0T , where T represents
the lag in units of period of the sinusoids. For each case, the frequency of the
sinusoids was 0.03, and there were 100 repeats, randomly out-of-phase.
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Population
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(size N)

R1: births

(rate k0) (rate d0)
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Figure 4.20: (4.20a) Illustration of the birth-death process. The birth-death
process is defined by two reactions: birth (R1 : ∅ −−→ P), with rate k0, and
death (R2 : P −−→ ∅) with rate d0, both of which affect the number N of
species P . Random firing of the birth and death reactions, simulated by the
Gillespie algorithm (Gillespie, 2007), defines the trajectory of N over time, which
in turn defines Gillespie noise. (4.20b) Sample trajectory of a substrate created
and destroyed by the birth-death process, simulated by the Gillespie algorithm
(k0 = 5, d0 = 0.05, tmax = 1500).
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(a) (b)

(c) (d)

Figure 4.21: (4.21a) Sample sinusoids with Gillespie noise (k0 = 5 and d0 = 0.5),
and (4.21b) its autocorrelation function. (4.21c) Sample sinusoids with Gillespie
noise (k0 = 5 and d0 = 0.005), and (4.21d) its autocorrelation function. Red lines
are defined by y = e−2d0T , where T represents the lag in units of period of the
sinusoids. For each case, the frequency of the sinusoids was 0.03, and there were
100 repeats, randomly out-of-phase.

To quantify the effect of the noise timescale on the shape of the autocorrelation

function, I varied the death rate parameter d0 when generating Gillespie noise.

Fig. 4.21 shows that a higher death rate decreased the decay timescale of the

autocorrelation function (Fig. 4.21b), while a lower death rate introduced long-

term trends in the simulated signals (Fig. 4.21c). A lower death rate also increased

the variation between autocorrelation functions between replicates (Fig. 4.21d).
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(a) (b)

(c) (d)

Figure 4.22: (4.22a) Sample sinusoids with Gillespie noise (k0 = 25 and d0 =
0.05), and (4.22b) its autocorrelation function. (4.22c) Sample sinusoids with
Gillespie noise (k0 = 1 and d0 = 0.05), and (4.22d) its autocorrelation function.
Red lines are defined by y = e−2d0T , where T represents the lag in units of period
of the sinusoids. For each case, the frequency of the sinusoids was 0.03, and there
were 100 repeats, randomly out-of-phase.

To quantify the effect of the noise amplitude on the autocorrelation function,

I varied the birth rate parameter k0 when generating Gillespie noise. Fig. 4.22

shows that a higher birth rate increased the amplitude of noise (Fig. 4.22a) and

increased the variation between replicate autocorrelation functions (Fig. 4.22b),

while the opposite was true for a higher birth rate (Figs. 4.22c–4.22d).
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4.5.2 FitzHugh-Nagumo oscillator: effect of oscillation shape

To test whether Gillespie noise parameters can be estimated from the autocor-

relation function computed from an asymmetric oscillation, I added Gillespie

noise with varying d0 and k0 to FitzHugh-Nagumo oscillators as defined in the

Methods Section 2.3.6. Fig. 4.23b shows that when the oscillator had a different

shape, the waves in the autocorrelation function changed shape, becoming more

pointed. Additionally, the effect of noise parameters on the autocorrelation func-

tion is preserved when the oscillators switch from sinusoid to FitzHugh-Nagumo

oscillators.

(a) (b)

Figure 4.23: (4.23a) Sample FitzHugh-Nagumo oscillators (RIext = 0.4, τ = 12.5,
a = 0.7, b = 0.82) with Gillespie noise (k0 = 5 and d0 = 0.05), and (4.23b) its
autocorrelation function. Red line is defined by y = e−2d0T , where T represents
the lag in units of period of the sinusoids. There were 100 repeats, randomly out-
of-phase.

4.5.3 Real data from fluorescence microscopy in microfluidics

experiments

To deduce the period and noise parameters of a experimentally-recorded sinusoid-

like signal (Fig. 4.24a), I computed the autocorrelation functions of a population

of flavin autofluorescence time series (Fig. 4.24b). The autocorrelation function

suggests an average period of 19 time points, corresponding to 95 min, as expec-
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ted from the nutrient conditions. However, estimation of noise parameters was

complicated by the damping in the autocorrelation function, giving a different

shape compared to the synthetic data and fewer peaks and troughs for fitting.

Nevertheless, relating the shape of the autocorrelation function to the effect of

noise parameters on synthetic sinusoids suggested a noise timescale of 7.35 and a

noise amplitude of 110.45.

(a) (b)

Figure 4.24: (4.24a) Sample time series of flavin autofluorescence. (4.24b) Auto-
correlation function across a population of time series of flavin autofluorescence.

In addition to flavin autofluorescence, I also recorded time series of histone 2B

abundance as an indicator of the phases of the cell division cycle (Garmendia-

Torres et al., 2018), to investigate whether the flavin autofluorescence oscillations

and the cell division cycle synchronised. The abundance of histone 2B follow an

asymmetric oscillation (Fig. 4.25a).

Similar to the previous section, to deduce the period and noise parameters of this

signal, I computed the autocorrelation functions of a population of histone 2B

abundance time series (Fig. 4.25b). The autocorrelation function also suggests an

average period of 19 time points, corresponding to 95 min. As was the case for the

flavin autofluorescence time series, the damping in the autocorrelation function

complicated estimation of noise parameters, but the function suggested a noise
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(a) (b)

Figure 4.25: (4.25a) Sample time series of histone 2B abundance. (4.25b)
Autocorrelation function across a population of time series of histone 2B
abundance.

timescale of 9.35 and a noise amplitude of 168.12. The differences of these noise

parameters relative to the flavin autofluorescence time series suggest different

noise properties, which can be explained by the different fluorescence channels

and exposure times used to generate each type of signal.

4.6 Detection of synchrony

To test a method to detect the synchrony and quantify the temporal lag between

two types of oscillations, I computed the cross-correlation functions of a popu-

lation of sinusoid and FitzHugh-Nagumo oscillators. Cross-correlation has been

used to investigate the relationship between the expression levels of two genes in a

model feed-forward loop (Dunlop et al., 2008), and to investigate the relationship

between instantaneous growth rate and the expression of lac genes of enzymes in

central metabolism across a population of E. coli cells (Kiviet et al., 2014).
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4.6.1 Synthetic data

Fig. 4.26b shows that the cross-correlation function identifies that the sinusoids,

on average, peaked 20 time points before the FitzHugh-Nagumo oscillators, close

to the actual value of 20.75 time points. This shift was evidenced by the position

of the peak of the cross-correlation function closest to the vertical axis. The cross-

correlation function further showed that synchrony between the two oscillators

was maintained along the entire time series, across all time series. Furthermore,

Fig. 4.26d suggests that even with strong Gillespie noise, the lag between the two

oscillators could still be deduced from the cross-correlation function.

(a) (b)

(c) (d)

Figure 4.26: (4.26a) (Blue) Sample sinusoid (f = 0.0235) and (orange) FitzHugh-
Nagumo oscillator (RIext = 0.4, τ = 12.5, a = 0.7, b = 0.82) of the same frequency
and without noise, and (4.26b) the cross-correlation function of the FitzHugh-
Nagumo oscillators with respect to the sinusoids. (4.26c) (Blue) Sample sinusoid
and (orange) FitzHugh-Nagumo oscillator with same parameters as 4.26a, but
with Gillespie noise (d0 = 0.05, k0 = 5), and (4.26d) the cross-correlation function
of the FitzHugh-Nagumo oscillators with respect to the sinusoids. For each case,
there were 400 repeats, randomly out-of-phase.
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4.6.2 Real data from fluorescence microscopy in microfluidics

experiments

To show how the cross-correlation function can be used to quantify the synchrony

between flavin autofluorescence oscillations and HTB2::mCherry levels in a popu-

lation of cells, Fig. 4.27 displays a sample pair of time series (Fig. 4.27a) and the

cross-correlation function from the population of cells (Fig. 4.27b). The cross-

correlation function suggests that the histone 2B oscillations peaked after the

flavin autofluorescence oscillations by an average of 5 min.

4.7 Discussion

This chapter discusses methods to filter long-term trends in time series data, to

visualise structures within a dataset of time series, to detect rhythmicity in a

time series, to estimate period and noise parameters, and to detect the synchrony

between two time series.

The methods used in this chapter are more sophisticated than existing methods

that have been used for analysing single-cell time series from the yeast metabolic

cycle. The filtering methods are frequency-based, rather than based on fitting

a model to the raw time series (Baumgartner et al., 2018; Özsezen et al., 2019).

Detecting sub-groups in a dataset of metabolic cycle time series is also a novel ap-

proach. In addition, this chapter proposes using feature engineering and machine

learning to extend existing mathematical approaches for rhythmicity detection.

Furthermore, cross-correlation offers a way to robustly quantify the time lag

between two types of time series which accounts for both noise and different
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Figure 4.27: (4.27a) Sample time series of flavin autofluorescence (blue) and
histone 2B abundance (orange). (4.27b) Cross-correlation function between the
flavin autofluorescence time series and the histone 2B abundance time series.
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shapes of oscillators, which is more robust than using simple differences as used

by Baumgartner et al. (2018). Taken together, the methods in this chapter can

give more information about single-cell time series of metabolic cycles and can

more easily be automated than previous methods.

My results suggest that using a high-pass Butterworth filter to filter out long-

term trends in time series data gives better control over the frequency profile of

the time series than moving-average methods, which is often used to detrend time

series from biological oscillators. Such results highlight that a degree of caution

is needed to choose methods for such a crucial step in data analysis.

My exploration of UMAP and modularity clustering suggests that both methods

were useful in discovering structure within a dataset of time series, particularly in

discriminating between oscillatory and non-oscillatory time series. These methods

further indicated sub-groups of time series that may have similar properties,

such as shape or oscillation quality, which may correspond to sub-populations

of metabolic cycle-producing cells in a culture. The consistency between the two

methods strongly suggest that such groups in the dataset are meaningful.

Subsequently, my exploration of three approaches to detect rhythmicity — deriv-

ing a statistical test of a power spectrum, deriving a periodogram from an autore-

gressive model, and a binary classifier — highlights the difficulty of rhythmicity

detection in noisy biological time series. The spectral method described by Glynn

et al. (2006) had a modest performance. The autoregressive model was able to

identify the most likely period in some time series, but otherwise classified most

time series as non-oscillatory, and lacked a tuning parameter. Finally, the support

vector classifier suggests that a simple machine learning model could be adapted

for rhythmicity detection, subject to a good feature set and training data.
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Changes in featurisation or classifier architecture may improve performance in dis-

covering structure in a dataset of time series or rhythmicity detection. Other time

series feature sets such as tsfresh (794 features from 63 methods) (Christ et al.,

2018) and FATS (45 features developed for astronomical light curve data) (Nun

et al., 2015) may be used in place of catch22. In addition, other machine learning

architectures may be used. Such architectures include deep learning models more

suited for time series data, such as Long Short-Term Memory, which learns how

to remember and forget information (Hochreiter & Schmidhuber, 1997), and

temporal convolutional networks, shown to outperform recurrent networks on

tasks utilising time- and sequence-dependent data (Bai et al., 2018).

Ultimately, rhythmicity detection requires supplying a threshold in some form, be

it a range of frequencies in which oscillations are expected (Zieliński et al., 2014),

a parameter that controls the proportion of time series detected as oscillatory,

or training labels. This is because there is no way to objectively specify a failure

rate for a rhythmicity detection method as there is no independent method to

estimate rhythmicity (Zieliński et al., 2014).

My observations concerning the autocorrelation function confirms its use for

estimating the period of an oscillatory time series, as used previously by Papagi-

annakis et al. (2017). As periodicity-estimation methods have a limited ability to

estimate the period of short, noisy time series owing to little input data, combining

several such methods can be useful to produce a picture of the periodicity of

oscillatory time series. For example, Potvin-Trottier et al. (2016) combines the

autocorrelation function and the Fourier transform to study the changes in the

periodicity of a modified model of the repressilator.
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Furthermore, I showed that the autocorrelation function may be used to estim-

ate parameters to describe noise, assuming that the noise can be modelled by

the birth-death process. However, further work, such as synthetic time series

generated from a wider variety of parameters or additional estimation methods

are likely required for adequate estimation of noise parameters from real data. In

addition, it is possible that other types of noise better describe the noise from real

data, and such types of noise may lead to different effects on the autocorrelation

function.

Finally, my results show that the cross-correlation function, as used by Dunlop

et al. (2008), Kiviet et al. (2014), and Pietsch et al. (2023), can be used to

detect synchrony between two sets of time series and to quantify the temporal

relationship between the time series, even if the time series are very noisy.

Taken together, the analysis methods discussed in this chapter can form the

basis of a powerful data analysis pipeline to analyse large datasets of oscillatory

biological time series.



Chapter 5

Modelling yeast biosynthesis

strategies under constraints

To better understand the mechanistic basis of the YMC, I sought to build a model

of how the cyclic sequence of cellular events responds to extracellular nutrient

conditions. However, it is challenging to develop a fine-grained model for the

aspects of the YMC, especially if the detailed molecular mechanisms are unclear.

Further complicating the development of a fine-grained model is the fact that the

main read-outs from single-cell studies — NAD(P)H and flavin autofluorescence

— are aggregate signals from several biochemical phenomena.

Thus, it is more feasible to construct coarse-grained models to answer biological

questions about the YMC. One such question is whether a finite proteome is

responsible for the sequence of events in the yeast metabolic cycle, especially

considering the high energetic and resource requirements of protein synthesis

(J. S. O’Neill et al., 2020; Zylstra & Heinemann, 2022).

Here, I use a genome-scale metabolic model and flux balance analysis (FBA) to

address whether cellular events in the metabolic cycle reflect a strategy in resource

allocation that optimises growth.

158
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Specifically, I aim to evaluate these hypotheses:

1. A finite proteome pool gives rise to sequential scheduling of the synthesis of

biomass components during growth: lipids, carbohydrates, amino acids, and

nucleic acids. In other words, as an adaption, the cell synthesises biomass

components in sequence rather than in parallel. This would explain the

timing of biosynthetic events in the phases of the yeast metabolic cycle.

2. This resource allocation strategy remains advantageous in many nutrient

conditions and deletion strains, which would explain the robustness of the

yeast metabolic cycle.

3. Synthesis of biomass components in parallel, as opposed to in sequence, may

be advantageous if the processes of synthesising each biomass component

share similar enzyme levels across biomass components.

5.1 Modelling temporal scheduling of biosynthesis

Previous studies have attempted to use FBA to model how each phase of the

YMC has different metabolic requirements. Takhaveev et al. (2023) showed that in

different stages of the cell division cycle, the cell synthesises different components

of its biomass at different levels. In the study, they blocked synthesis of each

class of macromolecule and recorded the changes in single-cell NAD(P)H cycles,

representing the YMC, to quantify the level of each class of macromolecule that

the cell synthesises at each time point within a cell division cycle. Then, they

used these activities as coefficients for a modified thermodynamic-stoichiometric

metabolic model at each time point and used FBA to deduce biomass production

rates.
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Additionally, Cesur et al. (2022) constructed a different FBA model for each YMC

phase based on transcriptomic and epigenetic data. They did so using the GIMME

algorithm (Becker & Palsson, 2008), which excludes reactions that correspond

to genes that are not expressed at certain time points. Both studies model the

metabolic state of the cell at each phase of the YMC, rather than predicting the

time the cell takes to replicate or to synthesise biomass components.

An attempt in extending FBA to solve a time-dependent resource allocation

problem was Reimers et al. (2017). This study extended a genome-scale model of

the cyanobacterium Synechococcus elongatus PCC7942 to find the temporal order

of intracellular synthesis reactions which optimises the growth rate of the cell,

under resource constraints. This model imposes time dependence by implementing

a light-dark cycle as an external oscillator.

Traditional genome-scale models assume that the uptake rate of carbon source

limits production. However, levels of each enzyme also restrict reaction fluxes,

leading to the development of enzyme-constrained models. An enzyme-constrained

model fits the assumption that there is a fixed number of amino acids the cell has

to distribute (Weiße et al., 2015). Models like Sánchez et al. (2017) and Elsemman

et al. (2022) constrain the total sum of fluxes based on a defined total amount

of enzyme. Elsemman et al. (2022) additionally imposed a ribosome capacity

constraint and compartment constraints.

In this chapter, I used an enzyme-constrained genome-scale model of Saccharo-

myces cerevisiae and performed FBA to simulate two strategies of scheduling of

the synthesis of biomass components: in sequence and in parallel. In contrast to

Takhaveev et al. (2023), which modelled the levels of biosynthesis for each biomass
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component at each phase of the cell division cycle based on the aggregate single-

cell response observed in experimental data, without predicting timescales, this

chapter predicts the timescale for biosynthesis for different proteome pool sizes

and different nutrient conditions.

To simulate the cell prioritising the synthesis of each biomass component in

sequence, I ablated metabolites from the biomass reaction so that one biomass

component remained, then optimised the model. To assess the advantage of

sequential synthesis over parallel synthesis, I estimated the synthesis time for

each biomass component based on ablation, then compared these times predicted

by the unmodified model. To show that sequential synthesis is an adaptation for

a finite proteome pool, I varied the size of the enzyme-available proteome pool

to observe its effect on the cell’s preferred scheduling strategy. Finally, to show

how nutrient conditions affect the cell’s scheduling strategy, I modelled changes in

carbon and nitrogen source concentrations, then observed how the changes affect

allocation of the proteome to metabolic enzymes.

FBA was chosen as a proof-of-concept method to simulate sequential scheduling

of the synthesis of biomass components for its ease of use, and may serve as a

basis for more fine-grained modelling to evaluate the hypotheses in this chapter

in future investigations. As a limitation, FBA only examines the steady state of

metabolism in a biological system. However, FBA is useful when combined with

ablating the biomass reaction, because ablation introduces a series of different

steady states — as each biomass component is prioritised — that can occur in

sequence. This thus reflects, to some extent, how the metabolic state of the cell

changes over time.
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An additional limitation is that FBA simulates an average behaviour of yeast cells.

To simulate a population of cells, extensions to FBA can be applied. For example,

Tourigny et al. (2021) developed a stochastic simulation algorithm with FBA

embedded, which models fluctuations in enzyme and metabolite copy numbers,

for Mycobacterium genitalium. Applying this algorithm to ecYeast8 must account

for the greater genome complexity and variability of lipid composition (Sánchez

et al., 2019) in budding yeast. In addition, Labhsetwar et al. (2017) developed a

population FBA approach, which was based on sampling enzyme copy numbers

from an experimental distribution. Applying this idea to ecYeast8 may mean

a stochastic size of the enzyme-available proteome pool. Both approaches are

challenging and are beyond the scope of this thesis, but may be used in extensions

to this work.

5.2 The Yeast8 and ecYeast8 models and their form-

alisms

To impose proteome constraints, I used the enzyme-constrained Yeast8 (ecYeast8)

model (H. Lu et al., 2019) and performed FBA. I used this model because it is

recent, offers a good coverage of reactions, and is continuously updated in a well-

characterised and well-documented software repository. Here, I used the model

ecYeast8.6.0, the latest version for which both original and enzyme-constrained

variants are available. ecYeast8 uses the GECKO formalism (Sánchez et al., 2017)

— specifically, GECKO 2 (Domenzain et al., 2022), the latest published version.

GECKO applies an enzyme constraint by modifying the stoichiometric matrix of
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a genome-scale metabolic model. In addition, the model has ‘pseudometabolites’

defined by reactions that group specific chemical species in general classes. These

formalisms allow studying each class of biomass component (e.g. lipid, protein,

carbohydrate) individually (Methods Section 2.4.1).

5.2.1 GECKO

In a conventional genome-scale model, metabolic fluxes through reactions are

constrained by lower and upper bounds. This constraint narrows the solution

space when the objective function is optimised. GECKO imposes an additional

constraint on the metabolic fluxes based on the concentration of the enzyme that

catalyses the reaction (Fig. 5.1).

Figure 5.1: Modifications to the stoichiometric matrix of a genome-scale model
that GECKO imposes. The original stoichiometric matrix S includes metabolites
M1 . . .Mm and reactions v1 . . . vn. GECKO extends this matrix to include enzymes
E1 . . . Ep and enzyme usage reactions e1 . . . ep. The new stoichiometric matrix can
be seen as four submatrices concatenated together: the upper left submatrix is the
original S, the upper right submatrix is 0, the lower left submatrix encodes kinetic
information, and the lower right submatrix is I. Figure adapted from Sánchez et
al. (2017).
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GECKO modifies the linear programming of FBA as defined by Eq. 1.2 and 1.3

so that enzymes are expressed as metabolites that take part in reactions. This

can be expressed as:

max c⊺v (5.1)

subject to

Sv = 0

vj,min ≤ vj ≤ vj,max

vj ≤ kij
cat · [Ei]

(5.2)

where vj is the flux of each reaction Rj catalysed by enzyme Ei, k
ij
cat is the catalytic

constant of the enzyme Ei for reaction Rj, and [Ei] represents the concentration of

the enzyme Ei. These constraints ensure that each vj does not exceed the vmax of

Ei. Each enzyme Ei may catalyse one or more reactions Rj. Appendices B.1–B.2

illustrate these modifications by considering how they modify chemical reactions

in the model.

5.3 Ablating pseudometabolites from the biomass re-

action

5.3.1 Definition of ablation

To simulate producing each class of biomass component in turn, I took advantage

of pseudometabolites in ecYeast8 to remove them in turn from the biomass

reaction — in other words, ablating pseudometabolites from the biomass reaction.
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Consider the objective function, the biomass reaction:

47.5883 atp_c + 47.5883 h2o_c + lipid_c + protein_c + carbohydrate_c

+ dna_c + rna_c + cofactor + ion

-> 47.5883 adp_c + biomass_c + 47.5883 h_c + 47.5883 pi_c

There are seven pseudometabolites: lipid, protein, carbohydrate, DNA, RNA,

cofactor, and ion.

To simulate the cell prioritising biosynthesis of lipids, I set the stoichiometric

coefficients of all pseudometabolites except for lipids to zero in the above equation,

giving:

47.5883 atp_c + 47.5883 h2o_c + lipid_c

-> 47.5883 adp_c + biomass_c + 47.5883 h_c + 47.5883 pi_c

Using this modified reaction as the objective function, the model was optimised

using FBA, and this process was repeated for the other pseudometabolites, res-

ulting in different growth rates for each round of ablation (Fig. 5.2).

Figure 5.2: Growth rates from the original model (leftmost bar) and from the
ablated versions of the model (other bars)
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5.3.2 Effect of ablation on allocation of proteome to enzymes

To assess whether ablation leads to metabolic changes that reflect cellular bio-

chemistry, I quantified how proteome allocation to enzymes changes across rounds

of ablation. When the model prioritised a different biomass component in each

round of ablation, the model partitioned the limited proteome available for en-

zyme production differently. In other words, in each round of ablation, the vector

of fluxes carried by each enzyme usage pseudoreaction (defined in Eq. B.5) was

different from each other and from the non-ablated case, in which all biomass

components were synthesised in parallel.

To quantify changes in proteome allocation across rounds of ablation, I computed

the base-2 logarithm of fold changes of fluxes relative to the non-ablated, parallel

case. This computation is defined as:

log2(FCi,j) = log2

(
e′i,j
e′i,par

)
(5.3)

where, to ensure that log2(FCi,j) can be defined for all i and j,

e′ =


ϵ, if |e| < ϵ

e, otherwise

(5.4)

where e′ is either e′i,j or e′i,par, e is the corresponding ei,j or ei,par, and ϵ is the

minimum flux of 1 molecule cell−1 = 1.11× 10−10 mmol g−1
DW, computed assuming

a cell dry weight of 15 pg dry weight per cell (Sherman, 2002), and with units

consistent with enzyme usage reactions as described by Sánchez et al. (2017).
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Here, ei,par represents the flux of an enzyme usage reaction associated with each

enzyme Ei in the model (defined in Eq. B.3) in the non-ablated, parallel case, and

ei,j represents the flux of the enzyme usage reaction when biomass component j

is prioritised in a round of ablation.

If log2(FCi,j) > 0, the cell allocates more of its proteome to produce enzyme

Ei when biomass component j is prioritised; the reverse is true if log2(FCi,j) <

0. In addition, if enzyme expression switches on (ei,par = 0), log2(FCi,j) ≪ 0.

Conversely, if enzyme expression switches off (ei,j = 0), log2(FCi,j)≫ 0.

To show that the re-allocation of the proteome in each round of ablation reflects

metabolic pathways that are relevant for prioritising the synthesis of the respect-

ive biomass component, Fig. 5.3 categorises fold changes of enzyme-catalysed

reactions by subsystem.

Specifically, the figure shows:

1. When any biomass component was prioritised, the cell de-allocated its

proteome to most of its enzymes, as log2(FCi,j) < 0 for most values of i, j.

However, there were cases with strong increases in allocation (log2(FCi,j) >

0). For example, when cofactors were prioritised, there were strong increases

in biosynthesis of unsaturated fatty acids and in riboflavin metabolism.

Additionally, there were strong increases in oxidative phosphorylation when

carbohydrate, DNA, RNA, cofactor, or ion was prioritised.

2. When I modelled a cell that prioritises lipid biosynthesis, the model showed

the least change relative to the parallel (non-ablated case), compared to

other biomass components. The changes included increases of fluxes in the

subsystems of fatty acid biosynthesis, glycerolipid metabolism, glycerophos-

pholipid metabolism, inositol phosphate metabolism, steroid biosynthesis,

and terpenoid backbone. Given that these subsystems are directly related



5.3. Ablating pseudometabolites from the biomass reaction 168

lip
id

pr
ot

ei
n

ca
rb

oh
yd

ra
te

DNA
RNA

co
fa

ct
or

io
n

Alanine, aspartate and glutamate metabolism

Arginine and proline metabolism

Arginine biosynthesis

Biosynthesis of unsaturated fatty acids

Citrate cycle (TCA cycle)

Cysteine and methionine metabolism

Fatty acid biosynthesis
Folate biosynthesis

Fructose and mannose metabolism

Galactose metabolism
Glutathione metabolism

Glycerolipid metabolism

Glycerophospholipid metabolism

Glycine, serine and threonine metabolism

Glycolysis / gluconeogenesis
Histidine metabolism

Inositol phosphate metabolism

Lysine metabolism

N-glycan biosynthesis
Nicotinate and nicotinamide metabolism

One carbon pool by folate
Oxidative phosphorylation

Pentose phosphate pathway

Phenylalanine, tyrosine and tryptophan biosynthesis

Purine metabolism

Pyrimidine metabolism

Pyruvate metabolism

Riboflavin metabolism

Starch and sucrose metabolism

Steroid biosynthesis

Sulfur metabolism

Terpenoid backbone biosynthesis

Tryptophan metabolism

Tyrosine metabolism
Valine, leucine and isoleucine metabolism

tRNA metabolism

20

15

10

5

0

5

10

15

lo
g

2
(F

C
)

Figure 5.3: log2(FC) of enzyme usage reaction flux (Eq. B.5) in rounds of ablation,
according to biomass component prioritised. Each column shows the component
that remains in each round of pseudometabolite ablation (labels on top). Each row
represents an enzyme, and rows are grouped by subsystem (labels on left). Colours
represent log2(FC) (defined in Eq. 5.3) showing how enzyme usage fluxes change
in rounds of ablation: green shows an increase, while pink shows a decrease. Rows
in which | log2(FC)| < 11 for all biomass components are not shown to restrict
the number of reactions (n = 3897) for visualisation.
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to lipid metabolism, such changes were expected. In addition, during lipid

biosynthesis, the model showed decreases of fluxes in oxidative phosphoryla-

tion, the TCA cycle, and in amino acid metabolism, with fluxes varying

depending on the amino acid.

3. When I modelled a cell that prioritises protein biosynthesis, the model

showed small increases in fluxes associated with amino acid metabolism,

tRNA metabolism, and oxidative phosphorylation. Such increases were ex-

pected as these led to production of substrates that are required for trans-

lation. Conversely, when other biomass components (carbohydrate, ion,

DNA, RNA, and cofactor) were prioritised, there were decreases in fluxes

in glycine, serine, and threonine metabolism.

4. When I modelled a cell that prioritises carbohydrate biosynthesis, the model

showed increases in fructose metabolism, mannose metabolism, N-glycan

biosynthesis, and starch and sucrose metabolism. This was expected given

that these reactions relate directly to pathways for synthesis of carbo-

hydrates.

5. When I modelled a cell that prioritises RNA biosynthesis, the model showed

increases in the purine metabolism and pyrimidine metabolism subsystems,

along with a mixed picture in the pentose phosphate pathway. The increases

were expected given the presence of purines and pyrimidines in RNA and

the role of the pentose phosphate pathway in generating the precursors

for these compounds. However, these subsystems showed weak decreases in

flux when DNA is prioritised, though the enzyme usage flux profile overall

is similar to when RNA is prioritised.

Because the changes of fluxes reflect cellular biochemistry, results thus validate

ablation of biomass components as a method to simulate sequential synthesis of

biomass components by the cell.



5.4. Estimating timescale of biosynthesis 170

5.4 Estimating timescale of biosynthesis

To evaluate whether sequential or parallel synthesis of biomass components offers

a time advantage during cell growth, I estimated the timescale of biosynthesis for

either resource allocation strategy (Fig. 5.4).

Figure 5.4: Estimated synthesis times of biomass components, from ablation (blue
bars) and from scaling doubling time by mass fraction (red bars). Bars under ‘all
biomass’ indicate (blue) Tseq (defined in Eq. 5.9) and (red) the doubling time t0
(defined in Eq. 5.5). Other bars indicate (blue) tseq,i (defined in Eq. 5.6) and (red)
tpar,i (defined in Eq. 5.7); Tpar is the greatest tpar,i.

Based on the objective function of the unmodified model, the doubling time was

computed as follows:

t0 =
ln 2

λ0

(5.5)

where t0 is the doubling time and λ0 is the growth rate, equivalent to the optimised

flux of the biomass reaction.
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Based on the growth rates computed in rounds of ablation (Fig. 5.2), the synthesis

time of each biomass component was computed as follows:

tseq,i = fi ·
ln 2

λseq,i

(5.6)

where i represents each of the biomass components (lipids, proteins, carbohydrates,

DNA, RNA, cofactors, and ions), tseq,i is the predicted time for synthesis of

each biomass component, fi is the mass fraction of each biomass component

(Table B.3), and λseq,i is the optimal flux of the ablated biomass reaction. In Eq.

5.6, fi acts as a scaling factor so that the synthesis time of a biomass component

is proportional to the proportion of the biomass component in dry cell mass.

For comparison, I computed estimates of the time for each biomass component,

assuming that it is proportional to the mass fraction:

tpar,i = fi · t0 (5.7)

where t0 is the doubling time found in Eq. 5.5.

Eq. 5.7 assumes that different biomass components require the same synthesis

time per unit of mass. Challenging this assumption is the fact that protein

synthesis is a metabolically expensive process, with translation requiring many

precursors and a series of catalytic processes, compared to the polymerisation of

other macromolecules. Such complex translation machinery creates multiple rate-

limiting steps for protein synthesis (Shah et al., 2013), which also vary depending

on the gene each protein is expressed because of regulatory elements (Lahtvee

et al., 2017) and because of amino acid composition (Y. Chen & Nielsen, 2022).

So, per unit of mass, protein synthesis may require more time than the synthesis

of other biomass components.
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To evaluate the assumption that synthesis time is proportional to mass fraction,

the inferred synthesis times can be compared to findings from previous studies.

However, model estimates give a large range of protein synthesis rates — 1900

to 19 500 proteins per cell per second (Seeger et al., 2023) — thus making such

a comparison difficult. In addition, in simulating parallel biosynthesis, it is not

possible to simulate different synthesis rates for different biomass components as

only one objective function is optimised. In the absence of precise time estimates

for the synthesis of biomass components, the assumption that synthesis time is

proportional to mass fraction may be the best assumption for the parallel case,

which is one of two hypothetical scenarios, alongside the sequential case.

To determine whether sequential biosynthesis of biomass components or parallel

biosynthesis of biomass components is advantageous, I defined a ratio τseq/par that

represents the ratio between the total time predicted by ablation and the biomass

component that is predicted to take the most time:

τseq/par =
Tseq

Tpar

(5.8)

where Tseq represents the predicted growth time assuming sequential biosynthesis

and Tpar represents the limiting biomass synthesis time assuming parallel biosyn-

thesis.

The quantities Tseq and Tpar are defined:

Tseq =
∑
i

tseq,i (5.9)

Tpar = argmax
i

tpar,i (5.10)
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Therefore,

τseq/par =
Tseq

Tpar

=
(
∑

i tseq,i)

(argmaxi tpar,i)

=

(∑
i fi ·

ln 2
λseq,i

)
(
fprotein · ln 2

λ0

)
=

(
flipid

λseq,lipid

+
fprotein

λseq,protein

+ · · ·+ fion
λseq,ion

)
· λ0

fprotein

(5.11)

The expression in Eq. 5.11 means that the definition of the τseq/par ratio does not

reduce to a trivial expression and depends on the λ0 and the λseq,i values, which

are independent of each other. A τseq/par < 1 means that synthesising biomass

components in sequence saves more time, and sequential biosynthesis is favoured.

Conversely, τseq/par > 1 indicates that parallel synthesis of biomass components

is favoured as synthesising biomass components in sequence does not save time.

To confirm that the advantage of the sequential biosynthesis strategy is retained

in other genetic backgrounds, I extended the computation τseq/par and related

quantities to models in which genes were deleted. To corroborate results from

Chapter 3, the BY4741 zwf1∆ and BY4742 tsa2∆ strains were simulated — the

latter was substituted for tsa1∆ tsa2∆ because the ecYeast8 model does not

include reactions that correspond to TSA1. The deletions were made by restricting

to zero the reaction fluxes that are associated with the deleted genes in the model.

For BY4741-background strains, supplements were simulated by allowing uptake

of histidine, leucine, tryptophan, methionine and uracil. The same applied to

BY4742-background strains, but lysine uptake replaced methionine uptake.
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Fig. 5.5 shows that τseq/par < 1 still held for auxotrophs and deletion strains,

suggesting that the sequential biosynthesis strategy remained advantageous. As-

suming that temporal scheduling of the synthesis of biomass components during

growth explains the timing of biosynthetic events in the yeast metabolic cycle,

these observations supports results in Chapter 3 which shows that auxotrophs

and deletion strains have YMCs.

Figure 5.5: Estimated synthesis times of biomass components: from ablation and
Tpar, for wild-type (unmodified model), BY4741, zwf∆ in the BY4741 background,
and tsa2∆ in the BY4742 background

5.5 Effect of restricting the enzyme pool

The yeast cell has a finite enzyme-available proteome pool, so it must decide

which enzymes to allocate the greatest proportions of the pool to. To study this

effect using the ecYeast8 model, I imposed a constraint on the enzyme-available

proteome pool by varying the value of the upper limit of the flux epool of the

enzyme pool pseudoreaction (Eq. B.3), taking advantage of a GECKO formalism
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that is easy to modify and interpret. With a smaller epool, the sum of fluxes of

enzyme usage pseudoreactions must decrease, and the model must decide which

enzyme usage pseudoreactions to allocate a higher flux to, modelling the biological

response to a restricted enzyme pool.

Fig. 5.6 shows that constraining the proteome pool available for enzymes leads to a

greater advantage of sequential biosynthesis of biomass components over parallel

biosynthesis. Within the range of e′pool that gives realistic growth rates, this is

evidenced by a decreasing τseq/par ratio if e′pool decreases (Fig. 5.6a). Concurrently,

as e′pool decreases, the wild type growth rate (λ0) decreases linearly to zero and

ablated growth rates (λseq,i) decrease in linear segments independently of each

other and of the growth rate. These observations can be explained by considering

Eq. 5.11 and modelling the changes of λ0 and λseq,i with respect to e′pool/epool as

linear equations (Appendix B.4).

5.6 Effect of carbon and nitrogen sources

To explore whether sequential synthesis of biomass components remains advant-

ageous across nutrient conditions, I investigated how changes in the concentra-

tions of nitrogen (ammonium) and carbon sources (glucose and pyruvate) affected

the resource allocation strategies. Ammonium is the form of nitrogen in minimal

growth media. Glucose is the preferred carbon source for budding yeast, and as

pyruvate is a non-fermentable carbon source, using it as a carbon source would

show how substantial changes to central carbon metabolism affected resource

allocation strategies.
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(a) (b)

(c) (d)

Figure 5.6: Effect of the size of the proteome pool available for enzymes (e′pool)
on (5.6a, 5.6b) τseq/par, the growth rate, and (5.6c, 5.6d) the optimal flux of the
ablated biomass reaction λseq,i in each round of ablation. (5.6a) and (5.6c) show
e′pool/epool ≤ 2, while (5.6b) and (5.6d) show e′pool/epool ≤ 20.

5.6.1 Saturation of exchange reactions

Investigating the effect of carbon and nitrogen sources requires finding ranges

of concentrations of each source to be used in an FBA problem that leads to

biologically informative results. The saturation point of the nutrient, defined as

the concentration of the nutrient at which the growth rate reaches its maximum,

thus serves as a biologically relevant reference point. Although genome-scale

metabolic models have nutrient exchange reactions that simulate the presence

or absence of nutrients, saturation points from experimental studies cannot be

directly used as flux bounds for these reactions because FBA does not account
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for substrate concentrations. Instead, I constrained the flux of exchange reactions

so that the optimised growth rate matched experimental observations, as was

performed in previous FBA-based studies (Elsemman et al., 2022; Famili et al.,

2003).

To model the effect of nutrient concentrations on growth rate, I created saturation

curves that show how the effect of nutrient exchange flux on the objective func-

tion. Figs. 5.7a and 5.7b show that the saturation curves of glucose and pyruvate

had different shapes. In addition, the maximum growth rate on glucose (0.38 h−1)

was greater than the maximum growth rate on pyruvate (0.25 h−1). Furthermore,

Fig. 5.7c shows that the maximum growth rate on the carbon source sets the

saturation point for ammonium.

These growth saturation curves agree with similar studies. Specifically, the growth

saturation curve for glucose (Fig. 5.7a) is similar to that simulated by Elsemman

et al. (2022) using another derivative of the Yeast8 model. The maximum growth

rate on glucose agrees with Domenzain et al. (2022), which used GECKO 2 to

create the ecYeast7 model to predict maximum growth rates on various carbon

sources. Domenzain et al. (2022) did not simulate growth on pyruvate, but a

lower maximum growth rate on pyruvate is consistent with my experimental

observations.
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(a) (b)

(c)

Figure 5.7: Effect of glucose (5.7a), pyruvate (5.7b), and ammonium (5.7c)
exchange reactions on growth rate. The saturation point of exchange reactions is
defined as the flux of an exchange reaction above which the objective function
reaches its maximum.
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5.6.2 Effect of carbon and nitrogen sources on biomass synthesis

strategies

Glucose and ammonium

To assess the effect of glucose and ammonium concentration on biomass synthesis

strategies, I ablated components in the biomass reaction in different nutrient

conditions set by glucose and ammonium exchange fluxes to obtain τseq/par, λ0,

tseq,carbohydrate, and tseq,protein. Additionally, to determine whether the carbon or

nitrogen source is limiting for each of these quantities, I defined the sensitivity at

each nutrient condition (Rglc, Ramm), with respect to each axis i as:

si(Rglc, Ramm) =
Ri

y(Rglc, Ramm)
· ∂y(Rglc, Ramm)

∂Ri

(5.12)

where i indicates glucose (glc) or ammonium (amm), Ri indicates the exchange

rate, glucose (Rglc) or ammonium (Ramm), an (Rglc, Ramm) pair defines a nutrient

condition, and y(Rglc, Ramm) represents the quantity of interest at each nutrient

condition. For a specific nutrient condition (Rglc, Ramm), if sglc(Rglc, Ramm) >

samm(Rglc, Ramm) for a quantity of interest y, then the quantity is more sensitive to

glucose exchange in this condition. Conversely, if sglc(Rglc, Ramm) < samm(Rglc, Ramm),

the quantity is more sensitive to ammonium exchange.

Fig. 5.8b divides the nutrient conditions into three regions according to nutrient

limitation: a glucose-limiting region, an ammonium-limiting region, and a region

where neither glucose nor ammonium is limiting. These regions are determined by

(sglc, samm) vectors. Fig. 5.8a shows that parallel biosynthesis was advantageous

(τseq/par > 1) in two circumstances: when both glucose and ammonium limited

the growth rate, and when ammonium exchange was at saturation while glucose
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exchange is greater than saturation. In contrast, when the growth rate was near

its maximum, where neither glucose nor ammonium was limiting, when glucose

or ammonium exchange increased, sequential biosynthesis became more advant-

ageous (τseq/par < 1).

To link the changes in the values of tseq,carbohydrate and tseq,protein with cellular

biochemistry, Fig. 5.8c and 5.8d show how both values are affected by Rglc and

Ramm. Fig. 5.8c shows that glucose exchange limited carbohydrate synthesis time

in all nutrient conditions, and this observation could be explained by glucose

uptake being directly linked to carbohydrate synthesis. In contrast, Fig. 5.8d

shows that ammonium exchange limited protein synthesis time for most nutrient

conditions, except for conditions in which glucose exchange was very low. This

observation can be explained by the fact that both carbon and nitrogen sources

contribute to protein biosynthesis.

To determine whether changes in the synthesis time of biomass components are

responsible for switching of scheduling strategies between sequential and parallel

biosynthesis, I investigated how Rglc and Ramm affected
tseq,carbohydrate

tseq,protein
. Synthesis

times tseq,i were computed to assess whether the ratio between the synthesis

times differed in different conditions. The ratio
tseq,carbohydrate

tseq,protein
serves as the principal

measure to quantify how tseq,i values change as nutrient conditions change. This

ratio is informative because:

1. Of all biomass components, predicted synthesis times of these biomass

components varied the most as the glucose and ammonium exchange rates

were varied.

2. Each accounts for a large proportion of biomass: protein accounts for 52.5%

and carbohydrate accounts for 36.4% (Table B.3).



5.6. Effect of carbon and nitrogen sources 181

0
.0

6
.5

1
2

.9
1

9
.4

2
5

.8
3

2
.3

3
8

.7
4

5
.2

5
1

.6
5

8
.1

6
4

.5
7

1
.0

7
7

.4
8

3
.9

9
0

.3
9

6
.8

1
0

3
.2

1
0

9
.7

1
1

6
.1

1
2

2
.6

1
2

9
.0

1
3

5
.5

1
4

1
.9

1
4

8
.4

1
5

4
.8

1
6

1
.3

1
6

7
.7

1
7

4
.2

1
8

0
.6

1
8

7
.1

1
9

3
.5

2
0

0
.0

Glucose exchange (% saturat ion)

200.0
193.5
187.1
180.6
174.2
167.7
161.3
154.8
148.4
141.9
135.5
129.0
122.6
116.1
109.7
103.2

96.8
90.3
83.9
77.4
71.0
64.5
58.1
51.6
45.2
38.7
32.3
25.8
19.4
12.9

6.5
0.0

A
m

m
o

n
iu

m
 e

x
ch

a
n

g
e

 (
%

 s
a

tu
ra

ti
o

n
)

0.7

0.8

0.9

1.0

1.1

1.2

R
a

ti
o

(a)

0
.0

6
.5

1
2

.9
1

9
.4

2
5

.8
3

2
.3

3
8

.7
4

5
.2

5
1

.6
5

8
.1

6
4

.5
7

1
.0

7
7

.4
8

3
.9

9
0

.3
9

6
.8

1
0

3
.2

1
0

9
.7

1
1

6
.1

1
2

2
.6

1
2

9
.0

1
3

5
.5

1
4

1
.9

1
4

8
.4

1
5

4
.8

1
6

1
.3

1
6

7
.7

1
7

4
.2

1
8

0
.6

1
8

7
.1

1
9

3
.5

2
0

0
.0

Glucose exchange (% saturat ion)

200.0
193.5
187.1
180.6
174.2
167.7
161.3
154.8
148.4
141.9
135.5
129.0
122.6
116.1
109.7
103.2

96.8
90.3
83.9
77.4
71.0
64.5
58.1
51.6
45.2
38.7
32.3
25.8
19.4
12.9

6.5
0.0

A
m

m
o

n
iu

m
 e

x
ch

a
n

g
e

 (
%

 s
a

tu
ra

ti
o

n
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

G
ro

w
th

ra
te

(b)

0
.0

6
.5

1
2

.9
1

9
.4

2
5

.8
3

2
.3

3
8

.7
4

5
.2

5
1

.6
5

8
.1

6
4

.5
7

1
.0

7
7

.4
8

3
.9

9
0

.3
9

6
.8

1
0

3
.2

1
0

9
.7

1
1

6
.1

1
2

2
.6

1
2

9
.0

1
3

5
.5

1
4

1
.9

1
4

8
.4

1
5

4
.8

1
6

1
.3

1
6

7
.7

1
7

4
.2

1
8

0
.6

1
8

7
.1

1
9

3
.5

2
0

0
.0

Glucose exchange (% saturat ion)

200.0
193.5
187.1
180.6
174.2
167.7
161.3
154.8
148.4
141.9
135.5
129.0
122.6
116.1
109.7
103.2

96.8
90.3
83.9
77.4
71.0
64.5
58.1
51.6
45.2
38.7
32.3
25.8
19.4
12.9

6.5
0.0

A
m

m
o

n
iu

m
 e

x
ch

a
n

g
e

 (
%

 s
a

tu
ra

ti
o

n
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 (

h
o

u
rs

)

(c)

0
.0

6
.5

1
2

.9
1

9
.4

2
5

.8
3

2
.3

3
8

.7
4

5
.2

5
1

.6
5

8
.1

6
4

.5
7

1
.0

7
7

.4
8

3
.9

9
0

.3
9

6
.8

1
0

3
.2

1
0

9
.7

1
1

6
.1

1
2

2
.6

1
2

9
.0

1
3

5
.5

1
4

1
.9

1
4

8
.4

1
5

4
.8

1
6

1
.3

1
6

7
.7

1
7

4
.2

1
8

0
.6

1
8

7
.1

1
9

3
.5

2
0

0
.0

Glucose exchange (% saturat ion)

200.0
193.5
187.1
180.6
174.2
167.7
161.3
154.8
148.4
141.9
135.5
129.0
122.6
116.1
109.7
103.2

96.8
90.3
83.9
77.4
71.0
64.5
58.1
51.6
45.2
38.7
32.3
25.8
19.4
12.9

6.5
0.0

A
m

m
o

n
iu

m
 e

x
ch

a
n

g
e

 (
%

 s
a

tu
ra

ti
o

n
)

0

2

4

6

8

10

T
im

e
 (

h
o

u
rs

)

(d)

0
.0

6
.5

1
2

.9
1

9
.4

2
5

.8
3

2
.3

3
8

.7
4

5
.2

5
1

.6
5

8
.1

6
4

.5
7

1
.0

7
7

.4
8

3
.9

9
0

.3
9

6
.8

1
0

3
.2

1
0

9
.7

1
1

6
.1

1
2

2
.6

1
2

9
.0

1
3

5
.5

1
4

1
.9

1
4

8
.4

1
5

4
.8

1
6

1
.3

1
6

7
.7

1
7

4
.2

1
8

0
.6

1
8

7
.1

1
9

3
.5

2
0

0
.0

Glucose exchange (% saturat ion)

200.0
193.5
187.1
180.6
174.2
167.7
161.3
154.8
148.4
141.9
135.5
129.0
122.6
116.1
109.7
103.2

96.8
90.3
83.9
77.4
71.0
64.5
58.1
51.6
45.2
38.7
32.3
25.8
19.4
12.9

6.5
0.0

A
m

m
o

n
iu

m
 e

x
ch

a
n

g
e

 (
%

 s
a

tu
ra

ti
o

n
)

0.0

0.1

0.2

0.3

0.4

0.5

R
a

ti
o

(e)

Figure 5.8: Effect of glucose and ammonium exchange rates on (5.8a) τseq/par,
(5.8b) growth rate based on unmodified biomass reaction, λ0, (5.8c) predicted
carbohydrate synthesis time, tseq,carbohydrate (5.8d) predicted protein synthesis
time, tseq,protein, and (5.8e) ratio of carbohydrate synthesis time to protein syn-
thesis time, tseq,carbohydrate/tseq,protein. Exchange rates are expressed in percentages
of growth saturation from Fig. 5.7, with black straight lines indicate 100% of
saturation. Contours show regions in which τseq/par > 1. Arrows overlaid on
heatmaps indicate sensitivity of the quantity as a vector (sglc, samm) (Eq. 5.12).
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3. Carbohydrate synthesis has a clear biochemical relationship with the level

of a carbon source. Additionally, protein synthesis has a clear biochemical

relationship with the level of ammonium as amino acids contain amino

groups.

Fig. 5.8e suggests that carbon and nitrogen limitation affect the ratios of syn-

thesis times among biomass components, as shown by the change in the value of

tseq,carbohydrate
tseq,protein

as Rglc and Ramm changed. Specifically, within the glucose-limiting

region,
tseq,carbohydrate

tseq,protein
was at a high and constant value. In contrast, within the

ammonium-limiting region, as Ramm increases,
tseq,carbohydrate

tseq,protein
increased. In addition,

along the boundary of both regions, where glucose and ammonium were both

near-limiting and τseq/par was high,
tseq,carbohydrate

tseq,protein
remained roughly constant. These

observations link synthesis times of biomass components with scheduling strategy.

Specifically, the observations suggest that the ratios of synthesis times alone did

not explain the choice of scheduling strategy, and that total biosynthesis time was

an additional factor.

Pyruvate and ammonium

To investigate the effect of a non-fermentable carbon source on biomass synthesis

strategies, I repeated the investigation using pyruvate as the carbon source.

Results show that the saturation curve of pyruvate controlled the effect of ex-

change rates on scheduling strategies. Fig. 5.9 shows that when pyruvate was the

carbon source, the region of carbon source limitation was larger than when glucose

was the carbon source. This observation reflected the different shapes of the

pyruvate and glucose saturation curves (Fig. 5.7): below growth rate saturation,

the relationship between pyruvate exchange rate and growth rate is linear, while

the relationship between glucose exchange rate and growth rate is not linear. In

other words, on pyruvate, the growth rate reached half of its maximum value
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when the pyruvate exchange rate was half of the value that corresponds to the

maximum growth rate. In contrast, on glucose, when the growth rate reached half

of its maximum value, the glucose exchange rate was well below half of the value

that corresponds to the maximum growth rate.

Fig. 5.9 shows that the relationships between exchange rates and the quantities

τseq/par, λ0, tseq,carbohydrate, and tseq,protein were similar to the glucose-ammonium

case. In other words, when pyruvate was the carbon source, the relationship

between carbon and nitrogen source uptake and the synthesis of carbohydrates

and proteins still determined how scheduling strategies changed according to nu-

trient conditions. Parallel biosynthesis was advantageous in two conditions: when

both pyruvate and ammonium limited the growth rate, and when ammonium

exchange was at saturation while pyruvate exchange was greater than saturation

(Fig. 5.9a). In contrast, sequential biosynthesis was advantageous when neither

pyruvate nor ammonium was limiting.
tseq,carbohydrate

tseq,protein
remained at high values when

pyruvate is limiting or when pyruvate and ammonium were both limiting (Fig.

5.9e). Furthermore, the behaviour of
tseq,carbohydrate

tseq,protein
as nutrient conditions varied

could also be explained by pyruvate exchange limiting carbohydrate synthesis

time (Fig. 5.9c) and by both pyruvate and ammonium exchange limiting protein

synthesis time (Fig. 5.9d).
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Figure 5.9: Effect of pyruvate and ammonium exchange rates on (5.9a) τseq/par,
(5.9b) growth rate based on unmodified biomass reaction, λ0, (5.9c) predicted
carbohydrate synthesis time, tseq,carbohydrate (5.9d) predicted protein synthesis
time, tseq,protein, and (5.9e) ratio of carbohydrate synthesis time to protein syn-
thesis time, tseq,carbohydrate/tseq,protein. Exchange rates are expressed in percentages
of growth saturation from Fig. 5.7, with black straight lines indicate 100% of
saturation. Contours show regions in which τseq/par > 1. Arrows overlaid on
heatmaps indicate sensitivity of the quantity as a vector (spyr, samm) (Eq. 5.12).



5.6. Effect of carbon and nitrogen sources 185

5.6.3 Relationship between proteome allocation and resource al-

location strategy

Glucose and ammonium

The investigation of the effect of carbon and nitrogen sources on scheduling

strategies led to a new hypothesis: the cell favours parallel biosynthesis of biomass

components when the carbon source and the nitrogen source are both limiting,

especially if the associated biomass components share metabolic pathways and if

the conditions dictate similar levels of enzymes. This hypothesis arose from the

observation that the highest τseq/par occurred at the boundary at which both the

carbon source and the nitrogen source were limiting.

To evaluate this hypothesis, I compared the enzyme usage reaction flux vectors

in rounds of ablation between a high τseq/par condition and a low τseq/par condition

created by combinations of glucose and ammonium exchange rates. Enzyme usage

reaction flux vectors show how the cell allocates its finite proteome to enzymes

when each biomass component is prioritised (Section 5.4).

To test whether similarities in proteome allocation to enzymes explain parallel

biosynthesis, Fig. 5.10a shows that when both glucose and ammonium were limit-

ing, the allocation patterns were similar across rounds of ablation, thus explaining

the advantage of parallel biosynthesis of biomass components. This similarity is

quantified in Fig. 5.10b, which shows that parallel biosynthesis exhibited relatively

similar proteome allocation with the synthesis of individual biomass components,

as evidenced by relatively high pairwise Kendall’s τ -b rank correlation coefficients

(mean = 0.38).



5.6. Effect of carbon and nitrogen sources 186

p
a
ra

lle
l

lip
id

p
ro

te
in

ca
rb

o
h
y
d
ra

te

D
N

A

R
N

A

co
fa

ct
o
r

io
n

Biomass component

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154
161
168
175
182
189
196
203
210
217
224
231
238
245
252
259
266
273
280
287
294
301

R
a
n
k

(a)

p
a
ra

lle
l

lip
id

p
ro

te
in

ca
rb

o
h
y
d
ra

te

D
N

A

R
N

A

co
fa

ct
o
r

io
n

parallel

lipid

protein

carbohydrate

DNA

RNA

cofactor

ion

0.50

0.41 0.34

0.27 0.37 0.33

0.34 0.61 0.48 0.51

0.37 0.63 0.50 0.51 0.95

0.36 0.63 0.42 0.44 0.76 0.76

0.38 0.61 0.56 0.67 0.79 0.78 0.71

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir

w
is

e
 K

e
n
d

a
ll'

s 
ta

u
-b

 c
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

(b)

Figure 5.10: For the high τseq/par condition (Rglc = 1.69 mmol g−1
DW h−1, Ramm =

1.05 mmol g−1
DW h−1): (5.10a) changes in enzyme usage reaction flux in rounds of

ablation. Columns show the biomass component prioritised. In each column, rows
represent enzyme usage reactions, arranged in descending order of flux. Colours
identify the reactions, with white indicating reactions that carry zero flux in the
parallel case. (5.10b) Pairwise Kendall’s τ -b rank correlation coefficient (Kendall,
1945) for each pair of enzyme usage flux profiles.
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In contrast, Fig. 5.11a shows that when neither glucose nor ammonium limited

growth, biomass components could be divided into two groups based on enzyme

usage reaction flux vectors. These groups suggest an explanation for sequential

biosynthesis: the cell may synthesise lipids and proteins together in one stage

of its growth cycle, while synthesising carbohydrates, DNA, RNA, cofactors,

and ions together in another stage. The bias towards sequential biosynthesis is

further emphasised by Fig. 5.11b, which shows that parallel biosynthesis exhibited

different proteome allocation compared to the synthesis of individual biomass

components, as evidenced by relatively low pairwise Kendall’s τ -b rank correlation

coefficients compared to Fig. 5.10b (mean = 0.28).
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Figure 5.11: For the low τseq/par condition (Rglc = 16.89 mmol g−1
DW h−1): (5.11a)

changes in enzyme usage reaction flux in rounds of ablation. Columns show the
biomass component prioritised. In each column, rows represent enzyme usage
reactions, arranged in descending order of flux. Colours identify the reactions,
with white indicating reactions that carry zero flux in the parallel case. (5.11b)
Pairwise Kendall’s τ -b rank correlation coefficient (Kendall, 1945) for each pair
of enzyme usage flux profiles.
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Pyruvate and ammonium

To evaluate, in a different carbon source, whether parallel biosynthesis is also

favoured when biomass components share metabolic pathways, I extended the

comparison of enzyme usage reaction flux vectors in rounds of ablation to nutrient

conditions created by pyruvate and ammonium exchange rates.

Similar to the glucose-ammonium investigation, in the high τseq/par condition

where pyruvate and ammonium were limiting, Figs. 5.12a and 5.12b show that

proteome allocation were similar across rounds of ablation, supporting parallel

biosynthesis as a scheduling strategy. However, the results for the low τseq/par case

suggest that grouping of biomass components explains sequential biosynthesis for

only very low τseq/par.

Fig. 5.13a shows that when pyruvate was the carbon source, the contrast of

proteome allocation between biomass components in the low τseq/par condition

was lessened compared to when glucose was the carbon source. This may be

explained by the higher τseq/par in this condition (τseq/par = 0.9), compared to the

τseq/par in the glucose-ammonium investigation (τseq/par = 0.7).

The use of enzyme usage vectors to explain biomass synthesis scheduling strategies

is called into question by the multiplicity of solutions in FBA. Fig. 5.14 shows

that the relationship between exchange rates and measures of similarity between

enzyme usage fluxes when carbohydrate was prioritised and when protein was

prioritised was not continuous.
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Figure 5.12: For the high τseq/par condition (Rpyr = 3.73 mmol g−1
DW h−1, Ramm =

0.90 mmol g−1
DW h−1): (5.12a) changes in enzyme usage reaction flux in rounds of

ablation. Columns show the biomass component prioritised. In each column, rows
represent enzyme usage reactions, arranged in descending order of flux. Colours
identify the reactions, with white indicating reactions that carry zero flux in the
parallel case. (5.12b) Pairwise Kendall’s τ -b rank correlation coefficient (Kendall,
1945) for each pair of enzyme usage flux profiles.
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Figure 5.13: For the low τseq/par condition (Rpyr = 8.89 mmol g−1
DW h−1): (5.13a)

changes in enzyme usage reaction flux in rounds of ablation. Columns show the
biomass component prioritised. In each column, rows represent enzyme usage
reactions, arranged in descending order of flux. Colours identify the reactions,
with white indicating reactions that carry zero flux in the parallel case. (5.13b)
Pairwise Kendall’s τ -b rank correlation coefficient (Kendall, 1945) for each pair
of enzyme usage flux profiles.
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Figure 5.14: Measures of similarity between enzyme usage fluxes in different
nutrient conditions. Cosine distances between the vector of enzyme usage fluxes
when protein is prioritised and the equivalent vector when carbohydrate is
prioritised are shown (5.14a) for glucose-ammonium conditions and (5.14b)
pyruvate-ammonium conditions; smaller distances indicate a greater similarity
between the two conditions. Means of the set of Kendall’s τ -b rank correlation
coefficients between the parallel case and each biomass-prioritised case are
shown (5.14c) for glucose-ammonium conditions and (5.14d) pyruvate-ammonium
conditions; larger mean values indicate a greater similarity between parallel
biosynthesis and individual biomass component synthesis.

This observation is likely explained by the multiplicity of solutions in FBA.

Namely, while FBA finds the optimal value of the objective function, there is no

guarantee that the flux vector v (Eq. 1.2) is equivalent across linear programming

solvers. In sum, although choosing representative nutrient conditions led to an

attractive picture that may confirm the hypothesis that the cell favours parallel

biosynthesis in nutrient limiting conditions if biomass components share metabolic

pathways, the computational limitations of FBA may cast doubts on conclusions.
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5.7 Discussion

This chapter uses a genome-scale model of budding yeast and flux balance analysis

to test whether sequential synthesis of biomass components reflects an adaptation

to limited cellular resources.

My results suggest that ablation of components of the biomass reaction was

a viable method to simulate sequential synthesis of biomass components, as

evidenced by how ablation predicted biologically relevant changes in proteome

allocation to enzymes. In addition, ablation led to a way to estimate the time of

synthesis of biomass components. These times suggest that sequential schedul-

ing of biosynthesis saves time during growth and remains advantageous across

deletion strains.

My results further show that within realistic growth rates, a smaller proteome

pool led to a greater advantage of sequential biosynthesis over parallel biosyn-

thesis. However, parallel scheduling of biosynthesis becomes advantageous in

some nutrient conditions, such as when both carbon and nitrogen sources are

limiting. Further simulations suggest an explanation for this advantage of parallel

biosynthesis: as each biomass component is synthesised, the cell allocates its

proteome pool to enzymes in similar patterns.

The advantage of sequential scheduling of biosynthesis over parallel scheduling of

biosynthesis may explain why yeast cells exhibit metabolic cycles, in which there

is a sequence of synthesising biomass components (Mellor, 2016). Conversely,

the advantage of parallel scheduling of biosynthesis over sequential scheduling

of biosynthesis in nutrient-limiting conditions may explain the metabolic cycle

being less reliably generated and of low quality in some conditions in my obser-

vations. For example, the model predicts an advantage of parallel scheduling of
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biosynthesis when there is low (10-20% saturation) glucose exchange and when

ammonium exchange lies below saturation. This may correspond to low-glucose

conditions in Section 3.4, from which most flavin signals are non-oscillatory. How-

ever, such correspondence is only true when the glucose exchange rate in the model

corresponds to the glucose concentration in the experiment, and experiments to

calibrate the two quantities must be performed to verify this correspondence.

Furthermore, it is possible that implementing conditions not tested by this chapter,

such as highly acidic conditions (J. S. O’Neill et al., 2020), in flux balance analysis

simulations may predict on advantage of parallel scheduling of biosynthesis, thus

explaining the absence of metabolic cycles in such conditions. The metabolic

cycle may thus be an adaptation to a limited proteome pool and having to carry

out the metabolically expensive process of protein synthesis during cell growth

(J. S. O’Neill et al., 2020). Clustering of the synthesis of lipids and proteins in

one group may explain cycling of storage lipids (Campbell et al., 2020), while

clustering of carbohydrate, DNA, and RNA synthesis in another group to group

together processes that require oxidative phosphorylation may explain respiratory

cycles in the YMC (Tu et al., 2005).

However, the limitations of using FBA to investigate resource allocation strategies

in this chapter include multiplicity of solutions and a lack of ability to preform

concentration-dependent, time-dependent, and compartment-dependent simula-

tions. The multiplicity of solutions in FBA makes it challenging to draw conclu-

sions about how quantities derived from flux values apart from growth. These

values in the GECKO model include enzyme usage reaction fluxes, which would

inform proteome allocation strategies. In addition, FBA gives a steady-state

picture of metabolism. To describe changes in fluxes over time, derivatives such as

dynamic FBA (Mahadevan et al., 2002) could be used. Alternatively, to introduce

time-dependence of resource allocation, a phenomenological description of the
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metabolic cycle can be included; such an approach would be equivalent to the

addition of a light-dark cycle as an external oscillator as performed by Reimers

et al. (2017). To further increase the precision of the model and thus its ability

to make predictions, compartmentalisation can be considered (Elsemman et al.,

2022), or resource balance analysis (Goelzer et al., 2011) can be used.

To validate the predictions from flux balance analysis in this chapter with exper-

imental results from Chapter 3, conditions that correspond to an advantage of

parallel scheduling of biosynthesis over sequential scheduling of biosynthesis, and

vice versa, can be applied to yeast cells in a single-cell microfluidics experiment.

Performing such experiments will necessitate calibrating carbon and nitrogen

source concentrations in the nutrient media with exchange rates in the ecYeast8

model. In addition, other nutrient perturbations and genetic perturbations in this

thesis — namely, potassium-deficiency and the zwf1∆ and tsa1∆ tsa2∆ strains

— can be simulated using the modelling approach in this chapter, and can lead

to further cross-validation between the single-cell microfluidics and modelling

approaches used in this thesis. As the precision of the modelling approach is

increased by using derivations of FBA, the results from Chapter 3 can be used

to calibrate such computational methods, and a more precise model can then be

used to predict new nutrient perturbations or genetic perturbations that impair

the metabolic cycle, forming a design-build-test-learn cycle.

The synthesis times predicted by this chapter may inform the period length to be

used to simulate time series as discussed in Chapter 4. In addition, if stochastic

extensions to FBA (Labhsetwar et al., 2017; Tourigny et al., 2021) are used in an

extension to this study, this can lead to a population of time series with different

periods or noise parameters. In such a case, methods to visualise groups in a
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dataset (Section 4.3) or to estimate the period in a population of time series

(Section 4.5) can be used to evaluate whether the population of simulated time

series in this case approximates recorded time series from cells as presented in

Chapter 3.



Chapter 6

Conclusions

Although biological rhythms are crucial for living organisms to control their

physiological processes in response to external conditions, not all biological rhythms

are well-characterised. In contrast to the circadian rhythm and the cell division

cycle, our knowledge of the biochemical basis of the yeast metabolic cycle is

incomplete. It is unclear what mechanism drives cell division-independent cycling

of biosynthesis observed in the yeast metabolic cycle, and it is also unclear what

mechanism is responsible for the adaptation of the yeast metabolic cycle to chan-

ging demands (Zylstra & Heinemann, 2022). Additionally, chemostat-based and

single-cell experiments led to conflicting conclusions about the yeast metabolic

cycle because each type of experiment creates different culture conditions and

have different types of measurements.

The primary goal of this thesis was thus to develop an explanation to reconcile

chemostat and single-cell studies on the yeast metabolic cycle. Specifically, I

developed such explanations through testing whether specific characteristics of

the yeast metabolic cycle as observed in the chemostat could be recapitulated in

single-cell microfluidics. In addition, this thesis aimed to show whether proteomic

constraints could explain why the yeast cell temporally segregates biosynthetic

events as it progresses through the yeast metabolic cycle. This secondary goal

provided a coarse-grained explanation of a model of the yeast metabolic cycle as

a fundamental metabolic adaptation to physiological constraints.
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6.1 Microfluidics and fluorescence microscopy for cel-

lular metabolic cycles

In Chapter 3, I used the ALCATRAS (Crane et al., 2014) single-cell microfluidics

platform to physically separate budding yeast cells and fluorescence microscopy

to monitor the yeast metabolic cycle and the cell division cycle. I showed that

yeast cells independently generated flavin-based single-cell metabolic cycles. In

addition, a specific phase of such cycles likely gated the cell division cycle, as

evidenced by decoupling between the metabolic and cell division cycles during

starvation. I further showed that the metabolic cycle was retained in nutrient per-

turbations and in deletion strains. In particular, I showed that cells generated such

cycles in potassium-deficient conditions, contrary to J. S. O’Neill et al. (2020),

although at a longer period than standard, high-glucose, single-cell conditions.

I also showed that zwf1∆ and tsa1∆ tsa2∆ cells generated flavin cycles whose

waveforms differed from cycles of dissolved oxygen previously observed in the

chemostat. Specifically, I observed that zwf1∆ generated longer flavin cycles than

wild-type cells, contrary to the absence of dissolved oxygen cycles observed by

Tu et al. (2007). Additionally, I observed that tsa1∆ tsa2∆ cells generated flavin

cycles of two main period lengths, contrary to the M-shaped dissolved oxygen

cycles observed by Causton et al. (2015).
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My results suggest that the yeast metabolic cycle is likely an intrinsic cycle in

budding yeast that oscillates within a range of natural frequencies, but the cell

is able to adjust this frequency to respond to nutrient conditions. If conditions

are permissive, the metabolic cycle provides windows of opportunities for the cell

division cycle to be initiated. Otherwise, if conditions are not permissive, the

metabolic cycle continues while the cell division cycle is halted at a gap phase

(G1 or G2/M).

My results further suggest that the presence of sub-populations in the yeast

culture could explain the discrepancy between single-cell and chemostat observa-

tions. The idea of sub-populations that stagger their entry into the yeast metabolic

cycle has been suggested before to explain chemostat observations (Burnetti et

al., 2016), and the presence of genetically identical sub-populations that respond

differently to the same nutrient perturbation has later been shown (Bagamery et

al., 2020). Additionally, genetically identical sub-populations that have different

levels of sensitivities to an inhibitor may also explain chemostat oscillations

(Smith & Waltman, 1995).

To provide more clarity to the role of nutrient storage in the yeast metabolic cycle,

future work may include experiments with strains deficient in lipid synthesis.

Additionally, a feast-and-famine experimental set-up which better emulates che-

mostat conditions could lead to a clearer explanation of previous chemostat-based

studies. The glucose pulses imposed by this set-up may lead to a mathematical

model of coupled oscillations that links the intrinsic yeast metabolic cycle to

extrinsically-imposed oscillations.
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6.2 Analysis of oscillatory time series in the yeast

metabolic cycle

Because the ALCATRAS platform produces large datasets of time series, in

Chapter 4, I developed a series of time series analysis methods. These methods

clean data, visualise groups in a dataset, detect rhythmicity, estimate period-

icity of signals, and detect synchrony between two types of signals. I showed

that a high-pass filter offered good control over the frequency domain of time

series. Subsequently, I showed that dimension-reduction (UMAP) and clustering

(modularity clustering) methods agreed on a division between oscillatory and

non-oscillatory time series in a dataset. Following this, I demonstrated that a

statistical method based on the power spectrum and a support vector classifier

offer modest performances in rhythmicity detection. Additionally, I showed that

the autocorrelation function could be used to estimate periodicity and noise

parameters from synthetic data. However, my current implementation of the

autocorrelation function has limited ability in characterising noise parameters

from real data. Finally, I showed that the cross-correlation function could be

used to quantify the shift of one type of time series relative to another, across a

population of paired time series

Rhythmicity detection is complicated by its different definitions depending on the

approach — reflected in the variety of rhythmicity detection methods compared

in Chapter 4. From a signal processing perspective, it can be defined as finding

a strong signal within a range of expected frequencies (Zieliński et al., 2014).

However, from a data science perspective, rhythmicity detection can be seen as

identifying the values of a set of time series features that best discriminate between

non-oscillatory and oscillatory time series, which I defined visually.
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To improve the usefulness of the time series analysis methods, further refinement

is needed. To make the clustering methods and the support vector classifier

generalisable, we require a large enough dataset of signals that includes a variety

of oscillation types and shapes, and hyperparameter tuning. Furthermore, to

improve the ability of the autocorrelation function to infer noise properties of real

data, a broader range of noise parameters should be simulated. Such simulations

would provide additional information that leads to a more precise relationship

between noise parameters and the shape of the autocorrelation function. A precise

way to detect of noise parameters can then be useful to compare the noise from

different environmental conditions and from imaging methods.

With the improvements in place, the methods developed in Chapter 4 can form

a powerful time series analysis pipeline for oscillatory signals from any natural

phenomenon. For example, the methods can detect rhythmicity in the time series

presented in Chapter 3. In addition, to test whether there are sub-populations

of cells that have different metabolic cycling behaviours among a genetically

homogeneous culture, methods to visualise groups in a dataset of time series

(Section 4.3) can be used if there are natural divisions within an experiment that

suggest biologically relevant sub-populations.

6.3 Modelling yeast biosynthesis strategies under con-

straints

Finally, in Chapter 5, I used an enzyme-constrained genome-scale model of bud-

ding yeast and flux balance analysis to address whether a limited proteome pool

leads to a preference of sequential biosynthesis over parallel biosynthesis. In this

chapter, I used the novel approach of ablating components of the biomass reaction
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to simulate temporal segregation of biosynthesis, and devised a time ratio that

indicates whether sequential or parallel biosynthesis was more advantageous.

I showed that sequential scheduling of biosynthesis was advantageous across

deletion strains, and became more advantageous if the proteome pool was smaller.

This prediction agrees with the presence of single-cell metabolic cycles in the

zwf1∆ and tsa1∆ tsa2∆ strains as reported in Section 3.6.

However, I also showed that parallel scheduling of biosynthesis became advant-

ageous when both carbon and nitrogen sources were limiting. This observation

may be explained by the synthesis pathways across different biomass components

sharing enzymes. This observation also agrees with experimental observations;

specifically, the low-glucose conditions discussed in Section 3.4 fall in a region of

parallel scheduling of biosynthesis being advantageous and thus may explain the

lack of robustness of metabolic cycles in such conditions.

The advantage of sequential biosynthesis may explain why the yeast cell sequen-

tially schedules biosynthesis of biomass components across phases of the yeast

metabolic cycle, even when such sequential scheduling is not needed to coordinate

events of the cell division cycle — e.g. when the metabolic cycle proceeds without

cell division during starvation. Furthermore, the advantage of parallel biosynthesis

in some conditions suggests that the metabolic cycle may cease to occur if nutrient

conditions are too harsh, in concordance with studies that suggest disappearance

of the metabolic cycle in extreme conditions (J. S. O’Neill et al., 2020). To improve

model predictability, this study could be extended by using derivations of flux

balance analysis that account for compartmentalisation or temporality, such as

dynamic flux balance analysis. In addition, derivations that account for stochastic
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variation in metabolism can be used to estimate periods and noise parameters of

metabolic oscillations, which can then be used to generate synthetic time series

that can in turn be characterised using time series analysis methods discussed in

Chapter 4.

6.4 Summary and broader context of thesis

Put together, single-cell analysis of flavin-based yeast metabolic cycles (Chapter 3)

and modelling of the metabolism of budding yeast (Chapter 5) may provide a

mechanistic explanation for such an under-characterised biological rhythm. Such

insights may lead to a biochemical mechanism for the autonomous generation

of the yeast metabolic cycle and for its response to nutrient conditions. The

biochemistry of the yeast metabolic cycle could then be modelled using techniques

such as flux balance analysis. In addition, robust time series analysis methods

(Chapter 4) would be able to discover classes of oscillations within a microfluidics

experiment that could correspond to sub-populations in the culture. Identification

of such sub-populations could then potentially reconcile results of single-cell and

chemostat experiments.

Biological rhythms are an important physiological adaptation of all living organ-

isms. This thesis, in sum, shows the robustness of the yeast metabolic cycle and

relates it to resource allocation strategies, thus potentially shedding light on what

could be a fundamental biological process.

The presence of the yeast metabolic cycle leads to a question: what benefits of

biological oscillations justify their existence? The benefits of the circadian rhythm

and the cell division cycle are clear: circadian rhythms synchronise physiolo-

gical processes to the light-dark cycle, while the cell division cycle coordinates
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resource-intensive processes with the presence of nutrient stores and maintains

genetic fidelity. In the yeast metabolic cycle, it has been proposed that sequential

scheduling of biosynthesis optimises the use of the limited proteome for cell growth

(J. S. O’Neill et al., 2020; Takhaveev et al., 2023) so that biomass components are

synthesised ‘just-in-time’ for when they are required for phase of the cell division

cycle (Zylstra & Heinemann, 2022). However, the continued presence of the yeast

metabolic cycle when the cell division cycle is halted implies that the metabolic

cycle has functions other than control of the cell division cycle. Alternatively, the

metabolic cycle may function as a environment-sensitive background rhythm to

ensure that just-in-time biosynthesis for the cell division cycle can be switched on

rapidly, as supported by my observation of rapid responses of cells to restoration

of glucose after starvation.

Furthermore, the common control features of the yeast metabolic cycle and other

biological rhythms may reflect a common evolutionary or functional origin. The

yeast metabolic cycle may be mediated via post-translational modifications, as

evidenced by how the proteome shows far less cyclic variation than the tran-

scriptome (Feltham et al., 2020) or the metabolome (J. S. O’Neill et al., 2020).

Specifically, studies have highlighted the role of cycles of peroxiredoxin oxidation

in the integrity of the yeast metabolic cycle in chemostats (Amponsah et al., 2021;

Causton et al., 2015), while other studies highlight the importance of chromatin

remodelling in the metabolic cycle (Gowans et al., 2018; Nocetti & Whitehouse,

2016).

Continued cycles of peroxiredoxin oxidation have also been observed in circadian

rhythms of transcription-disabled Ostreococcus tauri cells (J. S. O’Neill et al.,

2011) and DNA-lacking human red blood cells (J. S. O’Neill & Reddy, 2011).

Furthermore, human red blood cells also exhibit NADH/NADPH and ATP cycles

that are independent of the glycolytic cycle (J. S. O’Neill & Reddy, 2011),
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similar to the yeast metabolic cycle (Papagiannakis et al., 2017). In addition, the

glycolytic cycle is regulated through solely biochemical means (Ghosh & Chance,

1964; Higgins, 1964), so this cycle may represent a basal mechanism of regulation

of biological rhythms. Such similarities, across a range of biological kingdoms,

thus strongly suggest a non-genetic common origin of biological rhythms.



Appendix A

Time series

A.1 catch22 features

Table A.1 lists catch22 features.

A.2 UMAP hyperparameters

UMAP (McInnes et al., 2020) is a dimension reduction method which aims to

find a global manifold structure of the input observations and computes a low-

dimension embedding that preserves the structure of the manifold.

UMAP has several hyperparameters, of which four have major effects on the

embedding:

1. The number of neighbours (n) to consider when approximating the local

metric controls how the method balances local and global structure in the

data. If this parameter takes low values, the algorithm concentrates on very

local structure, potentially to the detriment of the big picture. As the value

increases, the algorithm ‘glues’ more nodes together to form clusters.

2. The largest embedding dimension (d) controls the number of dimensions

the data is reduced to. In other words, it controls whether the resulting

map is one-dimensional, two-dimensional, three-dimensional, or of higher

dimensions.
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Feature name Description

DN_HistogramMode_5 Mode of z-scored distribution (5-bin his-
togram)

DN_HistogramMode_10 Mode of z-scored distribution (10-bin his-
togram)

SB_BinaryStats_mean_longstretch1 Longest period of consecutive values
above the mean

DN_OutlierInclude_p_001_mdrmd Time intervals between successive ex-
treme events above the mean

DN_OutlierInclude_n_001_mdrmd Time intervals between successive ex-
treme events below the mean

first_1e_ac First 1/e crossing of autocorrelation
function

firstMin_acf First minimum of autocorrelation func-
tion

SP_Summaries_welch_rect_area_5_1 Total power in lowest fifth of frequencies
in the Fourier power spectrum

SP_Summaries_welch_rect_centroid Centroid of the Fourier power spectrum
FC_LocalSimple_mean3_stderr Mean error from a rolling 3-sample mean

forecasting
CO_trev_1_num Time-reversibility statistic,

⟨(xt+1 − xt)
3⟩t

CO_HistogramAMI_even_2_5 Automutual information, m = 2, τ = 5
IN_AutoMutualInfoStats_40_-

gaussian_fmmi

First minimum of the automutual in-
formation function

MD_hrv_classic_pnn40 Proportion of successive differences ex-
ceeding 0.04σ

SB_BinaryStats_diff_longstretch0 Longest period of successive incremental
decreases

SB_MotifThree_quantile_hh Shannon entropy of two successive letters
in equiprobable 3-letter symbolization

FC_LocalSimple_mean1_tauresrat Change in correlation length after iterat-
ive differencing

CO_Embed2_Dist_tau_d_expfit_-

meandiff

Exponential fit to successive distances in
2-d embedding space

SC_FluctAnal_2_dfa_50_1_2_logi_-

prop_r1

Proportion of slower timescale fluc-
tuations that scale with DFA (50%
sampling)

SC_FluctAnal_2_rsrangefit_50_1_-

logi_prop_r1

Proportion of slower timescale fluctu-
ations that scale with linearly rescaled
range fits

SB_TransitionMatrix_3ac_-

sumdiagcov

Trace of covariance of transition matrix
between symbols in 3-letter alphabet

PD_PeriodicityWang_th0_01 Periodicity, based on first peak of auto-
correlation function, satisfying certain
conditions (Wang et al., 2007)

Table A.1: catch22 features, adapted from Lubba et al. (2019).
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3. The minimal distance (min dist) controls the desired separation between

close points in the embedding space. Specifically, this parameter controls

how tightly the algorithm is allowed to pack points together. With low

values, the visualisation forms ‘clumps’.

4. The previous hyperparameters are numerical, but the metric hyperpara-

meter instead specifies the distance metric that is used to compute distances

in the ambient space of the input data. For example, this metric can be the

Euclidean distance, the cosine distance, or other metrics used to compute

the distances between two vectors of numerical data.

A.3 Classification pipeline

In machine learning, classification is defined as the process of identifying a cat-

egory that a piece of input data belongs to. In this section, the classification task

is identifying whether a time series (input data) is oscillatory (belongs to one

category of two) or non-oscillatory (belongs to the other category of two).

A typical classification pipeline can be described by the following steps:

1. Pre-processing of data: Input data are cleaned or normalised. For example,

to classify oscillatory time series, the input time series may be normalised

to give similar dynamic ranges.

2. Labelling: Each piece of input data has a label assigned to it to denote

which category it belongs to. For example, to classify oscillatory time series,

a human can subjective assign the label ‘0’ for non-oscillatory time series

and ‘1’ for oscillatory time series, for a total of two categories.
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3. Featurisation: Input data are converted to feature vectors in the process of

featurisation. This process uses domain knowledge related to the type or

origin of the data to define characteristics of the data that may be useful

for classification.

4. Train-test split: The input data are then randomly divided into a training

data set and a test data set.

5. Training of model: The machine learning model is then fit on the (featurised)

training data set and its labels to fit parameters in the model.

6. Evaluation of model on test dataset: The model, trained on the training

dataset, is used to predict the labels of data in the (featurised) test data

set. The performance of the model is then evaluated on the test data set.

This evaluation is based on computing quantities that express how well the

model assigns labels to data, compared to the labels defined earlier.

A.4 Gillespie algorithm for stochastic chemical sys-

tems

To define the Gillespie algorithm (Gillespie, 2007), consider such a system with

M reactions R1, . . . , Rj, . . . RM involving N species S1, . . . , Si, . . . SN in a fixed

volume V at thermal equilibrium. Let Xi(t) represent the number of molecules of

Si at time t, and the state vector

X(t) = [X1(t), . . . , XN(t)] (A.1)

thus gives the state of the system at any given time t.
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Each reaction Rj is described by two quantities:

1. A state-change vector vj = [v1,j, . . . , vN,j] which defines how the stoi-

chiometry of the system changes if the reaction occurs. vi,j represents the

change in the stoichiometry of Si when Rj occurs.

2. A propensity function aj(x), which gives the probability, that one Rj reac-

tion occurs in the volume V within the following short time interval [t, t+dt),

given the state X(t) = x.

The definition of the propensity function aj(x) differs depending on the reaction.

For a unimolecular reaction (S1 −−→ P),

aj(x) = kjX1 (A.2)

For a bimolecular reaction with two different species (S1 + S2 −−→ P),

aj(x) =
kj
V
X1X2 (A.3)

And finally, for a bimolecular reaction with two molecules of the same species

(S1 + S1 −−→ P),

aj(x) =
kj
V
X1(X1 − 1) (A.4)

Where, in all cases, kj is the rate constant of reaction Rj.
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The Gillespie algorithm aims to predict the temporal evolution of the state vector

given the initial state X(t0) = x0. It does so by iteratively choosing the next

reaction that occurs, based on its probability, and then choosing its firing time

based on a propensity function. Combining these simulations gives a trajectory

of state vectors across the time course of interest. In detail, the direct Gillespie

algorithm can be defined as stated in Algorithm 1:

Algorithm 1: Direct method of the Gillespie algorithm

Input: Stochastic model (with species S1, . . . , Si, . . . SN and reactions
R1, . . . , Rj, . . . RM , along with a state-change vector vj and a rate
constant ki for each reaction Rj); initial time t0; and initial model
state X(t0) = x0

Output: Trajectory of state vectors X(t), with t taking discrete values in
[t0, tmax]

while t < tmax do
Calculate the propensities aj(x) based on the current state x;
Calculate the combined propensity a0(x) =

∑
j aj(x);

Generate two random numbers r1 and r2, both from the uniform
distribution U(0, 1);

Choose the next reaction Rj, with j given by the smallest integer that
satisfies

∑j
j′ aj′(x) > r1a0(x);

Calculate the time to the next reaction τ = 1
a0(x)

ln( 1
r2

);
Simulate the next reaction by updating the state vector x← x + vj and
store the new vector in X(t);

Update the time by t← t + τ and store the new time;

end
return Trajectory of state vectors X(t) for a vector of times t;



Appendix B

Flux balance analysis

B.1 Modifications of chemical reaction in GECKO,

general cases

To illustrate how GECKO modifies chemical reactions, consider a simple example,

a reaction Rj catalysed by enzyme Ei:

A + B
Ei−−→ C + D (B.1)

To apply the constraints described by Eq. 5.2, the chemical reaction in Eq. B.1

is modified by adding a term:

nijEi + A + B −−→ C + D (B.2)

with the stoichiometric coefficient nij = 1/kij
cat. GECKO takes kcat values from

BRENDA (Chang et al., 2021).

This transformation, adding the enzyme as a pseudometabolite, is based on the

intuition that the system uses some amount of enzyme at a specific time to

catalyse the flux through the reaction. Slightly different formalisms are applied

to reversible reactions, isozymes, promiscuous enzymes, and enzyme complexes

(Appendix B.2).
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To constrain overall enzyme levels in the model, GECKO defines a pseudoreaction

ERpool : ∅ −−→ Epool (B.3)

where Epool is a pseudometabolite that represents the proteome pool available for

enzymes. This pseudoreaction has a flux

epool ≤ (Ptotal − Pmeasured) · f · σ (B.4)

in units of g g−1
DW, where Ptotal is the total protein fraction with respect to the dry

weight of the cell, Pmeasured is the protein fraction of proteins whose weight are

accounted for in the model, based on proteomic data, f represents the fraction

of proteins that are enzymes, and σ is a parameter that represents the average

saturation of enzymes. ecYeast8.6.0 assumes parameter values of f = 0.5, Ptotal =

0.5, and σ = 0.5. If no proteomic data is used, as is the case in this thesis,

Pmeasured = 0.

Defining such parameters is a judgement call, especially when the protein fraction

varies across growth rates (Elsemman et al., 2022), but f = 0.5 is close to

the protein mass fraction of ecYeast8.6.0. Subsequently, GECKO changes the

carbohydrate composition based on the assumption that a change in the amino

acid composition is offset by the reverse change in the carbohydrate composition;

experimental data justifies this assumption (Nissen et al., 1997).

Then, for each enzyme Ei, GECKO defines enzyme usage pseudoreactions of the

form

ERi : MWi Epool −−→ Ei (B.5)
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where MWi represents the molecular weight of the enzyme in units of g mmol−1.

The flux of enzyme usage pseudoreactions are defined in units of mmol g−1
DW.

GECKO takes enzyme data from SWISSPROT (The UniProt Consortium, 2023)

and KEGG (Kanehisa et al., 2023), including molecular weight of proteins and

associated pathways.

Taken together, the modelled cell thus has an enzyme pool in terms of a mass

fraction of the cell’s dry weight, and the modelled cell allocates certain fractions

of this mass to the synthesis of each enzyme at steady-state. The mass of each

enzyme in the cell determines the amount (in moles) of each enzyme and therefore

its catalytic activity.

B.2 Modifications of chemical reactions in GECKO

for non-simple cases

GECKO modifies chemical reactions in a genome-scale model so that enzymes are

expressed as metabolites that take part in reactions. Section 5.2.1 describes how

this was performed for the simple case of a singular chemical reaction and one

enzyme having a one-to-one association. Slightly different formalisms are applied

to reversible reactions, isozymes, promiscuous enzymes, and enzyme complexes.

Namely:

• Reversible reactions are modelled as the forward and reverse reactions

separately.

• For isozymes, the original reaction is copied multiple times corresponding

to the number of reactions that the isozyme catalyses. Each has an isozyme

catalysing the reaction. In addition, there is an ‘arm’ reaction to act as an

intermediate between the substrate and the products.
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• No actions are needed for promiscuous enzymes.

• Enzyme complexes are modelled as one reaction that uses all subunit pro-

teins that all share the same kcat value.

B.3 Computing molecular weights of pseudometabol-

ites in ecYeast8

In genome-scale metabolic models, mass fractions are represented in the biomass

reaction, set as the objective function, which is defined as:

f1M1 + f2M2 + · · · + fnMn −−→ B (B.6)

where M1 . . .Mn represent the chemical species that make up the cell’s biomass,

the stoichiometric coefficients f1 . . . fn represent the mass fraction of each species

in units of g g−1
DW, and B represents biomass. If a chemical species Mi has a mass

fraction fi, then 1 g of cell dry weight has fi g of chemical species Mi.

In the ecYeast8 model, the mass fraction of biomass components cannot simply

be obtained by taking the stoichiometric coefficients (fi in Eq. B.6) from the

objective function. This is because the objective function of Yeast8 does not

conform to this format, and instead contains pseudometabolites. This formalism

can be expressed as:

f1MB,1 + · · · + fnMB,n + fn+1P1 + · · · + fn+kPk −−→ B

fP1,1MP1,1 + · · · + fP1,nMP1,n −−→ P1

. . .

fPk,1MPk,1 + · · · + fPk,nMPk,n −−→ Pk

(B.7)
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where each M is a chemical species with a defined molecular weight, each P

is a pseudometabolite, and each f is a stoichiometric coefficient. The object-

ive function remains the reaction that produces B, but some chemical species

MB,1 . . .MB,n are retained in the objective function, while other chemical species

are replaced by pseudometabolites P1 . . . Pk. The reactions that produce P1 . . . Pk

are isa reactions. isa reactions define pseudometabolites by having chemical

species with known molecular weights as reactants, with their stoichiometric coef-

ficients representing abundance in mmol g−1
DW. In Yeast8, the objective function

is defined as:

47.5883 atp_c + 47.5883 h2o_c + lipid_c + protein_c + carbohydrate_c

+ dna_c + rna_c + cofactor + ion

-> 47.5883 adp_c + biomass_c + 47.5883 h_c + 47.5883 pi_c

Here, there are seven pseudometabolites: lipid, protein, carbohydrate, DNA, RNA,

cofactor, and ion.

As the ecYeast8 model does not specify the molecular weights of these pseudo-

metabolites, in order to obtain the mass fraction of each biomass component rep-

resented by the pseudometabolites, I treated each pseudometabolite as a chemical

species and calculated its molecular weight by assuming mass balance (Chan et

al., 2017; Dinh et al., 2022; Takhaveev et al., 2023). Namely, I assumed that in

reactions that produce the pseudometabolites, there is conservation of mass, and

therefore:

nr∑
r=j

mrcr =

np∑
p=i

mpcp (B.8)
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where s = 1, . . . ns represents substrates of the reaction in question, p = 1, . . . np

represents products. mr represents molar mass of reactant r, mp represents molar

mass of product p, cr represents stoichiometric coefficient of reactant r, and cp

represents stoichiometric coefficient of product p.

The resulting molecular weight will thus represent the mass fraction of each

biomass component in units of g g−1
DW.

B.3.1 Carbohydrate, DNA, RNA, cofactor, and ion pseudometa-

bolites

Computing the molecular weights of the carbohydrate, DNA, RNA, cofactor, and

ion pseudometabolites is straightforward. This is because the equations similarly

have reactants with molecular weights specified in the model and only the pseudo-

metabolite, the sole product, does not have a molecular weight specified. In such

cases, Eq. B.8 can be applied directly, i.e. the molecular weight of the pseudo-

metabolite is equal to
∑nr

r=j mrcr, where mr values are taken directly from the

molecular weights specified in the model. The results for these pseudometabolites

are shown in Table B.1.

B.3.2 Protein pseudometabolite

Other metabolites were less straightforward. To compute the molecular weight of

the protein pseudometabolite, I inspected reaction r_4047:

0.57284 Ala-tRNA(Ala) + 0.200644 Arg-tRNA(Arg) + 0.126979 Asn-tRNA(Asn)

+ ... + 0.330369 Val-tRNA(Val)

-> 0.57284 tRNA(Ala) + 0.200644 tRNA(Arg) + 0.126979 tRNA(Asn)

+ ... + 0.330369 tRNA(Val) + protein
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ID Reaction
Computed molecular
weight (g mol−1)

r_4048

0.684535 (1->3)-beta-D-glucan

+ 0.228715 (1->6)-beta-D-glucan

+ 0.330522 glycogen + 0.650171 mannan

+ 0.126456 trehalose

-> carbohydrate

350.37

r_4050

0.0036 dAMP + 0.0024 dCMP + 0.0024 dGMP

+ 0.0036 dTMP

-> DNA

3.90

r_4049

0.0445348 AMP + 0.0432762 CMP

+ 0.0445348 GMP + 0.0579921 UMP

-> RNA

64.04

r_4598

0.00019 coenzyme A + 1e-05 FAD

+ 0.00265 NAD + 0.00015 NADH

+ 0.00057 NADP(+) + 0.0027 NADPH

+ 0.00099 riboflavin + 1.2e-06 TDP

+ 6.34e-05 THF + 1e-06 heme a

-> cofactor

4.83

r_4599

3.04e-05 iron(2+) + 0.00363 potassium

+ 0.00397 sodium + 0.02 sulphate

+ 0.00129 chloride + 0.00273 Mn(2+)

+ 0.000748 Zn(2+) + 0.000217 Ca(2+)

+ 0.00124254 Mg(2+) + 0.000659 Cu(2+)

-> ion

2.48

Table B.1: Straightforward cases of computing pseudometabolite molecular
weights from pseudoreactions in ecYeast8

In Yeast8, aminoacyl-tRNA and tRNA species do not have molecular weights

specified in the model. This is because their chemical formulas are incompletely

specified in the model as the model uses R to represent the tRNA. For example,

Ala-tRNA(Ala), alanyl-tRNA, is represented as C3H7NOR, and tRNA(Ala) is rep-

resented as RH. As a consequence, the molecular weights of these species cannot

be directly computed from the chemical formula. Because tRNAs are unmodified

during translation, R can be ignored. In other words, I treated R as a chemical
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element of atomic mass 0 when computing mr for each reactant and mp for

each product, leaving only mp for protein undefined. This mp can then be

found by rearranging Eq. B.8, thus giving the molecular mass of the protein

pseudometabolite.

B.3.3 Lipid pseudometabolite

Finally, the lipid pseudometabolite is the least straightforward because the model

does not specify the molecular weights of some of the reactants of the lipid

pseudoreaction. The lipid pseudoreaction is represented in reaction r_2108:

lipid backbone + lipid chain -> lipid

And both lipid backbone and lipid chain have no molecular weight specified.

Reaction r_4065 specifies a lipid chain pseudoreaction, in which lipid chain is

generated:

0.0073947 C16:0 chain + 0.0217019 C16:1 chain + 0.0020726 C18:0 chain

+ 0.000796243 C18:1 chain

-> lipid chain

As all reactants have molecular weights defined in the model, the molecular weight

of lipid chain can be computed from the mass balance of this reaction.

Reaction r_4063 specifies a lipid backbone pseudoreaction, in which lipid back-

bone is generated:

0.000631964 1-phosphatidyl-1D-myo-inositol backbone

+ 0.00243107 ergosterol + 0.000622407 ergosterol ester backbone

+ 0.000135359 fatty acid backbone + ...

-> lipid backbone
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ID Reaction
Computed molecular
weight (g mol−1)

r_3975

palmitate

-> 0.255421 fatty acid backbone

0.256429 C16:0 chain

742.54

r_3976

palmitoleate

-> 0.253405 fatty acid backbone

0.254413 C16:1 chain

744.56

r_3977

stearate

-> 0.283475 fatty acid backbone

0.284483 C18:0 chain

714.49

r_3978

oleate

-> 0.281459 fatty acid backbone

0.282467 C18:1 chain

716.51

Table B.2: ecYeast8 reactions that generate the fatty acid backbone metabol-
ite

The model specifies molecular weights for all species in the reaction that generates

lipid backbone, expect for fatty acid backbone. To compute the molecular

weight of fatty acid backbone, the reactions that produce this species must be

used. Because of SLIMEr, four reactions in the model produce fatty acid back-

bone (Table B.2). The model specifies molecular weights for all species in these

four reactions, except for fatty acid backbone. Therefore, using each chemical

equation, the molecular weight of fatty acid backbone can be solved for by

rearranging Eq. B.8 with parameters defined to match each reaction. However,

the molecular weights computed from each equation are different. Because the

differences are slight, I took the mean of the four weights to give 729.53 g mol−1.

Subsequently, the molecular weight of lipid backbone was computed from this

mean value and the molecular weights of other species involved in the production

of lipid backbone, giving 21.31 g mol−1. With the molecular weights of lipid

backbone and lipid chain defined, the molecular weight of lipid is thus the

sum of the two.
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A summary of molecular weights can be found in Table 2.7.

Subsequently, the mass fraction of each biomass component is computed by

dividing the molecular weight of the corresponding pseudometabolite by the

molecular weight of biomass (Table B.3).

Metabolite fi

Protein 0.524 53
Carbohydrate 0.364 38
RNA 0.066 60
Lipid 0.032 83
Cofactors 0.005 02
DNA 0.004 06
Ions 0.002 58

Table B.3: fi values for each biomass component.

B.4 Mathematical explanation of the effect of restrict-

ing the enzyme pool

To explain how τseq/par increases as the proteome pool shrinks, let τseq/par, given

by Eq. 5.11, depend on x:

τseq/par(x) =

(∑
i

fi
λseq,i(x)

)
· λ0(x)

fprotein
(B.9)

where x = e′pool/epool. The expression in Eq. B.9 takes into account how λ0 and

λseq,i values vary with x, and how fi values are constants.
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We thus obtain:

d τseq/par(x)

dx
=

1

fprotein

d

dx

[(∑
i

fi
λseq,i(x)

)
· λ0(x)

]

=
1

fprotein

[(∑
i

fi
λseq,i(x)

)
· dλ0(x)

dx
+ λ0(x)

d

dx

(∑
i

fi
λseq,i(x)

)]

=
1

fprotein

[(∑
i

fi
λseq,i(x)

)
· dλ0(x)

dx
− λ0(x)

∑
i

(
fi

λseq,i(x)2
· dλseq,i(x)

dx

)]
(B.10)

To explain the increase in τseq/par as e′pool increases, I consider the behaviour of

λ0 and λseq,i values with respect to e′pool in intervals.

With reference to Fig. 5.6, consider 0 ≤ x ≤ 0.5. In this region of x, based on the

observations in the figure, we model λ0 = k0x and λseq,i = kix, where constants

k0, ki > 0. This models how these values initially increase linearly in Fig. 5.6.

Thus, Eq. B.10 becomes:

d τseq/par(x)

dx
=

1

fprotein

[(∑
i

fi
kix

)
· k0 − k0x

∑
i

(
fi

(kix)2
· ki
)]

=
1

fprotein

[
k0
x

∑
i

fi
ki
− k0x

(∑
i

fi
kix2

)]

=
1

fprotein

[
k0
x

∑
i

fi
ki
− k0

x

∑
i

fi
ki

]

= 0

(B.11)

Eq. B.11 thus explains the constant τseq/par in this region.
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Now, consider 0.5 < x ≤ 9. In this region, the trajectories of λseq,i with respect

to time remain linear, but some with changes in slope. In other words, in a

sub-region where the slopes of all λseq,i are constant, we can let: λ0 = k0x and

λseq,i = mix + ci, where k0,mi, ci > 0. Thus, Eq. B.10 becomes:

d τseq/par(x)

dx
=

1

fprotein

[(∑
i

fi
mix + ci

)
· k0 − k0x

∑
i

(
fi

(mix + ci)
2 ·mi

)]

=
k0

fprotein

[(∑
i

fi
mix + ci

)
− x

(∑
i

fimi

(mix + ci)
2

)]

=
k0

fprotein

∑
i

[
fi

mix + ci
− xfimi

(mix + ci)
2

]
=

k0
fprotein

∑
i

[
fici

(mix + ci)
2

]
(B.12)

As fi, ci,mi > 0 for all biomass components i, and k0 > 0, we get
d τseq/par(x)

dx
> 0

regardless of the values that these constants take. Because k0 does not change over

the region of x considered, mi, ci, and x values thus determine the magnitude of

d τseq/par(x)

dx
. If within a region of x, mi and ci values remain constant for all i, then

as x increases,
d τseq/par(x)

dx
should decrease — this was the case, as observed in Fig.

5.6.

Lastly, consider x > 9. In this region, λ0 becomes constant, thus we let λ0 = k0.

We keep λseq,i = mix + ci, and as before, k0,mi, ci > 0. Thus, Eq. B.10 becomes:

d τseq/par(x)

dx
=

1

fprotein

[
0− k0

∑
i

(
fi

(mix + ci)
2 ·mi

)]

= − k0
fprotein

∑
i

[
fimi

(mix + ci)
2

] (B.13)
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This predicts decreasing τseq/par as x increases in this region. Because k0 is

constant in this region, the rate of this decrease is thus controlled by mi and

ci values. As each λseq,i trajectory becomes flat as x increases, each fimi

(mix+ci)
2 term

becomes zero, thus shrinking the magnitude of
d τseq/par(x)

dx
. Finally, as all λseq,i

trajectories become flat at x > 15,
d τseq/par(x)

dx
= 0.
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