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Abstract
The past decade has witnessed advancements in designing efficient algorithms for

approximating the number of solutions to constraint satisfaction problems (CSPs),

especially in the local lemma regime. However, the phase transition for the compu-

tational tractability is not known. This thesis is dedicated to the prototypical prob-

lem of this kind of CSPs, the hypergraph colouring. Parameterised by the number

of colours 𝑞, the arity of each hyperedge 𝑘 , and the vertex maximum degree Δ, this

problem falls into the regime of Lovász local lemma when Δ ≲ 𝑞𝑘 . In prior, however,

fast approximate counting algorithms exist when Δ ≲ 𝑞𝑘/3, and there is no known

inapproximability result. In pursuit of this, our contribution is two-folded, stated as

follows.

• When 𝑞, 𝑘 ≥ 4 are evens and Δ ≥ 5 · 𝑞𝑘/2, approximating the number of hyper-

graph colourings is NP-hard.

• When the input hypergraph is linear and Δ ≲ 𝑞𝑘/2, a fast approximate counting

algorithm does exist.
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Chapter 1

Introduction

Background. The constraint satisfaction problem (CSP) is probably one of the most

important subjects to study in the theory of computing. In fact, many problems can be

cast as CSPs, e.g., Boolean satisfiability problems (SATs), proper colourings of graphs

and hypergraphs, and independent sets, to name a few. In general, deciding if a CSP

instance can be satisfied or not is NP-hard. However, efficient algorithms become

possible when the number of appearances of each variable (usually referred to as the

degree) is not too high. For these instances, the Lovász local lemma [EL75] provides

a fundamental criterion to guarantee the existence of a solution. Although the orig-

inal local lemma does not provide an efficient algorithm, after two decades of effort

[Bec91, Alo91, MR98, CS00, Sri08, Mos09], the celebrated work of Moser and Tardos

[MT10] provides an efficient algorithm matching the same conditions as the Lovász

local lemma. One remarkable aspect of this algorithm in the case of the bounded-

degree 𝑘-SAT problem is that it gives the location of the algorithmic threshold for

finding solutions as the degree varies [KST93, GST16], up to lower-order terms. In

other words, the bounded-degree 𝑘-SAT problem exhibits a computational phase tran-

sition as the degree varies whose threshold is captured by the Lovász local lemma.

Two related computational problems that have been intensively studied recently

is to efficiently sample (almost uniformly) from the solution space, and approximately

count the number of solutions. These two problems are closely related to each other,

and even computationally equivalent for many computational tasks of interest. It is

tempting to think about using the Moser-Tardos algorithm for the sampling problem

too, but unfortunately, its output distribution is far from being uniform, and does

not suit the need of either counting or sampling tasks. Such deficiency is fundamen-

tal, as sampling can be computationally harder than searching in the local lemma

1



2 Chapter 1. Introduction

regime. For example, for the 𝑘-SAT problem where each variable appears in at most

Δ clauses
1
, if Δ ≤ 2𝑘/(e𝑘), then there must be a satisfying assignment by applying

Lovász local lemma, and it can be efficiently found. Yet if Δ ≥ 5 · 2𝑘/2
, there is no

algorithm to sample or approximately count satisfying assignments unless NP = RP
[BGG

+
19], even when no literal contains any negation (also known as the mono-

tone 𝑘-SAT problem, or (weak) hypergraph independent sets).
2

This leaves open the

problem whether there is a local-lemma-type threshold for the computational phase

transition of the sampling and approximate counting problem.

The main focus of this thesis is a prototypical problem which was also the original

setting where the local lemma was developed, the hypergraph colouring problem.

We adopt the standard definitions for hypergraphs; refer to Section 2.1 for details. A

(proper) 𝑞-colouring assigns each vertex with a colour out of 𝑞 possible choices such

that no hyperedge is monochromatic. The hypergraph colouring problem is defined

formally as follows.

Name HypergraphColouring(𝑞, 𝑘,Δ)

Instance A 𝑘-uniform hypergraph 𝐻 with maximum degree at most Δ.

Output A 𝑞-colouring of 𝐻, or ⊥ if there is no such colouring.

Name #HypergraphColouring(𝑞, 𝑘,Δ)

Instance A 𝑘-uniform hypergraph 𝐻 with maximum degree at most Δ.

Output The number of 𝑞-colourings of 𝐻.

In pursuit of efficient algorithms, a common idea is to incorporate the Markov

chain Monte Carlo (MCMC) method. This approach works if (1) the stationary dis-

tribution of the Markov chain is correct, (2) the implementation of the chain is effi-

cient, and (3) the chain converges fast (i.e., having a low mixing time). It is proved to

be successful for uniformly sampling hypergraph independent sets when Δ ≤ 𝑐2𝑘/2

[HSZ19] by using the most straightforward Markov chain called the Glauber dynam-

ics. Note that this matches the NP-hardness result [BGG
+
19] up to constant factors,

and hence we consider it as a sharp computational phase transition for hypergraph

1
Here we treat 𝑘 and Δ as fixed constants, and the problem is parameterised by them. In other

words, each pair of (𝑘,Δ) defines a computation problem.

2
In the spirit of the above footnote, this should be interpret as: for any constant 𝑘 and Δ such that

the condition holds, the (𝑘,Δ)-SAT problem is hard. The input is still bounded-degree, despite the

condition on Δ being a lower bound.
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independent sets. Indeed, the vanilla Glauber dynamics also succeeds sampling hy-

pergraph colourings when Δ < 𝑞−1 and 𝑘 > 4 [BDK08]. However, unlike hypergraph

independent sets, one starts to encounter the so-called disconnectivity barrier as the

degree is going beyond this condition. It is well-known that the state space of the

vanilla Markov chain is no longer connected even when Δ = 𝑐𝑞 for some constant 𝑐

[FM11], let alone getting into the regime of the local lemma where Δ ∼ (𝑞𝑘 )1/𝐶 for

some constant 𝐶 ≥ 1 as 𝑞 and 𝑘 grows.

This connectivity barrier has been bypassed recently by some exciting develop-

ments. These include, the partial rejection sampling method [GJL19], the LP-based

marking/unmarking paradigm [Moi19, GLLZ19, GGGY21, JPV21b], the Markov chain

projection approach [FGYZ21a, FHY21, JPV21a, HSW21], and the lazy sampler [HWY22,

HWY23b, HWY23a]. Specialised to hypergraph colourings, the up-to-date regime one

can achieve is roughly Δ ≲ 𝑞𝑘/3 where the symbol ≲ hides lower order factors. We

list below these algorithms. Note that the threshold for Lovász local lemma is Δ ≲ 𝑞𝑘 .

Reference Algorithm Bound Method

[GLLZ19] FPTAS Δ ≲ 𝑞𝑘/14
Linear programming

[FHY21] FPRAS Δ ≲ 𝑞𝑘/9 Projection

[JPV21b] FPTAS Δ ≲ 𝑞𝑘/7 Linear programming

[HWY23a] FPTAS Δ ≲ 𝑞𝑘/5 Lazy sampler

[JPV21a] FPRAS Δ ≲ 𝑞𝑘/3 Projection

[HSW21] Perfect sampler Δ ≲ 𝑞𝑘/3 Projection

[FGW
+
23a] FPTAS Δ ≲ 𝑞𝑘/3 History backtracking

Table 1.1: Algorithms for hypergraph colourings

The terms FPRAS and FPTAS in the above table are defined in Section 2.5, though

we avoid relying on these definitions when stating our main theorems. In a nut-

shell, both FPRAS and FPTAS approximate the count in fully polynomial time, and

an FPRAS allows randomness while an FPTAS is a deterministic algorithm.

On the other hand, before the recent wave of local lemma inspired sampling algo-

rithms, randomly sampling colourings in linear 𝑘-uniform hypergraphs has already

been studied [FM11, FA17]. A hypergraph is called linear, if any two hyperedges inter-

sect in at most one vertex. Linear hypergraphs are also known as simple hypergraphs

based on the context. In particular, Frieze and Anastos [FA17] gave an efficient sam-
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pling algorithm when the number of colours satisfies 𝑞 ≥ max{𝐶𝑘 log𝑛,500𝑘3Δ
1

𝑘−1 },
where 𝑛 is the number of vertices and 𝐶𝑘 depends only on 𝑘 . Their algorithm is the

standard Glauber dynamics with a random initial (not necessarily proper) colouring.

The logarithmic lower bound on the number of colours is crucial to their analysis,

as it guarantees that there is a giant connected component in the state space so that

connectivity is not an issue.

However, and somewhat surprisingly, it was unclear about the computational

hardness of hypergraph colourings in the local lemma settings prior to this work,

even for the searching problem. The computational phase transition for the hyper-

graph colouring problem is therefore open, unlike the case for the hypergraph inde-

pendent set problem.

Results of this thesis. This thesis strives to narrow the gap for the counting hy-

pergraph colouring problem. The main contribution is therefore two fold.

From the complexity side, we first show that it is NP-hard to find a proper hyper-

graph colouring if 𝑞 ≥ 2, 𝑘 ≥ 2 (but not 𝑞 = 𝑘 = 2), and Δ ≳ 𝑘𝑞𝑘 (see Theorem 4.4), and

to approximately count if 𝑞 ≥ 2, 𝑘 ≥ 4, andΔ ≳ 𝑘𝑞𝑘−1
(see Theorem 4.6). These bounds

almost match the Lovász local lemma threshold. When restricting to linear hyper-

graphs, these two bounds still hold. We remark that the aforementioned algorithmic

result for counting hypergraph independent sets [HSZ19] further improves to Δ ≲ 2𝑘

𝑘2

when restricted to linear hypergraphs. This upper bound on Δ almost matches that

for the searching algorithm [MT10]. In view of this, it seems reasonable to conjecture

that, for linear hypergraphs, such a match also occurs in the colouring problem, and

that the sharp hardness threshold (for both approximate counting and searching) is

Δ ≳ 𝑞𝑘−1
, up to some polynomial factors in 𝑘 . Our hardness result almost matches it.

Our second and main contribution for hardness is to obtain a far more refined

bound for the counting problem that goes well beyond the hardness of finding a

colouring and which we conjecture is asymptotically tight (up to constant factors).

We show in particular that for all even 𝑞 ≥ 4 it is NP-hard to approximate the num-

ber of colourings when Δ ≳ 𝑞𝑘/2 (see Theorem 4.1). The exponent here is in line

with that of the hardness threshold for counting hypergraph independent sets, and

confirms that the “sampling-is-computationally-harder” phenomenon manifests into

local-lemma-type hypergraph problems with non-Boolean domain and which are not

necessarily monotone.

From the algorithmic side, we provide an algorithm with a better regime on linear
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hypergraphs. Roughly speaking, the regime we obtain isΔ ≲ 𝑞𝑘/(2+𝛿) for any fixed 𝛿 >

0 and 𝑘 ≥ 𝑘 (𝛿). (see Theorem 5.1 for the formal parameterisation). This improves the

bound of [JPV21a, HSW21] for general hypergraphs, and does not require unbounded

number of colours, unlike in [FM11, FA17]. For the sampling task, the running time of

our algorithm can be made arbitrarily close to linear in the number of vertices. This,

with a standard counting to sampling reduction, induces an FPRAS for the count

running in quadratic time. Moreover, our algorithm can be modified into a perfect

sampler by applying the bounding chain method [Hub98] based on coupling from the

past (CFTP) [PW96a], following the same lines of [HSW21].

The exponent (roughly 𝑘/2) is unlikely to be tight, although it appears to be the

limit of current techniques. In fact, we conjecture that the computational transition

for sampling 𝑞-colourings in linear hypergraphs happens around the same threshold

of the local lemma (namely, the exponent should be roughly 𝑘/1). This conjecture

is supported by the aforementioned hardness result for general 𝑞 on linear hyper-

graphs
3
, and by the algorithm of Frieze and Anastos [FA17] for 𝑞 = Ω(log𝑛). Note

that for a linear 𝑘-uniform hypergraph with maximum degree Δ, Frieze and Mubayi

[FM13] showed that the chromatic number 𝜒(𝐻) ≤ 𝐶𝑘

(
Δ

logΔ

) 1
𝑘−1

where 𝐶𝑘 depends

only on 𝑘 . Their bound is asymptotically better than the bound given by the local

lemma. Thus, there may still be a gap between the searching threshold and the sam-

pling threshold.

Other counting problems. This thesis also includes some related counting prob-

lems:

• As a warmup, we provide an algorithm that approximates the total variation

distance between two product distributions in polynomial time after the section

of preliminaries, while the exact computation is #P-complete [BGM
+
23].

• At the end of this thesis, we consider the sampling problem for the ferromag-

netic Ising model with consistent external fields. It can be unified with the

aforementioned hypergraph colouring problem under the paradigm of graph-

ical models, and similarly, exhibits some certain phase transitions. In partic-

ular, the edge-flipping dynamics on a related random cluster model, and the

Swendsen-Wang dynamics [SW87] on this Ising model, are studied. Under the

3
We remark here that the Δ ≲ 𝑞𝑘/2 hardness bound heavily relies on the overlap being half of each

hyperedge, which is very far from being linear.



6 Chapter 1. Introduction

condition that the maximum degree of the input graph is bounded and external

fields are non-trivial, we show near-linear time mixing of both dynamics.

Detailed introductions of both are provided at the beginning of the two chapters

respectively.

Additional results beyond this thesis. This thesis collects part of the author’s

work during the study of the degree in pursuit. Aside from the aforementioned work,

the following additional results are also shown, details of which are not included in

this thesis.

First, the computational hardness of approximate counting and sampling in the

local lemma regime can be refined with the parameterisation of the size of overlaps.

As one such example, recall that approximately counting hypergraph independent

sets is NP-hard when Δ ≥ 5 · 2𝑘/2
[BGG

+
19]. If we further take into account the

size of the overlap between any pair of hyperedges, and restrict such size being no

more than 𝑏 where 1 ≤ 𝑏 ≤ 𝑘/2, then the problem is NP-hard if Δ ≥ 5 ·2𝑘−𝑏
[QW23].

This not only recovers the hardness result without the overlap restriction by taking

𝑏 = 𝑘/2, but also implies the hardness for linear hypergraphs for Δ ≥ 2.5 · 2𝑘
. As a

consequence, it confirms that the regimes on the maximum degree where the state-of-

the-art algorithms work are tight, up to some small factors. These algorithms include

the FPRAS requiring Δ ≤ 𝑐2𝑘/𝑘2
[HSZ19], the perfect sampler requiring Δ ≤ 𝑐2𝑘/𝑘2

[QWZ22], and the FPTAS requiring Δ ≲ 2(1−𝑜(1))𝑘 [FGW
+
23a].

Second, in nearly the same regime where the FPRAS [JPV21a] and perfect sampler

[HSW21] work for hypergraph colourings, a very recent paper [FGW
+
23a] shows

how one can derandomise the Markov chain Monte Carlo algorithm and obtain an

FPTAS. This is achieved by backtracking the running history of the Markov chain in

a lazy way. Such an argument also applies to counting hypergraph independent sets

and acquires a nearly tight regime Δ ≲ 2(1−𝑜(1))𝑘 .

Organisation. Each chapter begins with a separate introduction, with a detailed

elaboration of the main result and a brief overview of the techniques.

In Chapter 2, the necessary definitions and preliminary results are provided. In

Chapter 3, we look into the problem of approximating the total variation distance be-

tween two product distributions, serving as a warm-up. For completeness, a known

hardness result in this chapter is provided in Appendix A. This part features a pub-

lished article [FGJW23]. In Chapter 4, we kick off the technical part of this thesis and
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prove the hardness of the hypergraph colouring problem. This part features a pub-

lished article [GGW22]. In Chapter 5, we move to the other side of the hypergraph

colouring counting problem, and give an algorithm that counts linear hypergraph

colourings. This part features a published article [FGW22]. In Chapter 6, the fer-

romagnetic Ising model is studied. This part features a published article [FGW23b].

Finally, we conclude this thesis by providing several open problems in Chapter 7.





Chapter 2

Preliminaries

This section introduces some fundamental concepts and definitions that are essential

for the subsequent analysis.

Nomenclature

Sets. We sometimes do not distinguish the element 𝑢 and the singleton set {𝑢} in

sub- or sup-scripts. Given a set 𝑆, the notation 𝑆 + 𝑢 is a shorthand for 𝑆∪ {𝑢}, and

𝑆−𝑢 for 𝑆 \ {𝑢}. Note that 𝑢 does not necessarily belong to 𝑆.

Integers. We take the convention that natural numbers start with 0, i.e.,N := {0,1, · · · }.
We also use [𝑛] as a shorthand for {1,2, · · · , 𝑛}, and [𝑛] for [𝑛] ∪ {0}.

Logarithms. Denote by e ≈ 2.718 the base of the natural logarithm. Throughout,

log and ln stands for the logarithm in base 2 and e respectively.

Indicator function. Denote by I[𝐴] the indicator function that takes value 1 when

the condition 𝐴 holds, and 0 otherwise.

2.1 Graph theory

Without specification, all graphs are undirected. We adopt all the standard definitions

for graphs, which, specifically, include:

• 𝐺 [𝐴]: the induced subgraph of 𝐺 on the vertex subset 𝐴 ⊆ 𝑉 .

9
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• dist𝐺 (𝐴, 𝐵): the distance between two vertex sets 𝐴 ⊆ 𝑉 and 𝐵 ⊆ 𝑉 on 𝐺 ,

which is defined by dist𝐺 (𝐴, 𝐵) := min𝑢∈𝐴,𝑣∈𝐵 dist𝐺 (𝑢, 𝑣) where dist𝐺 (𝑢, 𝑣) is

the length of the shortest path between 𝑢 and 𝑣 in 𝐺 .

• Γ𝑖
𝐺
(𝐴): the set of vertices 𝑢 such that dist𝐺 (𝐴,𝑢) = 𝑖. Specifically, when 𝑖 = 1,

this notation represents the neighbourhood of the given set 𝐴 ⊆ 𝑉 , and is also

denoted by Γ𝐺 (𝐴).

For the sake of convenience, we may drop the subscript 𝐺 when the underlying graph

is clear from the context.

Definition 2.1 (Graph power). The 𝑖-th power of 𝐺, denoted by 𝐺𝑖
, is another graph

that has the same vertex set as 𝐺 , and {𝑢, 𝑣} is an edge in 𝐺𝑖
if and only if 1 ≤

dist𝐺 (𝑢, 𝑣) ≤ 𝑖.

A hypergraph 𝐻 = (𝑉,E) consists of a set of vertices 𝑉 and a set of hyperedges

E ⊆ 2𝑉 . It is said to be 𝑘-uniform, if every hyperedge 𝑒 ∈ E is of size 𝑘 . The degree of a

vertex is the number of hyperedges that it appears, and the degree of the hypergraph

is the maximum one of all the vertices. The hypergraph is said to have overlap 𝑏, if for

any distinct pair of hyperedges 𝑒 ≠ 𝑒′, they share at most 𝑏 vertices, i.e., |𝑒∩ 𝑒′| ≤ 𝑏.

Specifically, the hypergraph is called linear, if it has overlap 1.

Definition 2.2 (Line graph). Let 𝐻 = (𝑉,E) be a hypergraph. Its line graph Lin(𝐻) :=
(𝑉𝐿 , 𝐸𝐿) is given by 𝑉𝐿 = E, and {𝑒, 𝑒′} ∈ 𝐸𝐿 iff 𝑒∩ 𝑒′ ≠ ∅.

2.2 𝑓 -divergences

This section is used by Chapter 3 and Chapter 6.

Let Ω be a finite state space.

A widely-used quantity for measuring the difference between two distributions

is the 𝑓 -divergence. Let 𝑓 : R≥0→ R be a convex function satisfying 𝑓 (1) = 0. Let 𝜈

and 𝜇 be two distributions over Ω. The 𝑓 -divergence between 𝜈 and 𝜇 is defined by

𝐷 𝑓 (𝜈 ∥ 𝜇) := E𝑋∼𝜇

[
𝑓

(
𝜈(𝑋)
𝜇(𝑋)

)]
.

We remark that it is not necessarily symmetric over the change of roles between 𝜇 and

𝜈. Three important 𝑓 -divergences are used in this thesis: the total variation distance,

the 𝜒2
-divergence, and the Kullback-Leibler divergence (KL divergence, also known

as the relative entropy).
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Total variation distance. The total variation distance, denoted by 𝑑TV (·, ·), is the

𝑓 -divergence with 𝑓 (𝑥) = 1
2 |𝑥−1|. Alternatively,

𝑑TV (𝜇, 𝜈) = 𝑑TV (𝜈, 𝜇) :=
1
2

∑︁
𝜔∈Ω
|𝜇(𝜔) − 𝜈(𝜔) | =

∑︁
𝜔∈Ω

max{0, 𝜇(𝜔) − 𝜈(𝜔)}.

We then collect some important properties of the total variation distance. The

random variable (𝑋,𝑌 ) ∈ Ω×Ω is called a coupling between 𝜇 and 𝜈 if the marginal

distributions satisfy 𝑋 ∼ 𝜇 and 𝑌 ∼ 𝜈. From this point of view, the total variation dis-

tance not only characterises the difference between two distributions, but also cap-

tures the minimum discrepancy of any coupling. This is summarised by the following

lemma, usually referred to as the coupling lemma; see e.g., [LP17, Proposition 4.7]

Lemma 2.3 (Coupling lemma). For any coupling (𝑋,𝑌 ) between 𝜇 and 𝜈,

𝑑TV (𝜇, 𝜈) ≤ Pr[𝑋 ≠ 𝑌 ] .

Moreover, there exists an optimal coupling under which the equality holds.

Optimal couplings are not necessarily unique. However, for any optimal coupling

O, it holds that

∀𝜔 ∈ Ω, PrO [𝑋 = 𝑌 = 𝜔] = min{𝜇(𝜔), 𝜈(𝜔)}. (2.1)

The above equation holds because (1) for any valid coupling C, it holds that PrC [𝑋 =

𝑌 =𝜔] ≤min{𝜇(𝜔), 𝜈(𝜔)}; (2) to achieve the optimal coupling, every 𝜔 must achieve

the equality. We then have

PrO [𝑋 = 𝜔∧𝑌 ≠ 𝑋] = PrO [𝑋 = 𝜔] −PrO [𝑋 = 𝑌 = 𝜔] = max{0, 𝜇(𝜔) − 𝜈(𝜔)}.
(2.2)

𝜒2-divergence. The 𝜒2
divergence, denoted by 𝐷𝜒2 (· ∥ ·), is the 𝑓 -divergence with

𝑓 (𝑥) = 𝑥2−1. Equivalently,

𝐷𝜒2 (𝜈 ∥ 𝜇) :=
∑︁
𝜔∈Ω

𝜈2(𝜔)
𝜇(𝜔) −1.

A standard inequality states

𝑑TV (𝜈, 𝜇) ≤
√︃
𝐷𝜒2 (𝜈 ∥ 𝜇). (2.3)

The 𝜒2
-divergence can be alternatively defined from a functional viewpoint. For

any function 𝑔 : Ω→ R≥0, its relative variance over 𝜇 is given by

Var𝜇 (𝑔) = E𝜇 [𝑔2] −E2
𝜇 [𝑔] =

∑︁
𝜔∈Ω

𝜇(𝜔)𝑔2(𝜔) −
(∑︁
𝑥∈Ω

𝜇(𝜔)𝑔(𝜔)
)2

.

Clearly, if we take 𝑔(𝜔) = 𝜈(𝜔)
𝜇(𝜔) , then Var𝜇 (𝑔) = 𝐷𝜒2 (𝜈 ∥ 𝜇).
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KL divergence. The Kullback-Leibler divergence, denoted by 𝐷KL (· ∥ ·), is the 𝑓 -

divergence with 𝑓 (𝑥) = 𝑥 log𝑥. Equivalently,

𝐷KL (𝜈 ∥ 𝜇) :=
∑︁
𝑥∈Ω

𝜈(𝑥) log
(
𝜈(𝑥)
𝜇(𝑥)

)
.

The following Pinkser’s inequality is well known.

𝑑TV (𝜈, 𝜇) ≤
√︂

𝐷KL (𝜈 ∥ 𝜇)
2

. (2.4)

Similarly to the 𝜒2
-divergence, we also have a functional interpretation of the KL

divergence. For any function 𝑔 : Ω→ R≥0, its relative entropy over 𝜇 is given by

Ent𝜇 (𝑔) :=E𝜇 [𝑔 log𝑔] −E𝜇 [𝑔] logE𝜇 [𝑔]

=
∑︁
𝜔∈Ω

𝜇(𝜔)𝑔(𝜔) log𝑔(𝜔) −
(∑︁
𝜔∈Ω

𝜇(𝜔)𝑔(𝜔)
)

log

(∑︁
𝑥∈Ω

𝜇(𝜔)𝑔(𝜔)
)
,

where the convention is that 0log0= 0. Clearly, if we take 𝑔(𝑥) = 𝜈(𝑥)
𝜇(𝑥) , then Ent𝜇 (𝑔) =

𝐷KL (𝜈 ∥ 𝜇).

Data processing inequality. Finally, the following data processing inequality is

useful if we are to apply the above functional interpretation to the analysis of Markov

chains. Let 𝑃 be a stochastic matrix over the state space Ω. For any 𝑓 -divergence and

pair of distributions 𝜈, 𝜇 over Ω, it holds that

𝐷 𝑓 (𝜈𝑃 ∥ 𝜇𝑃) ≤ 𝐷 𝑓 (𝜈 ∥ 𝜇) .

2.3 Markov chain and mixing time

This section is used in Chapter 5 and Chapter 6.

Let Ω be a finite state space, and 𝑃 be a |Ω| × |Ω| stochastic matrix, namely a

non-negative matrix such that the sum of each row is 1. We call a sequence of ran-

dom variables (𝑋𝑡)𝑡≥0 a Markov chain with state space Ω and transition matrix 𝑃, if

Pr [𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥] = 𝑃(𝑥, 𝑦). We say 𝑃 is

• irreducible if for any 𝑥, 𝑦 ∈ Ω, there exists 𝑡 > 0 such that 𝑃𝑡 (𝑥, 𝑦) > 0;

• aperiodic if gcd{𝑡 | 𝑃𝑡 (𝑥, 𝑥) > 0} = 1 for all 𝑥 ∈ Ω;
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• reversible with respect to 𝜇 if the following detailed balance equation holds

∀𝑥, 𝑦 ∈ Ω, 𝜇(𝑥)𝑃(𝑥, 𝑦) = 𝜇(𝑦)𝑃(𝑦, 𝑥).

A distribution 𝜇 is a stationary distribution of 𝑃 if 𝜇𝑃 = 𝜇. If 𝑃 is reversible with

respect to 𝜇, then 𝜇 is a stationary distribution of 𝑃. If 𝑃 is both irreducible and

aperiodic, then 𝑃 has a unique stationary distribution. The mixing time of 𝑃 is defined

by

∀𝜖 > 0, 𝑡mix(𝑃, 𝜖) := max
𝑥∈Ω

min{𝑡 | 𝑑TV
(
𝑃𝑡 (𝑥, ·), 𝜇

)
≤ 𝜖}.

The joint process (𝑋𝑡 ,𝑌𝑡)𝑡≥0 is a coupling of Markov chain P if (𝑋𝑡)𝑡≥0 and (𝑌𝑡)𝑡≥0

individually follow the transition rule of P, and if 𝑋𝑖 =𝑌𝑖 then 𝑋 𝑗 =𝑌 𝑗 for all 𝑗 ≥ 𝑖. By

the coupling lemma, for any coupling (𝑋𝑡 ,𝑌𝑡)𝑡≥0 of P, it holds that

𝑑TV
(
𝑃𝑡 (𝑋0, ·), 𝑃𝑡 (𝑌0, ·)

)
≤ Pr[𝑋𝑡 ≠ 𝑌𝑡] .

Hence, the mixing time of P can be bounded by

𝑡mix(𝑷, 𝜖) ≤ max
𝑋0,𝑌0∈Ω

min {𝑡 | Pr[𝑋𝑡 ≠ 𝑌𝑡] ≤ 𝜖} . (2.5)

2.4 The local lemma

Let R = {𝑅1, · · · , 𝑅𝑛} be a set of mutually independent random variables. Given

an event 𝐴, denote the set of variables that determines 𝐴 by vbl(𝐴) ⊆ R. Let B =

{𝐵1, · · · , 𝐵𝑛} be a collection of “bad” events. For any event 𝐴 (not necessarily in B),

let Γ(𝐴) := {𝐵 ∈ B | 𝐵 ≠ 𝐴, vbl(𝐵) ∩vbl(𝐴) ≠ ∅}. We will use the following version

of Lovász Local Lemma from [HSS11].

Theorem 2.4 ([EL75, HSS11]). If there exists a function 𝑥 : B → (0,1) such that for

any bad event 𝐵 ∈ B,

Pr[𝐵] ≤ 𝑥(𝐵)
∏

𝐵′∈Γ(𝐵)
(1− 𝑥(𝐵′)), (2.6)

then it holds that

Pr

[∧
𝐵∈B

�̄�

]
≥

∏
𝐵∈B
(1− 𝑥(𝐵)) > 0.

Moreover, for any event 𝐴,

Pr

[
𝐴 |

∧
𝐵∈B

�̄�

]
≤ Pr[𝐴]

∏
𝐵∈Γ(𝐴)

(1− 𝑥(𝐵))−1. (2.7)
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2.5 Approximate counting and sampling algorithms

Formal definitions of the algorithms that suit our need are given in this section. For

the approximate counting tasks, the desired algorithms are called fully polynomial-

time randomised approximation schemes (FPRAS), formally defined as below.

Definition 2.5 (FPRAS). An algorithm is called a randomised approximation scheme

(RAS) for a function 𝑍 : Σ∗→N, if, taking an input pair 𝑥 ∈ Σ∗, 𝜀 ∈ (0,1), the random

output �̂� satisfies Pr[(1− 𝜀)𝑍 ≤ �̂� ≤ (1 + 𝜀)𝑍] ≥ 2/3. It is further said to be fully

polynomial-time (FPRAS), if it runs in time poly( |𝑥 |,1/𝜀).

Remark 2.6 (FPTAS). The probability in the above definition only depends on the

randomness of the algorithm; in other words, the error bound should be guaranteed

for arbitrary valid inputs. Due to a standard augmentation argument, the success

probability 2/3 can be replaced by 1− 𝛿 where 𝛿 ∈ (0,1), while scaling the running

time by a factor of log1/𝛿. Furthermore, if the success probability is replaced by 1
and no randomness is allowed in the algorithm, then such an algorithm is called a

fully polynomial-time deterministic approximation scheme (FPTAS).

Defined below are the samplers of interest in this thesis.

Definition 2.7 (FPAUS). An algorithm is called a fully polynomial-time almost uni-

form sampler (FPAUS) for a distribution 𝜇 = 𝜇(𝑥) specified by an instance 𝑥, if the

output distribution 𝜇′ satisfies 𝑑TV (𝜇, 𝜇′) ≤ 𝛿 in time poly( |𝑥 |, log1/𝛿).

Remark 2.8 (Perfect sampler). A sampler is called perfect, or exact, if we further

restrict the output distribution 𝜇′ to satisfy 𝑑TV (𝜇, 𝜇′) = 0, but allow the algorithm

to be Las Vegas. That is, the running time could be unbounded, but in expectation it

is bounded by poly( |𝑥 |).

For many interesting problems, standard reductions [JVV86, ŠVV09] between ap-

proximate counting and almost uniform sampling are well-known. We brief explain

how the counting to sampling reduction is done for hypergraph colourings as an ex-

ample. A detailed argument could be found in [FGW
+
23a, Section 2.3] for instance.

Let 𝐻 = (𝑉,E) be a hypergraph with 𝑚 edges. Suppose E = {𝑒1, · · · , 𝑒𝑚}. An

edge decomposition of 𝐻 is a sequence of hypergraphs 𝐻0, 𝐻1, · · ·𝐻𝑚 , where 𝐻𝑖 =

(𝑉, {𝑒1, · · · , 𝑒𝑚}). In other words, starting from 𝐻 = 𝐻𝑚 , we gradually remove a

hyperedge until the hypergraph consists solely indepedent vertices. Let 𝑍𝑖 be the
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number of hypergraph colourings in 𝐻𝑖 , and 𝜇𝑖 be the uniform distribution over all

colourings of 𝐻𝑖 . Then we decompose 𝑍 = 𝑍𝑚 as a telescoping product

𝑍 = 𝑍0

𝑚∏
𝑖=1

𝑍𝑖

𝑍𝑖−1
.

Let 𝜇𝑖−1,𝑒𝑖 be the distribution 𝜇𝑖−1 projected on the hyperedge 𝑒𝑖 . Then each term in

the above product is exactly

𝑍𝑖

𝑍𝑖−1
= Pr𝜔∼𝜇𝑖−1,𝑒𝑖

[𝜔 is not monochromatic] .

Therefore, it suffices to approximate the above probability. In the local lemma regime

that we consider, the above probability has a constant lower bound, which means we

do not need a lot of sample drawing to obtain a good approximation.

The following diagram characterises the connection between these algorithms.

FPRAS FPAUS

FPTAS Exact sampler

standard

reductions

implies implies

These terms might appear in brief discussion, but when formally stating main

results, we avoid using them.





Chapter 3

Computing the total variation
distance

Let Ω = [𝑞]𝑛 be the state space, where [𝑞] = {1, . . . , 𝑞} is a finite set, and 𝑃1, · · · , 𝑃𝑛,

𝑄1, · · · ,𝑄𝑛 be independent distributions over [𝑞]. Let 𝑃 = 𝑃1 ⊗ 𝑃2 ⊗ · · · ⊗ 𝑃𝑛 and

𝑄 = 𝑄1 ⊗𝑄2 ⊗ · · · ⊗𝑄𝑛 be two product distributions. Namely, for any 𝜔1𝜔2 · · ·𝜔𝑛, it

holds that

𝑃(𝜔1𝜔2 · · ·𝜔𝑛) = 𝑃1(𝜔1)𝑃2(𝜔2) · · ·𝑃𝑛 (𝜔𝑛),

and analogously for 𝑄.

In this chapter, we are interested in computing the total variation distance (re-

call Section 2.2) between two product distributions. This might appear as a simple

problem owing to the mutual independency of all the distributions 𝑃𝑖 and 𝑄𝑖 . In

fact, for many other quantities for similar uses, such as the relative entropy and the

𝜒2
-divergence, simple tensorisation formulæ do exist:

𝐷KL (𝑃 ∥ 𝑄) =
𝑛∑︁
𝑖=1

𝐷KL (𝑃𝑖 ∥ 𝑄𝑖) , and

1+𝐷𝜒2 (𝑃 ∥ 𝑄) =
𝑛∏
𝑖=1

(
1+𝐷𝜒2 (𝑃𝑖 ∥ 𝑄𝑖)

)
.

This means computing these quantities for product distributions are easy if each dis-

tribution is described explicitly in the input. Unfortunately, the total variation dis-

tance does not tensorise over product distributions, and it was discovered recently

that, somewhat surprisingly, exact computation of the total variation distance, even

between product distributions over the Boolean domain, is #P-hard [BGM
+
23].

1

1
For completeness, we provide a proof in Appendix A.

17
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This leaves open the question of approximation complexity of the total variation

distance. In [BGM
+
23], the authors give polynomial-time randomised approximation

algorithms in two special cases over the Boolean domain, when one of the distribu-

tion has marginals over 1/2 and dominates the other, or when one of the distribution

has a constant number of distinct marginals. Their method is based on Dyer’s dy-

namic programming algorithm for approximating the number of knapsack solutions

[Dye03].

Our contribution is a simple polynomial-time approximation algorithm for the

total variation distance between two product distributions. Our algorithm is based

on the Monte Carlo method and does not have further restrictions.

Theorem 3.1. Let [𝑞] = {1,2, . . . , 𝑞} be a finite set. There exists an algorithm such that

given two product distributions 𝑃,𝑄 over [𝑞]𝑛 and parameters 𝜖 > 0 and 0 < 𝛿 < 1,

it outputs a random value 𝑑 in time 𝑂𝑞 ( 𝑛
2

𝜖2 log 1
𝛿
) such that (1− 𝜖)𝑑TV (𝑃,𝑄) ≤ 𝑑 ≤

(1+ 𝜖)𝑑TV (𝑃,𝑄) holds with probability at least 1− 𝛿.

Our algorithm can also handle the case where each coordinate has a different

domain size without any change. In Theorem 3.1, the input product distributions are

given by the marginal probability for each coordinate and each 𝑐 ∈ [𝑞] in binary. The

stated running time assumes that all arithmetic operations can be done in 𝑂 (1) time.
2

To approximate the total distance, the naı̈ve Monte Carlo algorithm works well

when the two distributions are sufficiently far away. However, when the total distance

is exponentially small, naı̈ve Monte Carlo may require exponentially many samples

to return an accurate estimate. Our idea is to consider a distribution that can be ef-

ficiently sampled from and yet boosts the probability that the two distributions are

different. Ideally, we would want to use the optimal coupling, but that is difficult to

compute. We use instead the coordinate-wise greedy coupling where each coordinate

is coupled optimally independently. Though such greedy coupling is usually not op-

timal,
3

it serves as a proxy in the construction of our estimator. We further condition

on the (potentially very unlikely) event that the two samples are different. Normally,

conditioning on an unlikely event is a bad move since computational tasks would

have become hard. However, here they are still easy thanks to the independence of

the coordinates under the coupling. With this conditional distribution, our estimator

2
The running time remains polynomial under bit complexity.

3
For example, consider 𝑞 = 2, 𝑛 = 2, and the two distributions are given by 𝑃1 (1) = 0.5, 𝑃2 (1) = 0.5;

𝑄1 (1) = 0.4,𝑄2 (1) = 0.3. Then the discrepancy of the optimal coupling is 0.20, while that of the greedy

coupling is 0.28.
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is the ratio between the probabilities of the assignment in the optimal coupling and

in the greedy coupling. We show that this estimator is always bounded from above

by 1 and its expectation is at least 1/𝑛. This means that the standard Monte Carlo

method will succeed with high probability using only polynomially many samples.

3.1 The algorithm

Let O be an (arbitrary) optimal coupling between 𝑃 and 𝑄. Let C be the coordinate-

wise greedy coupling. Namely, for each coordinate 𝑖 and 𝑐 ∈ [𝑞], PrC [𝑋𝑖 = 𝑌𝑖 = 𝑐] =
min{𝑃𝑖 (𝑐),𝑄𝑖 (𝑐)}, and the remaining probability can be assigned arbitrarily as long

as C is a valid coupling (but each coordinate is independent). In other words, for each

𝑖 ∈ [𝑛], C couples 𝑃𝑖 and 𝑄𝑖 optimally and independently. Note that

PrC [𝑋 ≠ 𝑌 ] = 1−PrC [𝑋 = 𝑌 ] = 1−
𝑛∏
𝑖=1
(1− 𝑑TV (𝑃𝑖,𝑄𝑖)) (3.1)

can be computed exactly.

Consider the distribution 𝜋 such that

𝜋(𝜔) := PrC [𝑋 = 𝜔 | 𝑋 ≠ 𝑌 ] . (3.2)

We may assume 𝑃 and 𝑄 are not identical, as otherwise the algorithm just outputs 0.

This makes sure that the distribution 𝜋 is well-defined. The following lemma shows

that we can draw random samples from 𝜋 efficiently.

Lemma 3.2. We can sample from the distribution 𝜋 in 𝑂 (𝑛) time.

Proof. We draw a random sample 𝜔 ∈ [𝑞]𝑛 from 𝜋 index by index. In the 𝑘-th step,

where 1 ≤ 𝑘 ≤ 𝑛, we sample 𝜔𝑘 ∈ [𝑞] from 𝜋𝑘 (· | 𝜔1,𝜔2, . . . ,𝜔𝑘−1), which is the

marginal distribution on the 𝑘-th variable conditional on the values of the first 𝑘 −1
variables being 𝜔1,𝜔2, . . . ,𝜔𝑘−1. By definition,

𝜋𝑘 (𝜔𝑘 | 𝜔1,𝜔2, . . . ,𝜔𝑘−1) =
Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖]

Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘 −1, 𝑋𝑖 = 𝜔𝑖]
.

As 𝜔1, . . . ,𝜔𝑘−1 are sampled from the marginal distribution of 𝜋, the denominator is

positive. We show how to compute the numerator next, and the denominator can be

computed similarly. By definition

Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖] = Pr(𝑋,𝑌 )∼C [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖 | 𝑋 ≠ 𝑌 ]

=
(
1−Pr(𝑋,𝑌 )∼C [𝑋 = 𝑌 | ∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖]

)
·

∏𝑘
𝑖=1 𝑃𝑖 (𝜔𝑖)

1−∏𝑛
𝑖=1(1− 𝑑TV (𝑃𝑖,𝑄𝑖))
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where the last line is due to Bayes’ Law.

In the coupling C, every pair of 𝑋𝑖 and 𝑌𝑖 is coupled optimally and independently.

We have

Pr(𝑋,𝑌 )∼C [𝑋 = 𝑌 | ∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖]

=

𝑘∏
𝑖=1

PrC [𝑋𝑖 = 𝑌𝑖 = 𝜔𝑖]
PrC [𝑋𝑖 = 𝜔𝑖]

𝑛∏
𝑖=𝑘+1

PrC [𝑋𝑖 = 𝑌𝑖]

=

𝑘∏
𝑖=1

min{𝑃𝑖 (𝜔𝑖),𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔𝑖)

𝑛∏
𝑖=𝑘+1
(1− 𝑑TV (𝑃𝑖,𝑄𝑖)). (3.3)

where the last line is due to (2.1).

Combining the two equations, we can compute Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖], and

thus we can compute and sample from 𝜋𝑘 (· | 𝜔1,𝜔2, . . . ,𝜔𝑘−1). When sampling from

the distribution 𝜋, we pre-process

∏𝑛
𝑖=𝑘+1(1− 𝑑TV (𝑃𝑖,𝑄𝑖)) for all 𝑘 , and maintain

the prefix products

∏𝑘
𝑖=1 min{𝑃𝑖 (𝜔𝑖),𝑄𝑖 (𝜔𝑖)} and

∏𝑘
𝑖=1 𝑃𝑖 (𝜔𝑖). This way, each con-

ditional marginal distribution can be computed with 𝑂𝑞 (1) incremental cost. Hence,

the total running time is 𝑂𝑞 (𝑛), where 𝑂𝑞 (·) hides a factor linear in 𝑞. □

Let 𝜔 be a random sample from 𝜋. Now consider the following estimator:

𝑓 (𝜔) :=
PrO [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ] =

max{0, 𝑃(𝜔) −𝑄(𝜔)}
PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ] , (3.4)

where the second equality is due to (2.2). This estimator 𝑓 is well-defined, because

when PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ] = 0, 𝜋(𝜔) = 0 as well and 𝜔 will not be drawn.

In fact, if 𝜋(𝜔) = 0, or equivalently PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] = 0, it must be that

max{0, 𝑃(𝜔) −𝑄(𝜔)} = 0. This is because PrC [𝑋 =𝜔∧𝑋 ≠𝑌 ] = 0 implies that either

PrC [𝑋 = 𝜔] = 𝑃(𝜔) = 0 or PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔] = 0. In the first case, max{0, 𝑃(𝜔) −
𝑄(𝜔)} = 0. In the second case PrC [𝑌 = 𝜔 | 𝑋 = 𝜔] = 1, which implies that 𝑄(𝜔) ≥
𝑃(𝜔), and max{0, 𝑃(𝜔) −𝑄(𝜔)} = 0 as well.

Lemma 3.3. For any 𝜔 ∈ Ω with 𝜋(𝜔) > 0, 𝑓 (𝜔) can be computed in 𝑂 (𝑛) time.

Proof. Note that

PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ] = 𝑃(𝜔)PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔] = 𝑃(𝜔) (1−PrC [𝑋 = 𝑌 | 𝑋 = 𝜔]).

Since 𝜋(𝜔) > 0, it holds that 𝑃(𝜔) > 0. Using (3.3), we have

𝑓 (𝜔) = max
0,

1− 𝑄(𝜔)
𝑃(𝜔)

1
𝑃(𝜔) PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]

 = max
0,

1−∏𝑛
𝑖=1

𝑄𝑖 (𝜔𝑖)
𝑃𝑖 (𝜔𝑖)

1−∏𝑛
𝑖=1

min{𝑃𝑖 (𝜔𝑖),𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔)

 ,
which can be computed in 𝑂 (𝑛) time. □
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Lemma 3.4. We have the following:

E𝜋 𝑓 =
PrO [𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] ; (3.5)

1
𝑛
≤ E𝜋 𝑓 ≤ 1. (3.6)

Moreover, for any 𝜔 ∈ Ω with 𝜋(𝜔) > 0,

0 ≤ 𝑓 (𝜔) ≤ 1, (3.7)

and it holds that

Var𝜋 𝑓 ≤ E𝜋 𝑓 . (3.8)

Proof. For (3.5), Let Ω+ = {𝜔 ∈ Ω | 𝜋(𝜔) > 0}. Then,

E𝜋 𝑓 =
∑︁
𝜔∈Ω+

𝜋(𝜔) × PrO [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]

=
∑︁
𝜔∈Ω+

PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] × PrO [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]

PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]

=

∑
𝜔∈Ω+ PrO [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ]

PrC [𝑋 ≠ 𝑌 ] =
PrO [𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] ,

where in the last equation we used the aforementioned fact that 𝜋(𝜔) = 0 implies

max{0, 𝑃(𝜔) −𝑄(𝜔)} = 0.

For (3.6), as O is the optimal coupling, PrO [𝑋 ≠ 𝑌 ] ≤ PrC [𝑋 ≠ 𝑌 ]. For the other

direction, notice that O projected to coordinate 𝑖, denoted O𝑖 , is a coupling between

𝑃𝑖 and 𝑄𝑖 . Thus,

PrO [𝑋 ≠ 𝑌 ] ≥ max
1≤𝑖≤𝑛

PrO𝑖 [𝑋𝑖 ≠ 𝑌𝑖] ≥ max
1≤𝑖≤𝑛

𝑑TV (𝑃𝑖,𝑄𝑖) ,

On the other hand, by the union bound,

PrC [𝑋 ≠ 𝑌 ] ≤
𝑛∑︁
𝑖=1

PrC𝑖 [𝑋𝑖 ≠ 𝑌𝑖] =
𝑛∑︁
𝑖=1

𝑑TV (𝑃𝑖,𝑄𝑖) ≤ 𝑛 max
1≤𝑖≤𝑛

𝑑TV (𝑃𝑖,𝑄𝑖) .

For (3.7), the lower bound is trivial. For the upper bound, we only need to consider

𝜔 ∈ Ω+ such that 𝑃(𝜔) > 𝑄(𝜔). In this case

𝑓 (𝜔) = max{0, 𝑃(𝜔) −𝑄(𝜔)}
PrC [𝑋 = 𝜔∧ 𝑋 ≠ 𝑌 ] =

𝑃(𝜔) −𝑄(𝜔)
PrC [𝑋 = 𝜔]PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔]

=
𝑃(𝜔) −𝑄(𝜔)

𝑃(𝜔) (1−PrC [𝑋 = 𝑌 | 𝑋 = 𝜔]) =
1− 𝑄(𝜔)

𝑃(𝜔)
1−PrC [𝑋 = 𝑌 | 𝑋 = 𝜔] .



22 Chapter 3. Computing the total variation distance

Since C couples each coordinate independently,

PrC [𝑋 = 𝑌 | 𝑋 = 𝜔] =
𝑛∏
𝑖=1

min{𝑃𝑖 (𝜔𝑖),𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔𝑖)

≤
𝑛∏
𝑖=1

𝑄𝑖 (𝜔𝑖)
𝑃𝑖 (𝜔𝑖)

=
𝑄(𝜔)
𝑃(𝜔) .

This finishes the proof of (3.7).

For (3.8), since 0 ≤ 𝑓 (𝜔) ≤ 1 for all Ω ∈ Ω+, 𝑓 (𝜔)2 ≤ 𝑓 (𝜔) and thus E𝜋 𝑓 2 ≤ E𝜋 𝑓 .

We have

Var𝜋 𝑓 = E𝜋 𝑓 2− (E𝜋 𝑓 )2 ≤ E𝜋 𝑓 2 ≤ E𝜋 𝑓 . □

Lemma 3.4 implies that standard Monte Carlo method can be used to accurately

estimate E𝜋 𝑓 =
PrO [𝑋≠𝑌 ]
PrC [𝑋≠𝑌 ] . To implement the Monte Carlo algorithm, we use Lemma 3.2

and Lemma 3.3.

To be more specific, our approximate algorithm is to compute the median of

means. The input contains the descriptions of 2𝑛 distributions 𝑃1, 𝑃2, . . . , 𝑃𝑛 and

𝑄1,𝑄2, . . . ,𝑄𝑛 together with two parameters 𝜖 > 0 and 0 < 𝛿 < 1. The algorithm

proceeds as follows:

• for each 𝑖 from 1 to 𝑚 = ⌈10𝑛
𝜖2 ⌉, independently sample 𝜔𝑖 ∼ 𝜋 and let

𝐹 =
1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝜔𝑖);

• use independent samples to compute 𝐹 for 𝑠 = 10⌈log 1
𝛿
⌉ times to get 𝐹1, 𝐹2, . . . , 𝐹𝑠

and let

𝐹 = Median{𝐹1, 𝐹2, . . . , 𝐹𝑠};

• output the value 𝑑 = (1−∏𝑛
𝑖=1(1− 𝑑TV (𝑃𝑖,𝑄𝑖)))𝐹.

We claim that

Pr [|𝐹 −E𝜋 𝑓 | ≥ 𝜖 E𝜋 𝑓 ] ≤ 1
10

. (3.9)

Assuming that (3.9) holds, by the Chernoff bound, it holds that

Pr
[���𝐹 −E𝜋 𝑓

��� ≥ 𝜖 E𝜋 𝑓

]
≤ 𝛿.

Using (3.5) in Lemma 3.4 and (3.1), we have

Pr
[���𝑑 − 𝑑TV (𝑃,𝑄)

��� ≥ 𝜖𝑑TV (𝑃,𝑄)
]
= Pr

[���𝐹 −E𝜋 𝑓

��� ≥ 𝜖 E𝜋 𝑓

]
≤ 𝛿.
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By Lemma 3.2 and Lemma 3.3, the total running time is 𝑂 (𝑛𝑚𝑠) = 𝑂 ( 𝑛2

𝜖2 log 1
𝛿
). This

proves Theorem 3.1.

Finally, we prove the claim (3.9). Note that the expectation and the variance of

the random variable 𝐹 satisfy that E𝐹 = E𝜋 𝑓 and Var𝐹 = 1
𝑚

Var𝜋 𝑓 . By Chebyshev’s

inequality,

Pr [|𝐹 −E𝜋 𝑓 | ≥ 𝜖 E𝜋 𝑓 ] = Pr [|𝐹 −E𝐹 | ≥ 𝜖 E𝐹] ≤ Var𝐹
𝜖2(E𝐹)2

=
Var𝜋 𝑓

𝑚𝜖2(E𝜋 𝑓 )2

≤ 1
𝑚𝜖2 E𝜋 𝑓

≤ 𝑛

𝑚𝜖2 ≤
1
10

. (by (3.8), (3.6), and 𝑚 = ⌈10𝑛
𝜖2 ⌉)





Chapter 4

Inapproximability

The computational hardness of hypergraph colourings, especially the approximate

counting problem, is concerned in this chapter. Our goal is to prove the following

main result.

Theorem 4.1. Let 𝑞 ≥ 4 be even, 𝑘 ≥ 4 be even, and Δ ≥ 5𝑞𝑘/2. It is NP-hard to approxi-

mate the number of proper 𝑞-colourings in 𝑛-vertex 𝑘-uniform hypergraphs of maximum

degree at most Δ, even within a factor of 2𝑐𝑛 for some constant 𝑐(𝑞, 𝑘) > 0.

The requirements on parity of 𝑞 and 𝑘 appear bizarre at first glance. Indeed, they

are artifacts introduced by the technique. We elaborate this a bit below.

First, our result applies to only even 𝑘 for 𝑘-uniform hypergraphs. This is due

to a particular halving construction we use in the reduction. The hardness results

for (monotone) 𝑘-SATs [BGG
+
19] allow hyperedges with sizes at least 𝑘 . This is a

stronger assumption and our hardness bound would still apply without changing the

asymptotical order. In fact, we expect a slight variant of our construction to work

for odd 𝑘 to achieve a threshold of the same order. (See Remark 4.11.) However, as

we explain soon, the details for even 𝑘 are already very complicated for hypergraph

colourings, so for clarity and simplicity we did not pursue the odd 𝑘 case.

Secondly, our result applies to an even number of colours 𝑞, which is analogous

to hardness results for counting in the graph colouring setting [GŠV15]. It was left

as an open problem in [GŠV15] to handle odd 𝑞 (see also the recent work [CGSV22]),

and we met the same difficulty in our setting as well. Our hardness proof for counting

builds on ideas from [GŠV15], and we focus on the challenges needed to refine them

in the hypergraph setting (rather than addressing the parity of 𝑞). We expect that

substantial new ideas are required to resolve the parity of 𝑞, even in the graph setting.

25
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Technique overview. In order to show Theorem 4.1, we first reduce from an aux-

iliary weighted binary CSP, namely a “spin system” in graphs.

Definition 4.2 (Spin system). Let 𝐺 be a simple undirected graph, 𝑞 ≥ 2 be an integer

and 𝑩 be a 𝑞-by-𝑞 non-negative matrix (called interaction matrix). A 𝑞-spin system is

specified by the tuple (𝐺;𝑩) as follows. A configuration 𝜎 :𝑉→ [𝑞] is an assignment

of the 𝑞 spins to the vertices of 𝐺. The weight of a configuration is defined as

wt(𝜎) :=
∏
(𝑢,𝑣)∈𝐸

𝐵𝜎(𝑢)𝜎(𝑣) .

The partition function is the sum of weights over all assignments:

𝑍𝑩 (𝐺) :=
∑︁

𝜎:𝑉→{1,...,𝑞}
wt(𝜎). (4.1)

In particular, the 𝑞-state antiferromagnetic Potts model corresponds to the case

where 𝑩 is the matrix whose off-diagonal entries are equal to 1, whereas the diagonal

entries equal to some parameter 0 ≤ 𝐵 < 1 (note, 𝐵 = 0 corresponds to 𝑞-colourings).

Basically, we replace each vertex of the graph by a cluster of 𝑘/2 vertices in the

hypergraph, and an edge by a hyperedge of size 𝑘 . This construction is identical to

the one in [BGG
+
19], via which one reduces from weighted independent set in graphs

to hypergraph independent sets. However, in order to reduce to the hypergraph 𝑞-

colouring problem, the variables of the weighted binary CSP take 𝑞+1 possible values.

The interactions among these 𝑞 + 1 states are dictated by the hypergraph colouring

problem, with 𝑞 states that correspond to “pure” colours, and one special value that

corresponds to a “mixed” state. The mixed state behaves very differently from the

pure colours; roughly, the pure colours behave symmetrically (as in the graph case)

but the mixed state causes asymmetry.

Our next and main step is to show the desired hardness result for this spin system.

We follow an established route of establishing inapproximability for spin systems

[DFJ02, MWW09, Sly10, CCGL12, SS14, GŠV16], and in particular [GŠV15], where

the key is to understand the system on random regular bipartite graphs which are

used as gadgets in the reduction. More precisely, we need to analyze what are the

most likely configurations of the system on random regular bipartite graphs, the so-

called dominant phases (given by the normalised counts of the colours on each side

of the graph). It was shown in [GŠV15] that these are captured by a certain matrix

norm of the interaction matrix. These norms are in general very hard to penetrate
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analytically and it was already a major difficulty in the perfectly symmetric setting

of [GŠV15]. For us, the presence of a special spin together with 𝑞 symmetric spins

makes our spin system very different from all of the spin systems analyzed before and

the mixture of symmetry and asymmetry make the analysis substantially harder. For

example, in [GŠV15], to show that the two parts of the graph are unbalanced, a simple

Hessian calculation suffices, whereas in our setting, there are stable balanced phases

due to the presence of this special spin (that can be favoured against the others). Also,

being stable means that this phase is locally maximal, making perturbation arguments

hard to carry out. What we do instead is to directly compare this phase with the

dominant phase via a careful interpolation path and a sequence of delicate estimates.

This reflects the main difference between our work and previous works, namely that

our estimates and perturbation arguments are significantly more delicate in order to

rule out the local-maxima.

Outline of this chapter. This chapter begins with a (de)tour that confirms the

optimality of the Moser-Tardos algorithm for the searching problem in Section 4.1,

after which we shall focus completely on the counting problem in the sub-LLL regime.

In Section 4.2, we carry out the first step of reduction, namely reducing from a certain

spin system. And then in Section 4.3, we analyse in detail the dominant phases of

the spin system and hence its inapproximability, which leads to the main theorem

eventually.

4.1 Hardness for searching

In this section we show hardness results for finding hypergraph colourings for pa-

rameters beyond the local lemma condition. The key is to find instances that do not

have proper colourings.

We will use a configuration model to construct random regular hypergraphs. With

constant probability, the resulting hypergraph is linear [CFMR96, PP19]. Frieze and

Mubayi [FM13] showed that if 𝑞 > 𝑐

(
Δ

logΔ

) 1
𝑘−1

for some constant 𝑐 = 𝑐(𝑘) that only

depends on 𝑘 , then any linear 𝑘-uniform hypergraph with maximum degree Δ is 𝑞-

colourable. In particular, their condition holds if Δ ≤ 𝑐𝑘𝑞𝑘−1 ln𝑞 for some constant

𝑐 = 𝑐(𝑘). Our next lemma complements their result by showing as an intermediate

result that if Δ > 𝑘𝑞𝑘−1 ln𝑞 +1, we can find a 𝑘-uniform hypergraph with maximum

degree Δ which is not 𝑞-colourable. For our reductions, we use such hypergraphs to
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obtain a “disequality” gadget, as detailed in the lemma below.

Lemma 4.3. Let 𝑞, 𝑘 ≥ 2 be integers. Then, for all integers Δ > 𝑘𝑞𝑘−1 ln𝑞 + 1, there

exists a 𝑞-colourable 𝑘-uniform linear hypergraph 𝐻 with maximum degree Δ and two

distinct vertices 𝑢, 𝑣 such that the degree of 𝑢 is 1, the degree of 𝑣 is at most Δ, and for

every 𝑞-colouring 𝜎 of 𝐻 it holds that 𝜎(𝑢) ≠ 𝜎(𝑣).

Proof. We first argue that for all Δ > 𝑘𝑞𝑘−1 ln𝑞 there is a Δ-regular hypergraph 𝐻0

such that 𝑍𝑐𝑜𝑙 (𝐻0) = 0, where 𝑍𝑐𝑜𝑙 (𝐻) denotes the number of 𝑞-colourings in 𝐻.

Let 𝑛 be such that 𝑚 = 𝑛Δ/𝑘 is an integer. We sample a 𝑘-uniform Δ-regular

hypergraph 𝐻 according to the following pairing model (see [PP19]). Start with a

bipartite graph with the points [𝑛] × [Δ] on the left and the points [𝑚] × [𝑘] on the

right, and pair the two sides using a uniformly random perfect matching; the vertex

set of the final hypergraph 𝐻 is obtained in the natural way by projecting the set

[𝑛]× [Δ] onto [𝑛]. Note that it will be convenient to view the hyperedges of 𝐻 for now

as ordered tuples rather than sets; this does not make any difference when considering

colourings of 𝐻 due to the symmetry among possible ordering of the colours within

the hyperedge. It is a well-known fact, see for example [CFMR96, Lemma 2] or [PP19,

Theorem 2.4 & Appendix A.4], that the probability that 𝐻 is linear is bounded away

from zero for all sufficiently large 𝑛.
1

For a colouring 𝜎 : [𝑛] → [𝑞], a colour 𝑖 ∈ [𝑞] and a 𝑘-tuple of colours 𝒊 =

(𝑖1, . . . , 𝑖𝑘 ) ∈ [𝑞]𝑘 , let 𝑛𝛼𝑖 be the number of vertices with colour 𝑖, and 𝑚𝛽𝒊 be the

number of hyperedges whose vertices are coloured according to 𝒊 (i.e., the 𝑗-th ver-

tex of the hyperedge takes the colour 𝑖 𝑗 ). Let 𝜶 = {𝛼𝑖}𝑖∈[𝑞] and 𝜷 = {𝛽𝒊}𝒊∈[𝑞]𝑘 , and note

that (𝜶, 𝜷) ∈ 𝑆𝑞 , where 𝑆𝑞 is the space of all pairs of vectors in R𝑞 ×R𝑞𝑘 satisfying∑
𝑖∈[𝑞]𝛼𝑖 = 1,

∑
𝒊∈[𝑞]𝑘 𝑡𝑖,𝒊𝛽𝒊 = 𝑘𝛼𝑖 for 𝑖 ∈ [𝑞]

𝛼𝑖 ≥ 0 for 𝑖 ∈ [𝑞], 𝛽𝒊 ≥ 0 for 𝒊 ∈ [𝑞]𝑘 , 𝛽(𝑖,𝑖,...,𝑖) = 0 for 𝑖 ∈ [𝑞],
(4.2)

where for 𝑖 ∈ [𝑞] and 𝒊 ∈ [𝑞]𝑘 we denote by 𝑡𝑖,𝒊 the number of occurrences of colour

𝑖 in the tuple 𝒊. Then, we have

E[𝑍𝑐𝑜𝑙 (𝐻)] =
1
(Δ𝑛)!

∑︁
(𝜶,𝜷)∈𝑆𝑞 :

𝑛𝜶∈Z𝑞 ,𝑚𝜷∈Z𝑞𝑘

(
𝑛

𝛼1𝑛, . . . , 𝛼𝑞𝑛

) (
𝑚

𝛽1𝑚, . . . , 𝛽𝑞𝑘𝑚

) ∏
𝑖∈[𝑞]
(Δ𝛼𝑖𝑛)!,

1
A linear hypergraph in this paper actually corresponds to a configuration without 4-cycles in the

context of [PP19, Theorem 2.4] (where one should plug in ℓ = 2), or a hypergraph without 2-cycles in

[CFMR96].
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since a term in the sum corresponding to (𝜶, 𝜷) accounts for the number of ways to

choose 𝜎 and 𝐻 with vertex-colour frequencies given by the vector𝜶 and edge-colour

frequencies given by the vector 𝜷. Using Stirling’s approximation (2𝜋𝑐)1/2(𝑐/e)𝑐 ≤
𝑐! ≤ e𝑐1/2(𝑐/e)𝑐 that holds for all integers 𝑐 ≥ 1, we obtain by expanding the terms

inside the sum (note that there are at most 𝑛𝑞
𝑘+𝑞

of them) that

E[𝑍𝑐𝑜𝑙 (𝐻)] ≤ 𝑛𝑂 (1) exp
(
𝑛 max
(𝜶,𝜷)∈𝑆𝑞

𝐹 (𝜶, 𝜷)
)
, (4.3)

where 𝐹 (𝜶, 𝜷) = −(Δ− 1)ℎ(𝜶) + Δ
𝑘
ℎ(𝜷) and ℎ(·) is the entropy function (here, we

adopt the usual convention that 0ln0 = 0 which makes ℎ and 𝐹 continuous and there-

fore the maximum in (4.3) well-defined).

For (𝜶, 𝜷) ∈ 𝑆𝑞 , we have that 𝛼𝑖 =
1
𝑘

∑
𝒊∈[𝑞]𝑘 𝑡𝑖,𝒊𝛽𝒊 for 𝑖 ∈ [𝑞], and hence

𝐹 (𝜶, 𝜷) = ℎ(𝜶) + Δ
𝑘
𝐺 (𝜶, 𝜷) where 𝐺 (𝜶, 𝜷) = ℎ(𝜷) −∑

𝑖∈[𝑞] ln(𝛼𝑖)
∑

𝒊∈[𝑞]𝑘 𝑡𝑖,𝒊𝛽𝒊 .

Note that for a fixed vector 𝜶, the function 𝐺𝜶 (𝜷) := 𝐺 (𝜶, 𝜷) is concave and the

method of Lagrange multipliers yields that the maximum of 𝐺𝜶 happens at 𝜷∗ =

{𝛽∗𝒊 }𝒊∈[𝑞]𝑘 that satisfies

𝛽∗𝒊 =

∏
𝑖∈[𝑞] (𝛼𝑖)𝑡𝑖,𝒊

∏
𝑖∈[𝑞] 1𝒊∗≠(𝑖,𝑖,...,𝑖)

1− ∥𝜶∥𝑘𝑘
for 𝒊 ∈ [𝑞]𝑘 , 𝐺𝜶 (𝜷∗) = ln(1− ∥𝜶∥𝑘𝑘 ).

It follows that

𝐹 (𝜶, 𝜷) ≤ ℎ(𝜶) + Δ
𝑘

ln(1− ∥𝜶∥𝑘𝑘 ) ≤ ln
(
𝑞
(
1− 1

𝑞𝑘−1

)Δ/𝑘 )
, (4.4)

where the last inequality follows from ℎ(𝜶) ≤ ln𝑞 and ∥𝜶∥𝑘𝑘 ≥ 1/𝑞𝑘−1
, both of which

are simple applications of Jensen’s inequality. For Δ > 𝑘𝑞𝑘−1 ln𝑞, the r.h.s. of (4.4) is

negative and therefore max(𝜶,𝜷)∈𝑆𝑞 𝐹 (𝜶, 𝜷) < 0. From (4.3), we conclude that 𝑍𝑐𝑜𝑙 (𝐻) =
0 with probability 1− exp(−Ω(𝑛)). By a union bound, we obtain a linear Δ-regular

hypergraph 𝐻0 with 𝑍𝑐𝑜𝑙 (𝐻0) = 0, as claimed.

To obtain the final hypergraph 𝐻 with the desired property, we invoke an argu-

ment in [GG16, Lemma 28] (which in turn was inspired by [KST93]). We give the

details here for completeness. Given the above 𝐻0 = (𝑉,E) that 𝑍𝑐𝑜𝑙 (𝐻0) = 0, we can

remove hyperedges from E one by one until removing any more hyperedge makes

𝑍𝑐𝑜𝑙 (𝐻) > 0. Call the resulting hypergraph 𝐻′0 = (𝑉,E
′
0) where E′0 ⊊ E. Clearly 𝐻′0 is

linear and has at least one hyperedge. In other words, 𝐻′0 is the minimal subgraph of

𝐻0 that cannot be 𝑞-coloured.

Choose an arbitrary hyperedge 𝑒 ∈ E′0. Let 𝑆 ⊆ 𝑒 be the set of vertices with non-

zero degree in 𝐻′0−𝑒. If 𝑆 =∅, then 𝑒 is disconnected from the rest of the graph. Thus
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𝐻′0

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑒\𝑆

𝑆

𝐻1

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑒\𝑆

𝑆

𝑢1

𝐻2

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑒\𝑆

𝑆

𝑢1 𝑢2

Figure 4.1: An example construction of 𝐻 from 𝐻′0. Here, 𝑒 = {𝑣1, · · · , 𝑣5} and 𝑆 =

{𝑣1, 𝑣2}.

as 𝐻′0 is not 𝑞-colourable, removing 𝑒 would not make the hypergraph 𝑞-colourable.

This contradicts to the minimality of 𝐻′0 and thus 𝑆 ≠ ∅. Denote the vertices in 𝑆 by

𝑣1, . . . , 𝑣𝑖 , and the vertices in 𝑒 \ 𝑆 by 𝑣𝑖+1, . . . , 𝑣𝑘 . We construct 𝑖 linear hypergraphs

𝐻1, . . . , 𝐻𝑖 where for 1 ≤ 𝑗 ≤ 𝑖, in 𝐻 𝑗 we introduce new vertices 𝑢1, . . . , 𝑢 𝑗 and re-

place the hyperedge 𝑒 by 𝑒 𝑗 := {𝑢1, . . . , 𝑢 𝑗 , 𝑣 𝑗+1, . . . , 𝑣𝑘 }. By minimality of 𝐻′0 again,

𝑍𝑐𝑜𝑙 (𝐻𝑖) > 0 as 𝑒𝑖 is disconnected from the rest of 𝐻𝑖 . Thus we can find the small-

est 𝑗 ≥ 1 such that 𝑍𝑐𝑜𝑙 (𝐻 𝑗 ) > 0 and 𝑍𝑐𝑜𝑙 (𝐻 𝑗−1) = 0 (or 𝑍𝑐𝑜𝑙 (𝐻′0) = 0 if 𝑗 = 1). See

Figure 4.1 for an example.

For any proper colouring𝜎 of 𝐻 𝑗 , if𝜎(𝑢 𝑗 ) =𝜎(𝑣 𝑗 ), 𝜎 would be a proper colouring

of 𝐻 𝑗−1, contradicting to the above. Thus it must hold that for any colouring 𝜎 of 𝐻 𝑗 ,

𝜎(𝑢 𝑗 ) ≠ 𝜎(𝑣 𝑗 ). This is the hypergraph required by the lemma, with 𝑢 = 𝑢 𝑗 and 𝑣 = 𝑣 𝑗 .

Moreover, the degree of 𝑢 𝑗 is 1, and the degree of 𝑣 𝑗 is at most Δ. □

Lemma 4.3 leads to the following hardness result, where we lose a factor 2𝑞 in

the degree bound due to the reduction. We note that for 𝑞 = 2, 𝑘 = 3, Δ = 4, and

linear hypergraphs, NP-hardness is known [DD20]. However, the main point of the

next theorem is that there is a degree bound that scales roughly as 𝑞𝑘 and makes the

problem NP-hard.

Theorem 4.4. Let 𝑞, 𝑘 ≥ 2 be integers with (𝑞, 𝑘) ≠ (2,2). Then, it is NP-hard to find

a 𝑞-colouring on a 𝑘-uniform linear hypergraph of maximum degree at most Δ, when

Δ ≥ 2𝑘𝑞𝑘 ln𝑞 +2𝑞.

Proof. For 𝑞 > 2, we reduce from the problem of finding 𝑞-colourings in graphs whose

degrees are bounded by 2𝑞. The latter problem is shown to be NP-hard by [EHK98].

Given a graph 𝐺 , we replace each edge (𝑢, 𝑣) of 𝐺 by the hypergraph in Lemma 4.3,

where 𝑢 and 𝑣 are identified with the special vertices in the hypergraph. Then each
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such hypergraph is effectively a disequality for the colours of 𝑢 and 𝑣. Call the re-

sulting hypergraph 𝐻. Thus 𝐺 is 𝑞-colourable if and only if 𝐻 is 𝑞-colourable. The

maximum degree of 𝐻 is 2𝑞(𝑘𝑞𝑘−1 ln𝑞 +1).
For 𝑞 = 2 and 𝑘 > 2, using two copies of the hypergraph from Lemma 4.3, we build

an “equality” gadget, i.e., a linear hypergraph 𝐻 of maximum degreeΔ ≤ 2(𝑘𝑞𝑘−1 ln𝑞+
1) = 𝑘2𝑘 ln2+2 with distinct vertices 𝑢, 𝑣 which both have degree 1 such that for every

𝑞-colouring 𝜎 it holds that 𝜎(𝑢) = 𝜎(𝑣). It is well-known that finding 2-colourings

of 𝑘-uniform linear hypergraphs is NP-hard (or we can use for example [DD20]), and

using the equality gadget 𝐻, for any 𝑘-uniform linear hypergraph 𝐹, we can construct

a 𝑘-uniform linear hypergraph 𝐹′ of maximum degree Δ such that 𝐹 is 2-colourable

if and only if 𝐹′ is 2-colourable. One possible way to do so is replacing each degree-𝑑

vertex 𝑤 of 𝐹 with a cycle of length 𝑑 and then replacing each edge 𝑒 of the cycle

with a distinct copy of the hypergraph 𝐻 using 𝑢, 𝑣 for the endpoints of the edge 𝑒;

then, for each hyperedge of 𝐹 that uses 𝑤, in 𝐹′ we use instead one of the 𝑑 vertices

of the cycle. □

Note that the result of Frieze and Mubayi [FM13] is also algorithmic. Thus Theo-

rem 4.4 is sharp for linear hypergraphs up to a factor 𝑐𝑞 where 𝑐 = 𝑐(𝑘) is a constant

depending only on 𝑘 . For general hypergraphs, the algorithm of Moser and Tardos

[MT10] applies in this setting when Δ ≤ 𝑞𝑘−1

e(𝑘−1) , in which case Theorem 4.4 almost

matches the algorithmic result, up to a factor of 𝑐𝑘2𝑞 ln𝑞 where 𝑐 is a constant.

For approximate counting, we can avoid the loss of the factor 𝑞 when 𝑞 ≥ 2 and

𝑘 ≥ 4. We will use the following hardness result about the Potts model.

Lemma 4.5. There is a constant 𝐶1 > 5 such that, for any integers 𝑞 ≥ 2, Δ ≥ 2𝐶1𝑞 ln𝑞,

and 𝐵 < 1− 𝐶1𝑞 ln𝑞
Δ

, there is no FPRAS to approximate the 𝑞-state antiferromagnetic Potts

partition function 𝑍𝐵 in graphs with bounded degree Δ, unless NP = RP.

The proof of Lemma 4.5 is quite a detour from the problems we focus on, so we

postpone it to Section 4.1.1. We note that Lemma 4.5 is weaker than the inapprox-

imability result in [GŠV15, Theorem 1.2], which achieves 𝐵 < 1− 𝑞

Δ
but only holds for

even 𝑞. We want to deal with general 𝑞, and thus settle with this weaker version.

Theorem 4.6. There is a constant 𝐶1 > 5 such that, for any integers 𝑞 ≥ 2, 𝑘 ≥ 4, and

Δ ≥ 𝐶1𝑘𝑞
𝑘−1 ln𝑞, unless NP = RP, there is no FPRAS for the number of 𝑞-colourings in

𝑘-uniform linear hypergraphs of maximum degree at most Δ.
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Proof. We reduce the partition function of the 𝑞-state antiferromagnetic Potts model

with 𝐵 = 1− 1
𝑞2−3𝑞+3 in graphs with bounded degree Δ to the problem of counting

𝑞-colourings in 𝑘-uniform linear hypergraphs of maximum degree at most Δ. Note

that if 𝑘 ≥ 4 and Δ ≥ 𝐶1𝑘𝑞
𝑘−1 ln𝑞, where 𝐶1 is from Lemma 4.5, then 𝐵 < 1− 𝐶1𝑞 ln𝑞

Δ
.

Thus the reduction implies the theorem via Lemma 4.5.

The reduction goes as follows. For each edge (𝑢, 𝑣) in a Δ-regular graph 𝐺 =

(𝑉,𝐸), we replace it by a gadget using the hypergraph 𝐻 in Lemma 4.3, whose degree

bound is Δ0 = 𝑘𝑞𝑘−1 ln𝑞 + 1. To be more specific, we introduce new vertices 𝑤1 and

𝑤2. We add three copies of the hypergraph 𝐻 with special vertices (𝑢,𝑤1), (𝑤2,𝑤1),
and (𝑣,𝑤2), respectively. Do this for all edges in 𝐺. Then, the degrees of 𝑢 and 𝑣 are

still Δ, the degrees of 𝑤1’s are at most 2Δ0 < Δ, and the degrees of 𝑤2’s are at most

Δ0 + 1 < Δ. All other newly introduced vertices have degrees at most Δ0 < Δ. Thus,

the degree requirement is met. Call the resulting hypergraph 𝐻𝐺 .

To finish the reduction, we claim that

𝑍𝑐𝑜𝑙 (𝐻𝐺) = 𝐶 |𝐸 |𝑍𝐵 (𝐺),

where 𝐶 is a constant depending only on 𝐻. First notice that for any pair of colours 𝑖

and 𝑗 , the number of colourings 𝜎 of 𝐻 such that 𝜎(𝑢) = 𝑖 and 𝜎(𝑣) = 𝑗 is a constant,

due to the symmetry among colours. Denote this constant by 𝐶0. Thus, in the gadget

above, when the two endpoints 𝑢 and 𝑣 have different colours, the number of possible

colourings for the gadget is ((𝑞 − 2)2 + (𝑞 − 1))𝐶3
0 ; when the two endpoints 𝑢 and 𝑣

have the same colour, the number of possible colourings for the gadget is (𝑞−1) (𝑞−
2)𝐶3

0 . The claim holds with 𝐶 = ((𝑞−2)2 + (𝑞−1))𝐶3
0 . □

In Theorem 4.6, we could avoid the large constant𝐶1 in the degree bound by using

[GŠV15, Theorem 1.2] as the starting point of our reduction, but doing so will restrict

the result to even 𝑞 only.

For 𝑘-SATs on linear hypergraphs, Hermon, Sly, and Zhang [HSZ19] showed an

efficient approximate counting and sampling algorithm if Δ ≤ 𝑐2𝑘

𝑘2 , where 𝑐 is a con-

stant. In view of their result, Theorem 4.4 and Theorem 4.6 are potentially sharp for

linear hypergraphs, up to some polynomial factor in 𝑘 .

4.1.1 Proof of Lemma 4.5

We will consider the following computational problem. Given a graph 𝐺 = (𝑉,𝐸), for

a 𝑞-colouring 𝜎 : 𝑉 → {1, . . . , 𝑞}, let Mono(𝐺,𝜎) be the number of monochromatic

edges under 𝜎.
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Name Max-𝑞-Cut

Instance A undirected graph 𝐺 = (𝑉,𝐸)

Output max𝜎:𝑉→{1,...,𝑞}{|𝐸 | −Mono(𝐺,𝜎)}

An approximation for this problem with relative error 𝛿 requires an output that

is at least (1− 𝛿) times the optimal value. Let Max-Cut be the 𝑞 = 2 version of Max-

𝑞-Cut. Alimonti and Kann [AK00] showed the following.

Proposition 4.7. There is a constant 𝛿0 > 0 such that, there is no randomized polynomial-

time approximation algorithm for Max-Cut in cubic graphs with relative error 𝛿0 unless

NP = RP.

Furthermore, Kann, Khanna, Lagergren, and Panconesi [KKLP97] showed the fol-

lowing reduction.

Proposition 4.8. For any 0 ≤ 𝛿 ≤ 1, if Max-𝑞-Cut in

(
Δ(𝑞+1)

2 + 𝑞−1
2

)
-regular graphs

can be approximated within relative error
𝛿

2(𝑞+1) in polynomial-time, then Max-Cut can

be approximated within 𝛿 in polynomial-time for Δ-regular graphs.

The original reduction in [KKLP97, Theorem 1] works for only even 𝑞 and gives

relative error lower bound
𝛿

2(𝑞−1) instead. For odd 𝑞 they used a different reduction

to achieve the same lower bound but it does not keep the degrees bounded. Here

we briefly describe how to modify the reduction in [KKLP97, Theorem 1] such that

it works for odd 𝑞 as well, albeit with a slightly worse relative error lower bound

𝛿
2(𝑞+1) . For odd 𝑞, given an instance 𝐺 = (𝑉,𝐸) for Max-Cut, we replace each vertex

𝑣 ∈ 𝑉 by a clique 𝐶𝑣 of size
𝑞+1

2 (instead of
𝑞

2 in the original reduction), and replace

each edge (𝑢, 𝑣) ∈ 𝐸 by a bipartite complete graph between 𝐶𝑣 and 𝐶𝑢 . Moreover,

give weight
𝑞+1
𝑞−1𝑑𝐺 (𝑣) for edges inside 𝐶𝑣 (instead of 𝑑𝐺 (𝑣)) and keep weight 1 for all

other edges. It can be verified straightforwardly that the proof still works, except that

the parameters 𝛼 and 𝛽 changed from ( 𝑞(𝑞−1)
2 , 2

𝑞
) to ( (𝑞+1)

2

2 , 2
𝑞+1 ), which leads to the

worse lower bound
𝛿

2(𝑞+1) . Finally, Crescenzi, Silvestri, and Trevisan [CST01] showed

that for a general class of combinatorial optimization problem, including Max-𝑞-Cut,

the weighted and unweighted versions have the same approximation complexity.

Lemma 4.9. There is a constant 0 < 𝐶0 < 1 such that for any 𝑞 ≥ 2, there is no FPRAS

for the 𝑞-state Potts model with weights 𝐵 < 𝑞−1/𝐶0
in (2𝑞 + 1)-regular graphs unless

NP = RP.
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Proof. Let 𝐶0 := 5𝛿0
24 , where 𝛿0 is from Proposition 4.7. We claim that for any 𝑞 ≥ 2, an

FPRAS for 𝑍𝐵 (𝐺) with weight 𝐵 < 𝑞−1/𝐶0
in graphs with degree bound 2𝑞+1 implies

an efficient approximation of Max-𝑞-Cut within relative error 𝜀0 := 𝛿0
2(𝑞+1) in graphs

with the same degree bound. Then Proposition 4.7 and Proposition 4.8 (with Δ = 3)

imply the lemma.

Given an instance 𝐺 = (𝑉,𝐸) to Max-𝑞-Cut, assume the maximum value of 𝑞-cut

is Opt. Let 𝑛 := |𝑉 | and 𝑚 := |𝐸 |. Then 𝑚 =
(2𝑞+1)𝑛

2 . If we had an FPRAS for the 𝑞-state

Potts model, then we can efficiently sample a colouring proportional to its weight.

(In the local lemma setting, one such reduction is given in [JPV21b].) The probability

that the cut value of the colouring is less than (1− 𝜀0)Opt is at most

𝑞𝑛𝐵𝑚−(1−𝜀0)Opt

𝐵𝑚−Opt + 𝑞𝑛𝐵𝑚−(1−𝜀0)Opt .

In particular, this probability is at most 1/2 if

𝐵𝑚−Opt ≥ 𝑞𝑛𝐵𝑚−(1−𝜀0)Opt,

which is equivalent to 𝐵−𝜀0Opt ≥ 𝑞𝑛. On the other hand, notice that a uniformly at

random colouring achieves cut value (1− 1
𝑞
)𝑚 in expectation. Thus, Opt ≥ (1− 1

𝑞
)𝑚 =

(2𝑞+1) (𝑞−1)𝑛
2𝑞 . Consequently, for any 𝑞 ≥ 2, 𝐵−𝜀0Opt ≥ 𝐵

−𝛿0𝑛
(2𝑞+1) (𝑞−1)

4𝑞 (𝑞+1) ≥ 𝐵−𝐶0𝑛
, since

𝐶0 =
5𝛿0
24 ≤

(2𝑞+1) (𝑞−1)𝛿0
4𝑞(𝑞+1) for 𝑞 ≥ 2. Thus if 𝐵 < 𝑞−1/𝐶0

, 𝐵−𝜀0Opt ≥ 𝑞𝑛 as desired. Standard

methods can boost the success probability from 1/2 to arbitrarily close to 1. □

Now we are ready to show Lemma 4.5.

Proof of Lemma 4.5. Given a (2𝑞+1)-regular graph 𝐺 = (𝑉,𝐸), we replace each edge

by 𝑠 := ⌊ Δ
2𝑞+1⌋ parallel edges to get a new graph𝐺′whose degree is at most (2𝑞+1)𝑠 ≤

Δ. As 𝑞 ≥ 2, 𝐶1 ≥ 5, and Δ ≥ 2𝐶1𝑞 ln𝑞, 𝑠 ≥ Δ
2𝑞+1 −1 > 0.63 Δ

2𝑞+1 .

If we have a Potts model with edge weight 𝐵 on 𝐺′, then effectively, this is a Potts

model on 𝐺 with 𝐵′ = 𝐵𝑠
. Thus if 𝐵 < 1− 𝐶1𝑞 ln𝑞

Δ
for 𝐶1 = 5/𝐶0, where 𝐶0 is from

Lemma 4.9, then

𝐵−𝑠𝐶0 >

(
1+ 𝐶1𝑞 ln𝑞

Δ

) 𝑠𝐶0

≥ 𝑒
0.8𝑠𝐶0𝐶1𝑞 ln𝑞

Δ ≥ 𝑒
0.8∗0.63𝐶0𝐶1𝑞 ln𝑞

2𝑞+1 > 𝑒
𝐶0𝐶1𝑞 ln𝑞

2(2𝑞+1) ≥ 𝑞0.2𝐶0𝐶1 ≥ 𝑞,

where in the first line we used 1+𝑥 ≥ 𝑒0.8𝑥
for 𝑥 ≤ 0.5. Thus this parallel construction

can reduce from the Potts model satisfying the conditions of Lemma 4.9, which is

NP-hard to approximate. □
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4.2 Reducing from spin systems

In this section we show our main theorem, Theorem 4.1, namely a refined inapprox-

imability result for counting. As mentioned earlier, we will do this by first relating it

to a multi-spin system on graphs with “antiferromagnetic” interaction matrix 𝑩, and

then establishing inapproximability results. It is tempting to pursue a strategy similar

to that of Lemma 4.5 to show hardness for the spin system defined by 𝑩. However,

that strategy relies on hardness of finding the maximum weight configuration, and

somewhat surprisingly, as we shall see soon, that problem for 𝑩 is trivial. Instead, we

need sharper tools from [GŠV15].

To define the spin system on graphs we will be interested in, we only need to

specify its interaction matrix 𝑩 (recall (4.1)). We use [𝑞] to denote {1, . . . , 𝑞} and [𝑞]
to denote {0,1, . . . , 𝑞}. Let 𝑡 := (𝑞𝑘 ′ − 𝑞)1/Δ, where 𝑘′ := 𝑘/2, and 𝑩 = {𝐵𝑖 𝑗 }𝑖, 𝑗∈[𝑞] be

the matrix with block form

𝑩 =

[ 𝑡2 𝑡1T

𝑡1 𝑱

]
, (4.5)

where 𝑱 is the 𝑞×𝑞 matrix with 0s on the diagonal and 1s elsewhere, and 1 is the 𝑞×1
vector with all ones. In the language of [GŠV15], the matrix 𝑩 is antiferromagnetic

and ergodic.
2

Let 𝐻 be a 𝑘-uniform hypergraph, where 𝑘 = 2𝑘′ is even, and recall that we

use 𝑍𝑐𝑜𝑙 (𝐻) to denote the number of proper 𝑞-colourings of 𝐻. For any given Δ-

regular graph 𝐺 = (𝑉,𝐸), let 𝐻𝐺 be the hypergraph where every vertex 𝑣 ∈ 𝑉 is

replaced by 𝑘′ new vertices 𝑣1, . . . , 𝑣𝑘 ′ , and each edge (𝑢, 𝑣) is replaced by a hyper-

edge {𝑢1, . . . , 𝑢𝑘 ′ , 𝑣1, . . . , 𝑣𝑘 ′} of size 2𝑘′. Then 𝐻𝐺 is 2𝑘′-uniform and Δ-regular. This

construction has been used in [BGG
+
19], and yields the following lemma in our case.

Lemma 4.10. Let 𝐺 = (𝑉,𝐸) be a Δ-regular graph, and 𝐻𝐺 = (𝑉 ′, 𝐸′) be the 2𝑘′-
uniform hypergraph constructed as above. Then, 𝑍𝑩 (𝐺) = 𝑍𝑐𝑜𝑙 (𝐻𝐺).

Proof. Let Ω𝑩 be the set of all assignments 𝜎 of 𝐺 whose weights are non-zero. Let

Ω𝑐𝑜𝑙 be the set of all proper 𝑞-colourings 𝜏 of 𝐻. We will construct a surjective map-

ping 𝜑 between Ω𝑐𝑜𝑙 and Ω𝐵, such that for any 𝜎,

��𝜑−1(𝜎)
�� = wt(𝜎). This implies the

lemma.

2
Antiferromagnetism amounts to checking that 𝑩 has all but one of its eigenvalues negative;

it is not hard to see that 𝑩 has −1 as an eigenvalue by multiplicity 𝑞 − 1, and therefore using

trace/determinant we see that the other two eigenvalues have sum equal to 𝑞 − 1 + 𝑡2 and product

−𝑡2. Ergodicity amounts to the fact that 𝑩 is irreducible and aperiodic.
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𝜏 ∈ Ω𝑐𝑜𝑙 𝜑(𝜏) ∈ Ω𝐵

Figure 4.2: The mapping 𝜑. The “pure” colours are red, green and blue, while black

stands for the “mixed” colour.

The mapping 𝜑 is as follows. Given 𝜏 :𝑉 ′→ {1,2, . . . , 𝑞}, let

𝜑(𝜏) (𝑣) :=

𝑖 if 𝜏(𝑣1) = 𝜏(𝑣2) = · · · = 𝜏(𝑣𝑘 ′) = 𝑖 for some 1 ≤ 𝑖 ≤ 𝑞,

0 otherwise.

See Figure 4.2 for an illustration.

We first show that 𝜑 is surjective. Let 𝜎 ∈Ω𝐵 and we construct 𝜏 ∈Ω𝑐𝑜𝑙 such that

𝜑(𝜏) = 𝜎. For any 𝑣 such that 𝜎(𝑣) ≠ 0, 𝜏(𝑣𝑖) = 𝜎(𝑣) for any 1 ≤ 𝑖 ≤ 𝑘′. If 𝜎(𝑣) = 0,

then let 𝜏(𝑣𝑖) = 1 for any 1 ≤ 𝑖 ≤ 𝑘′−1, and 𝜏(𝑣′
𝑘
) = 2. It is easy to verify that 𝜏 is a

proper 𝑞-colouring and 𝜑(𝜏) = 𝜎 for this construction.

Next we calculate

��𝜑−1(𝜎)
��
. Let 𝑛0(𝜎) be the number of vertices assigned 0 under

𝜎. Then ��𝜑−1(𝜎)
�� = (

𝑞𝑘
′ − 𝑞

)𝑛0 (𝜎)
.

On the other hand, since 𝐺 is Δ-regular,

wt(𝜎) = 𝑡Δ𝑛0 (𝜎) =
(
𝑞𝑘
′ − 𝑞

)𝑛0 (𝜎)
=

��𝜑−1(𝜎)
�� ,

which verifies the properties of 𝜑. □

Remark 4.11. For odd 𝑘 , we may consider a similar construction, but in addition to

clustering half of each hyperedge as a single vertex, we leave one vertex in the middle

which appears only in this single hyperedge. The resulting spin system would have a

different matrix 𝑩′, but the difference between 𝑩′ and the current 𝑩 is not too much

in the sense that the zeros would be replaced by small constants. We expect that we

may obtain a hardness result for 𝑩′ for Δ of a similar order. However, since the details

are already getting very complicated, we will only handle 𝑩 in the rest of this paper.
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Given Lemma 4.10, all we need to show is that the spin system with interaction

matrix 𝑩 is hard to approximate on Δ-regular graphs, with Δ in the desired range. For

this, we will use a result by Galanis, Vigoda, and Štefankovič [GŠV15, Theorem 1.5]

which gives a sufficient condition in terms of studying a certain function (that can be

formulated in terms of an induced norm of 𝑩). Note that since 𝑡 > 1 the corresponding

optimization problem related to 𝑩 is trivial. Thus, we cannot use a strategy similar to

that of Lemma 4.5 to show hardness for the spin system defined by 𝑩.

The main construction in the gadget to show the hardness is the bipartite random

Δ-regular graph. Let (𝜶, 𝜷) be a pair of vectors such that for 𝑖 ∈ [𝑞], 𝛼𝑖 and 𝛽𝑖 denotes

the fraction of vertices with colour 𝑖 on the left and right sides of the bipartite random

regular graph. If we draw a sample 𝜎 proportional to its weight wt(𝜎), then with high

probability over the choice of the random graph, the fraction of colours (𝜶, 𝜷) will

be from one of the dominant phases, for all but an exponentially small probability.

Analyzing these dominant phases lies in the heart of [GŠV15, Theorem 1.5].

Let G𝑛 denote the family of Δ-regular bipartite graphs with 𝑛 vertices on each

side. For a bipartite graph 𝐺 uniformly drawn from G𝑛 and probability vectors 𝜶 =

{𝛼𝑖}𝑖∈[𝑞] , 𝜷 = {𝛽𝑖}𝑖∈[𝑞] , we use 𝑍
𝜶,𝜷
𝑩 (𝐺) to denote the total weights of assignments

whose fractions of colours on the two sides are given by 𝜶, 𝜷 respectively. Consider

the function Ψ1 that captures the exponential growth of the expectation of 𝑍
𝜶,𝜷
𝑩 (𝐺),

i.e.,

Ψ1(𝜶, 𝜷) := lim
𝑛→∞

1
𝑛

logEG𝑛 [𝑍
𝜶,𝜷
𝑩 (𝐺)] . (4.6)

The function Ψ1 has a relatively explicit form (see [GŠV15, Section 2]) using entropy-

style functions though the exact details are not going to be important and we will in

fact use a surrogate function later on (see Section 4.3).

Before stating the main result of [GŠV15], we need some further terminology.

A dominant phase (𝜶, 𝜷) is a maximizer of the function Ψ1(𝜶, 𝜷) and captures the

most likely configurations for the spin system with interaction matrix on a random

Δ-regular graph. A dominant phase is called Hessian dominant if the Hessian of Ψ1 is

negative definite. Finally, two dominant phases (𝜶1, 𝜷1) and (𝜶2, 𝜷2) are permutation

symmetric if there is a permutation matrix 𝑷 such that 𝑩 = 𝑷𝑩𝑷T
and (𝜶1, 𝜷1) =

(𝑷𝜶2,𝑷𝜷2) or (𝜶1, 𝜷1) = (𝑷𝜷2,𝑷𝜶2). Now we can state [GŠV15, Theorem 1.5].
3

Proposition 4.12 ([GŠV15]). Let Δ ≥ 3 be an integer, and suppose that 𝑩 is an ergodic

interaction matrix of an antiferromagnetic spin system. Suppose further that the dom-

3
Technically, [GŠV15, Theorem 1.5] demands the assumption NP≠RP but that is merely to exclude

randomised algorithms, the reduction itself is deterministic.
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inant phases (𝜶, 𝜷) satisfy 𝜶 ≠ 𝜷, are permutation symmetric and Hessian dominant.

Then, it is NP-hard to approximate the partition function 𝑍𝑩 (𝐺) on 𝑛-vertex triangle-

free Δ-regular graphs 𝐺 , even within a factor of 2𝑐𝑛 for a constant 𝑐(𝑩,Δ) > 0.

The key ingredient in the conditions of Proposition 4.12 is the condition that𝜶 ≠ 𝜷;

this enables a reduction in [GŠV15] to the Max-Cut problem; the Hessian dominance

and the permutation symmetry condition are more on the technical side, but is one of

the main reasons that complicates the overall arguments (this was already prevalent

in [GŠV15]).

The main challenge to show our inapproximability results is to establish the con-

ditions of Proposition 4.12 for 𝑩 and the relevant range for Δ, which is the scope of

the following lemma.

Lemma 4.13. Let 𝑞 ≥ 4 be even, 𝑘′ ≥ 2, and Δ = 5𝑞𝑘 ′ + 1. Then the dominant phases

of the spin system with interaction matrix 𝑩 (defined in (4.5)) satisfy the conditions of

Proposition 4.12.

Theorem 4.1 follows from Lemma 4.10, Proposition 4.12, and Lemma 4.13. It re-

mains to analyse the dominant phases of 𝑩 and establish Lemma 4.13, which is the

focus of Section 4.3.

4.3 Analysis of the dominant phases

In this section we analyze the dominant phase. We will state the main lemmata in this

section and in Section 4.3.1. However, because the calculations are often very heavy,

many of the lemmata are not immediately proved. The sections in which their proofs

appear can be found at the end of Section 4.3.1.

Let 𝑞,Δ ≥ 3 be integers. To prove Lemma 4.13, we need to analyse the function Ψ1

from (4.6). The function Ψ1 turns out to be inconvenient to work with, but there is a

simpler surrogate function Φ from [GŠV15] that we can use. For vectors 𝒓 = {𝑅𝑖}𝑖∈[𝑞]
and 𝒄 = {𝐶𝑖}𝑖∈[𝑞] with nonnegative entries, let

Φ(𝒓, 𝒄) := Δ ln
𝒓T𝑩𝒄

∥𝒓∥𝑝 ∥𝒄∥𝑝
, where 𝑝 = Δ/(Δ−1). (4.7)

It is not hard to see that for the matrix 𝑩 defined in (4.5), the critical points of Φ
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satisfy the following equations:
4

𝑅0 ∝ 𝑡𝑑
(
𝑡𝐶0 +

∑︁
𝑗∈[𝑞]; 𝑗≠𝑖

𝐶𝑖

)𝑑
, 𝑅𝑖 ∝

(
𝑡𝐶0 +

∑︁
𝑗∈[𝑞]; 𝑗≠𝑖

𝐶𝑖

)𝑑
for 𝑖 ∈ [𝑞];

𝐶0 ∝ 𝑡𝑑
(
𝑡𝑅0 +

∑︁
𝑖∈[𝑞];𝑖≠ 𝑗

𝑅𝑖

)𝑑
, 𝐶 𝑗 ∝

(
𝑡𝑅0 +

∑︁
𝑖∈[𝑞];𝑖≠ 𝑗

𝑅𝑖

)𝑑
for 𝑗 ∈ [𝑞],

(4.8)

where 𝑡 = (𝑞𝑘 ′ − 𝑞)1/Δ and 𝑑 := Δ−1. The equations in (4.8) are often called the “tree

recursions”, because they are the same as the recursion for marginal probabilities on

an infinite 𝑑-ary tree. Note that 1 ≤ 𝑡 ≤ 1.0312 for any 𝑞 ≥ 4, 𝑘′ ≥ 2 and 𝑑 ≥ 5𝑞𝑘 ′ . The

connection between the functions Ψ1 and Φ is detailed in the following result from

[GŠV15], applied to our setting.

Proposition 4.14 ([GŠV15, Theorem 4.1]). Let 𝑞,Δ ≥ 3 be integers, and let 𝑝 = Δ/(Δ−
1). Then, the local maxima of Φ and Ψ1 happen at critical points, i.e., there are no local

maxima on the boundary. The transformation (𝒓, 𝒄) ↦→ (𝜶, 𝜷) given by 𝛼𝑖 = 𝑅
𝑝

𝑖
/∥𝒓∥𝑝𝑝

and 𝛽𝑖 = 𝐶
𝑝

𝑗
/∥𝒄∥𝑝𝑝 for 𝑖 ∈ [𝑞] yields a one-to-one correspondence between the critical

points of Φ and Ψ1. Moreover, for the corresponding critical points (𝒓, 𝒄) and (𝜶, 𝜷) it

holds that Ψ1(𝜶, 𝜷) = Φ(𝒓, 𝒄).

The function Φ is still multi-dimensional (2𝑞), but fortunately we can reduce its

dimensions significantly down to 11 by studying the structure of fixpoints to the sys-

tem (4.8). A first observation is that 𝑅𝑖 < 𝑅 𝑗 implies 𝐶𝑖 > 𝐶 𝑗 , and 𝑅𝑖 = 𝑅 𝑗 implies

𝐶𝑖 = 𝐶 𝑗 , where 𝑖, 𝑗 ≠ 0. The next lemma is similar to [GŠV15, Lemma 7.6].

Lemma 4.15. Let (𝑅0, 𝑅1, · · · , 𝑅𝑞,𝐶0,𝐶1, · · · ,𝐶𝑞) be a positive fixpoint of (4.8). Then

the number of distinct values in {𝑅𝑖}1≤𝑖≤𝑞 and {𝐶𝑖}1≤𝑖≤𝑞 is at most 3.

Proof. Let 𝑅 :=
∑𝑞

𝑖=1 𝑅𝑖 and 𝐶 :=
∑𝑞

𝑖=1𝐶𝑖 . Suppose all variables are normalized so that

𝑅0 +𝑅 = 𝐶0 +𝐶 = 1. Then for any 𝑖 ∈ [𝑞], we have that

𝑅𝑖

𝑅0
= 𝑡−𝑑

( (𝑡 −1)𝐶0 +1−𝐶𝑖

(𝑡 −1)𝐶0 +1

)𝑑
= 𝑡−𝑑

( (𝑡 −1) +𝐶−1
0 −𝐶𝑖/𝐶0

(𝑡 −1) +𝐶−1
0

)𝑑
= 𝑡−𝑑

(
1− 1

𝑡𝑑𝐶′

(
1− 𝑅𝑖

𝑅0𝑅′

)𝑑)𝑑
,

where 𝐶′ = (𝑡 − 1) +𝐶−1
0 and 𝑅′ = (𝑡 − 1) + 𝑅−1

0 . Let 𝑥 = (𝑅𝑖/𝑅0)1/𝑑 and note that

𝑥 ∈ [0,1]. Then the above equation becomes 𝑓 (𝑥) = 0, where 𝑓 (𝑥) := 𝑡−1
(
1− 1

𝑡𝑑𝐶′
(
1−

4
Here, and elsewhere, we use the notation 𝑥𝑖 ∝ 𝑦𝑖 for 𝑖 ∈ [𝑞] to denote that 𝑥𝑖 = 𝐴𝑦𝑖 for 𝑖 ∈ [𝑞], for

some arbitrary 𝐴.
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𝑥𝑑

𝑅′
)𝑑) − 𝑥. We have that

𝑓 ′(𝑥) := (𝑔(𝑥))𝑑−1−1, where 𝑔(𝑥) :=
(

𝑑2

𝑡𝑑+1𝑅′𝐶′

)1/(𝑑−1) (
1− 𝑥

𝑑

𝑅′

)
𝑥.

Note that 𝑔(𝑥) > 0 on the interval [0,1] because 𝑥𝑑 =
𝑅𝑖

𝑅0
< (𝑡 − 1) + 𝑅−1

0 = 𝑅′. Using

that (𝑔(𝑥))𝑑−1−1 = (𝑔(𝑥) −1) (𝑔(𝑥)𝑑−2+ . . .+1), we therefore obtain that the roots of

𝑓 ′(𝑥) = 0 can only come from the roots of 𝑔(𝑥) − 1, which has at most two roots by

the Descartes’ rule of signs. Hence 𝑓 ′(𝑥) changes its sign at most twice in the interval

of [0,1] and 𝑓 (𝑥) has at most 3 roots over [0,1], showing that the 𝑅𝑖’s for 𝑖 ∈ [𝑞] can

only be supported on three different values. The statement for the 𝐶𝑖’s follows by an

analogous argument. □

The above lemma motivates the following definition.

Definition 4.16. Let (𝑅0, 𝑅1, · · · , 𝑅𝑞,𝐶0,𝐶1, · · · ,𝐶𝑞) be a positive fixpoint. We call

the fixpoint 𝑚-supported, if the number of distinct values in {𝑅𝑖}1≤𝑖≤𝑞 is 𝑚, where

𝑚 ∈ {1,2,3}. We call the fixpoint is of type (𝑞1, 𝑞2, 𝑞3) where 𝑞1 + 𝑞2 + 𝑞3 = 𝑞, if the

multiplicities of different numbers in {𝑅𝑖}1≤𝑖≤𝑞 are 𝑞1, 𝑞2, 𝑞3 respectively.
5

In case

that the fixpoint is 2 or 1-supported, let one or two of 𝑞𝑖’s take zero respectively.

From now on we may also abuse the notation 𝑅𝑖 (also 𝐶𝑖 , 𝑖 = 1,2,3) by absorbing

all the same values, and hence 𝑅1 stands for the value that 𝑞1 of 𝑅’s (except 𝑅0) take,

rather than the value of 𝑅 on the first index in the fixpoint.

The main lemma of this section can be stated as follows.

Lemma 4.17. Suppose 𝑞 ≥ 4 is even, 𝑘′ ≥ 2 and 𝑑 = 5𝑞𝑘 ′ . The maximum of Ψ1 over

(𝑞1, 𝑞2, 𝑞3)-type fixpoints is attained uniquely, when (𝑞1, 𝑞2, 𝑞3) = (𝑞/2, 𝑞/2,0).

We also need to prove that 2-maximal triples (𝑞/2, 𝑞/2,0) yield unique r and

c (up to scaling and permutation), and that the corresponding maxima are Hessian

dominant.

Lemma4.18. Suppose 𝑞 ≥ 4 is even, 𝑘′ ≥ 2 and 𝑑 ≥ 5𝑞𝑘 ′ . The fixpoints of type (𝑞/2, 𝑞/2,0)
are unique up to scaling and permutation symmetric. In addition, they are Hessian dom-

inant maxima of Ψ1.

Lemma 4.13 follows immediately by combining Lemmata 4.17 and 4.18.

To illustrate how fixpoints look like, we provide an example below for references.

5
Any permutation over 𝑞1, 𝑞2, 𝑞3 is considered equivalent. E.g., (𝑞/2, 𝑞/2,0) and (𝑞/2,0, 𝑞/2) are

regarded as the same type.
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Example 4.19. Consider the case 𝑞 = 6, 𝑘′ = 3 and 𝑑 = 5𝑞𝑘 ′ = 1080. The following three

pairs are fixpoints of the system Equation (4.8) under this parameter setting.

(a)


(𝑅0, · · · , 𝑅6) = (0.9863,0.0045,0.0045,0.0045,0.0001,0.0001,0.0001);

(𝐶0, · · · ,𝐶6) = (0.9863,0.0001,0.0001,0.0001,0.0045,0.0045,0.0045).

(b)


(𝑅0, · · · , 𝑅6) = (0.993,0.001,0.001,0.001,0.001,0.001,0.001);

(𝐶0, · · · ,𝐶6) = (0.993,0.001,0.001,0.001,0.001,0.001,0.001).

(c)


(𝑅0, · · · , 𝑅6) = (0.9997,0.0001,0.0001,0.0001,0.0001,0.0001,0.0001);

(𝐶0, · · · ,𝐶6) = (0.9732,0.0045,0.0045,0.0045,0.0045,0.0045,0.0045).

By definition, (a) is of type (3,3,0), while (b)(c) are of type (6,0,0).

4.3.1 Restricting to three values

In order to prove Lemma 4.17, we need to determine which type of fixpoints maxi-

mizes Ψ1. By using Proposition 4.14, the value of Ψ1 corresponding to such a fixpoint

in (4.8) can be given by the matrix norm (4.7), which can be seen to be equal to

Φ𝑆 (q,r,c) :=

(𝑑 +1) ln
(
𝑅0𝐶0𝑡

2 +
(∑3

𝑖=1 𝑞𝑖𝑅𝑖

)
𝐶0𝑡 +

(∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
𝑅0𝑡

+
(∑3

𝑖=1 𝑞𝑖𝑅𝑖

) (∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
−

(∑3
𝑖=1 𝑞𝑖𝑅𝑖𝐶𝑖

) )
−𝑑 ln

(
𝑅
(𝑑+1)/𝑑
0 +∑3

𝑖=1 𝑞𝑖𝑅
(𝑑+1)/𝑑
𝑖

)
− 𝑑 ln

(
𝐶
(𝑑+1)/𝑑
0 +∑3

𝑖=1 𝑞𝑖𝐶
(𝑑+1)/𝑑
𝑖

)
.

(4.9)

Where we define the vector r = (𝑅0, 𝑅1, 𝑅2, 𝑅3) and c = (𝐶0,𝐶1,𝐶2,𝐶3). For instance,

Example 4.19(a) can be written as q = (3,3,0), r = (0.9863,0.0045,0.0001,arbitrary),
and c = (0.9863,0.0001,0.0045,arbitrary).6 It is worth noting that this function is

scale-free with respect to r and c, as this property will be used intensively in our later

proofs.

The discrete optimization of (4.9) over all fixpoints of the tree recursion (4.8) is

difficult to cope with. Instead, we then try to maximize (4.9) over all nonnegative

q and

∑3
𝑖=1 𝑞𝑖 = 𝑞, wishing the maximum to be taken at integer q. This is the main

reason such approach can only deal with even 𝑞.

6
In this example, 𝑅3 and 𝐶3 can be arbitrarily assigned because they do not affect the function

Φ𝑆
. Yet later on in Section 4.3.5, we might need to specify the assignments for the sake of “analytic-

continuation”-style properties.
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For all q = (𝑞1, 𝑞2, 𝑞3) with 𝑞1 + 𝑞2 + 𝑞3 = 𝑞, 𝑞𝑖 ≥ 0, define

Φ(q) := max
r,c

Φ𝑆 (q,r,c) (4.10)

where the maximum is taken over r = (𝑅0, 𝑅1, 𝑅2, 𝑅3),c = (𝐶0,𝐶1,𝐶2,𝐶3) satisfying

𝑅0𝐶0𝑡
2 +

(∑3
𝑖=1 𝑞𝑖𝑅𝑖

)
𝐶0𝑡 +

(∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
𝑅0𝑡 +

(∑3
𝑖=1 𝑞𝑖𝑅𝑖

) (∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
−

(∑3
𝑖=1 𝑞𝑖𝑅𝑖𝐶𝑖

)
> 0,

𝑅𝑖,𝐶𝑖 ≥ 0, 𝑖 = 0,1,2,3.
(4.11)

Our first step is to verify the maximum in (4.10) is well defined, and moreover, the

maximum in maxqΦ(q) can also be taken. This is formalized by the next lemma.

Lemma 4.20 ([GŠV15, Lemma 7.10]). The maximum in (4.10) is well-defined. In addi-

tion, maxqΦ(q) can be attained in the region where 𝑞1 + 𝑞2 + 𝑞3 = 𝑞, 𝑞𝑖 ≥ 0.

Proof. The argument is verbatim the same as in [GŠV15], the only difference is that

the function has slightly different form, but still accounts for the relevant parameters

𝑞1, 𝑞2, 𝑞3. □

The next trouble we may encounter later is that we are now dealing with all pos-

sible r,c conditioned on (4.11), instead of just fixpoints of (4.8). The good news is that,

in contrast to [GŠV15], we can rule out fairly easily that the maximizer in (4.10) is at

the boundary.

Lemma4.21. For all triples 𝒒 = (𝑞1, 𝑞2, 𝑞3), any maximizer in (4.10) satisfies (a) 𝑅0,𝐶0 >

0, (b) for any 𝑖 such that 𝑞𝑖 > 0, it holds that 𝑅𝑖,𝐶𝑖 > 0, and (c) for distinct 𝑖, 𝑗 such that

𝑞𝑖, 𝑞 𝑗 > 0, it holds that 𝑅𝑖 = 𝑅 𝑗 if and only if 𝐶𝑖 = 𝐶 𝑗 .

The problem in [GŠV15] that also appears in our setting is that it might be that

𝑞𝑖, 𝑞 𝑗 > 0, but 𝑅𝑖 = 𝑅 𝑗 and 𝐶𝑖 = 𝐶 𝑗 . For example, imagine we are now strengthen-

ing the restriction (4.11) by adding 𝑅1 = 𝑅2 and 𝐶1 = 𝐶2. Then Φ(𝑞1 + 𝑞2,0, 𝑞3) ≤
Φ(𝑞1, 𝑞2, 𝑞3). Such degenerate case makes it difficult to compare between different q
triples because the equality can be taken. This motivates the next definition.

Definition 4.22. Let 𝑚 = 2,3. A triple q is called 𝑚-maximal, if exactly 𝑚 𝑞𝑖’s in q
are non-zero, and there exists r,c maximizing (4.10) such that, 𝑞𝑖, 𝑞 𝑗 > 0 and 𝑖 ≠ 𝑗

imply that 𝑅𝑖 ≠ 𝑅 𝑗 and 𝐶𝑖 ≠𝐶 𝑗 . We also call q maximal if it is either 2- or 3-maximal.

Now we connect 𝑚-maximal triples with fixpoints in (4.8).
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Lemma 4.23. Suppose a triple q is 𝑚-maximal. Then there exists r,c achieving the

maximum in (4.10) and specifying an 𝑚-supported fixpoint of tree recursion (4.8) of

type q.

For 2 and 3-maximal triples, the key is the next lemma.

Lemma 4.24. Suppose 𝑞 ≥ 4 is even. Then the following statements hold:

(a) There does not exist any 3-maximal triple that maximizes (4.10).

(b) The only possibility of a 2-maximal triple to maximize (4.10) is (𝑞/2, 𝑞/2,0) or

its permutations, with 𝑅𝑖/𝑅 𝑗 = 𝐶 𝑗/𝐶𝑖 , where 𝑖 ≠ 𝑗 are the two indices such that

𝑞𝑖, 𝑞 𝑗 = 𝑞/2.

The above lemma is not yet enough to finish the proof of Lemma 4.17 because we

have to rule out degenerate cases of all triples, i.e., the triple (𝑞,0,0). This is the main

difference with the colour-symmetric setting of [GŠV15]. Instead, we have the special

colour corresponding to (𝑅0,𝐶0), which makes the system behave like a 2-spin system

when all “pure” colours take the same fraction. What is worse is that, it is possible

for the 2-spin system to have three fixpoints (two of them being symmetric), when

the tree recursion lies in the so-called “non-uniqueness” region (see Section 4.3.4).

Therefore, we need to discuss such fixpoints by two different cases.

Before continuing the discussion, let us state another useful result from [GŠV15].

A fixpoint 𝑥 of a mapping 𝑓 is Jacobian stable if the Jacobian of 𝑓 at 𝑥 has spectral

radius less than 1.

Proposition 4.25 ([GŠV15, Theorem 4.2]). A fixpoint of the tree recursion (4.8) is Ja-

cobian stable if and only if it corresponds to a Hessian dominant local maximum of Ψ1.

The first kind of fixpoints satisfy 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. The fixpoint Example 4.19(c) is

one such. As stated in the next lemma, such a fixpoint is Jacobian stable, and hence it

is a possible candidate to be the maximizer in maxqΦ(q). Though the proof of stability

is not necessary for our main theorem, we still leave it here for future references.

Lemma 4.26. Suppose 𝑑 ≥ 5𝑞𝑘 ′ . The fixpoint corresponding to triple (𝑞,0,0) and

𝑅0/𝑅1 ≠ 𝐶0/𝐶1 is unique up to scaling and swapping 𝑅 and 𝐶. Moreover, it is Jaco-

bian stable.

For the reason above, we can only go through a very detailed calculation to rule

out this case. The equality in 𝑑 = 5𝑞𝑘 ′ from the next lemma is for the sake of simpli-

fication in calculation.
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Lemma 4.27. Suppose 𝑑 = 5𝑞𝑘 ′ . Any fixpoint corresponding to triple (𝑞,0,0) and

𝑅0/𝑅1 ≠ 𝐶0/𝐶1 does not maximize (4.10).

On the other hand, when 𝑅0/𝑅1 = 𝐶0/𝐶1, things become easier as such fixpoints

are not Jacobian stable. Thus, by Proposition 4.25, these fixpoints do not correspond

to local maxima of Ψ1.

Lemma 4.28. Suppose 𝑑 ≥ 5𝑞𝑘 ′ . Any fixpoint corresponding to triple (𝑞,0,0) and

𝑅0/𝑅1 = 𝐶0/𝐶1 is Jacobian unstable.

The fixpoint Example 4.19(b) is one such example.

Now we are ready to prove Lemma 4.17, which given the above ingredients can

be done by following closely a related argument in [GŠV15]. The main complicacy

in the proof is that when we find a maximizer q of Φ(q), the corresponding r (or c)

values are not necessarily distinct. We need to carefully rule out these degenerate

cases.

Proof of Lemma 4.17. Denote 𝑀𝐴𝑋 := maxqΦ(q). We first claim that 𝑀𝐴𝑋 is at-

tained at q̂ = (𝑞/2, 𝑞/2,0), and q̂ is maximal. Assuming the claim, Lemma 4.23 yields

that there exist r̂, ĉ with Φ(q̂) = Φ𝑆 (q̂, r̂, ĉ), specifying a (𝑞/2, 𝑞/2,0)-type fixpoint

of the tree recursion (4.8). Hence 𝑀𝐴𝑋 = maxΨ1. To show that q̂ is the unique

type of fixpoint achieving the maximum of Ψ1, consider an arbitrary q∗-type fixpoint

achieving the maximum ofΨ1, say (r∗,c∗). Then q∗must also achieve the maximum in

maxqΦ(q). By Lemma 4.27, q∗ ≠ (𝑞,0,0) and hence it is maximal according to Defini-

tion 4.22 (using (r∗,c∗) as the maximizers; Recall Definition 4.16 that 𝑅𝑖 ≠ 𝑅 𝑗 ,𝐶𝑖 ≠𝐶 𝑗

for 𝑖 ≠ 𝑗 and 𝑞𝑖, 𝑞 𝑗 > 0). Therefore we can apply Lemma 4.24 and obtain that q∗ = q̂.

It remains to prove the claim above. Let q∗ be any maximizer of maxqΦ(q).

(1) q∗ has at least two positive entries. This is a consequence of Lemmata 4.27 and

4.28 (after using Proposition 4.25).

(2) In case q∗ has exactly two positive entries, then q∗must be maximal. Otherwise,

suppose q∗ = (𝑞1, 𝑞2,0) and the maximizer in (4.10) is achieved at r∗,c∗ where

𝑅1 = 𝑅2 or 𝐶1 = 𝐶2. By Lemma 4.21 (c), both equalities are true and hence

Φ(q∗) = Φ((𝑞,0,0)), contradicting item (1).

(3) In case q∗ has exactly two positive entries, it must holds that q∗ = q̂. This is

from item (2), and Lemma 4.24 (b).
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(4) If q∗ has all positive entries, then it cannot be 3-maximal. This is from Lemma

4.24 (a).

(5) If q∗ has all positive entries, then Φ(q∗) = Φ(q̂). This can be proved by the

following argument. Let r∗,c∗ be the maximizer corresponding to q∗. By item

(4), q∗ is not 3-maximal, and using the argument of item (2), there exist distinct

𝑖, 𝑗 ≥ 1 such that 𝑅𝑖 = 𝑅 𝑗 and 𝐶𝑖 =𝐶 𝑗 in r∗,c∗. Let 𝑘 ≥ 1 be the remaining index.

– If 𝑅𝑖 = 𝑅 𝑗 = 𝑅𝑘 , then by Lemma 4.21 (c), 𝐶𝑖 = 𝐶 𝑗 = 𝐶𝑘 , and hence Φ(q∗) =
Φ(𝑞,0,0), contradicting item (1).

– If 𝐶𝑖 = 𝐶 𝑗 = 𝐶𝑘 , then by Lemma 4.21 (c), 𝑅𝑖 = 𝑅 𝑗 = 𝑅𝑘 , and hence Φ(q∗) =
Φ(𝑞,0,0), contradicting item (1).

– If 𝑅𝑖 ≠ 𝑅𝑘 and 𝐶𝑖 ≠ 𝐶𝑘 , we can “merge” the indices 𝑖, 𝑗 to get a new triple

q′ := (𝑞𝑖 + 𝑞 𝑗 , 𝑞𝑘 ,0). Let 𝒓′ := (𝑅0, 𝑅𝑖, 𝑅𝑘 ,0), 𝒄′ := (𝑅0,𝐶𝑖,𝐶𝑘 ,0). Then

Φ(q∗) = Φ𝑆 (q∗,r∗,c∗) = Φ𝑆 (q′,r′,c′) ≤ Φ(q′).

This means that q′ is also a maximizer of maxqΦ(q) since q∗ is a maxi-

mizer. However, q′ has exactly two positive entries. Hence by item (3),

Φ(q∗) = Φ(q′) = Φ(q̂) .

The above arguments imply that for any maximizer q∗, it holds that Φ(q∗) = Φ(q̂),
which means that q̂ is indeed a maximizer. This also indicates all items above apply to

q∗ = q̂, and from item (3), we obtain that q̂ is 2-maximal. This concludes the proof. □

Before diving into the proofs of all the lemmata above, we want to mention the fol-

lowing observation. The partial derivatives 𝜕Φ𝑆/𝜕𝑞𝑖 , conditioned on r and c achiev-

ing the maximum in (4.10), can be written as follows. (Note that it applies to all triples

q, including non-maximal ones.) Based on these partial derivatives, we can argue the

non-optimality by perturbing 𝑞𝑖’s.

Lemma 4.29. Suppose r, c achieve the maximum in (4.10). Then for any 𝑖 ∈ {1,2,3}
such that 𝑞𝑖 > 0, it holds that

𝜕Φ𝑆

𝜕𝑞𝑖
=

𝑅𝑖𝐶0𝑡 +𝑅0𝐶𝑖𝑡 + (𝑑 −1)𝑅𝑖𝐶𝑖 +𝑅𝑖

(
3∑
𝑗=1

𝐶 𝑗𝑞 𝑗

)
+𝐶𝑖

(
3∑
𝑗=1

𝑅 𝑗𝑞 𝑗

)
𝑅0𝐶0𝑡2 +

(
3∑
𝑗=1

𝐶 𝑗𝑞 𝑗

)
𝑅0𝑡 +

(
3∑
𝑗=1

𝑅 𝑗𝑞 𝑗

)
𝐶0𝑡 +

(
3∑
𝑗=1

𝑅 𝑗𝑞 𝑗

) (
3∑
𝑗=1

𝐶 𝑗𝑞 𝑗

)
−

(
3∑
𝑗=1

𝑅 𝑗𝐶 𝑗𝑞 𝑗

) .
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Moreover, if there exists 𝑖, 𝑗 such that 𝑞𝑖, 𝑞 𝑗 > 0 and 𝑖 ≠ 𝑗 and satisfies 𝜕Φ𝑆/𝜕𝑞𝑖 −
𝜕Φ𝑆/𝜕𝑞 𝑗 ≠ 0, then the maximum in (4.10) is not achieved.

Unproved propositions and lemmata in this subsection can be found later:

• Lemma 4.24 is proved in Section 4.3.2.

• Lemma 4.18 is proved in Section 4.3.3.

• Lemma 4.26 and Lemma 4.28 are proved in Section 4.3.4.

• Lemma 4.27 is proved in Section 4.3.5.

• Lemma 4.23 and Lemma 4.29 are proved in Section 4.4.1.

• Lemma 4.21 is proved in Section 4.4.2.

4.3.2 2,3-maximal triples

Let q be a maximal triple and let 𝐼 = {𝑖 | 𝑞𝑖 > 0}. From Lemma 4.21 (a) and (b), by

taking partial derivatives of Φ𝑆
with respect to non-zero 𝑅𝑖 and 𝐶𝑖’s and setting them

to 0, we get that the maximizer of Φ𝑆
satisfies

𝑅
1/𝑑
0 ∝ 𝐶0𝑡

2 + (𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3)𝑡, 𝑅
1/𝑑
𝑖
∝ 𝐶0𝑡 + 𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3−𝐶𝑖; (4.12)

𝐶
1/𝑑
0 ∝ 𝑅0𝑡

2 + (𝑞1𝑅1 + 𝑞2𝑅2 + 𝑞3𝑅3)𝑡, 𝐶
1/𝑑
𝑖
∝ 𝑅0𝑡 + 𝑞1𝑅1 + 𝑞2𝑅2 + 𝑞3𝑅3−𝑅𝑖 (4.13)

for 𝑖 ∈ 𝐼 .
First assume q is 3-maximal, for any 𝑖 ≠ 𝑗 it holds that 𝑅𝑖 ≠ 𝑅 𝑗 and 𝐶𝑖 ≠𝐶 𝑗 . From

Lemma 4.21 (a) and (b), we may assume the following strict ordering

𝑅1 > 𝑅2 > 𝑅3 > 0 and 0 < 𝐶1 < 𝐶2 < 𝐶3. (4.14)

Lemma 4.30. Suppose 𝑅𝑖’s and 𝐶𝑖’s satisfy (4.12), (4.13) and (4.14). We have the fol-

lowing:

(a) If 𝑅1/𝑅3 ≠ 𝐶3/𝐶1, then 𝜕Φ𝑆/𝜕𝑞1− 𝜕Φ𝑆/𝜕𝑞3 ≠ 0.

(b) If 𝑅1/𝑅3 = 𝐶3/𝐶1, then 𝜕Φ𝑆/𝜕𝑞1− 𝜕Φ𝑆/𝜕𝑞2 ≠ 0.

For the sake of convenience, we further set

𝑟𝑑0 := 𝑅0/𝑅3, 𝑟
𝑑
1 := 𝑅1/𝑅3, 𝑟

𝑑
2 := 𝑅2/𝑅3, and 𝑐𝑑0 := 𝐶0/𝐶1, 𝑐

𝑑
2 := 𝐶2/𝐶1, 𝑐

𝑑
3 := 𝐶3/𝐶1.
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which means

𝑟1 > 𝑟2 > 1 and 𝑐3 > 𝑐2 > 1. (4.15)

We will need these notations in later sections too. With them, from (4.12) and (4.13),

we obtain that

𝑟0 =
𝑐𝑑0 𝑡

2 + (𝑞1 + 𝑞2𝑐
𝑑
2 + 𝑞3𝑐

𝑑
3)𝑡

𝑐𝑑0 𝑡 + 𝑞1 + 𝑞2𝑐
𝑑
2 + (𝑞3−1)𝑐𝑑3

, 𝑐0 =
𝑟𝑑0 𝑡

2 + (𝑞1𝑟
𝑑
1 + 𝑞2𝑟

𝑑
2 + 𝑞3)𝑡

𝑟𝑑0 𝑡 + (𝑞1−1)𝑟𝑑1 + 𝑞2𝑟
𝑑
2 + 𝑞3

. (4.16)

𝑟1 =
𝑐𝑑0 𝑡 + 𝑞1−1+ 𝑞2𝑐

𝑑
2 + 𝑞3𝑐

𝑑
3

𝑐𝑑0 𝑡 + 𝑞1 + 𝑞2𝑐
𝑑
2 + (𝑞3−1)𝑐𝑑3

, 𝑐3 =
𝑟𝑑0 𝑡 + 𝑞1𝑟

𝑑
1 + 𝑞2𝑟

𝑑
2 + 𝑞3−1

𝑟𝑑0 𝑡 + (𝑞1−1)𝑟𝑑1 + 𝑞2𝑟
𝑑
2 + 𝑞3

, (4.17)

Proof of Lemma 4.30. From (4.12) and (4.13), we get

𝑟1−1
𝑟2−1

=
𝑐𝑑3 −1
𝑐𝑑3 − 𝑐

𝑑
2
, yielding that 𝑟2 =

𝑟1𝑐
𝑑
3 −1− 𝑐𝑑2 (𝑟1−1)

𝑐𝑑3 −1
(4.18)

Similarly, we obtain that

𝑐3−1
𝑐2−1

=
𝑟𝑑1 −1
𝑟𝑑1 − 𝑟

𝑑
2
, yielding that 𝑟𝑑2 =

𝑟𝑑1 𝑐3−1− 𝑐2(𝑟𝑑1 −1)
𝑐3−1

, (4.19)

From (4.12) and (4.13), we have that 𝑟2 =
𝑐𝑑0 𝑡+𝑞1+(𝑞2−1)𝑐𝑑2+𝑞3𝑐

𝑑
3

𝑐𝑑0 𝑡+𝑞1+𝑞2𝑐
𝑑
2+(𝑞3−1)𝑐𝑑3

which combined with

(4.18) gives that

𝑐𝑑0 𝑡 + 𝑞1 + (𝑞2−1)𝑐𝑑2 + 𝑞3𝑐
𝑑
3

𝑐𝑑0 𝑡 + 𝑞1 + 𝑞2𝑐
𝑑
2 + (𝑞3−1)𝑐𝑑3

=
𝑟1𝑐

𝑑
3 −1− 𝑐𝑑2 (𝑟1−1)

𝑐𝑑3 −1
. (4.20)

Symmetrically we obtain that

𝑟𝑑0 𝑡 + 𝑞1𝑟
𝑑
1 + (𝑞2−1)𝑐𝑑2 + 𝑞3

𝑟𝑑0 𝑡 + (𝑞1−1)𝑟𝑑1 + 𝑞2𝑐
𝑑
2 + 𝑞3

=
𝑟𝑑1 𝑐3−1− 𝑟𝑑2 (𝑐3−1)

𝑟𝑑1 −1
. (4.21)

We can view (4.20) and (4.21) as a linear system in 𝑞1 and 𝑞3 after clearing the de-

nominators, which yields that

𝑞1 · (𝑟𝑑1 𝑐
𝑑
3 −1) = 𝑐𝑑0 𝑡 + 𝑞2𝑐

𝑑
2 +

1− 𝑟1𝑐
𝑑
3

𝑟1−1
− 𝑐𝑑3

(
𝑟𝑑0 𝑡 + 𝑞2𝑟

𝑑
2 +

1− 𝑐3𝑟
𝑑
1

𝑐3−1

)
, (4.22)

𝑞3 · (𝑟𝑑1 𝑐
𝑑
3 −1) = 𝑟𝑑0 𝑡 + 𝑞2𝑟

𝑑
2 +

1− 𝑟𝑑1 𝑐3

𝑐3−1
− 𝑟𝑑1

(
𝑐𝑑0 𝑡 + 𝑞2𝑐

𝑑
2 +

1− 𝑟1𝑐
𝑑
3

𝑟1−1

)
, (4.23)

From (4.12) and (4.13), we also obtain that

𝑟𝑑0 𝑡 =
𝑟𝑑1 −1
𝑐3−1

− (𝑞1−1)𝑟𝑑1 −𝑞2𝑟
𝑑
2 −𝑞3, 𝑐𝑑0 𝑡 =

𝑐𝑑3 −1
𝑟1−1

−𝑞1−𝑞2𝑐
𝑑
2 − (𝑞3−1)𝑐𝑑3 . (4.24)



48 Chapter 4. Inapproximability

We can now show the following:

if 𝑟1 = 𝑐3, then (i) 𝑟2 = 𝑐2, (ii) 𝑞1 = 𝑞3, and (iii) 𝑟0 = 𝑐0. (4.25)

The proof of (i) in (4.25) is identical to that in [GŠV15, Lemma 7.20] using the ex-

pressions for 𝑟2, 𝑟
𝑑
2 in (4.18) and (4.19), respectively. From (i) and the assumption that

𝑟1 = 𝑐3, we obtain from (4.22) and (4.23) that

𝑞3− 𝑞1 = (𝑟𝑑0 − 𝑐
𝑑
0) ·

𝑡

𝑟𝑑1 −1
. (4.26)

Furthermore, the equations in (4.16) can also be regarded as a linear system in 𝑞1 and

𝑞3. Using the assumption 𝑟1 = 𝑐3 and 𝑟2 = 𝑐2, we obtain that

𝑞3− 𝑞1 =
𝑡
[
(𝑟𝑑0 − 𝑐

𝑑
0)𝑡

2 + (𝑟0𝑐
𝑑
0 − 𝑐0𝑟

𝑑
0 + 𝑐

1+𝑑
0 − 𝑟1+𝑑

0 )𝑡 + (𝑟
𝑑
0 − 𝑐

𝑑
0)𝑟0𝑐0− (𝑟0− 𝑐0)𝑟𝑑1

]
(𝑟0− 𝑡) (𝑐0− 𝑡) (𝑟𝑑1 −1)

.

which, together with (4.26), implies 𝑟0 = 𝑐0 and hence 𝑞1 = 𝑞3. This finishes proving

(4.25).

We are now ready to give the proof of Lemma 4.30. For part (a), Lemma 4.29 yields

that

𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞3
=

1
𝑆
×

[
(𝑟𝑑1 −1) (𝑐𝑑0 𝑡 + 𝑞1 + 𝑐𝑑2𝑞2) − (𝑐𝑑3 −1) (𝑟𝑑0 𝑡 + 𝑞3 + 𝑟𝑑2𝑞2)

+ (𝑑 −1) (𝑟𝑑1 − 𝑐
𝑑
3) + 𝑟

𝑑
1 𝑐

𝑑
3 (𝑞3− 𝑞1) + 𝑟𝑑1𝑞1− 𝑐𝑑3𝑞3

]
.

where 𝑆 > 0. Then plug in the expression of 𝑞1 and 𝑞3 in (4.22) and (4.23), we get

𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞3
= −𝑔(𝑟1, 𝑐3)

𝑆
(4.27)

where 𝑔(𝑟1, 𝑐3) := (𝑟1− 𝑐3) (𝑟𝑑1 −1) (𝑐𝑑3 −1) − 𝑑 (𝑟1−1) (𝑐3−1) (𝑟𝑑1 − 𝑐
𝑑
3). This quantity

was shown to have the same sign as 𝑟1−𝑐3 (see Equation (123) in the proof of Lemma

7.19 in [GŠV15]), and specifically, non-zero when 𝑟1 ≠ 𝑐3, concluding part (a).

Now we prove part (b) of Lemma 4.30. From (4.25), the assumption 𝑟1 = 𝑐3 implies

𝑟2 = 𝑐2, 𝑞1 = 𝑞3 and 𝑟0 = 𝑐0. Applying Lemma 4.29 based on these, we get

𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞2

=𝑞1(1+ 𝑟𝑑1 ) (1+ 𝑟
𝑑
1 −2𝑟𝑑2 ) + 𝑟

𝑑
2 (𝑞2− (2𝑞2 + 𝑑 −1)𝑟𝑑2 −2𝑟𝑑0 𝑡) + 𝑟

𝑑
0 𝑡 + 𝑟

𝑑
1 (𝑟

𝑑
0 𝑡 + 𝑞2𝑟

𝑑
2 + 𝑑 −1)

=−
(𝑑 −1) (𝑟1−1)𝑟2𝑑

2 +2(𝑟𝑑+11 −1)𝑟𝑑2 − (𝑟
2𝑑+1
1 + 𝑑𝑟𝑑+11 − 𝑑𝑟𝑑1 −1)

𝑟1−1
,

where in the second line we use (4.24). This quantity was shown to be non-zero

in the proof of Lemma 7.19 in [GŠV15] (from Equation (124) onwards) under (4.18),

concluding part (b). □
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Now we assume q = (𝑞1, 𝑞2, 𝑞3) is a 2-maximal triple, and assume 𝑞2 = 0 without

loss of generality. The result here is analogous to Lemma 4.30 (a).

Lemma 4.31. Under the assumption that 𝑞2 = 0, suppose 𝑅𝑖’s and 𝐶𝑖’s (𝑖 ≠ 2) satisfy

(4.12), (4.13) and (4.14). For any 𝑞1, 𝑞3 > 0, it holds that 𝜕Φ𝑆/𝜕𝑞1−𝜕Φ𝑆/𝜕𝑞3 ≠ 0, unless

𝑞1 = 𝑞3 and 𝑅1/𝑅3 = 𝐶3/𝐶1.

Proof. First, note that the values of 𝑅2 and 𝐶2 do not affect the value of derivatives

𝜕Φ𝑆/𝜕𝑞1 and 𝜕Φ𝑆/𝜕𝑞3 when 𝑞2 = 0. In addition, the expressions of 𝑞1 and 𝑞3 in (4.22)

and (4.23) still hold for 𝑞2 = 0. Therefore, one can carry out the proof of Lemma 4.30 (a)

once again for this case, showing 𝜕Φ𝑆/𝜕𝑞1−𝜕Φ𝑆/𝜕𝑞3 = 0 only when 𝑅1/𝑅3 =𝐶3/𝐶1.

Assuming this, one can show 𝑞1 = 𝑞3 by going through the proof of (4.25). □

We conclude this subsection with Lemma 4.24.

Proof of Lemma 4.24. This comes after Lemma 4.30, Lemma 4.31 and the second part

of Lemma 4.29. □

4.3.3 Stability of maximal (𝑞/2, 𝑞/2,0) fixpoints

In the next two subsections, we focus on the (in)stability of candidate fixpoints that

may maximize Ψ1. The condition of Jacobian stability is given by the following

Lemma.

Lemma 4.32 (cf. [GŠV15, Lemma 4.16]). Suppose (𝑅0, 𝑅1, · · · , 𝑅𝑞,𝐶0,𝐶1, · · · ,𝐶𝑞) is a

fixpoint of the tree recursion (4.8). Let𝛼𝑖 :=
∑𝑞

𝑗=0 𝐵𝑖 𝑗𝑅𝑖𝐶 𝑗 and 𝛽 𝑗 :=
∑𝑞

𝑖=0 𝐵𝑖 𝑗𝑅𝑖𝐶 𝑗 . Define

the matrix 𝑨 := (𝑎𝑖 𝑗 )0≤𝑖, 𝑗≤𝑞 as 𝑎𝑖 𝑗 = 𝐵𝑖 𝑗𝑅𝑖𝐶 𝑗/
√︁
𝛼𝑖𝛽 𝑗 , and the matrix 𝑳 :=

[ 0 𝑨
𝑨⊤ 0

]
. Then

𝑳 has symmetric real spectrum (symmetry means if 𝑎 is an eigenvalue then so is −𝑎),

and ±1 is a pair of its eigenvalues. The condition for the fixpoint to be stable is that the

second largest eigenvalue of 𝑳 is less than 1/𝑑.

We will also need the following lemma which is proved in Section 4.4.3.

Lemma 4.33. For any 𝑞 ≥ 4, 𝑘′ ≥ 2 and 𝑑 ≥ 3𝑞𝑘 ′ , the function

ℎ(𝑥) :=
(
𝑥𝑑+1−1
𝑥𝑑 −1

)𝑑
𝑡𝑑+1− 𝑥

𝑑 −1
𝑥−1

+ 𝑞′+ (𝑞′−1)𝑥𝑑

has exactly one root in the region (1,∞).

We are now ready to prove Lemma 4.18.
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Proof of Lemma 4.18. Define 𝑞′ := 𝑞/2. We first prove the uniqueness of 2-maximal

(𝑞′, 𝑞′,0) fixpoint (up to scaling). According to the proof of Lemma 4.31, fixpoints of

type (𝑞′, 𝑞′,0) maximize Φ only when 𝑟1 = 𝑐3. Now denote 𝑥 := 𝑟1 = 𝑐3. To prove

the first part of this lemma, we show there exists exactly one possible 𝑥 > 1 when

𝑑 ≥ 3𝑞𝑘 ′ . By (4.16) and (4.17), we get

𝑟0/𝑡 − 𝑟1
𝑟1−1

=
1

𝑐𝑑3 −1
.

Combining this with (4.24), 𝑥 > 1 satisfies ℎ(𝑥) = 0, where

ℎ(𝑥) :=
(
𝑥𝑑+1−1
𝑥𝑑 −1

)𝑑
𝑡𝑑+1− 𝑥

𝑑 −1
𝑥−1

+ 𝑞′+ (𝑞′−1)𝑥𝑑 .

By Lemma 4.33, ℎ(𝑥) has exactly one root 𝑥 > 1.

Next, we construct the matrices 𝑨 and 𝑳. Note that both matrices are scale-free

with respect to 𝑅𝑖 and 𝐶𝑖 . Directly plug in the formula in Lemma 4.32 to get

𝑨 :=



𝑐2 𝑏𝑐1T 𝑎𝑐1T

𝑎𝑐1 𝑎𝑏𝑱 𝑎2𝑱′

𝑏𝑐1 𝑏2𝑱′ 𝑎𝑏𝑱


.

where 𝑎 :=
√︃
𝑥𝑑−1 𝑥−1

𝑥𝑑−1 , 𝑏 :=
√︃

𝑥−1
𝑥𝑑−1 and 𝑐 :=

√︃
𝑥𝑑+1−1−𝑞′ (𝑥−1) (𝑥𝑑+1)

𝑥𝑑+1−1 , 𝑱 is the 𝑞′×𝑞′matrix

with zeros on the diagonal and ones elsewhere, 𝑱′ is the 𝑞′ × 𝑞′ matrix with ones

everywhere, and 1 is the 𝑞′×1 matrix. The eigenvalues of 𝑳 =
[ 0 𝑨
𝑨⊤ 0

]
consist of ±𝑎𝑏

(each by multiplicity 𝑞 − 2) and ±𝜆1,±𝜆2,±𝜆3, where 𝜆1,𝜆2,𝜆3 are the zeros of the

following cubic function

𝑓 (𝑧) = 𝑧3− (𝑞′𝑎2 + 𝑞′𝑏2 + 𝑐2)𝑧2 + (2𝑞′−1)𝑎2𝑏2𝑧+ 𝑎2𝑏2𝑐2.

We claim that 𝑎𝑏 is the second largest eigenvalue. To prove this, recall that 1 is the

eigenvalue of 𝑳. We can assume 𝜆1 = 1 (because 𝑎𝑏 < 1, which means 1 must be

among 𝜆1,2,3) and hence 𝑓 (1) = 0. In addition, 𝑓 (𝑧) is monic and 𝑓 (0) > 0. This

means it suffices to show 𝑓 (−𝑎𝑏) ≤ 0 and 𝑓 (𝑎𝑏) ≤ 0, which are true since

𝑓 (𝑎𝑏) = −𝑎2𝑏2𝑞(𝑎− 𝑏)2 < 0, 𝑓 (−𝑎𝑏) = −𝑎2𝑏2𝑞(𝑎 + 𝑏)2 < 0.

It remains to prove 𝑎𝑏 = 𝑥 (𝑑−1)/2 𝑥−1
𝑥𝑑−1 < 1/𝑑 which follows from

𝑥𝑑−1
𝑥−1 = 𝑥𝑑−1+ . . .+

1 > 𝑑𝑥 (𝑑−1)/2
, where the last inequality is an application of the AM-GM inequality

when 𝑥 > 1. □
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4.3.4 (In)stability of (𝑞,0,0) fixpoints

Set 𝑥 := 𝑅0/𝑅1 and 𝑦 := 𝐶0/𝐶1. Then by rewriting the tree recursion, one can see 𝑥, 𝑦

satisfies the system

𝑥 = 𝑡𝑑
(

𝑡𝑦 + 𝑞
𝑡𝑦 + 𝑞−1

)𝑑
, 𝑦 = 𝑡𝑑

(
𝑡𝑥 + 𝑞

𝑡𝑥 + 𝑞−1

)𝑑
. (4.28)

Before analysing the stability of the original (𝑞+1)-spin system, we first need to study

this 2-spin system. By replacing 𝛽 := 𝑡/𝑞, 𝛾 = (𝑞−1)/𝑡 and 𝜆 = 𝑞𝑑 , the system above is

actually the tree recursion of a general anti-ferromagnetic Ising model with parameter

(𝛽, 𝛾,𝜆). It follows that such system has either one solution (𝑄∗,𝑄∗) (uniqueness) or

three solutions (𝑄+,𝑄−), (𝑄∗,𝑄∗), (𝑄−,𝑄+) (non-uniqueness) where 𝑄+ > 𝑄∗ > 𝑄−

(see [MSW07, Section 6.2] or [GŠV16, Theorem 7]). First and foremost, if 𝑑 ≥ 5𝑞𝑘 ′ ,
the system (4.28) is actually the latter case.

Lemma 4.34. When 𝑞 ≥ 4, 𝑘 ≥ 2 and 𝑑 ≥ 5𝑞𝑘 ′ , the system (4.28) lies in non-uniqueness

region.

One way to prove Lemma 4.34 is to verify the non-uniqueness condition in [LLY13].

However, in our case, that would cause pages of tedious calculation, and we could

not get crucial quantitative information about solutions, which is the key to the sta-

bility of the original (𝑞 + 1)-spin system. Hence, we show the non-uniqueness by

locating the solutions directly, as in the next two lemmata. Also note that, when

𝑥 = 𝑅0/𝑅1 =𝐶0/𝐶1, the two-step recursion (4.28) can be simplified into the following

one-step recursion

𝑥 =

(
𝑡2𝑥 + 𝑞𝑡
𝑡𝑥 + 𝑞−1

)𝑑
. (4.29)

Lemma 4.35. Let (𝑥, 𝑥) be the solution of (4.28) i.e., 𝑥 be the solution of (4.29). When

𝑞 ≥ 4, 𝑘′ ≥ 2 and 𝑑 ≥ 5𝑞𝑘 , it holds that 𝑡𝑥 + 𝑞−1 < 𝑑.

Lemma 4.36. When 𝑞 ≥ 4, 𝑘′ ≥ 2 and 𝑑 ≥ 5𝑞𝑘 ′ , there exists a solution (𝑥, 𝑦) to (4.28)

satisfying (a) 𝑥 > 𝑦, and (b) 𝑥 > 𝑑

𝑞𝑘
′−𝑞 · 𝑑.

We give the proof of Lemma 4.35 and Lemma 4.36 in Section 4.4.4.

Proof of Lemma 4.34. This directly follows from Lemma 4.35 and Lemma 4.36. □

Now we are ready to analyse the stability of (𝑞,0,0)-type fixpoints. In the follow-

ing it will be convenient to let 𝑱 be the 𝑞 × 𝑞 matrix with 0s on the diagonal and 1s

elsewhere, and 1 to be the 𝑞×1 vector with all ones.
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Proof of Lemma 4.26. Let 𝑥 = 𝑅0/𝑅1 and 𝑦 =𝐶0/𝐶1 be the solution of (4.28) with 𝑥 > 𝑦.

Set 𝑎 :=
√︃

1
𝑡𝑥+𝑞−1 , 𝑏 :=

√︃
1

𝑡𝑦+𝑞−1 , 𝑟 :=
√︃

𝑡𝑦

𝑡𝑥+𝑞 and 𝑠 :=
√︃

𝑡𝑥
𝑡𝑦+𝑞 . By applying the formula in

Lemma 4.32, the (𝑞 +1) × (𝑞 +1) matrix 𝑨 can be written in the block form

𝑨 =

[ 𝑟𝑠 𝑎𝑠1T

𝑏𝑟1 𝑎𝑏𝑱

]
.

The eigenvalues of 𝑳 =
[ 0 𝑨
𝑨⊤ 0

]
consist of ±𝑎𝑏 (with multiplicity 𝑞 − 1 respectively)

and ±𝜆1,±𝜆2, where ±𝜆1,±𝜆2 are the zeros of the following biquadratic function

𝑓 (𝑧) = 𝑧4− ((𝑞−1)2𝑎2𝑏2 + 𝑞𝑏2𝑟2 + 𝑞𝑎2𝑠2 + 𝑟2𝑠2)𝑧2 + 𝑎2𝑏2𝑟2𝑠2.

Again, we assume 𝜆1 = 1 (note that 𝑎𝑏 ≠ 1). By Vieta’s formula, 𝜆2 = 𝑎𝑏𝑟𝑠. Since 𝑟𝑠 <

1, this means 𝑎𝑏 is the second largest eigenvalue. Now it suffices to prove 𝑎𝑏 < 1/𝑑,

which is equivalent to showing (𝑡𝑥+𝑞−1) (𝑡𝑦+𝑞−1) > 𝑑2
. Note that 𝑡𝑦 > 𝑡𝑑+1 = 𝑞𝑘

′ −
𝑞, and Lemma 4.36 gives 𝑥 > 𝑑 𝑑

𝑞𝑘
′−𝑞 . Therefore (𝑡𝑥 +𝑞−1) (𝑡𝑦+𝑞−1) > 𝑡𝑥𝑦 > 𝑑2

. □

Remark 4.37. It is worth noting that the Jacobian stable fixpoints of the system

(4.28) do not necessarily induce (𝑞,0,0)-type Jacobian stable fixpoints of the original

(𝑞+1)-spin system. This is because the eigenvalue 𝑎𝑏 from the (𝑞+1)-spin system is

missing in the 2-spin system. Interestingly, by directly applying results over 2-spin

system (e.g., [GŠV16, Lemma 8]), what we get is 𝑎𝑏𝑟𝑠 < 1/𝑑 instead of 𝑎𝑏 < 1/𝑑.

There is an interval of 𝑑 such that the former holds but the latter does not. Thus here

we cannot only analyze the simplified 2-spin system.

Proof of Lemma 4.28. According to the formula in Lemma 4.32, we construct the fol-

lowing (𝑞 +1) × (𝑞 +1) matrix 𝑨 with block form

𝑨 =

[ 𝑏
√
𝑎𝑏1T

√
𝑎𝑏1 𝑎𝑱

]

where 𝑎 := 1
𝑞−1+𝑡𝑥 , 𝑏 := 𝑡𝑥

𝑡𝑥+𝑞 , and 𝑥 is the solution of equation (4.29). Because 𝑨 is

symmetric, the spectral radius of 𝑳 =
[ 0 𝑨
𝑨⊤ 0

]
is the same as that of 𝑨. It is not hard

to see that −𝑎 is an eigenvalue of 𝑨 by multiplicity 𝑞−1. From Lemma 4.35, we have

that 1/𝑑 < 𝑎, and 𝑎 < 1 from 𝑞 ≥ 2 and 𝑥 > 0. Therefore, the fixpoint is unstable. □



4.3. Analysis of the dominant phases 53

4.3.5 (𝑞,0,0) fixpoint is not maximal

Let 𝑞1 = 𝑞, 𝑞2 = 𝑞3 = 0 and 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. Due to stability, it is difficult to analyse

this kind of fixpoint’s global optimality (recall that it corresponds to a local maxima

of Ψ1). However, observe that changing the value of 𝑅3 and 𝐶3 will not affect the

value of Φ𝑆
. Therefore, we can force 𝑅3 and 𝐶3 to be subject to (4.12) and (4.13). As

we will show later, doing so allows us to reuse some lemmata we have utilized in

our argument regarding 2-maximal fixpoints, among which the most important one

is the perturbation argument. We define 𝑟0, 𝑟1, 𝑐0, 𝑐3 analogously, and without loss of

generality, suppose 𝑟1, 𝑐3 > 1.

The next proposition shows how we choose 𝑟1 and 𝑐3.

Lemma 4.38. Let 𝑥 = 𝑟1 and 𝑦 = 𝑐3 be a pair of solutions to the following system

𝑓1(𝑥, 𝑦) := (𝑥−1)
((

1+ 𝑥
𝑑 (𝑦−1)
𝑥𝑑 −1

)𝑑
𝑡𝑑+1 + 𝑞− 𝑦𝑑

)
− 𝑦𝑑 +1 = 0;

𝑓2(𝑥, 𝑦) := (𝑦−1)
((

1+ 𝑦
𝑑 (𝑥−1)
𝑦𝑑 −1

)𝑑
𝑡𝑑+1 + 𝑞𝑥𝑑 − 𝑥𝑑

)
− 𝑥𝑑 +1 = 0,

(4.30)

with 𝑥, 𝑦 > 1. Then there exists 𝑟0 and 𝑐0 such that (4.16) and (4.17) are satisfied for

𝑞1 = 𝑞, 𝑞2 = 𝑞3 = 0.

Proof. The 𝑟0 and 𝑐0 we choose are defined by

𝑟0/𝑡 :=
𝑟1−1
𝑐𝑑3 −1

+ 𝑟1, 𝑐0/𝑡 :=
𝑐3−1
𝑟𝑑1 −1

+ 𝑐3. (4.31)

Combining (4.31) with the expression of 𝑓2(𝑟1, 𝑐3) = 0, it holds that

𝑐𝑑0 𝑡 + 𝑞− 𝑐
𝑑
3 −

𝑐𝑑3 −1
𝑟1−1

= 0,

which is exactly (4.24), and is equivalent to the expression for 𝑟1 in (4.17). The same

argument holds for the 𝑐3 expression in (4.17). In addition, plugging (4.31) back into

(4.17) yields the expressions for 𝑟0, 𝑐0 in (4.16). □

Be cautious that we do not assume 𝑅0/𝑅1 = 𝐶0/𝐶1 in Lemma 4.38. Even if we

managed to find a pair of solutions 𝑟1 > 𝑐3 > 1 to (4.30), it does not imply that we can

find 𝑅3 and 𝐶3 for the case 𝑅0/𝑅1 ≠ 𝐶0/𝐶1, because it is possible for such a pair to

correspond to the other case 𝑅0/𝑅1 =𝐶0/𝐶1. We will handle this in Lemma 4.47 after

finding a special solution to (4.30).
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To study the solution of the system (4.30), we need to look into the properties of

both functions. To clarify the intuition of our approach, we plot both functions for

the case 𝑞 = 6, 𝑘′ = 3, 𝑑 = 5𝑞𝑘 ′ (see Figure 4.3a). In this setting, the two functions have

three intersections in the region (1,+∞)2: one above 𝑦 = 𝑥, one near 𝑦 = 𝑥 (but still

below 𝑦 = 𝑥; see Figure 4.3b) and one far below 𝑦 = 𝑥. Experimentally, only the first

two intersections correspond to the case 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. Hence we would only be

interested in them. Moreover, as we will see at the end of this subsection, a solution

such that 𝑥 > 𝑦 is required. For this purpose, the rest of the subsection endeavours to

prove the existence of the intersection near 𝑦 = 𝑥 before finishing the proof of Lemma

4.27. Doing so also avoids the need of fully characterising the shape of both curves

𝑓𝑖 (𝑥, 𝑦) = 0.

1.000 1.002 1.004 1.006 1.008 1.010 1.012

1.000

1.002

1.004

1.006

1.008

1.010

1.012 𝑓1 (𝑥, 𝑦) = 0

𝑓2 (𝑥, 𝑦) = 0

𝑦 = 𝑥

(a)

1.0040 1.0042 1.0044 1.0046 1.0048 1.0050

1.0040

1.0042

1.0044

1.0046

1.0048

1.0050

𝑓1 (𝑥, 𝑦) = 0

𝑓2 (𝑥, 𝑦) = 0

𝑦 = 𝑥

(b)

Figure 4.3: (a): Shape of the curve 𝑓1 (𝑥, 𝑦) = 0, 𝑓2 (𝑥, 𝑦) = 0, and 𝑦 = 𝑥. (b): Zoom in on the intersection

near 𝑦 = 𝑥.

Now we formalize our argument. Note that, by mimicking the proof of Lemma

4.33, one can show 𝑓2(𝑥, 𝑥) = 0 has exactly one solution 𝑥∗∗ > 1. Moreover, for any

𝑥 ∈ (1, 𝑥∗∗), 𝑓2(𝑥, 𝑥) < 0, and for any 𝑥 > 𝑥∗∗, 𝑓2(𝑥, 𝑥) > 0. A detailed proof is given in

Section 4.4.3.

Lemma 4.39. For any 𝑞 ≥ 4, 𝑘′ ≥ 2 and 𝑑 ≥ 3𝑞𝑘 ′ , the function

ℎ2(𝑥) :=
(
𝑥𝑑+1−1
𝑥𝑑 −1

)𝑑
𝑡𝑑+1− 𝑥

𝑑 −1
𝑥−1

+ (𝑞−1)𝑥𝑑

has exactly one root 𝑥∗∗ in the region 𝑥 > 1.

For 𝑓1, we do not need the uniqueness of its intersection with the line 𝑦 = 𝑥.
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Lemma 4.40. For any 𝑞 ≥ 4, 𝑘′ ≥ 2 and 𝑑 ≥ 3𝑞𝑘 ′ , the function

ℎ1(𝑥) :=
(
𝑥𝑑+1−1
𝑥𝑑 −1

)𝑑
𝑡𝑑+1− 𝑥

𝑑 −1
𝑥−1

+ 𝑞− 𝑥𝑑

has at least one root in the region 𝑥 > 1. Let 𝑥∗ be its smallest root. Then ℎ1(𝑥) < 0 for

𝑥 ∈ (1, 𝑥∗). Moreover, 𝑥∗ > 𝑥∗∗, and consequently ℎ2(𝑥∗) > 0.

Proof. The first part of the lemma is similar to the proof of Lemma 4.39 and Lemma

4.33, by computing lim𝑥→1 ℎ1(𝑥) < 0 and lim𝑥→+∞ ℎ1(𝑥) = +∞. To prove the second

part, note that ℎ2(𝑥) > ℎ1(𝑥) for all 𝑥 > 1. □

The next property will be useful later.

Proposition 4.41. If 𝑓1(𝑥, 𝑦) = 0, then 𝑥 < 1+ 1
𝑡𝑑+1−1 . If 𝑓2(𝑥, 𝑦) = 0, then 𝑦 < 1+ 1

𝑡𝑑+1−1 .

Proof. Suppose 𝑥 ≥ 1+ 1
𝑡𝑑+1−1 . Then

𝑓1(𝑥, 𝑦) ≥
1

𝑡𝑑+1−1

((
1+ 𝑥

𝑑 (𝑦−1)
𝑥𝑑 −1

)𝑑
𝑡𝑑+1 + 𝑞− 𝑦𝑑

)
− 𝑦𝑑 +1

>
1

𝑡𝑑+1−1

(
𝑦𝑑𝑡𝑑+1 + 𝑞− 𝑦𝑑

)
− 𝑦𝑑 +1 =

𝑞

𝑡𝑑+1−1
+1 > 0.

A similar argument holds for 𝑓2. □

Then we study the shape of 𝑓1 below the line 𝑦 = 𝑥.

Lemma 4.42. Let 𝑔(𝑥) := (𝑥𝑑−1)𝑑
(𝑥𝑑+1−1)𝑑−1 (𝑥−1) and assume that 𝑑 ≥ 3𝑞𝑘 ′ . Then

(a) there is a unique 𝑥0 ∈ (1,∞) such that 𝑔(𝑥0) = 𝑡𝑑+1;

(b) for any 1 < 𝑥 < 𝑥0,
𝜕 𝑓1
𝜕𝑦

< 0 for 𝑦 ∈ (1, 𝑥]; and

(c) 𝑥0 > 𝑥∗, where 𝑥∗ > 1 is the smallest solution to 𝑓1(𝑥, 𝑥) = 0 (see Lemma 4.40).

Moreover, for any 1 < 𝑥 < 𝑥0, 𝑓1(𝑥, 𝑦) is decreasing for 𝑦 ∈ (1, 𝑥].

Proof. We first show that 𝑔(𝑥) is decreasing for 𝑥 > 1. By direct calculation,

𝑔′(𝑥) = (𝑥𝑑 −1)𝑑−1

𝑥(𝑥−1)2(𝑥𝑑+1−1)𝑑
(
𝑥𝑑𝑑2(𝑥−1)2− 𝑥(𝑥𝑑 −1)2

)
< 0,

where the last inequality has already been shown in the proof of Lemma 4.18 for 𝑥 > 1.

Notice that lim𝑥→1 𝑔(𝑥) = 𝑑𝑑

(𝑑+1)𝑑−1 and lim𝑥→∞ 𝑔(𝑥) = 1. As
𝑑𝑑

(𝑑+1)𝑑−1 >
𝑑
𝑒
> 𝑞𝑘

′
> 𝑡𝑑+1 =

𝑞𝑘
′ −𝑞 > 2, there is a unique 𝑥0 such that 𝑔(𝑥0) = 𝑡𝑑+1 and for 𝑥 ∈ (1, 𝑥0), 𝑔(𝑥) > 𝑡𝑑+1.

This shows part (a).
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For part (b), we have
𝜕 𝑓1
𝜕𝑦

= −𝑥𝑑𝑦𝑑−1 + (𝑥−1)𝑑𝑥𝑑 𝑡𝑑+1 (𝑥𝑑𝑦−1)𝑑−1

(𝑥𝑑−1)𝑑 and thus,
𝜕 𝑓1
𝜕𝑦

< 0 is

equivalent to (
𝑥𝑑+1− (𝑥

𝑑 −1)𝑑/(𝑑−1)

(𝑥−1)1/(𝑑−1)𝑡
𝑑+1
𝑑−1

)
𝑦 < 𝑥.

As the range of 𝑦 we consider is (1, 𝑥], we only need to show that

𝑥𝑑+1− (𝑥
𝑑 −1)𝑑/(𝑑−1)

(𝑥−1)1/(𝑑−1)𝑡
𝑑+1
𝑑−1

< 1,

which, after rearranging, is equivalent to 𝑔(𝑥) > 𝑡𝑑+1. This is guaranteed by part (a)

of the lemma.

To prove the third part, by Lemma 4.40, it suffices to show ℎ1(𝑥0) = 𝑓1(𝑥0, 𝑥0) > 0.

Note that 𝑥0 satisfies

𝑥𝑑+10 −
(𝑥𝑑0 −1)𝑑/(𝑑−1)

(𝑥0−1)1/(𝑑−1)𝑡
𝑑+1
𝑑−1

= 1, or equivalently,

(𝑥𝑑+10 −1
𝑥𝑑0 −1

)𝑑−1
=

𝑥𝑑0 −1
𝑡𝑑+1(𝑥0−1)

.

By multiplying this with

𝑥𝑑+10 −1
𝑥𝑑0−1 , we have

(
𝑥𝑑+10 −1
𝑥𝑑0−1

)𝑑
𝑡𝑑+1 =

𝑥𝑑+10 −1
𝑥0−1 and plugging into the

expression for 𝑓1(𝑥, 𝑥) we get 𝑓1(𝑥0, 𝑥0) = 𝑞(𝑥0−1) > 0, yielding part (c). □

By Lemma 4.42 (b) and (c), the partial derivative 𝜕 𝑓1/𝜕𝑦 ≠ 0 at all points (𝑥, 𝑦)
such that 𝑓1(𝑥, 𝑦) = 0 and 1 < 𝑦 ≤ 𝑥 ≤ 𝑥∗. Applying the implicit function theorem, 𝑓1

yields a continuous function between 𝑥 and 𝑦 in the region 1 < 𝑦 ≤ 𝑥 ≤ 𝑥∗.

Corollary 4.43. The set P+1 := (1,1) + {(𝑥, 𝑦) : 𝑓1(𝑥, 𝑦) = 0, 𝑥 ≥ 𝑦 > 1, 𝑥 ≤ 𝑥∗} forms a

continuous curve from (1,1) to 𝑥∗, 𝑥∗, where 𝑥∗ > 1 is the smallest solution to 𝑓1(𝑥, 𝑥) = 0.

Regarding the shape of 𝑓2, we have the next lemma.

Lemma 4.44. For any 1 < 𝑦 < 1+ 1
𝑞−1 , there are at most two 𝑥 > 1 such that 𝑓2(𝑥, 𝑦) = 0.

Moreover, if 1 < 𝑦 < 𝑥∗∗, where 𝑥∗∗ > 1 is the unique value such that 𝑓2(𝑥∗∗, 𝑥∗∗) = 0 (see

Lemma 4.39), then there is exactly one 𝑥 > 𝑦 such that 𝑓2(𝑥, 𝑦) = 0.

Proof. The crucial idea of this proof is to study the sign of 𝑓2(𝑥, 𝑦) at its critical points

w.r.t. 𝑥 (i.e., 𝑥′ such that 𝜕 𝑓2(𝑥, 𝑦)/𝜕𝑥 = 0 at 𝑥 = 𝑥′).

Fix 𝑦 in the range and define 𝑔(𝑥) := 𝑓2(𝑥, 𝑦). By direct calculation, if 𝑔′(𝑥) = 0, 𝑥′

satisfies

𝑡𝑑+1
(
1+ 𝑦

𝑑 (𝑥′−1)
𝑦𝑑 −1

)𝑑
=
𝑥′𝑑−1(𝑦− 𝑞(𝑦′−1)) (𝑥′𝑦𝑑 −1)

(𝑦−1)𝑦𝑑
.
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Plugging it back to 𝑔, we get

𝑔(𝑥′) = 1− 𝑥
′𝑑−1(𝑦− 𝑞(𝑦−1))

𝑦𝑑
.

Because 𝑦− 𝑞(𝑦−1) > 0, for any critical point 𝑥′ of 𝑔,

(a) if 𝑥′ < 𝜒, then 𝑔(𝑥′) > 0;

(b) if 𝑥′ = 𝜒, then 𝑔(𝑥′) = 0;

(c) if 𝑥′ > 𝜒, then 𝑔(𝑥′) < 0,

where 𝜒 is defined by 𝜒 :=
( 𝑦𝑑

𝑦−𝑞(𝑦−1)
)1/(𝑑−1)

.

As 𝑔(𝑥) = 𝑓2(𝑥, 𝑦) for the fixed 𝑦, 𝑔(𝑥) is a polynomial in 𝑥. Moreover, 𝑔(1) =
(𝑦 − 1) (𝑡𝑑+1 + 𝑞 − 1) > 0 and lim𝑥→+∞ 𝑔(𝑥) = +∞. It implies that 𝑔(𝑥) must have an

even number of roots. If 𝑔(𝑥) does not have any root greater than 1 then we are done.

Otherwise, let 𝑥1 > 1 be the smallest root and 𝑥2 be the largest root.

• If 𝑥1 < 𝜒, this means the next critical point 𝑥′ ≥ 𝑥1 cannot be 𝑥1, or other-

wise, 𝑔(𝑥′) = 0, contradicting with item (a) above. Therefore, 𝑔(𝑥′) < 0, which

means 𝑥′ > 𝜒. If there exists another zero 𝑥′ < 𝑥3 < 𝑥2, then either 𝑔′(𝑥3) < 0
or 𝑔′(𝑥3) > 0 (otherwise, it contradicts with item (b)). In the former case, there

must exist another critical point 𝑥′′ such that 𝜒 < 𝑥′ < 𝑥′′ < 𝑥3 and 𝑔(𝑥′′) > 0,

which contradicts to item (c). In the latter case, there must exist another critical

point 𝑥′′′ such that 𝑥3 < 𝑥′′′ < 𝑥2 and 𝑔(𝑥′′′) > 0, violating item (c) as well.

• If 𝑥1 > 𝜒, this means all the critical points 𝑥′ in [𝑥1, 𝑥2] must have function value

𝑔(𝑥′) < 0, which implies there is not any other root in (𝑥1, 𝑥2).

• If 𝑥1 = 𝜒 and 𝑥1 is not a critical point, then 𝑔′(𝑥1) < 0 and the argument of the

previous case still applies.

• If 𝑥1 = 𝜒 and 𝑥1 is a critical point, then for any other critical point (if exists)

𝑥′ > 𝑥1, it must holds that 𝑔(𝑥′) < 0. Namely once 𝑔(𝑥) becomes positive as 𝑥

increases, the sign of 𝑔′(𝑥) will not change. It implies that 𝑥2 is the only root

larger than 𝑥1 in this case. If no critical point 𝑥′ > 𝑥1 exists, then 𝑥1 = 𝑥2 is the

only root.

In all cases, 𝑔(𝑥) has at most two roots greater than 1. This finishes the first part

of the lemma.
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For the second part, notice that if 𝑦 < 𝑥∗∗ then 𝑔(𝑦) < 0, and recall lim𝑥→∞ 𝑔(𝑥) =
∞. The number of zeros larger than 𝑦 must be odd, and by the first part, it must be

unique. Proposition 4.41 guarantees that 𝑥∗∗ < 1+ 1
𝑡𝑑+1−1 < 1+ 1

𝑞−1 . □

We then argue there is a point on P+1 (except (1,1)) such that 𝑓2 takes zero. To

establish this, we first find a point 𝐸 with 𝑓2(𝑥𝐸 , 𝑦𝐸 ) = 0 such that it lies to the right of

P+1 (with some extra conditions, and later we will apply Lemma 4.44). To simplify the

calculation, we only consider the case 𝑑 = 5𝑞𝑘 ′ . The proof of the next lemma consists

some detailed calculations, which we postpone till Section 4.4.5.

Lemma 4.45. Suppose 𝑑 = 5𝑞𝑘 ′ . There exists a point 𝐸 with 𝑓2(𝑥𝐸 , 𝑦𝐸 ) = 0 such that

it lies to the right of P+1 . More specifically, (a) 𝑦𝐸 = 1 + 0.5
𝑡𝑑+1−1 ; (b) 𝑦𝐸 < 𝑥∗∗; and (c)

𝑥𝐸 > 1+ 1
𝑡𝑑+1−1 .

This yields the following lemma.

Lemma 4.46. Suppose 𝑑 = 5𝑞𝑘 ′ . The system (4.30) has a solution (𝑥, 𝑦) such that 𝑥 >

𝑦 > 𝑦𝐸 .

Proof. Consider the following point 𝑀 on P+1 : 𝑦𝑀 = 𝑦𝐸 , and 𝑥𝑀 is the largest one

such that (𝑥𝑀 , 𝑦𝑀) ∈ P+1 .
7

Lemma 4.45 (b) asserts that 𝑦𝐸 < 𝑥∗∗, which allows us

to invoke Lemma 4.44: for any 𝑦𝐸 < 𝑥 < 𝑥𝐸 , we have 𝑓2(𝑥, 𝑦𝐸 ) < 0. More specifi-

cally, 𝑓2(𝑥𝑀 , 𝑦𝑀) < 0 because 𝑥𝑀 < 𝑥∗ < 1+ 1
𝑡𝑑+1−1 < 𝑥𝐸 , where the second and third

inequalities come from Proposition 4.41 and Lemma 4.45 (c) respectively.

Now consider the path of P+1 between the point 𝑀 and (𝑥∗, 𝑥∗). It is continuous

and bounded away from both 𝑥 = 1 and 𝑦 = 1, and the function 𝑓2(𝑥, 𝑦) is contin-

uous over (1,+∞) × (1,+∞). This means as one walks along the path, the value of

𝑓2 changes continuously; otherwise, it violates the continuity of 𝑓2 by a simple 𝜀-𝛿

argument. Moreover, by the second part of Lemma 4.40, 𝑓2(𝑥∗∗, 𝑥∗∗) > 0. This means

there must be a point (𝑥, 𝑦) on the path such that 𝑓2(𝑥, 𝑦) = 0. Moreover, by the choice

of 𝑥𝑀 , it must hold that 𝑦 > 𝑦𝑀 = 𝑦𝐸 . □

Now we argue that the solution we find actually satisfies 𝑅0/𝑅1 ≠ 𝐶0/𝐶1.

Lemma 4.47. If 𝑟1 > 𝑐3 > 1 yields 𝑅0/𝑅1 = 𝐶0/𝐶1, then it must hold that 𝑐3 < 𝑦𝐸 .

7𝑥𝑀 is well-defined. This follows from the fact that (𝑥𝑑 − 1)𝑑 𝑓1 (𝑥, 𝑦𝑀 ) is a non-zero polynomial

with respect to 𝑥, thus having a finite number of zeros.
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Proof. In this case, 𝐶0/𝐶1 is the solution to the one-step recursion (4.29). Define 𝑢 :=
𝑐0/𝑡 = (𝐶0/𝐶1)1/𝑑/𝑡. By rewriting (4.29), one can see that 𝑢 is the unique solution to

the following equation

ℎ(𝑢) := 𝑢−
(
1+ 1

𝑡𝑑+1𝑢𝑑 + 𝑞−1

)
= 0.

Note that 𝑢 > 1. Using this notation, (4.31) yields that 𝑐3 =
𝑢(𝑟𝑑1 −1)+1

𝑟𝑑1
, giving that 𝑐3 < 𝑢.

It remains to show 𝑢 < 1 + 0.5
𝑡𝑑+1−1 . Note that the system (4.29) has a unique fix-

point, namely that ℎ(𝑢) has a unique solution over 𝑢 > 1. Because ℎ(1) < 0 and

lim𝑢→∞ ℎ(𝑢) =∞, it suffices to prove ℎ(1+ 0.5
𝑡𝑑+1−1 ) > 0. After plugging in the expres-

sion and clearing the denominator, it turns out to be equivalent to

1+3𝑞−2𝑞𝑘
′ + (𝑞𝑘 ′ − 𝑞)

(
1+ 1

2𝑞𝑘 ′ −2(𝑞 +1)

)5𝑞𝑘′

> 0

which is true for any 𝑞 ≥ 4 and 𝑘′ ≥ 2. □

We can finally conclude Lemma 4.27.

Proof of Lemma 4.27. Lemma 4.46 guarantees the existence of 𝑟1 > 𝑐3 > 𝑦𝐸 satisfy-

ing (4.30) with 𝑥 = 𝑟1 and 𝑦 = 𝑐3. By Lemma 4.38, given 𝑟1 and 𝑐3, we can choose

𝑅0, 𝑅1, 𝑅3,𝐶0,𝐶1,𝐶3 to satisfy (4.12) and (4.13). Lemma 4.47 implies that for this

choice, 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. Moreover, the 2-spin system regarding 𝑅0/𝑅1 and 𝐶0/𝐶1

lies in non-uniqueness region, and hence the values of 𝑅0/𝑅1 and 𝐶0/𝐶1 are unique

up to the swap of 𝑅 and 𝐶 (see Section 4.3.4).

Because 𝑅3 and 𝐶3 are subject to (4.12) and (4.13), the first part of the proof in

Lemma 4.29 still holds, even when 𝑞3 = 0 (since we only require (4.32)). Therefore

the expression of 𝜕Φ𝑆/𝜕𝑞3 still applies. Based on this, by going through the proof of

Lemma 4.30 (a), we can see (4.27) still holds, i.e.,

sgn

(
𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞3

)
= −sgn(𝑟1− 𝑐3).

Hence under this choice, 𝜕Φ𝑆/𝜕𝑞1 − 𝜕Φ𝑆/𝜕𝑞3 < 0. Now consider a new q vector

(𝑞 − 𝜀,0, 𝜀). When 𝜀 is small enough, the value of Φ𝑆
increases, and feasibility in

(4.11) still holds. Because the value of Φ𝑆
at q = (𝑞,0,0) is irrelavent to 𝑅3,𝐶3, and

the value of Φ𝑆
is the same for all fixpoints of type (𝑞,0,0) and 𝑅0/𝑅1 ≠ 𝐶0/𝐶1, it

means Φ does not take the maximum at fixpoints of such type. □
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Remark 4.48. Our approach in fact jumps out of the local area around the fixpoint.

Intuitively, the argument considers a new “imaginary” fixpoint where 𝜀 portion of the

𝑞 entries 𝑅1 (resp. 𝐶1) is changed into 𝑅3 (resp. 𝐶3, recall that 𝑅3 and 𝐶3 are bounded

away from 𝑅1 and 𝐶1), and compares its value of the original induced matrix norm

with the one of (𝑅0, 𝑅1, · · · , 𝑅1,𝐶0,𝐶1, · · · ,𝐶1). This is another reason why optimizing

Φ𝑆
over all nonnegative q’s instead of integer q’s helps a lot.

4.4 Remaining proofs of this chapter

4.4.1 Proof of Lemma 4.29 and Lemma 4.23

Proof of Lemma 4.29 and Lemma 4.23. We first prove Lemma 4.29. Let

𝑆 := 𝑅0𝐶0𝑡
2 + ©«

3∑︁
𝑗=1

𝐶 𝑗𝑞 𝑗
ª®¬𝑅0𝑡 + ©«

3∑︁
𝑗=1

𝑅 𝑗𝑞 𝑗
ª®¬𝐶0𝑡 + ©«

3∑︁
𝑗=1

𝑅 𝑗𝑞 𝑗
ª®¬©«

3∑︁
𝑗=1

𝐶 𝑗𝑞 𝑗
ª®¬− ©«

3∑︁
𝑗=1

𝑅 𝑗𝐶 𝑗𝑞 𝑗
ª®¬ ,

𝑅 := 𝑅
(𝑑+1)/𝑑
0 + ©«

3∑︁
𝑗=1

𝑅
(𝑑+1)/𝑑
𝑗

𝑞 𝑗
ª®¬ , 𝐶 := 𝐶

(𝑑+1)/𝑑
0 +

3∑︁
𝑗=1

𝐶
(𝑑+1)/𝑑
𝑗

𝑞 𝑗 .

By direct calculation,

𝜕Φ𝑆

𝜕𝑞𝑖
=
(𝑑 +1)

𝑆

𝑅𝑖𝐶0𝑡 +𝑅0𝐶𝑖𝑡 −𝑅𝑖𝐶𝑖 +𝑅𝑖
©«

3∑︁
𝑗=1

𝐶 𝑗𝑞 𝑗
ª®¬+𝐶𝑖

©«
3∑︁
𝑗=1

𝑅 𝑗𝑞 𝑗
ª®¬


− 𝑑
(
𝑅
(𝑑+1)/𝑑
𝑖

𝑅
+
𝐶
(𝑑+1)/𝑑
𝑖

𝐶

)
.

Note that if 𝑞𝑖 > 0 and 𝑅𝑖 ≠ 0, then it must holds that 𝜕Φ𝑆/𝜕𝑅𝑖 = 0, and hence (4.12)

applies, which gives

𝑅
(𝑑+1)/𝑑
0 ∝ 𝑅0(𝐶0𝑡

2 + (𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3)𝑡),

𝑅
(𝑑+1)/𝑑
𝑖

∝ 𝑅𝑖 (𝐶0𝑡 + 𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3−𝐶𝑖).
(4.32)

Therefore,

𝑅
(𝑑+1)/𝑑
𝑖

𝑅
=

𝑅𝑖𝐶0𝑡 +𝑅𝑖

(∑3
𝑗=1𝐶 𝑗𝑞 𝑗

)
−𝑅𝑖𝐶𝑖

𝑆

and similarly,

𝐶
(𝑑+1)/𝑑
𝑖

𝐶
=

𝐶𝑖𝑅0𝑡 +𝐶𝑖

(∑3
𝑗=1 𝑅 𝑗𝑞 𝑗

)
−𝑅𝑖𝐶𝑖

𝑆
.
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Note that these two equations also hold trivially when 𝑅𝑖 = 0 or 𝐶𝑖 = 0, respectively.

Putting these together yields the desired expression for
𝜕Φ𝑆

𝜕𝑞𝑖
in Lemma 4.29.

For the second part of Lemma 4.29, without loss of generality, suppose 𝑞1, 𝑞2 > 0
and 𝜕Φ𝑆/𝜕𝑞1−𝜕Φ𝑆/𝜕𝑞2 > 0. Take a positive 𝜀 and consider (𝑞1+𝜀, 𝑞2−𝜀, 𝑞3). When

𝜀 is small enough, the entries 𝑞1+𝜀 and 𝑞2−𝜀 are positive, the value of Φ𝑆
increases,

and feasibility in (4.11) still holds. Hence (𝑞1, 𝑞2, 𝑞3) does not maximize Φ.

Finally we prove Lemma 4.23. Here we have an extra condition that q is 𝑚-

maximal. This means there exists a maximizer r,c such that for every 𝑖 ≠ 𝑗 such

that 𝑞𝑖, 𝑞 𝑗 > 0, it holds that 𝑅𝑖 ≠ 𝑅 𝑗 and 𝐶𝑖 ≠ 𝐶 𝑗 . From (4.12) and (4.13), we obtain

that r,c specify an 𝑚-supported fixpoint of the tree recursion (4.8). □

4.4.2 Proof of Lemma 4.21

Proof of Lemma 4.21. We first show that the maximum in (4.10) cannot be achieved

at 𝑅0 = 0 or 𝐶0 = 0. Assume otherwise. If 𝑅0 = 0, we have that

𝜕Φ𝑆

𝜕𝑅0

����
𝑅0=0

=
(𝑑 +1)𝑡

𝑆
· (𝐶0𝑡 + 𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3) > 0

where 𝑆 > 0. Therefore, increasing 𝑅0 by a sufficiently small amount increases also

the value of Φ𝑆
, contradiction. An analogous argument applies for 𝐶0.

Next, we show that at least one of 𝑅1, 𝑅2, 𝑅3,𝐶1,𝐶2,𝐶3 are non-zero. Assume

otherwise, then

𝜕Φ𝑆

𝜕𝑅1

����
𝑅1=0

=
𝑑 +1
𝑆
· (𝐶0𝑡 + (𝑞1−1)𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3) =

𝑑 +1
𝑆

𝐶0𝑡 > 0,

and therefore we obtain a contradiction as above.

Consider now a triple (𝑞1, 𝑞2, 𝑞3) with positive entries, and assume w.l.o.g. that

the maximum is taken when 𝑅1 = 0. We claim that 𝐶1 > 0. Otherwise, by the first

part of Lemma 4.29, we have 𝜕Φ𝑆/𝜕𝑞1 = 0, and 𝜕Φ𝑆/𝜕𝑞𝑖 > 0 for some 𝑖 ∈ {2,3} since

we cannot have 𝑅2 = 𝑅3 = 𝐶2 = 𝐶3 = 0. This yields a contradiction to the second part

of Lemma 4.29, and therefore 𝐶1 > 0. Observe also that

𝜕Φ𝑆

𝜕𝑅1

����
𝑅1=0

=
𝑑 +1
𝑆
· (𝐶0𝑡 + (𝑞1−1)𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3),

so by the argument above we conclude that 𝐶0𝑡 + (𝑞1 − 1)𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3 ≤ 0 and

therefore 𝑞1 < 1 (since 𝐶0,𝐶1 > 0). This yields that

𝐶1 ≥
1

1− 𝑞1
(𝐶0𝑡 + 𝑞2𝐶2 + 𝑞3𝐶3) > 𝐶0.
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On the other hand, since both of 𝐶0,𝐶1 are nonzero, to achieve the maximum, (4.13)

must hold for 𝑖 = 1, which gives 𝐶0 > 𝐶1, contradiction. Therefore we have 𝑅1 > 0 for

triples with positive entries.

Exactly the same argument works for triples of type (𝑞1,0, 𝑞3) with 𝑞1, 𝑞3 > 0.

For the case (𝑞,0,0), note that 𝑞 ≥ 4 > 1, which means the partial derivatives with

respect to both 𝑅1 and 𝐶1 are positive at 𝑅1 = 0 and 𝐶1 = 0 respectively, and hence

the maximum cannot be taken at either 𝑅1 = 0 or 𝐶1 = 0.

To prove the final part of the lemma, suppose that 𝑞𝑖, 𝑞 𝑗 > 0. Since 𝑅𝑖,𝐶𝑖, 𝑅 𝑗 ,𝐶 𝑗 >

0, we have that (4.12) and (4.13) apply, which yields that 𝑅𝑖 = 𝑅 𝑗 iff 𝐶𝑖 = 𝐶 𝑗 . □

4.4.3 Proof of Lemma 4.33 and Lemma 4.39

Proof of Lemma 4.33. We put the expression of ℎ here for convenient reference.

ℎ(𝑥) :=
(
𝑥𝑑+1−1
𝑥𝑑 −1

)𝑑
𝑡𝑑+1− 𝑥

𝑑 −1
𝑥−1

+ 𝑞′+ (𝑞′−1)𝑥𝑑 . (4.33)

We have that ℎ is continuous over 𝑥 ∈ (1,+∞) and lim𝑥→+∞ ℎ(𝑥) = +∞. Using that

𝑡𝑑+1 = 𝑡Δ = 𝑞𝑘
′ − 𝑞, we have that

lim
𝑥↓1

ℎ(𝑥) =
(
𝑑+1
𝑑

)𝑑
𝑡𝑑+1− 𝑑 + 𝑞−1 < e𝑞𝑘

′ − e𝑞− 𝑑 + 𝑞−1 < e𝑞𝑘
′ − 𝑑 < 0.

This implies the existence of 𝑥 with ℎ(𝑥) = 0. To prove the uniqueness of the root,

we will show that for any root 𝑥 > 1 of ℎ′(𝑥), it holds that ℎ(𝑥) < 0 (note if such 𝑥

does not exist then we are already done), using the fact that ℎ is differentiable and its

derivative is continuous. To see the reason why it is sufficient, note that the number

of roots of ℎ(𝑥) over 𝑥 > 1 must be odd (because any critical point of ℎ has value less

than zero). Assuming towards contradiction, let 𝑥2 > 𝑥1 > 1 be the smallest two roots.

Then ℎ′(𝑥1) > 0 and ℎ′(𝑥2) < 0, indicating there must be some 𝑥∗ ∈ (𝑥1, 𝑥2) such that

ℎ′(𝑥∗) = 0. However, in this case ℎ(𝑥∗) > 0, which leads to contradiction.

Next we prove our claim. Take the derivative of ℎ and let it be zero:

ℎ′(𝑥) = 𝑑 (𝑞′−1)𝑥𝑑−1− 𝑑𝑥
𝑑−1

𝑥−1
+ 𝑥𝑑 −1
(𝑥−1)2

+
𝑑𝑡𝑑+1𝑥𝑑−1

(
𝑥𝑑+1−1
𝑥𝑑−1

)𝑑−1
(𝑑 − 𝑑𝑥 + 𝑥(𝑥𝑑 −1))

(𝑥𝑑 −1)2
= 0,

or equivalently,(
𝑥𝑑+1−1
𝑥𝑑 −1

)𝑑
𝑡𝑑+1 =

(𝑥𝑑 −1) (𝑥𝑑+1−1) (𝑥− 𝑥𝑑 (𝑑 (𝑞′(𝑥−1) − 𝑥) (𝑥−1) + 𝑥))
𝑑 (𝑥−1)2𝑥𝑑 (𝑑 − 𝑑𝑥 + 𝑥(𝑥𝑑 −1))

. (4.34)
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Combining (4.33) and (4.34), we obtain that for any 𝑥 such that ℎ′(𝑥) = 0, it holds that

ℎ(𝑥) = 𝑔(𝑥, 𝑑, 𝑞′)
𝑑 (𝑥−1)2𝑥𝑑−1(𝑑 − 𝑑𝑥 + 𝑥(𝑥𝑑 −1))

where

𝑔(𝑥, 𝑑, 𝑞′) := 𝑑𝑞′(𝑥−1)2(𝑥 +1) (𝑥𝑑 −1)𝑥𝑑−1− (𝑥𝑑 −1)2(𝑥𝑑+1−1)

− 𝑑2𝑥𝑑−1(𝑥−1)2(1− 𝑥1+𝑑 + 𝑞′(𝑥−1) (𝑥𝑑 +1)).
(4.35)

It is not hard to see that 𝑑 − 𝑑𝑥 + 𝑥(𝑥𝑑 −1) > 0 for any 𝑥 > 1, so, to show ℎ(𝑥) < 0, it

suffices to prove 𝑔(𝑥, 𝑑, 𝑞′) < 0 for all 𝑥 > 1. This will follow by showing that

𝑔(𝑥, 𝑑,0) < 0 and 𝑔(𝑥, 𝑑, 𝑞′) is decreasing in 𝑞′, for any 𝑥 > 1 and 𝑑 ≥ 3, (4.36)

We have 𝑔(𝑥, 𝑑,0)/(𝑥𝑑+1−1) =
(
𝑑2(𝑥−1)2𝑥𝑑−1− (𝑥𝑑−1)2

)
; the last quantity has been

shown negative for all 𝑥 > 1 in the proof of Lemma 4.18. To prove the monotonicity

w.r.t. 𝑞′ note that

𝜕𝑔

𝜕𝑞′
= −𝑑 (𝑥−1)2𝑥𝑑−1

(
−(𝑥 +1)𝑥𝑑 + 𝑑 (𝑥−1)

(
𝑥𝑑 +1

)
+ 𝑥 +1

)
=: 𝑑𝑥𝑑−1(𝑥−1)2𝑔1(𝑥)

where 𝑔1(𝑥) := −
(
−(𝑥 +1)𝑥𝑑 + 𝑑 (𝑥−1)

(
𝑥𝑑 +1

)
+ 𝑥 +1

)
. Note that

𝑔′1(𝑥) = (𝑑 +1) (𝑥𝑑−1(𝑑 + 𝑥− 𝑑𝑥) −1) < 0 for 𝑥 > 1

Since 𝑔1(1) = 0, we obtain 𝑔1(𝑥) < 0 for all 𝑥 > 1, proving (4.36) and concluding the

proof of Lemma 4.33. □

Proof of Lemma 4.39. Recall that ℎ2(𝑥) :=
(
𝑥𝑑+1−1
𝑥𝑑−1

)𝑑
𝑡𝑑+1 − 𝑥𝑑−1

𝑥−1 + (𝑞 − 1)𝑥𝑑 . We adopt

the same idea as the proof of Lemma 4.33 by showing that ℎ2 takes negative values at

critical points. The estimation of lim𝑥→1 ℎ2(𝑥) is the same as we did in Lemma 4.33.

Taking the derivative of ℎ2 and setting it to zero, we get

𝑑𝑞𝑥𝑑−1 +
𝑑𝑡𝑑+1

(
𝑥−1
𝑥𝑑−1 + 𝑥

)𝑑−1 (
𝑥
(
𝑥𝑑 −1

)
+ 𝑑 (−𝑥) + 𝑑

)
𝑥𝑑−1(

𝑥𝑑 −1
)2 − (𝑑 +1)𝑥𝑑

𝑥−1
+ 𝑥

𝑑+1−1
(𝑥−1)2

= 0,

or equivalently,(
𝑥𝑑+1−1
𝑥𝑑 −1

)𝑑
𝑡𝑑+1 =

𝑥−𝑑
(
𝑥𝑑 −1

) (
𝑥𝑑+1−1

) (
𝑑𝑞𝑥𝑑 −2𝑑𝑞𝑥𝑑+1 + 𝑑𝑞𝑥𝑑+2 + 𝑑𝑥𝑑+1 + 𝑥𝑑+1− 𝑑𝑥𝑑+2− 𝑥

)
𝑑 (𝑥−1)2

(
−𝑥𝑑+1 + 𝑑𝑥− 𝑑 + 𝑥

) .

By plugging this back into the expression for ℎ2(𝑥) and simplifying, we obtain that

for any 𝑥 such that ℎ′2(𝑥) = 0 it holds that ℎ2(𝑥) = 𝑔(𝑥,𝑑,𝑞)
𝑑 (𝑥−1)2(𝑑−𝑑𝑥+𝑥(𝑥𝑑−1)) , where

𝑔(𝑥, 𝑑, 𝑞) :=−𝑑2(𝑥−1)2
(
𝑥𝑑 (𝑞(𝑥−1) − 𝑥) +1

)
+𝑑𝑞(𝑥−1)2

(
𝑥𝑑 −1

)
−

(
𝑥𝑑 −1

)2 (
𝑥𝑑+1−1

)
𝑥1−𝑑 .
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Since 𝑑−𝑑𝑥 +𝑥(𝑥𝑑 −1) > 0 for any 𝑥 > 1, it remains to prove that 𝑔(𝑥, 𝑑, 𝑞) < 0. Note

that
𝜕𝑔(𝑥,𝑑,𝑞)

𝜕𝑞
= 𝑑 (𝑥−1)2

(
𝑥𝑑 (𝑑 (−𝑥) + 𝑑 +1) −1

)
< 0 for 𝑥 > 1 and therefore 𝑔(𝑥, 𝑑, 𝑞) <

𝑔(𝑥, 𝑑,0). We also have that 𝑔(𝑥, 𝑑,0)/(𝑥𝑑+1 − 1) =
(
𝑑2(𝑥−1)2− 𝑥1−𝑑 (

𝑥𝑑 −1
)2

)
< 0,

where the inequality follows from the argument below (4.36). Therefore 𝑔(𝑥, 𝑑,0) < 0
for all 𝑥 > 1, as desired, finishing the proof. □

4.4.4 Proof of Lemma 4.35 and Lemma 4.36

We will use the following inequality.

exp{𝑎} >
(
1+ 𝑎

𝑏

)𝑏
> exp

{
𝑎𝑏

𝑎 + 𝑏

}
for all 𝑎, 𝑏 > 0. (4.37)

Proof of Lemma 4.35. Let 𝑝 := 𝑡𝑥 +𝑞−1 and assume for the sake of contradiction that

𝑝 ≥ 𝑑. Let 𝑤 := 𝑝/𝑞𝑘 ′ and 𝑐 := 𝑑/𝑞𝑘 ′ , so tha the assumptions of the lemma imply that

𝑤 ≥ 𝑐 ≥ 5. (4.29) gives

𝑝 = 𝑞−1+ 𝑡𝑑+1
(
1+ 1

𝑝

)𝑑
𝑞−1+ 𝑡𝑑+1 exp

{
𝑑

𝑝

}
< 𝑞−1+ 𝑞𝑘 ′ exp

{ 𝑐
𝑤

}
.

Therefore, 𝑤 <
𝑞−1
𝑞𝑘
′ + exp

{
𝑐
𝑤

}
< 1

𝑞𝑘
′−1 + e < 3, contradicting 𝑤 ≥ 5. □

Proof of Lemma 4.36. For any solution (𝑥, 𝑦) of (4.28), 𝑥 satisfies the two-step recur-

sion 𝑓 (𝑥) = 0, where

𝑓 (𝑧) := 𝑡𝑑
©«1+ 1

𝑡 · 𝑡𝑑
(
1+ 1

𝑡𝑧+𝑞−1

)𝑑
+ 𝑞−1

ª®®¬
𝑑

− 𝑧.

Take 𝑥 as the largest root of 𝑓 . Define 𝑐 := 𝑑/𝑞𝑘 ′ . Because lim𝑥→∞ 𝑓 (𝑥) = −∞, to

show (b), it suffices to prove 𝑓

(
𝑐2𝑞𝑘

′ 𝑞𝑘
′

𝑞𝑘
′−𝑞

)
> 0, or equivalently,

(
1+ 1
(𝑞𝑘 ′ − 𝑞)𝐷 + 𝑞−1

)𝑑
> 𝑡𝑐2

(
𝑞𝑘
′

𝑞𝑘
′ − 𝑞

)2

where 𝐷 :=
©«1+ 1

𝑡

(
𝑐2𝑞𝑘

′ 𝑞𝑘
′

𝑞𝑘
′−𝑞

)
+ 𝑞−1

ª®®¬
𝑑

.

(4.38)

Because 𝐷 < exp
{

𝑑

𝑐2𝑞𝑘
′

}
< exp{ 1

𝑐
} < 1.2215,

LHS of (4.38) >

(
1+ 1

1.2215(𝑞𝑘 ′ − 𝑞) + 𝑞−1

)𝑐𝑞𝑘′
> 2.2674𝑐,

where the last inequality follows from (4.37). Moreover, for any 𝑞 ≥ 4, 𝑘′ ≥ 2, 𝑑 ≥
5𝑞𝑘 ′ , we have (𝑞𝑘 ′/(𝑞𝑘 ′ − 𝑞))2 < 1.7778 and 𝑡 < 1.0312. Therefore, RHS of (4.38)

< 1.8332𝑐2
, which is smaller than 2.2674𝑐 whenever 𝑐 ≥ 5. This concludes (b). Part

(a) follows from (b) and Lemma 4.35. □
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4.4.5 Proof of Lemma 4.45

Proof of Lemma 4.45. Define 𝑠 := 𝑑

𝑡𝑑+1−1 . By Proposition 4.41, any point on 𝑥 = 1+ 𝑠
𝑑

must be on the right of P+1 . Therefore we are interested in the point (𝑥, 𝑦) where

𝑥 = 1+ 𝑠
𝑑

and 𝑦 = 1+ 𝑠
2𝑑 . Specifically, we will show 𝑓2(𝑥, 𝑦) < 0, which, together with

the fact that lim𝑥→+∞ 𝑓2(𝑥, 𝑦) = +∞ for any fixed 𝑦 > 1, implies the existence of 𝑥𝐸 > 𝑥

such that 𝑓2(𝑥𝐸 , 𝑦) = 0. However, in order to apply Lemma 4.44, we further need to

show 𝑦 < 𝑥∗∗. The latter can be done by proving 𝑓2(𝑦, 𝑦) < 0 due to Lemma 4.39.

We deal with the latter one first. Assume 𝑞 ≥ 4, 𝑘′ ≥ 3, or 𝑞 ≥ 12, 𝑘′ ≥ 2. Then

5 < 𝑠 < 5.4962 ,
𝑞𝑘
′−𝑞

2(𝑞𝑘′−𝑞−1) < 0.5085 and

(
1− 𝑞−1

2(𝑞𝑘′−𝑞−1)

)
> 0.9580. Set 𝐷 :=

(
1+ 𝑠

2𝑑
)𝑑

.

By using (4.37), one can show 𝐷 > exp{5/2} > 12.1824. Therefore,

𝑓2

(
1+ 𝑠

2𝑑
,1+ 𝑠

2𝑑

)
= 1+

©«1+
𝑠

(
1+ 1
−1+𝐷

)
2𝑑

ª®®¬
𝑑

𝑞𝑘
′ − 𝑞

2(𝑞𝑘 ′ − 𝑞−1)
−𝐷

(
1− 𝑞−1

2(𝑞𝑘 ′ − 𝑞−1)

)
< 1+ exp

{
𝑠

2

(
1+ 1
−1+𝐷

)}
𝑞𝑘
′ − 𝑞

2(𝑞𝑘 ′ − 𝑞−1)
−𝐷

(
1− 𝑞−1

2(𝑞𝑘 ′ − 𝑞−1)

)
< 1+0.5085exp

{
5.4962

2

(
1+ 1
−1+𝐷

)}
−0.9580𝐷 < 0,

where in the last inequality we use the fact that the function is decreasing in 𝐷. The

cases (𝑞, 𝑘′) = (4,2), (6,2), (8,2), (10,2) also holds by directly computing 𝑓2.

The first one can be handled similarly. Denote 𝐸 :=
(
1+ 𝑠

𝑑

)𝑑
. Then 𝐷 > 𝐸1/2

. By

using (4.37) again, 𝐸 > exp{5}. Consider the case 𝑞 ≥ 8, 𝑘′ ≥ 3, or 𝑞 ≥ 28, 𝑘′ ≥ 2. Then

5 < 𝑠 < 5.1921,
𝑞𝑘
′−𝑞

2(𝑞𝑘′−𝑞−1) < 0.5010 and

(
1− 𝑞−1

2(𝑞𝑘′−𝑞−1)

)
> 0.9821. Therefore,

𝑓2

(
1+ 𝑠

𝑑
,1+ 𝑠

2𝑑

)
= 1+

©«1+
𝑠

(
1+ 1
−1+𝐷

)
𝑑

ª®®¬
𝑑

𝑞𝑘
′ − 𝑞

2(𝑞𝑘 ′ − 𝑞−1)
−𝐸

(
1− 𝑞−1

2(𝑞𝑘 ′ − 𝑞−1)

)
< 1+ exp

{
𝑠

(
1+ 1
−1+𝐷

)}
𝑞𝑘
′ − 𝑞

2(𝑞𝑘 ′ − 𝑞−1)
−𝐸

(
1− 𝑞−1

2(𝑞𝑘 ′ − 𝑞−1)

)
< 1+ exp

{
𝑠

(
1+ 1
−1+𝐸1/2

)}
𝑞𝑘
′ − 𝑞

2(𝑞𝑘 ′ − 𝑞−1)
−𝐸

(
1− 𝑞−1

2(𝑞𝑘 ′ − 𝑞−1)

)
< 1+0.5010exp

{
5.1921

(
1+ 1
−1+𝐸1/2

)}
−0.9821𝐸 < 0,

where in the last inequality we use the fact that the function is decreasing in 𝐸 . The

remaining cases (𝑞, 𝑘′) = (4,3), (6,3), (4,2), (6,2), · · · , (26,2) also holds by directly

computing 𝑓2. □





Chapter 5

FPRAS for linear hypergraphs

We move on to the algorithmic result of this thesis. Recall the definition of a linear

hypergraph; that is, each two hyperedges intersect at at most one vertex. The main

result of this chapter is stated as follows.

Theorem 5.1. For any 𝛿 > 0, there is a sampling algorithm such that given any 𝜖 ∈
(0,1), a 𝑘-uniform linear hypergraph 𝐻 = (𝑉,𝐸) with maximum degree Δ, where 𝑘 ≥
20(1+𝛿)

𝛿
, and an integer 𝑞 ≥ 100Δ

2+𝛿
𝑘−4/𝛿−4 , it returns a random 𝑞-colouring that is 𝜖-close

to 𝜇 in total variation distance in time �̃� (𝑘5Δ2𝑛
(
𝑛Δ
𝜖

)0.01
), where 𝑛 = |𝑉 | and �̃� hides a

polylog(𝑛,Δ, 𝑞,1/𝜖) factor.

A few quick remarks are in order. First of all, the exponent of 𝑛 in the running

time can be made even closer to 1 if more colours are given. See Theorem 5.6 for

the full technical statement. Secondly, our algorithm can be modified into a perfect

sampler by applying the bounding chain method [Hub98] based on coupling from

the past (CFTP) [PW96a], following the same lines of [HSW21]. Moreover, using

known reductions from approximate counting to sampling [JVV86, ŠVV09, Hub15,

Kol18] (see [FGYZ21b] for simpler arguments specialized to local lemma settings),

one can efficiently and approximately count the number of proper colourings in linear

hypergraphs under the same conditions in Theorem 5.1.

The exponent (roughly 2/𝑘) of Δ in Theorem 5.1 is unlikely to be tight, although it

appears to be the limit of current techniques. In fact, we conjecture that the compu-

tational transition for sampling 𝑞-colourings in linear hypergraphs happens around

the same threshold of the local lemma (namely, the exponent should be roughly 1/𝑘).

This conjecture is supported by the hardness result in the previous chapter, and by

the algorithm of Frieze and Anastos [FA17] for 𝑞 = Ω(log𝑛). Note that for a linear

67
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𝑘-uniform hypergraph with maximum degree Δ, Frieze and Mubayi [FM13] showed

that the chromatic number 𝜒(𝐻) ≤ 𝐶𝑘

(
Δ

logΔ

) 1
𝑘−1

where 𝐶𝑘 depends only on 𝑘 . Their

bound is asymptotically better than the bound given by the local lemma. Thus there

may still be a gap between the searching threshold and the sampling threshold.

Technique overview. Our algorithm follows the recent projected Markov chain

approach [FGYZ21b] with state compression [FHY21]. Roughly speaking, instead of

assigning colours to vertices, we split [𝑞] into

√
𝑞 buckets of size

√
𝑞 each and assign

buckets to vertices. We run a (systematic scan) Markov chain on these bucket assign-

ments to generate a sample, and then conditional on this sample to draw a nearly

uniform 𝑞-colouring. The benefit of this bucketing is that, under the conditions of

Theorem 5.1, conditional on the assignments of all but one vertices, the assignment

of the remaining vertex is close to uniformly at random. This implies that any atomic

event
1

is exponentially unlikely in the number of distinct vertices it depends on. In

order to show that this approach works, we need to show two things: 1) the projected

Markov chain is rapidly mixing; 2) each step of the Markov chain can be efficiently

implemented. For general hypergraphs, the previous 𝑞 ≳ Δ3/(𝑘−4)
bound comes from

balancing the conditions so that the two claims are true simultaneously. However,

there is no room left for relaxation on either claim. This means that, for our improve-

ments in linear hypergraphs, new ingredients are required for both claims.

For rapid mixing, we take the information percolation approach [HSZ19, JPV21a,

HSW21], where the main effort is to trace discrepancies through a one-step greedy

coupling, and to show that they are unlikely after a sufficient amount of time. In linear

hypergraphs, an individual discrepancy path through time has more distinct updates

of vertices than in the general case, and are thus more unlikely. This allows us to relax

the condition. Our mixing time analysis is largely inspired by the work of Hermon,

Sly, and Zhang [HSZ19], although we do need to handle some new complicacies, such

as hyperedges whose vertices are consecutively updated in the discrepancy path.

For efficient implementation, we use rejection sampling. Here we want to sam-

ple the colour/bucket of a vertex conditional on the buckets of all other vertices. We

can safely prune hyperedges containing vertices of different buckets. The remaining

connected component containing the update vertex needs to have logarithmic size

to guarantee efficiency of our rejection sampling. The standard approach to bound

1
An event is atomic if each variable it depends on must take one particular value. In discrete spaces,

any event can be decomposed into atomic ones.
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its size is to do a union bound over certain combinatorial structures with sufficiently

many distinct vertices. Most previous analysis is based on enumerating so-called “2-

trees”, a notion first introduced by Alon [Alo91]. Unfortunately, under the conditions

of Theorem 5.1, there are too many “2-trees” to our need. Instead, we introduce a

new structure called “2-block-trees” (see Definition 5.12). Here each “block” is a col-

lection of 𝜃 connected hyperedges, and these blocks satisfy connectivity properties

similar to a 2-tree. Since the hypergraph is linear, a block has at least 𝜃𝑘 −
(𝜃
2
)

distinct

vertices. As long as 𝜃≪ 𝑘 , we have a good lower bound on the number of distinct ver-

tices, which in turn implies a good upper bound on the probability of these structures

showing up. To finish off with the union bound, we give a new counting argument

for the number of 2-block-trees, which is based on finding a good encoding of these

structures.

Outline of this chapter. The algorithm and its overall analysis are presented in

Section 5.2 and Section 5.3, followed by more detailed analysis, where the implemen-

tation of the projected chain is studied in Section 5.4, and its mixing time is studied

in Section 5.5.

5.1 Preliminaries of this chapter

5.1.1 List hypergraph colouring and local uniformity

We are actually considering a more general version of the colouring problem where

each vertex may have different colours to choose from than other vertices, namely

the list hypergraph colouring problem. Let 𝐻 = (𝑉,E) be a 𝑘-uniform hypergraph

with maximum degree Δ. Let (𝑄𝑣)𝑣∈𝑉 be a set of colour lists. We say X ∈ ⊗𝑣∈𝑉𝑄𝑣

is a proper list colouring if no hyperedge in 𝐻 is monochromatic with respect to X.

Let 𝜇 denote the uniform distribution of all proper list hypergraph colourings. The

following local uniformity property holds for the distribution 𝜇. Its proof follows

from the argument in [GLLZ19]. We include it here for completeness.

Lemma 5.2 (local uniformity [GLLZ19]). Let 𝑞0 = min𝑣∈𝑉 |𝑄𝑣 | and 𝑞1 = max𝑣∈𝑉 |𝑄𝑣 |.
For any 𝑟 ≥ 𝑘 ≥ 2, if 𝑞𝑘0 ≥ e𝑞1𝑟Δ, then for any 𝑣 ∈ 𝑉 and 𝑐 ∈ 𝑄𝑣 ,

1
|𝑄𝑣 |

exp
(
−2
𝑟

)
≤ 𝜇𝑣 (𝑐) ≤

1
|𝑄𝑣 |

exp
(
2
𝑟

)
,

where 𝜇𝑣 is the marginal distribution on 𝑣 induced by 𝜇.
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Proof. LetD denote the product distribution where each 𝑣 ∈𝑉 samples a colour in𝑄𝑣

uniformly at random. For each 𝑒 ∈ E, let 𝐵𝑒 be the bad event that 𝑒 is monochromatic.

Let 𝑥(𝑒) = 1
𝑟Δ

for all 𝑒 ∈ E. Note that 𝑟 ≥ 𝑘 . We have

PrD [𝐵𝑒] ≤
𝑞1

𝑞𝑘0
≤ 1

e𝑟Δ
≤ 1
𝑟Δ

(
1− 1

𝑟Δ

) 𝑘 (Δ−1)
≤ 𝑥(𝐵𝑒)

∏
𝐵∈Γ(𝐵𝑒)

(1− 𝑥(𝐵)).

By Theorem 2.4, it holds that

𝜇𝑣 (𝑐) ≤
1
|𝑄𝑣 |

(
1− 1

𝑟Δ

)−Δ
≤ 1
|𝑄𝑣 |

exp
(
2
𝑟

)
.

For the lower bound, consider each hyperedge 𝑒 such that 𝑣 ∈ 𝑒. Let Block𝑒 be the

event that all vertices in 𝑒 except 𝑣 have the colour 𝑐. If none of Block𝑒 occurs, then

𝑣 has colour 𝑐 with probability at least 1/|𝑄𝑣 |. By Theorem 2.4, we have

𝜇𝑣 (𝑐) ≥
1
|𝑄𝑣 |

Pr𝜇

[∧
𝑒∋𝑣

Block𝑒

]
≥ 1
|𝑄𝑣 |

(
1−

∑︁
𝑒∋𝑣

Pr𝜇 [Block𝑒]
)
.

Note that PrD [Block𝑒] ≤ 𝑞−𝑘+10 and |Γ(Block𝑒) | ≤ 𝑘 (Δ−1) +1. We have

Pr𝜇 [Block𝑒] ≤ 𝑞−𝑘+10

(
1− 1

𝑟Δ

)−𝑘 (Δ−1)−1
≤ 𝑞−𝑘+10 e ≤ 1

𝑟Δ
,

where the last inequality holds because 𝑞−𝑘+10 e ≤ 𝑞−𝑘0 𝑞1e ≤ 1
𝑟Δ

, which implies

𝜇𝑣 (𝑐) ≥
1
|𝑄𝑣 |

(
1−

∑︁
𝑒∋𝑣

Pr𝜇 [Block𝑒]
)
≥ 1
|𝑄𝑣 |

(
1− 1

𝑟

)
≥ 1
|𝑄𝑣 |

exp
(
−2
𝑟

)
. □

5.1.2 Projection scheme, projected distribution and conditional

distribution

Our sampling algorithm is based on the following projection scheme introduced in [FHY21].

Suppose 𝐻 = (𝑉,E) is a 𝑘-uniform hypergraph and [𝑞] a set of colours, and let 𝜇 de-

note the uniform distribution of its proper hypergraph colourings.

Definition 5.3 (projection scheme [FHY21]). Let 1 ≤ 𝑠 ≤ 𝑞 be an integer. A (balanced)

projection scheme with image size 𝑠 is a function ℎ : [𝑞] → [𝑠] such that for any

𝑗 ∈ [𝑠],
��ℎ−1( 𝑗)

�� = ⌊ 𝑞
𝑠
⌋ or

��ℎ−1( 𝑗)
�� = ⌈ 𝑞

𝑠
⌉.

For any X ∈ [𝑞]𝑉 , define the projection image Y ∈ [𝑠]𝑉 of X by

∀𝑣 ∈ 𝑉, 𝑌𝑣 = ℎ(𝑋𝑣).
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For simplicity, we often denote Y = ℎ(X), and for any subset Λ ⊆ 𝑉 , we denote YΛ =

ℎ(XΛ).
Given a projection scheme, the following projected distribution can be naturally

defined.

Definition 5.4 (projected distribution). Given a projection scheme ℎ, the projected

distribution 𝜈 is the distribution of Y = ℎ(X), where X ∼ 𝜇.

Given an image of the projection, we can define the following conditional distri-

bution over [𝑞]𝑉 .

Definition 5.5 (conditional distribution). Let Λ ⊆ 𝑉 be a subset of vertices. Given a

(partial) image 𝜎Λ ∈ [𝑠]Λ, the conditional distribution 𝜇𝜎Λ
is the distribution of X ∼ 𝜇

conditional on ℎ(XΛ) = 𝜎Λ.

By definition, 𝜇𝜎Λ
is a distribution over [𝑞]𝑉 . We use 𝜇

𝜎Λ

𝑆
to denote the marginal

distribution on 𝑆 ⊆ 𝑉 projected from 𝜇𝜎Λ
, and we simply denote 𝜇

𝜎Λ

{𝑣} by 𝜇
𝜎Λ
𝑣 .

5.2 Algorithm

In this section and what follows, we always assume that all vertices in 𝑉 are labeled

by {0,1, . . . , 𝑛−1}. We also fix the parameter 𝑠 =
⌈√

𝑞
⌉
.

5.2.1 The sampling algorithm

Given a projection scheme ℎ with image size 𝑠, our sampling algorithm first samples

Y ∈ [𝑠]𝑉 from the projected distribution 𝜈, and then uses it to sample a random hy-

pergraph colouring from the conditional distribution 𝜇Y
. The pseudocode is given

in Algorithm 1.

The main ingredient of Algorithm 1 is the part that samples Y (Line 1 to Line 5).

It is basically a systematic scan version of the Glauber dynamics for 𝜈. In order to

update the state of a particular vertex, we invoke a subroutine Sample, given in Al-

gorithm 2, to sample 𝑋′𝑣 first from the distribution conditional on Y𝑉\{𝑣}. Also, Sample

is used to generate the random colouring conditional on Y in Line 6. The subroutine

Sample in fact returns an approximate sample with high probability. Here we have

to settle with some small error because exactly calculating the conditional distribu-

tion is intractable. To implement Sample, we use standard rejection sampling, which
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Algorithm 1: Sampling algorithm for hypergraph colouring
Input: A hypergraph 𝐻 = (𝑉,E), a set of colours [𝑞], an error bound

0 < 𝜖 < 1, and a balanced projection scheme ℎ : [𝑞] → [𝑠], where

𝑠 =
⌈√

𝑞
⌉

Output: A random colouring X ∈ [𝑞]𝑉

1 sample Y ∈ [𝑠]𝑉 uniformly at random;

2 for 𝑡 from 1 to 𝑇 = ⌈50𝑛 log 2𝑛Δ
𝜖
⌉ do

3 let 𝑣 be the vertex with label (𝑡 mod 𝑛);
4 𝑋′𝑣← Sample

(
𝐻, ℎ, {𝑣},Y𝑉\{𝑣},

𝜖
4𝑇

)
;

/* The Sample subroutine is given in Algorithm 2. */

5 𝑌𝑣← ℎ(𝑋′𝑣);

6 return X← Sample
(
𝐻, ℎ,𝑉,Y, 𝜖

4𝑇
)
;

is described in Algorithm 3. Showing the correctness and efficiency of Algorithm 2

and Algorithm 3 is one of our main contributions.

In the following we flesh out the outline above. LetΛ ⊆𝑉 and YΛ ∈ [𝑠]Λ. Note that

during the execution of Algorithm 1, YΛ is a random input to Sample. Let 𝑆 ⊆ 𝑉 and

𝜁 ∈ (0,1). The subroutine Sample (𝐻, ℎ, 𝑆,YΛ, 𝜁) in Algorithm 1 returns a random

sample X𝑆 ∈ [𝑞]𝑆 such that with probability at least 1− 𝜁 , the total variation distance

between X𝑆 and 𝜇
YΛ

𝑆
is at most 𝜁 , where the probability is taken over the randomness

of the input YΛ.

In the 𝑡-th step of the systematic scan in Algorithm 1, we pick the vertex 𝑣 with

label (𝑡 mod 𝑛), and use Line 4 and Line 5 to update the value of 𝑌𝑣 . Ideally, we want

to resample the value of 𝑌𝑣 according to the conditional distribution 𝜈
Y𝑉\{𝑣}
𝑣 , where

𝜈 is the distribution projected from 𝜇. However, exactly computing the conditional

distribution is not tractable, and we approximate it by projecting from the random

sample 𝑋′𝑣 ∈ [𝑞] given by Sample in Line 4. It is straightforward to verify that 𝑌𝑣

approximately follows the law of 𝜈
Y𝑉\{𝑣}
𝑣 as long as 𝑋′𝑣 approximately follows the law

of 𝜇
Y𝑉\{𝑣}
𝑣 . In the last step, we use Sample to draw approximate samples from the

conditional distribution 𝜇Y
.

We explain the details of Sample (𝐻, ℎ, 𝑆,YΛ, 𝜁) next. First we need some nota-

tions. Given a partial image YΛ, we say an hyperedge 𝑒 ∈ E is satisfied by YΛ if

there exists 𝑢, 𝑣 ∈ 𝑒∩Λ such that 𝑌𝑢 ≠ 𝑌𝑣 . In other words, for all X ∈ [𝑞]𝑉 such that

YΛ = ℎ(XΛ), the hyperedge 𝑒 is not monochromatic with respect to X, and thus 𝑒 is
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always “satisfied” given YΛ. Let 𝐻YΛ = (𝑉,EYΛ) be the hypergraph obtained from 𝐻

by removing all hyperedges satisfied by YΛ. Let 𝐻
YΛ

1 , 𝐻
YΛ

2 , . . . , 𝐻
YΛ
𝑚 denote the con-

nected components of 𝐻YΛ
, where 𝐻

YΛ

𝑖
= (𝑉𝑖,EYΛ

𝑖
). The following fact is straightfor-

ward to verify

𝜇YΛ = 𝜇
YΛ∩𝑉1
1 × 𝜇YΛ∩𝑉2

2 × . . .× 𝜇YΛ∩𝑉𝑚
𝑚 ,

where 𝜇𝑖 is the uniform distribution over proper 𝑞-colourings of the sub-hypergraph

𝐻
YΛ

𝑖
(namely, 𝜇

YΛ∩𝑉𝑖
𝑖

is the uniform distribution over list colourings of 𝐻
YΛ

𝑖
condi-

tional on YΛ∩𝑉𝑖 ). Without loss of generality, we assume 𝑆 ∩𝑉 𝑗 ≠ ∅ for 1 ≤ 𝑗 ≤ ℓ.

To draw a random sample from 𝜇
YΛ

𝑆
, it suffices to draw a random sample from the

product distribution 𝜇
YΛ∩𝑉1
1 × 𝜇YΛ∩𝑉2

2 × . . .× 𝜇YΛ∩𝑉ℓ
ℓ

, which we will do by drawing from

each 𝜇
YΛ∩𝑉𝑖
𝑖

individually using standard rejection sampling (given in Algorithm 3).

One final detail about Algorithm 2 and Algorithm 3 is about their efficiency. Ba-

sically we set some thresholds to guard against two unlikely bad events. We break

out from the normal execution immediately and return an arbitrary random sample

if one of the following two bad events occur:

• for some 1 ≤ 𝑖 ≤ ℓ, |EYΛ

𝑖
| > 4Δ𝑘3 log

(
𝑛Δ
𝜁

)
;

• for some 1 ≤ 𝑖 ≤ ℓ, the rejection sampling for 𝜇
YΛ∩𝑉𝑖
𝑖

fails after 𝑅 trials, where

𝑅 :=

⌈
10

(
𝑛Δ

𝜁

) 1
1000𝜂

log
𝑛

𝜁

⌉
and 𝜂 :=

1
Δ

( 𝑞

100

) 𝑘−3
2
. (5.1)

In other words, the first bad event corresponds to the case that a connected compo-

nent is so large that the rejection sampling is unlikely to succeed. In the analysis (see

Lemma 5.9), we will show that both of the two bad events above occur with low prob-

ability, and thus with high probability the Sample subroutine returns an approximate

sample with desired accuracy.

5.2.2 Proof of the main theorem

Let 𝐻 = (𝑉,E) be a linear 𝑘-uniform hypergraph with maximum degree Δ. Let [𝑞]
be a set of 𝑞 colours. Recall 𝑠 =

⌈√
𝑞
⌉
, where 𝑠 is the parameter of projection scheme

ℎ (Definition 5.3). To construct ℎ, we partition [𝑞] into 𝑠 intervals, where the first

(𝑞 mod 𝑠) of them contains ⌈𝑞/𝑠⌉ elements each while the rest contains ⌊𝑞/𝑠⌋ ele-

ments each. For each 𝑖 ∈ [𝑞], set

ℎ(𝑖) = 𝑗 where 𝑖 belongs to the 𝑗-th interval. (5.2)
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Algorithm 2: Sample (𝐻, ℎ, 𝑆,YΛ, 𝜁)
Input: A hypergraph 𝐻 = (𝑉,E), a projection scheme ℎ : [𝑞] → [𝑠], a subset

𝑆 ⊆ 𝑉 , a (partial) image YΛ ∈ [𝑠]Λ where Λ ⊆ 𝑉 , and an error bound

𝜁 ∈ (0,1)
Output: A random (partial) colouring X𝑆 ∈ [𝑞]𝑆

1 remove all hyperedges in 𝐻 that are satisfied by YΛ to obtain

𝐻YΛ = (𝑉,EYΛ);
2 let 𝐻𝑖 = (𝑉𝑖,EYΛ

𝑖
) for 1 ≤ 𝑖 ≤ ℓ be the connected components such that

𝑉𝑖 ∩ 𝑆 ≠ ∅;

3 if ∃1 ≤ 𝑖 ≤ ℓ such that |EYΛ

𝑖
| > 4Δ𝑘3 log

(
𝑛Δ
𝜁

)
then

4 return arbitrarily, for example X𝑆 ∈ [𝑞]𝑆 uniformly at random;

5 for 𝑖 from 1 to ℓ do

6 X𝑖← RejectionSampling(𝐻𝑖, ℎ,YΛ∩𝑉𝑖 , 𝑅), where 𝑅 =

⌈
10

(
𝑛Δ
𝜁

) 1
1000𝜂 log 𝑛

𝜁

⌉
;

/* The RejectionSampling subroutine is given in Algorithm 3.

*/

7 if X𝑖 =⊥ then
8 return arbitrarily, for example X𝑆 ∈ [𝑞]𝑆 uniformly at random;

9 return X𝑆 where X =
⊎ℓ

𝑖=1 X𝑖 ;

Note that this ℎ satisfies Definition 5.3. In our algorithm, ℎ is implemented as an

oracle, supporting the following two types of queries.

• Evaluation: given 𝑖, the oracle returns ℎ(𝑖).

• Inversion: given 𝑗 , the oracle returns a uniform element in ℎ−1( 𝑗).

Obviously, each query can be answered in time 𝑂 (log𝑞) because of the construction

of ℎ.

The next theorem is a stronger form of Theorem 5.1. It shows that our algorithm

can run in time arbitrarily close to linear in 𝑛, the number of vertices, as long as

sufficiently many colours are available.

Theorem 5.6. The following result holds for any 𝛿 > 0 and 0 < 𝛼 ≤ 1. Given any

𝜖 ∈ (0,1), any (list-)𝑞-colouring instance on 𝑘-uniform linear hypergraph 𝐻 = (𝑉,𝐸)
with maximum degree Δ, and a balanced projection scheme, if 𝑘 ≥ 20(1+𝛿)

𝛿
and 𝑞 ≥
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Algorithm 3: RejectionSampling(𝐻, ℎ,YΛ, 𝑅)
Input: A hypergraph 𝐻 = (𝑉,E), a projection scheme ℎ : [𝑞] → [𝑠], a

(partial) image YΛ ∈ [𝑠]Λ where Λ ⊆ 𝑉 and an integer 𝑅

Output: A random colouring X ∈ [𝑞]𝑉 or a special symbol ⊥
1 for each 𝑣 ∈ 𝑉 , let 𝑄𝑣← ℎ−1(𝑌𝑣) if 𝑣 ∈ Λ, and 𝑄𝑣← [𝑞] if 𝑣 ∉ Λ;

2 for 𝑖 from 1 to 𝑅 do
3 sample 𝑋𝑣 ∈ 𝑄𝑣 uniformly at random for all 𝑣 ∈ 𝑉 and let X = (𝑋𝑣)𝑣∈𝑉 ;

4 if X is a proper hypergraph colouring of 𝐻 then
5 return X;

6 return ⊥;

100
(
Δ
𝛼

) 2+𝛿
𝑘−4/𝛿−4

, Algorithm 1 returns a random colouring that is 𝜖-close to 𝜇 in total vari-

ation distance in time 𝑂

(
Δ2𝑘5𝑛

(
𝑛Δ
𝜖

)𝛼/100
log4

(
𝑛Δ𝑞

𝜖

))
.

Remark 5.7. The parameter 𝛼 captures the relation between the local lemma con-

dition and the running time of the algorithm. If 𝛼 becomes smaller, the condition is

more confined, and the running time is closer to linear. In particular, Theorem 5.1 is

implied by setting 𝛼 = 1.

We need two lemmas to prove Theorem 5.6. The first lemma analyses the mixing

time of the idealised systematic scan. Let 𝜈 be the projected distribution. The idealised

systematic scan for 𝜈 is defined as follows. Initially, let X0 ∈ [𝑠]𝑉 be an arbitrary initial

configuration. In the 𝑡-th step, the systematic scan does the following update steps.

• Pick the vertex 𝑣 ∈𝑉 with label (𝑡 mod 𝑛) and let 𝑋𝑡 (𝑉 \ {𝑣}) ← 𝑋𝑡−1(𝑉 \ {𝑣}).

• Sample 𝑋𝑡 (𝑣) ∼ 𝜈X𝑡−1 (𝑉\{𝑣})
𝑣 .

Lemma 5.8. If 𝑞 ≥ 40Δ 2
𝑘−4 and 𝑘 ≥ 20, the systematic scan chain P𝑠𝑐𝑎𝑛 for 𝜈 is irre-

ducible, aperiodic and reversible with respect to 𝜈. Furthermore, the mixing time satisfies

∀0 < 𝜖 < 1, 𝑇mix(P𝑠𝑐𝑎𝑛, 𝜖) ≤
⌈
50𝑛 log

𝑛Δ

𝜖

⌉
.

Lemma 5.8 is shown in Section 5.5.

Our next lemma analyzes the Sample subroutine. Let (Y𝑡)𝑇𝑡=0 denote the sequence

of random configurations in [𝑠]𝑉 generated by Algorithm 1, where Y0 ∈ [𝑠]𝑉 is the

initial configuration and Y𝑡 is the configuration after the 𝑡-th iteration of the for-loop.



76 Chapter 5. FPRAS for linear hypergraphs

For any 1 ≤ 𝑡 ≤ 𝑇 +1, consider the 𝑡-th invocation of Sample and define the following

two bad events:

• Bcom(𝑡): in the 𝑡-th invocation, X𝑆 is returned by Line 4 in Algorithm 2;

• Brej(𝑡): in the 𝑡-th invocation, X𝑆 is returned by Line 8 in Algorithm 2.

Note that the (𝑇 + 1)-th invocation of the subroutine Sample is in Line 6 in Algo-

rithm 1. Let 𝐻 = (𝑉,E) denote the input hypergraph of Algorithm 1.

Lemma5.9. For any 1 ≤ 𝑡 ≤𝑇 +1, the 𝑡-th invocation of the subroutine Sample (𝐻, ℎ, 𝑆,YΛ, 𝜁),
where ℎ is given by (5.2), satisfies

1. the running time of the subroutine is bounded by𝑂

(
|𝑆 |Δ2𝑘5

(
𝑛Δ
𝜁

) 1
1000𝜂 log3

(
𝑛Δ𝑞

𝜁

))
;

2. conditional on neither Bcom(𝑡) nor Brej(𝑡) occurs, the subroutine returns a perfect

sample from 𝜇
YΛ

𝑆
;

3. if 𝑞 ≥ 100Δ 2
𝑘−3 and 𝑘 ≥ 20, then Pr[Brej(𝑡)] ≤ 𝜁 ;

4. for any 𝛿 > 0, if 𝑘 ≥ 20(𝛿+1)
𝛿

, 𝑞 ≥ 100Δ
2+𝛿

𝑘−4/𝛿−3 , and 𝐻 is linear, then Pr[Bcom(𝑡)] ≤
𝜁 .

Lemma 5.9 is proved in Section 5.3 and 5.4.

Now we are ready to prove our main result, Theorem 5.6.

Proof of Theorem 5.6. First note that the condition in Theorem 5.6 implies all the con-

ditions in Lemma 5.8 and Lemma 5.9. Denote the output of Algorithm 1 by Xalg. To

prove the correctness of our algorithm, the goal is to show

𝑑TV
(
Xalg, 𝜇

)
≤ 𝜖 .

We first consider an idealized algorithm which, instead of simulating the transitions

by the Sample subroutine, is able to run the ideal Glauber dynamics to obtain Yideal

before sampling Xideal from the distribution 𝜇Yideal
. By Lemma 5.8, running this sys-

tematic scan for𝑇 = ⌈50𝑛 log 2𝑛Δ
𝜖
⌉ steps ensures 𝑑TV (Yideal, 𝜈) ≤ 𝜀

2 . On the other hand,

a perfect sample X ∼ 𝜇 can be drawn by sampling Y ∼ 𝜈 first, followed by sampling

X∼ 𝜇Y
based on that. The upper bound on total variation distance allows us to couple

the perfect Y and Yideal such that Y ≠ Yideal with probability no more than
𝜖
2 . Condi-

tional on Y = Yideal, the samples X and Xideal on original distribution can be perfectly

coupled. Together with the coupling lemma (Lemma 2.3), we have

𝑑TV (Xideal, 𝜇) ≤
𝜖

2
.
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Hereinafter, we couple the idealized algorithm with Algorithm 1. The nature of

systematic scan warrants that both algorithms pick the same vertex in the same step

on Line 3. We then try to couple the vertex update as much as possible. That is, at Step

𝑡, if none ofBcom(𝑡) orBrej(𝑡) happens, then the output of Sample subroutine at Line 4

in Algorithm 1 is perfect, and hence we can couple it with the idealized systematic

scan perfectly. The remaining coupling error emerges from the occurrence of Bcom(𝑡)
or Brej(𝑡). By the coupling lemma (Lemma 2.3) and Lemma 5.9, we have

𝑑TV
(
Xalg,Xideal

)
≤ Pr

[
𝑇∨
𝑖=1

(
Bcom(𝑡) ∨Brej(𝑡)

) ]
= 2𝑇𝜁 =

𝜖

2

where the last equality is due to the selection of 𝜁 in Algorithm 1. Finally, a straight-

forward application of triangle inequality yields

𝑑TV
(
Xalg, 𝜇

)
≤ 𝑑TV

(
Xalg,Xideal

)
+ 𝑑TV (Xideal, 𝜇) = 𝜖

as desired.

There are 𝑇 +1 invocations to the Sample subroutine in total, with the first 𝑇 calls

each costing

𝑇step :=𝑂

(
Δ2𝑘5

(
𝑛Δ

𝜖/4𝑇

) 1
1000𝜂

log3
(
𝑛Δ𝑞

𝜖/4𝑇

))
and the final call on Line 6 costing

𝑇final :=𝑂

(
𝑛Δ2𝑘5

(
𝑛Δ

𝜖/4𝑇

) 1
1000𝜂

log3
(
𝑛Δ𝑞

𝜖/4𝑇

))
.

Summing up, the total running time is

𝑇total = 𝑇 ·𝑇step +𝑇final =𝑂

(
(𝑇 +𝑛)Δ2𝑘5

(
𝑛Δ

𝜖/4𝑇

) 1
1000𝜂

log3
(
𝑛Δ𝑞

𝜖/4𝑇

))
(5.3)

where

𝑇 = 50𝑛 log
2𝑛Δ
𝜖

and 𝜂 =
1
Δ

( 𝑞

100

) 𝑘−3
2
. (5.4)

Note that the condition 𝑞 ≥ 100
(
Δ
𝛼

) 2+𝛿
𝑘−4/𝛿−4

implies

𝜂 =
1
Δ

( 𝑞

100

) 𝑘−3
2 ≥ 1

Δ

((
Δ

𝛼

) 2+𝛿
𝑘−4/𝛿−4

) 𝑘−3
2

≥ 1
𝛼
Δ
(𝑘−3) (1+𝛿/2)

𝑘−4/𝛿−4 −1 ≥ 1
𝛼

and hence (
𝑛Δ

𝜖/4𝑇

) 1
1000𝜂

≤
(

200𝑛2Δ log 2𝑛Δ
𝜖

𝜖

)𝛼/1000

=𝑂

((
𝑛Δ

𝜖

)𝛼/100
)
. (5.5)
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Plugging (5.4) and (5.5) back into (5.3), we get

𝑇total =𝑂

(
Δ2𝑘5𝑛

(
𝑛Δ

𝜖

)𝛼/100
log4

(
𝑛Δ𝑞

𝜖

))
as desired. □

5.3 Analysis of the Sample subroutine

In this section, we analyse the subroutine Sample and prove Lemma 5.9. Proper-

ties 1, 2, and 3 in Lemma 5.9 can be proved using techniques developed in [FGYZ21b,

FHY21]. The proofs are given in Section 5.3.1 and Section 5.3.2. We remark that proofs

of the first three properties in Lemma 5.9 hold for general hypergraphs, not necessar-

ily linear hypergraphs. It is property 4 that requires a linear hypergraph as the input.

The proof of property 4 is quite involved and is left to Section 5.4.

5.3.1 Proof of running time and correctness

Proof of Property 1 and 2, Lemma 5.9. Property 2 is straightforwardly implied by the

nature of rejection sampling. We now deal with Property 1.

Assume all hypergraphs are stored as incidence lists. We first calculate the time

cost of Line 2. Starting from each 𝑣 ∈ 𝑆, we perform depth-first search (DFS) on 𝐻,

and for each edge we encounter, we can check whether it is in 𝐻𝑌Λ
in time 𝑂 (𝑘). This

procedure can work simultaneously with Line 3, that once the current component

reaches size 4Δ𝑘3 log
(
𝑛Δ
𝜁

)
, the subroutine exits in Line 4. The number of visits by

DFS itself will be upper-bounded by the number of edges times maximum edge degree

which is no larger thanΔ𝑘 . In all, the time complexity of DFS has a crude upper bound

𝑇DFS =𝑂

(
|𝑆 | · 𝑘 ·4Δ𝑘3 log

(
𝑛Δ

𝜁

)
·Δ𝑘

)
=𝑂

(
|𝑆 |Δ2𝑘5 log

(
𝑛Δ

𝜁

))
.

For the time cost of Line 6, be aware ℓ is at most |𝑆 |. Suppose the cost of sampling

a uniformly random colour from a colour list 𝑄 ⊆ [𝑞] is 𝑂 (log𝑞). Each invocation

of RejectionSampling contains 𝑅 rounds, each of which colours the subgraph 𝐻𝑖 and

check if it is a proper colouring. The cost depends to the number of vertices in 𝐻𝑖 ,

which is upper-bounded by 𝑘 ·4Δ𝑘3 log
(
𝑛Δ
𝜁

)
. The total cost is then

𝑇Rej =𝑂

(
|𝑆 | · 𝑅 ·Δ𝑘4 log

(
𝑛Δ

𝜁

)
log𝑞

)
≤ 𝑂

(
|𝑆 |Δ𝑘4

(
𝑛Δ

𝜁

) 1
1000𝜂

log3
(
𝑛Δ𝑞

𝜁

))
.
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The total running time of Sample is hence given by

𝑇Sample = 𝑇DFS +𝑇Rej =𝑂

(
|𝑆 |Δ2𝑘5

(
𝑛Δ

𝜁

) 1
1000𝜂

log3
(
𝑛Δ𝑞

𝜁

))
. □

5.3.2 Bound the probability of Brej(𝑡)

Proof of Property 3, Lemma 5.9. By the definition of 𝜂 in (5.1) and the condition in

Lemma 5.9, it holds that

𝑞 = 100(𝜂Δ) 2
𝑘−3 , 𝜂 ≥ 1, and 𝑞 ≥ 100.

Consider Line 6 in Algorithm 2. In the rejection sampling, the input is a hyperedge

𝐻 = (𝑉,E) with at most 4Δ𝑘3 log
(
𝑛Δ
𝜁

)
hyperedges. The size of the color list for each

vertex 𝑣 ∈ 𝑉 satisfies

|𝑄𝑣 | ≥
⌊𝑞
𝑠

⌋
=

⌊
𝑞

⌈𝑞⌉

⌋
(∗)
≥ 4

5
√
𝑞,

where inequality (∗) holds because 𝑞 ≥ 100.

Let D denote the product distribution that each 𝑣 ∈ 𝑉 samples a colour from 𝑄𝑣

uniformly at random. For each hyperedge 𝑒 ∈ E, let B𝑒 denote the bad event that 𝑒 is

monochromatic. Note that |𝑄𝑣 | ≤ 𝑞 for all 𝑣 ∈ 𝑉 . We have for any 𝑒 ∈ E,

PrD [B𝑒] ≤
𝑞

( 45
√
𝑞)𝑘−1

=

(
5
4

) 𝑘−1
𝑞

3−𝑘
2 =

(
5
4

) 𝑘−1
100

3−𝑘
2

1
𝜂Δ
≤ 1

10000e𝑘3𝜂Δ
,

where the last inequality holds because 𝑘 ≥ 20. For each 𝑒 ∈ E, define 𝑥(𝑒) = 1
10000𝜂Δ𝑘3 .

Note that 𝜂 ≥ 1. It is straightforward to verify that

PrD [B𝑒] ≤ 𝑥(𝑒)
∏

𝑒′:B𝑒′∈Γ(𝐵𝑒)
(1− 𝑥(𝑒′)) .

By Lovász local lemma in Theorem 2.4, it holds that

PrD

[∧
𝑒∈E
B(𝑒)

]
≥

(
1− 1

10000𝜂Δ𝑘3

)Δ𝑘3 log
(
𝑛Δ
𝜁

)
≥ exp

©«−
log

(
𝑛Δ
𝜁

)
5000𝜂

ª®®¬ ≥
(
𝜁

𝑛Δ

) 1
1000𝜂

.

The rejection sampling repeats for 𝑅 =

⌈
10

(
𝑛Δ
𝜁

) 1
1000𝜂 log 𝑛

𝜁

⌉
times. Hence, the proba-

bility that the rejection sampling fails on one connected component is at most(
1−

(
𝜁

𝑛Δ

) 1
1000𝜂

)𝑅
≤ exp

(
−10log

𝑛

𝜁

)
≤

(
𝜁

𝑛

)2
.

Since there are at most 𝑛 connected components, by a union bound, we have

Pr[Brej(𝑡)] ≤ 𝜁 . □
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5.4 Analysis of connected components

In this section, we prove Property 4 in Lemma 5.9. We assume that the input hyper-

graph 𝐻 is linear in this section. Fix 1 ≤ 𝑡 ≤ 𝑇 +1. Consider the 𝑡-th invocation of the

subroutine Sample. If 1 ≤ 𝑡 ≤ 𝑇 , we use 𝑣𝑡 to denote the vertex picked by the 𝑡-th step

of the systematic scan, i.e. 𝑣𝑡 is the vertex with label (𝑡 mod 𝑛). Recall that Y𝑡 ∈ [𝑠]𝑉

is the random configuration generated by Algorithm 1 after the 𝑡-th iteration of the

for-loop. Denote

Λ =


𝑉 \ {𝑣𝑡} if 1 ≤ 𝑡 ≤ 𝑇

𝑉 if 𝑡 = 𝑇 +1
𝑎𝑛𝑑 Y = Y𝑡−1(Λ), (5.6)

so that the input partial configuration to Sample is Y (see Algorithm 1). Hence, we

consider the subroutine Sample (𝐻, ℎ, 𝑆,Y, 𝜁), where Y ∈ [𝑠]Λ is a random configu-

ration.

Let 𝐻 = (𝑉,E) denote the input linear hypergraph. Since Y ∈ [𝑠]Λ is a random

configuration, 𝐻Y
is a random hypergraph, where 𝐻Y

is obtained by removing all the

hyperedges in 𝐻 satisfied by Y. Fix an arbitrary vertex 𝑣 ∈ 𝑉 . We use 𝐻Y
𝑣 = (𝑉Y

𝑣 ,EY
𝑣 )

to denote the connected component in 𝐻Y
that contains the vertex 𝑣. Note that EY

𝑣

can be an empty set. A hyperedge 𝑒 ∈ E is incident to 𝑣 in the hypergraph 𝐻 if 𝑣 ∈ 𝑒.

We prove the following lemma, which implies property 4.

Lemma 5.10. For any 𝛿 > 0, if 𝑘 ≥ 20(1+𝛿)
𝛿

, 𝑞 ≥ 100Δ
2+𝛿

𝑘−4/𝛿−3 , and 𝐻 is linear, then for

any 𝑣 ∈ 𝑉 , any 𝑒 incident to 𝑣 in 𝐻, it holds that

PrY

[
𝑒 ∈ EY

𝑣 ∧ |EY
𝑣 | ≥ 4Δ𝑘3 log

(
𝑛Δ

𝜁

)]
≤ 𝜁

𝑛Δ
.

We now show that property 4 is a corollary of Lemma 5.10. Since there are at

most Δ hyperedges incident to 𝑣, by a union bound, we have for all 𝑣 ∈ 𝑉 ,

PrY

[
|EY

𝑣 | ≥ 4Δ𝑘3 log
(
𝑛Δ

𝜁

)]
≤

∑︁
𝑒∋𝑣

PrY

[
𝑒 ∈ EY

𝑣 ∧ |EY
𝑣 | ≥ 4Δ𝑘3 log

(
𝑛Δ

𝜁

)]
≤ 𝜁

𝑛
.

By a union bound over all vertices 𝑣 ∈ 𝑉 , we have

PrY

[
∃𝑣 ∈ 𝑉 s.t. |EY

𝑣 | ≥ 4Δ𝑘3 log
(
𝑛Δ

𝜁

)]
≤ 𝜁 .

This implies the property 4 in Lemma 5.9. The rest of this section is dedicated to the

proof of Lemma 5.10.
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5.4.1 Proof of Lemma 5.10

Denote by 𝐿𝐻 = (𝑉𝐿 , 𝐸𝐿) = Lin(𝐻) the line graph of 𝐻 (recall Definition 2.2). Let 𝑒

be the hyperedge in Lemma 5.10 and let 𝑢 = 𝑢𝑒 be the vertex in 𝐿𝐻 corresponding to

𝑒. Let 𝐿Y
𝐻
= (𝑉Y

𝐿
, 𝐸Y

𝐿
) denote the line graph of 𝐻Y

. Note that 𝐿Y
𝐻

is random, and the

randomness of 𝐿Y
𝐻

is determined by the randomness of Y. Equivalently, the graph

𝐿Y
𝐻

can be generated as follows:

• remove all vertices 𝑤 ∈ 𝑉𝐿 such that the corresponding hyperedges in 𝐻 are

satisfied by Y; let 𝑉Y
𝐿
⊆ 𝑉𝐿 denote the set of remaining vertices;

• let 𝐿Y
𝐻
= 𝐿𝐻 [𝑉Y

𝐿
] be the subgraph of 𝐿𝐻 induced by 𝑉Y

𝐿
.

Let C ⊆ 𝑉𝐿 denote the random set of all vertices in the connected component of

𝐿Y
𝐻

that contains the vertex 𝑢. If 𝑢 ∉ 𝑉Y
𝐿

, let C = ∅. Define an integer parameter

𝜃 :=
⌈4
𝛿

⌉
. To prove Lemma 5.10, it suffices to show that

∀𝑀 > 𝜃, PrY [|C| ≥ 𝑀] ≤
(
1
2

) 𝑀

2𝜃𝑘2Δ
−1

. (5.7)

This is because 𝑘 ≥ 20(𝛿+1)
𝛿

>
⌈4
𝛿

⌉
+ 1 = 𝜃 + 1, and setting 𝑀 = 4Δ𝑘3 log

(
𝑛Δ
𝜁

)
proves

Lemma 5.10.

Define the following collection of subsets

Con𝑢 (𝑀) := {𝐶 ⊆ 𝑉𝐿 | 𝑢 ∈ 𝐶 ∧ |𝐶 | = 𝑀 ∧ 𝐿𝐻 [𝐶] is connected} .

It is straightforward to verify that

PrY [|C| ≥ 𝑀] ≤ PrY
[
∃𝐶 ∈ Con𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
.

In our proof, we partition the set Con𝑢 (𝑀) into two disjoint subsets

Con𝑢 (𝑀) = Con(1)𝑢 (𝑀) ⊎Con(2)𝑢 (𝑀),

and we bound the probability separately

PrY [|C| ≥ 𝑀] ≤ PrY

[
∃𝐶 ∈ Con(1)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
+PrY

[
∃𝐶 ∈ Con(2)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
.

(5.8)

We use Algorithm 4 to partition the set Con𝑢 (𝑀). Taking as an input any 𝐶 ∈
Con𝑢 (𝑀), Algorithm 4 outputs an integer ℓ = ℓ(𝐶) and disjoint sets𝐶1,𝐶2, . . . ,𝐶ℓ ⊆𝐶.

Let

∀𝐶 ∈ Con𝑢 (𝑀), 𝐶 ∈


Con(1)𝑢 (𝑀) if ℓ(𝐶) ≥ 𝑀

2𝜃𝑘2Δ
;

Con(2)𝑢 (𝑀) if ℓ(𝐶) < 𝑀

2𝜃𝑘2Δ
.

(5.9)
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We remark that Algorithm 4 is only used for analysis, and we do not need to imple-

ment this algorithm.

Algorithm 4: 2-block-tree generator
Input: the parameter 𝛿 ∈ (0,1) in Lemma 5.10, the line graph 𝐿𝐻 , an integer

𝑀 > 𝜃, a vertex 𝑢 in 𝐿𝐻 , and a subset 𝐶 ∈ Con𝑢 (𝑀)
Output: an integer ℓ and connected subgraphs 𝐶1, · · · ,𝐶ℓ ⊆ 𝐶

1 let 𝐺 = 𝐿𝐻 [𝐶] = (𝐶,𝐸𝐶) be the subgraph of 𝐿𝐻 induced by 𝐶;

2 𝜃←
⌈4
𝛿

⌉
, ℓ← 0, 𝑉 ← 𝐶;

3 while |𝑉 | ≥ 𝜃 do
4 ℓ← ℓ +1;

5 if ℓ = 1 then 𝑢ℓ← 𝑢;

6 if ℓ > 1 then let 𝑢ℓ be an arbitrary vertex in Γ𝐺 (𝐶 \𝑉);
7 let 𝐶ℓ ⊆ 𝑉 be an arbitrary connected subgraph in 𝐺 such that |𝐶ℓ | = 𝜃

and 𝑢ℓ ∈ 𝐶ℓ;

8 𝑉 ←𝑉 \ (𝐶ℓ ∪Γ𝐺 (𝐶ℓ));
9 for each connected component 𝐺′ = (𝑉 ′, 𝐸′) in 𝐺 [𝑉] such that |𝑉 ′| < 𝜃 do
10 𝑉 ←𝑉 \𝑉 ′;

11 return ℓ, {𝐶1,𝐶2, . . . ,𝐶ℓ};

In Line 6 and Line 7 of Algorithm 4, we may use a specific rule to choose the ver-

tex 𝑢ℓ and the connected subgraph 𝐶ℓ (e.g. pick the element with the smallest index

according to an arbitrary but predetermined ordering). To explain this algorithm con-

cretely, consider the first round of the while-loop running on the graph in Figure 5.1,

with the parameter 𝜃 set to 3.

𝑢

· · · · · ·

· · · · · ·

· · ·· · ·

· · ·
· · ·

𝐶1

Figure 5.1: The example graph where Algorithm 4 runs on.

In Line 7, the algorithm picks the connected subgraph 𝐶1 containing 𝑢, repre-

sented by black circles. Then in Line 8, the algorithm removes 𝐶1, together with its

neighbours, depicted by circles in dark grey, from the vertex set 𝑉 . Afterwards, the
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Figure 5.2: An example 2-block-tree with block size 𝜃 = 3 and tree size ℓ = 3. Each 𝐶𝑖

is indicated by a group of vertices of the same colour.

algorithm checks all remaining connected components, and removes those with size

less than 𝜃 = 3 from 𝑉 in Line 10. In this example, the algorithm captures and deletes

the component in the dotted box. Be aware that their neighbours (dark grey circles)

have already been removed from 𝑉 . As the algorithm goes into the second round of

the while-loop, the next candidate starting point 𝑢2 is selected, as of in Line 6, among

the vertices depicted by white circles.

To formalize the properties of Algorithm 4, we begin with the following proposi-

tion, which asserts that Algorithm 4 is well defined. The proof is given in Section 5.4.2.

Proposition 5.11. Given the input 𝛿, 𝐿𝐻 , 𝑀 , 𝑢, and 𝐶 ∈ Con𝑢 (𝑀), Algorithm 4 ter-

minates and generates a unique output. Moreover, when Algorithm 4 terminates, 𝑉 =∅.

The next proposition, yet of more importance, establishes a few properties of the

output of Algorithm 4. They will eventually be used to bound the probabilities on the

right hand side (RHS) of (5.8). Before characterising these properties, we introduce a

notion called “2-block-tree”. (See Figure 5.2)

Definition 5.12 (2-block-tree). Let 𝜃 ≥ 1 be an integer. Let 𝐺 = (𝑉,𝐸) be a graph. A

set {𝐶1,𝐶2, . . . ,𝐶ℓ} is a 2-block-tree with block size 𝜃 and tree size ℓ in 𝐺 if

(B1) for any 1 ≤ 𝑖 ≤ ℓ, 𝐶𝑖 ⊆ 𝑉 , |𝐶𝑖 | = 𝜃 and the induced subgraph 𝐺 [𝐶𝑖] is connected;

(B2) for any distinct 1 ≤ 𝑖, 𝑗 ≤ ℓ, dist𝐺 (𝐶𝑖,𝐶 𝑗 ) ≥ 2;

(B3) {𝐶1, · · · ,𝐶ℓ} is connected on 𝐺2
. (Recall Definition 2.1 of graph powers.)

One can easily observe that the notion of 2-block-trees is a generalisation of 2-

trees in [Alo91] by setting 𝜃 = 1. The output of Algorithm 4 is a 2-block-tree in 𝐿𝐻 .

This explains the name “2-block-tree generator”.
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Proposition 5.13. The output {𝐶1,𝐶2, . . . ,𝐶ℓ} of Algorithm 4 satisfies that

1. {𝐶1,𝐶2, . . . ,𝐶ℓ} is a 2-block-tree in 𝐿𝐻 with block size 𝜃 satisfying 𝑢 ∈ 𝐶1 and

∪ℓ
𝑖=1𝐶𝑖 ⊆ 𝐶;

2. if all vertices in Γ𝐺 (𝐶𝑖) are removed from 𝐺 , where 𝐺 = 𝐿𝐻 [𝐶], then the resulting

graph 𝐺 [𝐶′] is a collection of connected components whose sizes are at most 𝜃,

where 𝐶′ = 𝐶 \ (∪ℓ
𝑖=1Γ𝐺 (𝐶𝑖)).

In Proposition 5.13, Item 1 is stated with respect to the line graph 𝐿𝐻 , but Item 2

is stated with respect to the induced subgraph 𝐿𝐻 [𝐶]. The proof of Proposition 5.13

is also given in Section 5.4.2.

Finally, to bound the probabilities on the RHS of (5.8), we need the following

lemma about the random configuration Y ∈ [𝑠]Λ. The proof of Lemma 5.14 is given

in Section 5.4.3.

Lemma 5.14. If ⌊𝑞/𝑠⌋𝑘 ≥ 2e𝑞𝑘Δ, then for any 𝑅 ⊆ Λ, any 𝜎 ∈ [𝑠]𝑅, it holds that

Pr[Y𝑅 = 𝜎] ≤
(
1
𝑠
+ 1
𝑞

) |𝑅 |
exp

(
|𝑅 |
𝑘

)
.

The following result is a straightforward corollary of Lemma 5.14.

Corollary 5.15. Let 𝛿 > 0 and 𝑅1, 𝑅2, . . . , 𝑅ℓ ⊆ Λ be disjoint subsets. For each 1 ≤ 𝑖 ≤ ℓ,

let S𝑖 ⊆ [𝑠]𝑅𝑖
be a subset of configurations (namely an event). If 𝑘 ≥ 20(𝛿+1)

𝛿
and 𝑞 ≥

100Δ
2+𝛿

𝑘−4/𝛿−3 , then it holds that

Pr

[
ℓ∧
𝑖=1

(
Y𝑅𝑖
∈ S𝑖

) ]
≤

ℓ∏
𝑖=1
|S𝑖 |

(
1
𝑠
+ 1
𝑞

) |𝑅𝑖 |
exp

(
|𝑅𝑖 |
𝑘

)
.

Proof. Let 𝑅 = 𝑅1⊎ 𝑅2⊎ . . .⊎ 𝑅ℓ. Note that

∧ℓ
𝑖=1

(
Y𝑅𝑖
∈ S𝑖

)
if and only if Y𝑅 ∈ S1 ⊗

S2 ⊗ . . .⊗Sℓ, where

S1 ⊗S2 ⊗ . . .⊗Sℓ :=
{
𝜎 ∈ [𝑠]𝑅 | ∀1 ≤ 𝑖 ≤ ℓ,𝜎𝑅𝑖

∈ S𝑖
}
.

We now verify the condition in Lemma 5.14 that ⌊𝑞/𝑠⌋𝑘 ≥ 2e𝑞𝑘Δ. Since 𝑠 =
⌈√

𝑞
⌉

and

𝑞 ≥ 100, ⌊𝑞/𝑠⌋ ≥ √𝑞/4. Thus it suffices to verify (√𝑞/4)𝑘 ≥ 2e𝑞𝑘Δ. The condition in

Corollary 5.15 implies that 𝑞 ≥ 100Δ 2
𝑘−2 and 𝑘 ≥ 20, which implies (√𝑞/4)𝑘 ≥ 2e𝑞𝑘Δ.

Hence, the condition in Lemma 5.14 holds. We have

Pr

[
ℓ∧
𝑖=1

(
Y𝑅𝑖
∈ S𝑖

) ]
=

∑︁
𝜎∈S1⊎S2⊎...⊎Sℓ

Pr [Y𝑅 = 𝜎] ≤
ℓ∏
𝑖=1
|S𝑖 |

(
1
𝑠
+ 1
𝑞

) |𝑅𝑖 |
exp

(
|𝑅𝑖 |
𝑘

)
. □
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Now, we are ready to bound the probabilities on the RHS of (5.8). We handle the

two terms separately:

PrY

[
∃𝐶 ∈ Con(1)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
<

(
1
2

) 𝑀

2𝜃𝑘2Δ
; (5.10)

PrY

[
∃𝐶 ∈ Con(2)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
<

(
1
2

)𝑀
. (5.11)

Combining (5.8) with (5.10) and (5.11), we have

PrY [|C| ≥ 𝑀] ≤ PrY

[
∃𝐶 ∈ Con(1)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
+PrY

[
∃𝐶 ∈ Con(2)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
≤

(
1
2

) 𝑀

2𝜃𝑘2Δ
+

(
1
2

)𝑀
≤

(
1
2

) 𝑀

2𝜃𝑘2Δ
−1

.

This proves the desired inequality (5.7).

In the next two subsections, we give proofs of (5.10) and (5.11).

5.4.1.1 Proof of inequality (5.10)

We first prove (5.10). We need to use the following two properties of 2-block-trees,

the proofs of which are deferred till Section 5.4.4.

Lemma 5.16. Let 𝜃 ≥ 1 be an integer. Let 𝐺 = (𝑉,𝐸) be a graph. For any integer ℓ ≥ 2,

any vertex 𝑣 ∈𝑉 , if 𝐺 has a 2-block-tree {𝐶1,𝐶2, . . . ,𝐶ℓ} with block size 𝜃 and tree size ℓ

such that 𝑣 ∈ ∪ℓ
𝑖=1𝐶𝑖 , then there exists an index 1 ≤ 𝑖 ≤ ℓ such that {𝐶1,𝐶2, . . . ,𝐶ℓ}\{𝐶𝑖}

is a 2-block-tree in 𝐺 with block size 𝜃 and tree size ℓ−1 and 𝑣 ∈ ∪1≤ 𝑗≤ℓ: 𝑗≠𝑖𝐶 𝑗 .

Lemma 5.17. Let 𝜃 ≥ 1 be an integer. Let 𝐺 = (𝑉,𝐸) be a graph with maximum degree

𝑑. For any integer ℓ ≥ 1, any vertex 𝑣 ∈ 𝑉 , the number of 2-block-trees {𝐶1,𝐶2, . . . ,𝐶ℓ}
with block size 𝜃 and tree size ℓ such that 𝑣 ∈ ∪ℓ

𝑖=1𝐶𝑖 is at most (𝜃e𝜃𝑑𝜃+1)ℓ .

In the rest of this subsection we fix ℓ =

⌈
𝑀

2𝜃𝑘2Δ

⌉
. By (5.9), Proposition 5.13, and

Lemma 5.16, for any 𝐶 ∈ Con(1)𝑢 (𝑀), there is a 2-block-tree tree {𝐶1,𝐶2, . . . ,𝐶ℓ} in

the line graph 𝐿𝐻 with block size 𝜃 and tree size ℓ satisfying:

(P1) 𝑢 ∈ 𝐶1∪𝐶2∪ . . .∪𝐶ℓ;

(P2) 𝐶1∪𝐶2∪ . . .∪𝐶ℓ ⊆ 𝐶.
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We denote a 2-block-tree tree with block size 𝜃 and tree size ℓ by (𝜃, ℓ)-2-block-tree.

This implies that

PrY

[
∃𝐶 ∈ Con(1)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
≤ PrY

[
∃ (𝜃, ℓ)-2-block-tree {𝐶1,𝐶2, . . . ,𝐶ℓ} in 𝐿𝐻 satisfying (P1) s.t. ∀1 ≤ 𝑖 ≤ ℓ,𝐶𝑖 ⊆ 𝑉Y

𝐿

]
.

(5.12)

Note that we only need to consider (𝜃, ℓ)-2-block trees satisfying (P1), because (P2)

implies the event that ∀1 ≤ 𝑖 ≤ ℓ, 𝐶𝑖 ⊆ 𝑉Y
𝐿

.

To bound the probability, we fix a (𝜃, ℓ)-2-block tree {𝐶1,𝐶2, . . . ,𝐶ℓ} in 𝐿𝐻 satis-

fying (P1). Fix an index 1 ≤ 𝑗 ≤ ℓ. By Definition 5.12,

��𝐶 𝑗

�� = 𝜃. Note that each vertex

in 𝐶 𝑗 represents a hyperedge in the input hypergraph 𝐻 = (𝑉,E). Let the hyperedges

in 𝐶 𝑗 be 𝑒
𝑗

1, 𝑒
𝑗

2, . . . , 𝑒
𝑗

𝜃
. For each 1 ≤ 𝑡 ≤ 𝜃, we define a subset of vertices 𝑅

𝑗
𝑡 ⊆ Λ (in 𝐻)

by

𝑆
𝑗
𝑡 := 𝑒

𝑗
𝑡 \

©«
⋃

𝑖∈[𝜃]:𝑖≠𝑡
𝑒
𝑗

𝑖

ª®¬ and 𝑅
𝑗
𝑡 := 𝑆

𝑗
𝑡 ∩Λ,

where Λ is defined in (5.6). By definition, 𝑅
𝑗
𝑡 ⊆ 𝑒

𝑗
𝑡 is a subset of vertices of the input

hypergraph 𝐻 = (𝑉,E), and 𝑅
𝑗
𝑡 ∩ 𝑒

𝑗

𝑖
= ∅ for any 𝑖 ≠ 𝑡. This implies that 𝑅

𝑗

1, 𝑅
𝑗

2, . . . , 𝑅
𝑗

𝜃

are mutually disjoint. Furthermore, since 𝐻 is linear and |Λ| ≥ |𝑉 | −1, we have

∀1 ≤ 𝑡 ≤ 𝜃 :
���𝑅 𝑗

𝑡

��� ≥ 𝑘 − (𝜃 −1) −1 = 𝑘 − 𝜃. (5.13)

The above inequality holds because (1) |𝑒 𝑗𝑡 | = 𝑘 ; (2) for each 𝑒
𝑗

𝑖
with 𝑖 ≠ 𝑡, the intersec-

tion between 𝑒
𝑗
𝑡 and 𝑒

𝑗

𝑖
is at most one vertex; and (3) |Λ| ≥ |𝑉 | −1. By Definition 5.12

of 2-block-trees, for 𝑖 ≠ 𝑗 , dist𝐿𝐻
(𝐶𝑖,𝐶 𝑗 ) ≥ 2. Let 𝑒 ∈ E be a hyperedge in𝐶𝑖 and 𝑒′ ∈ E

be a hyperedge in 𝐶 𝑗 , this implies that 𝑒 and 𝑒′ are not adjacent in the line graph 𝐿𝐻 ,

and thus 𝑒∩ 𝑒′ = ∅. Hence,

(𝑅 𝑗
𝑡 )1≤ 𝑗≤ℓ,1≤𝑡≤𝜃 are mutually disjoint. (5.14)

We now bound the probability of𝐶 𝑗 ⊆𝑉Y
𝐿

for all 1 ≤ 𝑗 ≤ ℓ. For all 1 ≤ 𝑗 ≤ ℓ and 1 ≤
𝑡 ≤ 𝜃, since 𝐶 𝑗 ⊆ 𝑉Y

𝐿
, the hyperedge 𝑒

𝑗
𝑡 is not satisfied by Y, thus 𝑒

𝑗
𝑡 is monochromatic

with respect to Y, i.e. for all 𝑣, 𝑣′ ∈ 𝑒 𝑗𝑡 , it holds that 𝑌𝑣 = 𝑌𝑣′ . Note that 𝑅
𝑗
𝑡 ⊆ 𝑒

𝑗
𝑡 . We

have the following bound

PrY
[
∀1 ≤ 𝑗 ≤ ℓ,𝐶 𝑗 ⊆ 𝑉Y

𝐿

]
≤ PrY

[
∀1 ≤ 𝑗 ≤ ℓ,1 ≤ 𝑡 ≤ 𝜃, 𝑅

𝑗
𝑡 is monochromatic w.r.t. Y

]
.

(5.15)



5.4. Analysis of connected components 87

Let S 𝑗
𝑡 be the set of all 𝑠 monochromatic configurations of 𝑅

𝑗
𝑡 (i.e. all vertices in 𝑅

𝑗
𝑡

take the same value 𝑐, where 𝑐 ∈ [𝑠]), or more formally,

S 𝑗
𝑡 = {𝜎 ∈ {𝑐}𝑅

𝑗
𝑡 | 𝑐 ∈ [𝑠]}.

In particular,

���S 𝑗
𝑡

��� = 𝑠. By Corollary 5.15, (5.13), (5.14), and (5.15), it holds that

PrY
[
∀1 ≤ 𝑖 ≤ ℓ,𝐶𝑖 ⊆ 𝑉Y

𝐿

]
≤ PrY


ℓ∧
𝑗=1

𝜃∧
𝑡=1

(
𝑌
𝑅

𝑗
𝑡
∈ S 𝑗

𝑡

) ≤
ℓ∏
𝑖=1

𝜃∏
𝑡=1

𝑠

(
1
𝑠
+ 1
𝑞

) ���𝑅 𝑗
𝑡

���
exp

(
|𝑅 𝑗

𝑡 |
𝑘

)

≤ 𝑠ℓ𝜃
ℓ∏
𝑖=1

𝜃∏
𝑡=1

(
1
𝑠
+ 1
𝑞

) ���𝑅 𝑗
𝑡

���
exp

(
|𝑅 𝑗

𝑡 |
𝑘

)
(
as 𝑘 − 𝜃 ≤ |𝑅 𝑗

𝑡 | ≤ 𝑘

)
≤ (e𝑠)ℓ𝜃

(
1
𝑠
+ 1
𝑞

)ℓ𝜃 (𝑘−𝜃)
=

(
(e𝑠)𝜃

(
1
𝑠
+ 1
𝑞

)𝜃 (𝑘−𝜃))ℓ
.

Note that the maximum degree of 𝐿𝐻 is no more than 𝑘Δ. By Lemma 5.17 and a

union bound over all possible 2-block-trees, we have

PrY
[
∃ (𝜃, ℓ)-2-block-tree {𝐶1,𝐶2, . . . ,𝐶ℓ}in 𝐿𝐻 satisfying (P1) s.t. ∀1 ≤ 𝑖 ≤ ℓ,𝐶𝑖 ⊆ 𝑉Y

𝐿

]
≤

(
𝜃e2𝜃 (𝑘Δ)𝜃+1𝑠𝜃

(
1
𝑠
+ 1
𝑞

)𝜃 (𝑘−𝜃))ℓ
≤

(
𝜃e2𝜃2𝜃 (𝑘−𝜃) (𝑘Δ)𝜃+1𝑠𝜃−𝜃 (𝑘−𝜃)

)ℓ
, (5.16)

where the last inequality uses the fact that
1
𝑠
+ 1

𝑞
≤ 2

𝑠
. We will show that

𝜃e2𝜃2𝜃 (𝑘−𝜃) (𝑘Δ)𝜃+1𝑠𝜃−𝜃 (𝑘−𝜃) ≤ 1
2
. (5.17)

Recall that 𝑘 > 𝜃 +1, and consequently 𝜃 (𝑘 − 𝜃) − 𝜃 > 0. It implies that

𝜃e2𝜃2𝜃 (𝑘−𝜃) (𝑘Δ)𝜃+1𝑠𝜃−𝜃 (𝑘−𝜃) ≤ 1
2
⇐⇒ 𝑠 ≥ 𝜃

1
𝜃 (𝑘−𝜃 )−𝜃 e

2𝜃
𝜃 (𝑘−𝜃 )−𝜃 2

𝜃 (𝑘−𝜃 )+1
𝜃 (𝑘−𝜃 )−𝜃 (𝑘Δ)

𝜃+1
𝜃 (𝑘−𝜃 )−𝜃 .

Recall that 𝑠 =
⌈√

𝑞
⌉
≥ 𝑞1/2

. It suffices to show that

𝑞 ≥ 𝜃
2

𝜃 (𝑘−𝜃 )−𝜃 e
4𝜃

𝜃 (𝑘−𝜃 )−𝜃 2
2𝜃 (𝑘−𝜃 )+2
𝜃 (𝑘−𝜃 )−𝜃 (𝑘Δ)

2𝜃+2
𝜃 (𝑘−𝜃 )−𝜃 = 𝜃

2
𝜃 (𝑘−𝜃 )−𝜃 e

4
𝑘−𝜃−1 2

2(𝑘−𝜃 )+2/𝜃
𝑘−𝜃−1 (𝑘Δ)

2+2/𝜃
𝑘−𝜃−1 .

Recall that 𝜃 =
⌈4
𝛿

⌉
. If 𝛿 ≥ 4, then 𝜃 = 1. In this case, we only need to show that

𝑞 ≥ e
4

𝑘−2 2
2𝑘
𝑘−2 𝑘

4
𝑘−2Δ

2+𝛿/2
𝑘−2 .

Otherwise 0 < 𝛿 < 4, in which case we only need to show that

𝑞 > 2e
4

𝑘−4/𝛿−2 2
2𝑘−8/𝛿+𝛿/2
𝑘−4/𝛿−2 (𝑘Δ)

2+𝛿/2
𝑘−4/𝛿−2 ,

as 𝜃
2

𝜃 (𝑘−𝜃 )−𝜃 < 2 and 4/𝛿 ≤ 𝜃 < 4/𝛿+1. The conditions 𝑘 ≥ 20(𝛿+1)
𝛿

and 𝑞 ≥ 100Δ
2+𝛿

𝑘−4/𝛿−3

imply both conditions above. This finishes the proof of (5.17). Finally, (5.10) follows

from combining (5.12), (5.16), and (5.17).
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5.4.1.2 Proof of inequality (5.11)

We continue to show (5.11). Fix a connected component 𝐶 ∈ Con(2)𝑢 (𝑀). We anal-

yse the probability of 𝐶 ⊆ 𝑉Y
𝐿

. We run Algorithm 4 with the input 𝐶. The algorithm

outputs an integer ℓ < 𝑀

2𝜃𝑘2Δ
and a set of connected components 𝐶1,𝐶2, . . . ,𝐶ℓ. Let

𝐺 = 𝐿𝐻 [𝐶] be the subgraph of 𝐿𝐻 induced by 𝐶. By Proposition 5.13, after removing

all vertices of Γ𝐺 (𝐶𝑖) for all 1 ≤ 𝑖 ≤ ℓ, the graph 𝐺 is decomposed into connected com-

ponents with vertex sets 𝐷1, 𝐷2, . . . , 𝐷𝑚 ⊆𝐶 such that |𝐷𝑖 | ≤ 𝜃 for all 1 ≤ 𝑗 ≤ 𝑚. Note

that given 𝐶 ∈ Con(2)𝑢 (𝑀), all the sets 𝐷1, 𝐷2, . . . , 𝐷𝑚 ⊆ 𝐶 are uniquely determined

by Algorithm 4. We have

PrY [𝐶 ⊆ 𝑉Y
𝐿 ] ≤ PrY


𝑚∧
𝑗=1

(
𝐷 𝑗 ⊆ 𝑉Y

𝐿

) .
We then use an analysis similar to the last subsection but focused on the 𝐷 𝑗 ’s. For

each 1 ≤ 𝑗 ≤ 𝑚, each vertex in 𝐷 𝑗 represents a hyperedge in the input hypergraph

𝐻 = (𝑉,E). Let 𝑑 ( 𝑗) =
��𝐷 𝑗

��
. Let 𝑒

𝑗

1, 𝑒
𝑗

2, . . . , 𝑒
𝑗

𝑑 ( 𝑗) denote the hyperedges in 𝐷 𝑗 . For

each 1 ≤ 𝑡 ≤ 𝑑 ( 𝑗), we define

𝑆
𝑗
𝑡 := 𝑒

𝑗
𝑡 \

©«
⋃

𝑖∈[𝑑 ( 𝑗)]:𝑖≠𝑡
𝑒
𝑗

𝑖

ª®¬ and 𝑅
𝑗
𝑡 := 𝑆

𝑗
𝑡 ∩Λ.

Since 𝐻 is linear,

��𝐷 𝑗

�� ≤ 𝜃, and |Λ| ≥ |𝑉 | −1, it holds that

∀1 ≤ 𝑡 ≤ 𝑑 ( 𝑗) :
���𝑅 𝑗

𝑡

��� ≥ 𝑘 − (𝜃 −1) −1 = 𝑘 − 𝜃. (5.18)

Next, note that 𝐷1, 𝐷2, . . . , 𝐷𝑚 ⊆ 𝐶 is a set of disjoint connected components in the

induced subgraph 𝐺 [𝐷], where 𝐷 =𝐶 \ (∪ℓ
𝑖=1Γ𝐺 (𝐶𝑖)) = ∪𝑚𝑖=1𝐷𝑖 . For any two distinct

1 ≤ 𝑖, 𝑗 ≤ 𝑚, dist𝐺 (𝐷𝑖, 𝐷 𝑗 ) ≥ 2, as otherwise 𝐷𝑖 and 𝐷 𝑗 must have been merged into

one component. As 𝐺 = 𝐿𝐻 [𝐶] is a subgraph of 𝐿𝐻 induced by𝐶, for any two distinct

1 ≤ 𝑖, 𝑗 ≤ 𝑚, dist𝐿𝐻
(𝐷𝑖, 𝐷 𝑗 ) ≥ 2. Hence, for any hyperedge 𝑒 ∈ E in 𝐷𝑖 , any hyperedge

𝑒′ ∈ E in 𝐷 𝑗 , it holds that 𝑒∩ 𝑒′ = ∅. It implies that

(𝑅 𝑗
𝑡 )1≤ 𝑗≤𝑚,1≤𝑡≤𝑑 ( 𝑗) are mutually disjoint. (5.19)

Again, let S 𝑗
𝑡 denote the set of all 𝑠 monochromatic configurations of 𝑅

𝑗
𝑡 (i.e. all

vertices in 𝑅
𝑗
𝑡 taking the same value 𝑐, where 𝑐 ∈ [𝑠]). By Corollary 5.15 and (5.19),
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it holds that

PrY [𝐶 ⊆ 𝑉Y
𝐿 ] ≤ PrY


𝑚∧
𝑗=1

(
𝐷 𝑗 ⊆ 𝑉Y

𝐿

) ≤ PrY


𝑚∧
𝑗=1

𝑑 ( 𝑗)∧
𝑡=1

(
𝑅

𝑗
𝑡 ⊆ 𝑉Y

𝐿

) = PrY


𝑚∧
𝑗=1

𝑑 ( 𝑗)∧
𝑡=1

(
𝑌
𝑅

𝑗
𝑡
∈ S 𝑗

𝑡

)
≤

𝑚∏
𝑗=1

𝑑 ( 𝑗)∏
𝑡=1

(
𝑠

(
1
𝑠
+ 1
𝑞

) |𝑅 𝑗
𝑡 |

exp

(
|𝑅 𝑗

𝑡 |
𝑘

))
≤

𝑚∏
𝑗=1

𝑑 ( 𝑗)∏
𝑡=1

(
e𝑠

(
1
𝑠
+ 1
𝑞

) |𝑅 𝑗
𝑡 |
)
,

where the last equation holds because |𝑅 𝑗
𝑡 | ≤ 𝑘 . Define

𝑅 :=
𝑚⋃
𝑗=1

𝑑 ( 𝑗)⋃
𝑡=1

𝑅
𝑗
𝑡

as the (disjoint) union of all 𝑅
𝑗
𝑡 . By the lower bound in (5.18), we have

|𝑅 | ≥
𝑚∑︁
𝑗=1

𝑑 ( 𝑗)∑︁
𝑡=1
(𝑘 − 𝜃) = (𝑘 − 𝜃)

𝑚∑︁
𝑗=1

𝑑 ( 𝑗) = (𝑘 − 𝜃)
(
𝑀 −

����� ℓ⋃
𝑖=1

Γ𝐺 (𝐶𝑖)
�����
)
,

where the last equation holds because {𝐷𝑖}1≤𝑖≤𝑚 is a partition of 𝐶 \ (∪ℓ
𝑖=1Γ𝐺 (𝐶𝑖))

and |𝐶 | = 𝑀 . Note that for any 1 ≤ 𝑖 ≤ ℓ, |𝐶𝑖 | = 𝜃 and the maximum degree of the line

graph 𝐿𝐻 is at most 𝑘Δ. We have

|𝑅 | ≥ (𝑘 − 𝜃) (𝑀 − ℓ𝜃𝑘Δ) .

This implies

PrY [𝐶 ⊆ 𝑉Y
𝐿 ] ≤

𝑚∏
𝑗=1

𝑑 ( 𝑗)∏
𝑡=1

(
e𝑠

(
1
𝑠
+ 1
𝑞

) |𝑅 𝑗
𝑡 |
)
= (e𝑠)

∑𝑚
𝑖=1 𝑑 ( 𝑗)

(
1
𝑠
+ 1
𝑞

) |𝑅 |
≤ (e𝑠)𝑀

(
1
𝑠
+ 1
𝑞

) (𝑘−𝜃) (𝑀−ℓ𝜃𝑘Δ)
,

where we use the fact

∑𝑚
𝑖=1 𝑑 ( 𝑗) ≤ 𝑀 in the last inequality. Since 𝐶 ∈ Con(2)𝑢 (𝑀), it

holds that ℓ < 𝑀

2𝜃𝑘2Δ
. Combining with the fact that

1
𝑠
+ 1

𝑞
≤ 2

𝑠
, we have

PrY [𝐶 ⊆ 𝑉Y
𝐿 ] ≤ (e𝑠)𝑀

(
2
𝑠

) (𝑘−𝜃)(𝑀−𝑀
2𝑘 )
≤ (e𝑠)𝑀

(
2
𝑠

) (𝑘−𝜃)𝑀 ( 𝑠
2

) 𝑀
2
.

In order to give a rough bound on the number of connected subgraphs containing

𝑢, we will use the following well-known result by Borgs, Chayes, Kahn, and Lovász

[BCKL13].

Lemma 5.18 ([BCKL13, Lemma 2.1]). Let𝐺 = (𝑉,𝐸) be a graph with maximum degree

𝑑 and 𝑣 ∈ 𝑉 be a vertex. Then the number of connected induced subgraphs of size ℓ

containing 𝑣 is at most (𝑒𝑑)ℓ−1/2.
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The maximum degree of 𝐿𝐻 is at most 𝑘Δ. By Lemma 5.18, the number of con-

nected subgraphs of size 𝑀 containing 𝑢 in 𝐿𝐻 is at most (eΔ𝑘)𝑀−1/2. Hence

���Con(2)𝑢 (𝑀)
���<

(eΔ𝑘)𝑀 . By a union bound over all 𝐶 ∈ Con(2)𝑢 (𝑀), we have

PrY

[
∃𝐶 ∈ Con(2)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
≤ (eΔ𝑘)𝑀 (e𝑠)𝑀

(
2
𝑠

) (𝑘−𝜃)𝑀 ( 𝑠
2

) 𝑀
2
=

(
e2𝑠Δ𝑘

(
2
𝑠

) (𝑘−𝜃))𝑀 ( 𝑠
2

) 𝑀
2
.

We claim that

e2𝑠Δ𝑘

(
2
𝑠

) (𝑘−𝜃)
≤ 1

𝑠
.

Since 𝑠 =
⌈√

𝑞
⌉
, it suffices to show that

𝑞 ≥ e
4

𝑘−𝜃−2 2
2(𝑘−𝜃 )
𝑘−𝜃−2 𝑘

2
𝑘−𝜃−2Δ

2
𝑘−𝜃−2 ,

which is, in turn, implied by 𝜃 =
⌈4
𝛿

⌉
, 𝑘 ≥ 20(𝛿+1)

𝛿
and 𝑞 ≥ 100Δ

2+𝛿
𝑘−4/𝛿−3 . Hence, we have

PrY

[
∃𝐶 ∈ Con(2)𝑢 (𝑀) s.t. 𝐶 ⊆ 𝑉Y

𝐿

]
≤

(
1
𝑠

)𝑀 ( 𝑠
2

) 𝑀
2 ≤

(
1
2

)𝑀
,

where the last inequality holds because 𝑠 ≥ √𝑞 ≥ 10.

5.4.2 Properties of the 2-block-tree generator

We begin with validating Algorithm 4, namely proving Proposition 5.11.

Proof of Proposition 5.11. We claim that the algorithm always succeeds in Line 6 and

Line 7, which implies that the size of 𝑉 strictly decreases in every step and the algo-

rithm halts eventually. Moreover, if |𝑉 | < 𝜃, then all vertices in 𝑉 will be removed in

Line 9 and Line 10. Also, so long as 𝑢ℓ and𝐶ℓ are selected according to some (arbitrary

but) deterministic rule, the output is deterministic.

For the claim, first notice that 𝑉 ⊆ 𝐶 throughout the algorithm. For Line 6, since

𝐺 = 𝐿𝐻 [𝐶] is connected and 𝑉 ≠ ∅, Γ𝐺 (𝐶 \𝑉) ≠ ∅ and thus 𝑢ℓ exists. For Line 7,

𝐶ℓ exists as long as the connected component containing 𝑢ℓ in 𝐺 [𝑉] has size at least

𝜃. In the first iteration of the while-loop, this holds true as |𝑉 | = |𝐶 | = 𝑀 > 𝜃 and

𝐺 [𝑉] = 𝐺 is connected. In all iterations thereafter, the size of the component cannot

be smaller than 𝜃, as otherwise it would have been removed in the previous iteration

at Line 9 and Line 10. □
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We then prove Proposition 5.13. The following observation will be useful.

Proposition 5.19. Let ℓ > 1 and 𝑢ℓ be the vertex selected in Line 6. Then there exists

some 1 ≤ 𝑗 < ℓ such that dist𝐺 (𝐶 𝑗 , 𝑢ℓ) = 2.

Proof. Assume for contradiction that dist𝐺 (𝐶 𝑗 , 𝑢ℓ) > 2 for all 1 ≤ 𝑗 < ℓ. Consider the

set𝑉 when 𝑢ℓ is selected. Because of Line 6, we can find one of 𝑢′
ℓ
𝑠 neighbours that is

in 𝐶\𝑉 , say 𝑣. Consider the reason why 𝑣 was removed from 𝑉 . If this happened on

Line 8, then there must have been some 𝑖 such that 𝑣 ∈ 𝐶𝑖 or 𝑣 ∈ Γ𝐺 (𝐶𝑖). The former

case implies that 𝑢ℓ must have been removed from 𝑉 , which is impossible. The latter

case indicates dist𝐺 (𝐶𝑖, 𝑢ℓ) = 2, a contradiction. Therefore, 𝑣 was removed in Line 10.

However, this implies that 𝑢ℓ would have been removed from 𝑉 too, because 𝑢ℓ and

𝑣 must have been in the same component 𝑉 ′, which is also a contradiction. □

Proof of Proposition 5.13. The first part of this proposition requires us to verify that

{𝐶1, · · · ,𝐶ℓ} is a 2-block-tree in 𝐿𝐻 . To do so, we verify Items (B1), (B2), and (B3) of

Definition 5.12 next. Notice that what we need to prove here is with respect to 𝐿𝐻 ,

instead of 𝐺 = 𝐿𝐻 [𝐶].

• Item (B1) holds due to how 𝐶𝑖 is constructed in Line 7.

• For Item (B2), we first show dist𝐺 (𝐶𝑖,𝐶 𝑗 ) ≥ 2. For any 𝐶𝑖 generated by Algo-

rithm 4, it is ensured that Γ𝐺 (𝐶𝑖) gets removed from𝑉 , and therefore, no vertex

in Γ𝐺 (𝐶𝑖) will be in 𝐶 𝑗 for any other 𝑗 . To show dist𝐿𝐻
(𝐶𝑖,𝐶 𝑗 ) ≥ 2, note that

𝐺 is an induced subgraph of 𝐿𝐻 . Any two vertices of distance more than 1 in

𝐺 cannot be neighbours in 𝐿𝐻 , and this implies dist𝐿𝐻
(𝐶𝑖,𝐶 𝑗 ) ≥ 2.

• To verify (B3), it suffices to show that {𝐶1, · · · ,𝐶ℓ} is connected in 𝐺2
, be-

cause 𝐺 is a subgraph of 𝐿𝐻 . This follows from a simple induction. Suppose

{𝐶1, · · · ,𝐶𝑖}, in the order of being generated by the algorithm, is connected in

𝐺2
. The base case of 𝑖 = 1 holds since 𝐶1 is connected. Now consider 𝐶𝑖+1.

By Proposition 5.19, there exists some 𝑗 such that dist𝐺 (𝐶𝑖+1,𝐶 𝑗 ) = 2, which

implies that {𝐶1, · · · ,𝐶𝑖+1} is connected in 𝐺2
as well.

For the second part, suppose towards contradiction that there is some connected

component 𝐶∗ in 𝐺 [𝐶′] of size greater than 𝜃. All vertices in 𝐶 must have been

removed from 𝑉 when the algorithm halts, according to Proposition 5.11. However,

𝐶∗ cannot be 𝐶𝑖 for any 𝑖, because |𝐶𝑖 | = 𝜃. It cannot contain any vertex in Γ𝐺 (𝐶𝑖)
either by the definition of 𝐶′. Thus, no vertex in 𝐶∗ can be removed in Line 8, and
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all vertices in 𝐶∗ must have been removed from 𝑉 in Line 10. Because 𝐶∗ does not

contain any vertex from either𝐶𝑖 or Γ𝐺 (𝐶𝑖), it does not split into smaller components

whilst the algorithm is executed. Thus, the whole 𝐶∗ must have been removed from

𝑉 in a single step, which means |𝐶∗ | < 𝜃, a contradiction. □

5.4.3 Property of random configurations

Proof of Lemma 5.14. Recall that Y ∈ [𝑠]Λ, defined in (5.6), is the configuration at time

𝑡 −1 on Λ. For each vertex 𝑤 ∈ 𝑉 , let 𝑡 (𝑤) denote max1≤𝑡′<𝑡 such that vertex 𝑤 is up-

dated by the systematic scan in the 𝑡′-th step (i.e. the label of 𝑤 is 𝑡′ mod 𝑛), and let

𝑡 (𝑤) = 0 when such 𝑡′ does not exist. With this notation 𝑌𝑤 = 𝑌𝑡 (𝑤) (𝑤) for all 𝑤 ∈ Λ.

We assume 𝑅 = {𝑤1,𝑤2, . . . ,𝑤 |𝑅 |} such that 𝑡 (𝑤1) ≤ 𝑡 (𝑤2) ≤ . . . ≤ 𝑡 (𝑤 |𝑅 |). By the

chain rule, we have Pr[Y𝑅 =𝜎] =∏|𝑅 |
𝑖=1 𝑝𝑖 , where 𝑝𝑖 =Pr

[
𝑌𝑤𝑖

= 𝜎𝑤𝑖
| ∧𝑖−1

𝑗=1𝑌𝑤 𝑗
= 𝜎𝑤 𝑗

]
.

We now bound the value of each 𝑝𝑖 as follows. If 𝑡 (𝑤𝑖) = 0, then it holds that 𝑝𝑖 ≤ ⌈𝑞/𝑠⌉𝑞
.

If 𝑡 (𝑤𝑖) > 0, then in the 𝑡 (𝑤𝑖)-th iteration, the algorithm first samples 𝑋′𝑤𝑖
using

Sample, and then sets 𝑌𝑤𝑖
= ℎ(𝑋′𝑤𝑖

). Denote Y′ = Y𝑡 (𝑤𝑖)−1(𝑉 \ {𝑤𝑖}). There are two

sub-cases:

• if 𝑋′𝑤𝑖
is returned by Line 4 or Line 8 in Sample, then 𝑋′𝑤𝑖

is sampled uniformly

at random from [𝑞], which implies that 𝑝𝑖 ≤ ⌈𝑞/𝑠⌉𝑞
;

• if 𝑋′𝑤𝑖
is returned by Line 9 in Sample, by property 2 of Lemma 5.9, 𝑋′𝑤𝑖

is

sampled from the correct conditional distribution 𝜇Y′
𝑤𝑖

. Note that for any 𝜏 ∈
[𝑠]𝑉\{𝑤𝑖}

, 𝜇𝜏𝑤𝑖
is the marginal distribution induced by a list hypergraph colour-

ing instance where the colour list of any 𝑤 ≠ 𝑤𝑖 is ℎ−1(𝜏(𝑤)), where ℎ is the

projection scheme, and 𝑤𝑖’s colour list is [𝑞]. By Definition 5.3 of projection

schemes, for any 𝑤 ≠ 𝑤𝑖 ,

��ℎ−1(𝜏(𝑤))
�� ≥ ⌊𝑞/𝑠⌋. In other words, the upper bound

on the size of the lists is 𝑞 and the lower bound is ⌊𝑞/𝑠⌋. Since ⌊𝑞/𝑠⌋𝑘 ≥ 2e𝑞𝑘Δ,

by Lemma 5.2, it holds that for all 𝜏 ∈ [𝑠]𝑉\{𝑤𝑖}, 𝑐 ∈ [𝑞],

Pr
[
𝑋′𝑤 = 𝑐 | Y′ = 𝜏∧ 𝑋′𝑤𝑖

is returned by Line 9

]
≤ 1

𝑞
exp

(
1
𝑘

)
,

which implies 𝑝𝑖 ≤ ⌈𝑞/𝑠⌉𝑞
exp

(
1
𝑘

)
.

Combining all the cases together, we have

Pr[Y𝑅 = 𝜎] ≤
(
⌈𝑞/𝑠⌉
𝑞

) |𝑅 |
exp

(
|𝑅 |
𝑘

)
≤

(
𝑞/𝑠+1

𝑞

) |𝑅 |
exp

(
|𝑅 |
𝑘

)
=

(
1
𝑠
+ 1
𝑞

) |𝑅 |
exp

(
|𝑅 |
𝑘

)
. □
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5.4.4 Properties of 2-block-trees

In this subsection, we show Lemma 5.16 and Lemma 5.17. We begin with the first

one, which is a simple observation.

Proof of Lemma 5.16. Given a 2-block-tree {𝐶1, · · · ,𝐶ℓ} of 𝐺 and the vertex 𝑣, con-

struct the following graph 𝐺𝐶 . Each vertex 𝑢 𝑗 of 𝐺𝐶 corresponds to a block 𝐶 𝑗 , and

two vertices 𝑢 𝑗 , 𝑢 𝑗 ′ are adjacent if and only if dist𝐺 (𝐶 𝑗 ,𝐶 𝑗 ′) = 2. By the definition of

2-block-tree, the graph 𝐺𝐶 is connected. Therefore, we can take an arbitrary span-

ning tree of it. To select the𝐶𝑖 to drop, note that any tree containing at least 2 vertices

has at least 2 vertices of degree 1. Therefore, we just choose 𝑢𝑖 to be one such vertex

where 𝑣 ∉𝐶𝑖 . The rest of the tree is still connected, and so is 𝐺𝐶 −𝑢𝑖 , which indicates

that {𝐶1, · · · ,𝐶ℓ} −𝐶𝑖 still forms a 2-block-tree that contains 𝑣. □

We proceed to show Lemma 5.17. We may apply Lemma 5.18 on 𝐺2
due to prop-

erty (B3). Unfortunately, this yields roughly (𝑒𝑑2)𝜃ℓ and does not suffice for our pur-

pose. Here, we give a refined estimation inspired by the original embedding argument

of [Sta99, BCKL13].

Let 𝑑′ := (𝑒𝑑)𝜃−1/2, which, by Lemma 5.18, upper bounds the number of size-𝜃

connected induced subgraphs containing a given vertex in a graph with maximum

degree 𝑑. Therefore, given 𝑣, we can encode each connected induced subgraph con-

taining 𝑣 with a positive integer 𝛯 ∈ [𝑑′]. In other words, there exists an injective

mapping Υ𝑣 from all connected induced subgraphs of 𝐺 containing 𝑣 to {𝑣} × [𝑑′].
Our counting argument will be based on encoding the whole 2-block-tree. Intu-

itively, the encoding contains ℓ + 1 components. The first one encodes how 𝐶𝑖’s are

connected in 𝐺2
, and the rest encodes each individual 𝐶𝑖 by an integer in [𝑑′].

Let T𝜃𝑑2 to be the infinite 𝜃𝑑2
-ary tree. In the first step, the relation between

blocks is encoded by a subtree ofT𝜃𝑑2 containing its root, which is basically a DFS tree.

However, the order of visiting will affect the DFS tree we construct. For this reason,

we need to specify this ordering. First, we order the vertices by their indices. That is,

𝑣𝑖 ≺ 𝑣 𝑗 if 𝑖 < 𝑗 . Given a subset𝐶 of vertices, consider the set Γ2(𝐶) containing vertices

of distance 2 from 𝐶. We can sort this set according to the ordering of vertices, and

hence any vertex 𝑢 ∈ Γ2(𝐶) has a rank among Γ2(𝐶), denoted by Rank𝐶 (𝑢). Suppose

at some stage of our DFS algorithm, we have just finished handling some block 𝐶.

Then we find the next unvisited vertex in Γ2(𝐶), say 𝑣′, which is in some block 𝐶′

that needs to be encoded. Then𝐶′will be encoded as the Rank𝐶 (𝑣′)-th child of current

vertex in the DFS tree, together with the integer Υ𝑣′ (𝐶′) ∈ [𝑑′]. The key of our proof
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is to show that this encoding is injective, i.e., no two distinct 2-block-trees share the

same encoding.

With all the preparation, we give the encoding algorithm as Algorithm 5. Once

again, Algorithm 5 is for analysis only and does not need to be implemented.

Algorithm 5: Encoding
Input: A graph 𝐺 , a vertex 𝑣 ∈ 𝐺, a 2-block-tree {𝐶1, · · · ,𝐶ℓ} of block size 𝜃

and tree size ℓ

Output: An encoding (𝑇, 𝛯1, · · · , 𝛯ℓ), where 𝑇 is a subtree of T𝜃𝑑2 of size ℓ

1 initialize visited[1..ℓ] to be all False;

2 let 𝐶 𝑗 be the component containing 𝑣;

3 let 𝑟 be the root of T𝜃𝑑2 ;

4 let 𝑇 be an empty subtree;

5 𝑡← 0;

6 DFS-Encode( 𝑗 ,𝑣,𝑟);

7 return (𝑇, 𝛯1, · · · , 𝛯ℓ);

8 Procedure DFS-Encode(𝑖,𝑢,𝑤):
9 visited[i]← True;

10 𝑡← 𝑡 +1;

11 𝛯𝑡← Υ𝑢 (𝐶𝑖);
12 add 𝑤 into 𝑇 ;

13 for 𝑢′ ∈ Γ2(𝐶𝑖) do // enumerate 𝑢′ ∈ Γ2(𝐶𝑖) in order

14 if there does not exist any 𝑖′ such that 𝐶𝑖′ ∋ 𝑢′ then
15 continue;

16 let 𝑖′ be the index such that 𝐶𝑖′ ∋ 𝑢′;
17 if visited[i’]=False then
18 let 𝑤′ be the Rank𝐶𝑖

(𝑢′)-th child of 𝑤 in T𝜃𝑑2 ;

19 DFS-Encode(𝑖′,𝑢′,𝑤′);

Lemma 5.20. Fix a graph 𝐺 and a vertex 𝑣. Any 2-block-tree {𝐶1, · · · ,𝐶ℓ} of block

size 𝜃 and tree size ℓ containing 𝑣 can be encoded by a tuple (𝑇, 𝛯1, · · · , 𝛯ℓ), where 𝑇 is

a subtree of T𝜃𝑑2 of size ℓ containing its root, and 𝛯𝑖 ∈ [𝑑′]. Moreover, no two distinct

2-block-trees share the same encoding.
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Proof. The first part of this lemma follows by going through Algorithm 5. There are

two things to verify:

• The algorithm will always halt, outputting ℓ 𝛯𝑖’s. To show this, one only needs

to check that every𝐶𝑖 will be visited exactly once, which is true due to property

(B3) of Definition 5.12 and Line 17 of Algorithm 5.

• The algorithm can find such 𝑤′ on Line 18, or equivalently, Rank𝐶𝑖
(𝑢′) ∈ [𝜃𝑑2].

This follows after a trivial upper bound on the number of distance-2 neighbours

that |Γ2(𝐶𝑖) | ≤ 𝜃𝑑2
.

To prove the second part, suppose there are two 2-block-trees {𝐶1, · · · ,𝐶ℓ} and

{𝐶′1, · · · ,𝐶
′
ℓ
} with the same encoding (𝑇, 𝛯1, · · · , 𝛯ℓ). Without loss of generality, we

can assume 𝐶1, · · · ,𝐶ℓ (resp. 𝐶′1, · · · ,𝐶
′
ℓ
) are sorted in the order of being visited by

Algorithm 5. The goal is then to prove 𝐶𝑖 = 𝐶′
𝑖

for all 𝑖 ∈ [ℓ]. To show this, we

do a simple induction argument. More precisely, denote by 𝑇𝑡 and 𝑇 ′𝑡 the subtrees

constructed by the first 𝑡 calls to DFS-Encode respectively. We induce on 𝑡 to show

that

𝐶𝑖 = 𝐶′𝑖 for all 𝑖 ∈ [𝑡], and 𝑇𝑡 = 𝑇 ′𝑡 . (IH)

Base case 𝑡 = 1. Note that 𝐶1 =𝐶′1 follows from the injectivity of Υ𝑣 , and 𝑇1 = 𝑇 ′1 as

they both contain only the root.

Induction step. Suppose (IH) holds for 𝑡−1. At this stage, we compare the progress

of two copies of Encoding running on𝐶 and𝐶′ respectively. Right before the for-loop

in the (𝑡−1)-th call to DFS-Encode, both copies get the same 𝑤 by (IH). Again by (IH),

both copies get the same 𝐶𝑡−1 in the condition of the for-loop. In the enumeration of

for-loop, both copies skip or keep the 𝑢′ in Line 14 simultaneously, because 𝐶𝑖 = 𝐶′
𝑖

for all 𝑖 ∈ [𝑡−1]. Note that each vertex of T𝜃𝑑2 can be visited at most once. This means

that if the two copies get different 𝑢′ in Line 18, then the final subtree will be different.

Therefore, they must get the same 𝑢′ and 𝑖′, and hence the same 𝑤′ because they have

the same 𝐶𝑡−1, implying 𝑇𝑡 = 𝑇 ′𝑡 . Moreover, the next calls to DFS-Encode have an

identical input in both copies. Thus, 𝛯𝑡 = Υ𝑢 (𝐶𝑡) and 𝛯′𝑡 = Υ𝑢 (𝐶′𝑡 ). By assumption

𝛯𝑡 = 𝛯′𝑡 . Injectivity of Υ𝑢 implies that 𝐶𝑡 = 𝐶′𝑡 , finishing the proof. □

We conclude this subsection by proving Lemma 5.17.
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Proof of Lemma 5.17. By Lemma 5.20, the number of 2-block-trees can be upperbounded

by the number of possible encodings. To count the number of possible subtrees 𝑇 ,

we simply apply Lemma 5.18, which gives (𝑒𝜃𝑑2)ℓ−1/2. The number of possible

𝛯𝑖 sequences is 𝑑′ℓ = (𝑒𝑑)ℓ(𝜃−1)/2ℓ. Combining both parts yields the upper bound

𝜃ℓ−1𝑒𝜃ℓ−1𝑑 (𝜃+1)ℓ−2/2ℓ+1. □

5.5 Mixing of systematic scan

In this section, we prove the mixing lemma for the projected systematic scan Markov

chain of hypergraph colourings (Lemma 5.8). First, we verify that the systematic scan

is irreducible, aperiodic with respect to 𝜈. This implies that the systematic scan has

a unique stationary distribution, and it is straightforward to verify that 𝜈 is indeed

the stationary distribution. Aperiodicity is also straightforward to verify. For irre-

ducibility, it suffices to show that for any 𝜏 ∈ [𝑠]𝑉 , 𝜈(𝜏) > 0, as our chain is a Glauber

dynamics for 𝜈. Fix an arbitrary configuration 𝜏 ∈ [𝑠]𝑉 . We show that there exists a

proper colouring 𝜎 ∈ [𝑞]𝑉 such that ℎ(𝜎) = 𝜏, where ℎ is the projection scheme. This

implies 𝜈(𝜏) > 0. To prove the existence of such a proper colouring, consider the list

hypergraph colouring instance (𝐻, (𝑄𝑣)𝑣∈𝑉 ), where 𝑄𝑣 = ℎ−1(𝜏𝑣) for all 𝑣 ∈ 𝑉 . We

only need to show that this list colouring instance has a feasible solution. Note that

|𝑄𝑣 | ≥
⌊
𝑞/

⌈√
𝑞
⌉⌋
≥ √𝑞/2 for 𝑞 ≥ 20. By the Lovász local lemma, Theorem 2.4, we

only need to verify that

e𝑞
(

2
√
𝑞

) 𝑘
Δ𝑘 ≤ 1,

which follows from 𝑞 ≥ 40Δ 2
𝑘−4 and 𝑘 ≥ 20.

Next, we prove the mixing time result in Lemma 5.8. The analysis is based on

an information percolation argument. We first define a coupling C of the systematic

scan (X𝑡 ,Y𝑡)𝑡≥0. Let X0,Y0 ∈ [𝑠]𝑉 be two arbitrary initial configurations. In the 𝑡-th

transition step,

• let 𝑣 ∈𝑉 be the vertex with label (𝑡 mod 𝑛) and set (𝑋𝑡 (𝑢),𝑌𝑡 (𝑢)) ← (𝑋𝑡−1(𝑢),𝑌𝑡−1(𝑢))
for all other vertices 𝑢 ∈ 𝑉 \ {𝑣};

• sample (𝑋𝑡 (𝑣),𝑌𝑡 (𝑣)) from the optimal coupling between 𝜈
𝑋𝑡−1 (𝑉\{𝑣})
𝑣 and 𝜈

𝑌𝑡−1 (𝑉\{𝑣})
𝑣 .

We prove the following lemma in this section.
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Lemma 5.21. Suppose 𝑘 ≥ 20 and 𝑞 ≥ 40Δ 2
𝑘−4 . For any initial configurations X0,Y0 ∈

[𝑠]𝑉 , any 𝜖 ∈ (0,1), let 𝑇 =
⌈
50𝑛 log 𝑛Δ

𝜖

⌉
, it holds that

∀𝑣 ∈ 𝑉, PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)] ≤
𝜖

𝑛
.

By Lemma 5.21, a union bound over all vertices and the coupling lemma (Lemma 2.3),

it holds that

max
X0,Y0∈[𝑠]𝑉

𝑑TV (X𝑇 ,Y𝑇 ) ≤ PrC [X𝑇 ≠ Y𝑇 ] ≤ 𝜖,

which proves the mixing time part of Lemma 5.8 via (2.5). In the rest of this section,

we use the information percolation technique to analyse the coupling C and prove

Lemma 5.21.

5.5.1 Information percolation analysis

Consider the coupling procedure (X𝑡 ,Y𝑡)𝑡≥0. For each 𝑡 ≥ 1, let 𝑣𝑡 denote the ver-

tex picked in the 𝑡-th step of systematic scan, namely, 𝑣𝑡 is the vertex with label (𝑡
mod 𝑛). Consider the 𝑡-th transition step, where 𝑡 > 0. Define the set of agreement

vertices when updating 𝑣𝑡 at time 𝑡 by

𝐴𝑡 := {𝑣 ∈ 𝑉 \ {𝑣𝑡} | 𝑋𝑡−1(𝑣) = 𝑌𝑡−1(𝑣)}.

We say a hyperedge 𝑒 ∈ E is satisfied by 𝐴𝑡 if there exist two distinct vertices 𝑢, 𝑣 ∈
𝑒∩ 𝐴𝑡 such that 𝑋𝑡−1(𝑢) ≠ 𝑋𝑡−1(𝑣) (and hence 𝑌𝑡−1(𝑢) ≠ 𝑌𝑡−1(𝑣) ). We remove all the

hyperedges 𝑒 ∈ E satisfied by 𝐴𝑡 to obtain a sub-hypergraph 𝐻𝑡 . Let 𝐻𝑣
𝑡 denote the

connected component in 𝐻𝑡 containing 𝑣.

Lemma 5.22. If 𝑋𝑡 (𝑣𝑡) ≠𝑌𝑡 (𝑣𝑡) for some 𝑡 ≥ 1, then there exists 𝑢 ≠ 𝑣𝑡 in 𝐻
𝑣𝑡
𝑡 such that

𝑋𝑡−1(𝑢) ≠ 𝑌𝑡−1(𝑢).

Proof. Note that 𝑋𝑡 (𝑣𝑡) and 𝑌𝑡 (𝑣𝑡) are sampled from 𝜈
𝑋𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 and 𝜈

𝑌𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 re-

spectively. Let 𝜇′ denote the uniform distribution of proper colourings of 𝐻𝑣
𝑡 . Let 𝜋

denote the projected distribution induced by 𝜇′ and the projection scheme ℎ. Let 𝑉
𝑣𝑡
𝑡

denote the vertex set of 𝐻
𝑣𝑡
𝑡 and let 𝑆 = 𝑉

𝑣𝑡
𝑡 \ {𝑣𝑡}. We claim that (1) 𝜈

𝑋𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 and

𝜋
𝑋𝑡−1 (𝑆)
𝑣𝑡 are identical distributions; (2) 𝜈

𝑌𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 and 𝜋

𝑌𝑡−1 (𝑆)
𝑣𝑡 are identical distribu-

tions. Hence, if 𝑋𝑡−1(𝑢) =𝑌𝑡−1(𝑢) for all 𝑢 ≠ 𝑣𝑡 in 𝐻
𝑣𝑡
𝑡 , then 𝑋𝑡 (𝑣𝑡) and 𝑌𝑡 (𝑣𝑡) must be

perfectly coupled.
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We verify that 𝜈
𝑋𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 and 𝜋

𝑋𝑡−1 (𝑆)
𝑣𝑡 are identical distributions. The claim for

𝜈
𝑌𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 and 𝜋

𝑌𝑡−1 (𝑆)
𝑣𝑡 can be verified by a similar proof. Consider the list colour-

ing instance (𝐻, (𝑄𝑣)𝑣∈𝑉 ), where 𝑄𝑣 = [𝑞] if 𝑣 = 𝑣𝑡 and 𝑄𝑣 = ℎ−1(𝑋𝑡−1(𝑣)) if 𝑣 ≠ 𝑣𝑡 .

Let 𝜇list denote the uniform distribution of all proper list colourings. If 𝑋 ∼ 𝜇list, then

ℎ(𝑋𝑣𝑡 ) ∼ 𝜈
𝑋𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 . For any hyperedge 𝑒 satisfied by 𝐴𝑡 , it holds that for any colour-

ing 𝑋 ∈ ⊗𝑣∈𝑉𝑄𝑣 , 𝑒 is not monochromatic. Let 𝐻𝑡 denote the hypergraph obtained from

𝐻 by removing all hyperedges satisfied by 𝐴𝑡 . Hence, (𝐻, (𝑄𝑣)𝑣∈𝑉 ) and (𝐻𝑡 , (𝑄𝑣)𝑣∈𝑉 )
have the same set of proper list colourings. Recall that 𝐻

𝑣𝑡
𝑡 is the connected com-

ponent in 𝐻𝑡 containing vertex 𝑣𝑡 . Let 𝜇com
list denote the uniform distribution over all

proper list colourings of (𝐻𝑣𝑡
𝑡 , (𝑄𝑣)𝑣∈𝑉𝑣𝑡

𝑡
). Hence, 𝜇list projected on 𝑣𝑡 is the same dis-

tribution as 𝜇com
list projected on 𝑣𝑡 . If 𝑋 ∼ 𝜇com

list , then ℎ(𝑋𝑣𝑡 ) ∼ 𝜋
𝑋𝑡−1 (𝑆)
𝑣𝑡 . This implies

that 𝜈
𝑋𝑡−1 (𝑉\{𝑣𝑡 })
𝑣𝑡 and 𝜋

𝑋𝑡−1 (𝑆)
𝑣𝑡 are identical distributions. □

We say that a hyperedge sequence 𝑒1, 𝑒2, . . . , 𝑒ℓ is a path in a hypergraph if for

each 1 < 𝑖 ≤ ℓ, 𝑒𝑖−1 ∩ 𝑒𝑖 ≠ ∅ and 𝑒𝑖−1 ≠ 𝑒𝑖 . The following result is a straightforward

corollary of Lemma 5.22.

Corollary 5.23. Let 𝑡 ≥ 1. If 𝑋𝑡 (𝑣𝑡) ≠𝑌𝑡 (𝑣𝑡), then there exists a vertex 𝑢 ≠ 𝑣𝑡 satisfying

𝑋𝑡−1(𝑢) ≠ 𝑌𝑡−1(𝑢) and a path 𝑒1, 𝑒2, . . . , 𝑒ℓ in hypergraph 𝐻 such that

• 𝑣 ∈ 𝑒1 and 𝑢 ∈ 𝑒ℓ ;

• for any hyperedge 𝑒𝑖 in the path, there exists 𝑐 ∈ [𝑠] such that for all vertex 𝑤 ∈ 𝑒𝑖
and 𝑤 ≠ 𝑣𝑡 , either 𝑋𝑡−1(𝑤) = 𝑌𝑡−1(𝑤) = 𝑐 or 𝑋𝑡−1(𝑤) ≠ 𝑌𝑡−1(𝑤).

Proof. By Lemma 5.22, there is a vertex 𝑢 ≠ 𝑣𝑡 such that 𝑋𝑡−1(𝑢) ≠𝑌𝑡−1(𝑢) and 𝑢 ∈ 𝐻𝑣𝑡
𝑡 .

As 𝑢 and 𝑣𝑡 are in the same connected component, there exist a path from 𝑣𝑡 to 𝑢.

Moreover, for each hyperedge 𝑒𝑖 on this path, since 𝑒𝑖 is in 𝐻
𝑣𝑡
𝑡 , it is not satisfied by

𝐴𝑡 . This implies that for all 𝑤 ≠ 𝑣𝑡 ∈ 𝑒𝑖 such that 𝑋𝑡−1(𝑤) = 𝑌𝑡−1(𝑤), their values in

both chains must be the same 𝑐 ∈ [𝑠]. Lastly, note that any path in 𝐻
𝑣𝑡
𝑡 is also a path

in 𝐻. This proves the corollary. □

Corollary 5.23 is a key result for the information percolation analysis. For any

time 0 ≤ 𝑡 ≤ 𝑇 , any vertex 𝑣 ∈ 𝑉 , define the set of previous update times by

𝑆(𝑣, 𝑡) := {1 ≤ 𝑖 ≤ 𝑡 | 𝑣𝑖 = 𝑣},
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where 𝑣𝑖 is the vertex picked in the 𝑖-th transition step. Define the last update time

for 𝑣 up to 𝑡 by

timeud(𝑣, 𝑡) :=


max𝑖∈𝑆(𝑣,𝑡) 𝑖 if 𝑆(𝑣, 𝑡) ≠ ∅;

0 otherwise.

By Corollary 5.23, if the coupling on vertex 𝑣 failed at time 𝑡, then there must

exist a vertex 𝑢 such that the coupling on 𝑢 failed at time 𝑡′ = timeud(𝑢, 𝑡). We apply

Corollary 5.23 recursively until we find a vertex 𝑤 such that 𝑋0(𝑤) ≠ 𝑌0(𝑤). This

gives us an update time sequence 𝑡 = 𝑡1 > 𝑡2 > . . . > 𝑡ℓ = 0 such that the coupling

of each 𝑡𝑖-th transition fails, together with a set of paths satisfying the properties in

Corollary 5.23. We will show that such a update time sequence and the set of paths

occur with small probability, which bounds the probability of 𝑋𝑡 (𝑣𝑡) ≠𝑌𝑡 (𝑣𝑡). For this

analysis, we will use the notions of extended hyperedges and extended hypergraphs

introduced by He, Sun, and Wu [HSW21].

5.5.2 Extended hyperedges and the extended hypergraph

Fix an integer 𝑇 ≥ 1 to be the total number of transitions of the systematic scan.

Define the set of extended vertex 𝑉ext
by

𝑉ext = {(𝑡, 𝑣𝑡) | 1 ≤ 𝑡 ≤ 𝑇} ∪ {(0, 𝑣) | 𝑣 ∈ 𝑉},

where 𝑣𝑡 is the vertex with label (𝑡 mod 𝑛). Each vertex (𝑡, 𝑢) ∈ 𝑉ext
represents an

update, i.e. 𝑢 is updated at the 𝑡-th transition step. We regard all vertices “updated”

at the initial step (𝑡 = 0). Consider the systematic scan process (X𝑡)𝑡≥0. For any hy-

peredge 𝑒 ∈ E, the configuration 𝑋𝑡 (𝑒) of 𝑒 at time 𝑡 satisfies

∀𝑢 ∈ 𝑒, 𝑋𝑡 (𝑢) = 𝑋𝑡′ (𝑢), where 𝑡′ = timeud(𝑢, 𝑡),

namely, the value of 𝑢 at time 𝑡 is the same as the value of 𝑢 at time 𝑡′ = timeud(𝑢, 𝑡).
Besides, the configuration of hyperedge 𝑒 remains unchanged until some vertex in 𝑒

is updated. This motivates the following definition of extended hyperedges and the

extended hypergraph, introduced by He, Sun, and Wu [HSW21].

Definition 5.24. The set Eext
of extended hyperedges is defined by Eext := ∪𝑇

𝑡=0E
ext
𝑡 ,

where

Eext
0 :=

⋃
𝑒∈E
{(0, 𝑣) | 𝑣 ∈ 𝑒},

∀1 ≤ 𝑡 ≤ 𝑇, Eext
𝑡 :=

⋃
𝑒:𝑣𝑡∈𝑒

{(𝑡′, 𝑣) | 𝑣 ∈ 𝑒∧ 𝑡′ = timeud(𝑣, 𝑡)} .
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The extended hypergraph is 𝐻ext = (𝑉ext,Eext).

At the beginning, each hyperedge 𝑒 ∈ E takes its initial value, and thus we add all

the extended hyperedges with 𝑡 = 0 to Eext
0 . For each update at time 1 ≤ 𝑡 ≤ 𝑇 , only

the value of 𝑣𝑡 is updated. Thus the configurations of only the hyperedges containing

𝑣𝑡 are updated, and we add only those to Eext
𝑡 .

Corollary 5.23 shows that for any 𝑡 ≥ 1, if the coupling in the 𝑡-th transition step

fails (i.e. 𝑋𝑡 (𝑣𝑡) ≠ 𝑌𝑡 (𝑣𝑡)), then we can find a specific path in the hypergraph 𝐻. Our

next lemma lifts such a path to 𝐻ext
.

Lemma 5.25. Let 1 ≤ 𝑡 ≤ 𝑇 be an integer. Suppose 𝑋𝑡 (𝑣𝑡) ≠𝑌𝑡 (𝑣𝑡). There exist a vertex

(𝑡′, 𝑢) ∈ 𝑉ext
satisfying 𝑡′ < 𝑡 and 𝑋𝑡′ (𝑢) ≠𝑌𝑡′ (𝑢), together with a path 𝑒ext

1 , 𝑒ext
2 , . . . , 𝑒ext

ℓ

in 𝐻ext
such that

• (𝑡, 𝑣𝑡) ∈ 𝑒ext
1 and (𝑡′, 𝑢) ∈ 𝑒ext

ℓ
;

• for any hyperedge 𝑒ext
𝑖

in the path, there exists 𝑐 ∈ [𝑠] such that for all ( 𝑗 ,𝑤) ∈ 𝑒ext
𝑖

,

either 𝑋 𝑗 (𝑤) = 𝑌 𝑗 (𝑤) = 𝑐 or 𝑋 𝑗 (𝑤) ≠ 𝑌 𝑗 (𝑤).

Proof. Let 𝑢 and 𝑒1, 𝑒2, . . . , 𝑒ℓ denote the vertex and the path in Corollary 5.23 respec-

tively. For each vertex 𝑤 ∈ 𝑉 , let 𝑡𝑤 = timeud(𝑤, 𝑡). For each 1 ≤ 𝑖 ≤ ℓ, define

𝑒ext
𝑖 = {(𝑡𝑤,𝑤) | 𝑤 ∈ 𝑒𝑖}.

To show that 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

is a path in 𝐻ext
, we need to verify that each 𝑒ext

𝑖
defined

above belongs to Eext
in Definition 5.24. Fix an 𝑒ext

𝑖
. Let 𝑡max = max{𝑡 | (𝑡,𝑤) ∈ 𝑒ext

𝑖
}.

It is straightforward to verify that 𝑒ext
𝑖
∈ Eext

𝑡max
.

Next, we show that 𝑡′ < 𝑡 and 𝑋𝑡′ (𝑢) ≠ 𝑌𝑡′ (𝑢). By definition, we have 𝑡′ = 𝑡𝑢 =

timeud(𝑢, 𝑡) < 𝑡. As the value of any vertex does not change until the next update, we

have that

∀𝑤 ∈ 𝑉 \ {𝑣𝑡}, 𝑋𝑡−1(𝑤) = 𝑋𝑡𝑤 (𝑤) and 𝑌𝑡−1(𝑤) = 𝑌𝑡𝑤 (𝑤). (5.20)

By Corollary 5.23, it holds that 𝑋𝑡−1(𝑢) ≠ 𝑌𝑡−1(𝑢). By (5.20), it holds that 𝑋𝑡′ (𝑢) ≠
𝑌𝑡′ (𝑢).

Finally, we verify the two properties of the path. The first property (𝑡, 𝑣𝑡) ∈ 𝑒ext
1

and (𝑡′, 𝑢) ∈ 𝑒ext
ℓ

follows from the way 𝑒ext
𝑖

is constructed. By Corollary 5.23, for any 𝑒𝑖

in the path, there exists 𝑐 ∈ [𝑠] such that for all vertices 𝑤 ∈ 𝑒𝑖 \ {𝑣𝑡}, either 𝑋𝑡−1(𝑤) =
𝑌𝑡−1(𝑤) = 𝑐 or 𝑋𝑡−1(𝑤) ≠𝑌𝑡−1(𝑤). By (5.20), for all extended vertices (𝑖,𝑤) ∈ 𝑒ext

𝑖
with

𝑤 ≠ 𝑣𝑡 , either 𝑋𝑖 (𝑤) = 𝑌𝑖 (𝑤) = 𝑐 or 𝑋𝑖 (𝑤) ≠ 𝑌𝑖 (𝑤). Finally, consider the extended

vertex (𝑡, 𝑣𝑡). By our assumption in the lemma, we have that 𝑋𝑡 (𝑣𝑡) ≠ 𝑌𝑡 (𝑣𝑡). □
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We may repeatedly apply Lemma 5.25 to trace a discrepancy from some time 𝑡 to

time 0.

Lemma 5.26. Let 1 ≤ 𝑡 ≤ 𝑇 be an integer. Suppose 𝑋𝑡 (𝑣𝑡) ≠ 𝑌𝑡 (𝑣𝑡). There exists a path

𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

in the extended hypergraph 𝐻ext
such that

• (𝑡, 𝑣𝑡) ∈ 𝑒ext
1 , min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑒ext

𝑖
} > 0 for all 𝑖 < ℓ and min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑒ext

ℓ
} = 0;

• for any 1 ≤ 𝑖, 𝑖′ ≤ ℓ satisfying |𝑖− 𝑖′| ≥ 2, 𝑒ext
𝑖
∩ 𝑒ext

𝑖′ = ∅;

• for any hyperedge 𝑒ext
𝑖

in the path, there exists 𝑐 ∈ [𝑠] such that for all ( 𝑗 ,𝑤) ∈ 𝑒ext
𝑖

,

either 𝑋 𝑗 (𝑤) = 𝑌 𝑗 (𝑤) = 𝑐 or 𝑋 𝑗 (𝑤) ≠ 𝑌 𝑗 (𝑤).

Proof. We use Lemma 5.25 recursively. Namely, we use Lemma 5.25 for (𝑡, 𝑣𝑡) to

find (𝑡′, 𝑢). If 𝑡′ ≠ 0, we apply Lemma 5.25 on (𝑡′, 𝑢) again to find the previous dis-

crepancy. Repeat this process until we find (𝑡′′,𝑤) such that 𝑡′′ = 0. This gives a

path 𝑓 ext
1 , 𝑓 ext

2 , . . . , 𝑓 ext
𝑚 in the extended hypergraph 𝐻ext

such that (𝑡, 𝑣𝑡) ∈ 𝑓 ext
1 and

min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑓 ext
𝑚 } = 0. By Lemma 5.25, this path 𝑓 ext

1 , 𝑓 ext
2 , . . . , 𝑓 ext

𝑚 satisfies the last

property in Lemma 5.26.

We then construct the path 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

. First let 𝑒ext
1 = 𝑓 ext

1 , ℓ = 1, and 𝑝 = 1.

While min{𝑖 | (𝑖,𝑤) ∈ 𝑒ext
ℓ
} > 0, we repeat the following process:

• let 𝑝 +1 ≤ 𝑗 ≤ 𝑚 be the largest index satisfying 𝑓 ext
𝑗
∩ 𝑒ext

ℓ
≠ ∅;

• let ℓ← ℓ +1, 𝑒ext
ℓ
← 𝑓 ext

𝑗
and 𝑝← 𝑗 .

When the above process ends, we get the path 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

.

We first show that the process above is well-defined. Consider the beginning

of each iteration of the while-loop. It holds that 𝑒ext
ℓ

= 𝑓 ext
𝑝 . Since min{𝑖 | (𝑖,𝑤) ∈

𝑒ext
ℓ
} > 0, we know that 𝑝 < 𝑚. The index 𝑝+1 ≤ 𝑗 ≤ 𝑚 such that 𝑓 ext

𝑗
∩ 𝑒ext

ℓ
≠∅must

exist because 𝑓 ext
𝑝+1∩ 𝑒

ext
ℓ

= 𝑓 ext
𝑝+1∩ 𝑓 ext

𝑝 ≠ ∅. The while-loop must terminate eventually

because 𝑝 always increase and min{𝑖 | (𝑖,𝑤) ∈ 𝑓 ext
𝑚 } = 0.

We claim that 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

is indeed a path. We only need to show that for

all 2 ≤ 𝑖 ≤ ℓ, it holds that 𝑒ext
𝑖−1 ∩ 𝑒

ext
𝑖

≠ ∅ and 𝑒ext
𝑖−1 ≠ 𝑒ext

𝑖
. The construction pro-

cess guarantees that 𝑒ext
𝑖−1 ∩ 𝑒

ext
𝑖

≠ ∅. Suppose there is an index 2 ≤ 𝑖 ≤ ℓ such that

𝑒ext
𝑖−1 = 𝑒ext

𝑖
= 𝑓 ext

𝑖′ for some 𝑖′ ≤ 𝑚. Since the construction process finds 𝑒ext
𝑖

, we know

that min{𝑡 | (𝑡,𝑤) ∈ 𝑒ext
𝑖−1} > 0. Thus 𝑖′ < 𝑚 and 𝑓 ext

𝑖′+1 exists. Since 𝑓 ext
1 , 𝑓 ext

2 , . . . , 𝑓 ext
𝑚 is

a path, we know that 𝑓 ext
𝑖′ ∩ 𝑓 ext

𝑖′+1 ≠ ∅, which implies that 𝑒ext
𝑖−1∩ 𝑓 ext

𝑖′+1 ≠ ∅. When con-

structing 𝑒ext
𝑖

, we look for the largest 𝑗 such that 𝑒ext
𝑖−1∩ 𝑓 ext

𝑗
≠ ∅. Hence, 𝑒ext

𝑖
≠ 𝑓 ext

𝑖′ , a

contradiction.
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Lastly, we verify the properties of the path.

• Since 𝑒ext
1 = 𝑓 ext

1 and (𝑡, 𝑣𝑡) ∈ 𝑓 ext
1 , (𝑡, 𝑣𝑡) ∈ 𝑒ext

1 . The while-loop terminates once

min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑒ext
ℓ
} > 0. Hence, min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑒ext

𝑖
} > 0 for all 𝑖 < ℓ and

min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑒ext
ℓ
} = 0.

• For any 1 ≤ 𝑖, 𝑖′ ≤ ℓ with |𝑖− 𝑖′| ≥ 2, consider how 𝑒ext
𝑖+1 is constructed. We choose

the largest index 𝑗 ≤ 𝑚 such that 𝑓 ext
𝑗
∩𝑒ext

ℓ
≠∅ and 𝑒ext

𝑖+1← 𝑓 ext
𝑗

. In other words,

for any 𝑗 ′ > 𝑗 , 𝑓 ext
𝑗 ′ ∩𝑒ext

𝑖
=∅. Since there is 𝑗 ′ such that 𝑒ext

𝑖′ = 𝑓 ext
𝑗 ′ , 𝑒ext

𝑖
∩𝑒ext

𝑖′ =∅.

• Since 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

is a subsequence of 𝑓 ext
1 , 𝑓 ext

2 , . . . , 𝑓 ext
𝑚 , the last property

is satisfied as well. □

5.5.3 Proof of Lemma 5.21

Recall that 𝑇 =
⌈
50𝑛 log 𝑛

𝜖

⌉
in Lemma 5.21. To prove Lemma 5.21, we need to show

that

∀𝑣 ∈ 𝑉, PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)] ≤
𝜖

𝑛
.

Fix a vertex 𝑣. By the same reason as (5.20), we only need to prove PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)] ≤
𝜖
𝑛

for a new 𝑇 , where

𝑇 = timeud

(
𝑣,

⌈
50𝑛 log

𝑛

𝜖

⌉)
≥

⌈
40𝑛 log

𝑛

𝜖

⌉
. (5.21)

Note that 𝑣 is updated at time 𝑇 , i.e. 𝑣 = 𝑣𝑇 .

Fix 𝑇 defined in (5.21). Define the following information percolation path (IPP).

Definition 5.27. We say a path 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

of length ℓ in the extended hyper-

graph 𝐻ext
is an information percolation path (IPP) if the following two properties are

satisfied:

• (𝑇, 𝑣𝑇 ) ∈ 𝑒ext
1 , min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑒ext

𝑖
} > 0 for all 𝑖 < ℓ and min{ 𝑗 | ( 𝑗 ,𝑤) ∈ 𝑒ext

ℓ
} = 0;

• for any 1 ≤ 𝑖, 𝑗 ≤ ℓ such that |𝑖− 𝑗 | ≥ 2, 𝑒ext
𝑖
∩ 𝑒ext

𝑗
= ∅.

Suppose 𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣). By Lemma 5.26, we can find an IPP 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

in

extended hypergraph 𝐻ext
. The following lemma lower bounds the length of the IPP.

Lemma 5.28. For any IPP of length ℓ, ℓ ≥ ⌈𝑇/𝑛⌉.
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Proof. For any extended hyperedge 𝑒ext
𝑖

, define the maximum and minimum update

times in 𝑒ext
𝑖

by 𝑡
(𝑖)
max = max{𝑡 | (𝑡,𝑤) ∈ 𝑒ext

𝑖
} and 𝑡

(𝑖)
min = min{𝑡 | (𝑡,𝑤) ∈ 𝑒ext

𝑖
}. In the

systematic scan, we update vertices in order of their labels. By Definition 5.24, it

holds that for any 𝑖,

𝑡
(𝑖)
max− 𝑡 (𝑖)min ≤ 𝑛−1 ≤ 𝑛.

Note that 𝑒ext
𝑖
∩ 𝑒ext

𝑖+1 ≠ ∅, which implies

𝑡
(𝑖)
min ≤ 𝑡

(𝑖+1)
max ≤ 𝑡

(𝑖+1)
min +𝑛.

Note that 𝑡
(1)
min ≥ 𝑡

(1)
max−𝑛 = 𝑇 −𝑛. We have

𝑇 −𝑛 ≤ 𝑡
(1)
min ≤ 𝑡

(ℓ)
min + (ℓ−1)𝑛 = (ℓ−1)𝑛,

where the last equation holds because 𝑡
(ℓ)
min = 0. Since ℓ is an integer, we have ℓ ≥

⌈𝑇/𝑛⌉. □

Now fix an integer ℓ ≥ 𝑇/𝑛 and an IPP P = 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

of length ℓ. We define

the bad event B(P) as: for any hyperedge 𝑒ext
𝑖

in the path, there exists 𝑐 ∈ [𝑠] such

that for all ( 𝑗 ,𝑤) ∈ 𝑒ext
𝑖

, either 𝑋 𝑗 (𝑤) = 𝑌 𝑗 (𝑤) = 𝑐 or 𝑋 𝑗 (𝑤) ≠ 𝑌 𝑗 (𝑤). Namely, B(P)
that impliesP satisfies the third property in Lemma 5.26. By Lemma 5.26, Lemma 5.28

and a union bound over all IPPs of length at least ℓ, the probability of 𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)
can be bounded as follows

PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)] ≤
∑︁

ℓ≥⌈𝑇/𝑛⌉

∑︁
P: IPP of length ℓ

PrC [B(P)] . (5.22)

We bound PrC [B(P)] in the RHS of (5.22) next. We need to use more delicate

structures of the extended hypergraph 𝐻ext = (𝑉ext,Eext). By Definition 5.24, each

extended hyperedge 𝑒ext ∈ Eext
corresponds to a unique hyperedge edge

(
𝑒ext) ∈ E in

the input hypergraph, or more formally,

edge
(
𝑒ext) := {𝑣 | (𝑡, 𝑣) ∈ 𝑒ext}.

We remark that different extended hyperedges may correspond to the same hyper-

edge. For each extended hyperedge 𝑒ext ∈ Eext
, we use 𝑁 (𝑒ext) to denote the neighbour

extended hyperedges:

𝑁 (𝑒ext) := { 𝑓 ext ∈ Eext | 𝑓 ext∩ 𝑒ext ≠ ∅ and 𝑓 ext ≠ 𝑒ext}.

The following observation is straightforward to verify.
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Observation 5.29. For any 𝑒ext ∈ Eext
and 𝑓 ext ∈ 𝑁 (𝑒ext), edge

(
𝑒ext)∩edge

(
𝑓 ext) ≠∅.

We further partition 𝑁 (𝑒ext) into self-neighbours and outside-neighbours as follows,

𝑁self(𝑒ext) :=
{
𝑓 ext ∈ 𝑁 (𝑒ext) | edge

(
𝑒ext) = edge

(
𝑓 ext)} ;

𝑁out(𝑒ext) :=
{
𝑓 ext ∈ 𝑁 (𝑒ext) | edge

(
𝑒ext) ≠ edge

(
𝑓 ext)} .

Observation 5.30. For any 𝑒ext ∈ Eext
and 𝑓 ext ∈ 𝑁out(𝑒ext),

��𝑒ext∩ 𝑓 ext
�� = 1.

Proof. Let 𝑒 = edge
(
𝑒ext)

and 𝑓 = edge
(
𝑓 ext)

. Since 𝑓 ext ∈ 𝑁out(𝑒ext), by Observa-

tion 5.29 and the fact that the input hypergraph is linear, |𝑒∩ 𝑓 | = 1, which implies��𝑒ext∩ 𝑓 ext
�� = 1. □

The following lemma bounds the degree of the extended hypergraph.

Lemma 5.31. Let Δ be the maximum degree of the input hypergraph 𝐻 = (𝑉,E). Then,

1. given (𝑣, 𝑡) ∈ 𝑉ext
and 𝑒 ∈ E such that 𝑣 ∈ 𝑒, the number of 𝑒ext

such that (𝑣, 𝑡) ∈
𝑒ext

and edge
(
𝑒ext) = 𝑒 is at most 𝑘 ;

2. for any extended vertex (𝑣, 𝑡) ∈ 𝑉ext
, the number of extended hyperedges incident

to (𝑣, 𝑡) is at most 𝑑vtx := Δ𝑘 ;

3. for any extended hyperedge 𝑒ext ∈ Eext
, 𝑁self(𝑒ext) ≤ 𝑑self := 2𝑘 , 𝑁out(𝑒ext) ≤ 𝑑out :=

Δ𝑘2
.

Proof. For Item 1, suppose such 𝑒ext
is {(𝑢 𝑗 , 𝑡 𝑗 ) | 1 ≤ 𝑗 ≤ 𝑘} and 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑘 .

Moreover, for all 𝑗 such that 𝑡 𝑗 = 0, we order 𝑢 𝑗 according to their original label in 𝐻.

As (𝑣, 𝑡) ∈ 𝑒ext
, 𝑡 equals one of 𝑡 𝑗 . Then observe that 𝑒ext

is uniquely determined if we

know 𝑡 = 𝑡 𝑗 for some 1 ≤ 𝑗 ≤ 𝑘 , and there are at most 𝑘 choices of 𝑗 (the number of

choices can be less than 𝑘 if 𝑡 = 0). This shows the claim.

For Item 2, if 𝑒ext
is incident to (𝑣, 𝑡), then edge

(
𝑒ext) = 𝑒 for some 𝑒 ∋ 𝑣. There

are at most Δ choices of such hyperedge 𝑒 in 𝐻. Then the bound follows from Item 1.

For Item 3, let 𝑒 = edge
(
𝑒ext)

, and again assume 𝑒ext
is {(𝑢 𝑗 , 𝑡 𝑗 ) | 1 ≤ 𝑗 ≤ 𝑘} and

𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑘 as in the proof of Item 1.

To bound the number of self-neighbours, suppose 𝑓 ext ∈ 𝑁self(𝑒ext) such that edge
(
𝑓 ext) =

𝑒. Let 𝑡max = max{𝑡 | (𝑡,𝑤) ∈ 𝑓 ext} and 𝑡min = min{𝑡 | (𝑡,𝑤) ∈ 𝑓 ext}. Note that if

𝑡max ≤ 𝑡𝑘 , then there are at most 𝑘 − 1 choices of 𝑡max, namely 𝑡1, 𝑡2, . . . , 𝑡𝑘−1. Oth-

erwise 𝑡max > 𝑡𝑘 . Note that if 𝑡max ≥ 𝑡𝑘 +𝑛, then 𝑡min ≥ 𝑡max− (𝑛−1) > 𝑡𝑘 , which con-

tradicts to 𝑒ext ∩ 𝑓 ext ≠ ∅. It must hold that 𝑡𝑘 + 1 ≤ 𝑡max ≤ 𝑡𝑘 + 𝑛− 1. In the interval



5.5. Mixing of systematic scan 105

[𝑡𝑘 +1, 𝑡𝑘 + 𝑛−1], there are at most 𝑘 −1 times so that one of the vertices in 𝑒 is up-

dated (this vertex cannot be 𝑡𝑘 as its update times are 𝑡𝑘 and 𝑡𝑘 + 𝑛). Thus, there are

𝑘 −1 choices of 𝑡max again. Once 𝑡max is fixed, since edge
(
𝑓 ext) = 𝑒, 𝑓 ext

is also fixed.

Overall, the number of 𝑓 ext ∈ 𝑁self(𝑒ext) is at most 2(𝑘 −1) ≤ 2𝑘 .

To bound the number of outside-neighbours. We first choose one of the 𝑘 ex-

tended vertices in 𝑒ext
, say (𝑡𝑖, 𝑢𝑖). Then consider 𝑓 ext ∈ 𝑁out(𝑒ext) such that (𝑡𝑖, 𝑢𝑖) ∈

𝑓 ext
. By Item 2, the number of such 𝑓 ext

is at most Δ𝑘 , implying the overall bound of

Δ𝑘2
. □

Consider the IPP P = 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

. Define the parameters 𝑅self and 𝑅out by

𝑅self :=
��{2 ≤ 𝑖 ≤ ℓ | 𝑒ext

𝑖 ∈ 𝑁self(𝑒ext
𝑖−1)

}�� ;
𝑅out :=

��{2 ≤ 𝑖 ≤ ℓ | 𝑒ext
𝑖 ∈ 𝑁out(𝑒ext

𝑖−1)
}�� .

By definition, 𝑅self counts the number of consecutive self neighbours in P and 𝑅out

counts the number of consecutive outside neighbours in P. It holds that 𝑅self +𝑅out =

ℓ−1. We have the following lemma.

Lemma 5.32. Suppose 𝑘 ≥ 20 and 𝑞 ≥ 40Δ 2
𝑘−4 . For any IPP P = 𝑒ext

1 , 𝑒ext
2 , . . . , 𝑒ext

ℓ
, it

holds that

PrC [B(P)] ≤ 103Δ𝑘6
(

1
103Δ𝑘6

)𝑅out+ 1
3 (𝑅self−𝑏)

,

where 𝑏 is an integer satisfying 0 ≤ 𝑏 ≤ min{𝑅self ,2𝑅out}.

The proof of Lemma 5.32 is given in Section 5.5.4, where we will specify the value

of the integer 𝑏. Now, we use Lemma 5.32 to prove Lemma 5.21. We remark that in

the proof of Lemma 5.21, we do not use the specific value of 𝑏, we only use the fact

that 0 ≤ 𝑏 ≤ min{𝑅self ,2𝑅out}.

Proof of Lemma 5.21. First fix an integer ℓ ≥ ⌊𝑇/𝑛⌋ and an integer 0 ≤ 𝑟 ≤ ℓ−1. Con-

sider the IPP P of length ℓ such that 𝑅out = 𝑟 and 𝑅self = ℓ−1−𝑟 . By the definition of

IPP (Definition 5.27) together with Lemma 5.31, the number of such path P is at most(
ℓ−1
𝑟

)
𝑑vtx𝑑

𝑟
out𝑑

ℓ−1−𝑟
self ≤ Δ𝑘

(
ℓ−1
𝑟

) (
Δ𝑘2

)𝑟
(2𝑘)ℓ−1−𝑟 .

By Lemma 5.32 and the union bound in (5.22), we have

PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)] ≤
∑︁

ℓ≥⌈𝑇/𝑛⌉

∑︁
P: IPP of length ℓ

PrC [B(P)]

≤
∑︁

ℓ≥⌈𝑇/𝑛⌉

ℓ−1∑︁
𝑟=0

Δ𝑘

(
ℓ−1
𝑟

) (
Δ𝑘2

)𝑟
(2𝑘)ℓ−1−𝑟 ·103Δ𝑘6

(
1

103Δ𝑘6

)𝑟+ 1
3 (ℓ−1−𝑟−𝑏(ℓ,𝑟))

,
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where 𝑏(ℓ,𝑟) is an integer satisfying 0 ≤ 𝑏(ℓ,𝑟) ≤ min{ℓ−1− 𝑟,2𝑟}. Since 𝑏(ℓ,𝑟) ≤

ℓ−1− 𝑟 , it holds that

(
1

103Δ𝑘6

) ℓ−1−𝑟−𝑏 (ℓ,𝑟 )
3 ≤

(
1

103𝑘6

) ℓ−1−𝑟−𝑏 (ℓ,𝑟 )
3

, which implies

PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)]

≤
∑︁

ℓ≥⌈𝑇/𝑛⌉

ℓ−1∑︁
𝑟=0

Δ𝑘

(
ℓ−1
𝑟

) (
Δ𝑘2

)𝑟
(2𝑘)ℓ−1−𝑟 ·103Δ𝑘6

(
1

103Δ𝑘6

)𝑟 (
1

103𝑘6

) ℓ−1−𝑟−𝑏 (ℓ,𝑟 )
3

= 103Δ2𝑘7
∑︁

ℓ≥⌈𝑇/𝑛⌉

ℓ−1∑︁
𝑟=0

(
ℓ−1
𝑟

) (
1

5𝑘

)ℓ−1−𝑟 (
1

103𝑘4

)𝑟 (
1

10𝑘2

)−𝑏(ℓ,𝑟)
.

Note that 𝑘 ≥ 20. Since 0 ≤ 𝑏(ℓ,𝑟) ≤ 2𝑟 , we have

(
1

10𝑘2

)−𝑏(ℓ,𝑟)
≤

(
1

10𝑘2

)−2𝑟
= (100𝑘4)𝑟 ,

which imples

PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)] ≤ 103Δ2𝑘7
∑︁

ℓ≥⌈𝑇/𝑛⌉

(
1

10

)ℓ−1 ℓ−1∑︁
𝑟=0

(
ℓ−1
𝑟

)
= 103Δ2𝑘7

∑︁
ℓ≥⌈𝑇/𝑛⌉

(
1
5

)ℓ−1

≤ 103Δ2𝑘7
(
1
2

)𝑇/𝑛
.

Note that 𝑇 ≥ 40𝑛 log 𝑛Δ
𝜖

and 𝑘 ≤ 𝑛. We have

PrC [𝑋𝑇 (𝑣) ≠ 𝑌𝑇 (𝑣)] ≤
𝜖

𝑛
. □

5.5.4 Proof of Lemma 5.32

Fix an IPP P = 𝑒ext
1 , 𝑒ext

2 , . . . , 𝑒ext
ℓ

. We define a total ordering among all extended hy-

peredges in P. For any two extended hyperedges 𝑒ext
𝑖

and 𝑒ext
𝑗

in P, we say 𝑒ext
𝑖

< 𝑒ext
𝑗

if and only if 𝑖 < 𝑗 .

Lemma 5.33. There exists a subsequence 𝑓 ext
1 < 𝑓 ext

2 < . . . < 𝑓 ext
𝑚 in IPP P such that

• for any 1 ≤ 𝑖, 𝑗 ≤ 𝑚 satisfying |𝑖− 𝑗 | ≥ 2, 𝑓 ext
𝑖
∩ 𝑓 ext

𝑗
= ∅;

• for any 2 ≤ 𝑖 ≤ 𝑚,

�� 𝑓 ext
𝑖
∩ 𝑓 ext

𝑖−1

�� ≤ 1;

• 𝑚 ≥ 𝑅out + 1
3 (𝑅self − 𝑏) for some integer 0 ≤ 𝑏 ≤ min{𝑅self ,2𝑅out}.

Note that { 𝑓 ext
𝑖
} given in Lemma 5.33 is not necessarily a path. What we do in

Lemma 5.33 is to prune certain self-neighbours from P so that the second property

holds. To be more precise, for a maximal sequence of consecutive self-neighbouring

hyperedges, we prune all hyperedges that are in even positions of this sequence. We

give a formal proof below.
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Proof of Lemma 5.33. There are ℓ− 1 pairs of adjacent extended hyperedges, i.e. 𝑒ext
𝑖−1

and 𝑒ext
𝑖

are adjacent for 2 ≤ 𝑖 ≤ ℓ. Define

𝑆out :=
{
integer 𝑖 ∈ [2, ℓ] | 𝑒ext

𝑖 ∈ 𝑁out(𝑒ext
𝑖−1)

}
.

Note that |𝑆out | = 𝑅out. Denote 𝑅 = 𝑅out. Suppose the elements in 𝑆out are 2 ≤ 𝑖1 <

𝑖2 < . . . < 𝑖𝑅 ≤ ℓ. In addition, we define 𝑖0 = 1 and 𝑖𝑅+1 = ℓ +1, although 𝑖0 ∉ 𝑆out and

𝑖𝑅+1 ∉ 𝑆out. Removing all the elements in 𝑆out, the integers in the interval [2, ℓ] splits

into a set 𝐼self of sub-intervals:

𝐼self := {[𝑙, 𝑟] | ∃ 𝑗 s.t. 0 ≤ 𝑗 ≤ 𝑅, 𝑙 = 𝑖 𝑗 +1, 𝑟 = 𝑖 𝑗+1−1, and 𝑙 ≤ 𝑟}.

Equivalently, 𝐼self can be constructed by going through all 𝑗 from 0 to 𝑅, and adding

the interval [𝑖 𝑗 +1, 𝑖 𝑗+1−1] to the set 𝐼self if 𝑖 𝑗 +1 ≤ 𝑖 𝑗+1−1. For each interval [𝑙, 𝑟] ∈
𝐼self , the following properties hold

1. for each integer 𝑖 ∈ [𝑙, 𝑟], 𝑒ext
𝑖
∈ 𝑁self

(
𝑒ext
𝑖−1

)
;

2. either 𝑙 = 2 or 𝑒ext
𝑙−1 ∈ 𝑁out

(
𝑒ext
𝑙−2

)
;

3. either 𝑟 = ℓ or 𝑒ext
𝑟+1 ∈ 𝑁out

(
𝑒ext
𝑟

)
.

In other words, each interval [𝑙, 𝑟] ∈ 𝐼self represents a sequence of consecutive ex-

tended hyperedges in the IPP P of length 𝑟 − 𝑙 +1 such that each extended hyperedge

is a self-neighbour of its predecessor in P, and this sequence is maximal.

Suppose the intervals in 𝐼self are [𝑙1, 𝑟1], [𝑙2, 𝑟2], . . . , [𝑙𝑎, 𝑟𝑎] such that 𝑙1 ≤ 𝑟1 < 𝑙2 ≤
𝑟2 < . . . < 𝑙𝑎 ≤ 𝑟𝑎 , where 𝑎 = |𝐼self |. It is straightforward to verify that

𝑎∑︁
𝑖=1
(𝑟𝑖 − 𝑙𝑖 +1) = 𝑅self . (5.23)

Define a subset 𝐼
(1)
self ⊆ 𝐼self by

𝐼
(1)
self := {[𝑙, 𝑟] ∈ 𝐼self | 𝑙 = 𝑟} .

The quantity 𝑏 is the size of 𝐼
(1)
self , i.e. 𝑏 :=

���𝐼 (1)self

���. Since 𝐼
(1)
self is a subset of 𝐼self , by (5.23),

we have

𝑏 ≤ 𝑅self . (5.24)

Note that ℓ ≥ 𝑇/𝑛 ≥ 40log𝑛 ≥ 20. If 𝑅out = 0, then 𝐼self contains only a single interval

[2, ℓ]. Thus 𝑏 = 0 and we have 𝑏 ≤ 2𝑅out. Otherwise 𝑅out ≥ 1. By property 3 above,
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for each 𝑗 ∈ [𝑎], it holds that either 𝑟 𝑗 = ℓ or 𝑒ext
𝑟 𝑗+1 ∈ 𝑁out

(
𝑒ext
𝑟 𝑗

)
(namely 𝑟 𝑗 +1 ∈ 𝑆out).

This implies 𝑏 ≤ 𝑅 +1 = 𝑅out +1 ≤ 2𝑅out, because there are at most one (𝑙 𝑗 , 𝑟 𝑗 ) ∈ 𝐼 (1)self

satisfying 𝑙 𝑗 = 𝑟 𝑗 = ℓ. Hence, in both cases, we have

𝑏 ≤ 2𝑅out. (5.25)

Combining (5.24) and (5.25) proves that 𝑏 ≤ min{𝑅self ,2𝑅out}.
Finally, we construct the the subsequence 𝑓 ext

1 < 𝑓 ext
2 < . . . < 𝑓 ext

𝑚 from IPP P. We

construct a subset F by the following procedure.

• For each 𝑖 ∈ 𝑆out, we add 𝑒ext
𝑖

into F .

• For each interval [𝑙, 𝑟] ∈ 𝐼self , for all integers 𝑗 ∈ [𝑙, 𝑟] such that ( 𝑗 − 𝑙) is an odd

number, we add 𝑒ext
𝑗

into F . Note that by property 2, if 𝑙 > 2, 𝑒ext
𝑙−1 is always in

F because of the previous rule.

• To finish, we sort all extended hyperedges in F to obtain 𝑓 ext
1 < 𝑓 ext

2 < . . . < 𝑓 ext
𝑚 .

We now verify the three properties in Lemma 5.33.

• By the definition of IPP, for any 1 ≤ 𝑖, 𝑗 ≤ ℓ satisfying |𝑖− 𝑗 | ≥ 2, 𝑒ext
𝑖
∩ 𝑒ext

𝑗
= ∅.

Since 𝑓 ext
1 < 𝑓 ext

2 < . . . < 𝑓 ext
𝑚 is a subsequence of P, the first property holds.

• Fix an index 2 ≤ 𝑗 ≤ 𝑚. Suppose 𝑓 ext
𝑗−1 = 𝑒ext

𝑗1
and 𝑓 ext

𝑗
= 𝑒ext

𝑗2
. If | 𝑗1− 𝑗2 | ≥ 2,

then

�� 𝑓 ext
𝑖
∩ 𝑓 ext

𝑖−1

�� = 0. Assume 𝑗1 + 1 = 𝑗2, which means that 𝑒ext
𝑗1

and 𝑒ext
𝑗2

are

neighbours in extended hypergraph. If 𝑒ext
𝑗2
∈ 𝑁out(𝑒ext

𝑗1
), by Observation 5.30,

it holds that

�� 𝑓 ext
𝑖
∩ 𝑓 ext

𝑖−1

�� = 1. Otherwise, 𝑒ext
𝑗2
∈ 𝑁self(𝑒ext

𝑗1
). There must exist an

interval [𝑙, 𝑟] ∈ 𝐼self such that either 𝑗1, 𝑗2 ∈ [𝑙, 𝑟] or 𝑗1 ∉ [𝑙, 𝑟] but 𝑗2 ∈ [𝑙, 𝑟]. The

first case is impossible because we do not add two consecutive indices in any

interval of 𝐼self . The second case is also impossible because it implies 𝑗1 = 𝑙 −1
and 𝑗2 = 𝑙, but 𝑙 cannot be added.

• All extendeds hyperedge in 𝑆out are added into F . For each interval [𝑙, 𝑟] ∈ 𝐼self ,

⌊ 𝑟−𝑙+12 ⌋ extended hyperedges in [𝑙, 𝑟] are added into F . Hence, if 𝑙 ≠ 𝑟 , the

number of vertices in [𝑙, 𝑟] added to F is at least (𝑟 − 𝑙 + 1)/3 (with 𝑟 = 𝑙 + 2
being the worst case). By (5.23), we have 𝑚 ≥ 𝑅out + 1

3 (𝑅self − 𝑏).

Hence, the subsequence 𝑓 ext
1 < 𝑓 ext

2 < . . . < 𝑓 ext
𝑚 satisfies all the properties in Lemma 5.33.

□

Now we are ready to prove Lemma 5.32.
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Proof of Lemma 5.32. Let 𝑓 ext
1 < 𝑓 ext

2 < . . . < 𝑓 ext
𝑚 be the subsequence given in Lemma 5.33.

For each 𝑓 ext
𝑖

and 𝑐 ∈ [𝑠], define a bad event B𝑖 (𝑐) that for all ( 𝑗 ,𝑤) ∈ 𝑓 ext
𝑖

, either

𝑋 𝑗 (𝑤) ≠ 𝑌 𝑗 (𝑤) or 𝑋 𝑗 (𝑤) = 𝑌 𝑗 (𝑤) = 𝑐. Note that 𝑓 ext
1 < 𝑓 ext

2 < . . . < 𝑓 ext
𝑚 is a subse-

quence in IPP P, the probability of B(P) can be bounded as follows

PrC [B(P)] ≤ PrC [∀𝑖 ∈ [𝑚],∃𝑐𝑖 ∈ [𝑠] s.t. B𝑖 (𝑐𝑖)] .

By (5.21), it holds that ℓ ≥ 𝑇/𝑛 ≥ 40log𝑛 ≥ 20. By the last property in Lemma 5.33,

𝑚 ≥ 1
3 (𝑅out+𝑅self) = ℓ−1

3 > 6. We further truncate the last element 𝑓 ext
𝑚 and obtain the

following inequality

PrC [B(P)] ≤ PrC [∀𝑖 ∈ [𝑚−1],∃𝑐𝑖 ∈ [𝑠] s.t. B𝑖 (𝑐𝑖)] ≤
∑︁

c∈[𝑠]𝑚−1

PrC

[
𝑚−1∧
𝑖=1
B𝑖 (𝑐𝑖)

]
,

(5.26)

where the second inequality follows from the union bound, and c = (𝑐1, . . . , 𝑐𝑚−1) ∈
[𝑠]𝑚−1

. The truncation ensures that all elements ( 𝑗 ,𝑤) ∈ ∪𝑚−1
𝑖=1 𝑓 ext

𝑖
satisfy 𝑗 > 0. (See

Definition 5.27 of IPPs.)

Fix c ∈ [𝑠]𝑚−1
, we bound the probability of the event

∧𝑚−1
𝑖=1 B𝑖 (𝑐𝑖). For each 1 ≤

𝑖 < 𝑚, we define

𝑆ext
𝑖 :=


𝑓 ext
𝑖

if 𝑖 = 1;

𝑓 ext
𝑖
\ 𝑓 ext

𝑖−1 if 𝑖 > 1.

Since 𝑆ext
𝑖
⊆ 𝑓 ext

𝑖
, we have the following bound

PrC

[
𝑚−1∧
𝑖=1
B𝑖 (𝑐𝑖)

]
≤ PrC

[
𝑚−1∧
𝑖=1

(
∀( 𝑗 ,𝑤) ∈ 𝑆ext

𝑖 ,
(
𝑋 𝑗 (𝑤) ≠ 𝑌 𝑗 (𝑤)

)
∨

(
𝑋 𝑗 (𝑤) = 𝑌 𝑗 (𝑤) = 𝑐𝑖

) ) ]
.

By the first property in Lemma 5.33, all 𝑆ext
𝑖

are mutually disjoint. Now we list all the

extended vertices ∪𝑚−1
𝑖=1 𝑆ext

𝑖
as ( 𝑗1,𝑤1), ( 𝑗2,𝑤2), . . . , ( 𝑗𝑀 ,𝑤𝑀), where 0 < 𝑗1 < 𝑗2 <

. . . < 𝑗𝑀 . For each 1 ≤ 𝑝 ≤ 𝑀 , there is a unique 𝑖 such that ( 𝑗𝑝,𝑤𝑝) ∈ 𝑆ext
𝑖

and we

denote idx( 𝑗𝑝) := 𝑖. We define a bad event A(𝑝) that either 𝑋 𝑗𝑝 (𝑤𝑝) ≠ 𝑌 𝑗𝑃 (𝑤𝑝) or

𝑋 𝑗𝑝 (𝑤𝑝) =𝑌 𝑗𝑃 (𝑤𝑝) = 𝑐idx( 𝑗𝑝) . Using the chain rule for the RHS of the inequality above,

it holds that

PrC

[
𝑚−1∧
𝑖=1
B𝑖 (𝑐𝑖)

]
≤

𝑀∏
𝑝=1

PrC

[
A(𝑝) |

∧
𝑝′<𝑝

A(𝑝′)
]
.

Consider the probability ofA(𝑝) conditional on allA(𝑝′) for 𝑝′ < 𝑝. To simplify the

notation, let 𝑗 = 𝑗𝑝 > 0 and 𝑤 = 𝑤𝑝 . In the 𝑗-th update, 𝑋 𝑗 (𝑤) is sampled from the
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distribution 𝜈
𝑋 𝑗−1 (𝑉\{𝑤})
𝑤 and 𝑌 𝑗 (𝑤) is sampled from the distribution 𝜈

𝑌 𝑗−1 (𝑉\{𝑤})
𝑤 . For

any 𝜏 ∈ [𝑠]𝑉\{𝑤}, it holds that

∀𝑥 ∈ [𝑠], 𝜈𝜏𝑤 (𝑥) =
∑︁

𝑦∈ℎ−1 (𝑥)
𝜇𝜏𝑤 (𝑦).

Note that 𝜇𝜏 is actually the uniform distribution over a list colouring instance on 𝐻

where for each 𝑢 ≠ 𝑤, the colour list is ℎ−1(𝜏𝑢), and the colour list for 𝑤 is [𝑞]. Hence,

for each 𝑢 ≠ 𝑤, the size of colour list of 𝑢 is at least ⌊𝑞/𝑠⌋, and the size of colour list

of 𝑤 is 𝑞, where 𝑠 =
⌈√

𝑞
⌉
. Note that 𝑞 ≥ 40Δ 2

𝑘−4 and 𝑘 ≥ 20 implies ⌊𝑞/𝑠⌋𝑘 ≥ 2e𝑞2𝑘Δ.

By Lemma 5.2, for all 𝜏 ∈ [𝑠]𝑉\{𝑤}, it holds that

∀𝑦 ∈ [𝑞], 1
𝑞

(
1− 4

𝑘𝑞

)
≤ 1

𝑞
exp

(
− 2
𝑘𝑞

)
≤ 𝜇𝜏𝑤 (𝑦) ≤

1
𝑞

exp
(

2
𝑘𝑞

)
≤ 1

𝑞

(
1+ 4

𝑘𝑞

)
.

Hence, for any 𝜏 ∈ [𝑠]𝑉\{𝑤}, it holds that for any 𝑥 ∈ [𝑠],��ℎ−1(𝑥)
��

𝑞

(
1− 4

𝑘𝑞

)
≤ 𝜈𝜏𝑤 (𝑥) ≤

��ℎ−1(𝑥)
��

𝑞

(
1+ 4

𝑘𝑞

)
.

Note that all the events A(𝑝′) for 𝑝′ < 𝑝 are determined by the updates from time 1

to time 𝑗 −1. The above bounds for 𝜈𝜏𝑤 (𝑥) holds for any configuration 𝜏 ∈ [𝑠]𝑉\{𝑤}. In

the 𝑗-th update step, since 𝑋 𝑗 (𝑤) and 𝑌 𝑗 (𝑤) are coupled by the optimal coupling and��ℎ−1(𝑥)
�� ≤ ⌈𝑞/𝑠⌉, we have the probability of 𝑋 𝑗 (𝑤) ≠𝑌 𝑗 (𝑤) is at most

1
2
∑

𝑥∈[𝑠]
|ℎ−1 (𝑥) |

𝑞
·

8
𝑘𝑞

= 4
𝑘𝑞

, and the probability of 𝑋 𝑗 (𝑤) = 𝑌 𝑗 (𝑤) = 𝑐𝑖 is at most
⌈𝑞/𝑠⌉
𝑞

(
1+ 4

𝑘𝑞

)
. Hence,

PrC

[
A(𝑝) |

∧
𝑝′<𝑝

A(𝑝′)
]
≤ 4

𝑘𝑞
+ ⌈𝑞/𝑠⌉

𝑞

(
1+ 4

𝑘𝑞

)
(★)
≤ ⌈𝑞/𝑠⌉

𝑞

(
1+ 5

𝑘

)
≤ 1.16
√
𝑞

(
1+ 5

𝑘

)
.

where (★) holds because
⌈𝑞/𝑠⌉
𝑘𝑞
≥ 4

𝑘𝑞
if 𝑞 ≥ 40 and the last inequality is due to ⌈𝑞/𝑠⌉ ≤

1.16√𝑞. This implies

PrC

[
𝑚−1∧
𝑖=1
B𝑖 (𝑐𝑖)

]
≤

𝑀∏
𝑝=1

(
1.16
√
𝑞

(
1+ 5

𝑘

))
=

𝑚−1∏
𝑖=1

(
1.16
√
𝑞

(
1+ 5

𝑘

)) |𝑆ext
𝑖 |

.

By the second property in Lemma 5.33 and the definition 𝑆ext
𝑖

, it holds that

∀1 ≤ 𝑖 ≤ 𝑚,
��𝑆ext

𝑖

�� ≥ 𝑘 −1.
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Combining with (5.26), we have

PrC [B(P)] ≤
∑︁

c∈[𝑠]𝑚−1

PrC

[
𝑚−1∧
𝑖=1
B𝑖 (𝑐𝑖)

]
≤

∑︁
c∈[𝑠]𝑚−1

(
1.16
√
𝑞

(
1+ 5

𝑘

)) (𝑚−1) (𝑘−1)

≤
(
𝑠

(
1.16
√
𝑞

(
1+ 5

𝑘

)) 𝑘−1
)𝑚−1

.

Now we claim that

𝑠

(
1.16
√
𝑞

(
1+ 5

𝑘

)) 𝑘−1
≤ 1

103Δ𝑘6 .

Using 𝑠 = ⌈√𝑞⌉ ≤ 1.16√𝑞, it suffices to show that

1.16×103(1.16)𝑘−1
(
1+ 5

𝑘

) 𝑘−1
Δ𝑘6 ≤ 𝑞 (𝑘−2)/2.

Using

(
1+ 5

𝑘

) 2(𝑘−1)
𝑘−2 ≤ 1.7 and 𝑘12/(𝑘−2) ≤ 7.4 for 𝑘 ≥ 20, we further simplifies the

condition into

𝑞 ≥ 7.4×1.7× (1.16×103)2/(𝑘−2) (1.16)2(𝑘−1)/(𝑘−2)Δ2/(𝑘−2) ,

which is implied by 𝑞 ≥ 40Δ 2
𝑘−4 and 𝑘 ≥ 20.

The claim implies that

PrC [B(P)] ≤
(

1
103Δ𝑘6

)𝑚−1
= 103Δ𝑘6

(
1

103Δ𝑘6

)𝑚
.

Finally, by the third property in Lemma 5.33, we have

PrC [B(P)] ≤ 103Δ𝑘6
(

1
103Δ𝑘6

)𝑅out+ 1
3 (𝑅self−𝑏)

. □





Chapter 6

Ferromagnetic Ising model

The Ising model is a classical statistical physics model for ferromagnetism that had

far-reaching impact in many areas. In computer science / combinatorics terms, the

model defines a weighted distribution over cuts of a graph. To be more precise, let𝐺 =

(𝑉,𝐸) be a simple undirected graph. For each edge 𝑒 ∈ 𝐸 , we have the local interaction

strength 𝛽𝑒 ∈ R>0, and for each vertex 𝑣 ∈ 𝑉 , we have the external magnetic field

(namely vertex weight) 𝜆𝑣 ∈ R>0. An Ising model is specified by the tuple (𝐺; 𝛽,𝜆),
where 𝛽 = (𝛽𝑒)𝑒∈𝐸 and 𝜆 = (𝜆𝑣)𝑣∈𝑉 . We assign spins {0,1} to the vertices 𝑉 . For each

spin configuration 𝜎 ∈ {0,1}𝑉 , the weight of 𝜎 is defined by

wtIsing(𝜎) :=
∏

𝑒=(𝑢,𝑣)∈𝐸
𝛽
I[𝜎(𝑢)=𝜎(𝑣)]
𝑒

∏
𝑢∈𝑉

𝜆
𝜎(𝑢)
𝑢 ,

where I[𝜎(𝑢) = 𝜎(𝑣)] is the indicator variable of the event 𝜎(𝑢) = 𝜎(𝑣). The Gibbs

distribution 𝜋Ising is defined by

∀𝜎 ∈ {0,1}𝑉 , 𝜋Ising(𝜎) =
wtIsing(𝜎)

𝑍Ising

, (6.1)

where

𝑍Ising = 𝑍Ising(𝐺; 𝛽,𝜆) :=
∑︁

𝜏∈{0,1}𝑉
wtIsing(𝜏)

is the partition function. In this part we focus on the ferromagnetic case, where 𝛽𝑒 > 1
for all 𝑒 ∈ 𝐸 , with consistent fields, where 𝜆𝑣 ∈ (0,1] for all 𝑣 ∈𝑉 . Note that by flipping

the spins, the last assumption is equivalent to assuming 𝜆𝑣 ∈ [1,∞) for all 𝑣 ∈ 𝑉 .

There is extensive computational interest in simulating the Ising model and in

evaluating various quantities related to it. A major contribution in the rigorous al-

gorithmic study of the model is the Jerrum-Sinclair algorithm [JS93], which is the

113
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first fully polynomial-time randomised approximation scheme (FPRAS) for the partition

function 𝑍Ising of the ferromagnetic Ising model with consistent fields on any graph.

The main ingredient of their algorithm is to show that a natural Markov chain mixes

in polynomial-time to sample from the so-called “subgraph-world” model, which has

the same partition function up to some easy to compute factors.

Usually, using self-reducibility, approximately evaluating the partition function is

computationally inter-reducible to approximate sampling [JVV86]. However, in the

case of the Ising model, the original algorithm by Jerrum and Sinclair does not directly

yield a sampling algorithm for spin configurations. This is because inconsistent fields

may be created during the self-reduction, making the algorithm no longer applicable.

To circumvent this issue, Randall and Wilson [RW99] showed that when there is no

external field, an efficient approximate sampler for spin configurations exists by doing

self-reductions in the so-called random cluster model. This is a model introduced by

Fortuin and Kasteleyn [FK72] and also has the same partition function as the previous

two models up to some easy to compute factors.
1

On the other hand, a different Markov chain introduced by Swendsen and Wang

[SW87] has shown great performance on sampling Ising configurations in practice.

This dynamics is best understood via the Edwards-Sokal distribution [ES88], which is

a joint distribution on both edges and vertices. The marginal distribution on vertices

is the Ising model, and the marginal distribution on edges is the random cluster model.

Sokal and later Peres
2

conjectured that the Swendsen-Wang (SW) dynamics mixes in

polynomial-time for ferromagnetic Ising models, and this was resolved in affirmative

by Guo and Jerrum [GJ18]. They showed that the edge-flipping dynamics for the

random cluster model mixes in polynomial-time, and this dynamics is known to be

no faster than the SW dynamics [Ull14]. Another consequence of [GJ18] is that there

is a perfect sampler for the ferromagnetic Ising model and the corresponding random

cluster model, improving upon the approximate sampler of [RW99]. This is done via

monotone coupling from the past (CFTP) [PW96b] as the random cluster model is

monotone.

One restriction of [GJ18] is that their result only applies to the ferromagnetic Ising

model without external fields. The original random cluster formulation of [FK72] does

not incorporate external fields, although it is not hard to do so by generalising to a

weighted random cluster formulation. Indeed, Park, Jang, Galanis, Shin, Štefankovič,

1
The random cluster model has a parameter 𝑞 > 0. The Ising model corresponds to the case of 𝑞 = 2.

2
Peres further conjectured that the sharp mixing time bound is 𝑂 ( |𝑉 |1/4).
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and Vigoda [PJG
+
17] generalised the SW dynamics 𝑃

Ising
SW (see Section 6.1.2.2 for de-

tailed description) in the presence of external fields. They also showed efficiency of

this algorithm in certain parameter regimes and on random graphs. This left open the

question if the generalised SW dynamics is efficient in general.

First, we show that the edge-flipping dynamics for the weighted random cluster

model mixes in polynomial-time. By adapting [Ull14] to the case with fields, this

implies that the generalised SW dynamics has a polynomial running time for any fer-

romagnetic Ising model with consistent fields on any graph, answering the question

above.

Theorem 6.1. Let 1 < 𝛽min ≤ 𝛽max be constants. For any ferromagnetic Ising model

on graph 𝐺 = (𝑉,𝐸) with parameters (𝛽𝑒)𝑒∈𝐸 and (𝜆𝑣)𝑣∈𝑉 , where 𝛽min ≤ 𝛽𝑒 ≤ 𝛽max

and 0 < 𝜆𝑣 ≤ 1, the mixing time of Swendsen-Wang dynamics is 𝑂 (𝑁4𝑚2
(
𝑚 + log 1

𝜖
)
)
,

where 𝑁 = min
{
𝑛, 1

1−𝜆max

}
, 𝜆max = max𝑣∈𝑉 𝜆𝑣 , 𝑛 = |𝑉 | and 𝑚 = |𝐸 |.

Note that if 𝛽𝑒 = 1 for some 𝑒 ∈ 𝐸 , it is equivalent to remove such an edge. Also if

𝜆𝑣 = 0 for some 𝑣 ∈ 𝑉 , it is equivalent to pin 𝑣 to 0 and then absorb 𝑣 into its neigh-

bours external fields. Thus, any ferromagnetic Ising model with consistent external

fields can be transformed into one satisfying the condition of Theorem 6.1. The big-𝑂

notation hides a constant factor depending only on 𝛽min and 𝛽max. See (6.30) for the

details of the hidden constant.

The main technical innovation of ours is to introduce a grand model, which in-

corporates both the so-called subgraph world [JS93] and the random cluster model.

The subgraph world assigns weights to subsets of edges, where each vertex of an odd

degree in the induced graph suffers a penalty corresponding to its external field (or

the lack thereof). Detailed definitions of the basic models are given in Section 6.1.1.

The main inspiration of our grand model is the coupling given by Grimmett and

Janson [GJ07b] between the two models above without external fields. Our model

assigns 3 states to each edge: 0,1,2. A sample of our model can be generated as fol-

lows: first, we sample a subset of edges from the subgraph world model, and assign

1 to them; then, we assign 0 or 2 to each remaining independently with a carefully

chosen probability. Detailed definitions are in Section 6.2.1. The marginal distribu-

tion of edges assigned 1 clearly follow the subgraph world distribution, and we show

that the non-zero edges follow the weighted random cluster model (Lemma 6.12).

This last step is done using Valiant’s holographic transformations [Val08]. It is also a

generalisation of [GJ07b] in the presence of external fields.
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We give a polynomial upper bound of the mixing time of the Glauber dynamics

for the grand model in Section 6.3 via the method of canonical paths [JS89]. Our

construction of the canonical path is a variation of the original paths by Jerrum and

Sinclair [JS93]. The projection of this dynamics to the non-zero edges is exactly the

Glauber dynamics for the weighted random cluster model. We show that this project

does not slow down the dynamics (Section 6.5), and therefore mixing time bounds for

the weighted random cluster model is a direct consequence. This implies Theorem 6.1.

When there is no field, our argument recovers the result of Guo and Jerrum [GJ18].

However, our argument is both simpler and more general.

Another important feature of the grand model is that it gives a Gibbs distribu-

tion, in the sense that variables are independent if we condition on a subset of edges

which disconnect the graph. This is a feature absent in the random cluster mod-

els. Recently, there is a lot of progress in analysing the mixing time of dynamics for

Gibbs distributions, especially using the notion of spectral independence [ALO20].

Since the domain in our case is not Boolean, we use a generalisation of [FGYZ21b]

(see also [CGŠV21] for a different generalisation). An important development along

this line is that in bounded degree graphs, spectral independence implies near-linear

mixing time of dynamics for the Gibbs distribution [CLV21a]. To be more precise,

they showed a constant decay rate for the relative entropy in this setting.

Back to the Ising model, when the maximum degree is bounded and all external

fields are bounded away from 1, Chen, Liu, and Vigoda [CLV21b] established spec-

tral independence for the subgraph world model. Using our grand model, this implies

spectral independence for the random cluster model as well. However, since the ran-

dom cluster model does not have conditional independence, the method of [CLV21a]

does not apply. Instead, we show spectral independence for the grand model in this

setting. Thus, via the method of [CLV21a] and exploiting the fact that the grand model

is indeed a Gibbs distribution, we obtain a constant decay rate for the relative entropy

for the (edge-flipping) Glauber dynamics for the weighted random cluster model. (We

apply the result of projecting chains in Section 6.5 here again.)

However, this is still not quite enough to obtain desired mixing time bounds for

the Swendsen-Wang dynamics. The reason is that the aforementioned comparison

techniques of [Ull14] is an analysis of the eigenvalues of transition matrices, and

thus it works only for spectral gaps but not for relative entropies. For this last step,

we introduce a new comparison argument for the decay rate of relative entropies

between the (edge-flipping) Glauber dynamics and the Swendsen-Wang dynamics in
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Section 6.6.

To be more precise, we perform a careful analysis between the Glauber dynamics

and the so-called “single-bond” dynamics introduced in [Ull14]. Our analysis utilises

ideas from high-dimensional random walks [ALOV19, CGM21]. For both the Glauber

dynamics and the single-bond dynamics, we decompose them into two sub-steps:

the down-walk and the up-walk. Using our grand model, we bound the decay rate

of relative entropy for the down-walk of Glauber dynamics. By a new comparison

argument, we show that the relative entropy also decays for the down-walk of “single-

bond” dynamics with a slightly weaker rate. Finally, we compare the down-walk of

“single-bond” dynamics to the Swendsen-Wang dynamics via a simple application of

the data processing inequality. Our analysis not only works for the decay of relative

entropy, but also gives a very simple proof (see Remark 6.33) to the main result in

[Ull14].

Theorem 6.2. Let 1 < 𝛽min ≤ 𝛽max,Δ ≥ 3 and 0 < 𝛿 < 1 be constants. For any ferro-

magnetic Ising model on graph 𝐺 = (𝑉,𝐸) with parameters (𝛽𝑒)𝑒∈𝐸 and (𝜆𝑣)𝑣∈𝑉 , where

𝛽min ≤ 𝛽𝑒 ≤ 𝛽max, 0 < 𝜆𝑣 ≤ 1−𝛿 and the maximum degree of 𝐺 is at most Δ, the mixing

time of Swendsen-Wang dynamics is 𝑂 (𝑛 log 𝑛
𝜖
), where 𝑛 = |𝑉 |.

By the same reasoning below Theorem 6.1, we do not lose generality by assum-

ing 𝛽min > 1 and 𝜆𝑣 > 0 in Theorem 6.2. The big-𝑂 notation hides a constant factor

depending only on 𝛽min, 𝛽max, 𝛿 andΔ. See (6.31) for the details of the hidden constant.

Comparing to Theorem 6.1, Theorem 6.2 has a faster mixing time bound but comes

with two further assumptions: constant degree bound and no trivial field. It would

be very interesting to relax either restriction. Essentially, the bottleneck in Theo-

rem 6.1 comes from the overhead in the canonical path [JS93] or multicommodity flow

method [Sin92] arguments. Unfortunately, there does not seem to be any progress in

improving the mixing time bound of these methods in the last three decades. Instead,

Theorem 6.2 relies on recent progress of analysing spin systems via high-dimensional

random walks [CLV21a, CLV21b]. This method has very recently been generalised to

bypass the bounded degree restriction [AJK
+
21, CFYZ22, CE22] in various models. It

is an interesting question whether this is also possible in the setting of Theorem 6.2.

To bypass the no trivial field restriction, we would need a new spectral independence

bound, for which there seems to be less progress. In particular, it seems hard to ex-

plain the Θ(𝑛1/4) mixing time on the complete graph without fields [LNNP14] with

spectral independence.
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Previously, most studies on Swendsen-Wang dynamics focus on the case without

fields (with the exception of [PJG
+
17] discussed earlier), and are usually for the more

general Potts model instead of just the Ising model. Very sharp mixing time bounds

have been obtained recently, either for special cases of graphs such as Z𝑑 [BCP
+
21],

or in the tree uniqueness region for general graphs [BCC
+
22]. Our Theorem 6.2 does

not have these restrictions, but it only works with the presence of non-trivial external

fields for the Ising model. In the settings of Theorem 6.2, we conjecture that the sharp

mixing time bound is 𝑂 (log𝑛). The current argument reduces the analysis of SW

dynamics to that of the single-bond dynamics, as the latter is “no-faster” in a techni-

cal sense. However, the single-bond dynamics has a Ω(𝑛 log𝑛) lower bound [HS07],

making this line of argument difficult to approach the conjectured sharp bound for

SW dynamics.

Lastly, by applying the monotone CFTP [PW96b], we obtain perfect sampling ver-

sions of the (edge-flipping) Glauber dynamics in Section 6.7 for the weighted random

cluster models. Using that, we achieve perfectly sampling for the ferromagnetic Ising

model with consistent external fields.

Theorem 6.3. Let 1 < 𝛽min ≤ 𝛽max be two constants. There is a perfect sampling al-

gorithm such that given any ferromagnetic Ising model on graph 𝐺 = (𝑉,𝐸) with pa-

rameters (𝛽𝑒)𝑒∈𝐸 and (𝜆𝑣)𝑣∈𝑉 , where 𝛽min ≤ 𝛽𝑒 ≤ 𝛽max and 0 < 𝜆𝑣 < 1, the algorithm

returns a perfect sample in expected time𝑂 (𝑁4𝑚4 log𝑛), where 𝑁 =min
{
𝑛, 1

1−𝜆max

}
and

𝜆max = max𝑣∈𝑉 𝜆𝑣 .
Furthermore, if 𝐺 has bounded maximum degree Δ = 𝑂 (1) and there exists a con-

stant 𝛿 > 0 such that 𝜆𝑣 ≤ 1 − 𝛿 for all 𝑣 ∈ 𝑉 , the algorithm runs in expected time

𝑂 (𝑛2 log2 𝑛).

We remark that the overhead in monotone CFTP is𝑂 (log |𝑉 |) and there is an extra

factor 𝑚 = |𝐸 | to implement each step of CFTP. The hidden constants can be found in

(6.41).

A natural question is if we can relax the assumptions on the parameters in The-

orem 6.1, 6.2, and 6.3. For anti-ferromagnetic Ising models, the sampling problem

(either approximate or perfect) has no polynomial-time algorithm unless NP = RP
[JS93]. Even restricted to the ferromagnetic case, Goldberg and Jerrum [GJ07a] showed

that the problem becomes #BIS-equivalent when inconsistent fields are allowed, where

#BIS stands for counting bipartite independent sets. Its approximation complexity is

a major open problem and is usually conjectured to have no polynomial-time algo-
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rithm. Thus, it is unlikely to extend the range of parameters in in Theorem 6.1, 6.2,

and 6.3.

Subsequent work. After our paper was posted on arXiv, Chen and Zhang [CZ23]

gave a sampling algorithm of the ferromagnetic Ising model on any graph with run-

ning time �̃� (𝑚), where 𝑚 is the number of edges, providing all the external fields are

bounded away from 1 and all the edge interactions are consistent and bounded away

from 1. This is a setting similar to our Theorem 6.2 without the bounded degree as-

sumption. Their work relies heavily on our coupling result, Lemma 6.12. Furthermore,

their algorithm is based on the field dynamics introduced in [CFYZ21], and does not

imply mixing time bounds for either the Glauber dynamics or the Swendsen-Wang

dynamics considered here.

6.1 Preliminaries of this chapter

This section involves numerous distributions (models) and Markov chains. The reader

is welcomed to Figure 6.1 at the end of this section where a concrete example is pro-

vided.

6.1.1 The models and their equivalences

Here we define the weighted random cluster model, and the subgraph-world model.

Then we give some equivalence results between them and the ferromagnetic Ising

model.

6.1.1.1 Weighted random cluster model

The standard random cluster model (at 𝑞 = 2) is equivalent to the ferromagnetic Ising

model without external fields. To handle Ising models with fields, we need to intro-

duce weights to the random cluster model. Given a graph 𝐺 = (𝑉,𝐸), the parameters

of this model are p = (𝑝𝑒)𝑒∈𝐸 and 𝜆 = (𝜆𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1 and 𝜆𝑣 > 0. The

weight of any subset of edges 𝑆 ⊆ 𝐸 is given by

wtwrc(𝑆) :=
∏
𝑒∈𝑆

𝑝𝑒

∏
𝑓 ∈𝐸\𝑆

(1− 𝑝 𝑓 )
∏

𝐶∈𝜅(𝑉,𝑆)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
, (6.2)

where 𝜅(𝑉, 𝑆) is the set of all connected components of the graph (𝑉, 𝑆), where each

𝐶 ∈ 𝜅(𝑉, 𝑆) is a subset of vertices that forms a connected subgraph. The probability
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that 𝑆 is drawn is

𝜋wrc(𝑆) =
wtwrc(𝑆)
𝑍wrc

(6.3)

where

𝑍wrc = 𝑍wrc(𝐺;p,𝜆) :=
∑︁
𝑆⊆𝐸

wtwrc(𝑆)

is the partition function of the weighted random cluster model. The (general) stan-

dard random cluster model allows a uniform weight 𝑞 for each connected component,

and in the special case of 𝜆𝑣 = 1 for all 𝑣 ∈ 𝑉 , the weighted random cluster model de-

generates to the standard random cluster model at 𝑞 = 2. On the other hand, in our

model the weight of each cluster depends on the vertices inside it, which makes it

different from the standard random cluster models.

6.1.1.2 Subgraph-world model

Fix a graph 𝐺 = (𝑉,𝐸). For any subset of edges 𝑆 ⊆ 𝐸 , denote by odd(𝑆) the set

of vertices with odd degree in 𝑆. The subgraph-world model [JS93] with parameters

p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 is defined by following: each subset of edges 𝑆 has weight

wtsg(𝑆) :=
∏
𝑒∈𝑆

𝑝𝑒

∏
𝑓 ∈𝐸\𝑆

(1− 𝑝 𝑓 )
∏

𝑣∈odd(𝑆)
𝜂𝑣 . (6.4)

The probability that 𝑆 is drawn is

𝜋sg(𝑆) =
wtsg(𝑆)
𝑍sg

(6.5)

where

𝑍sg = 𝑍sg(𝐺;p, 𝜂) :=
∑︁
𝑆⊆𝐸

wtsg(𝑆)

is the partition function of the subgraph-world model. In the special case where 𝑝𝑒 =

𝑝 ∈ (0,1) for all 𝑒 ∈ 𝐸 and 𝜂𝑣 = 0 for all 𝑣 ∈ 𝑉 , the weight of any subgraph 𝑆 does

not vanish if and only if 𝑆 is an even subgraph, i.e., odd(𝑆) = ∅. This yields the

even subgraph model, or the so-called “high-temperature expansion” in the context

of statistical mechanics.

6.1.1.3 Equivalences of the three models

We have the following equivalence result among the ferromagnetic Ising model with

external fields, the weighted random cluster model, and the subgraph-world model.

The proof of the equivalence result is given in Section 6.8.1 for completeness.
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Proposition 6.4. Given any graph 𝐺 = (𝑉,𝐸), any 𝛽 = (𝛽𝑒)𝑒∈𝐸 and 𝜆 = (𝜆𝑣)𝑣∈𝑉 sat-

isfying 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 , it holds that(∏
𝑒∈𝐸

𝛽𝑒

)
· 𝑍wrc(𝐺;2p,𝜆) = 𝑍Ising(𝐺; 𝛽,𝜆) =

(∏
𝑣∈𝑉
(1+𝜆𝑣)

) (∏
𝑒∈𝐸

𝛽𝑒

)
𝑍sg(𝐺;p, 𝜂), (6.6)

where p = (𝑝𝑒)𝑒∈𝐸 satisfying 𝑝𝑒 =
1
2

(
1− 1

𝛽𝑒

)
and 𝜂 = (𝜂𝑣)𝑣∈𝑉 satisfying 𝜂𝑣 =

1−𝜆𝑣
1+𝜆𝑣 .

In addition, there are also probabilistic equivalence relations among the models,

which will be the topic in Section 6.2.

Remark 6.5. For the ferromagnetic Ising model (𝐺; 𝛽,𝜆) = (𝐺; 𝛽,1), where 𝛽𝑒 = 𝛽 >

1 for all 𝑒 ∈ 𝐸 and 𝜆𝑣 = 1 for all 𝑣 ∈ 𝑉 , its relationship with the even subgraph model

and the random cluster model is well known (see e.g. [vdW41, FK72, Gri06]). Formally,

𝛽 |𝐸 |𝑍wrc(𝐺;2𝑝,1) = 𝑍Ising(𝐺; 𝛽,1) = 2|𝑉 |𝛽 |𝐸 |𝑍sg(𝐺; 𝑝,0) where 𝑝 =
1
2

(
1− 1

𝛽

)
,

which is a special case of Proposition 6.4.

6.1.2 Markov chains and down-up walks

In this part, we consider two Markov chains: Glauber dynamics and Swendsen-Wang

dynamics. It will be convenient for us to view Glauber dynamics as a so-called “down-

up” walk, which we will define next.

Let Ω0 and Ω1 denote two finite state spaces. Let 𝜇0 and 𝜇1 denote two distribu-

tions overΩ0 andΩ1 respectively. For 𝑓 , 𝑔 :Ω𝑖→R, define ⟨ 𝑓 , 𝑔⟩𝜇𝑖 =
∑

𝑥∈Ω𝑖
𝜇𝑖 (𝑥) 𝑓 (𝑥)𝑔(𝑥).

Let 𝑃↑ : Ω0×Ω1→ R≥0 and 𝑃↓ : Ω1×Ω0→ R≥0 denote two transition matrices. We

say 𝑃↑ and 𝑃↓ are a pair of adjoint operator if

∀ 𝑓 : Ω0→ R, 𝑔 : Ω1→ R, ⟨ 𝑓 , 𝑃↑𝑔⟩𝜇0 = ⟨𝑃↓ 𝑓 , 𝑔⟩𝜇1 .

The following equation holds for adjoint 𝑃↑ and 𝑃↓:

∀𝑥0 ∈ Ω0, 𝑥1 ∈ Ω1, 𝜇0(𝑥0)𝑃↑(𝑥0, 𝑥1) = 𝜇1(𝑥1)𝑃↓(𝑥1, 𝑥0).

Moreover, for any distribution 𝜈 over Ω1 and 𝑓 = 𝜈
𝜇1

, it holds that

𝐷KL

(
𝜈𝑃↓ ∥ 𝜇0

)
= Ent𝜇1

(
𝑃↑ 𝑓

)
and 𝐷𝜒2

(
𝜈𝑃↓ ∥ 𝜇0

)
= Var𝜇1 (𝑃↑ 𝑓 ).

It is straightforward to verify 𝑃∨ = 𝑃↓𝑃↑ and 𝑃∧ = 𝑃↑𝑃↓ are self-adjoint, i.e. ⟨ 𝑓 , 𝑃∨𝑔⟩𝜇1 =

⟨𝑃∨ 𝑓 , 𝑔⟩𝜇1 and ⟨ 𝑓 , 𝑃∧𝑔⟩𝜇0 = ⟨𝑃∧ 𝑓 , 𝑔⟩𝜇0 . Hence, 𝑃∨ and 𝑃∧ are reversible with respect

to 𝜇1 and 𝜇0 respectively.
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6.1.2.1 Glauber dynamics.

Given a distribution 𝜇 with support𝑄𝑉
, letΩ1 =𝑄

𝑉
andΩ0 = {𝜎 ∈𝑄𝑉\{𝑣} | 𝑣 ∈𝑉}. and

the current state 𝑋 ∈Ω, the transition 𝑋→ 𝑋′ of Glauber dynamics can be interpreted

as the following two steps

• down walk 𝑃
↓
Glauber: pick 𝑣 ∈ 𝑉 uniformly at random and transform 𝑋 ∈ Ω1 to

𝑋𝑉\𝑣 ∈ Ω0;

• up walk 𝑃
↑
Glauber: sample 𝑐 ∼ 𝜇

𝑋𝑉\{𝑣}
𝑣 and transform 𝑋𝑉\𝑣 ∈ Ω0 to 𝑋′ ∈ Ω1 such

that 𝑋′𝑣 = 𝑐 and 𝑋′
𝑉\{𝑣} = 𝑋𝑉\{𝑣}.

In other words, we clear the state of a vertex picked uniformly at random, and resam-

ple its new state proportional to the conditional probability.

Let 𝜇0 := 𝜇𝑃
↓
Glauber be a distribution over Ω0. Then 𝑃

↓
Glauber and 𝑃

↑
Glauber is a pair of

adjoint operators with respect to distributions 𝜇1 = 𝜇 and 𝜇0. Thus, Glauber dynamics

is a down-up walk and is reversible with respect to 𝜇.

6.1.2.2 Swendsen-Wang dynamics.

Let𝐺 = (𝑉,𝐸) be a graph. Consider the ferromagnetic Ising model on𝐺 with parame-

ters 𝛽 = (𝛽𝑒)𝑒∈𝐸 and 𝜆 = (𝜆𝑣)𝑣∈𝑉 , where 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸 , and the weighted random

cluster model on 𝐺 with parameters p = (𝑝𝑒)𝑒∈𝐸 and 𝜆 = (𝜆𝑣)𝑣∈𝑉 , where 𝑝𝑒 = 1− 1
𝛽𝑒

for all 𝑒 ∈ 𝐸 . Recall 𝜋Ising from (6.1) and 𝜋wrc from (6.3).

Define the following two transformations between Ising and weighted random

cluster models.

• 𝑃I→R : {0,1}𝑉 → 2𝐸 : Given any Ising configuration 𝜎 ∈ {0,1}𝑉 , 𝑃I→R trans-

forms 𝜎 into a weighted random cluster model configuration 𝑆 ⊆ 𝐸 . For each

edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 with 𝜎(𝑢) = 𝜎(𝑣), add 𝑒 independently into 𝑆 with proba-

bility 𝑝𝑒 = 1− 1
𝛽𝑒

. Formally,

∀𝜎 ∈ {0,1}𝑉 , 𝑆 ⊆ 𝐸, 𝑃I→R (𝜎,𝑆) = I[𝑆 ⊆ 𝑀 (𝜎)] ·
∏
𝑒∈𝑆

(
1− 1

𝛽𝑒

)
·

∏
𝑓 ∈𝑀 (𝜎)\𝑆

1
𝛽 𝑓

,

(6.7)

where 𝑀 (𝜎) = {𝑒 = {𝑢, 𝑣} ∈ 𝐸 | 𝜎𝑢 = 𝜎𝑣} is the set of monochromatic edges

with respect to 𝜎.
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• 𝑃R→I : 2𝐸→ {0,1}𝑉 : Given any weighted random cluster model configuration

𝑆 ⊆ 𝐸 , 𝑃R→I transforms 𝑆 to an Ising configuration 𝜎 ∈ {0,1}𝑉 . For each con-

nected component𝐶 ⊆𝑉 in graph𝐺′ = (𝑉, 𝑆), sample 𝑥𝐶 ∈ {0,1} independently

according to the following distribution

𝑥𝐶 =


1 with probability

∏
𝑣∈𝐶 𝜆𝑣

1+∏𝑣∈𝐶 𝜆𝑣
;

0 with probability
1

1+∏𝑣∈𝐶 𝜆𝑣
,

and then let 𝜎(𝑣) = 𝑥𝐶 for all vertices 𝑣 ∈ 𝐶. Formally,

∀𝜎 ∈ {0,1}𝑉 , 𝑆 ⊆ 𝐸, 𝑃R→I (𝑆,𝜎) = I[𝑆 ⊆ 𝑀 (𝜎)] ·
∏

𝐶∈𝜅(𝑉,𝑆)

∏
𝑣∈𝐶 𝜆

𝜎(𝑣)
𝑣

1+∏𝑣∈𝐶 𝜆𝑣
,

(6.8)

where 𝜅(𝑉, 𝑆) is the set of connected components in graph 𝐺′ = (𝑉, 𝑆).

The Swendsen-Wang dynamics for Ising models is defined by

𝑃
Ising
SW := 𝑃I→R𝑃R→I , (6.9)

and the Swendsen-Wang dynamics for weighted random cluster models is defined by

𝑃wrc
SW := 𝑃R→I𝑃I→R . (6.10)

The following adjoint result about Swendsen-Wang dynamics is well-known. How-

ever, here we consider more general Ising models with external fields and weighted

random cluster models. For completeness, we provide a proof of the following propo-

sition in Section 6.8.2.

Proposition 6.6. For any functions 𝑓 : {0,1}𝑉 → R and 𝑔 : 2𝐸 → R, it holds that

⟨ 𝑓 , 𝑃I→R𝑔⟩𝜋Ising = ⟨𝑃R→I 𝑓 , 𝑔⟩𝜋wrc . (6.11)

By Proposition 6.6, it holds that 𝜋Ising𝑃I→R = 𝜋wrc and 𝜋wrc𝑃R→I = 𝜋Ising. Both

𝑃
Ising
SW and 𝑃wrc

SW are down-up walks, and their stationary distributions are 𝜋Ising and

𝜋wrc respectively.

Finally, the mixing times of 𝑃
Ising
SW and 𝑃wrc

SW have the following relationships:

𝑇mix

(
𝑃

Ising
SW , 𝜖

)
≤ 𝑇mix

(
𝑃wrc

SW, 𝜖
)
+1 and 𝑇mix

(
𝑃wrc

SW, 𝜖
)
≤ 𝑇mix

(
𝑃

Ising
SW , 𝜖

)
+1. (6.12)

We prove the first one, the second one holds similarly. Let 𝑇 = 𝑇mix

(
𝑃wrc

SW, 𝜖

)
. For any

distribution 𝜈 over {0,1}𝑉 , we have

𝑑TV

(
𝜈(𝑃Ising

SW )
𝑇+1, 𝜋Ising

)
= 𝑑TV

(
(𝜈𝑃I→R) (𝑃wrc

SW)
𝑇𝑃R→I , 𝜋wrc𝑃R→I

)
(by data processing inequality) ≤ 𝑑TV

(
(𝜈𝑃I→R) (𝑃wrc

SW)
𝑇 , 𝜋wrc

)
≤ 𝜖 .
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6.1.3 Canonical paths and variance decay

Let 𝑃 denote a random walk over Ω that is reversible with respect to 𝜇. It is well-

known that 𝑃 has real eigenvalues 1 = 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆 |Ω| . The spectral gap is defined

by

𝔊𝔞𝔭(𝑃) = 1−𝜆2.

Define the Dirichlet form of 𝑃 by for any functions 𝑓 , 𝑔 : Ω→ R,

E𝑃 ( 𝑓 , 𝑔) = ⟨ 𝑓 , (𝐼 −𝑃)𝑔⟩𝜇 =
1
2

∑︁
𝑥,𝑦∈Ω

𝜇(𝑥)𝑃(𝑥, 𝑦) ( 𝑓 (𝑥) − 𝑓 (𝑦)) (𝑔(𝑥) −𝑔(𝑦)).

We can also characterise the spectral gap 𝔊𝔞𝔭(𝑃) in a variational form:

𝔊𝔞𝔭(𝑃) = inf
{
E𝑃 ( 𝑓 , 𝑓 )
Var𝜇 ( 𝑓 )

���� 𝑓 : Ω→ R∧Var𝜇 ( 𝑓 ) ≠ 0
}
. (6.13)

A useful tool to analyse the spectral gap of a reversible Markov chains is the

canonical path introduced by Jerrum and Sinclair [JS89]. Let 𝑃 be a reversible Markov

chain over the state spaceΩwith stationary distribution 𝜋. Let 𝛾𝑋𝑌 = (𝑍0 = 𝑋, 𝑍1, 𝑍2, . . . , 𝑍ℓ =

𝑌 ) be a path of length ℓ moving in the state space using transitions of 𝑃, i.e. for any

𝑖 ∈ [ℓ], 𝑃(𝑍𝑖−1, 𝑍𝑖) > 0. For each pair of 𝑋,𝑌 ∈ Ω, its path 𝛾𝑋𝑌 is assigned a weight

𝑤(𝛾𝑋𝑌 ) = 𝜇(𝑋)𝜇(𝑌 ). Let Γ be the collection of all canonical paths. The congestion of

Γ is defined by

𝜚(Γ) := max
(𝑍,𝑍 ′)∈Ω2,𝑃(𝑍,𝑍 ′)>0

𝐿

𝜇(𝑍)𝑃(𝑍, 𝑍′)
∑︁

𝛾∈Γ:(𝑍,𝑍 ′)∈𝛾
𝑤(𝛾) (6.14)

where 𝐿 is the maximum length of path in Γ. Sinclair [Sin92] showed that the con-

gestion of any collection of paths Γ for a Markov chain 𝑃 is an upper bound of the

inverse of its spectral gap, namely,

1
𝔊𝔞𝔭(𝑃) ≤ 𝜚(Γ).

Consider the down-up walk 𝑃∨ = 𝑃↓𝑃↑ over Ω1, where 𝑃↓ : Ω1 ×Ω0→ R≥0 and

𝑃↑ : Ω0×Ω1→R≥0 are a pair of adjoint operators with respect to distribution 𝜇0 over

Ω0 and 𝜇1 over Ω1. For simplicity, we denote Ω1 by Ω, and we denote 𝜇1 by 𝜇. The

following result holds for 𝑃∨.

Proposition 6.7. Let 𝑃∨ = 𝑃↓𝑃↑ be a down-up walk over Ω that is reversible with

respect to 𝜇. For any 0 < 𝛿 < 1, the spectral gap 𝔊𝔞𝔭(𝑃∨) ≥ 𝛿 if and only if for any

distribution 𝜈 over Ω,

𝐷𝜒2

(
𝜈𝑃↓ ∥ 𝜇𝑃↓

)
≤ (1− 𝛿)𝐷𝜒2 (𝜈 ∥ 𝜇) . (6.15)
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Proof. Let 𝑓 = 𝜈
𝜇

. It holds that

E𝑃∨ ( 𝑓 , 𝑓 ) = ⟨ 𝑓 , 𝑓 ⟩𝜇 − ⟨ 𝑓 , 𝑃∨ 𝑓 ⟩𝜇 = ⟨ 𝑓 , 𝑓 ⟩𝜇 − ⟨𝑃↑ 𝑓 , 𝑃↑ 𝑓 ⟩𝜇0 = Var𝜇 ( 𝑓 ) −Var𝜇0 (𝑃↑ 𝑓 ).

Then the lemma follows from 𝐷𝜒2

(
𝜈𝑃↓ ∥ 𝜇𝑃↓

)
=Var𝜇0 (𝑃↑ 𝑓 ), 𝐷𝜒2 (𝜈 ∥ 𝜇) =Var𝜇 ( 𝑓 ),

and (6.13). □

6.1.4 Spectral independence and entropy decay

Let 𝑄 be a finite set. Let 𝜇 be a distribution with support 𝑄𝑉
. Fix a partial pinning

𝜏 ∈ 𝑄Λ
for some Λ ⊆ 𝑉 . Define the absolute influence matrix Ψ𝜏

𝜇 by

∀𝑢, 𝑣 ∈ 𝑉 \Λ with 𝑢 ≠ 𝑣, Ψ𝜏
𝜇 (𝑢, 𝑣) := max

𝑖, 𝑗∈𝑄
𝑑TV

(
𝜇
𝜏∧(𝑢←𝑖)
𝑣 , 𝜇

𝜏∧(𝑢← 𝑗)
𝑣

)
∀𝑣 ∈ 𝑉 \Λ, Ψ𝜏

𝜇 (𝑣, 𝑣) := 0.

where 𝑑TV (·, ·) denotes the total variation distance and 𝜇
𝜏∧(𝑢←𝑖)
𝑣 denotes the marginal

distribution on 𝑣 conditional on that variables in Λ take the value 𝜏 and 𝑢 takes the

value 𝑖. We say that the distribution 𝜇 is ℓ∞-spectrally independent with parameter 𝜁

if

∀Λ ⊂ 𝑉,𝜎 ∈ 𝑄Λ,
Ψ𝜎

𝜇


∞ = max

𝑢∉Λ

∑︁
𝑣∉Λ

Ψ𝜎
𝜇 (𝑢, 𝑣) ≤ 𝜁 .

Call 𝜇 𝑏-marginally bounded if

min
Λ⊆𝑉,𝑣∉Λ

min
𝜎∈𝑄Λ,𝑐∈𝑄

𝜇𝜎𝑣 (𝑐) ≥ 𝑏.

In this part, we are particularly interested in Gibbs distributions. We will consider

a slightly more general than usual version defined over hypergraphs. Let 𝐻 = (𝑉,E)
be a hypergraph. Given weight functions (𝜙𝑣)𝑣∈𝑉 and (𝜙𝑒)𝑒∈E , where 𝜙𝑣 : 𝑄→ R>0

and 𝜙𝑒 : 𝑄𝑒→ R>0, define the Gibbs distribution 𝜇 over 𝑄𝑉
by

∀𝜎 ∈ 𝑄𝑉 , 𝜇(𝜎) ∝
∏
𝑣∈𝑉

𝜙𝑣 (𝜎𝑣)
∏
𝑒∈E

𝜙𝑒 (𝜎𝑒).

Let 𝐺𝜇 = (𝑉,𝐸) be a graph such that {𝑢, 𝑣} ∈ 𝐸 if 𝑢 ∈ 𝑒′ and 𝑣 ∈ 𝑒′ for some 𝑒′ ∈ E.

For any disjoint 𝐴, 𝐵,𝐶 ⊆ 𝑉 , if the removal of 𝐶 disconnects 𝐴 and 𝐵 in 𝐺𝜇, it holds

that variables in 𝐴 and 𝐵 are independent in 𝜇 conditional on any assignment on 𝐶.

Define maximum degree 𝐷𝜇 of the Gibbs distribution 𝜇 as the maximum degree of

the graph 𝐺𝜇.

The spectral independence is related to the mixing time of Glauber dynamics. The

following result is proved in [CLV21a, BCC
+
22] (see also [CLV21b, Theorem 13])
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Theorem 6.8 ([CLV21a, BCC
+
22]). Let 𝜁, 𝑏, 𝐷 > 0. For any Gibbs distribution 𝜇 over

𝑄𝑉
, where |𝑉 | = 𝑛, if 𝜇 is ℓ∞-spectrally independent with parameter 𝜁 , 𝑏-marginally

bounded and has the maximum degree at most 𝐷, then the down walk of the Glauber

dynamics satisfies that

∀distribution 𝜈 over 𝑄𝑉 , 𝐷KL

(
𝜈𝑃
↓
Glauber ∥ 𝜇𝑃

↓
Glauber

)
≤

(
1− 1

𝐶𝑛

)
𝐷KL (𝜈 ∥ 𝜇) ,

where 𝐶 =
(
𝐷
𝑏

)1+2
⌈
𝜁

𝑏

⌉
> 1 is a constant depending only on 𝜁, 𝑏 and 𝐷.

In [CLV21a, BCC
+
22], they mainly establish the so-called “approximate tensoriza-

tion of entropy” property for 𝜇. However this is equivalent to the contraction of

relative entropy by 𝑃
↓
Glauber [CLV21a].

6.1.5 Holographic transformation

We will need holographic transformations [Val08] to show couplings between the

subgraph-world model and the weighted random cluster model. Let 𝑓 : {0,1}𝑑 →
C be a function. We may represent it by a vector (either row or column vector)

( 𝑓0, · · · , 𝑓𝑥 , · · · , 𝑓2𝑑−1) where 𝑓𝑥 is the value of 𝑓 on 𝑥 ∈ {0,1}𝑑 by regarding 𝑥 as a

binary representation. In the symmetric case where 𝑓 is invariant under permuta-

tions of indices, we use a succinct “signature” [ 𝑓0, · · · , 𝑓𝑤, · · · , 𝑓𝑑] to express 𝑓 , where

𝑓𝑤 is the value of 𝑓 on inputs of Hamming weight 𝑤, i.e. all 𝑥 ∈ {0,1}𝑑 satisfying

|𝑥 | = 𝑤.

Given a bipartite graph 𝐻 = (𝑉,𝐸) with partition𝑉 =𝑉1⊎𝑉2. Let F = ( 𝑓𝑣)𝑣∈𝑉1 and

G = (𝑔𝑣)𝑣∈𝑉2 be two sets of functions such that the arity of the function is the degree of

the corresponding vertex. The (bipartite) Holant (an edge weighted partition function)

is defined by

Holant(𝐻;F | G) :=
∑︁

𝜎:𝐸→{0,1}

∏
𝑣∈𝑉1

𝑓𝑣
(
𝜎 |𝐸 (𝑣)

) ∏
𝑢∈𝑉2

𝑔𝑢
(
𝜎 |𝐸 (𝑢)

)
,

where 𝜎 |𝐸 (𝑣) stands for the restriction of the assignment 𝜎 to the incident edges of

𝑣.
3

Let 𝑴 be a 2× 2 matrix and 𝑓 be a function of arity 𝑑. If 𝑓 is represented by a

column (resp. row) vector, we write 𝑴 𝑓 = 𝑴⊗𝑑 𝑓 (resp. 𝑓𝑴 = 𝑓𝑴⊗𝑑) as the trans-

formed signature. Given Holant(𝐻;F | G) and an invertible matrix 𝑻 ∈ C2×2
, we

3
Holant problems can also be defined for not necessarily bipartite graphs, but we do not need those

here.
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view signatures in F as row vectors and define F𝑻 = { 𝑓 ′𝑣 | 𝑣 ∈ 𝑉1 ∧ 𝑓 ′𝑣 = 𝑓𝑣T}; and

view signatures in G as column vectors and define 𝑻−1G = {𝑔′𝑣 | 𝑣 ∈ 𝑉2∧𝑔′𝑣 = T−1𝑔𝑣}.
Valiant’s celebrated Holant Theorem [Val08] states

Theorem 6.9. Holant(𝐻;F | G) = Holant(𝐻;F𝑻 | 𝑻−1G) for any invertible 𝑻 ∈ C2×2
.

6.2 The grand model and a generalised Grimmett–

Janson coupling

We introduce a grand model, inspired by [GJ07b], that unifies the subgraph and ran-

dom cluster models introduced in Section 6.1.1. We also generalise the coupling of

Grimmett and Janson [GJ07b] for ferromagnetic Ising models with external fields. It

is possible to also include vertex configurations in this grand model à la Edwards and

Sokal [ES88], so that the Ising model is also unified under this framework. However

it does not appear to have much benefit and we choose not to do so.

6.2.1 The grand model

Let𝐺 = (𝑉,𝐸) be a simple undirected graph. The grand model, specified by parameters

p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 where 0 ≤ 𝑝𝑒 ≤ 1/2 and 0 ≤ 𝜂𝑣 ≤ 1, defines a distribution

𝜋gm over all configurations on the edges of three states 𝑋 : 𝐸 → {0,1,2}. Given an

assignment 𝑋 in the grand model, denote by 𝑋−1(𝑞) the set of edges that are assigned

𝑞 under 𝑋 where 𝑞 = 0,1,2. The weight of each configuration is given by

wtgm(𝑋) =
∏

𝑒∈𝑋−1 ({1,2})
𝑝𝑒

∏
𝑓 ∈𝑋−1 (0)

(1−2𝑝 𝑓 )
∏

𝑣∈O(𝑋)
𝜂𝑣, (6.16)

where O(𝑋) is the set of vertices of odd degree in the subgraph (𝑉, 𝑋−1(1)). The

probability of each configuration 𝑋 is

𝜋gm(𝑋) =
wtgm(𝑋)

𝑍gm
(6.17)

where

𝑍gm = 𝑍gm(𝐺;p, 𝜂) :=
∑︁

𝑋∈Ωgm (𝐺)
wtgm(𝑋)

is the partition function of the grand model.

Equivalently, a random sample from the grand model can be generated by the

following procedure.
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• Step-I: Sample 𝑆 ∼ 𝜋sg, where 𝜋sg is the distribution specified by the subgraph-

world model with parameters (p, 𝜂); for each 𝑒 ∈ 𝐸 , let 𝑋 (𝑒) = 1 if 𝑒 ∈ 𝑆 and let

𝑋 (𝑒) = ∗ if 𝑒 ∉ 𝑆.

• Step-II: Independently for each 𝑒 ∈ 𝐸 with 𝑋𝑒 = ∗, set 𝑋 (𝑒) = 2 with probability

𝑝𝑒
1−𝑝𝑒 , and 𝑋 (𝑒) = 0 otherwise.

It is straightforward to verify that the outcome distribution is exactly the grand model

distribution.

Recall the definition of a Gibbs distribution and its maximum degree in Section 6.1.4.

The grand model is indeed a Gibbs distribution in the sense of Theorem 6.8. Each edge

of 𝐺 corresponds to a variable, and each vertex 𝑣 ∈ 𝑉 corresponds to a weight func-

tion. In other words, this is a Holant-type problem [CLX11]. Theorem 6.8 applies to

Holant-type problems, as explained in [CLV21b, Section 2.2]. The underlying graph

of 𝜋gm (as defined in Section 6.1.4) is the line graph of 𝐺 , whose maximum degree is

at most 2Δ−1. Thus we have the following observation.

Observation 6.10. The distribution 𝜋gm is a Gibbs distribution with maximum degree

𝐷 ≤ 2Δ−1, where Δ is the maximum degree of the graph 𝐺 = (𝑉,𝐸).

The next lemma gives the relation among the grand model, the subgraph-world

model and the random cluster model.

Lemma 6.11. Let 𝑋 ∼ 𝜋gm be a random sample from the grand model with parameter

p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 , where 0 ≤ 𝑝𝑒 ≤ 1/2 and 0 ≤ 𝜂𝑣 ≤ 1. It holds that

• S = {𝑒 ∈ 𝐸 | 𝑋 (𝑒) = 1} follows the distribution specified by the subgraph-world

model with parameters (p, 𝜂);

• R = {𝑒 ∈ 𝐸 | 𝑋 (𝑒) = 1∨𝑋 (𝑒) = 2} follows the distribution specified by the random

cluster model with parameters (2p,𝜆), where 𝜆𝑣 =
1−𝜂𝑣
1+𝜂𝑣 for all 𝑣 ∈ 𝑉 .

Namely, 𝑋 (𝑒) = 1 means 𝑒 is present in the subgraph-world model (Step-I), and

𝑋 (𝑒) = 2 means 𝑒 is absent in the subgraph-world model, but gets added into the

random cluster model in Step-II. 𝑋 (𝑒) = 0 means 𝑒 is absent in both models.

The first part of Lemma 6.11 holds trivially. The second part is proved by a gen-

eralised Grimmett–Janson coupling [GJ07b]. The proof of the second part is given in

Section 6.2.2.
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6.2.2 Coupling via holographic transformation

Under the unweighted setting, Grimmett and Janson [GJ07b, Theorem 3.5] discovered

a coupling between random even subgraphs and random cluster configurations. The

following lemma is a generalisation to the weighted case via holographic transforma-

tions.

Lemma 6.12. Let 𝐺 = (𝑉,𝐸) be a graph, p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 , where 0 ≤
𝑝𝑒 ≤ 1/2 for all 𝑒 ∈ 𝐸 and 𝜂𝑣 ≥ 0 for all 𝑣 ∈ 𝑉 . Let S ⊆ 𝐸 be a random sample from

the subgraph-world model (𝐺;p, 𝜂). Let R be S with each remaining edge 𝑒 ∈ 𝐸 \S
added into R independently with probability 𝑝𝑒/(1− 𝑝𝑒). Then the random subgraph

R satisfies the distribution of the random cluster model with parameter (2p,𝜆) where

𝜂𝑣 =
1−𝜆𝑣
1+𝜆𝑣 for all 𝑣 ∈ 𝑉 .

We remark that the second part of Lemma 6.11 is a straightforward consequence

of Lemma 6.12. We need the following lemma to prove Lemma 6.12.

Lemma 6.13. Let 𝐺 = (𝑉,𝐸) be a graph. Let 𝜆 = (𝜆𝑣)𝑣∈𝑉 where 0 ≤ 𝜆𝑣 < 1 for all 𝑣 ∈𝑉 .

For each 𝑣 ∈ 𝑉 , let 𝜂𝑣 =
1−𝜆𝑣
1+𝜆𝑣 . It holds that

∏
𝐶∈𝜅(𝑉,𝐸)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
=

(∏
𝑣∈𝑉
(1+𝜆𝑣)

) (
1
2

) |𝐸 | ∑︁
𝐸 ′⊂𝐸

∏
𝑢∈odd(𝐸 ′)

𝜂𝑢, (6.18)

where 𝜅(𝑉,𝐸) is the set of connected components in graph 𝐺 = (𝑉,𝐸).

Proof. Define a bipartite graph 𝐻 with left part𝑉1 =𝑉 corresponding to vertices in 𝐺

and right part𝑉2 = 𝐸 corresponding to edges in 𝐺 . Two vertices 𝑣 ∈𝑉1 and 𝑒 ∈𝑉2 are

adjacent in 𝐻 if 𝑣 is incident to 𝑒 in 𝐺. Let 𝑑𝑣 denote the degree of 𝑣 in 𝐺. Consider

the following set of signatures

F (1) =
{
𝑓
(1)
𝑣 = [1,0]⊗𝑑𝑣 +𝜆𝑣 [0,1]⊗𝑑𝑣 | 𝑣 ∈ 𝑉

}
,

F (2) =
{
𝑓
(2)
𝑣 =

1
1+𝜆𝑣

(
[1,1]⊗𝑑𝑣 +𝜆𝑣 [1,−1]⊗𝑑𝑣

)
| 𝑣 ∈ 𝑉

}
,

G = {𝑔𝑒 = [1,0,1] | 𝑒 ∈ 𝐸} .

We remark that 𝑓
(2)
𝑣 = [1, 𝜂𝑣,1, 𝜂𝑣, . . .]. Let T =

( 1 1
1 −1

)
. Observe that 𝑓

(1)
𝑣 T = (1 +

𝜆𝑣) 𝑓 (2)𝑣 and T−1𝑔𝑒 =
1
2𝑔𝑒 . By Theorem 6.9, it holds that

Holant
(
𝐻;F (1) | G

)
=

(∏
𝑣∈𝑉
(1+𝜆𝑣)

) (
1
2

) |𝐸 |
Holant

(
𝐻;F (2) | G

)
. (6.19)
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This equation is indeed (6.18) in disguise. The equivalence between the left-hand sides

of (6.19) and (6.18) is a simple observation that the signature [1,0,1] on the edge forces

the spins of vertices in each connected component𝐶 to be the same. Each component

contributes a weight 1+∏𝑢∈𝐶 𝜆𝑢 . The equivalence between the right-hand sides of

(6.19) and (6.18) follows from how F (2) and G are defined. This proves the lemma. □

Proof of Lemma 6.12. For each subgraph 𝑅 ⊆ 𝐸 of 𝐺 = (𝑉,𝐸),

Pr[R = 𝑅] = 1
𝑍sg(𝐺;p, 𝜂)

∑︁
𝑆⊆𝑅

∏
𝑢∈odd(𝑆)

𝜂𝑢

∏
𝑒∈𝑆

𝑝𝑒

∏
𝑓 ∈𝐸\𝑆

(1− 𝑝 𝑓 )
∏
𝑔∈𝑅\𝑆

𝑝𝑔

1− 𝑝𝑔

∏
ℎ∈𝐸\𝑅

1−2𝑝ℎ
1− 𝑝ℎ

=
1

𝑍sg(𝐺;p, 𝜂)
∑︁
𝑆⊆𝑅

∏
𝑢∈odd(𝑆)

𝜂𝑢

∏
𝑒∈𝑅

𝑝𝑒

∏
𝑓 ∈𝐸\𝑅

(1−2𝑝 𝑓 )

=
1

𝑍sg(𝐺;p, 𝜂)2
−|𝑅 |

∏
𝑒∈𝑅
(2𝑝𝑒)

∏
𝑓 ∈𝐸\𝑅

(1−2𝑝 𝑓 )
∑︁
𝑆⊆𝑅

∏
𝑢∈odd(𝑆)

𝜂𝑢

=
1

𝑍sg(𝐺;p, 𝜂)
∏
𝑒∈𝑅
(2𝑝𝑒)

∏
𝑓 ∈𝐸\𝑅

(1−2𝑝 𝑓 )
∏
𝑣∈𝑉

1
1+𝜆𝑣

∏
𝐶∈𝜅(𝑉,𝑅)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
(By (6.18) on (𝑉, 𝑅))

=
1

𝑍wrc(𝐺;2p,𝜆)
∏
𝑒∈𝑅
(2𝑝𝑒)

∏
𝑓 ∈𝐸\𝑅

(1−2𝑝 𝑓 )
∏

𝐶∈𝜅(𝑉,𝑅)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
.

(By (6.6))

= 𝜋wrc(𝑅). □

6.3 Variance decay ofGlauber dynamics on the grand

model

Let 𝐺 = (𝑉,𝐸) be a graph. Let p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1/2
and 0 < 𝜂𝑣 < 1. Let 𝜋gm denote the distribution specified by the grand model with

parameters p and 𝜂. Let Ω(𝜋gm) denote the support of 𝜋gm. We use 𝑃GlauberGM to

denote Glauber dynamics on 𝜋gm as defined in Section 6.1.2.1.

Lemma 6.14. The Glauber dynamics 𝑃GlauberGM satisfies that for any distribution 𝜈

with support Ω(𝜈) ⊆ Ω(𝜋gm),

𝐷𝜒2

(
𝜈𝑃
↓
GlauberGM ∥ 𝜋gm𝑃

↓
GlauberGM

)
≤

(
1−

𝜂4
min min {𝑝min,1−2𝑝max}

𝑚2

)
𝐷𝜒2

(
𝜈 ∥ 𝜋gm

)
,

where 𝜂min = min𝑣∈𝑉 𝜂𝑣 and 𝑚 = |𝐸 |.
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By Proposition 6.7, we only need to bound the spectral gap of the Glauber dynam-

ics. The rest of this section endeavours to show

𝔊𝔞𝔭 (𝑃GlauberGM) ≥
𝜂4

min
𝑚2 min {𝑝min,1−2𝑝max} . (6.20)

This will be proved using the canonical path method adapted from [JS93].

6.3.1 Construction of the canonical path

Below is the main lemma of this subsection.

Lemma 6.15. For any grand model on a graph 𝐺 = (𝑉,𝐸) with parameters p = (𝑝𝑒)𝑒∈𝐸
and 𝜂 = (𝜂𝑣)𝑣∈𝑉 , if 0 < 𝜂𝑣 < 1 for all 𝑣 ∈ 𝑉 , then there exists a set of canonical paths

Γ = {𝛾𝑋𝑌 : 𝑋,𝑌 ∈ Ω} for the Glauber dynamics 𝑃gm such that

1. 𝑤gm(𝑋,𝑌 ) = 𝜋gm(𝑋)𝜋gm(𝑌 );

2. |𝛾𝑋𝑌 | ≤ 𝑚;

3. for any transition (𝑍, 𝑍′) with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍′(𝑒)}| = 1, where the only edge 𝑒 of

discrepancy is assigned 1 in either 𝑍 or 𝑍′, it holds that∑︁
𝛾∈Γ:(𝑍,𝑍 ′)∈𝛾

𝑤gm(𝛾) ≤ 𝜂−4
min min

{
𝜋gm(𝑍), 𝜋gm(𝑍′)

}
(6.21)

where 𝜂min := min𝑣 𝜂𝑣 ;

4. for any transition (𝑍, 𝑍′) with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍′(𝑒)}| = 1, where the only edge 𝑒 of

discrepancy is assigned 1 in neither 𝑍 nor 𝑍′, it holds that∑︁
𝛾∈Γ:(𝑍,𝑍 ′)∈𝛾

𝑤gm(𝛾) ≤ min
{
𝜋gm(𝑍), 𝜋gm(𝑍′)

}
. (6.22)

Proof. We begin the proof with the construction of the paths. Suppose all vertices

and edges are indexed by distinct integers, and there is a fixed ordering ≺ for all paths

and cycles of the graph 𝐺 . For any pair of assignments 𝑋,𝑌 in the grand model, the

canonical path 𝛾𝑋𝑌 contains two stages, moving from 𝑋 to𝑊 and𝑊 to𝑌 respectively.

Stage 1. (1-edge mending.) Midst this stage we mend the edges assigned 1 in

either 𝑋 or 𝑌 but not the other. Denote the set of such edges 𝐷 := 𝑋−1(1) ⊕𝑌−1(1).
The resulting configuration 𝑊 has the property that (1) for any edge 𝑒 ∈ 𝐷, it holds

that 𝑊 (𝑒) = 𝑌 (𝑒), and (2) for any other edge 𝑒 ∉ 𝐷, it holds that 𝑊 (𝑒) = 𝑋 (𝑒).
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Let 2𝑘 be the number of the odd-degree vertices in 𝐷. Then, 𝐷 can be decomposed

into an edge-disjoint union of exactly 𝑘 paths 𝑃1, · · · , 𝑃𝑘 and cycles 𝐶1, · · · ,𝐶𝑘 ′ . We

pick the unique one such that 𝑃1, · · · , 𝑃𝑘 ,𝐶1, · · · ,𝐶𝑘 ′ is the first one in the lexico-

graphic order induced by ≺.

To move from 𝑋 to𝑊 , we process each of the paths and cycles one by one. For each

of them, we first choose the vertex and edge to start with. When winding (handling) a

path, the starting vertex is one of the two open vertices of the path that has a smaller

index; when winding a cycle, the starting vertex is the one with the smallest index,

and the next vertex (which together with the starting one defines a starting edge)

is one of the two neighbours of the starting vertex of the cycle that has a smaller

index than the other one. After deciding the starting vertex and edge, we just move

along the path/cycle. For each of the edge, we set the assignment to it as that in 𝑌 .

Obviously this gives 𝑊 satisfying the properties aforementioned because every edge

in 𝐷 is mended while the rest are left untouched.

Stage 2. (0,2-edge mending.) None of the conflicting edges between 𝑊 and 𝑌

can be assigned 1 in either of them. In this stage, we simply change all remaining

disagreeing edges from the value in 𝑊 to the value in 𝑌 one by one according to the

order of their indices.

We then show that the set of canonical paths Γ constructed above fulfills Lemma 6.15.

Assign weight 𝑤gm(𝛾) = 𝜋gm(𝑋)𝜋gm(𝑌 ) to the path 𝛾𝑋𝑌 . The length (number of tran-

sitions) of each path 𝛾𝑋𝑌 is at most 𝑚, because each edge is mended at most once.

We first prove (6.21). Let (𝑍, 𝑍′) be a transition with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍′(𝑒)}| = 1,

where the only edge 𝑒 of discrepancy is assigned 1 in either 𝑍 or 𝑍′. Note that (𝑍, 𝑍′)
will only be used by any path in its first stage described above. Define a mapping

𝜑𝑍,𝑍 ′ : Ω×Ω→ Ω over any pair of configurations 𝑋,𝑌 whose corresponding path

𝛾𝑋𝑌 uses the transition (𝑍, 𝑍′) by

𝜑𝑍,𝑍 ′ (𝑋,𝑌 ) =𝑈 where 𝑈 (𝑒) = 𝑋 (𝑒) +𝑌 (𝑒) − 𝑍 (𝑒),∀𝑒 ∈ 𝐸 (𝐺). (6.23)

We claim that 𝜑𝑍,𝑍 ′ is an injection. Given 𝑈 and 𝑍 , we can recover 𝑋 (𝑒) +𝑌 (𝑒) for

any edge 𝑒. First we can find 𝐷, the set of conflicting 1-edge in Stage 1, as it is simply

{𝑒 : 𝑋 (𝑒) +𝑌 (𝑒) = 1 or 3}. This gives rise to the unique edge-disjoint decomposition

𝑃1, · · · , 𝑃𝑘 ,𝐶1, · · · ,𝐶𝑘 ′ . By looking at 𝑍 and 𝑍′, we know the edge that is currently

being wound, and, together with the edge-disjoint decomposition, the stage of the

whole winding process. Therefore, we can continue the winding from 𝑍′ with these

information, and when finished, 𝑊 (defined in the process Stage 1) is obtained. To
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further recover𝑌 , note that 𝑒 gets mended in Stage 2 if any only if𝑈 (𝑒) +𝑍 (𝑒) = 2 and

𝑍 (𝑒) ≠ 1. This follows from the fact that 𝑍 (𝑒) (in the first stage) is in line with 𝑋 (𝑒)
so long as 𝑍 (𝑒) ≠ 1. Therefore, we can decide all such edges and mend the assignment

to obtain 𝑌 . To get 𝑋 , we just reverse the operations backwards from 𝑍 .

Given this injection, we compute

∑
𝛾∈Γ:(𝑍,𝑍 ′)∈𝛾𝑤gm(𝛾). The goal here is to bound

the following ratio

𝜋gm(𝑋)𝜋gm(𝑌 )
𝜋gm(𝑈)𝜋gm(𝑍)

, or equivalently,

wtgm(𝑋)wtgm(𝑌 )
wtgm(𝑈)wtgm(𝑍)

. (6.24)

Recall that this ratio may contain two kinds of factors, emerging from both the ver-

tices and edges. For the factor from edges, the construction of 𝑈 ensures that (1) if

𝑋 (𝑒) +𝑌 (𝑒) =𝑈 (𝑒) +𝑍 (𝑒) ∈ {0,1,3,4}, or 𝑋 (𝑒) +𝑌 (𝑒) = 2 and 𝑋 (𝑒) ≠ 1, then it must

holds that either 𝑋 (𝑒) =𝑈 (𝑒) and 𝑌 (𝑒) = 𝑍 (𝑒), or 𝑋 (𝑒) = 𝑍 (𝑒) and 𝑌 (𝑒) =𝑈 (𝑒); (2)

if 𝑋 (𝑒) = 𝑌 (𝑒) = 1, then 𝑒 never gets mended throughout the canonical path, and

hence 𝑍 (𝑒) = 𝑈 (𝑒) = 1. In either case, all the terms rising from the edges in the

numerator and denominator cancel. The terms rising from the vertices come from

those in O(𝑋),O(𝑌 ),O(𝑈),O(𝑍). It is not hard to see that the ones that do not get

cancelled only arise from the current cycle or path that is being processed, and more

specifically, the vertex incident to the two edges wound before and after 𝑍 , which con-

tributes twice, and the starting vertex of the current cycle, which contributes twice

as well. Therefore,

𝜋gm(𝑋)𝜋gm(𝑌 )
𝜋gm(𝑈)𝜋gm(𝑍)

≤ 𝜂−4
min, (6.25)

as 0 < 𝜂𝑣 < 1 for all 𝑣.

Then, (6.21) follows from (6.25) that∑︁
𝛾∈Γ:(𝑍,𝑍 ′)∈𝛾

𝑤gm(𝛾) =
∑︁

𝑋,𝑌 :(𝑍,𝑍 ′)∈𝛾𝑋𝑌

𝜋gm(𝑋)𝜋gm(𝑌 ) (By definition)

≤ 𝜂−4
min

∑︁
𝑋,𝑌 :(𝑍,𝑍 ′)∈𝛾𝑋𝑌

𝜋gm(𝑍)𝜋gm(𝜑𝑍,𝑍 ′ (𝑋,𝑌 )) (By (6.25))

≤ 𝜂−4
min𝜋gm(𝑍). (𝜑𝑍,𝑍 ′ is injective)

We construct the other mapping 𝜑′
𝑍,𝑍 ′ (𝑋,𝑌 ) by taking 𝜑𝑍,𝑍 ′ (𝑋,𝑌 ) (𝑒) = 𝑋 (𝑒) +

𝑌 (𝑒) − 𝑍′(𝑒). The same argument shows that

∑
𝛾∈Γ:(𝑍,𝑍 ′)∈𝛾𝑤gm(𝛾) ≤ 𝜂−4

min𝜋gm(𝑍′).
To prove (6.22), we look at the transition step (𝑍, 𝑍′) with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍′(𝑒)}| = 1

where the only edge 𝑒 of discrepancy is assigned 1 in neither 𝑍 nor 𝑍′. We use

the same mapping 𝜑𝑍,𝑍 ′ (𝑋,𝑌 ) as above, and claim it is still injective in this case.

Recall that 𝑒 gets mended in Stage 2 if and only if 𝑈 (𝑒) + 𝑍 (𝑒) = 2 and 𝑍 (𝑒) ≠ 1, and
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we can again determine the edges to be mended in Stage 2. Moreover, by looking

at the difference of 𝑍 and 𝑍′, we know the index of the edge being mended, and

therefore we can continue this process manually according to the instruction of Stage

2, knowing which edges to mend, to obtain𝑌 . To get 𝑋 , we first go backwards from 𝑍

to the beginning of Stage 2 to obtain 𝑊 , and revert the whole Stage 1 using the same

argument aforementioned.

To show (6.22), note that the edge factors in the ratio of (6.24) again cancel, and

because no edge with assignment 1 is involved, the vertex factors cancel as well.

Hence the ratio is exactly 1, and (6.22) follows according to the same calculation. □

6.3.2 Total congestion and rapid mixing

We next bound the total congestion for Γgm. For each transition (𝑍, 𝑍′) such that

|{𝑒 : 𝑍 (𝑒) ≠ 𝑍′(𝑒)}| = 1, where the only edge of discrepancy is assigned 1 in either 𝑍

or 𝑍′, we have

𝐿

𝜋gm(𝑍)𝑃gm(𝑍, 𝑍′)
∑︁
𝛾∈Γ:
(𝑍,𝑍 ′)∈𝛾

𝑤gm(𝛾) ≤
𝑚𝜂−4

min min{𝜋gm(𝑍), 𝜋gm(𝑍′)}
𝜋gm(𝑍)𝑃gm(𝑍, 𝑍′)

=: (♠)

by Lemma 6.15. To continue the calculation, there are several cases (𝑍 (𝑒), 𝑍′(𝑒)) =
(0,1), (2,1), (1,0), (1,2). Below we only prove the case (𝑍 (𝑒), 𝑍′(𝑒)) = (0,1). The

rest cases can be argued the same way and yield the same bound. Let 𝑒 = (𝑢, 𝑣).
There are some more subcases, depending on if 𝑢 or 𝑣 is in O(𝑍).

• 𝑢, 𝑣 ∉ O(𝑍). In this case, setting the edge to 1 leads to extra factors from both

vertices in 𝑍′. Cancelling all the edges and vertices not involved, we obtain

(♠) =
𝑚2𝜂−4

min min{1−2𝑝𝑒, 𝑝𝑒𝜂𝑢𝜂𝑣}
(1−2𝑝𝑒) 𝑝𝑒𝜂𝑢𝜂𝑣

(1−2𝑝𝑒)+(𝑝𝑒𝜂𝑢𝜂𝑣)+𝑝𝑒
≤
𝑚2𝜂−4

min min{1−2𝑝𝑒, 𝑝𝑒𝜂𝑢𝜂𝑣}
(1−2𝑝𝑒) (𝑝𝑒𝜂𝑢𝜂𝑣)

≤
𝑚2𝜂−4

min
1−2𝑝𝑒

where we use the fact that 𝜂𝑢, 𝜂𝑣 ≤ 1.

• 𝑢, 𝑣 ∈ O(𝑍). In this case, setting the edge to 1 removes the factors from both

vertices in 𝑍′. Cancelling all the edges and vertices not involved, we obtain

(♠) =
𝑚2𝜂−4

min min{(1−2𝑝𝑒)𝜂𝑢𝜂𝑣, 𝑝𝑒}
(1−2𝑝𝑒)𝜂𝑢𝜂𝑣 𝑝𝑒

(1−2𝑝𝑒)𝜂𝑢𝜂𝑣+𝑝𝑒+𝑝𝑒𝜂𝑢𝜂𝑣
≤
𝑚2𝜂−4

min min{(1−2𝑝𝑒)𝜂𝑢𝜂𝑣, 𝑝𝑒}
(1−2𝑝𝑒)𝜂𝑢𝜂𝑣𝑝𝑒

≤
𝑚2𝜂−4

min
𝑝𝑒

where we use the fact that 𝜂𝑢, 𝜂𝑣 ≤ 1 again.
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• WLOG suppose 𝑢 ∈ O(𝑍), 𝑣 ∉ O(𝑍). In this case, setting the edge to 1 causes

the vertex factor to switch. Cancelling all the edges and vertices not involved,

we obtain

(♠) =
𝑚2𝜂−4

min min{(1−2𝑝𝑒)𝜂𝑢, 𝑝𝑒𝜂𝑣}
(1−2𝑝𝑒)𝜂𝑢 𝑝𝑒𝜂𝑣

(1−2𝑝𝑒)𝜂𝑢+(𝑝𝑒𝜂𝑣)+(𝑝𝑒𝜂𝑢)
.

If 𝜂𝑢 < 𝜂𝑣 , then above becomes

𝑚2𝜂−4
min min{(1−2𝑝𝑒) 𝜂𝑢𝜂𝑣 , 𝑝𝑒}

(1−2𝑝𝑒) 𝜂𝑢𝜂𝑣
𝑝𝑒

(1−2𝑝𝑒) 𝜂𝑢𝜂𝑣 +𝑝𝑒+𝑝𝑒
𝜂𝑢
𝜂𝑣

≤
𝑚2𝜂−4

min
𝑝𝑒

.

Otherwise, it can be written as

𝑚2𝜂−4
min min{(1−2𝑝𝑒), 𝑝𝑒 𝜂𝑣𝜂𝑢 }

(1−2𝑝𝑒)
𝑝𝑒

𝜂𝑣
𝜂𝑢

(1−2𝑝𝑒)+𝑝𝑒 𝜂𝑣
𝜂𝑢
+𝑝𝑒

≤
𝑚2𝜂−4

min
1−2𝑝𝑒

.

For each transition (𝑍, 𝑍′) such that |{𝑒 : 𝑍 (𝑒) ≠ 𝑍′(𝑒)}| = 1, where the only edge

of discrepancy is assigned 1 in none of 𝑍 or 𝑍′, the calculation is similar as above but

simpler. WLOG assume 𝑍 (𝑒) = 0 and 𝑍′(𝑒) = 2.

𝐿

𝜋gm(𝑍)𝑃gm(𝑍, 𝑍′)
∑︁
𝛾∈Γ:
(𝑍,𝑍 ′)∈𝛾

𝑤gm(𝛾) ≤
𝑚min{𝜋gm(𝑍), 𝜋gm(𝑍′)}

𝜋gm(𝑍)𝑃gm(𝑍, 𝑍′)
(Lemma 6.15)

≤ 𝑚2 min{1−2𝑝𝑒, 𝑝𝑒}
(1−2𝑝𝑒) 𝑝𝑒

1−2𝑝𝑒+𝑝𝑒+𝑝𝑒 1
𝜂𝑢𝜂𝑣

≤ min
{

1
𝑝𝑒

,
1

1−2𝑝𝑒

}
𝑚2𝜂−2

min. (Worst case of 𝜂 terms)

There is no canonical path using the self loop (𝑍, 𝑍), so the congestion is zero. In all,

the congestion is bounded by 𝑚2𝜂−4
min max

{
1

𝑝min
, 1

1−2𝑝max

}
, from which (6.20) follows.

6.4 Entropy decay ofGlauber dynamics on the grand

model

In Section 6.3, we analysed the variance decay of Glauber dynamics on the grand

model. We now continue to analyse its relative entropy decay. Let 𝐺 = (𝑉,𝐸) be a

graph, and p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 be the parameters, where 0 < 𝑝𝑒 < 1/2 for

any 𝑒 ∈ 𝐸 and 𝜂𝑣 > 0 for any 𝑣 ∈ 𝑉 . Let 𝜋gm denote the distribution specified by the

grand model with parameters p and 𝜂. Let Ω(𝜋gm) denote the support of 𝜋gm. We use

𝑃GlauberGM to denote Glauber dynamics on 𝜋gm.
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Lemma 6.16. If 0 < 𝜂𝑣 < 1 for all 𝑣 ∈ 𝑉 , then for any distribution 𝜈 with support

Ω(𝜈) ⊆ Ω(𝜋gm), Glauber dynamics 𝑃GlauberGM satisfies

𝐷KL

(
𝜈𝑃
↓
GlauberGM ∥ 𝜋gm𝑃

↓
GlauberGM

)
≤

(
1− 1

𝐶𝑛

)
𝐷KL

(
𝜈 ∥ 𝜋gm

)
,

where𝐶 =𝐶 (Δ, 𝜂min, 𝑝min, 𝑝max), 𝜂min =min𝑣∈𝑉 𝜂𝑣 , 𝑝min =min𝑒∈𝐸 𝑝𝑒 , 𝑝max =max𝑒∈𝐸 𝑝𝑒 ,

Δ is the maximum degree of 𝐺 and 𝑛 = |𝑉 |.

Remark 6.17. For interested readers, the constant𝐶 in the lemma above can be taken

as

𝐶 = Δ

(
2Δ

𝜂2
min min {1−2𝑝max, 𝑝min}

)2+ 16Δ2

𝜂4
min min{1−2𝑝max , 𝑝min }

.

Lemma 6.16 is proved by Theorem 6.8. To apply Theorem 6.8, we need to verify (1)

𝜋gm is a Gibbs distribution with maximum degree 𝐷 = 2Δ−1; (2) 𝜋gm is ℓ∞-spectrally

independent; (3) 𝜋gm is marginally bounded. The rest of this section is dedicated to

the proof of Lemma 6.16.

Lemma 6.18. 𝜋gm is ℓ∞-spectrally independent with parameter 𝜁 =𝑂 (Δ2/𝜂2
min).

We need the following result in [CLV21b] to prove Lemma 6.18. We view the

subgraph world as a distribution over {0,1}𝐸 , where each 𝑌 ∈ {0,1}𝐸 corresponds to

𝑆 = {𝑒 ∈ 𝐸 | 𝑌𝑒 = 1}.

Lemma 6.19 ([CLV21b]). Let 𝐺 = (𝑉,𝐸) be a graph with the maximum degree Δ ≥ 3.

Let p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 , where 0 ≤ 𝑝𝑒 < 1/2 and 0 < 𝜂𝑣 ≤ 1. The distribu-

tion 𝜋sg specified by the subgraph-world model with parameters (p, 𝜂) is ℓ∞-spectrally

independent with parameter 𝜁 =𝑂 (Δ2/𝜂2
min).

Remark 6.20. In [CLV21b], the authors only formalise the proof for the uniform

case (i.e., all 𝜂𝑣’s take the same value) while stating that the argument works for non-

uniform case without a proof. This in fact holds true by going through the proof and

taking the worst region of stability. The final spectral independence parameter is

𝜁 = 8
©«
(

1+𝜂min
1−𝜂min

)1/Δ
+1(

1+𝜂min
1−𝜂min

)1/Δ
−1

ª®®¬
2

∼ 8Δ2/𝜂2
min.

Note that the 𝜆 in their paper is actually 𝑝/(1− 𝑝) in our formulation of the subgraph-

world model (under the uniform edge parameter setting). Also note that we are only

considering the region 0 < 𝑝 < 1/2, so the 𝜆 in their paper is bounded from above by

1.
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Proof of Lemma 6.18. Fix a pinning 𝜎 ∈ {0,1,2}Λ for some Λ ⊆ 𝐸 . According to the

definition of the grand model, to draw 𝑋 ∼ 𝜋gm, we first sample 𝑌 ∼ 𝜋sg (where 𝑌 ∈
{0,1}𝐸 as we view 𝜋sg as a distribution over {0,1}𝐸 ), then flip independent coins for

each 𝑒 ∈ 𝐸 with 𝑌𝑒 = 0. Define the pinning 𝜏 ∈ {0,1}Λ by 𝜏𝑒 = 1 if 𝜎𝑒 = 1 and 𝜏𝑒 = 0
if 𝜎𝑒 = 0 or 𝜎𝑒 = 2. Consider the influence

Ψ𝜎
𝜋gm (𝑒, 𝑓 ) = max

{
𝑑TV

(
𝜋𝜎∧𝑒←0

gm, 𝑓 , 𝜋𝜎∧𝑒←1
gm, 𝑓

)
, 𝑑TV

(
𝜋𝜎∧𝑒←0

gm, 𝑓 , 𝜋𝜎∧𝑒←2
gm, 𝑓

)
, 𝑑TV

(
𝜋𝜎∧𝑒←1

gm, 𝑓 , 𝜋𝜎∧𝑒←2
gm, 𝑓

)}
,

where 𝑒, 𝑓 ∈ 𝐸 \Λ and 𝑒 ≠ 𝑓 . Since each coin flipping is independent with the random

sample from 𝜋gm, we can couple two distributions 𝜋𝜎∧𝑒←0
gm, 𝑓

and 𝜋𝜎∧𝑒←1
gm, 𝑓

as follows:

• sample 𝑌 𝑓 ,𝑌
′
𝑓

from the optimal coupling between 𝜋𝜏∧𝑒←0
sg, 𝑓 and 𝜋𝜏∧𝑒←1

sg, 𝑓 ;

• flip a coin C independently with probability of HEADS being
𝑝 𝑓

1−𝑝 𝑓
;

• if 𝑌 𝑓 = 1, let 𝑋 𝑓 = 1; otherwise, if the outcome of C is HEADS, let 𝑋 𝑓 = 2, if the

outcome of C is not HEADS, let 𝑋 𝑓 = 0;

• if 𝑌 ′
𝑓
= 1, let 𝑋′

𝑓
= 1; otherwise, if the outcome of C is HEADS, let 𝑋′

𝑓
= 2, if the

outcome of C is not HEADS, let 𝑋′
𝑓
= 0;

It is straightforward to verify that (𝑋 𝑓 , 𝑋
′
𝑓
) is sampled from a coupling between

𝜋𝜎∧𝑒←0
gm, 𝑓

and 𝜋𝜎∧𝑒←1
gm, 𝑓

. By the coupling lemma Lemma 2.3 and as 𝑌 𝑓 and 𝑌 ′
𝑓

are op-

timally coupled, we have

𝑑TV

(
𝜋𝜎∧𝑒←0

gm, 𝑓 , 𝜋𝜎∧𝑒←1
gm, 𝑓

)
≤ Pr

[
𝑋 𝑓 ≠ 𝑋′𝑓

]
= Pr

[
𝑌 𝑓 ≠ 𝑌 ′𝑓

]
= 𝑑TV

(
𝜋𝜏∧𝑒←0

sg, 𝑓 , 𝜋𝜏∧𝑒←1
sg, 𝑓

)
.

Similarly, we have

𝑑TV

(
𝜋𝜎∧𝑒←0

gm, 𝑓 , 𝜋𝜎∧𝑒←2
gm, 𝑓

)
= 0 and 𝑑TV

(
𝜋𝜎∧𝑒←1

gm, 𝑓 , 𝜋𝜎∧𝑒←2
gm, 𝑓

)
≤ 𝑑TV

(
𝜋𝜏∧𝑒←0

sg, 𝑓 , 𝜋𝜏∧𝑒←1
sg, 𝑓

)
.

Hence, by Lemma 6.19, Ψ𝜎
gm


∞ ≤

Ψ𝜏
sg

∞ ≤ 𝜁 . □

Lemma 6.21. 𝜋gm is 𝑏-marginally bounded, where 𝑏 = 𝜂2
min min {1−2𝑝max, 𝑝min}.

Proof. Consider the marginal distribution of an edge 𝑒 = (𝑢, 𝑣). Let 𝑒1, . . . , 𝑒𝑘 be the

edges adjacent to either 𝑢 or 𝑣 (but not both). Suppose we have an arbitrary pinning

𝑋 on Λ ⊂ 𝐸 and 𝑒 ∉ Λ. Let 𝑌 be an arbitrary pinning on Λ∪ {𝑒1, . . . , 𝑒𝑘 } that is

consistent with 𝑋 . The true marginal of 𝑒 under 𝑋 is a linear combination of marginals
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conditioned on all possibilities of 𝑌 (namely, we first sample 𝑌 and then sample 𝑒

conditioned on 𝑌 ). Thus, to establish a lower bound, it suffices to establish a lower

bound under any 𝑌 . Given 𝑌 , the marginal of 𝑒 depends only on 𝑝𝑒 and whether 𝑢 or

𝑣 is in O(𝑌 ). These cases are verified as follows.

• 𝑢, 𝑣 ∉ O(𝑌 𝑒→0), where 𝑌 𝑒→0
is the configuration of 𝑌 with 𝑒 further pinned to

0. In this case the marginal is at least

min{1−2𝑝𝑒, 𝑝𝑒𝜂𝑢𝜂𝑣, 𝑝𝑒}
1−2𝑝𝑒 + 𝑝𝑒𝜂𝑢𝜂𝑣 + 𝑝𝑒

≥ min{1−2𝑝𝑒, 𝑝𝑒𝜂𝑢𝜂𝑣}.

Note that the denominator is no greater than 1 because 𝜂𝑢, 𝜂𝑣 ≤ 1.

• 𝑢, 𝑣 ∈ O(𝑌 𝑒→0). Then the marginal is at least

min{1−2𝑝𝑒𝜂𝑢𝜂𝑣, 𝑝𝑒, 𝑝𝑒𝜂𝑢𝜂𝑣}
(1−2𝑝𝑒)𝜂𝑢𝜂𝑣 + 𝑝𝑒 + 𝑝𝑒𝜂𝑢𝜂𝑣

≥ min{(1−2𝑝𝑒)𝜂𝑢𝜂𝑣, 𝑝𝑒}.

• In the remaining cases, assume w.l.o.g. 𝑢 ∈ O(𝑌 𝑒→0) while 𝑣 ∉ O(𝑌 𝑒→0). Then

the marginal is at least

min{(1−2𝑝𝑒)𝜂𝑢, 𝑝𝑒𝜂𝑣, 𝑝𝑒𝜂𝑢}
(1−2𝑝𝑒)𝜂𝑢 + 𝑝𝑒𝜂𝑣 + 𝑝𝑒𝜂𝑢

=


min{(1−2𝑝𝑒) 𝜂𝑢𝜂𝑣 ,𝑝𝑒

𝜂𝑢
𝜂𝑣
}

(1−2𝑝𝑒) 𝜂𝑢𝜂𝑣 +𝑝𝑒+𝑝𝑒
𝜂𝑢
𝜂𝑣

≥ min{(1−2𝑝𝑒) 𝜂𝑢𝜂𝑣 , 𝑝𝑒
𝜂𝑢
𝜂𝑣
}, if 𝜂𝑢 < 𝜂𝑣;

min{(1−2𝑝𝑒),𝑝𝑒 𝜂𝑣
𝜂𝑢
}

(1−2𝑝𝑒)+𝑝𝑒 𝜂𝑣
𝜂𝑢
+𝑝𝑒
≥ min{(1−2𝑝𝑒), 𝑝𝑒 𝜂𝑣𝜂𝑢 }, otherwise.

In all cases, the value

𝑏 = 𝜂2
min min {1−2𝑝max, 𝑝min}

suffices as a marginal lower bound. □

Proof of Lemma 6.16. Combine Theorem 6.8, Observation 6.10, Lemma 6.18, Lemma 6.21

and 𝑚 ≤ 𝑛Δ. □

6.5 Rapid mixing of Glauber dynamics on the ran-

dom cluster model

Let p = (𝑝𝑒)𝑒∈𝐸 and 𝜂 = (𝜂𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1/2 and 0 < 𝜂𝑣 < 1. Let 𝜋wrc denote

the distribution specified by the random cluster model with parameters 2p and 𝜆,

where 𝜆𝑣 =
1−𝜂𝑣
1+𝜂𝑣 . Let Ω(𝜋wrc) denote the support of 𝜋wrc. We use 𝑃GlauberRC to denote

Glauber dynamics on 𝜋wrc.
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Lemma 6.22. Let 𝜋wrc be the distribution specified by weighted random cluster model

with parameters (2p,𝜆). The Glauber dynamics 𝑃GlauberRC satisfies that for any distri-

bution 𝜈 with support Ω(𝜈) ⊆ Ω(𝜋wrc),

• 𝐷𝜒2

(
𝜈𝑃
↓
GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤

(
1− 𝛼

𝑚2

)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc),

• 𝐷KL

(
𝜈𝑃
↓
GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤

(
1− 1

𝐶𝑛

)
𝐷KL (𝜈 ∥ 𝜋wrc),

where

𝛼 =

(
1−𝜆max
1+𝜆max

)4
min {𝑝min,1−2𝑝max} ,

𝐶 = Δ

(
8Δ

(1−𝜆max)2 min {1−2𝑝max, 𝑝min}

)2+ 256Δ2
(1−𝜆max )4 min{1−2𝑝max , 𝑝min }

,

𝜆max = max𝑣∈𝑉 𝜆𝑣 , 𝜆min = min𝑣∈𝑉 𝜆𝑣 , 𝑝max = max𝑒∈𝐸 𝑝𝑒 , 𝑝min = min𝑒∈𝐸 𝑝𝑒 , Δ is the

maximum degree of 𝐺 , 𝑛 = |𝑉 | and 𝑚 = |𝐸 |.

Lemma 6.22 projects the decay results (Lemma 6.14 and Lemma 6.16) from the

grand model to the random cluster model. Lemma 6.22 is proved by a comparison

lemma in Section 6.5.1 that works for general projections and 𝑓 -divergences.

Lemma 6.22 provides an entropy decay rate and a 𝜒2
-divergence decay rate. When

𝜆max is bounded away from 1, the entropy decay rate is better. On the other hand, the

𝜒2
-divergence decay rate has a better dependency on 1−𝜆max. In particular, when

𝜆max = 1, namely when some vertices do not have external fields, neither statement

provides any decay. In such cases, we can perturb 𝜆 by a factor of 1/𝑛. This incurs a

cost of a polynomial factor in 𝑛 for 𝛼 and an exponentially large factor for 𝐶. Thus,

we need to apply the 𝜒2
-divergence decay rate in Lemma 6.22 after perturbation in

the 𝜆max = 1 case. Specifically, in Section 6.5.2 we showed the following.

Lemma 6.23. Let 𝜋wrc be the distribution specified by the weighted random cluster

model with parameters (2p,𝜆). The Glauber dynamics 𝑃GlauberRC satisfies that for any

distribution 𝜈 with support Ω(𝜈) ⊆ Ω(𝜋wrc),

𝐷𝜒2

(
𝜈𝑃
↓
GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤

(
1− min {𝑝min,1−2𝑝max}

104𝑛4𝑚2

)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc) .

We remark that both Lemma 6.22 and Lemma 6.23 consider the random cluster

model specified by parameters (2p,𝜆). Combining Lemma 6.22 and Lemma 6.23, we

have the following mixing result for the Glauber dynamics on random cluster model.



140 Chapter 6. Ferromagnetic Ising model

Theorem 6.24. Let 𝐺 = (𝑉,𝐸) be a 𝑛-vertex and 𝑚-edge graph with maximum degree

Δ. Let p = (𝑝𝑒)𝑒∈𝐸 and 𝜆 = (𝜆𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1 and 0 < 𝜆𝑣 ≤ 1. Let 𝜋wrc be the

distribution specified by the random cluster model with parameters (p,𝜆). The mixing

of Glauber dynamics 𝑃GlauberRC on 𝜋wrc satisfies

𝑇mix(𝑃GlauberRC, 𝜖) ≤ 𝐶1(𝑝min, 𝑝max) ·min

{
𝑛4,

(
1

1−𝜆max

)4
}
·𝑚2 ·

(
log

1
𝜖
+𝑚

)
,

where 𝐶1(𝑝min, 𝑝max) =𝑂

(
1

min{𝑝min,1−𝑝max} log 1
min{𝑝min,1−𝑝max}

)
.

Furthermore, if there exists 𝛿 > 0 such that 𝜆𝑣 ≤ 1− 𝛿 for all 𝑣 ∈ 𝑉 , then the mixing

time satisfies

𝑇mix(𝑃GlauberRC, 𝜖) ≤ 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) · 𝑛
(
log𝑛+ log

1
𝜖

)
,

where 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) =
(

Δ

𝛿2 min{𝑝min,1−𝑝max}

)𝑂 (
Δ2

𝛿4 min{𝑝min ,1−𝑝max }

)
.

Proof. Let 𝜋wrc,min = min𝑆⊆𝐸 𝜋wrc(𝑆) denote the minimum probability in 𝜋wrc. It is

straightforward to verify that 𝜋wrc,min ≥ min{𝑝min,1− 𝑝max}𝑚/2𝑚+𝑛. By the data pro-

cessing inequality,

𝐷 𝑓 (𝜈𝑃GlauberRC ∥ 𝜋wrc) = 𝐷 𝑓 (𝜈𝑃GlauberRC ∥ 𝜋wrc𝑃GlauberRC) ≤ 𝐷 𝑓

(
𝜈𝑃
↓
GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
.

By Lemma 6.22 and Lemma 6.23, we know that after each transition step of Glauber

dynamics, the 𝜒2
-divergence and KL-divergence between the current distribution of

the stationary distribution decays by factors specified earlier. The 𝜒2
-divergence be-

tween the initial distribution and the stationary distribution is at most
1

𝜋wrc,min
, and the

KL-divergence is at most log 1
𝜋wrc,min

. By Lemma 6.22, Lemma 6.23, and (2.3),

𝑇mix(𝑃GlauberRC, 𝜖) ≤
104

min {𝑝min/2,1− 𝑝max}
·min

{
𝑛4,

(
1+𝜆max
1−𝜆max

)4
}
·𝑚2

(
log

1
𝜖2𝜋wrc,min

)
≤ 𝐶1(𝑝min, 𝑝max) ·min

{
𝑛4,

(
1

1−𝜆max

)4
}
·𝑚2 ·

(
log

1
𝜖
+𝑚

)
.

Note that 1 < 1+𝜆max ≤ 2.

By Lemma 6.22, (2.4) and 𝑚 ≤ Δ𝑛, if for all 𝜆𝑣 ≤ 1− 𝛿, then we have 1−𝜆max ≥ 𝛿

and

𝑇mix(𝑃GlauberRC, 𝜖)

≤ Δ

(
8Δ

𝛿2 min {1− 𝑝max, 𝑝min/2}

)2+ 256Δ2
𝛿4 min{1−𝑝max , 𝑝min/2} · 𝑛

(
log log

1
𝜋wrc,min

+ log
1

2𝜖2

)
≤ 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) · 𝑛

(
log𝑛+ log

1
𝜖

)
. □
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6.5.1 Comparing the decay rates of down walks

Here we consider a general projection from a larger state space to a smaller one. Let

𝑄 and 𝑅 be two finite sets, and let Ω ⊆ 𝑄𝑉
be the state space. Consider a mapping

𝑔 : 𝑄→ 𝑅. (Note that here we can restrict 𝑅 to the range of 𝑔 without changing the

rest of the argument. In other words, after the mapping the effective domain is never

larger than 𝑄, although we do not need to require |𝑄 | ≥ |𝑅 | a priori.) Given any

𝜎 ∈Ω, we map 𝜎 to 𝜏 = (𝜏𝑣)𝑣∈𝑉 , where 𝜏𝑣 = 𝑔(𝜎𝑣). We abuse the notation and denote

𝜏 = 𝑔(𝜎). Let Ω′ = {𝑔(𝜎) | 𝜎 ∈ Ω} ⊆ 𝑅𝑉
. Define the projection matrix 𝑃 : Ω×Ω′→

{0,1}:

∀𝜎 ∈ Ω, 𝜏 ∈ Ω′, 𝑃(𝜎,𝜏) = I[𝜏 = 𝑔(𝜎)] .

We remark that 𝑃 is a stochastic matrix.

Let 𝜋 be a distribution with support Ω. Define the distribution 𝜇 = 𝜋𝑃 with sup-

port Ω′. Let 𝑃
↓
Glauber,𝜋 : Ω×Ωdown→ R≥0 denote the down walk of Glauber dynam-

ics on 𝜋, where Ωdown = {𝜎𝑉\{𝑣} | 𝑣 ∈ 𝑉 ∧𝜎 ∈ Ω}. Given any configuration 𝜎 ∈ Ω,

𝑃
↓
Glauber,𝜋 picks a variable 𝑣 ∈𝑉 uniformly at random, and then transforms 𝜎 to 𝜎𝑉\{𝑣}

by dropping the value of 𝑣. Similarly, let 𝑃
↓
Glauber,𝜇 denote the down walk of Glauber

dynamics on the distribution 𝜇 = 𝜋𝑃.

Lemma 6.25. Let 0 < 𝛿 < 1. Let 𝑓 : R≥0→ R be a convex function with 𝑓 (1) = 0. If

𝑃
↓
Glauber,𝜋 satisfies that for any distribution 𝜈 with support Ω,

𝐷 𝑓

(
𝜈𝑃
↓
Glauber,𝜋 ∥ 𝜋𝑃

↓
Glauber,𝜋

)
≤ (1− 𝛿)𝐷 𝑓 (𝜈 ∥ 𝜋) ,

then 𝑃
↓
Glauber,𝜇 satisfies that for any distribution 𝜑 with support Ω′,

𝐷 𝑓

(
𝜑𝑃
↓
Glauber,𝜇 ∥ 𝜇𝑃

↓
Glauber,𝜇

)
≤ (1− 𝛿)𝐷 𝑓 (𝜑 ∥ 𝜇) .

Proof. Given any 𝜌 ∈ Ωdown, we can map 𝜌 to 𝜂 = 𝑔(𝜌), where 𝜂𝑢 = 𝑔(𝜌𝑢) for any

variable 𝑢. Let Ω′down = {𝑔(𝜌) | 𝜌 ∈ Ωdown}. Define the projection matrix 𝑃′ : Ωdown×
Ω′down→ {0,1}:

∀𝜌 ∈ Ωdown, 𝜂 ∈ Ω′down, 𝑃′(𝜌,𝜂) = I[𝜂 = 𝑔(𝜌)] .

We remark that 𝑃′ is a stochastic matrix. Since both 𝑃 and 𝑃′ project the value of

each variable independently, the following equation is straightforward to verify

𝑃
↓
Glauber,𝜋 ·𝑃

′ = 𝑃 ·𝑃↓Glauber,𝜇 . (6.26)
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For any configuration 𝜏 ∈ Ω′, define the distribution 𝜋𝜏 over Ω by

∀𝜎 ∈ Ω, 𝜋𝜏 (𝜎) = I[𝑔(𝜎) = 𝜏]𝜋(𝜎)
𝜇(𝜏) .

For any 𝜎 ∈Ω, let 𝜏 = 𝑔(𝜎), it holds that 𝜋(𝜎) = 𝜇(𝜏)𝜋𝜏 (𝜎). Fix a distribution 𝜑 with

support Ω′. Define the distribution 𝜈 by

∀𝜎 ∈ Ω, 𝜈(𝜎) = 𝜑(𝜏)𝜋𝜏 (𝜎), where 𝜏 = 𝑔(𝜎). (6.27)

We have

𝐷 𝑓 (𝜈 ∥ 𝜋) = E𝜎∼𝜋

[
𝑓

(
𝜈(𝜎)
𝜋(𝜎)

)]
= E𝜏∼𝜇 E𝜎∼𝜋𝜏

[
𝑓

(
𝜑(𝜏)𝜋𝜏 (𝜎)
𝜇(𝜏)𝜋𝜏 (𝜎)

)]
= E𝜏∼𝜇

[
𝑓

(
𝜑(𝜏)
𝜇(𝜏)

)]
= 𝐷 𝑓 (𝜑 ∥ 𝜇) .

(6.28)

By the definition in (6.27), we have for all 𝜏 ∈ Ω′,

(𝜈𝑃) (𝜏) =
∑︁

𝜎:𝑔(𝜎)=𝜏
𝜈(𝜎) = 𝜑(𝜏)

∑︁
𝜎:𝑔(𝜎)=𝜏

𝜋𝜏 (𝜎) = 𝜑(𝜏),

which implies 𝜑 = 𝜈𝑃. Recall that 𝜇 = 𝜋𝑃. We have

𝐷 𝑓

(
𝜑𝑃
↓
Glauber,𝜇 ∥ 𝜇𝑃

↓
Glauber,𝜇

)
= 𝐷 𝑓

(
𝜈𝑃𝑃

↓
Glauber,𝜇 ∥ 𝜋𝑃𝑃

↓
Glauber,𝜇

)
(by (6.26)) = 𝐷 𝑓

(
𝜈𝑃
↓
Glauber,𝜋𝑃

′ ∥ 𝜋𝑃↓Glauber,𝜋𝑃
′
)

(by data processing inequality) ≤ 𝐷 𝑓

(
𝜈𝑃
↓
Glauber,𝜋 ∥ 𝜋𝑃

↓
Glauber,𝜋

)
(by assumption) ≤ (1− 𝛿)𝐷 𝑓 (𝜈 ∥ 𝜋)

(by (6.28)) = (1− 𝛿)𝐷 𝑓 (𝜑 ∥ 𝜇) . □

We are now ready to prove Lemma 6.22.

Proof of Lemma 6.22. Let Ω = {0,1,2}𝐸 denote the support of 𝜋gm. Define the map

𝑔 by 𝑔(0) = 0, 𝑔(1) = 1 and 𝑔(2) = 1. By Lemma 6.11, it holds that 𝜋wrc = 𝜋gm𝑃.

Lemma 6.22 follows from Lemma 6.14, Lemma 6.16 and Lemma 6.25. □

6.5.2 Faster mixing via perturbed chains

Given a subgraph-world model (𝐺;p, 𝜂), we define the “perturbed” model (𝐺;p, 𝜂)
by

𝜂𝑣 =


1
𝑛
, if 0 ≤ 𝜂𝑣 ≤ 1

𝑛

𝜂𝑣, otherwise.

(6.29)
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Call the induced distribution 𝜋sg. Take a random subgraph S according to 𝜋sg, and

add each remaining edge 𝑒 ∈ 𝐸 \ S with probability 𝑝𝑒/(1 − 𝑝𝑒) to obtain R. By

Lemma 6.12, the resulting distribution is 𝜋wrc(𝐺;2p,𝜆) =: 𝜋wrc, where 𝜆𝑣 =
1−𝜂𝑣
1+𝜂𝑣 .

Let 𝑃wrc denote the Glauber dynamics on 𝜋wrc. Let 𝑃wrc
↓

denote the down-walk of

𝑃wrc. Applying the first item of Lemma 6.22 to the perturbed random-cluster model

(𝐺;2p,𝜆) yields that for any distribution 𝜈,

𝐷𝜒2

(
𝜈𝑃wrc

↓ ∥ 𝜋wrc𝑃wrc
↓) ≤ (

1− min {𝑝min,1−2𝑝max}
𝑚2𝑛4

)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc)

By Proposition 6.7, we know that

𝔊𝔞𝔭(𝑃wrc) ≥
min {𝑝min,1−2𝑝max}

𝑚2𝑛4 .

Based on this, the main effort of this subsection is to bound the spectral gap of the

original model (𝐺;2p,𝜆) via the bounds for (𝐺;2p,𝜆).
We start with comparing the two distributions.

Lemma 6.26. For any 𝑅 ⊆ 𝐸 ,

1
9
≤ 𝜋wrc(𝑅)

𝜋wrc(𝑅)
< e.

Proof. Let 𝑛 = |𝑉 |. If 𝑛 = 1, the only possible 𝑅 is ∅ and the lemma holds. We assume

𝑛 ≥ 2 in the rest. To prove the first inequality,

𝜋wrc(𝑅)
𝜋wrc(𝑅)

=
𝑍wrc

𝑍wrc
·
�wtwrc(𝑅)
wtwrc(𝑅)

=
𝑍wrc

𝑍wrc
·

∏
𝐶∈𝜅(𝑉,𝑆)

1+∏𝑢∈𝐶 𝜆𝑢
1+∏𝑢∈𝐶 𝜆𝑢

.

Note that
𝑍wrc
𝑍wrc
≥ 1 because 𝜆𝑢 ≤ 𝜆𝑢 , which implies that the weight of each configura-

tion of the random cluster model decreases after replacing 𝜆 with 𝜆. The second term

can be handled by∏
𝐶∈𝜅(𝑉,𝑆)

1+∏𝑢∈𝐶 𝜆𝑢
1+∏𝑢∈𝐶 𝜆𝑢

≥
∏

𝐶∈𝜅(𝑉,𝑆)

∏
𝑢∈𝐶 𝜆𝑢∏
𝑢∈𝐶 𝜆𝑢

≥
(
𝑛−1
𝑛+1

)𝑛
≥ 1

9

as 𝑛 ≥ 2.

For the second inequality, the definition of 𝜋wrc, together with the relation be-

tween 𝑍wrc and 𝑍sg in Equation (6.6), gives

𝜋wrc(𝑅)
𝜋wrc(𝑅)

=
𝑍sg(𝐺;p, 𝜂)
𝑍sg(𝐺;p, 𝜂) ·

∏
𝑣∈𝑉

1
1+𝜆𝑣∏

𝑣∈𝑉
1

1+𝜆𝑣
·

∏
𝐶∈𝜅(𝑉,𝑅)

(
1+∏𝑢∈𝐶 𝜆𝑢

)∏
𝐶∈𝜅(𝑉,𝑅) (1+

∏
𝑢∈𝐶 𝜆𝑢)

.
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There are three terms. For the first one, note that 𝜂𝑣 > 𝜂𝑣 for all 𝑣, indicating that the

weight of each configuration of the subgraph-world model is increased after replacing

𝜂 with 𝜂. As such, it is less or equal than 1. The third term is also less or equal than

1 due to 𝜆𝑣 < 𝜆𝑣 . The second term can be bounded by∏
𝑣∈𝑉

1
1+𝜆𝑣∏

𝑣∈𝑉
1

1+𝜆𝑣
=

∏
𝑣∈𝑉 (1+𝜂𝑣)∏
𝑣∈𝑉 (1+𝜂𝑣)

≤
(
1+ 1

𝑛

)𝑛
< e

which concludes this lemma. □

We also have a bound on the ratio of the transition probability between the orig-

inal and perturbed model in the Glauber dynamics.

Lemma 6.27. Let 𝑃wrc and 𝑃wrc be the transition matrices of Glauber dynamics on the

random cluster models (𝐺;2p,𝜆) and (𝐺;2p,𝜆) respectively. Then it holds that

1
9e
≤ 𝑃wrc(𝑍, 𝑍′)

𝑃wrc(𝑍, 𝑍′)
≤ 9e for all |𝑍 ⊕ 𝑍′| = 1.

Proof. Assume 𝑍′ = 𝑍 + 𝑒 where 𝑒 ∉ 𝑍 . The case 𝑍′ = 𝑍 − 𝑒 where 𝑒 ∈ 𝑍 follows by a

similar argument. We then have

1
9e
≤ 𝑃wrc(𝑍, 𝑍′)

𝑃wrc(𝑍, 𝑍′)
=
𝜋wrc(𝑍′) (𝜋wrc(𝑍) + 𝜋wrc(𝑍′))
(𝜋wrc(𝑍) + 𝜋wrc(𝑍′))𝜋wrc(𝑍′)

≤ 9e. □

Now we are ready to prove Lemma 6.23.

Proof of Lemma 6.23. Fix a test function 𝑓 . Denote by E( 𝑓 , 𝑓 ), Ê ( 𝑓 , 𝑓 ) the Dirichlet

form of 𝑃wrc and 𝑃wrc respectively. Denote by Var[ 𝑓 ] and V̂ar[ 𝑓 ] the variance of 𝑓

with respect to 𝜋wrc and 𝜋wrc respectively. Then by Lemma 6.26 and Lemma 6.27,

E( 𝑓 , 𝑓 )
Var[ 𝑓 ] =

∑︁
𝑋,𝑌⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋)𝑃wrc(𝑋,𝑌 ) ( 𝑓 (𝑋) − 𝑓 (𝑌 ))2

∑︁
𝑋,𝑌⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋)𝜋wrc(𝑌 ) ( 𝑓 (𝑋) − 𝑓 (𝑌 ))2

≥

1
9e2

∑︁
𝑋,𝑌⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋)𝑃wrc(𝑋,𝑌 ) ( 𝑓 (𝑋) − 𝑓 (𝑌 ))2

81
∑︁

𝑋,𝑌⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋)𝜋wrc(𝑌 ) ( 𝑓 (𝑋) − 𝑓 (𝑌 ))2
>

1
104
Ê ( 𝑓 , 𝑓 )
V̂ar[ 𝑓 ]

.

Therefore, 𝔊𝔞𝔭(𝑃wrc) ≥ 1
104𝔊𝔞𝔭(𝑃wrc) ≥ min{𝑝min,1−2𝑝max}

104𝑛4𝑚2 . Lemma 6.23 follows from

Proposition 6.7. □
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6.6 Rapid mixing of Swendsen-Wang dynamics

Having analysed the edge-flipping dynamics, now we turn to relating it with the

Swendsen-Wang dynamics. From this point on, we no longer need the grand model.

We first reiterate the settings for clarity. Let 𝐺 = (𝑉,𝐸) be a graph. We consider the

Ising model on 𝐺 with parameters 𝜆 = (𝜆𝑣)𝑣∈𝑉 and 𝛽 = (𝛽𝑒)𝑒∈𝐸 , where 0 < 𝜆𝑣 ≤ 1 for

all 𝑣 ∈ 𝑉 and 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸 , as well as the weighted random cluster model on

𝐺 with parameters p = (𝑝𝑒)𝑒∈𝐸 and 𝜆 = (𝜆𝑣)𝑣∈𝑉 , where 𝑝𝑒 = 1− 1
𝛽𝑒

for all 𝑒 ∈ 𝐸 . Let

𝜋Ising over ΩI = {0,1}𝑉 denote the Gibbs distribution of the Ising model, and 𝜋wrc

over ΩR = {0,1}𝐸 denote the distribution of the weighted random cluster model. We

remark that we view 𝜋wrc as a distribution over {0,1}𝐸 instead of 2𝐸 .

Let 𝑃wrc
SW = 𝑃R→I𝑃I→R denote the transition matrix of the Swendsen-Wang dy-

namics for weighted random cluster models as defined in Section 6.1.2.2, and 𝑃GlauberRC

denote the transition matrix of the Glauber dynamics for weighted random cluster

models. In this section, we compare the Swendsen-Wang dynamics with the Glauber

dynamics. Ullrich [Ull14] showed the following result about the variance decay (spec-

tral gap) of the Swendsen-Wang dynamics.

Lemma 6.28 ([Ull14, Remark 2 and Theorem 5]). Suppose 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . It

holds that

𝔊𝔞𝔭(𝑃wrc
SW) ≥

𝔊𝔞𝔭 (𝑃GlauberRC)
2

.

The above result is proved in [Ull14] in the case where 𝑝𝑒 = 𝑝 ∈ (0,1) for all

𝑒 ∈ 𝐸 and 𝜆𝑣 = 1 for all 𝑣 ∈𝑉 .
4

The model we consider allows that each 𝑒 has different

𝑝𝑒 ∈ (0,1) and each 𝑣 has different 𝜆𝑣 ∈ (0,1]. However, there is no substantial change

required to generalise it to our setting. Alternatively, we provide a somewhat simpler

proof of Lemma 6.28 in Remark 6.33.

Lemma 6.28 only compares the decay rate of the variance. The main technical

result in this section is the following comparison lemma on the decay rate of the

relative entropy.

Lemma 6.29. Suppose 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . Let 0 < 𝛿 < 1. For any distribution 𝜈

over ΩR , if

𝐷KL

(
𝜈𝑃
↓
GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤ (1− 𝛿)𝐷KL (𝜈 ∥ 𝜋wrc) ,

4
In [Ull14], Ullrich proved this for general random cluster models with an arbitrary 𝑞 ≥ 1, but when

𝑞 ≠ 2 that model cannot be easily translated to the notation we use.
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then it holds that

𝐷KL

(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃
wrc
SW

)
≤

(
1− 𝛿

4

)
𝐷KL (𝜈 ∥ 𝜋wrc) .

We are now ready to prove the main results in Theorem 6.1 and Theorem 6.2.

Proofs of Theorem 6.1 and Theorem 6.2. Let 𝜋wrc,min = min𝑆⊆𝐸 𝜋wrc(𝑆) denote the min-

imum probability in 𝜋wrc. It is straightforward to verify that 𝜋wrc,min ≥ min{𝑝min,1−
𝑝max}𝑚/2𝑚+𝑛. By the data processing inequality, Proposition 6.6 and Proposition 6.7,

we have

𝐷𝜒2
(
𝜈𝑃wrc

SW ∥ 𝜋wrc
)
= 𝐷𝜒2

(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃
wrc
SW

)
≤ 𝐷𝜒2 (𝜈𝑃R→I ∥ 𝜋wrc𝑃R→I)

≤
(
1−𝔊𝔞𝔭(𝑃wrc

SW)
)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc) .

A lower bound of 𝔊𝔞𝔭(𝑃wrc
SW) can be obtained by Proposition 6.7, Lemma 6.23 and

Lemma 6.28. Let 𝐶1 be the constant in Theorem 6.24. By a similar calculation as that

in the proof of Theorem 6.24, we have

𝑇mix(𝑃wrc
SW, 𝜖) ≤ 2𝐶1(𝑝min, 𝑝max) ·min

{
𝑛4,

(
1

1−𝜆max

)4
}
·𝑚2 ·

(
log

1
𝜖
+𝑚

)
.

By (6.12), the mixing time of Swendsen-Wang dynamics on Ising model satisfies

𝑇mix(𝑃Ising
SW , 𝜖) ≤ 𝐶′1(𝛽min, 𝛽max) ·min

{
𝑛4,

(
1

1−𝜆max

)4
}
·𝑚2 ·

(
log

1
𝜖
+𝑚

)
,

where 𝑝min = 1− 1
𝛽min

, 𝑝max = 1− 1
𝛽max

, and thus

𝐶′1(𝛽min, 𝛽max) =𝑂

(
1

min{𝑝min,1− 𝑝max}
log

1
min{𝑝min,1− 𝑝max}

)
=𝑂

((
𝛽min

1− 𝛽min
+ 𝛽max

)
log

(
𝛽min

1− 𝛽min
+ 𝛽max

))
. (6.30)

This proves Theorem 6.1.

For the decay of the relative entropy, the initial KL-divergence is at most log 1
𝜋wrc,min

.

Let 𝐶2 be the constant in Theorem 6.24. By Lemma 6.29, Lemma 6.22, and (2.4), we

can use a similar calculation as that in the proof of Theorem 6.24 to obtain

𝑇mix(𝑃wrc
SW, 𝜖) ≤ 4𝐶2 · (Δ, 𝛿, 𝑝min, 𝑝max) · 𝑛

(
log𝑛+ log

1
𝜖

)
.

By (6.12), the mixing time of Swendsen-Wang dynamics on Ising model satisfies

𝑇mix(𝑃Ising
SW , 𝜖) ≤ 𝐶′2(Δ, 𝛿, 𝛽min, 𝛽max) · 𝑛

(
log𝑛+ log

1
𝜖

)
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where

𝐶′2(Δ, 𝛿, 𝛽min, 𝛽max) =
(

Δ

𝛿2 min{𝑝min,1− 𝑝max}

)𝑂 (
Δ2

𝛿4 min{𝑝min ,1−𝑝max }

)

=

(
Δ

𝛿2

(
𝛽min

1− 𝛽min
+ 𝛽max

))𝑂 (
Δ2
𝛿4

(
𝛽min

1−𝛽min
+𝛽max

))
. (6.31)

This proves Theorem 6.2. □

The rest of this section is dedicated to the proof of Lemma 6.29.

6.6.1 FKES distribution and single-bond dynamics

To compare the Swendsen-Wang dynamics to the Glauber dynamics, we first intro-

duce the FKES (Fortuin-Kasteleyn-Edwards-Sokal) distribution [FK72, ES88] 𝜋FKES

over ΩI ×ΩR , which couples the Ising distribution 𝜋Ising and the random cluster dis-

tribution 𝜋wrc:

∀𝜎 ∈ ΩI , 𝜏 ∈ ΩR , 𝜋FKES(𝜎𝜏) := 𝜋Ising(𝜎)𝑃I→R (𝜎,𝜏)
(★)
= 𝜋wrc(𝜏)𝑃R→I (𝜏,𝜎),

(6.32)

where ΩI = {0,1}𝑉 , ΩR = {0,1}𝐸 , 𝑃I→R and 𝑃R→I are defined in (6.7) and (6.8)

respectively. The equation (★) holds due to Proposition 6.6. We use ΩFKES ⊆ΩI ×ΩR
to denote the support of the distribution 𝜋FKES. The above equation shows that

• the marginal distribution projected from 𝜋FKES to ΩI is 𝜋Ising;

• the marginal distribution projected from 𝜋FKES to ΩR is 𝜋wrc;

• conditional on 𝜎 ∈ ΩI , the marginal distribution projected from 𝜋FKES to ΩR

is PI→R (𝜎, ·);

• conditional on 𝜏 ∈ ΩR , the marginal distribution projected from 𝜋FKES to ΩI is

PR→I (𝜏, ·).

Define the following stochastic matrix from the weighted random cluster model

to the FKES model

∀𝜏1 ∈ ΩR ,𝜎𝜏2 ∈ ΩFKES, 𝑃R→FKES(𝜏1,𝜎𝜏2) = 𝑃R→I (𝜏1,𝜎) · I[𝜏1 = 𝜏2],
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The operator 𝑃R→FKES maps from 𝐿2(𝜋FKES) to 𝐿2(𝜋wrc), where 𝐿2(𝜋) is the vector

space with the inner product ⟨·, ·⟩𝜋 . The adjoint operator 𝑃FKES→R is defined by

∀𝜎𝜏1 ∈ ΩFKES, 𝜏2 ∈ ΩR , 𝑃FKES→R (𝜎𝜏1, 𝜏2) = I[𝜏1 = 𝜏2] .

For any 𝑓 ∈ 𝐿2(𝜋FKES) and 𝑔 ∈ 𝐿2(𝜋wrc), it holds that ⟨𝑃R→FKES 𝑓 , 𝑔⟩𝜋wrc = ⟨ 𝑓 , 𝑃FKES→R𝑔⟩𝜋FKES .

Next, we define the edge down-walk on the joint distribution. Fix an edge 𝑒 ∈ 𝐸 .

Given 𝜎𝜏 ∈ ΩFKES, let 𝑃
↓
𝑒 denote the edge down-walk that drops the value on edge 𝑒.

Formally, 𝑃
↓
𝑒 is defined on any 𝜎𝜏 ∈ ΩFKES and any 𝜎′𝜏′ ∈ Ω𝑒

FKES,

𝑃
↓
𝑒 (𝜎𝜏,𝜎′𝜏′) = I[𝜎 = 𝜎′∧ 𝜏′ = 𝜏𝐸−𝑒],

where we use 𝐸 − 𝑒 to denote 𝐸 \ {𝑒}. Let 𝜋𝑒FKES = 𝜋FKES𝑃
↓
𝑒 . Let Ω𝑒

FKES denote the

support of 𝜋FKES𝑃
↓
𝑒 . Suppose 𝑒 = {𝑢, 𝑣}. We then define the edge up-walk 𝑃

↑
𝑒 , for all

𝜎′𝜏′ ∈ Ω𝑒
FKES and 𝜎𝜏 ∈ ΩFKES,

𝑃
↑
𝑒 (𝜎′𝜏′,𝜎𝜏) = I[𝜎 = 𝜎′∧ 𝜏𝐸−𝑒 = 𝜏′] ×



𝑝𝑒 if 𝜏𝑒 = 1 and 𝜎(𝑢) = 𝜎(𝑣);

1− 𝑝𝑒 if 𝜏𝑒 = 0 and 𝜎(𝑢) = 𝜎(𝑣);

0 if 𝜏𝑒 = 1 and 𝜎(𝑢) ≠ 𝜎(𝑣);

1 if 𝜏𝑒 = 0 and 𝜎(𝑢) ≠ 𝜎(𝑣).

For any 𝑓 ∈ 𝐿2(𝜋FKES) and 𝑔 ∈ 𝐿2(𝜋𝑒FKES), it holds that ⟨𝑃↑𝑒 𝑓 , 𝑔⟩𝜋𝑒FKES
= ⟨ 𝑓 , 𝑃↓𝑒𝑔⟩𝜋FKES .

Since in each transition step of 𝑃
↑
𝑒 , 𝜎

′𝜏′
𝐸−𝑒 = 𝜎𝜏𝐸−𝑒 and the distribution of 𝜏′𝑒

depends only on 𝜎𝑢 and 𝜎𝑣 , the following observation is straightforward to verify.

Observation 6.30. For any 𝑒, 𝑓 ∈ 𝐸 , it holds that

• (𝑃↓𝑒𝑃↑𝑒) (𝑃↓𝑓 𝑃
↑
𝑓
) = (𝑃↓

𝑓
𝑃
↑
𝑓
) (𝑃↓𝑒𝑃↑𝑒).

• 𝑃
↓
𝑒𝑃
↑
𝑒 = (𝑃↓𝑒𝑃↑𝑒)2.

The single bond dynamics 𝑃SB : ΩR ×ΩR→ R≥0 is defined as follows

𝑃SB = 𝑃R→FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒𝑃
↑
𝑒

)
𝑃FKES→R .

Intuitively, given any 𝜏 ∈ ΩR , 𝑃SB first transforms 𝜏 into a joint configuration 𝜎𝜏 ∈
ΩFKES; samples an edge 𝑒 ∈ 𝐸 uniformly at random; updates 𝜏𝑒 conditional on 𝜎;

drops 𝜎 and keeps the random cluster configuration 𝜏. Similarly, we can decompose

the single bond dynamics as 𝑃SB = 𝑃
↓
SB𝑃

↑
SB:

𝑃
↓
SB = 𝑃R→FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

)
and 𝑃

↑
SB = 𝑃

↑
𝐸
𝑃FKES→R , (6.33)
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where for convenience, we treat ( 1
𝑚

∑
𝑒∈𝐸 𝑃

↓
𝑒) as a matrix defined onΩFKES×(∪𝑒∈𝐸Ω𝑒

FKES)
and 𝑃

↑
𝐸

: (∪𝑒∈𝐸Ω𝑒
FKES) ×ΩFKES → R≥0 is defined by 𝑃

↑
𝐸
(𝑥, 𝑦) = 𝑃

↑
𝑒 (𝑥, 𝑦) where 𝑥 ∈

Ω𝑒
FKES for some 𝑒 ∈ 𝐸 and 𝑦 ∈ ΩFKES. Note that once 𝑥 is given, 𝑒 is uniquely deter-

mined, and 𝑃
↑
𝐸

agrees with 𝑃
↑
𝑒 . It is straightforward to check ( 1

𝑚

∑
𝑒∈𝐸 𝑃

↓
𝑒) and 𝑃

↑
𝐸

is

a pair of adjoint operators.

Lemma 6.31. Suppose 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . Let 0 < 𝛿 < 1. For any distribution 𝜈

over ΩR , if

𝐷KL

(
𝜈𝑃
↓
GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤ (1− 𝛿)𝐷KL (𝜈 ∥ 𝜋wrc) ,

then it holds that

𝐷KL

(
𝜈𝑃
↓
SB ∥ 𝜋wrc𝑃

↓
SB

)
≤

(
1− 𝛿

4

)
𝐷KL (𝜈 ∥ 𝜋wrc) . (6.34)

The proof of Lemma 6.31 is deferred to Section 6.6.2. We prove Lemma 6.29 first.

Proof of Lemma 6.29. By Observation 6.30, the Swendsen-Wang dynamics 𝑃wrc
𝑆𝑊

can

be written as

𝑃wrc
SW = 𝑃R→FKES

(∏
𝑒∈𝐸

𝑃
↓
𝑒𝑃
↑
𝑒

)
𝑃FKES→R = 𝑃R→FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒𝑃
↑
𝑒

) (∏
𝑒∈𝐸

𝑃
↓
𝑒𝑃
↑
𝑒

)
𝑃FKES→R

= 𝑃R→FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

)
𝑃
↑
𝐸

(∏
𝑒∈𝐸

𝑃
↓
𝑒𝑃
↑
𝑒

)
𝑃FKES→R = 𝑃

↓
SB𝑃

↑
𝐸

(∏
𝑒∈𝐸

𝑃
↓
𝑒𝑃
↑
𝑒

)
𝑃FKES→R .

Hence, by the data processing inequality, we have

𝐷KL

(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃
wrc
SW

)
≤ 𝐷KL

(
𝜈𝑃
↓
SB ∥ 𝜋wrc𝑃

↓
SB

)
≤

(
1− 𝛿

4

)
𝐷KL (𝜈 ∥ 𝜋wrc) ,

where the last inequality holds due to Lemma 6.31. □

Remark 6.32. The above proof can be illustrated by the diagrams below. Each step

of transition of the single-bond dynamics can be decomposed as

𝜏
𝑃R→FKES−−−−−−−−−→ 𝜎𝜏

1
𝑚

∑︁
𝑒

𝑃
↓
𝑒

−−−−−−−−→︸                           ︷︷                           ︸
𝑃
↓
SB

𝜎𝜏\𝑒
𝑃
↑
𝐸−−−→ 𝜎𝜏′

𝑃FKES→R−−−−−−−−−→︸                    ︷︷                    ︸
𝑃
↑
SB

𝜏′.

While for the Swendsen-Wang dynamics, it is

𝜏
𝑃R→FKES−−−−−−−−−→ 𝜎𝜏

∏
𝑒

(𝑃↓𝑒𝑃↑𝑒)

−−−−−−−−−−→ 𝜎𝜏′′
𝑃FKES→R−−−−−−−−−→ 𝜏′′.
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Note that the down-up operator 𝑃∨𝑒 := 𝑃
↓
𝑒𝑃
↑
𝑒 is commutative and idempotent, allowing

us to decompose Swendsen-Wang dynamics by performing the down walk of one

edge first:

𝜏
𝑃R→FKES−−−−−−−−−→ 𝜎𝜏

1
𝑚

∑︁
𝑒

𝑃
↓
𝑒

−−−−−−−−→︸                           ︷︷                           ︸
𝑃
↓
SB

𝜎𝜏\𝑒
𝑃
↑
𝐸−−−→ 𝜎𝜏′

∏
𝑒

(𝑃↓𝑒𝑃↑𝑒)

−−−−−−−−−−→ 𝜎𝜏′′
𝑃FKES→R−−−−−−−−−→ 𝜏′′.

Therefore, the variance (see the next remark) or entropy decay (see the next section)

of each Swendsen-Wang transition is faster than that of the single-bond downwalk

𝑃
↓
SB.

Remark 6.33 (a simple proof of the main result in [Ull14] and Lemma 6.28). If we

replace KL-divergence in the above proof with 𝜒2
-divergence, the same proof shows

that for any distribution 𝜈,

𝐷𝜒2
(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃
wrc
SW

)
≤ 𝐷𝜒2

(
𝜈𝑃
↓
SB ∥ 𝜋wrc𝑃

↓
SB

)
.

By Proposition 6.7, we have the following result

𝔊𝔞𝔭((𝑃wrc
SW)

2) ≥ 𝔊𝔞𝔭(𝑃SB) =⇒ 𝔊𝔞𝔭(𝑃wrc
SW) ≥

𝔊𝔞𝔭(𝑃SB)
2

,

which recovers the main result in [Ull14] up to the factor 2.

The above analysis loses a factor of 2 because we compare 𝑃wrc
SW with 𝑃

↓
SB. Note that

𝑃wrc
SW can be decomposed as 𝑃R→I ·𝑃I→R . This factor 2 can be saved by comparing the

intermediate step 𝑃R→I with 𝑃
↓
SB. Define the intermediate state spaceΩ∗R = {0,1,∗}

𝐸
,

where for any 𝜏 ∈ Ω∗R and 𝑒 ∈ 𝐸 , 𝜏𝑒 = ∗ means that 𝑒 is not assigned with any value,

in other words, the value on 𝑒 is dropped. We can view 𝑃
↓
𝑒 as a random walk on

ΩI ×Ω∗R such that given any 𝜎𝜏 ∈ ΩI ×Ω∗R , 𝑃
↓
𝑒 drops the value 𝜏𝑒 (i.e. sets 𝜏𝑒 = ∗)

and keeps 𝜎𝜏𝐸\{𝑒} unchanged. It is straightforward to verify that 𝑃R→I is equivalent

to 𝑃R→FKES
∏

𝑒∈𝐸 𝑃
↓
𝑒 . Note that

𝑃R→FKES
∏
𝑒∈𝐸

𝑃
↓
𝑒 = 𝑃R→FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

) ∏
𝑒∈𝐸

𝑃
↓
𝑒,

as updating an edge twice is the same as updating it once. Recall (6.33) that 𝑃R→FKES( 1
𝑚

∑
𝑒∈𝐸 𝑃

↓
𝑒)

is equivalent to 𝑃
↓
SB. By the data processing inequality, we have the following stronger

result

𝐷𝜒2 (𝜈𝑃R→I ∥ 𝜋wrc𝑃R→I) ≤ 𝐷𝜒2

(
𝜈𝑃
↓
SB ∥ 𝜋wrc𝑃

↓
SB

)
,
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which gives a better bound 𝔊𝔞𝔭(𝑃wrc
SW) ≥ 𝔊𝔞𝔭(𝑃SB), matching [Ull14].

For Lemma 6.28, we still need to compare 𝔊𝔞𝔭(𝑃SB) with 𝔊𝔞𝔭(𝑃GlauberRC). We

claim that𝔊𝔞𝔭(𝑃SB) ≥𝔊𝔞𝔭(𝑃GlauberRC)/2. By a simple comparison argument through

the Dirichlet form (see for example [LP17, Section 13.3]), it suffices to show

𝑃GlauberRC(𝐴, 𝐵)
𝑃SB(𝐴, 𝐵)

≤ 2

for all 𝐴, 𝐵 ⊆ 𝐸 such that |𝐴 ⊕ 𝐵 | = 1. Let 𝑒 be the edge where 𝐴 and 𝐵 differ. By

writing down the transition probability explicitly, the above ratio is 1 if 𝐴 and 𝐵 give

the same connected components, and

1

1−
(
1− 1+𝑋𝑌

(1+𝑋) (1+𝑌 )

)
𝑝𝑒

otherwise, where 𝑋 =
∏

𝑣∈𝐶1 𝜆𝑣 , 𝑌 =
∏

𝑤∈𝐶2 𝜆𝑤 , and 𝐶1,𝐶2 are the two components

created by disconnecting 𝑒. Using the inequality that 1/2 ≤ (1 + 𝑋𝑌 )/((1 + 𝑋) (1 +
𝑌 )) ≤ 1 for all 0 ≤ 𝑋,𝑌 ≤ 1, the above ratio is bounded by 2.

6.6.2 Comparing Glauber dynamics to single-bond dynamics

We first introduce some notations. Let 𝜇 be a distribution with support Ω ⊆ 𝑄𝑉
.

For any 𝑆 ⊆ 𝑉 , we use 𝜇𝑆 to denote the marginal distribution on 𝑆 induced by

𝜇. Let Ω(𝜇𝑆) denote the support of 𝜇𝑆 . Given any 𝑥𝑆 ∈ Ω(𝜇𝑆), we use 𝜇𝑥𝑆 to denote

the distribution over Ω obtained from 𝜇 conditional on 𝑥𝑆 . Formally, for any 𝑦 ∈ Ω,

𝜇𝑥𝑆 (𝑦) = I[𝑦𝑆 = 𝑥𝑆]𝜇(𝑦)/𝜇𝑆 (𝑥𝑆), where 𝑦𝑆 is the restriction of 𝑦 on 𝑆. For any Λ ⊆ 𝑉 ,

we use 𝜇
𝑥𝑆
Λ

to denote the marginal distribution on Λ induced by 𝜇𝑥𝑆 . We need the

following chain rule of the KL-divergence. Such a result is very well-known. See for

example [CP21, Lemma 3.1].

Lemma 6.34. For any distribution 𝜈 be a distribution over Ω, any 𝑆 ⊆ 𝑉 , it holds that

𝐷KL (𝜈 ∥ 𝜇) = 𝐷KL (𝜈𝑆 ∥ 𝜇𝑆) +E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) = 𝐷KL (𝜈𝑆 ∥ 𝜇𝑆) + 𝜇[Ent𝑉−𝑆 ( 𝑓 )],

where 𝑉 − 𝑆 =𝑉 \ 𝑆 and 𝑓 : Ω→ R≥0 is defined by 𝑓 (𝑥) = 𝜈(𝑥)/𝜇(𝑥) and

𝜇[Ent𝑉−𝑆 ( 𝑓 )] =
∑︁

𝑥𝑆∈Ω(𝜇𝑆)
𝜇𝑆 (𝑥𝑆)Ent𝜇𝑥𝑆 ( 𝑓 ) .

Proof. The first equation 𝐷KL (𝜈 ∥ 𝜇) = 𝐷KL (𝜈𝑆 ∥ 𝜇𝑆) +E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) follows

directly from the standard chain rule of KL-divergence. To prove the second equation,
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for any 𝑥𝑆 ∈ Ω(𝜈𝑆), define

∀𝑦 ∈ Ω, 𝑔𝑥𝑆 (𝑦) :=


𝜈𝑥𝑆 (𝑦)
𝜇𝑥𝑆 (𝑦) =

𝜈(𝑦)𝜇𝑆 (𝑥𝑆)
𝜇(𝑦)𝜈𝑆 (𝑥𝑆) =

𝜇𝑆 (𝑥𝑆)
𝜈𝑆 (𝑥𝑆) 𝑓 (𝑦) if 𝑦𝑆 = 𝑥𝑆;

0 otherwise.

Since Ω(𝜈𝑆) ⊆ Ω(𝜇𝑆), we have

E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) =
∑︁

𝑥𝑆∈Ω(𝜈𝑆)
𝜈(𝑥𝑆)Ent𝜇𝑥𝑆 (𝑔𝑥𝑆 ) =

∑︁
𝑥𝑆∈Ω(𝜈𝑆)

𝜈(𝑥𝑆)Ent𝜇𝑥𝑆

(
𝜇𝑆 (𝑥𝑆)
𝜈𝑆 (𝑥𝑆)

𝑓

)
=

∑︁
𝑥𝑆∈Ω(𝜈𝑆)

𝜇(𝑥𝑆)Ent𝜇𝑥𝑆 ( 𝑓 ) . (as Ent𝜇𝑥𝑆 (𝑐 𝑓 ) = c Ent𝜇𝑥𝑆 ( 𝑓 ))

Note that for all 𝜎 ∈ Ω such that 𝜎𝑆 ∈ Ω(𝜇𝑆) \Ω(𝜈𝑆), it holds that 𝑓 (𝜎) = 𝜈(𝜎)
𝜇(𝜎) = 0,

implying that Ent𝜇𝜎𝑆 ( 𝑓 ) = 0. We have

E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) =
∑︁

𝑥𝑆∈Ω(𝜈𝑆)
𝜇(𝑥𝑆)Ent𝜇𝑥𝑆 ( 𝑓 ) +

∑︁
𝑥𝑆∈Ω(𝜇𝑆)\Ω(𝜈𝑆)

𝜇(𝑥𝑆)Ent𝜇𝑥𝑆 ( 𝑓 )

=
∑︁

𝑥𝑆∈Ω(𝜇𝑆)
𝜇(𝑥𝑆)Ent𝜇𝑥𝑆 ( 𝑓 ) = 𝜇[Ent𝑉−𝑆 ( 𝑓 )] . □

Now we are ready to prove Lemma 6.31.

Proof of Lemma 6.31. For any 𝑒 ∈ 𝐸 , let 𝐸 − 𝑒 = 𝐸 \ {𝑒}, using Lemma 6.34, it holds

that

𝐷KL (𝜈 ∥ 𝜋wrc) = 𝐷KL

(
𝜈𝐸−𝑒 ∥ 𝜋wrc,𝐸−𝑒

)
+ 𝜋wrc [Ent𝑒 ( 𝑓 )], where 𝑓 (𝜏) = 𝜈(𝜏)

𝜋wrc(𝜏)
.

Averaging over all 𝑒 ∈ 𝐸 , we get

1
𝑚

∑︁
𝑒∈𝐸

𝜋wrc [Ent𝑒 ( 𝑓 )] =
1
𝑚

∑︁
𝑒∈𝐸

𝐷KL (𝜈 ∥ 𝜋wrc) −
1
𝑚

∑︁
𝑒∈𝐸

𝐷KL

(
𝜈𝐸−𝑒 ∥ 𝜋wrc,𝐸−𝑒

)
= 𝐷KL (𝜈 ∥ 𝜋wrc) −𝐷KL

(
𝜈𝑃
↓
GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
.

By the assumption of Lemma 6.31, we have

1
𝑚

∑︁
𝑒∈𝐸

𝜋wrc [Ent𝑒 ( 𝑓 )] ≥ 𝛿𝐷KL (𝜈 ∥ 𝜋wrc) . (6.35)

Next, by (6.33), we have

𝐷KL

(
𝜈𝑃
↓
SB ∥ 𝜋wrc𝑃

↓
SB

)
= 𝐷KL

(
𝜈𝑃R→FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

)
∥ 𝜋wrc𝑃R→FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

))
= 𝐷KL

(
𝜈joint

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

)
∥ 𝜋FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

))
,
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where 𝜈joint = 𝜈𝑃R→FKES so that for any 𝜎𝜏 ∈ ΩFKES, 𝜈joint(𝜎𝜏) = 𝜈(𝜏)𝜋𝜏FKES,𝑉 (𝜎).
Hence, we have

𝐷KL

(
𝜈joint ∥ 𝜋FKES

)
=

∑︁
𝜎𝜏∈ΩFKES

𝜈joint(𝜎𝜏) log
𝜈(𝜏)𝜋𝜏FKES,𝑉 (𝜎)

𝜋wrc(𝜏)𝜋𝜏FKES,𝑉 (𝜎)
= 𝐷KL (𝜈 ∥ 𝜋wrc) .

With these two equations, our goal, (6.34), is equivalent to

𝐷KL

(
𝜈joint ∥ 𝜋FKES

)
−𝐷KL

(
𝜈joint

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

)
∥ 𝜋FKES

(
1
𝑚

∑︁
𝑒∈𝐸

𝑃
↓
𝑒

))
≥ 𝛿

4
𝐷KL

(
𝜈joint ∥ 𝜋FKES

)
.

(6.36)

Using Lemma 6.34, for any 𝑒 ∈ 𝐸 , let 𝑉 +𝐸 − 𝑒 be 𝑉 ∪𝐸 \ {𝑒}, it holds that

𝐷KL

(
𝜈joint ∥ 𝜋FKES

)
= 𝐷KL

(
𝜈joint,𝑉+𝐸−𝑒 ∥ 𝜋FKES,𝑉+𝐸−𝑒

)
+ 𝜋FKES

[
Ent𝑒

(
𝑓

)]
,

where

𝑓 (𝜎𝜏) =
𝜈joint(𝜎𝜏)
𝜋FKES(𝜎𝜏)

=
𝜈(𝜏)𝜋𝜏FKES,𝑉 (𝜎)

𝜋wrc(𝜏)𝜋𝜏FKES,𝑉 (𝜎)
=

𝜈(𝜏)
𝜋wrc(𝜏)

= 𝑓 (𝜏).

Hence, (6.36) is equivalent to

1
𝑚

∑︁
𝑒∈𝐸

𝜋FKES

[
Ent𝑒

(
𝑓

)]
≥ 𝛿

4
𝐷KL

(
𝜈joint ∥ 𝜋FKES

)
=
𝛿

4
𝐷KL (𝜈 ∥ 𝜋wrc) .

Given (6.35), to prove the above inequality, it suffices to show that for any 𝑒 ∈ 𝐸 ,

4 · 𝜋FKES

[
Ent𝑒

(
𝑓

)]
≥ 𝜋wrc [Ent𝑒 ( 𝑓 )] . (6.37)

We now prove (6.37). We use 𝜎 to denote the vertex configuration in {0,1}𝑉 and 𝜏 to

denote the edge configuration 𝜏 ∈ {0,1}𝐸 . Suppose 𝑒 = {𝑢, 𝑣}. We use 𝜏−𝑒 to denote

a configuration in {0,1}𝐸−𝑒 . To ease the notation, we use 𝜋FKES(𝜎𝜏−𝑒) to denote

𝜋FKES,𝐸−𝑒 (𝜎𝜏−𝑒). For any 𝜏𝑒 ∈ {0,1}, we use 𝜏−𝑒𝜏𝑒 to denote a full configuration 𝜏 in

{0,1}𝐸 . We have

𝜋FKES

[
Ent𝑒

(
𝑓

)]
=

∑︁
𝜎𝜏−𝑒

𝜋FKES(𝜎𝜏−𝑒)Ent𝜋
𝜎𝜏−𝑒
FKES

(
𝑓

)
=

∑︁
𝜎𝜏−𝑒

𝜋FKES(𝜎𝜏−𝑒)
∑︁

𝜏𝑒∈{0,1}
𝜋
𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒) log

𝑓 (𝜎𝜏−𝑒𝜏𝑒)∑
𝜏𝑒∈{0,1} 𝜋

𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒)

.

If 𝜎𝑢 ≠ 𝜎𝑣 , then 𝜋
𝜎𝜏−𝑒
FKES,𝑒 (0) = 1, and in this case∑︁

𝜏𝑒∈{0,1}
𝜋
𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒) log

𝑓 (𝜎𝜏−𝑒𝜏𝑒)∑
𝜏𝑒∈{0,1} 𝜋

𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒)

= 0.
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Thus we only need to consider the case where the two endpoints of 𝑒 get the same

spin. Note that this always happens if 𝜏−𝑒 ∈ 𝐶𝑒 , where 𝐶𝑒 ⊆ {0,1}𝐸−𝑒 is the set of

𝜏−𝑒 such that 𝑢 and 𝑣 are connected by edges assigned 1 in 𝜏−𝑒 . Again, to ease the

notation, let 𝜋wrc(𝜏−𝑒) be 𝜋wrc,𝐸−𝑒 (𝜏−𝑒). Hence, we have

𝜋FKES

[
Ent𝑒

(
𝑓

)]
=

∑︁
𝜏−𝑒∈𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒, 𝜏−𝑒) +
∑︁

𝜏−𝑒∉𝐶𝑒

𝜋wrc(𝜏−𝑒)Pr𝜎∼𝜋𝜏−𝑒
FKES,𝑉

[𝜎𝑢 = 𝜎𝑣]ℎ(𝑝𝑒, 𝜏−𝑒)

≥
∑︁

𝜏−𝑒∈𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒, 𝜏−𝑒) +
1
2

∑︁
𝜏−𝑒∉𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒, 𝜏−𝑒), (6.38)

where

ℎ(𝑝𝑒, 𝜏−𝑒) := 𝑝𝑒 𝑓 (𝜏−𝑒1) log 𝑓 (𝜏−𝑒1) + (1− 𝑝𝑒) 𝑓 (𝜏−𝑒0) log 𝑓 (𝜏−𝑒0)

− (𝑝𝑒 𝑓 (𝜏−𝑒1) + (1− 𝑝𝑒) 𝑓 (𝜏−𝑒0)) log(𝑝𝑒 𝑓 (𝜏−𝑒1) + (1− 𝑝𝑒) 𝑓 (𝜏−𝑒0)).

(Recall that 𝜏−𝑒𝜏𝑒 is a full configuration on 𝐸 , where 𝜏𝑒 = 0 or 1.) To see (6.38), since

all external fields are consistent, Pr𝜎∼𝜋𝜏−𝑒
FKES,𝑉

[𝜎𝑢 = 𝜎𝑣] ≥ 1/2. This is because we can

further condition on 𝜏𝑒: if 𝜏𝑒 = 1, then 𝜎𝑢 = 𝜎𝑣 with probability 1, and if 𝜏𝑒 = 0, then

𝜎𝑢 and 𝜎𝑣 are independent and biased towards the same direction, in which case they

are equal with probability at least 1/2. The final probability is a linear combination

of the two cases.

Similarly, we can expand the right hand side of (6.37),

𝜋wrc [Ent𝑒 ( 𝑓 )] =
∑︁
𝜏−𝑒

𝜋wrc(𝜏−𝑒)Ent𝜋
𝜏−𝑒
wrc
( 𝑓 )

=
∑︁
𝜏−𝑒

𝜋wrc(𝜏−𝑒)
∑︁

𝜏𝑒∈{0,1}
𝜋
𝜏−𝑒
wrc,𝑒 (𝜏𝑒) 𝑓 (𝜏−𝑒𝜏𝑒) log

𝑓 (𝜏−𝑒𝜏𝑒)∑
𝜏𝑒∈{0,1} 𝜋

𝜏−𝑒
wrc,𝑒 (𝜏𝑒) 𝑓 (𝜏−𝑒𝜏𝑒)

=
∑︁

𝜏−𝑒∈𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒, 𝜏−𝑒) +
∑︁

𝜏−𝑒∉𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ
(

𝑝𝑒

1−𝛼(𝜏−𝑒) (𝑝𝑒 −1) , 𝜏−𝑒
)
.

(6.39)

In the last step above we use
𝑝𝑒

1−𝛼(𝜏−𝑒) (𝑝𝑒−1) = 𝜋
𝜏−𝑒
wrc,𝑒 (1) where 𝛼(𝜏−𝑒) is a factor de-

pending on 𝜏−𝑒 , derived as follows. Suppose 𝑒 = {𝑢, 𝑣}. Consider the random cluster

configuration with 𝑒 set not to be taken, and adding 𝑒 causes the two connected

components 𝐶1 and 𝐶2 to be merged as one, where 𝑢 is in 𝐶1 and 𝑣 is in 𝐶2. Let

𝑋 = 𝑋 (𝜏−𝑒) =
∏

𝑤∈𝐶1 𝜆𝑤 and 𝑌 = 𝑌 (𝜏−𝑒) =
∏

𝑤∈𝐶2 𝜆𝑤 . We have

𝜋
𝜏−𝑒
wrc,𝑒 (1) =

𝑝𝑒 (1+ 𝑋𝑌 )
𝑝𝑒 (1+ 𝑋𝑌 ) + (1− 𝑝𝑒) (1+ 𝑋) (1+𝑌 )

=
𝑝𝑒

1− 𝑋+𝑌
1+𝑋𝑌 (𝑝𝑒 −1)

,
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which means we can take 𝛼(𝜏−𝑒) = 𝑋+𝑌
1+𝑋𝑌 . Moreover, we have 0 ≤ 𝛼(𝜏−𝑒) ≤ 1 since

0 < 𝑋 ≤ 1 and 0 < 𝑌 ≤ 1.

To finish the proof, define the following functions

𝑡 (𝑥, 𝑝,𝛼) :=
𝑔(𝑥, 𝑝)

𝑔(𝑥, 𝑝/(1−𝛼(𝑝−1))) where 𝑔(𝑥, 𝑝) := 𝑝𝑥 log𝑥− (𝑝𝑥 +1− 𝑝) log(𝑝𝑥 +1− 𝑝)

for 0 ≤ 𝑝 ≤ 1 and 0 ≤ 𝛼 ≤ 1. Define 𝑡 (0, 𝑝,𝛼) := lim𝑥↓0 𝑡 (𝑥, 𝑝,𝛼) and 𝑡 (1, 𝑝,𝛼) :=
lim𝑥→1 𝑡 (𝑥, 𝑝,𝛼). It is not hard to verify that 𝑡 (𝑥, 𝑝,𝛼) is continuous with respect to

𝑥 over [0,∞) for any fixed 𝑝 and 𝛼, and 𝑡

(
𝑓 (𝜏−𝑒,1)
𝑓 (𝜏−𝑒,0) , 𝑝𝑒, 𝛼(𝜏−𝑒)

)
=

ℎ(𝑝𝑒,𝜏−𝑒)
ℎ

(
𝑝𝑒

1−𝛼(𝜏−𝑒 ) (𝑝𝑒−1) ,𝜏−𝑒
) .

This function admits the following monotonicity property, whose proof is postponed

till Section 6.8.3.

Lemma 6.35. For any 0 ≤ 𝑝 ≤ 1 and 0 ≤ 𝛼 ≤ 1, 𝑡 (𝑥, 𝑝,𝛼) is monotone decreasing in 𝑥

over 𝑥 ≥ 0.

Given this, 𝑡 (𝑥, 𝑝,𝛼) has a lower bound

𝑡 (𝑥, 𝑝,𝛼) ≥ lim
𝑥→∞

𝑡 (𝑥, 𝑝,𝛼) = (1−𝛼(𝑝−1)) log 𝑝
log 𝑝− log(1−𝛼(𝑝−1)) =: 𝐶 (𝑝,𝛼).

We remark that the constant 𝐶 = 𝐶 (𝑝,𝛼) satisfies

0.5 ≤ 𝐶 (𝑝,𝛼) ≤ 2. (6.40)

The proof is given in Section 6.8.3, too. Using this fact, we conclude (6.37) by com-

paring (6.38) with (6.39).

This finishes the proof of Lemma 6.31. □

6.7 Perfect sampling via coupling from the past

In this section, we give a perfect sampler for the ferromagnetic Ising model with

consistent fields. We first give a perfect sampler for the weighted random cluster

model, then turn it into a perfect sampler for the Ising model.

Theorem 6.36. There exists a perfect sampling algorithm such that given any weighted

random cluster model on graph𝐺 = (𝑉,𝐸) with parameters p= (𝑝𝑒)𝑒∈𝐸 and𝜆 = (𝜆𝑣)𝑣∈𝑉 ,

if 0 < 𝑝𝑒 < 1 for all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 , the algorithm returns a perfect

sample from weighted random cluster models in expected time𝐶1(𝑝min, 𝑝max)𝑁4𝑚4 log𝑛,

where 𝑁 =min
{
𝑛, 1

1−𝜆max

}
,𝐶1(𝑝min, 𝑝max) =𝑂

(
1

min{𝑝min,1−𝑝max} log 1
min{𝑝min,1−𝑝max}

)
, 𝜆max =

max𝑣∈𝑉 𝜆𝑣 , 𝑝max = max𝑒∈𝐸 𝑝𝑒 and 𝑝min = min𝑒∈𝐸 𝑝𝑒 .
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Furthermore, if there exists 𝛿 > 0 such that 𝜆𝑣 ≤ 1− 𝛿 for all 𝑣 ∈ 𝑉 , then the algo-

rithm runs in time 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max)𝑛2 log2 𝑛, where the constant 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max)

is given by

(
Δ

𝛿2 min{𝑝min,1−𝑝max}

)𝑂 (
Δ2

𝛿4 min{𝑝min ,1−𝑝max }

)
.

Note that if 𝑝𝑒 = 0, we can simply remove 𝑒, and if 𝑝𝑒 = 1, we can contract 𝑒.

Similarly if 𝜆𝑣 = 0, we may pin 𝑣 to 0 and absorb it into its neighbours external fields.

Thus for any weighted random cluster model, we can modify it so that it satisfies the

condition of Theorem 6.36.

6.7.1 Perfect ferromagnetic Ising sampler

We now prove Theorem 6.3. We give the perfect ferromagnetic Ising sampler assum-

ing the algorithm in Theorem 6.36. Let 𝐺 = (𝑉,𝐸) be a graph. Let 𝛽 = (𝛽𝑒)𝑒∈𝐸 and

𝜆 = (𝜆𝑣)𝑣∈𝑉 be parameters for the Ising model, where 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 < 1
for all 𝑣 ∈ 𝑉 . Let 𝑝𝑒 = 1− 1

𝛽𝑒
for all 𝑒 ∈ 𝐸 . We first use algorithm in Theorem 6.36 to

draw a perfect random sample S ⊆ 𝐸 from the weighted random cluster model with

parameters p and 𝜆. Then we using the Markov chain PR→I in (6.8) to transform S
into a random Ising configuration 𝜎 ∈ {0,1}𝑉 . By Proposition 6.6, since S ∼ 𝜋wrc, 𝜎

is a perfect sample from the Ising model. The running time of the transformation step

is 𝑂 (𝑛+𝑚). Note that

𝑝min = 1− 1
𝛽min

, 1− 𝑝max =
1

𝛽max
.

By Theorem 6.36, the total running time is 𝐶1𝑁
4𝑚4 log𝑛 and 𝐶2𝑛

2 log2 𝑛 for all 𝜆𝑣 ≤
1− 𝛿, where

𝐶1 = 𝐶1(𝛽min, 𝛽max) =𝑂

((
𝛽max +

𝛽min
𝛽min−1

)
log

(
𝛽max +

𝛽min
𝛽min−1

))
,

𝐶2 = 𝐶2(Δ, 𝛿, 𝛽min, 𝛽max) =
(
Δ

𝛿2

(
𝛽max +

𝛽min
𝛽min−1

))𝑂 (
Δ2
𝛿4

(
𝛽max+

𝛽min
𝛽min−1

))
.

(6.41)

6.7.2 CFTP for weighted random cluster models

We give a perfect sampler for weighted random cluster models based on coupling

form the past (CFTP) applied to the Glauber dynamics. Here is an equivalent defini-

tion of the Glauber dynamics. There is a one-to-one correspondence between vectors

in {0,1}𝐸 and subsets in 2𝐸 (i.e. for any 𝑋 ∈ {0,1}𝐸 , let 𝑆𝑋 = {𝑒 ∈ 𝐸 | 𝑋𝑒 = 1}). We

assume that the Markov chain is defined over the state space {0,1}𝐸 . The Glauber
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dynamics starts from an arbitrary subset of edges 𝑋0 ∈ {0,1}𝐸 . For the 𝑡-th transition

step, the chain does the following:

• pick an edge 𝑒𝑡 ∈ 𝐸 uniformly at random;

• sample a real number 𝑟𝑡 ∈ [0,1] uniformly at random; if 𝑟𝑡 < 𝑎𝑡 , let 𝑋𝑡 = 𝑋𝑒←1
𝑡−1 ;

if 𝑟𝑡 ≥ 𝑎𝑡 , let 𝑋𝑡 = 𝑋𝑒←0
𝑡−1 , where 𝑋𝑒←𝑐

𝑡−1 satisfies 𝑋𝑒←𝑐
𝑡−1 (𝐸 \ {𝑒}) = 𝑋𝑡−1(𝐸 \ {𝑒})

and 𝑋𝑒←𝑐
𝑡−1 (𝑒) = 𝑐, and

𝑎𝑡 = 𝑎(𝑋𝑡−1, 𝑒) :=
𝜋wrc(𝑋𝑒←1

𝑡−1 )
𝜋wrc(𝑋𝑒←0

𝑡−1 ) + 𝜋wrc(𝑋𝑒←1
𝑡−1 )

. (6.42)

The Glauber dynamics for weighted random cluster models admits a grand mono-

tone coupling. Let Ω = {0,1}𝐸 . Let 𝑃 : Ω×Ω→ R≥0 denote the transition matrix of

the Glauber dynamics. We use the function 𝜑(·, ·) to represent each transition step of

edge flipping dynamics. For any 𝑡, given the current configuration 𝑋𝑡−1 ∈ Ω, the next

configuration can be generated by 𝑋𝑡 = 𝜑(𝑋𝑡−1,𝑈𝑡), where𝑈𝑡 is the randomness used

in the 𝑡-th transition step. Specifically,

𝑈𝑡 ∼ D and 𝑈𝑡 = (𝑒𝑡 , 𝑟𝑡) ∈ Ω𝑅 = 𝐸 × [0,1],

where D is a distribution such that 𝑒𝑡 is a uniform random edge in 𝐸 , 𝑟𝑡 is a uniform

random real number in [0,1], and they are independent. The function 𝜑 uses the

transition rule defined above to map 𝑋𝑡−1 to a random state 𝑋𝑡 = 𝜑(𝑋𝑡−1,𝑈𝑡), where

the randomness of 𝑋𝑡 is determined by the randomness of𝑈𝑡 ∼D. The function 𝜑(·, ·)
is called a grand coupling of flipping dynamics because

∀𝜎,𝜏 ∈ Ω, Pr𝑈∼𝐷 [𝜑(𝜎,𝑈) = 𝜏] = 𝑃(𝜎,𝜏).

Define a partial ordering ⪯ among all vectors in {0,1}𝐸 : for any 𝑋,𝑌 ∈ {0,1}𝐸 ,

𝑋 ⪯ 𝑌 if 𝑋 (𝑒) ≤ 𝑌 (𝑒) for all 𝑒 ∈ 𝐸.

Let 𝑋min = 0 be the constant 0 vector and 𝑋max = 1 be the constant 1 vector, so that

𝑋min ⪯ 𝑋 ⪯ 𝑋max
for all 𝑋 ∈ {0,1}𝐸 . The next lemma shows that the grand coupling

𝜑 is monotone with respect to the partial ordering ⪯.

Lemma 6.37. Suppose 0 ≤ 𝑝𝑒 < 1 for all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . The grand

coupling 𝜑 of the Glauber dynamics for weighted random cluster models is monotone,

i.e. for any 𝜎,𝜏 ∈ Ω with 𝜎 ⪯ 𝜏, any 𝑈 ∈ Ω𝑅, it holds that 𝜑(𝜎,𝑈) ⪯ 𝜑(𝜏,𝑈).
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Algorithm 6: CFTP of the Glauber dynamics for weighted random cluster

models
Input: a weighted random cluster model on graph 𝐺 = (𝑉,𝐸) with

parameters 𝜆 = (𝜆𝑣)𝑣∈𝑉 and p = (𝑝𝑒)𝑒∈𝐸 , where 0 < 𝑝𝑒 < 1 for all

𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 .

Output: a perfect sample 𝑋 ∼ 𝜋wrc, where 𝜋wrc is the distribution over

{0,1}𝐸 defined by the input weighted random cluster model.

1 generate 𝑈𝑡 ∼ D independently for all integers 𝑡 ∈ (−∞,−1];
2 𝑇 = 1;

3 repeat
4 𝑋min = 0 and 𝑋max = 1;

5 for 𝑡 = −𝑇 to −1 do
6 𝑋min← 𝜑(𝑋min,𝑈𝑡);
7 𝑋max← 𝜑(𝑋max,𝑈𝑡);

// 𝜑 is the monotone grand coupling in Lemma 6.37

8 𝑇 ← 2𝑇

9 until 𝑋min = 𝑋max
;

10 return 𝑋min
;

The proof of Lemma 6.37 is deferred to Section 6.7.3. With the monotone grand

coupling 𝜑, we apply CFTP to the Glauber dynamics for weighted random cluster

models in Algorithm 6.

Remark 6.38. In Algorithm 6, infinitely many 𝑈𝑡 are generated in Line 1. To imple-

ment the algorithm, we can first generate 𝑈−1, and then generate (𝑈𝑡)−2𝑇≤𝑡<−𝑇 when

updating 𝑇 ← 2𝑇 .

Let𝑇D be the time cost for generating a random sample fromD. Let𝑇𝜑 be the time

cost for computing the value of the function 𝜑. Let 𝑇mix(·) denote the mixing time

of the edge flipping dynamics for weighted random cluster models. By the standard

result of the CFTP for monotone systems [PW96b] (also see [LP17, Chapter 25]), we

have the following proposition about Algorithm 6.

Proposition 6.39 ([PW96b]). Suppose the input weighted random cluster model satis-

fies 0 ≤ 𝑝𝑒 < 1 for all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . Algorithm 6 returns a perfect

sample for the stationary distribution of edge flipping dynamics for weighted random
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cluster models, i.e. the distribution 𝜋wrc. The expected running time of Algorithm 6 is

𝑂 ((𝑇D +𝑇𝜑)𝑇mix( 1
4𝑒 ) log𝑛).

Now, we are ready to prove Theorem 6.36.

Proof of Theorem 6.36. By definitions of D and 𝜑, it is straightforward to verify that

𝑇D = 𝑂 (1) and 𝑇𝜑 = 𝑂 (𝑛+𝑚). The mixing time can be obtained from Theorem 6.24.

□

6.7.3 Proof of monotonicity

Here we prove Lemma 6.37. Fix 𝜎,𝜏 ∈ {0,1}𝐸 such that 𝜎 ⪯ 𝜏. Fix 𝑈 = (𝑒,𝑟) ∈ Ω𝑅.

Let 𝑒 = {𝑢, 𝑣}. Let 𝜎−𝑒 and 𝜏−𝑒 denote 𝜎(𝐸 \ {𝑒}) and 𝜏(𝐸 \ {𝑒}) respectively, and 𝐺𝜎

and 𝐺𝜏 be the graphs with vertices𝑉 and edges in 𝜎−𝑒 and 𝜏−𝑒 respectively. Note that

𝐺𝜎 is a subgraph of 𝐺𝜏 . We prove the lemma by considering three cases (1) 𝑢, 𝑣 are

connected in both 𝐺𝜎 and 𝐺𝜏 (2) 𝑢, 𝑣 are neither connected in neither 𝐺𝜎 nor 𝐺𝜏 (3)

𝑢, 𝑣 are connected in 𝐺𝜏 but not in 𝐺𝜎 .

First suppose 𝑢, 𝑣 are connected in both𝐺𝜎 and𝐺𝜏 . In this case 𝑎(𝜎, 𝑒) = 𝑎(𝜏, 𝑒) =
𝑝𝑒 , where 𝑎(·, ·) is defined in (6.42). The lemma holds trivially.

Next assume 𝑢, 𝑣 are neither connected in neither 𝐺𝜎 nor 𝐺𝜏 . Suppose 𝑢, 𝑣 belong

to connected components 𝐶1,𝐶2 (or 𝐶′1,𝐶
′
2) in 𝐺𝜎 (or 𝐺𝜏) respectively. Define

𝑥𝜎1 :=
∏
𝑤∈𝐶1

𝜆𝑤, 𝑥𝜎2 :=
∏
𝑤∈𝐶2

𝜆𝑤, 𝑥𝜏1 :=
∏
𝑤∈𝐶′1

𝜆𝑤, 𝑥𝜏2 :=
∏
𝑤∈𝐶′2

𝜆𝑤 .

We have

𝑎(𝜎, 𝑒) =
𝑝𝑒 (1+ 𝑥𝜎1 𝑥

𝜎
2 )

𝑝𝑒 (1+ 𝑥𝜎1 𝑥
𝜎
2 ) + (1− 𝑝𝑒) (1+ 𝑥

𝜎
1 ) (1+ 𝑥

𝜎
2 )

,

𝑎(𝜏, 𝑒) =
𝑝𝑒 (1+ 𝑥𝜏1𝑥

𝜏
2)

𝑝𝑒 (1+ 𝑥𝜏1𝑥
𝜏
2) + (1− 𝑝𝑒) (1+ 𝑥

𝜏
1) (1+ 𝑥

𝜏
2)
.

Since 𝜆𝑤 ≤ 1 for all 𝑤 ∈ 𝑉 , 𝑥𝜎1 ≥ 𝑥𝜏1 and 𝑥𝜎2 ≥ 𝑥𝜏2 , which implies

(1+ 𝑥𝜎1 ) (1+ 𝑥
𝜎
2 )

(1+ 𝑥𝜎1 𝑥
𝜎
2 )

≥
(1+ 𝑥𝜏1) (1+ 𝑥

𝜏
2)

(1+ 𝑥𝜏1𝑥
𝜏
2)

.

Hence 𝑎(𝜎, 𝑒) ≤ 𝑎(𝜏, 𝑒), which implies the lemma.

Lastly suppose 𝑢, 𝑣 are connected in 𝐺𝜏 but not in 𝐺𝜎 . Suppose 𝑢, 𝑣 belong to

connected components 𝐶1,𝐶2 in 𝐺𝜎 . Define 𝑥𝜎1 and 𝑥𝜎2 in the same way.

𝑎(𝜎, 𝑒) =
𝑝𝑒 (1+ 𝑥𝜎1 𝑥

𝜎
2 )

𝑝𝑒 (1+ 𝑥𝜎1 𝑥
𝜎
2 ) + (1− 𝑝𝑒) (1+ 𝑥

𝜎
1 ) (1+ 𝑥

𝜎
2 )

, 𝑎(𝜏, 𝑒) = 𝑝𝑒 .

Since (1+ 𝑥𝜎1 ) (1+ 𝑥
𝜎
2 ) ≥ 1+ 𝑥𝜎1 𝑥

𝜎
2 , 𝑎(𝜎, 𝑒) ≤ 𝑎(𝜏, 𝑒), which implies the lemma.
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6.8 Remaining proofs of this chapter

6.8.1 Proof of the equivalence result

6.8.1.1 Equivalence between Ising and weighted random cluster models

Fix a graph 𝐺 = (𝑉,𝐸). We first show the first equation in (6.6). Observe that we can

decompose the Ising model interaction matrix as

𝑓
Ising

𝑒 =

©«
𝛽𝑒 1

1 𝛽𝑒

ª®®®¬ =
©«
1 1

1 1

ª®®®¬+
©«
𝛽𝑒 −1 0

0 𝛽𝑒 −1

ª®®®¬ =: 𝑓 (0)𝑒 + 𝑓 (1)𝑒 .

By definition, 𝑓
(1)
𝑒 forces the two endpoints to take the same spin, while 𝑓

(0)
𝑒 poses

no requirements. In this way, we can perform an extra enumeration over all the

assignments over the edges 𝜏 : 𝐸→ {0,1}, the decompose the effect of 𝑓
Ising

𝑒 into 𝑓
(0)
𝑒

and 𝑓
(1)
𝑒 . The partition function of Ising model then becomes∑︁

𝜎∈{0,1}𝑉
wtIsing(𝜎) =

∑︁
𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣)∈𝐸

𝑓
Ising

𝑒 (𝜎(𝑢),𝜎(𝑣))
∏
𝑢∈𝑉

𝜆
𝜎(𝑢)
𝑢

=
∑︁

𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣)∈𝐸

©«
∑︁

𝜏(𝑒)∈{0,1}
𝑓
(𝜏(𝑒))
𝑒 (𝜎(𝑢),𝜎(𝑣))ª®¬

∏
𝑢∈𝑉

𝜆
𝜎(𝑢)
𝑢

=
∑︁

𝜏∈{0,1}𝐸

∑︁
𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣)∈𝐸

𝑓
(𝜏(𝑒))
𝑒 (𝜎(𝑢),𝜎(𝑣))

∏
𝑢∈𝑉

𝜆
𝜎(𝑢)
𝑢 . (∗)

Fix 𝜏. Consider the subgraph 𝐺′ = (𝑉, 𝑆) where 𝑆 is the set of edges assigned to 1
under 𝜏. Each connected component 𝐶 ⊆ 𝑉 of 𝐺′ must take the same spin in 𝜎, oth-

erwise the contribution to the sum is 0. Let 𝐸𝐶 ⊆ 𝑆 denote all the edges in component

𝐶. The total weight of the component 𝐶 is

∏
𝑒∈𝐸𝐶
(𝛽𝑒 −1) (1+∏𝑢∈𝐶 𝜆𝑢). Combining

all components yields∑︁
𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣)∈𝐸

𝑓
(𝜏(𝑒))
𝑒 (𝜎(𝑢),𝜎(𝑣))

∏
𝑢∈𝑉

𝜆
𝜎(𝑢)
𝑢 =

∏
𝑒∈𝑆
(𝛽𝑒 −1)

∏
𝐶∈𝜅(𝑉,𝑆)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
.

And hence

(∗) =
∑︁
𝑆⊆𝐸

∏
𝑒∈𝑆
(𝛽𝑒 −1)

∏
𝐶∈𝜅(𝑉,𝑆)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
=

(∏
𝑒∈𝐸

𝛽𝑒

)
·
∑︁
𝑆⊆𝐸

∏
𝑒∈𝑆

(
1− 1

𝛽𝑒

) ∏
𝑓 ∈𝐸\𝑆

1
𝛽 𝑓

∏
𝐶∈𝜅(𝑉,𝑆)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
= 𝑍wrc(𝐺;2p,𝜆)

by taking 2𝑝𝑒 = 1−1/𝛽𝑒 .
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6.8.1.2 Equivalence between Ising and subgraph-world

To apply Theorem 6.9, we express the Ising model (𝐺 = (𝑉,𝐸); 𝛽,𝜆) as a Holant prob-

lem. Given an Ising model on graph 𝐺 = (𝑉,𝐸). We define a bipartite graph 𝐻 with

left part𝑉1 =𝑉 corresponding to vertices in 𝐺 and right part𝑉2 = 𝐸 corresponding to

edges in 𝐺. Two vertices 𝑣 ∈𝑉1 and 𝑒 ∈𝑉2 are adjacent in graph 𝐻 if 𝑣 is incident to 𝑒

in graph 𝐺. By definition, each edge 𝑒 = (𝑢, 𝑣) in𝐺 is decomposed into two half-edges

(𝑣, 𝑒) and (𝑢, 𝑒) in graph 𝐻.

For any vertex 𝑣 ∈ 𝑉1, we force the assignment to its incident half-edges to be

equal, and further more, if they are all ones, then we multiply the weight by 𝜆𝑣 . This

yields the signature [1,0, · · · ,0,𝜆𝑣] = [1,0]⊗𝑑𝑣 +𝜆𝑣 [0,1]⊗𝑑𝑣 on each vertex 𝑣, where

𝑑𝑣 is the degree of 𝑣 in 𝐺 . For any edge 𝑒 in 𝐺 , its signature is [𝛽𝑒,1, 𝛽𝑒] to model

the ferromagnetic Ising interaction. Define

FIsing =
{
[1,0]⊗𝑑𝑣 +𝜆𝑣 [0,1]⊗𝑑𝑣 | 𝑣 ∈ 𝑉

}
and GIsing = {[𝛽𝑒,1, 𝛽𝑒] | 𝑒 ∈ 𝐸} .

It is straightforward to verify

Holant(𝐻;FIsing | GIsing) = 𝑍Ising(𝐺; 𝛽,𝜆). (6.43)

For subgraph-world models, we define a Holant problem on the same bipartite

graph 𝐻. The signature on each vertex 𝑣 is defined by [1, 𝜂𝑣,1, 𝜂𝑣, · · · ], and on each

edge 𝑒 ∈ 𝐸 , it is defined by [1− 𝑝𝑒,0, 𝑝𝑒]. Define

Fsg = {[1, 𝜂𝑣,1, 𝜂𝑣, · · · ] | 𝑣 ∈ 𝑉} and Gsg = {[1− 𝑝𝑒,0, 𝑝𝑒] | 𝑒 ∈ 𝐸} .

It is straightforward to verify

Holant(𝐻;Fsg | Gsg) = 𝑍sg(𝐺;p, 𝜂). (6.44)

Take 𝑇 =
( 1 1

1 −1
)
. Let 𝑝𝑒 =

1
2

(
1− 1

𝛽𝑒

)
. It holds that(

𝑻−1
)⊗2
(𝛽𝑒,1,1, 𝛽𝑒)⊤ =

(
𝛽𝑒 +1

2
,0,0,

𝛽𝑒 −1
2

)⊤
= 𝛽𝑒

[
𝛽𝑒 +1
2𝛽𝑒

,0,
𝛽𝑒 −1
2𝛽𝑒

]
= 𝛽𝑒 [1− 𝑝𝑒,0, 𝑝𝑒] .

Let 𝜂𝑣 =
1−𝜆𝑣
1+𝜆𝑣 . We have(

(1,0)⊗𝑑𝑣 +𝜆𝑣 (0,1)⊗𝑑𝑣
)
T⊗𝑑𝑣 = (1,1)⊗𝑑𝑣 +𝜆𝑣 (1,−1)⊗𝑑𝑣 = (1+𝜆𝑣) [1, 𝜂𝑣,1, 𝜂𝑣, · · · ] .

Combining Theorem 6.9, (6.43) and (6.44) with the above, it holds that

𝑍Ising(𝐺; 𝛽,𝜆) =
(∏
𝑣∈𝑉
(1+𝜆𝑣)

) (∏
𝑒∈𝐸

𝛽𝑒

)
𝑍sg(𝐺;p, 𝜂).
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6.8.2 Proof of the adjointness

Proof of Proposition 6.6. Let 𝐷Ising = diag(𝜋Ising) and 𝐷wrc = diag(𝜋wrc) denote the di-

agonal matrices induced from vectors 𝜋Ising and 𝜋wrc respectively. We have

⟨ 𝑓 , 𝑃I→R𝑔⟩𝜋Ising = 𝑓 𝑇𝐷Ising𝑃I→R𝑔 and ⟨𝑃R→I 𝑓 , 𝑔⟩𝜋wrc = 𝑓 𝑇𝑃𝑇
R→I𝐷wrc𝑔.

For any 𝜎 ∈ {0,1}𝑉 and 𝑆 ⊆ 𝐸 , we show that(
𝐷Ising𝑃I→R

)
(𝜎,𝑆) =

(
𝑃𝑇
R→I𝐷wrc

)
(𝜎,𝑆)

Recall 𝑀 (𝜎) = {{𝑢, 𝑣} ∈ 𝐸 | 𝜎𝑢 = 𝜎𝑣}. It holds that(
𝐷Ising𝑃I→R

)
(𝜎,𝑆) = I[𝑆 ⊆ 𝑀 (𝜎)] · 𝜋Ising(𝜎) ·

∏
𝑒∈𝑆

(
1− 1

𝛽𝑒

) ∏
𝑓 ∈𝑀 (𝜎)\𝑆

1
𝛽 𝑓

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍Ising

·
∏
𝑣∈𝑉

𝜆
𝜎(𝑣)
𝑣

∏
ℎ∈𝑀 (𝜎)

𝛽ℎ

∏
𝑒∈𝑆

(
1− 1

𝛽𝑒

) ∏
𝑓 ∈𝑀 (𝜎)\𝑆

1
𝛽 𝑓

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍Ising

·
∏
𝑣∈𝑉

𝜆
𝜎(𝑣)
𝑣

∏
𝑒∈𝑆
(𝛽𝑒 −1). (6.45)

Recall 𝜅(𝑉, 𝑆) is the set of all connected components of graph (𝑉, 𝑆). It holds that(
𝑃𝑇
R→I𝐷wrc

)
(𝜎,𝑆) = I[𝑆 ⊆ 𝑀 (𝜎)] · 𝜋wrc(𝑆) ·

∏
𝐶∈𝜅(𝑉,𝑆)

∏
𝑣∈𝐶 𝜆

𝜎(𝑣)
𝑣

1+∏𝑣∈𝐶 𝜆𝑣

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍wrc
·
∏
𝑒∈𝑆

(
1− 1

𝛽𝑒

) ∏
𝑓 ∈𝐸\𝑆

1
𝛽 𝑓

∏
𝐶∈𝜅(𝑉,𝑆)

(
1+

∏
𝑢∈𝐶

𝜆𝑢

)
·

∏
𝐶∈𝜅(𝑉,𝑆)

∏
𝑣∈𝐶 𝜆

𝜎(𝑣)
𝑣

1+∏𝑣∈𝐶 𝜆𝑣

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍wrc
·
∏
𝑒∈𝑆

(
1− 1

𝛽𝑒

) ∏
𝑓 ∈𝐸\𝑆

1
𝛽 𝑓

∏
𝑣∈𝑉

𝜆
𝜎(𝑣)
𝑣

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍wrc
·
∏
ℎ∈𝐸

1
𝛽ℎ

∏
𝑣∈𝑉

𝜆
𝜎(𝑣)
𝑣

∏
𝑒∈𝑆
(𝛽𝑒 −1) (6.46)

By Proposition 6.4, we know that(∏
𝑒∈𝐸

𝛽𝑒

)
𝑍wrc = 𝑍Ising.

Combining above equation with (6.45) and (6.46) gives(
𝐷Ising𝑃I→R

)
(𝜎,𝑆) =

(
𝑃𝑇
R→I𝐷wrc

)
(𝜎,𝑆).

□
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6.8.3 Proof of analytic lemmata

This section of appendix proves Lemma 6.35 and (6.40).

Proof of Lemma 6.35. The goal is to show 𝜕𝑡 (𝑥, 𝑝,𝛼)/𝜕𝑥 < 0 for all 𝑥 ∈ (0,1)∪ (1,+∞).
The lemma then follows by combining this with continuity.

A straightforward calculation shows that

𝜕𝑡 (𝑥, 𝑝,𝛼)
𝜕𝑥

=
−(1−𝛼(1− 𝑝)) (1− 𝑝)𝑝(

𝑥𝑝 log𝑥− ((1+𝛼) (1− 𝑝) + 𝑝𝑥) log
(
1+ 𝑝(𝑥−1)

1+𝛼(1−𝑝)

))2 𝑠(𝑥, 𝑝,𝛼)

where

𝑠(𝑥, 𝑝,𝛼) :=

(1+𝛼) (log𝑥) log
(
1+ 𝑝(𝑥−1)

1+𝛼(1− 𝑝)

)
−

(
log𝑥 +𝛼 log

(
1+ 𝑝(𝑥−1)

1+𝛼(1− 𝑝)

))
log(1+ 𝑝(𝑥−1)).

This means sgn(𝜕𝑡 (𝑥, 𝑝,𝛼)/𝜕𝑥) = −sgn(𝑠(𝑥, 𝑝,𝛼)), and hence we only need to show

𝑠(𝑥, 𝑝,𝛼) > 0 whenever 𝑥 ∈ (0,1) ∪ (1,+∞).
From now on in this section, we use the notation 𝐴 ≷𝑥 𝐵 to represent that 𝐴 > 𝐵

when 𝑥 > 1, and 𝐴 < 𝐵 when 0 < 𝑥 < 1. In other words, when 𝑥 > 1, ≷𝑥 should be

read as >, and vice versa.

We first claim the following inequalities:

(1+𝛼) log𝑥−𝛼 log(1+ 𝑝(𝑥−1)) ≷𝑥 0; (6.47)

log
(
1+ 𝑝(𝑥−1)

1+𝛼(1− 𝑝)

)
≷𝑥 0; (6.48)

log(1+ (𝑥−1)𝑝) ≷𝑥 0. (6.49)

We focus on 𝑠(𝑥, 𝑝,𝛼) and postpone the proof of these simple inequalities till the end.

By collecting terms of log
(
1+ 𝑝(𝑥−1)

1+𝛼(1−𝑝)

)
, one can find that 𝑠(𝑥, 𝑝,𝛼) > 0 if and only if

((1+𝛼) log𝑥−𝛼 log(1+ 𝑝(𝑥−1))) log
(
1+ 𝑝(𝑥−1)

1+𝛼(1− 𝑝)

)
> (log𝑥) log(1+ 𝑝(𝑥−1)).

By using (6.47), it is equivalent to show that

log
(
1+ 𝑝(𝑥−1)

1+𝛼(1− 𝑝)

)
≷𝑥

(log𝑥) log(1+ 𝑝(𝑥−1))
(1+𝛼) log𝑥−𝛼 log(1+ 𝑝(𝑥−1)) ,

or equivalently, using (6.47)(6.48)(6.49), to show that

1
log(1+ (𝑥−1)𝑝) ≷𝑥

𝛼

1+𝛼 ·
1

log𝑥
+ 1

1+𝛼 ·
1

log
(
1+ 𝑝(𝑥−1)

1+𝛼(1−𝑝)

) . (6.50)
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Note that the following function

𝑢𝑥,𝑝 (𝑦) :=
1

log
(
1+ 𝑝(𝑥−1)

𝑦

)
reveals the essence of (6.50) in the way that (6.50) is equivalent to

𝑢𝑥,𝑝 (1) ≷𝑥
𝛼

1+𝛼 ·𝑢𝑥,𝑝 (𝑝) +
1

1+𝛼 ·𝑢𝑥,𝑝 (1−𝛼(𝑝−1)), (6.51)

and note that

1 =
𝛼

1+𝛼 · 𝑝 +
1

1+𝛼 · (1−𝛼(𝑝−1)).

This means (6.51) follows if for fixed 𝑥 > 1 (resp., 0 < 𝑥 < 1) and 𝑝, 𝑢𝑥,𝑝 (𝑦) is a concave

(resp., convex) function over 𝑦 ∈ (𝑝,2) ⊇ (𝑝,1−𝛼(𝑝−1)), which would conclude the

proof. We verify this as follows.

A straightforward calculation shows that

d2

d𝑦2𝑢𝑥,𝑝 (𝑦) =

(𝑥−1)𝑝

𝑦(𝑦 + (𝑥−1)𝑝)2 log3
(
1+ 𝑝(𝑥−1)

𝑦

) (
2 · 𝑝(𝑥−1)

𝑦
−

(
2+ 𝑝(𝑥−1)

𝑦

)
log

(
1+ 𝑝(𝑥−1)

𝑦

))
.

It is not hard to verify that

log
(
1+ 𝑝(𝑥−1)

𝑦

)
≷𝑥 0, (6.52)

which we prove later. With a bit more endeavour, we can also show that

−
(
2 · 𝑝(𝑥−1)

𝑦
−

(
2+ 𝑝(𝑥−1)

𝑦

)
log

(
1+ 𝑝(𝑥−1)

𝑦

))
≷𝑥 0, (6.53)

whose proof is postponed as well. Concavity/Convexity is then established by com-

bining the expression for the second-order derivative, (6.52) and (6.53). □

Proof of (6.47), (6.48), (6.49), (6.52), and (6.53). For (6.47), because log𝑥 ≷𝑥 0, we only

need to show

𝑥

1+ (𝑥−1)𝑝 ≷𝑥 1.

Note that 1+ (𝑥−1)𝑝 is positive. The above is hence equivalent to

(𝑥−1) (1− 𝑝) ≷𝑥 0,

which is obvious.
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All of (6.48), (6.49) and (6.52), after simple calculation, are equivalent to (𝑥−1)𝑝 ≷𝑥
0, which is obvious, too.

Finally, we show (6.53). Let 𝑧 := 𝑝(𝑥−1)/𝑦. LHS is then 𝑟 (𝑧) := (2+ 𝑧) log(1+ 𝑧) −
2𝑧. It is not hard to show that 𝑟 (𝑧) is monotone in 𝑧 over 𝑧 ∈ (−1,+∞), by observing

that 𝑟′(𝑧) = 1
1+𝑧 −1− log 1

1+𝑧 , which is non-negative as log𝑥 ≤ 𝑥−1 for 𝑥 > 0. Moreover,

𝑟 (0) = 0. Therefore, when 𝑥 > 1, we have 𝑧 > 0, and (6.53) holds. When 0 < 𝑥 < 1, we

have −1 < (𝑥−1) ≤ 𝑧 < 0, and (6.53) holds too. □

Proof of (6.40). For convenient reference, the expression of interest is

𝐶 (𝑝,𝛼) :=
(1−𝛼(𝑝−1)) log 𝑝

log 𝑝− log(1−𝛼(𝑝−1)) .

Taking derivative with respect to 𝛼, we get

𝜕

𝜕𝛼
𝐶 (𝑝,𝛼) =

(1− 𝑝) log(𝑝)
(
1+ log

(
𝑝

1+𝛼(1−𝑝)

))
(
log

(
𝑝

1+𝛼(1−𝑝)

))2 .

A simple calculation shows that

• if 𝑝 ≤ 1/𝑒, then𝐶 (𝑝,𝛼) is increasing with 𝛼, and hence lies between𝐶 (𝑝,0) = 1
and 𝐶 (𝑝,1) = (2−𝑝) log 𝑝

log 𝑝−log(2−𝑝) ;

• if 1/𝑒 < 𝑝 < 2/(1+𝑒), then𝐶 (𝑝,𝛼) is decreasing within 𝛼 ∈ (0, (𝑒𝑝−1)/(1− 𝑝))
and increasing within 𝛼 ∈ ((𝑒𝑝 − 1)/(1− 𝑝),1), and hence it lies between the

lower bound 𝐶 (𝑝, (𝑒𝑝 − 1)/(1− 𝑝)) = −𝑒𝑝 log 𝑝 ≥ 2𝑒 log((1+ 𝑒)/2)/(1+ 𝑒) >
0.90 and the upper bound max{𝐶 (𝑝,0),𝐶 (𝑝,1)}; and

• if 𝑝 ≥ 2/(1+ 𝑒), then 𝐶 (𝑝,𝛼) is decreasing, and hence lies between 𝐶 (𝑝,1) =
(2−𝑝) log 𝑝

log 𝑝−log(2−𝑝) and 𝐶 (𝑝,0) = 1.

From the case-by-case analysis, it suffices to show that 0.5 ≤ (2−𝑝) log 𝑝
log 𝑝−log(2−𝑝) ≤ 2, which

is a simple analytic exercise. □
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𝑃SW: Section 6.1.2.2
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Figure 6.1: An example involving all the distributions and Markov chains of Chapter 6.



Chapter 7

Conclusion and open problems

We conclude this thesis by providing a list of open problems and potential future

directions.

7.1 Towards sampling local lemma

The first major open problem is to derive a sampling version of the (variable) local

lemma, namely an efficient algorithm that generate nearly uniform assignments to

variables such that all bad events are avoided, providing the upper bound on the

probability for each bad event being 𝑝 and the degree of dependency being Δ with

𝑝Δ𝑐 ≲ 1

for some constant 𝑐. The algorithmic Lovász local lemma that finds one such as-

signment in expected polynomial-time reaches 𝑐 = 1. However, the hardness result

of this thesis concerning hypergraph colourings, together with a previous paper on

hypergraph independent sets [BGG
+
19], defies any 𝑐 < 2.

Many of the algorithmic techniques used to derive our results can in fact be ap-

plied to more general settings, aside from the aforementioned hypergraph colouring

problem and independent set problem (monotone 𝑘-SAT). One ceiling general form

that includes these problems is the atomic CSP, in which each constraint is violated

by one or very few, say the number of colours, forbidden assignments. The state of

the art is an FPTAS that works in the regime with 𝑐 = 5 [HWY23a], which includes

the general counting 𝑘-SAT problem. Going beyond into the non-atomic CSP setting,

an efficient sampler also exists with 𝑐 = 7 [HWY22]. These two algorithm are based

on the lazy marginal sampler introduced by Anand and Jerrum [AJ22].

167
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This exponent advances further if we specify to some other problems. For count-

ing hypergraph independent sets, it has already been confirmed that 𝑐 = 2 is the point

of computational phase transition. However, the state space of the natural Glauber

dynamics over all independent sets is connected, which somehow makes this problem

significantly easier than many other prototypical problems in the local lemma regime.

Perhaps counting hypergraph colourings is the most promising one to establish a

sharp computational phase transition at the absence of this property. Though the

state-of-art algorithms work for 𝑐 = 3, it is conjectured that this problem is tractable

up to 𝑐 = 2. Formally, we expect the answer to the following question being true:

Question 7.1. Does there exist an FPRAS for counting 𝑞-colourings in 𝑘-uniform

hypergraphs with maximum degree Δ, when Δ ≲ 𝑞𝑘/(2+𝑜(1))?

It is worth mentioning that the local uniformity property is indispensable to all

previous works on hypergraph colourings. Specified to the marking/projecting frame-

work, this property is used for establishing both rapid mixing of the projected chain

and efficient implementation of it. In comparison, the tight-up-to-constant algorithm

for hypergraph independent sets [HSZ19] does not rely on this. It would be an in-

triguing direction to obtain other algorithmic methods that bypass the connectivity

issue.

Our algorithmic results make advancements when the hypergraph is linear. A

remark is that our method would still work as long as the overlap of hyperedges is

much smaller than 𝑘 . The condition on the parameters will deteriorate slightly but

would still be better than those for general hypergraphs. On the other end of the

spectrum, if any two intersecting hyperedges intersect at at least 𝑘/2 vertices, the

algorithm by Guo, Jerrum, and Liu [GJL19] almost matches the hardness result. It

is an interesting question how the size of overlaps affects the complexity of these

sampling problems, or whether it is possible to improve sampling algorithms via a

better use of the overlap information.

As another defect of the marking/projecting approach, it seems hard to obtain

a rather tight bound on the maximum degree providing the number of colours 𝑞 is

a fixed small constant. All algorithmic works require some constant lower bound,

like 𝑞 ≥ 5 as in [HSW21] or 𝑞 ≥ 650 as in [FHY21]. THe special case 𝑞 = 2 - or in

other words, the not-all-equal 𝑘-SATs (𝑘-NAESATs) - has never been covered. And

note that the projection scheme is completely inapplicable. It is another intriguing

question to study the threshold on maximum degree as 𝑘 approaches infinity for its
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sampling and approximate counting problem.

Question 7.2. Find 𝑐 such that there exists an FPRAS for counting the solutions of

any Δ-degree 𝑘-NAESAT with Δ ≲ 2𝑘/(𝑐+𝑜(1))
.

The proof of the hardness result of hypergraph colourings in this thesis still applies

to 𝑞 = 2 without much change, yielding 𝑐 ≥ 2. We conjecture this to be the ground

truth of the computation phase transition too.

Resembling the local lemma where instances are subject to the degree restriction,

there are also a lot of works studying the behaviour of random instances, where a

similar restriction is put upon the density, namely the number of constraints over the

number of variables. For example, a random 𝑘-CNF formula consisting of 𝑛 variables

and 𝑚 clauses is said to have density 𝛼 := 𝑚/𝑛. The density captures the average

degree of each vertex rather than giving a definitive limit. Usually 𝛼 is fixed to be a

constant when studying the random instance, just like what we do for the maximum

degree in the local lemma regime. However, if we uniformly draw a random 𝑘-CNF

formula of density 𝛼 with 𝑛 vertices, its maximum degree depends on 𝑛 and hence

unbounded by any function of 𝛼. This forbids the trivial application of Lovász local

lemma, posing a well-known challenge to determine the threshold density 𝛼∗ above

or below which a random formula is satisfiable with probability 0 or 1, known as the

satisfiability conjecture. This challenge is resolved in a celebrated work by Ding, Sly

and Sun [DSS22], giving 𝛼∗ = 2𝑘 ln2− (1+ ln2)/2+ 𝑜𝑘 (1) as 𝑘→+∞.

Similar to the local lemma setting, we can also ask for algorithms searching for

a solution and, more related to this thesis, estimating the size of the solution space,

providing that the density is below some threshold. The first result that breaks into a

“local-lemma-type” density regime is given by Galanis, Goldberg, Guo and Yang with

𝛼 ≲ 2𝑘/300
. This gets further refined independently by several teams, with density

upper bound being 2𝑘/74
[CMM23], 2𝑘/52

[GGGH22] and 2𝑘/3
[HWY23b] respectively.

As a notable property of random 𝑘-SAT instances, with high probability the sam-

pled formula has overlap at most 2. In light of this, it is possible that our techniques

might help with the improvement as the algorithm still works when the overlap is

bounded by constants.

Question 7.3. Find 𝑐 such that there exists an algorithm that samples a uniform

solution from a random 𝑘-CNF formula with density 𝛼 ≲ 2𝑘/𝑐
.
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7.2 Parity issue

Recall from Chapter 4 that our hardness result only applies to even 𝑞’s owing to the

same technical issue as in the graph case [GŠV15]. Both proofs start with treating the

integer optimisation problem over the number of colours of each type (𝑞1, 𝑞2, 𝑞3) as a

real optimisation problem in which way we can take derivatives with respect to 𝑞𝑖 . To

establish the optimality of the triplet (𝑞/2, 𝑞/2,0), we (1) argue that such maximiser

always exists, and (2) show that any other point could never be a maximiser based

on the derivatives. This inevitably requires 𝑞 to be even. On the other hand, for

odd 𝑞’s, even the real optimisation problem reaches its maximum at (𝑞/2, 𝑞/2,0), it

barely says anything about the original integer version. Take 𝑞 = 11 as an instance

to illustrate this. The perturbation argument regarding the derivatives hardly tells

if (5,5,1) is better than (4,4,3) (subtracting both 𝑞1 and 𝑞2 simultaneously), as it

only concerns the non-zeroness of the derivatives, disregarding if they are positive

or negative. Although we manage to do this in the hypergraph colouring setting at

the boundary, namely the stable (11,0,0)-fixpoints, it is already very complicated,

and a similar analysis of other fixpoints seems out of reach. Let alone we still need

to compare (5,5,1) with (6,5,0), where we do not even have a good intuition which

one is better.

A potential approach is to look into the main result of [GŠV15] (Proposition 4.12 in

this thesis). Due to a technical issue with the so-called small subgraph conditioning

method, their theorem requires the dominant phases to be permutation symmetric

and unbalanced. It would be helpful to our setting if, for example, one can establish

the correctness of this theorem when the dominant phases lie in a constant number

of orbits, each being permutation symmetric and unbalanced, rather than merely one.

Formally,

Question 7.4. Is it true that for all integer 𝑞 and Δ such that 4 ≤ 𝑞 < Δ, there is no

FPRAS that approximates the number of proper 𝑞-colourings for graphs of maximum

degree at most Δ, assuming NP ≠ RP?

7.3 Random cluster model

In Chapter 6, we establish the rapid mixing of both the edge-flipping dynamics and

Swendsen-Wang dynamics for the ferromagnetic Ising model with consistent fields

on arbitrary graphs. In the special case where the maximum degree of the graph is
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bounded, and all fields are bounded away from 1, we further establish the optimal

mixing of the edge-flipping dynamics, yielding a mixing time of 𝑂 (𝑛 log𝑛). This re-

sults in an 𝑂 (𝑛 log𝑛) mixing time of the Swendsen-Wang dynamics under the same

setting.

As is discussed in the introduction of Chapter 6, we believe that none of the mix-

ing time bounds here, except that of the edge-flipping dynamics under degree and

field restrictions, is tight. Among these gaps, the one for Swendsen-Wang dynamics

on general graphs is glaring: in the no-field case, the mixing time upper bound is

𝑂 (𝑛4𝑚3) [GJ18], while the best known lower bound is 𝑂 (𝑛0.25). Recall where the

upper bound comes from:

• A “no-slower” comparison between Swendsen-Wang dynamics and edge-flipping

dynamics carries the mixing time of the latter to the former.

• The winding step in the canonical path argument creates 2 open ends, leading

to an 𝜂4
factor that becomes 𝑛4

after the perturbation.

• To bound the spectral gap as in (6.14), we lose a factor of 𝑚 due to minimum

transition probability, and another 𝑚 due to maximum path length.

• To turn spectral gap into mixing time, we lose a factor 𝑚 which is the logarithm

of minimum probability of all configurations.

Improving any of the items above seems out of reach. However, this does not hurdle

it from being an exciting problem for the following reasons.

For the first item, there are several very recent works that give an Θ(log𝑛) mixing

time of the Swendsen-Wang dynamics (for the more general Potts model), but for

special cases of graphs like Z2
[BCP

+
21] or in the tree uniqueness region [BCC

+
22].

It would be exciting to see to which extent we can employ the known techniques, and

from where the 𝑂 (𝑛0.25) lower bound pops out.

For the next two items, the argument is quite similar as that for approximately

counting matchings or the partition function of the subgraph-world model in general

graphs. Its sharp mixing time bound is a notorious problem that has not been im-

proved ever since the first time when a polynomial mixing is established [JS89, JS93].

And finally, the improvement of the last point seems possible if one thinks about

the relation between the mixing time and a so-called modified log-Sobolev (MLS)

constant [BT06]. There, the extra factor from the minimum probability is double

logarithm, saving a factor of 𝑚/log𝑚. However, that would require us to bound the
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MLS constant instead of the spectral gap, which in our work comes from the canonical

path method. The implication from the congestion of canonical paths to the MLS

constant is unfortunately not known yet. Any progress on this could be considered

an exciting breakthrough.

In any case, it boils down to answering the following questions.

Question 7.5. What is the true mixing time of the Swendsen-Wang dynamics on

ferromagnetic Ising models on general graphs without the presence of external fields?

Question 7.6. Does the Swendsen-Wang dynamics mix in 𝑂 (log𝑛) time on ferro-

magnetic Ising models on bounded-degree graphs with consistent non-trivial external

fields?

The (weighted) random cluster model considered in this thesis corresponds to the

special case 𝑞 = 2 of the original (yet unweighted) definition. The parameter 𝑞 there

is the factor contributed by each connected components. The equivalence results of

partition functions in the random cluster models and the Ising/Potts models carry

over to general 𝑞’s. A deeper connection to the important Tutte polynomial is also

well-known.

The main open problem is to analyse the case where 1 < 𝑞 < 2, and answer the

following question.

Question 7.7. Does the random cluster model for 1 < 𝑞 < 2 admit an FPRAS?

So far, rapid/torpid mixing of the edge-flipping Glauber dynamics, together with

the computational complexity of approximating the partition function, are known for

𝑞 ∈ [0,1] ∪ {2}∪ (2,+∞). Listed below are the mixing times of the Glauber dynamics

for the random cluster model on a graph of 𝑛 vertices and 𝑚 edges providing different

𝑞’s:

𝑞 𝑡mix(𝑃G)

0 ≤ 𝑞 ≤ 1 𝑂 (𝑚2 log𝑛) [AOV18, ALOV19]

1 < 𝑞 < 2 open problem (easy?)

𝑞 = 2 𝑂 (𝑛4𝑚3) [GJ18]

𝑞 > 2 torpid mixing [BCF
+
99, GJ99]
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Figure 7.1: The complexity landscape of approximating the Tutte polynomial. The

parameter 𝑞 in the random cluster model is given by (𝑥 − 1) (𝑦 − 1) as in the

Tutte polynomial. Legends: Green: exact counting in P, including 𝑞 = 1, and

(1,1), (−1,−1), (−1,0), (0,−1). Blue: FPRASes, including 𝑞 = 2, 𝑥 > 1, and 0 ≤ 𝑞 <

1, 𝑥, 𝑦 ≥ 1. Yellow: #BIS-hard, including 𝑞 > 2 [GJ12]. Cyan: equivalent to approx-

imately counting perfect matchings; including 𝑞 = 2,0 < 𝑥 < 1. Red: NP-hard to

approximate [GJ08]. White: open.

Figure 7.1 illustrates the known results about the (in)approximability of the more

general Tutte polynomial over graphs. It would be interesting to determine the colour

of any point that is currently white, including, for example, the notorious point 𝑥 =

2, 𝑦 = 0 corresponding to the number of acyclic orientations.

7.4 Fine-grained complexity

Till now we assume the computational equivalence between the approximate count-

ing and sampling problems, given that an interreduction does exist. However, when it

comes to the study of their fine-grained complexity, such kinds of interreductions are

no more satisfying. More specifically, the standard self-reduction [JVV86] exhibits
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a quadratic blow-up of the running time in the number of sites. Consider the hard-

core model (weighted independent sets) and colourings on bounded-degree graphs

containing 𝑛 vertices. Even if we have an optimal 𝑂 (𝑛 log𝑛) mixing of single-site

dynamics, the running time of the approximate counting algorithm would be �̃� (𝑛3).
This is improved later by Štefankovič, Vempala and Vigoda [ŠVV09] via an adaptive

simulated annealing, yielding �̃� (𝑛2) approximate counting algorithms. Yet on the

other hand, no non-trivial fine-grained lower bound on approximate counting prob-

lems is known, up to the date when this thesis is written. This leaves a large field of

unknowns for us to raid into.

Concretely, the hard-core model with parameter 𝜆 is a distribution over all inde-

pendent sets 𝐼 of a given Δ-degree graph, with each of them taking weight 𝜆 |𝐼 | . The

partition function is defined accordingly. Estimating the partition function undergoes

a very sharp computational phase transition that coincides with the physical phase

transition. That is, there is some 𝜆𝑐 (Δ) ∼ e/Δ such that the problem is tractable for

all 𝜆 < 𝜆𝑐 but NP-hard for all 𝜆 > 𝜆𝑐. Up to now, all approximate counting algorithms

meet a quadratic barrier even when 𝜆 is sufficient small, say 𝜆 = Θ(1/Δ𝐶) for any

constant 𝐶 ≥ 1. This leads people to ask the following natural question.

Question 7.8. Does the hard-core model with 𝜆 = Θ(1/Δ𝐶) admit a sub-quadratic

FPRAS?
1

In a very recent paper [AFF
+
23], the above question is answered positively but

under some restrictions. For example, a new sub-quadratic FPRAS with running time

�̃� (𝑛1+1/(2𝐶−2)) is given there for any 1.5 < 𝐶 ≤ 2. However, we still do not know

how such ideas can be carried over to other counting problems, like (hyper)graph

colourings or hypergraph independent sets in the local lemma regime, even when

the maximum degree is further restricted. Therefore, we ask

Question 7.9. Does there exist a sub-quadratic FPRAS that approximate the number

of independent sets in a 𝑘-uniform Δ-degree hypergraph providing Δ ≲ 2𝑘/100
? Does

there exist a sub-quadratic FPRAS that approximate the number of 𝑞-colourings in a

𝑘-uniform Δ-degree hypergraph providing Δ ≲ 𝑞𝑘/100
?

1
FPRAS already requires a polynomial dependency on 1/𝜀 where 𝜀 is the multiplicative error. We

omit this from the running time.



Appendix A

A proof of #P-hardness

For completeness, a proof of the #P-hardness of computing the total variation distance

between two product distributions is given in this appendix. Defined below are the

computational problems we need.

Name ProdDTV

Instance 2𝑛 rationals 𝑝1, 𝑝2, · · · , 𝑝𝑛 and 𝑞1, 𝑞2, · · ·𝑞𝑛.

Output 𝑑TV (𝑃,𝑄), where 𝑃 and 𝑄 are defined as in Chapter 3, with each distribution

there being 𝑃𝑖 (0) = 1− 𝑝𝑖 , 𝑃𝑖 (1) = 𝑝𝑖 , and analogously for 𝑄𝑖’s.

Name #PMFEqals

Instance 𝑛 rationals 𝑝1, 𝑝2, · · · , 𝑝𝑛, and a rational 𝑣.

Output The number of 𝑥 ∈ {0,1}𝑛 such that 𝑃(𝑥) = 𝑣, where 𝑃 is defined as above.

Name #SubsetProd

Instance 𝑛 positive rationals 𝑎1, · · · , 𝑎𝑛, and a rational 𝑇 .

Output The number of subsets 𝑆 ⊆ [𝑛] such that

∏
𝑖∈𝑆 𝑎𝑖 = 𝑇 .

Name #PerfectMatching

Instance A graph 𝐺.

Output The number of perfect matchings in 𝐺 .

The last problem is the “canonical” #P-complete problem:

Theorem A.1 ([Val79]). #PerfectMatching is #P-complete.
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We then begin our reduction. The notion ≤𝑝

𝑇
indicates a polynomial-time Turing

reduction. All rationals are represented by two strings, one for the numerator and

one for the denominator. Note that for any 𝑛 defined as above, if each numerator and

denominator are below 4𝑛 for example, then the actual size of input is still polynomial

in 𝑛, i.e., 𝑂 (𝑛2).

Lemma A.2. #PerfectMatching ≤𝑝

𝑇
#SubsetProd

Proof. Given an 𝑛-vertex graph𝐺 = (𝑉,𝐸) of #PerfectMatchingwhere𝑉 = 𝑣1, 𝑣2, · · · , 𝑣𝑛,

construct another instance of #SubsetProd as follows.

• Let Prime(𝑖) be the 𝑖-th prime.

• For any edge 𝑒𝑘 = (𝑣𝑖, 𝑣 𝑗 ) ∈ 𝐸 , let 𝑎𝑘 := Prime(𝑖)Prime( 𝑗).

• Let 𝑇 :=
∏𝑛

𝑖=1 Prime(𝑖).

The correctness of this reduction immediately follows from the unique factorisation

theorem. The reduction is in polynomial time due to the prime number theorem. □

Lemma A.3. #SubsetProd ≤𝑝

𝑇
#PMFEquals

Proof. Let 𝑎1, · · · , 𝑎𝑛 and 𝑇 be the instance of #SubsetProd. Construct the instance

of #PMFEqals as follows.

• For any 𝑖 ∈ [𝑛], take 𝑝𝑖 := 𝑎𝑖
𝑎𝑖+1 .

• Take 𝑣 := 𝑇 ·∏𝑛
𝑖=1(1− 𝑝𝑖).

To validate the reduction, compute that for any 𝑆 ⊂ [𝑛]:∏
𝑖∈𝑆

𝑎𝑖 = 𝑇 ⇐⇒
∏
𝑖∈𝑆

𝑝𝑖

1− 𝑝𝑖
= 𝑇 ⇐⇒

∏
𝑖∈𝑆 𝑝𝑖

∏
𝑖∉𝑆 (1− 𝑝𝑖)∏𝑛

𝑖=1(1− 𝑝𝑖)
= 𝑇 ⇐⇒ 𝑃(𝑥) = 𝑣

where 𝑥𝑖 = I[𝑖 ∈ 𝑆]. The number of bits to represent each number 𝑝𝑖 blows up by a

factor at most 3, and the number of bits for 𝑇 is at most the sum of those for 𝑝𝑖’s. All

the arithmetic operations are hence in polynomial time of the size of input. □

Lemma A.4 ([BGM
+
23, Section 3.1]). #PMFEquals ≤𝑝

𝑇
ProdDTV

Proof. Suppose the input instance of #PMFEqals is 𝑝1, · · · , 𝑝𝑛, 𝑣 yielding the distri-

bution 𝑃. The reduction contains two cases depending on 𝑣:

Consider the case 𝑣 < 1/2𝑛 first. Construct a pair of auxiliary distributions �̂� :=
�̂�1 ⊗ · · · ⊗ �̂�𝑛 ⊗ �̂�𝑛+1 and �̂� := �̂�1 ⊗ · · · ⊗ �̂�𝑛 ⊗ �̂�𝑛+1 over {0,1}𝑛+1 where
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• For 𝑖 ∈ [𝑛], �̂�𝑖 (1) = 𝑝𝑖 and �̂�𝑖 (1) = 1/2.

• �̂�𝑛+1(1) = 1 and �̂�𝑛+1(1) = 𝑣2𝑛.

Then it can be verified that

𝑑TV

(
�̂�, �̂�

)
=

∑︁
𝑥:𝑃(𝑥)>𝑣

(𝑃(𝑥) − 𝑣).

We then find 𝛽 > 0 such that

𝛽 <
1
2
· 1−𝑃(𝑥)/𝑣

1+𝑃(𝑥)/𝑣 ⇐⇒ 𝑃(𝑥)
(
1
2
+ 𝛽

)
< 𝑣

(
1
2
− 𝛽

)
for any 𝑥 such that 𝑃(𝑥) < 𝑣;

𝛽 <
1
2
· 1− 𝑣/𝑃(𝑥)

1+ 𝑣/𝑃(𝑥) ⇐⇒ 𝑃(𝑥)
(
1
2
− 𝛽

)
> 𝑣

(
1
2
+ 𝛽

)
for any 𝑥 such that 𝑃(𝑥) > 𝑣.

Note that this 𝛽 can be found without much computation. The number of bits to

represent any 𝑃(𝑥)/𝑣 or 𝑣/𝑃(𝑥) is bounded by some polynomial 𝑂 (𝑛𝐶). Then choose

1/𝛽 to be an integer that cannot be represented by 𝑂 (𝑛𝐶) bits as a binary string. This

can always been done in polynomial time.

Then construct another pair of auxiliary distributions 𝑃′ := 𝑃′1 ⊗ · · · ⊗ 𝑃
′
𝑛 ⊗ 𝑃′𝑛+1 ⊗

𝑃′
𝑛+2 and 𝑄′ :=𝑄′1 ⊗ · · · ⊗𝑄

′
𝑛 ⊗𝑄′𝑛+1 ⊗𝑄

′
𝑛+2 over {0,1}𝑛+2 where

• For 𝑖 ∈ [𝑛], 𝑃′
𝑖
(1) = �̂�𝑖 (1) = 𝑝𝑖 .

• 𝑃′
𝑛+1(1) = �̂�𝑛+1(1) = 1.

• 𝑃′
𝑛+2(1) = 1/2+ 𝛽.

• For 𝑖 ∈ [𝑛], 𝑄′
𝑖
(1) = �̂�𝑖 (1) = 1/2.

• 𝑄′
𝑛+1(1) = �̂�𝑛+1(1) = 𝑣2𝑛.

• 𝑄′
𝑛+2(1) = 1/2− 𝛽.

One can verify the following which concludes the reduction for the case when

𝑣 < 1/2𝑛:

|{𝑥 : 𝑃(𝑥) = 𝑣}| = 1
2𝛽𝑣

(
𝑑TV (𝑃′,𝑄′) − 𝑑TV

(
�̂�, �̂�

))
.
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This is because (𝑥’s in the summations below are always over {0,1}𝑛)

𝑑TV (𝑃′,𝑄′) =
∑︁
𝑥

max
{
0, 𝑃(𝑥)

(
1
2
− 𝛽

)
− 𝑣

(
1
2
+ 𝛽

)}
+
∑︁
𝑥

max
{
0, 𝑃(𝑥)

(
1
2
+ 𝛽

)
− 𝑣

(
1
2
− 𝛽

)}
(By definition)

=
∑︁

𝑥:𝑃(𝑥)>𝑣

(
𝑃(𝑥)

(
1
2
− 𝛽

)
− 𝑣

(
1
2
+ 𝛽

))
+

∑︁
𝑥:𝑃(𝑥)≥𝑣

(
𝑃(𝑥)

(
1
2
+ 𝛽

)
− 𝑣

(
1
2
− 𝛽

))
(♣)

=
∑︁

𝑥:𝑃(𝑥)>𝑣
(𝑃(𝑥) − 𝑣)

+2𝛽𝑣 |{𝑥 : 𝑃(𝑥) = 𝑣}|

where (♣) is due to the previous choice of 𝛽.

The other case 𝑣 ≥ 2−𝑛 can be proved in the same way, but with a slight different

choice of the distributions. More concretely, the construction is identical to the one

above, but with 𝑃′
𝑛+1(1) = �̂�𝑛+1(1) = 1/(𝑣2𝑛) and 𝑄′

𝑛+1(1) = �̂�𝑛+1(1) = 1. □

This chain of reductions implies

Theorem A.5. ProdDTV is #P-hard.
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[Bec91] József Beck. An algorithmic approach to the Lovász local lemma. I. Ran-

dom Struct. Algorithms, 2(4):343–366, 1991.

[BGG
+
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asymptotically tight for SAT. J. ACM, 63(5):43:1–43:32, 2016.
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