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To Christina.
For when I was sad, you were sad
and we were sad together.
For when I was dumb, you were smart
and with our hearts we’d giggle.
For when it was dark, you were light
and I could see the way.
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Abstract

This thesis studies opportunities and risks associated with stochasticity in deep
learning that specifically manifest in the context of adversarial robustness and
neural architecture search (NAS). On the one hand, opportunities arise because
stochastic methods have a strong impact on robustness and generalisation, both
from a theoretical and an empirical standpoint. In addition, they provide a
framework for navigating non-differentiable search spaces, and for expressing
data and model uncertainty. On the other hand, trade-offs (i.e., risks) that are
coupled with these benefits need to be carefully considered. The three novel
contributions that comprise the main body of this thesis are, by these standards,
instances of opportunities and risks.

In the context of adversarial robustness, our first contribution proves that the
impact of an adversarial input perturbation on the output of a stochastic neural
network (SNN) is theoretically bounded. Specifically, we demonstrate that SNNs
are maximally robust when they achieve weight-covariance alignment, i.e., when
the vectors of their classifier layer are aligned with the eigenvectors of that layer’s
covariance matrix. Based on our theoretical insights, we develop a novel SNN
architecture with excellent empirical adversarial robustness and show that our
theoretical guarantees also hold experimentally.

Furthermore, we discover that SNNs partially owe their robustness to having
a noisy loss landscape. Gradient-based adversaries find this landscape difficult
to ascend during adversarial perturbation search, and therefore fail to create
strong adversarial examples. We show that inducing a noisy loss landscape is
not an effective defence mechanism, as it is easy to circumvent. To demonstrate
that point, we develop a stochastic loss-smoothing extension to state-of-the-art
gradient-based adversaries that allows them to attack successfully. Interestingly,
our loss-smoothing extension can also (i) be successful against non-stochastic
neural networks that defend by altering their loss landscape in different ways,
and (ii) strengthen gradient-free adversaries.

Our third and final contribution lies in the field of few-shot learning, where
we develop a stochastic NAS method for adapting pre-trained neural networks
to previously unseen classes, by observing only a few training examples of each
new class. We determine that the adaptation of a pre-trained backbone is not
as simple as adapting all of its parameters. In fact, adapting or fine-tuning the
entire architecture is sub-optimal, as a lot of layers already encode knowledge
optimally. Our NAS algorithm searches for the optimal subset of pre-trained
parameters to be adapted or fine-tuned, which yields a significant improvement
over the existing paradigm for few-shot adaptation.
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Chapter 1

Introduction

In the era of modern machine learning, we1 seek to exploit the recent gigantic
leaps in hardware technology to solve important and difficult problems that were
out of reach in the past. Nowadays, we can process large datasets of anything
between thousands and millions of data instances (e.g., images, text, sensory
data, measurements, etc.), and attempt to model problems using Deep Neural
Networks (DNNs) parameterised by anything between millions and billions of
parameters. The high-level objective of this deep modelling is to generalise,
i.e., to make predictions about previously unseen data instances as accurately as
possible.

The depth and, therefore, number of learnable parameters in DNNs is both
a blessing and a curse. It is a blessing, because for the first time in the history
of artificial intelligence (AI) we are able to tackle challenging problems such as
natural language modelling (Brown et al., 2020), text-guided image generation
(Radford et al., 2021), and protein structure prediction (Jumper et al., 2021)
with staggering success. And it is also a curse, because there is a considerable
aspect of this kind of deep modelling that we do not fully understand, and are
not yet able to interpret. One of the main reasons for this flaw is that while in
the traditional machine learning paradigm we would pre-process raw data before
giving it as input to a pattern recognition algorithm (Bishop, 2007, Ch. 1), DNNs
are able to directly “ingest” raw data and form their own latent representations
of the world (i.e., features) without need for human intervention.

1.1 Stochasticity in Deep Learning

Stochasticity, or randomness, is an essential component of modern machine
learning that has been exploited in solution to some of its most fundamental
challenges:

• Hardware limitations: The copious amount of data required to train DNNs

1Note that the term “we” in this context refers to “our research community” or “machine
learning scientists”. Starting from Section 1.2, and for the rest of the thesis, “we” refers to “my
co-contributors and I”.

1



2 CHAPTER 1. INTRODUCTION

does not fit in the physical memory of even our most technologically-
advanced processing units. For that reason, DNNs can only be trained by
observing small segments of the available training data at a time.

• Generalisation to unseen data: During optimisation, DNNs run the risk of
getting stuck in local minima or overfitting to the training data, thus failing
to generalise to the entire possible data distribution.

• Robustness: AI systems should develop an understanding of the world that
is invariant to both naturally- and adversarially-induced data corruptions –
similarly to how a human would recognise a picture of a cat, regardless of
whether the image were blurred, rotated, cropped, or noisy.

• Discontinuous or non-differentiable search spaces: Learning algorithms
are often required to optimise an objective that is not differentiable and,
therefore, gradient-based search and optimisation methods are not directly
applicable.

• Uncertainty estimation: Datasets that are collected to train DNNs are, in
general, clean and carefully-curated. However, this is not an accurate re-
flection of the real-world environments in which they are deployed, which
have inherent variability and unpredictability. Despite this reality gap, AI
systems need to be able to perform reliably in the face of uncertainty.

The rest of this section provides an overview of stochastic methods that have
been proposed in the past to tackle each of these problems. We can categorise
stochasticity in deep learning into two major categories: (i) Stochasticity during
learning, and (ii) stochasticity during inference.

1.1.1 Stochastic Learning

To address hardware limitations and generalisation to unseen data, several
learning algorithms based on Stochastic Gradient Descent (SGD) (Kiefer and
Wolfowitz, 1952) have been proposed, a comprehensive review of which has
been written by Bottou et al. (2018). Extensions to SGD include momentum
(Qian, 1999), parameter-wise adaptive learning rates (Duchi et al., 2011), and
others. This family of stochastic optimisation methods is an improvement upon
the traditional deterministic gradient descent (GD), as GD is less computationally
efficient and more prone to getting stuck in local minima (Bottou et al., 2018).

Further in the context of generalisation, dropout (Srivastava et al., 2014)
and variational dropout (Kingma et al., 2015) have been proposed as stochastic
regularisation techniques that randomly deactivate subsets of neurons at each
training iteration. The main intuition behind dropout is to soften the implicit
dependencies between neurons, and allow different parts of a neural network to
specialise on different aspects of the data. This results in stronger features and
richer latent representations.
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Another common family of approaches that can boost model generalisation
and can be used in combination with the aforementioned, involve artificially
increasing the volume of the available training data by inducing small random
corruptions to each data sample. Methods belonging to this family are known
as data augmentation methods (Shorten and Khoshgoftaar, 2019). It should be
mentioned that data augmentation is not only beneficial because it increases the
size of the training dataset. More importantly, it encourages the trained model to
be invariant to artifacts and corruptions that can manifest naturally in the data
(Ericsson et al., 2022; Chavhan et al., 2023).

Besides random and natural corruptions, training data can be augmented
with adversarial (i.e., loss-maximising) perturbations. Training models with this
type of data augmentation is known as adversarial training (AT) (Goodfellow
et al., 2015; Carlini and Wagner, 2017), and it is the most common way to
achieve robustness against adversarial attacks (Szegedy et al., 2014). Unlike the
standard data augmentation-based training regimes, AT is defined as a min-max
problem in which a model observes training samples and attempts to minimise
its prediction error, while an adversary attempts to generate training samples
that maximise it. The literature is rich with various proposed AT methods, a
systematic review of which has been written by Bai et al. (2021).

Finally, it is often the case when the learning objective is a discontinuous,
or otherwise non-differentiable function, making gradient-based optimisation
methods like SGD inapplicable. These types of objectives are typically optimised
with stochastic learning or stochastic search. Prime examples of such objectives
include:

• The reward function in reinforcement learning (RL) problems that require
function approximation for policy learning. In such settings, RL algorithms
randomly sample episodes from a data distribution (i.e., “environment”)
and stochastically collect rewards from these episodes to use as a training
signal (e.g., policy gradient methods, Sutton et al., 1999).

• The success rate of black-box adversarial attacks that can only observe
the attacked model’s discrete predictions. Popular methods in this line of
work use stochastic gradient approximation (e.g., Liu et al., 2020), random
search (e.g., Andriushchenko et al., 2020), and evolutionary search (e.g.,
Su et al., 2019) to train strong black-box adversaries.

• Performing neural architecture search (NAS) to select the best-performing
DNN architecture for a given task from a discrete, but intractably large
search space of possible layer and parameter configurations. Exhaustive
search is computationally unfeasible in this setting – so it is common to
perform evolutionary search instead (e.g., Miikkulainen et al., 2019).

1.1.2 Stochastic Inference

In recent years, variational Bayesian inference (Paisley et al., 2012) has been
an important direction of research in stochastic deep learning, as it provides us
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with effective and (mostly) theoretically-grounded frameworks for developing
Stochastic Neural Networks (SNNs). The aforementioned variational dropout
(Kingma et al., 2015), if used during inference, is the simplest example of such
a framework. In addition, a highly influential example of variational inference
is the variational information bottleneck (Alemi et al., 2017), that enables SNNs
to learn maximally expressive latent representations of the world.

Expressivity is an important property of SNNs that improves their capacity for
generalisation considerably, as shown by the highly influential work of Kingma
and Welling (2014) on variational autoencoders with enormous success. The
intuitive explanation for their expressivity is that they model the world flexibly
as distributions of features rather than point estimates. Consider a face detection
algorithm. Faces consist of a number of visual features, e.g., eyes, a nose, a
mouth, to name a few. But within these features exists variation, e.g., eyes can
be of several different colors, noses can be of several different shapes, mouths
can be smiling or frowning, etc. An SNN trained for face detection can capture
such variations, and develop richer latent representations for identifying facial
characteristics.

Furthermore, it is believed that since SNNs sample their parameters from
a distribution, they exhibit robustness against imperceptibly small adversarial
input perturbations (Alemi et al., 2017). Even though there exists a significant
amount of research that confirms this hypothesis empirically (e.g., He et al.,
2019, Yu et al., 2021), it has also been shown that SNNs have strong theoretical
ties to adversarial robustness (Alemi et al., 2017; Eustratiadis et al., 2021).

Stochastic inference is also a valuable tool when modelling and estimating
uncertainty. Consider the following two scenarios, which correspond to two
different types of uncertainty, epistemic and aleatoric, respectively:

• The smart voice assistant of a newly-bought smartphone prompts the user
to repeat a number of small phrases during its initial setup.

• A self-driving vehicle is planning its course, and makes a left turn to enter
a previously unseen road.

The first scenario describes an instance of epistemic uncertainty: the uncertainty
in the way an AI system perceives the world. This uncertainty can be dampened
by observing more data, i.e., the smart voice assistant is uncertain about its user’s
voice, so it collects a few data samples of it to better recognise it in the future. In
contrast, the second scenario describes an instance of aleatoric uncertainty: the
uncertainty that exists inherently in the data. This uncertainty is irreducible, i.e.,
even a perfectly-trained autonomous vehicle cannot predict what lies around the
corner with absolute confidence.

Bayesian Neural Networks (BNNs) (Blundell et al., 2015), are a subclass of
SNNs that enjoy all of the aforementioned benefits associated with SNNs (e.g.,
expressivity, generalisation), but are additionally capable of modelling and esti-
mating uncertainty (Kendall and Gal, 2017). In BNNs, every weight is assigned
a probability distribution – unlike the classical definition of DNNs, where every



1.2. CONTRIBUTIONS 5

weight is assigned a point value. This allows BNNs to be sampled multiple times
during inference to effectively approximate an ensemble of infinite models. In
this formulation, the weight uncertainty of BNNs is a direct reflection of their
predictive uncertainty. Interestingly, it has been shown that the total predictive
uncertainty of BNNs can be further decomposed into its epistemic and aleatoric
components (Depeweg et al., 2018), which adds a layer of interpretability on
top of their other capabilities.

1.2 Contributions

The focus of this thesis is on adversarial robustness and non-differentiability. It
is a compilation of three novel contributions on how stochasticity can benefit or
harm an SNN’s robustness against adversarial perturbations, and how it can act
as an effective means of searching a non-differentiable architecture search space
in the context of few-shot adaptation.

In Chapter 3, we prove that the impact of an adversarial input perturbation on
the output of an SNN is theoretically bounded. Specifically, we demonstrate that
SNNs are maximally robust when they achieve weight-covariance alignment, i.e.,
when the vectors of their classifier layer are aligned with the eigenvectors of that
layer’s covariance matrix. Based on our theoretical insights, we develop a novel
SNN architecture with excellent empirical adversarial robustness, and show that
our theoretical guarantees also hold experimentally.

Furthermore, in Chapter 4 we present our discovery that SNNs partially owe
their robustness to having a noisy loss landscape. Gradient-based adversaries
find this landscape difficult to ascend during adversarial perturbation search,
and therefore fail to create strong adversarial examples. Our analysis shows that
manipulating the loss landscape in such a way is not an effective defence, but a
vulnerability. To demonstrate that point, we develop a stochastic loss-smoothing
extension to existing state-of-the-art gradient-based adversaries that allows them
to attack successfully. Interestingly, our loss-smoothing extension can also (i) be
successful against non-stochastic neural networks that defend by altering their
loss landscape in different ways, and (ii) strengthen gradient-free adversaries.

Chapter 6 details our third and final contribution that lies in the context
of few-shot learning, where we develop a stochastic NAS method for adapting
pre-trained DNNs to previously unseen classes, by observing only a few training
examples of each new class. We determine that the adaptation of a pre-trained
backbone is not as simple as adapting all of its parameters. In fact, adapting
or fine-tuning the entire architecture is sub-optimal, as a lot of layers already
encode knowledge optimally. Our NAS algorithm searches for the optimal subset
of pre-trained parameters to be adapted or fine-tuned, which yields a significant
improvement over the existing paradigm for few-shot adaptation.



6 CHAPTER 1. INTRODUCTION

1.2.1 Publications and Contributors

All contributions presented in this thesis were made under the supervision of
Prof. Timothy Hospedales, who contributed with project ideas and guidance,
along with my co-authors, Dr. Henry Gouk, Dr. Da Li, and Łukasz Dudziak. All
other work, including the core body of research, materialisation of ideas and
experimentation was carried out by myself.

The core contributions of this thesis correspond to the following peer-reviewed
publications:

• Chapter 3: P. Eustratiadis, H. Gouk, D. Li, and T. M. Hospedales. Weight-
covariance alignment for adversarially-robust neural networks. In Interna-
tional Conference on Machine Learning (ICML), 2021.

• Chapter 4: P. Eustratiadis, H. Gouk, D. Li, and T. M. Hospedales. Attacking
adversarial defences by smoothing the loss landscape. In ICML Workshop
on Adversarial Machine Learning, 2022.

• Chapter 6: P. Eustratiadis, Ł. Dudziak, D. Li, and T. M. Hospedales. Neural
fine-tuning search for few-shot learning. In International Conference on
Learning Representations (ICLR), 2024. (under review)

1.2.2 Thesis Structure

Chapter 1 introduces stochasticity in deep learning, motivates its importance,
and highlights the primary pieces of work that comprise this thesis. Then, the
thesis is divided into two parts, each detailing the research conducted on two
different aspects of stochastic deep learning: Part I discusses stochastic learning
and inference in the context of adversarial robustness, while Part II discusses
stochastic learning and search in the context of few-shot adaptation.

Each part is further divided into its background, and main contribution(s).
The purpose of the background chapters (chapters 2 and 5 for Parts I and II,
respectively) is to ease the reader into the terminology and notation that is used
in the contribution chapters, and provide a brief summary of the related work
upon which these contributions were built. Chapters 3, 4, and 6 are the core
contribution chapters; they present three novel pieces of work that are instances
of opportunities and risks of stochastic deep learning.

The contribution chapters are accompanied by their own discussion sections,
individually presenting interesting insights based on the results of each piece of
work. The main body of the thesis is followed by an epilogue that highlights the
scientific impact of my research contributions at the time of writing, as well as
their future potential. Finally, Appendices A, B, and C provide more information
and technical details, complementary to the work presented in the contribution
chapters.



Part I

Adversarial Robustness of
Stochastic Neural Networks
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Chapter 2

Background

It has been shown that, even though DNNs can perform exceptionally well in
computer vision tasks such as image recognition (e.g., He et al., 2016), they
can also be easily misdirected by carefully-crafted but humanly-imperceptible
pixel-level perturbations to the input (Szegedy et al., 2014). The search for
such perturbations is commonly referred to as an adversarial attack, and images
perturbed in such a way are called adversarial examples.

The discovery of adversarial examples poses a serious existential threat to
modern machine learning, as it impacts the security and reliability of models
that operate in mission-critical settings where reliable outcomes are crucial (e.g.,
medicine, justice). This has led to adversarial defence emerging as an important
field of machine learning research, with the purpose of creating models that are
robust against adversarial perturbations.

2.1 Adversarial Attacks

In the context of image classification, an adversarial attack is defined as the
search for a perturbation, δ, that when applied to a clean input image, x, creates
an adversarial example x̃ = x+ δ that is misclassified. Formally:

fθ(x) ̸= fθ(x̃), (2.1)

given a deep neural classifier fθ parameterised by θ that classifies x correctly. In
this thesis, we consider norm-bounded adversarial attacks under the ℓp threat
model that imposes a norm constraint on δ during perturbation search:

||x− x̃||p ≤ ϵ, (2.2)

where ϵ is a small value indicating the attack strength, and p is typically in
{1, 2,∞}. The set of all adversarial examples built from x w.r.t. fθ can then
be defined as:

∆(x, fθ) = {x̃ | fθ(x) ̸= fθ(x̃), ||x− x̃||p ≤ ϵ}. (2.3)

The role of the norm constraint is twofold:

9
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(a) ϵ = 0 (clean) (b) ϵ = 8
255 (c) ϵ = 16

255 (d) ϵ = 32
255

Figure 2.1: Example of an adversarially-perturbed image subject to the ℓ∞ norm,
with various perturbation strengths. In this specific example, only (a) is classified
as the correct class (chickadee, ImageNet index: 19). (b) is classified as a wall
clock (ImageNet index: 892), (c) is classified as a pillow (ImageNet index: 721),
and (d) is classified as chainmail armour (ImageNet index: 490).

• It defines the imperceptibility of the attack, i.e., the lower the value of ϵ,
the more imperceptible to the human eye the attack is.

• The literature uses it as a fair means of comparison between proposed
attacks and defences.

Figure 2.1 illustrates an image from ImageNet (Deng et al., 2009), adversarially-
perturbed subject to the ℓ∞ norm, with different values of ϵ.

Adversarial attacks can be further categorised according to their misclassifi-
cation objective, or the perturbation search method:

• Misclassification objective: Targeted attacks search for a perturbation, δ,
such that the model misclassifies an image belonging to one class, as an
image of a specific target class. Untargeted attacks do not define a target
class, and are considered successful as long as any misclassification occurs.

• Perturbation search method: Gradient-based search allows the adversary
to guide the perturbation vector towards the direction that maximises the
classification loss. This type of attack is typically stronger and faster than
its gradient-free counterpart, but assumes white-box access to the model’s
parameters. In gradient-free search, on the other hand, the adversary is
constrained to query-level access, i.e., it treats the model as a black box,
and only observes its predictions to guide perturbation search.

An extensive survey on the taxonomy of adversarial attacks has been written by
Chakraborty et al. (2021). In this thesis, we mainly consider untargeted attacks,
but explore both gradient-based and gradient-free approaches.

2.1.1 Gradient-Based Adversaries

Consider an image classification problem with C classes. Let fθ be a DNN with
parameters θ, and x an input image belonging to class c ∈ C. The first and
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simplest gradient-based adversary outlined in prior work is the Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2015); a single-step attack that adds a
small perturbation to x in the direction indicated by the sign of the gradient of
an objective function L(fθ(x), c) w.r.t. x. Formally:

x̃ = x+ ϵ · sgn(∇xL(fθ(x), c)), (2.4)

where ϵ denotes the attack strength. The Basic Iterative Method (BIM) (Kurakin
et al., 2017) was introduced shortly thereafter as an iterative variant of FGSM,

x̃t+1 = x̃t + η · sgn(∇x̃tL(fθ(x̃t), c)) s.t. ||x̃t − x̃t+1||p ≤ ϵ, (2.5)

where η denotes the step size, or learning rate, and x̃0 = x. Projected Gradient
Descent (PGD) (Madry et al., 2018) was later proposed as an improved version of
BIM, where the initial perturbation is a randomly selected point in the ϵ-ball of x.
Recent contributions have improved upon this scheme, e.g., through Nesterov’s
acceleration (Lin et al., 2020) and variance tuning (Wang and He, 2021).

2.1.2 Gradient-Free Adversaries

Unlike gradient-based adversaries, gradient-free adversaries assume that the de-
tails of the target model are unknown, and can only access the model’s predic-
tions through queries. In this setting, it is common to employ transfer attacks
(Papernot et al., 2017a); where someone can typically train a substitute of the
target model, search for successful adversarial examples using gradient-based
search on the substitute model, and use them to attack the target model. Alter-
natively, Chen et al. (2017) show that the gradients of the target model can be
approximated using Zeroth-Order Optimization (ZOO). Another line of research
on gradient-free adversaries make use of evolutionary search (Su et al., 2019),
or random search (Andriushchenko et al., 2020), to find a pixel or small image
segment that, if perturbed, has maximal capacity to fool the target model.

2.2 Overview of Stochastic Defences

In this section, we review recent related work that has shown that SNNs can
yield promising performance in adversarial robustness, by injecting either fixed
or learnable noise into the models.

The idea behind Random Self Ensemble (RSE) (Liu et al., 2018) is that one
can simulate an ensemble of virtually infinite models while only training one.
This can be achieved by injecting additive, spherical, Gaussian noise into vari-
ous layers of a DNN and performing multiple forward passes during inference.
Simple as this approach may be, it effectively improves the model’s robustness
in comparison to a conventional deterministic model. RSE treats the variance
of the injected noise as a hyperparameter that is heuristically tuned, rather than
learned in conjunction with the other network parameters. In contrast, He et al.
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(2019) propose Parametric Noise Injection (PNI), in which a fixed spherical noise
distribution is controlled by a learnable “intensity” parameter, further improving
adversarial robustness. The authors show that the noise can be incorporated
into different locations of a neural network, i.e., to both feature activations and
model weights. The injected noise is trained together with the model parameters
via adversarial training. Learn2Perturb (L2P) (Jeddi et al., 2020) is an extension
of PNI, except instead of learning a single spherical noise parameter, L2P learns
a set of parameters defining an isotropic noise perturbation injection module.
The parameters of both the perturbation injection module and the model are
updated using adversarial training in an alternating manner. Finally, the Simple
and Effective SNN (SESNN) (Yu et al., 2021) features fully-trainable stochastic
layers, which are trained for adversarial robustness by adding a regularisation
term to the objective function that maximizes the entropy of the learned noise
distribution. Unlike the other SNNs, SESNN only requires clean images during
training.

Another class of stochastic defences apply noise to the input images, rather
than injecting noise to intermediate activations (Pinot et al., 2019; Li et al.,
2019; Cohen et al., 2019). From a theoretical point of view, this can be seen as
“smoothing” the function implemented by the neural network in order to reduce
the amount the output of the network can change when the input is changed
only slightly. This type of defence can be considered a black-box defence, in
the sense that it does not actually involve regularizing the weights of the DNN,
but only modifies the input. While interesting, it has primarily been applied in
scenarios where one is using a model-as-a-service framework, and an adversary
cannot be certain about whether or not the attacked model was trained with an
adversarial defence method (Cohen et al., 2019).

2.2.1 Pseudo-Robustness via Gradient Obfuscation

In their paper, Athalye et al. (2018a) demonstrate that many existing defences
create a false impression of robustness to gradient-based adversaries by masking
the gradient of the loss function from the attacker. They identify three types of
gradient obfuscation: shattered, stochastic, and vanishing gradients; and show
that gradient-obfuscating defences are not reliable.

In this thesis we are primarily concerned with stochastic gradients, which
manifest in stochastic defences. Stochastic defences use SNNs that sample their
weights or activations from a distribution and, as a result, their computed gradi-
ents are also sampled from a distribution. Consider a Bayesian linear estimator,
f , with weights W ∼ N (µW ,ΣW ) and a bias term b ∼ N (µb,Σb) that predicts a
continuous value, y, for a given input, x, as f(x) = WxT+b. Because W and b are
independent random variables, we can say that f(x) ∼ N (µWxT + µb,ΣW +Σb).
If we were to perform gradient-based search (e.g., Equations 2.4, 2.5) to attack
this Bayesian estimator, we would compute the gradient of its regression loss
function, L, w.r.t. the input, e.g., g = ∇x(f(x) − y)2 in the case where L is the
squared error. Therefore, g is also a random variable and its distribution de-
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pends on the derivative of L. In this simplified example, the distribution of g is
Chi-squared, because d

dx
(f(x)− y)2 = 2W (f(x)− y).

To deal with stochastic gradients, Athalye et al. (2018a) developed Expecta-
tion over Transformation (EoT) (Athalye et al., 2018b); a method that repeatedly
samples the target model’s gradient w.r.t. the input, and computes the average
of these samples to obtain a more accurate estimation of the “true” gradient.
Further, Gaussian sampling has been previously used in order to circumvent
non-stochastic, but otherwise obfuscating defences (e.g., shattered gradients)
(Tramèr et al., 2020; Pintor et al., 2021). Following this line of work, it has
recently become a requirement for stochastic defence research to incorporate a
series of checks that ensure new stochastic defence methods do not owe their
success to gradient obfuscation. Our proposed stochastic defence detailed in
Chapter 3 includes these checks in its evaluation (Section 3.3.5).

Expectation over Transformation We now highlight a few technical details
about EoT. Let fθ be a SNN with parameters θ, and x an input image belonging
to class c ∈ C. The stochastic weights or activations of fθ cause fθ(x) to be
randomised; as a result, ∇xL(fθ(x), c) is a distribution of gradients. EoT is,
in essence, a Monte-Carlo method that estimates the true gradient of the loss
function by averaging n gradient samples as

ω =
1

n

n∑
i=0

∇xL(fθ(x)i, c) , (2.6)

where ω denotes the approximation of the true gradient, g.

2.3 Defences with an Obfuscating Loss Landscape

In our work we consider both stochastic and non-stochastic defences that we
found to create a rough, discontinuous, or otherwise rugged loss surface that
is difficult for gradient-based adversaries to navigate. In the case of stochastic
defences, we only consider related work that have applied EoT in their model
evaluation. These defences are highlighted in detail in Section 2.2.

However, an obfuscating loss landscape is not an exclusive characteristic of
SNNs. k-Winner Takes All (k-WTA) (Xiao et al., 2020) is a defence that replaces
the ReLU activation with a discontinuous function. Further, Anti-Adversaries
(AA) (Alfarra et al., 2021) is a recent training-free adversarial defence that could
be categorised as a “black-box” defence. It improves adversarial robustness by
prepending a layer that induces discontinuity to the loss landscape.

Our observation is that all of these methods can defend successfully against
white-box adversarial attacks, largely through inducing rough loss landscapes
that gradient-based adversaries struggle to ascend. 3-dimensional slices through
the loss landscapes of the aforementioned defences are shown in Fig. 2.2. For
comparison, we provide examples of smooth loss landscapes in Appendix B, as
well as more details about how these plots are computed.
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(a) PNI
(He et al., 2019)

(b) L2P
(Jeddi et al., 2020)

(c) SESNN
(Yu et al., 2021)

(d) WCA
(Eustratiadis et al., 2021)

(e) AA
(Alfarra et al., 2021)

(f) k-WTA
(Xiao et al., 2020)

Figure 2.2: Loss landscapes of each of the adversarial defences considered in
this paper. All defences use a ResNet-18 backbone and the loss surfaces are
constructed on a correctly-classified test image from CIFAR-10. The X axis is the
gradient w.r.t. the clean input image, and the Y axis is chosen to be orthogonal
to X. The Z axis is the value of the loss function for each perturbation within the
ϵ-ball of the input image, where ϵ = 8

255
. Refer to Section 4.2.5 for more details

about how these loss surfaces are computed.



Chapter 3

Weight-Covariance Alignment for
Adversarially-Robust Neural
Networks

This Chapter corresponds to the paper: P. Eustratiadis, H. Gouk, D.
Li, and T. M. Hospedales. Weight-covariance alignment for adversarially-
robust neural networks. In International Conference on Machine Learning
(ICML), 2021.

Stochastic neural networks (SNNs) that either inject noise into their hidden
layers or sample their parameters from a probability distribution have recently
been shown to be robust against adversarial attacks (Alemi et al., 2017). Despite
that, the vast majority of existing SNN-based methods for adversarial robustness
are heuristically-motivated. In addition, these methods often rely on adversarial
training, which is computationally costly. In this Chapter, we propose a novel
SNN architecture that achieves state-of-the-art robust performance without the
need for adversarial training, and is coupled with solid theoretical justification.
Specifically, while existing SNNs inject learned or hand-tuned isotropic noise,
our SNN learns an anisotropic noise distribution to optimise a learning-theoretic
bound on adversarial robustness. We evaluate our method on various popular
image classification benchmarks and show that it can be applied to different
backbone architectures. Overall, it provides adversarial robustness against a
variety of white-box and black-box attacks, while being simple and fast to train
compared to existing alternatives.

3.1 Introduction

In this section, we identify and discuss three limitations of current state-of-the-
art stochastic defences. First, most contemporary adversarial defence methods
use a mixture of clean and adversarial samples during training; this approach

15
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is formally known as adversarial training (AT) (Goodfellow et al., 2015). The
process of generating good adversarial examples during training is complicated
(e.g., Cai et al., 2018), and it leads to significantly higher computational cost
and longer training time. Second, a lot of existing adversarial defences (e.g.,
Mustafa et al., 2019), and especially stochastic defences (e.g., He et al., 2019,
Jeddi et al., 2020), are heuristically-motivated – even though there is empirical
evidence of their effectiveness against adversarial attacks, they lack theoretical
support. Third, the noise incorporated by existing stochastic models is isotropic
i.e., generated from a multivariate Gaussian distribution with a diagonal covari-
ance matrix, meaning that it perturbs learned features of different dimensions
independently. Our theoretical analysis shows that this is a strong assumption,
and that anisotropic noise provides a higher degree of flexibility, leading to better
performance.

Our research addresses the aforementioned limitations, as we propose an
SNN architecture and training regime that makes use of learnable anisotropic
noise. Specifically, we theoretically analyse the margin between the clean and
adversarial performance of a stochastic model and derive an upper bound on the
difference between these two quantities. This novel theoretical insight suggests
that the anisotropic noise covariance in an SNN should be optimised to align
with the classifier weights, which has the effect of tightening the bound between
clean and adversarial performance. This alignment can be achieved with an
easy-to-implement regulariser, which can be efficiently optimised on clean sam-
ples alone, without need for adversarial training. Our work belongs in the family
of certified defences (Raghunathan et al., 2018; Lécuyer et al., 2019; Pinot et al.,
2019; Li et al., 2019), although the robustness guarantees are theoretically prov-
able only for simple linear models.

Finally, we show that our method, Weight-Covariance Alignment (WCA), can
be applied to architectures of varied depth and complexity – namely, LeNet++
(Wen et al., 2016) and ResNet-18 (He et al., 2016) – and achieves state-of-the-art
robustness across widely-used benchmarks, including CIFAR-10/100 (Krizhevsky
and Hinton, 2009), SVHN (Netzer et al., 2011) and F-MNIST (Xiao et al., 2017).
Moreover, our method can handle high-resolution images, as we show by ad-
ditionally including Imagenette (Howard, 2019) and mini-ImageNet (Vinyals
et al., 2016) in our experimental setup. This high level of robustness is demon-
strated against both white-box and black-box adversaries. We name our pro-
posed model WCA-Net.

The scientific contributions described in this Chapter can be summarised as
follows:

• Unlike the majority of existing stochastic defences that are heuristically-
motivated, our proposed stochastic defence is trained to optimise a derived
learning-theoretic bound; resulting in a solid theoretical justification for its
robust performance.

• To the best of our knowledge, this is the first stochastic defence with learned
anisotropic noise to be proposed in the literature.
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• WCA only requires clean samples for training, and does not depend on
costly adversarial training.

• We demonstrate the state-of-the-art performance of our stochastic defence
on various benchmarks, as well as its resilience against both white- and
black-box attacks.

3.2 Method

Based on theoretical analysis of how the injected noise can impact generalisation
performance, further expanded in Section 3.2.1, we propose a weight-covariance
alignment loss term that encourages the weight vectors associated with the final
linear classification layer to be aligned with the covariance matrix of the injected
noise. Consequently, our theory leads us to use anisotropic noise, rather than the
isotropic noise typically employed by previous approaches.

Our method fits into the category of SNNs that apply additive noise to the
penultimate activations of the network. Consider the function, fθ(x), as the
backbone, or feature extractor portion of the network i.e., everything except the
final classification layer. Our WCA-Net architecture is defined as

h(x) = W (f(x) + z) + b , z ∼ N (0,Σ), (3.1)

where W and b are the parameters of the final linear layer, and z is the vector
of additive noise. We choose this stochastic architecture because it offers the
following benefits:

• It is flexible w.r.t. the selection of a backbone architecture, and as feature
extractors become more powerful over time, this method remains relevant.

• There is only one source of noise, and the noise itself is additive. This
makes the theoretical derivation of our method clear and straightforward,
as opposed to when the noise is a parametric function of the data, or is
injected in multiple places (e.g., He et al., 2019, Jeddi et al., 2020).

• In our method, we are not interested in uncertainty estimation or any type
of variational inference; therefore we do not have to use a fully-fledged
BNN.

The objective function used to train our model is

L = LC − LWCA, (3.2)

where LC and LWCA represent the classification loss (e.g. softmax composed with
cross-entropy) and weight-covariance alignment term respectively. We describe
each of our technical contributions in the remainder of this section.
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3.2.1 Weight-Covariance Alignment

Non-stochastic methods for defending against adversarial examples typically try
to guarantee that the prediction for a given input image cannot be changed. In
contrast, a defence that is stochastic should aim to minimise the probability that
the prediction can be changed. In this section, we present a theoretical analysis
of the probability that the prediction of an SNN will be changed by an adversarial
attack. For simplicity, we restrict our analysis to the case of binary classification.

Denoting a feature extractor as f , we define an SNN h, trained for binary
classification as

h(x) = wT (f(x) + z) + b , z ∼ N (0,Σ), (3.3)

where w is the weight vector of the classification layer and b is the bias. We
denote the non-stochastic version of h, where the value of z is always a vector of
zeros, as h̃. The margin of a prediction is given by

mh(x, y) = yh(x), (3.4)

for y ∈ {−1, 1}. It is positive if the prediction is correct, and negative otherwise.
The quantity in which we are interested is the difference in probabilities of

misclassification when the model is and is not under adversarial attack δ, which
is given by

Gh
p,ϵ(x, y) = max

δ:∥δ∥p≤ϵ
P (mh(x+ δ, y) ≤ 0)− P (mh(x, y) ≤ 0). (3.5)

Our main theoretical result shows how one can take an adversarial robustness
bound, ∆h̃

p(x, ϵ), for the deterministic version of a network, and transform it to a
bound on G for the stochastic version of the network.

Theorem 1. The quantity Gh
p,ϵ(x, y), as defined in Equation 3.5, is bounded as

Gh
p,ϵ(x, y) ≤

∆h̃
p(x, ϵ)√

2πwTΣw
, (3.6)

where the robustness of the deterministic version of h is known to be bounded as
|h̃(x)− h̃(x+ δ)| ≤ ∆h̃

p(x, ϵ) for any ∥δ∥p ≤ ϵ.

The proof is provided in Appendix A. From Theorem 1 we can observe that
increasing the bi-linear form, wTΣw, of the noise distribution covariance and the
classifier reduces the gap between clean and robust performance. As such, we
define the loss term,

LWCA =
C∑
i=1

ln(wT
i Σwi), (3.7)

where C is the number of classes in the classification problem, and wi is the
weight vector of the final layer that is associated with the ith class. We found
that including the logarithm results in balanced growth rates between the LC
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and LWCA terms in Equation 3.2 as training progresses, hence improving the
reliability of training loss convergence.

The key insight of Theorem 1, operationalised by Equation 3.7, is that the
noise and weights should co-adapt to align the noise and weight directions. We
call this loss Weight-Covariance Alignment (WCA) because it is maximised when
each wi is well-aligned with the eigenvectors of the covariance matrix.

This WCA loss term runs into the risk of maximizing the magnitude of w,
rather than encouraging alignment or increasing the scale of the noise. To avoid
the uncontrollable scaling of network parameters, it is common to penalise large
weights by means of ℓ2 regularization:

L = LC − LWCA + λwTw, (3.8)

where λ controls the strength of the penalty. In our case, we apply the ℓ2 penalty
on the parameters of the classification layer and the covariance matrix. Another
approach to limiting parameter magnitude would be to enforce norm constraints
on w and Σ, e.g., using a projected subgradient method at each update. More
details about this alternative approach are provided in Appendix A. Empirically,
we found that the penalty-based approach outperformed the constraint-based
approach, so we focus on the former by default.

3.2.2 Injecting Anisotropic Noise

In contrast to previous work that only considers injecting isotropic Gaussian
noise (Liu et al., 2019b; He et al., 2019; Jeddi et al., 2020; Yu et al., 2021),
we make use of anisotropic noise, providing a richer noise distribution than pre-
vious approaches. Crucially, it also means that the principal directions in which
the noise is generated no longer have to be axis-aligned. I.e., prior work suffers
from the inability to simultaneously optimise the alignment between the noise
and the weight vectors (required to minimise the adversarial gap, as per Theo-
rem 1), while maintaining the freedom to place the weight vectors off the axis
(required for good clean performance). Our use of anisotropic noise combined
with WCA encourages alignment between the weight vectors of the classifier
and the eigenvectors of the covariance matrix, while allowing non-axis aligned
weights, thus providing more freedom about where to place the classification
decision boundaries.

Previous approaches are able to train the variance of each dimension of
the isotropic noise via the use of the “reparameterization trick” (Kingma and
Welling, 2014), where one samples noise from a distribution with zero mean
and unit variance, then rescales the samples to get the desired variance. Because
the rescaling process is differentiable, this allows one to learn variance jointly
with the other network parameters with backpropagation. In order to sample
anisotropic noise, one can instead sample a vector of zero mean unit variance
and multiply this vector by a lower triangular matrix, L. This lower triangular
matrix is related to the covariance matrix as

Σ = L · LT . (3.9)



20 CHAPTER 3. WEIGHT-COVARIANCE ALIGNMENT

This guarantees that the covariance matrix remains positive semi-definite after
each gradient update.

3.3 Experiments

In this section, we present the experiments that demonstrate the efficacy of our
model and verify our theoretical analysis.

3.3.1 Experimental Setup

Datasets For comparison against the state-of-the-art and for our ablation study
we use four benchmarks: CIFAR-10/100 (Krizhevsky and Hinton, 2009), SVHN
(Netzer et al., 2011) and Fashion-MNIST (Xiao et al., 2017). CIFAR-10 and
CIFAR-100 contain 60K 32x32 color images, 50K for training and 10K for testing,
evenly spread across 10 and 100 classes respectively. SVHN can be considered a
more challenging version of MNIST (LeCun et al., 2010); it contains almost 100K
32x32 color images of digits (0-9) collected from Google’s Street View imagery,
with roughly 73K for training and 26K for testing. Fashion-MNIST is a collection
of 70K 28x28 grayscale images of clothing, 60K for training and 10K for testing,
also spread across 10 classes.

Models For all benchmarks except F-MNIST we use a ResNet-18 (He et al.,
2016) backbone, while for F-MNIST, being a relatively simpler dataset, we use
LeNet++ (Wen et al., 2016). After the backbone we add a penultimate layer
for dimensionality reduction; this enables us to always train a reasonably-sized
covariance matrix, regardless of the original dimensionality of the backbone1.
The only restriction for the dimensionality of the penultimate layer is that it
needs to be a number greater than or equal to the number of classes in the task,
so as to allow the covariance matrix to align with at least one classifier vector.
The two hyperparameters of note across all of our experiments are the learning
rate and ℓ2 penalty (i.e., weight decay), the exact values of which are provided
in the supplementary material.

Attacks We evaluate our method using three white-box adversaries: FGSM
(Goodfellow et al., 2015), PGD (Madry et al., 2018) and C&W (Carlini and Wag-
ner, 2017), and one black-box attack: the One-Pixel attack (Su et al., 2019).

We parameterise the attacks following the literature (He et al., 2019; Jeddi
et al., 2020). More specifically, FGSM and PGD are set with an attack strength
of ϵ = 8/255 for CIFAR-10, CIFAR-100 and SVHN, and ϵ = 0.3 for F-MNIST. PGD
has a step size of α = ϵ/10 and number of steps k = 10 for all benchmarks. C&W
has a learning rate of α = 5 ·10−4, number of iterations k = 1000, initial constant
c = 10−3 and maximum binary steps bmax = 9.

132x32 for the benchmarks with 10 classes, 256x256 for the benchmarks with 100 classes.
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To set the hyperparameters of the One-Pixel attack, we tried to replicate the
exact experimental setup described in the supplementary material of Jeddi et al.
(2020) for attack strengths of 1, 2 and 3 pixels. We followed their setup with
population size N = 400 and maximum number of iterations kmax = 75. However,
we noticed that the more pixels we added to our attack the weaker it became,
which is counter-intuitive. We attribute that to the small number of iterations;
every added pixel substantially increases the search space of the differential evo-
lution algorithm, and 75 iterations are no longer enough to converge when the
number of pixels is 2 and 3. Therefore we maintain a population size of N = 400,
but increase the number of iterations to kmax = 1000. We further clarify that for
the differential evolution algorithm we use a crossover probability of r = 0.7, a
mutation constant of m = 0.5, and the following criterion for convergence:√

Var(E(X)) ≤
∣∣∣ 1

100N

∑
x∈X

E(x)
∣∣∣, (3.10)

where X denotes the population, E(X) the energy of the population and E(x)
the energy of a single sample.

Expectation over Transformation As a consequence of the noise injected by
SNNs, the gradients used by white-box adversaries are stochastic (Athalye et al.,
2018a); hence the true gradients cannot be correctly estimated for attacks that
use only one sample to compute the perturbation. To avoid this issue, we apply
Expectation over Transformation (EoT) following Athalye et al. (2018a). When
generating an attack, we compute gradients of multiple forward passes using
Monte-Carlo sampling and perturb the inputs using the averaged gradient at
each update. We empirically found that a reliable number of MC samples is 50
(as we observed performance begins to saturate from around 35 and converges
at 40); thus, we use 50 across all experiments.

3.3.2 Comparison to Prior Stochastic defences

Competitors

We compare the performance of WCA-Net to recent state-of-the-art stochastic
defences to verify its efficacy. AdvBNN (Liu et al., 2019b): adversarially trains
a BNN for defence. PNI (He et al., 2019): learns an “intensity” parameter to
control the variance of the SNN. Learn2Perturb (L2P) (Jeddi et al., 2020): an
improvement upon PNI that features a learnable isotropic perturbation injection
module. Furthermore, we have included partial comparisons against SESNN
(Yu et al., 2021) and IAAT (Xie et al., 2019). All experiments use a ResNet-18
backbone and are conducted on CIFAR-10 for fair comparison.

White-box Attacks

We first compare our proposed WCA-Net to the existing state-of-the-art stochastic
adversarial defences in the white-box attack setting. From the results in Table
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Table 3.1: Comparison of state-of-the-art SNNs for FGSM and PGD attacks on
CIFAR-10 and CIFAR-100 with a ResNet-18 backbone. Performance of competitor
methods was taken from the original published papers.

CIFAR-10 CIFAR-100
Method Clean FGSM PGD Clean FGSM PGD

AdvBNN (Liu et al., 2019b) 82.2 60.0 53.6 ∼ 58.0 ∼ 30.0 ∼ 27.0
PNI (He et al., 2019) 87.2 58.1 49.4 ∼ 61.0 ∼ 27.0 ∼ 22.0
L2P (Jeddi et al., 2020) 85.3 62.4 56.1 ∼ 50.0 ∼ 30.0 ∼ 26.0
SESNN (Yu et al., 2021) 92.3 74.3 - - - -
IAAT (Xie et al., 2019) - - - 63.9 - 18.5
WCA-Net 93.2 77.6 71.4 70.1 51.5 42.7

Table 3.2: Comparison of state-of-the-art SNNs for white box C&W attack and
black box n-Pixel attack on CIFAR-10 with a ResNet-18 backbone. Performance
of competitor methods was taken from the original published papers.

Attack Strength AdvBNN PNI L2P WCA-Net

Clean 82.2 87.2 85.3 93.2

C
&

W

κ = 0.1 78.1 66.1 84.0 89.4
κ = 1 65.1 34.0 76.4 78.4
κ = 2 49.1 16.0 66.5 71.9
κ = 5 16.0 0.08 34.8 55.0

n-
Pi

xe
l 1 pixel 68.6 50.9 64.5 90.8

2 pixels 64.6 39.0 60.1 85.5
3 pixels 59.7 35.4 53.9 81.2
5 pixels - - - 64.3

3.1, we can see that our WCA-Net shows noticeable improvement of ∼ 15%
over the strongest competitor, L2P. Moreover, we find that our method does not
sacrifice its performance on clean data to afford such strong robustness.

An important aspect of WCA that needs to be assessed is its potential to scale
with the number of classes. For this reason we conduct experiments on CIFAR-
100, comparing against our previously mentioned competitors, plus IAAT (Xie
et al., 2019), all of which use a ResNet-18 backbone in their architectures. From
Table 3.1 we can see that the adversarial robustness of WCA-Net outperforms
the other methods.

We also present the evaluation of our method against the C&W attack in
Table 3.2. Here, the confidence level κ indicates the attack strength. Our WCA-
Net achieves the best performance, with the accuracy degrading gracefully as
the confidence increases.
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Table 3.3: Comparison of WCA-Net to recent state-of-the-art, both stochastic
and non-stochastic, on CIFAR-10. All competitors evaluate their models on the
untargeted PGD attack, with attack strength ϵ = 8/255, and number of iterations
k ∈ {7, 10, 20}. Some results are extracted from He et al. (2019). Performance
of competitor methods was taken from the original published papers. AT: Use of
adversarial training.

Defence Architecture AT Clean PGD

RSE (Liu et al., 2018) ResNext ✗ 87.5 40.0
DP (Lécuyer et al., 2019) 28-10 Wide ResNet ✗ 87.0 25.0
TRADES (Zhang et al., 2019a) ResNet-18 ✓ 84.9 56.6
PCL (Mustafa et al., 2019) ResNet-110 ✓ 91.9 46.7
PNI (He et al., 2019) ResNet-20 (4x) ✓ 87.7 49.1
AdvBNN (Liu et al., 2019b) VGG-16 ✓ 77.2 54.6
L2P (Jeddi et al., 2020) ResNet-18 ✓ 85.3 56.3
MART (Wang et al., 2020a) ResNet-18 ✓ 83.0 55.5
BPFC (Addepalli et al., 2020) ResNet-18 ✗ 82.4 41.7
RLFLAT (Song et al., 2020) 32-10 Wide ResNet ✓ 82.7 58.7
MI (Pang et al., 2020) ResNet-50 ✗ 84.2 64.5
SADS (S. and Babu, 2020) 28-10 Wide ResNet ✓ 82.0 45.6

WCA-Net ResNet-18 ✗ 93.2 71.4

Black-box Attacks

To further verify the robustness of our WCA-Net, we conduct experiments on a
black-box attack, the One-Pixel attack (Su et al., 2019). This attack is gradient-
free and relies on evolutionary optimization. Its attack strength is controlled by
the number of pixels it compromises. We follow Jeddi et al. (2020) and consider
pixel numbers in {1, 2, 3}. Additionally, we report results for a stronger 5-pixel
attack. From Table 3.2, we can see that our method demonstrates the strongest
robustness in all cases, showing ∼ 13% to ∼ 22% improvement over the best
competitor AdvBNN. Importantly, these results show that the robustness of our
method does not rely on stochastic gradients.

Stronger Attacks

In addition, we evaluate WCA-Net against two stronger attacks that are common
among recent adversarial robustness literature, but are not mentioned in the
stochastic defences we outline as direct competitors. These are: (i) PGD100;
a stronger variant of PGD with 100 random restarts, and (ii) the Square Attack
(Andriushchenko et al., 2020); a black-box attack that compromises the attacked
image in small localised square-shaped updates. We present the results of our
evaluation in Table 3.4.
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Table 3.4: Evaluation of WCA-Net with a ResNet-18 backbone on CIFAR-10,
against the white-box PGD100 and black-box Square Attack, for different values
of attack strength ϵ.

ϵ/255 Clean 1 2 4 8 16 32 64 128

PG
D
1
0
0 No Defence 93.3 45.3 14.6 0 0 0 0 0 0

WCA-Net 93.2 73.2 72.2 72.1 71.2 69.7 56.4 28.2 10.5

Sq
ua

re No Defence 93.3 32.9 31.7 12.4 6.0 1.2 0 0 0
WCA-Net 93.2 51.7 51.7 50.4 49.0 48.8 44.3 36.9 28.6

Table 3.5: Ablation study for FGSM and PGD attacks on CIFAR-10, CIFAR-100,
SVHN and F-MNIST. For CIFAR-10, CIFAR-100 and SVHN we use a ResNet-18,
and for F-MNIST a LeNet++ backbone. (I): Isotropic, (A): Anisotropic.

CIFAR-10 CIFAR-100
Model Clean FGSM PGD Clean FGSM PGD

No Defence 93.3 14.9 3.9 72.2 12.3 1.2
WCA-Net (I) 93.1 60.7 55.9 70.1 27.5 21.8
WCA-Net (A) 93.2 77.6 71.4 70.1 51.5 42.7

SVHN F-MNIST
Model Clean FGSM PGD Clean FGSM PGD

No Defence 93.4 55.6 23.5 90.8 26.4 12.0
WCA-Net (I) 93.4 45.0 40.1 90.1 63.5 37.2
WCA-Net (A) 93.4 87.6 85.7 90.1 65.2 48.5

3.3.3 Comparison to State of the Art

Direct comparison to a wider range of competitors is difficult due to the va-
riety of backbones and settings used. However, such a comparison is useful,
because it places our work within the wider context of adversarial robustness
literature. Table 3.3 provides comparison to recent state of the art stochastic and
non-stochastic defences. We can see that WCA-Net achieves excellent perfor-
mance including comparing to methods that use bigger backbones and make the
stronger assumption of adversarial training. Upon inspection of the results, we
make an interesting observation: Regularising a neural network’s parameters for
robustness via adversarial training, or otherwise, takes a toll on its clean perfor-
mance. WCA is a strong method in that regard, because the clean performance
of our WCA-trained architecture matches the clean performance of the original,
non-robust backbone.
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Table 3.6: Control experiments on CIFAR-10 for further analysis. See Sec. 3.3.4.
AT: Training purely with adversarial examples. CT+AT: Training with a mix of
clean and adversarial examples.

Experiment Clean FGSM PGD

No defence 93.3 14.9 3.9
WCA-Net (Penalty regulariser) 93.2 77.6 71.4
WCA-Net (Constraint regulariser) 92.2 62.9 53.2

E1: Test without EoT 93.2 82.9 75.1
E2: Average multiple noise samples 93.2 70.3 68.8
E3: Noise trained independently 93.1 45.0 41.6

WCA-Net: AT 88.1 75.4 70.4
WCA-Net: CT+AT 90.0 75.6 70.7

Table 3.7: Comparison between the undefended ResNet-18 baseline and WCA-
Net with a ResNet-18 backbone for Imagenette (high-res, 10 categories) and
mini-ImageNet (large-scale, 100 categories) under PGD attack.

Imagenette mini-ImageNet
Model Clean FGSM PGD Clean FGSM PGD

No defence 75.5 8.4 0 51.9 5.0 0
WCA-Net 74.2 59.3 48.7 51.3 41.6 30.4

3.3.4 Further Analysis

Ablation Study

We perform an ablation study on four benchmarks, CIFAR-10, CIFAR-100, SVHN
and F-MNIST, to investigate the contribution of anisotropic noise, as shown in
Table 3.5. For each benchmark, we evaluate a “clean” baseline architecture,
consisting only of the backbone and the classification layer. We then evaluate a
variant of WCA-Net with isotropic, and one with anisotropic noise. We observe
that our anisotropic noise provides consistent benefit to adversarial robustness.

Another important observation is that there is no trade-off between the robust
and clean performance of our models; both the isotropic and anisotropic variants
of WCA-Net maintain the clean performance of the baseline defenceless model.

All the FGSM and PGD attacks in Table 3.5 use attack strength ϵ = 8/255. For
completeness, we report the performance of all the variants above against FGSM
and PGD with various attack strengths ϵ = 2n, n ∈ {0...7} on CIFAR-10 shown
in Figure 3.1. From these results, we can see the overall trend here is consistent
with the observations in Table 3.5. Also, we can see that the performance of our
variants degrades more gracefully than the defenceless baseline.
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Figure 3.1: Evaluation of our model variants (see Table 3.5) for different attack
strengths ϵ = 2n, n ∈ {0...7}, specifically for the FGSM (left) and PGD (right)
attacks on CIFAR-10.

Large-scale, high-resolution We are further interested to show that our WCA
method can handle high-resolution images and more challenging datasets. For
that purpose, we extend our evaluation to two additional benchmarks that are
not considered by related work: (i) Imagenette (Howard, 2019), a subset of
ImageNet with 10 classes and full-resolution images, and (ii) mini-ImageNet
(Vinyals et al., 2016), a large subset of ImageNet with 100 classes and 84x84
images, designed to be more challenging than CIFAR-100. The results presented
in Table 3.7 demonstrate that our method generalises quite well to both high-
resolution images as well as more challenging datasets.

Norm-constrained architecture As explained in Section 3.2.1, we control the
magnitude of the weights in our architecture by means of ℓ2 regularization. An
alternative option to achieve the same effect is to apply norm constraints to the
classification vectors wi and covariance matrix Σ. A detailed explanation of how
we apply these norm constraints is given in Appendix A. In Table 3.6, we report
results of a WCA-Net variant with a norm-constrained regulariser. Constraint-
based regularization still provides good robustness, but is weaker than the ℓ2

penalty-based variant.

E1: Importance of EoT To show the impact of EoT, we also evaluate the test
performance without it. Table 3.6 shows that the test performance increases
without using EoT. This makes sense as critiqued in Athalye et al. (2018a); one
gradient sample is not enough to construct an effective attack.

E2: Average multiple noise samples at test time Our model’s forward pass
performs the following: (i) Extract features from the penultimate layer of the
backbone, (ii) inject additive noise, and (iii) compute the logits. By default we
draw a single noise sample as suggested by our theory. In this experiment, we
sample from the distribution multiple times and average the final logits. The
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more noise samples we average, the more we expect the additive noise to lose
its regularization effect. The experimental results in Table 3.6 confirm that using
more (n = 10) samples degrades performance.

E3: Train noise and model independently In this experiment, we first train
the model without injecting any noise. Then, keeping the model parameters
frozen we train the noise independently. In Table 3.6 we can see that this variant
achieves an elementary level of robustness that is better than the defenceless
baseline shown in Table 3.5, however, not as strong as the isotropic baseline.
As mentioned in Section 3.2.1, a key insight of Theorem 1 is that the noise and
weights should co-adapt. As expected, keeping the weight vectors wi frozen,
overall limits the ways the WCA term (see Equation 3.7) can inflate, thus never
realizing its full potential.

Adversarial training Our proposed method achieves adversarial robustness by
only requiring clean data for training. To show this, we adversarially train our
anisotropic WCA-Net in two settings: (i) purely with adversarial examples and
(ii) with a mix of clean and adversarial examples. We train with a PGD attack
with ϵ = 8/255 and k = 10. Our results in Table 3.6 show that incorporating
AT harms our performance on clean data as expected (Goodfellow et al., 2015);
while providing no consistent benefit for adversarial defence.

3.3.5 Inspection of Gradient Obfuscation

Athalye et al. (2018a) proposed a set of criteria to inspect whether a stochastic
defence method relies on obfuscated gradients. Following He et al. (2019), we
summarise these criteria as a checklist. If any item in this checklist holds true,
the stochastic defence is deemed unreliable. The following analysis verifies that
our model’s strong robustness is not caused by gradient obfuscation.

Criterion 1: One-step attacks perform better than iterative attacks. Given
that PGD is an iterative variant of FGSM, we use our existing evaluation to refute
this criterion. From the results in Tables 3.1, 3.5 and 3.6, we can see that our
WCA-Net performs consistently better against FGSM than against PGD.

Criterion 2: Black-box attacks perform better than white-box attacks. From
Tables 3.1 and 3.2 we observe that FGSM and PGD outperform the 1-pixel attack.
In Figure 3.1 we see the effect of increasing the attack strength on both white-
box attacks, and they still outperform the stronger 2-, 3- and 5-pixel attacks.

Criterion 3: Unbounded attacks do not reach 100% success. To compare
against previous work in fair terms, FGSM and PGD are parameterised following
He et al. (2019). However, for this check we deliberately increase the attack
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Figure 3.2: Evaluating our bound. Plots of the test set accuracy of SVMs trained
on the zero and one digits found in MNIST. We report the performance of models
trained with isotropic (left) and anisotropic (right) noise, and the worst-case
performance according to Theorem 1. The anisotropic model provides a more
robust bound than the isotropic model as well as better empirical performance.
Best viewed in color.

strength of PGD to ϵ = 255/255 and number of iterations to k = 20. We evaluate
all of our models against this attack, and they achieve an accuracy of 0%.

Criterion 4: Random sampling finds adversarial examples. To assess this,
we hand-pick 100 CIFAR-10 test images that our model successfully classifies
during standard testing (100% accuracy), but misclassifies under FGSM with
ϵ = 8/255 (0% accuracy). For each of these test images, we randomly sample
1,000 perturbed images within the same ϵ-ball, and replace the original image
if any of the samples result in misclassification. We then evaluate our model on
these 100 images to get a performance of 98%.

Criterion 5: Increasing the distortion bound doesn’t increase success. Our
ϵ-ablation in Figure 3.1 shows that increasing the distortion bound increases the
attack’s success.

3.3.6 Empirical Evaluation of Theorem 1

To evaluate the tightness of our bound presented in Theorem 1, we train linear
Support Vector Machines (SVM) on the zero and one digits found in the MNIST
dataset. Using a linear model allows us to compute the numerator using the
technique of Gouk and Hospedales (2020),

∆h̃
∞(x, ϵ) = ϵ∥w∥1, (3.11)

where w is the weight vector of the SVM. We reduce the images to 32 dimensions
using principal components analysis, and apply learned isotropic and anisotropic
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Figure 3.3: Visualisation of our WCA models on F-MNIST with a 2-dimensional
bottleneck. Contours and arrows indicate noise covariance Σ and weights wi.
Left: WCA-Net with isotropic noise. Right: WCA-Net with anisotropic noise.
Evidently, our WCA-Net with anisotropic noise allows covariance to be aligned
with off-axis weights.

noise to these reduced features before classification with the SVM. The covari-
ance matrix and SVM weights are found by minimizing the hinge loss plus the
WCA loss term using gradient descent. Results of attacking these models with
PGD, and the lower bound on performance as computed by Theorem 1, are given
in Figure 3.2. From these plots we can see: (i) the bound is not violated at any
point, corroborating our analysis; (ii) as the strength of the adversarial attack is
increased, the bound remains non-vacuous for reasonable (i.e., imperceptible)
values of the attack strength; and (iii) the model with the anisotropic noise is
more adversarially robust than the model with the isotropic noise. This finding
is particularly interesting because in the linear model regime PGD attacks are
able to find globally optimal adversarial examples.

3.3.7 Empirical Observations about WCA

In Figure 3.3 we use a biviriate Gaussian to show the effect of our regularization
methods, by plotting the contours of the distribution against the weight vectors
of the classification layer. These visualizations are obtained by training our WCA-
Net isotropic (left) and anisotropic (right) variants with a LeNet++ backbone on
F-MNIST, with a 2-dimensional bottleneck and 2x2 covariance matrix. The X and
Y axes in this plot construct a 2-dimensional vector space with real values, on
which we project 10 2-dimensional weight vectors, with origin at (0, 0), each
corresponding to a class from F-MNIST. In the background, we plot the contours
of the noise distribution. This type of figure can serve as a qualitative diagnostic
that answers the question: “Is the performance boost of our model attributed to
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weight-covariance alignment?”. The resulting figure shows the following:

• First, in the left of Figure 3.3, we can see that the learned noise is axis-
aligned since the injected noise is isotropic. Further, we can see that the
weight vectors are near-axis-aligned, as WCA pushes them to align with
the learned noise.

• Then, in the right Figure, due to the combination of anisotropic noise and
WCA, our model has weight-aligned noise, and the weights are free to
be non-axis-aligned. Overall, we observe better alignment between the
learned weight vectors and the eigenvectors of the covariance matrix in
our proposed anisotropic WCA-Net.

3.4 Discussion

This Chapter describes our contribution of the first stochastic adversarial de-
fence that features fully-trained anisotropic Gaussian noise, and its robustness
does not rely on adversarial training. Our training algorithm is considered to
be “hyperparameter-free”, as it involves the same hyperparameters as a common
training algorithm, i.e., learning rate and weight decay. We provide both the-
oretical support for the core ideas behind it, and experimental evidence of its
excelling performance. We extensively evaluate WCA-Net on a variety of white-
box and black-box attacks, and further show that its high performance is not
a result of stochastic (obfuscated) gradients. Thus, we consider the proposed
model to push the boundary of adversarial robustness.

3.4.1 Insights About Weight-Covariance Alignment

As is the theme of this thesis, there are opportunities and risks associated with
the use of WCA. In this section, we present some key insights that can guide the
scientific community into extracting the maximum benefit out of our research.

Maximisation of the WCA term should be approached with care

It is important to stress that a quick look at Equation 3.6 might give the reader a
false impression about the simplicity of the WCA objective. While it can be easily
translated into a regularisation term to accompany the classification loss, how to
maximise it correctly with gradient descent is far from obvious.

The main caveat in this line of work is the tendency of gradient descent-based
optimisers to maximise wTΣw by blindly inflating the values of w and Σ. Not
only can this lead to overfitting, but even worse, it can lead to numeric overflow
– especially after softmax is applied to the activations of the classification layer. It
is important to force gradient descent to prioritise weight-covariance alignment
over inflation. In this work we propose two methods for achieving this: applying
ℓ2 regularisation (see Section 3.2.1) and constraining the norm of the weight
vectors (see Appendix A).
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The use of anisotropic noise is worth the performance/complexity trade-off

We hypothesise that one of the reasons why we are the first in the literature to
propose an SNN architecture trained with anisotropic noise, is the substantial
increase in training-time complexity for little benefit. In our work, this is not
true; the benefit is substantial because we explicitly care about alignment. By
simultaneously giving the classification weight vectors the freedom to align with
the eigenvectors of the covariance matrix, and the noise covariance the freedom
to align with the classification weight vectors, we can reliably achieve both WCA
and model convergence between training executions.

Furthermore, the use of anisotropic noise breaks the strong assumption that
learned features are independent. Intuitively, this assumption is unlikely to hold
true when learning directly from pixels, but in practical terms, the simplicity
of incorporating isotropic noise may outweigh this concern. However, when it
comes to adversarial robustness this concern is more severe, as pixel perturba-
tions of most gradient-based and gradient-free adversaries do not treat pixels
independently. Specifically, the reason why deep learning models are vulnera-
ble against adversarial attacks in the first place, as discovered by Szegedy et al.
(2014), is that a lot of small pixel-level perturbations can synergise into causing
large feature-level changes in the output.

In our work, we further provide a framework for training anisotropic noise in
a more straightforward way than learning the entire Σ matrix. We recommend
learning a lower-triangular matrix, L, whereby it is easier to impose constraints
related to gradient updates, and guarantees that Σ remains positive and semi-
definite, as per Equation 3.9.

3.4.2 Limitations

The stochastic defences outlined in this paper, including WCA, owe part of their
robustness to creating a noisy loss landscape that gradient-based adversaries find
difficult to ascend. Manipulating the loss landscape in such a way is a type of
gradient obfuscation that Chapter 4 explains in detail, but was not known at the
time when this research was conducted. Therefore, any adversarial attacks that
include loss-smoothing were not included in the experimental setting of WCA-
Net, as was true for the competing stochastic defences AdvBNN, PNI, L2P, and
SESNN. It should be noted that this does not mean that the tightening of our
learning-theoretic bound no longer yields robustness. In fact, the experimental
results in Section 4.3.2 show that our method displays higher robustness against
competing methods, even when under attack by loss-smoothing adversaries. This
robustness can still be entirely attributed to WCA.





Chapter 4

Attacking Adversarial Defences by
Smoothing the Loss Landscape

This chapter corresponds to the paper: P. Eustratiadis, H. Gouk, D. Li,
and T. M. Hospedales. Attacking adversarial defences by smoothing the
loss landscape. In ICML Workshop on Adversarial Machine Learning, 2022.

This chapter investigates a family of adversarial defence methods that owe
part of their success to creating a noisy, discontinuous, or otherwise rugged loss
landscape that adversaries find difficult to navigate. One common (but not uni-
versal) way to achieve this effect is via the use of stochastic neural networks
(SNNs). We show that this way of defending is a form of gradient obfuscation,
and propose a general extension to gradient-based adversaries that smooths the
surface of the loss function and provides more reliable gradient estimates. We
further show that the same principle can strengthen gradient-free adversaries.
Our loss-smoothing method proves to be effective against both stochastic and
non-stochastic adversarial defences that exhibit robustness due to this type of
obfuscation, as demonstrated in our experimental analysis. Furthermore, we
provide analysis of how our smoothing method interacts with Expectation over
Transformation; a popular gradient-sampling method currently used to attack
stochastic defences.

4.1 Introduction

In this chapter, we reveal a form of gradient obfuscation that, to the best of our
knowledge, is not yet known1. So far, it is understood that SNNs can defend
effectively against adversarial attacks because having stochastic weights reduces
overfitting, with similar effect to training a non-stochastic neural network with
Lipschitz regularisation (Liu et al., 2018), a property with strong theoretical links
to adversarial robustness (Hein and Andriushchenko, 2017). We show that there

1At the time of writing, 2021-2022.
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is an additional reason for their robust performance. Stochastic defences, even
when averaging multiple gradient samples with EoT, tend to create a rough loss
landscape that gradient-based adversaries find difficult to ascend. A second,
and perhaps more interesting finding, is that this property is not exclusive to
stochastic adversarial defences; there exist non-stochastic defences that have the
same effect (e.g., Alfarra et al., 2021).

We show that the aforementioned property is a weakness that can be attacked
by an adversary. Specifically, we propose a stochastic extension to gradient-based
attacks that approximates performing the Weierstrass Transform (WT) (Zayed,
1996, Ch. 18) on the loss function in order to smooth it before computing its gra-
dient. Interestingly, we find that the same method can be applied in a gradient-
free setting to effectively circumvent the same type of obfuscation.

We support our insights experimentally by applying this novel extension to
Projected Gradient Descent (PGD) (Madry et al., 2018) and other recent iterative
FGSM variants (Lin et al., 2020; Wang and He, 2021) as well as Zeroth Order
Optimization (ZOO) (Chen et al., 2017), in the gradient-based and gradient-
free settings respectively. We demonstrate the efficacy of our loss-smoothing
method against both stochastic (He et al., 2019; Jeddi et al., 2020; Yu et al.,
2021; Eustratiadis et al., 2021) and non-stochastic defences (Xiao et al., 2020;
Alfarra et al., 2021) that create a noisy or discontinuous loss surface, and damage
their robust performance by as much as 20%. Finally, we analyse how the WT
interacts with EoT when attacking stochastic defences. We show that these two
methods serve different purposes and are complementary. However, unlike an
attack that applies EoT, a WT-based attack is effective against both stochastic and
non-stochastic defences.

4.2 Method

4.2.1 The Weierstrass Transform

The Weierstrass Transform (Zayed, 1996, Ch. 18) of a function f is defined as
the convolution of f with a Gaussian kernel function k in order to obtain g, a
smoothed version of f . Formally,

g(x) =

∫ +∞

−∞
k(x− y) f(y) · dy, k(x) =

1√
4π

e
−x2

4 . (4.1)

The conventional WT is defined for functions of scalar variables and utilises a
Gaussian kernel with a variance of

√
2. In our work we are applying it to neural

networks that are functions of many variables which may need to be smoothed to
different extents; therefore we relax these two conditions by using a multivariate
Gaussian with a tuneable isotropic covariance matrix.
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4.2.2 Using the Weierstrass Transform to Attack

Let L(hθ(x), c) be the classification loss function, x an input image belonging to
class c ∈ C, and hθ a function approximator with parameters θ. We can use
Equation 4.1 to define the smoothed loss function L̃ as

L̃(hθ(x), c) =

∫
Rd

k(x− y) L(hθ(y), c) · dy, (4.2)

where d is the dimensionality of x. This can also be interpreted as an expectation

L̃(hθ(x), c) = Eη[L(hθ(x+ η), c)], η ∼ N (0, σ2I). (4.3)

The dimensionality of the integral in Equation 4.2 corresponds to the number
of input pixels; so computing it directly is computationally unfeasible. However,
it is possible to compute a stochastic unbiased estimate of L̃ by using Monte-
Carlo sampling,

L̂(hθ(x), c) =
1

m

m∑
i=1

L(hθ(Xi), c), (4.4)

where m is the number of perturbations sampled around x and

Xi = x+ ηi, ηi ∼ N (0, σ2I). (4.5)

The error introduced by this approximation of the WT is bounded (with high
confidence), as shown in the following Theorem. It can be seen that the quality
of the approximation improves as the number of samples, m, is increased.

Theorem 2. For a k-Lipschitz network, hθ, applied to a fixed instance (x, c), and a
loss function, L, that is L-Lipschitz on the co-domain of hθ, we have with probability
at least 1− δ that

|L̂(hθ(x), c)− L̃(hθ(x), c)| ≤ kLσ

√
4dln(1/δ)

m
+

2kLln(1/δ)
3m

, (4.6)

where we assume that x is contained within the unit ball in d-dimensional Euclidean
space.

The proof of Theorem 2 is provided in Appendix B.

4.2.3 A Stochastic WT Extension of Gradient-Based Attacks

Conceptually, any gradient-based adversary can be extended with the WT to
smooth rugged loss landscapes and estimate gradients more reliably. Algorithm
1 describes PGDWT, our proposed method that is an extension of PGD. In addition
to the standard hyperparameters of PGD, i.e., the number of iterations k, step
size α, and attack strength ϵ, we add m as the number of images sampled around
x, and the standard deviation σ of the zero-mean normal distribution from which
the images are sampled.
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Algorithm 1: PGDWT

Data: x, c
Model: hθ

Input: k, m, n, α, ϵ, σ
Output: x̃
x̃←− x+ z, z ∼ U(−ϵ, ϵ)
for k iterations do

X̃ ←− sample m points around x̃ [Eq. 4.5]
if defence is stochastic then

ω ← 1
mn

∑m
i=0

∑n
j=0∇xL(hj

θ(X̃i), c) [Eq. 4.8]
else

ω ← 1
m

∑m
i=0∇xL(hθ(X̃i), c) [Eq. 4.7]

end
x̃←− x̃+ α sgn(ω)
project x̃ to ℓp-ball of ϵ

end

The main idea is that, given enough samples in close proximity to x, we can
compute the true slope of the loss function as the average slope of the surface
where these samples lie. Therefore, within the context of PGDWT, we define the
true gradient ω as

ω =
1

m

m∑
i=0

∇xL(hθ(X̃i), c), (4.7)

where X̃ denotes the set of images sampled around the perturbed image x̃, as
per Equation 4.5.

Figure 4.1c illustrates the concept of this attack. While the gradient at a
particular image x and samples nearby are individually noisy (random small
yellow arrows), their aggregate direction (large orange arrow) ascends the loss
surface.

Generalisation Properties Note that the WT only affects part of a gradient-
based attack that performs the gradient computation. In this chapter we choose
to illustrate the WT extension on PGD as a proof of concept, due to its convenient
mathematical formulation as well as its efficacy as an attack. However, Equation
4.7 can effectively replace the gradient computation step in any gradient-based
adversary (e.g., Goodfellow et al., 2015; Lin et al., 2020; Wang and He, 2021).

Integration with EoT

When we use Equation 4.4 and 4.5 to smooth the loss landscape of a stochastic
defence, the gradient w.r.t. the input x, ∇xL(hθ(X̃), c), remains stochastic (Atha-
lye et al., 2018a). It is therefore sensible to apply EoT (Athalye et al., 2018b)
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(a) RN-18 (no defence). (b) PNI + PGDWT (c) PNI (top-down)

Figure 4.1: Illustration of the intuition behind our WT attack. Left: The smooth
surface of an undefended ResNet-18. Middle: When under attack by PGDWT,
PNI’s original noisy loss landscape (see Figure 2.2a) is smoothed to better ap-
proximate one of an undefended network e.g., left figure. Refer to Figure B.3 in
Appendix B for the smoothed surfaces of all other defences. Right: Top-down
view of Figure 2.2a. The loss landscape around x (dark orange point) is noisy,
and the adversary cannot find a reliable direction to follow. To overcome this,
it samples m images around x (yellow points) and follows the average gradient
obtained at each of those points.

on the sampled X̃, and average over the output distribution of hθ. Incorporating
Equation 2.6 into Equation 4.7 we get

ω =
1

mn

m∑
i=0

n∑
j=0

∇xL(hj
θ(X̃i), c). (4.8)

A thorough empirical analysis of how the WT interacts with EoT is presented in
Section 4.3.3, along with an ablation study for each individual component.

4.2.4 A Stochastic WT Extension of Gradient-Free Attacks

Although we primarily consider the WT to be an extension of gradient-based
attacks, its potential impact when applied to gradient-free attacks cannot be
ignored. In this section, we demonstrate WT’s generality by integrating it with
ZOO (Chen et al., 2017), a black-box adversary that uses gradient approximation
instead of surrogate models (Papernot et al., 2016; Chen et al., 2017; Papernot
et al., 2017b), assuming access only to the per-class posterior p

(
h(x)

)
.

Given an input image x and a pixel coordinate ρ, ZOO iteratively constructs
a perturbation δ on xρ as

δ(x, c) =

{
−αĝρ(x, c) ĥρ ≤ 0

−α ĝρ(x,c)

ĥρ(x,c)
otherwise

, (4.9)

where α denotes the learning rate. ĝi and ĥi are the first- and second-order
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Algorithm 2: ZOOWT (Newton’s Coordinate Descent)
Data: xd, c
Model: h
Input: k, m, n, α, ϵ, σ
Output: x̃
for k iterations do

Randomly pick coordinates ρ⃗ ∈ {1, . . . , d}
X̃ ←− sample m points around x̃ [Eq. 4.5]
if defence is stochastic then

δ∗ ← 1
mn

∑m
i=0

∑n
j=0 δj(Xi, c) [Eq. 4.12]

else
δ∗ ← 1

m

∑m
i=0 δ(Xi, c) [Eq. 4.11]

end
x̃←− x̃+ δ∗

project x̃ to ℓp-ball of ϵ
end

approximate gradients of a hinge-like loss function

f(x, c0) = max{log h(x)c0 −max
c ̸=c0

log h(x)c,−κ} , (4.10)

where κ ≥ 0. Algorithm 2 details ZOOWT. Note that the principle behind the WT
extension remains the same as in the white-box setting. Adapting Equation 4.7
and 4.8 with ZOO’s gradient approximation (Equation 4.9) we respectively get

δ∗ =
1

m

m∑
i=0

δ(Xi, c) , (4.11)

and for stochastic defences

δ∗ =
1

mn

m∑
i=0

n∑
j=0

δj(Xi, c) . (4.12)

As ZOO estimates gradients with finite difference it is susceptible to being mis-
lead by a rough loss surface (Fig. 2.2). Smoothing the loss estimates at each
point improves the quality of approximate gradient estimation for the ZOO at-
tacker.

4.2.5 Visualising the Loss Landscapes

In this section, we describe a diagnostic method that we use to visually identify
whether an adversarial defence produces a noisy loss landscape, and to generate
the visualisations in Fig. 2.2 and B.3.

Given an unperturbed input image, x, that the target model hθ classifies cor-
rectly as class c, we compute the gradient of the loss w.r.t. x as g1 = ∇xL(hθ(x, c)).
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Table 4.1: Robust accuracy % of PGD and PGDWT attacks on CIFAR. All defences
use a RN-18 backbone.

CIFAR-10 CIFAR-100

Method PGD10 PGDWT10 PGD100 PGDWT100 PGD10 PGDWT10 PGD100 PGDWT100

PNI 49.4 34.8 (-14.6) 31.4 13.7 (-17.7) 22.2 17.9 ( -4.3) 10.1 9.4 ( -0.7)

L2P 56.1 47.2 ( -8.9) 20.5 18.2 ( -2.3) 26.1 11.5 (-14.6) 18.4 10.3 ( -8.1)

SE-SNN 39.8 21.3 (-18.5) 13.9 12.5 ( -1.4) 18.6 8.0 (-10.6) 15.9 5.9 (-10.0)

WCA-Net 61.7 53.3 ( -8.4) 58.6 37.6 (-21.0) 41.7 27.4 (-14.3) 39.0 10.8 (-28.2)

AA 63.2 43.9 (-19.3) 43.6 25.9 (-17.7) 47.9 29.6 (-18.3) 43.6 21.2 (-22.4)

k-WTA 58.0 33.1 (-24.9) 48.2 30.7 (-17.5) 44.3 24.1 (-20.2) 37.5 15.3 (-22.2)

Table 4.2: Robust accuracy % of PGD and PGDWT attacks on CIFAR-100 and
Imagenette (full-resolution). All defences use a WRN-34-10 backbone.

CIFAR-100 Imagenette

Method PGD10 PGDWT10 PGD100 PGDWT100 PGD10 PGDWT10 PGD100 PGDWT100

PNI 51.6 32.5 (-19.1) 48.4 31.3 (-17.1) 51.8 39.6 (-12.2) 42.3 24.3 (-18.0)

L2P 45.3 32.4 (-12.9) 40.0 29.5 (-10.5) 63.4 46.9 (-16.5) 42.4 23.2 (-19.2)

SE-SNN 44.6 34.9 ( -9.7) 46.0 31.0 (-15.0) 47.2 22.9 (-24.3) 41.1 21.7 (-19.4)

WCA-Net 63.6 54.5 ( -9.1) 56.7 44.5 (-12.2) 67.5 51.0 (-16.5) 50.3 35.6 (-14.7)

AA 76.1 59.2 (-16.9) 62.4 54.0 ( -8.4) 69.3 44.8 (-24.5) 57.1 39.4 (-17.7)

k-WTA 60.2 46.1 (-14.1) 51.3 34.4 (-16.9) 55.7 33.6 (-22.1) 52.0 28.3 (-23.7)

We then arbitrarily choose a dimension g2, such that g1 ⊥ g2. Finally, we create
evenly-spaced query images (and potential adversarial examples) x̃i in the ϵ-ball
of x as

x̃i = x+ ϵ1sgn(g1) + ϵ2sgn(g2) , (4.13)

where ϵ1, ϵ2 ∈ [− 8
255

, 8
255

], and project their calculated loss values L(hθ(x̃i, c)) to
the g1 and g2 axes. The intuitive explanation of the resulting 3d plot is as follows:
The X and Y axes have an origin of (0, 0), that corresponds to the unperturbed
input, x. Every point on the 2-dimensional plane these axes form, represents
an additive input perturbation on x, to the direction opposite to the gradient of
L w.r.t. x, indicated by sgn(g1) and sgn(g2) respectively, in Equation 4.13. The
magnitude of the perturbation is a maximum of 8

255
in either direction. Finally,

the Z axis corresponds to the loss value of the target model, when the input
image has been corrupted by the perturbation at each location of (X,Y). During
gradient-based perturbation search, this is the type of landscape that a gradient-
based adversary is trying to ascend.

Fig. 2.2 shows the above 2D slice through the loss landscapes of PNI, L2P,
SE-SNN, WCA, AA and k-WTA defences. In Fig. B.3 we show the corresponding
smoothed loss landscapes, when under attack by PGDWT, side-by-side for easier
means of visual comparison. Further, Appendix B.4 includes the loss surfaces
of the highest scoring non-stochastic adversarial defences listed in RobustBench
(Croce et al., 2021), to give the reader a frame of reference of how non-rugged
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Table 4.3: Robust accuracy % of SI-NI-FGSM (M1, Lin et al., 2020) and VMI-
FGSM (M2, Wang and He, 2021) attacks and their respective WT extensions on
CIFAR (RN-18 backbone) and Imagenette (WRN-34-10 backbone). Names are
shortened for better readability.

CIFAR-10 CIFAR-100

Method (M1) WT-(M1) M2 WT-(M2) (M1) WT-(M1) M2 WT-(M2)

PNI 48.2 35.5 (-12.7) 38.3 27.4 (-10.9) 24.9 13.0 (-11.9) 25.7 18.6 ( -7.1)

L2P 56.1 44.9 (-11.2) 31.7 19.2 (-12.5) 27.2 18.5 ( -8.7) 30.1 21.0 ( -9.1)

SE-SNN 40.5 31.6 ( -8.9) 38.1 22.8 (-15.3) 25.3 12.2 (-13.1) 28.9 15.0 (-13.9)

WCA-Net 58.5 54.0 ( -4.5) 55.7 34.8 (-20.9) 45.8 30.4 (-15.4) 44.0 33.2 (-10.8)

AA 61.8 53.6 ( -8.2) 58.0 41.4 (-16.6) 46.7 31.8 (-14.9) 41.1 23.3 (-17.8)

k-WTA 55.3 43.0 (-12.3) 46.9 38.9 ( -8.0) 49.4 38.0 (-11.4) 37.2 27.6 ( -9.6)

Imagenette

Method (M1) WT-(M1) M2 WT-(M2)

PNI 47.4 37.2 (-10.2) 42.5 33.2 ( -9.3)

L2P 59.6 46.1 (-13.5) 42.4 30.5 (-11.9)

SE-SNN 44.8 33.9 (-10.9) 40.7 38.4 ( -2.3)

WCA-Net 64.0 59.0 ( -5.0) 51.6 42.3 ( -9.3)

AA 66.5 49.3 (-17.2) 56.9 43.0 (-13.9)

k-WTA 57.9 46.5 (-11.4) 46.6 38.7 ( -7.9)

loss landscapes should look like in state-of-the-art defences.

4.3 Experiments

4.3.1 Experimental Setup

For our experiments we consider four stochastic defences (PNI (He et al., 2019),
L2P (Jeddi et al., 2020), SE-SNN (Yu et al., 2021) and WCA (Eustratiadis et al.,
2021)) and two non-stochastic (k-WTA (Xiao et al., 2020) and AA (Alfarra et al.,
2021)). For fair comparison these defences use the same backbone architec-
ture, ResNet-18 (RN-18) and Wide ResNet-34-10 (WRN-34-10) (He et al., 2016;
Zagoruyko and Komodakis, 2016) in the corresponding experiments. The robust-
ness scores of all competitor methods were reproduced, and not taken from the
original papers, to ensure that any change in performance comes from the WT
extension. We evaluate their performance against the gradient-based PGDWT10

and PGDWT100, and the gradient-free ZOOWT. In terms of datasets, we consider
CIFAR-10, CIFAR-100 (Krizhevsky and Hinton, 2009) and Imagenette (Howard,
2019) with high-resolution images. Our hyperparameter selection is outlined in
Appendix B.
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Table 4.4: Robust accuracy scores % of gradient-free attacks ZOO and ZOOWT on
CIFAR (RN-18 backbone) and Imagenette (WRN-34-10 backbone).

CIFAR-10 CIFAR-100 Imagenette

Method ZOO ZOOWT ZOO ZOOWT ZOO ZOOWT

PNI 62.1 54.3 ( -7.8) 38.1 25.7 (-12.4) 59.2 41.0 (-18.2)

L2P 63.7 56.1 ( -7.6) 37.5 29.7 ( -7.8) 65.8 54.3 (-11.5)

SE-SNN 59.4 44.3 (-15.1) 28.3 21.5 ( -6.8) 49.8 37.6 (-12.2)

WCA-Net 70.9 64.8 ( -6.1) 48.8 42.8 ( -6.0) 72.3 61.9 (-10.4)

AA 74.1 66.5 ( -7.6) 52.7 42.3 (-10.4) 77.9 60.6 (-17.3)

k-WTA 70.2 64.5 ( -5.7) 55.2 43.2 (-12.0) 70.1 53.7 (-16.4)

4.3.2 Quantitative Evaluation

In Tables 4.1 and 4.2 we report the accuracy of our selection of adversarial
defences when under our PGDWT attack against the baselines. It is evident
that PGDWT outperforms base PGD consistently across different benchmarks, de-
fences, attack strengths, and network depths. In particular, we can observe that:
(i) Every defence considered suffers substantially; in some cases even with more
than −20% in robust accuracy. (ii) Weaker defences are almost completely de-
feated, with L2P, SE-SNN, and k-WTA failing on CIFAR-10; and PNI, L2P, SE-SNN
and k-WTA failing on CIFAR-100. (iii) The stronger WCA and AA defences tend
to suffer large hits, especially under PGDWT100. (iv) Our loss-smoothing attack is
particularly effective with high-resolution images, with most defences suffering
a performance reduction of over 15%.

To show the generality of our method, we apply the WT extension to the
more sophisticated and recently proposed gradient-based adversaries NI-FGSM
(Lin et al., 2020) and VMI-FGSM (Wang and He, 2021) that use acceleration
and variance tuning to improve attack strength and transferability. Table 4.3
shows results consistent with our previous evaluation, and proves that our loss-
smoothing method can effectively strengthen recently proposed attacks of higher
complexity than PGD. Finally, in Table 4.4 we present our evaluation of ZOOWT.
It is evident that even though (i) the performance reduction is on average slightly
lower than the gradient-based setting and (ii) ZOOWT imposes an additional
query-efficiency cost, ZOOWT is still successful in attacking these obfuscating de-
fences.

These experimental results support that rugged loss surfaces can be exploited,
and loss-smoothing adversaries are significantly stronger against this type of gra-
dient obfuscation.

4.3.3 Interaction between WT and EoT

Let us now explicitly highlight the difference between the WT and EoT.

• WT: Approximates the true loss landscape of the neural network around
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Table 4.5: Ablation study: effect of the WT and EoT individually against stochas-
tic defences. The scores are the robust accuracy % on CIFAR-10.

(Attack: PGDWT10) No WT + No EoT No WT + EoT16 WT16 + No EoT WT16 + EoT16

PNI 50.6 49.1 48.7 34.8
L2P 58.9 54.4 55.0 47.2
SE-SNN 46.6 39.5 39.7 21.3
WCA-Net 72.0 58.4 61.1 53.3

input x, by averaging the gradients of the loss function w.r.t. m data points
sampled in the neighborhood of x. Forward inference is performed using
the same neural network parameters.

• EoT: Approximates the true gradient of the loss function w.r.t. the input, by
averaging the gradients obtained after sampling neural network parame-
ters n times. Forward inference is performed using the same batch of data.

• WT + EoT: Approximates the true loss landscape of the neural network
around input x, by averaging the true gradients (obtained via EoT) of the
loss function w.r.t. m data points sampled in the neighborhood of x.

In this section, we analyse how the WT and EoT interact with each other when
attacking stochastic defences.

An ablation study is presented in Table 4.5, where we evaluate the two
methods individually and in combination when attacking PNI, L2P, SE-SNN and
WCA. We start by setting the baseline to regular PGD, and then vary each of
the two components by setting the number of WT samples and EoT iterations
to 16 (Appendix B explains why 16), to keep consistent with our evaluation in
Section 4.3.2. Our ablation study shows that, while each method increases at-
tack strength, neither is significantly better than the other in terms of individual
performance. We conclude the WT and EoT are most effective when used in
combination, to deal with the noisy loss landscape and the stochastic gradients
respectively. Further analysis on this is provided in Appendix B.

4.4 Discussion

In this chapter, we reveal a new form of gradient obfuscation against adversarial
attacks that can be a property of stochastic, as well as non-stochastic defences.
It occurs when a neural network creates a noisy or discontinuous loss landscape
to mislead gradient-based adversaries, and it does not constitute an adequate
defence, as it can be circumvented by smoothing the surface of the loss function
before following the gradient w.r.t. the input. We propose a smoothing method
with which both gradient-based and gradient-free adversaries can be extended,
utilising a Monte-Carlo variant of the Weierstrass transform. As demonstrated by
applying the WT on PGD, ZOO and [SI-NI/VMI]-FGSM, this extension enables
strong, successful attacks.
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We further illustrate the smoothing capabilities of our adversary beyond the
quantitative evaluation presented in Section 4.3.2, by plotting the loss surfaces of
the defences before and after WT smoothing (Figure 2.2 main paper and Figure
B.3 in Appendix B). We hope that highlighting this novel type of attack against
this class of adversarial defences will inspire future research to avoid relying on
this weak defence strategy for robustness.

4.4.1 Insights About the Robustness of SNNs

Upon reading this chapter and observing the generality of our method, i.e., how
easily gradient-based attacks may be extended with loss-smoothing capabilities,
a question arises: Should we avoid using SNNs, as they are not robust? To
complicate matters further, it has been shown that SNNs trained with the VIB
(Alemi et al., 2017) or WCA (Eustratiadis et al., 2021) objectives are provably
robust. What happens when provably robust SNNs are under attack by loss-
smoothing adversaries? Our experimental results outlined in Section 4.3 can
help answer these questions.

As mentioned in Chapter 3, most stochastic defences, including PNI, L2P, and
SE-SNN, are heuristically-motivated. Conversely, VIB and WCA have theoreti-
cal justification for their robust performance: VIB forms latent representations
that are minimally expressive of the input and maximally expressive of the out-
put, and WCA tightens the learning-theoretic bound that determines how invari-
ant SNNs are to input perturbations. In our experiments, we see that WCA-Net
consistently outperforms the heuristically-motivated competing defences, which
means that even after smoothing its loss landscape, its theoretical robustness still
holds.

In conclusion, we recommend that the research community uses SNNs that
are theoretically-grounded and are coupled with clear and solid justification for
their performance. This way the benefits that are associated with the use of
SNNs, e.g., uncertainty estimation (Kendall and Gal, 2017), can be enjoyed while
minimising the corresponding risks.
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Chapter 5

Background

Learning from a few examples using prior knowledge is a key characteristic not
only of human intelligence, but also of numerous variational/Bayesian meta-
learning approaches to few-shot recognition (e.g., Finn et al., 2018; Gordon
et al., 2019; Zhang et al., 2019b, 2021b). In this archetype of few-shot learning
(FSL), prior knowledge is encoded by placing a prior distribution (usually Gaus-
sian) over the learned parameters. During inference, the prior knowledge and
the evidence (i.e., data) are considered jointly to make predictions.

In modern machine learning, however, prior knowledge is often interpreted
in a non-distributional sense. Nowadays, there exist large, pre-trained founda-
tion models (e.g., Brown et al., 2020) that can be used as few-shot learners,
exploiting the fact that they have been trained on datasets orders of magnitude
broader than the smaller datasets that represent target domains. This paradigm
encourages few-shot adaptation, rather than few-shot learning. In Chapter 6,
we showcase a novel stochastic approach in this line of work, where we train a
vast search space of adaptation architectures, and then perform stochastic search
within it to find the highest-performing ones w.r.t. a target domain.

5.1 Overview of Few-Shot Learning

In the past decade, there has been a substantial volume of work in the topic
of few-shot (meta-)learning, a survey of which has been written by Wang et al.
(2021b). In this section, however, we only focus on the subset of this work that is
relevant to the scope of this thesis: variational approaches to few-shot learning,
and few-shot adaptation of foundation models.

5.1.1 Variational Approaches

Making predictions on previously unseen tasks involves a high degree of ambi-
guity, even when a strong prior has been meta-learned on related tasks. To deal
with this challenge, Finn et al. (2018) introduce a Bayesian version of the model-
agnostic meta-learning (MAML) algorithm (Finn et al., 2017). Bayesian MAML
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samples models from a trained parameter distribution, allowing for stochastic
adaptation to new tasks during meta-testing by injecting noise into gradient de-
scent. In a related line of work, VERSA (Gordon et al., 2019) is an instance of a
meta-learning framework for approximate probabilistic inference that takes few-
shot learning datasets as inputs, and outputs distributions over task-specific pa-
rameters that are sampled during inference. These distributions can be learned
without the use of second-order derivatives during meta-training, and can be
sampled repeatedly and efficiently during meta-testing, without needing to take
gradient steps.

While Bayesian MAML and VERSA belong to the family of methods that meta-
learn model distributions, there exists another that meta-learn feature distribu-
tions. Zhang et al. (2019b) propose a Bayesian variant of nearest-centroid clas-
sification (Snell et al., 2017), where every prototype is mapped to a distribution
instead of a point. Finally, MetaQDA (Zhang et al., 2021b) is a Bayesian meta-
learning generalization of classifiers that are based on quadratic discriminant
analysis (Hastie et al., 2009, Ch. 4). It operates solely on the classification layer,
and it is agnostic of the latent representations produced by the backbone DNN.

5.1.2 Few-Shot Adaptation

Gradient-Based Adaptation Parameter-efficient adaptation modules have been
previously applied for multi-domain learning, and transfer learning. A sem-
inal example of this are Residual Adapters (Rebuffi et al., 2017), which are
lightweight 1x1 convolutional filters added to ResNet blocks. They were initially
proposed for multi-domain learning, but are also useful for FSL, by providing the
ability to update the feature extractor while being lightweight enough to avoid
severe overfitting in the few-shot regime. Task-Specific Adapters (TSA) (Li et al.,
2022) use such adapters together with a URL (Li et al., 2021) pre-trained back-
bone to achieve state of the art results for CNNs on the Meta-Dataset benchmark
(Triantafillou et al., 2020). Meanwhile, prompt (Jia et al., 2022) and prefix (Li
and Liang, 2021) tuning are established examples of parameter-efficient adap-
tation for transformer architectures for similar reasons. In FSL, Efficient Trans-
former Tuning (ETT) (Xu et al., 2022) apply a similar strategy to few-shot ViT
adaptation using a DINO (Caron et al., 2021) pre-trained backbone.

FT (Dhillon et al., 2020), FLUTE (Triantafillou et al., 2021), and PMF (Hu
et al., 2022b) focus on adaptation of existing parameters without inserting new
ones. To manage the adaptation/overfitting trade-off in the few-shot regime,
PMF fine-tunes the whole ResNet or ViT backbone, but with carefully-managed
learning rates. Meanwhile, FLUTE hand-picks a set of FILM parameters with a
modified ResNet backbone for few-shot fine-tuning, while keeping the majority
of the feature extractor frozen.

All of the methods above make heuristic choices about where to place adapters
within the backbone, or for which parameters to allow/disallow fine-tuning.
However, as different input layers represent different features (Zeiler and Fer-
gus, 2014; Chen et al., 2021), there is scope for making better decisions about
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which features to update. Furthermore, in the multi-domain setting different tar-
get datasets may benefit from different choices about which modules to update.
This paper takes an Auto-ML NAS-based approach to systematically address this
issue.

Feed-Forward Adaptation The aforementioned methods all use stochastic gra-
dient descent to update the features during adaptation. We briefly mention
CNAPS (Requeima et al., 2019) and derivatives (Bateni et al., 2020) as a com-
peting line of work that use feed-forward networks to modulate the feature ex-
traction process. However, these dynamic feature extractors are less able to
generalise to completely novel domains than gradient-based methods (Finn and
Levine, 2018), as the adaptation module itself suffers from an out of distribution
problem.

5.2 Overview of Neural Architecture Search

Neural Architecture Search (NAS) is a large and well-studied topic (Elsken et al.,
2019) which we do not attempt to review in detail here. Mainstream NAS aims
to discover new architectures that achieve high performance when training on
a single dataset from scratch in a many-shot regime. To this end, research aims
to develop faster search algorithms (e.g., Liu et al., 2019a; Guo et al., 2020;
Abdelfattah et al., 2021; Xiang et al., 2023), and more effective search spaces
(e.g., Radosavovic et al., 2019; Fang et al., 2020; Ci et al., 2021; Zhou et al.,
2021).

5.2.1 Stochastic Single-Path One-Shot NAS

Our work builds upon the popular family of search strategies based on Single
Path One-Shot (SPOS) (Guo et al., 2020). SPOS adopts a weight-sharing strat-
egy: it encapsulates the entire search space inside a supernet that is trained by
sampling paths randomly, and then a search algorithm determines the optimal
path. It requires less memory and is more efficient than traditional NAS methods
because only a portion of the candidates are activated and optimised.

While there exist some recent NAS works that try to address a similar “train
once, search many times” problem efficiently (e.g., Cai et al., 2020; Li et al.,
2020a; Moons et al., 2021; Molchanov et al., 2022), naively using these ap-
proaches has two serious shortcomings:

• They assume that after the initial supernet training, subsequent searches
do not involve any training (e.g., a search is only performed to consider a
different FLOPs constraint while accuracy of different configurations is as-
sumed to stay the same) and thus can be done efficiently. This assumption
does not hold true in the few-shot learning setting.
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• Even if naively searching for each dataset at test time were computationally
feasible, the few-shot nature of our setting poses a significant risk of over-
fitting the architecture to the small support set considered in each episode.



Chapter 6

Neural Fine-Tuning Search for
Few-Shot Learning

This chapter corresponds to the paper: P. Eustratiadis, Ł. Dudziak, D.
Li, and T. M. Hospedales. Neural fine-tuning search for few-shot learn-
ing. In International Conference on Learning Representations, 2024. (under
review)

In few-shot recognition, a classifier that has been trained on one set of classes
is required to rapidly adapt and generalize to a disjoint, novel set of classes. To
that end, recent studies have shown the efficacy of fine-tuning with carefully
crafted adaptation architectures. However this raises the question of: How can
one design the optimal adaptation strategy? In this chapter, we examine this
question through the lens of neural architecture search (NAS). Given a pre-
trained neural network, our algorithm discovers the optimal arrangement of
adapters, which layers to keep frozen and which to fine-tune. We demonstrate
the generality of our NAS method by applying it to both residual networks and
vision transformers and report state-of-the-art performance on Meta-Dataset and
Meta-Album.

6.1 Introduction

Few-shot recognition (Lake et al., 2011; Miller et al., 2000; Wang et al., 2021b)
aims to learn novel concepts from few examples, often by rapid adaptation of a
model trained on a disjoint set of labels. Many solutions adopt a meta-learning
perspective (Finn et al., 2017; Snell et al., 2017; Ravi and Larochelle, 2017;
Lee et al., 2019; Rusu et al., 2019), or train a powerful feature extractor on the
source classes (Wang et al., 2019; Tian et al., 2020) – both of which assume
that the training and testing classes are drawn from the same underlying distri-
bution e.g., handwritten characters (Lake et al., 2015), or ImageNet categories
(Vinyals et al., 2016). Later work considers a more realistic and challenging vari-
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Meta-training Meta-testing

ImageNet pre-trained 
backbone architecture

Trained supernet

...
Top N diverse 
architectures

Adapter parameters α
Frozen parameters φ
Fine-tuned parameters φ'

Supernet training
Best architecture selection

Evolutionary search
Evaluation

Support set 

Query set

(a) After a supernet is trained, evolutionary
search finds the top-performing candidates
(validation set). During a new test episode,
the shortlisted candidates are evaluated on
the support set (Eq. 6.12), and the best ar-
chitecture for that test episode is selected.

(b) The dotted lines represent possible
paths that can be sampled during SPOS
training. Every adaptable layer in the
architecture (gi) has its own pre-trained
(ϕi ⊂ θ), fine-tuned (ϕ′

i), and adapter
(αi) parameters.

Figure 6.1: Our proposed NAS paradigm for few-shot adaptation. (a) Overall
meta-train/meta-test workflow. (b) The supernet architecture. The supernet
contains all combinations of pre-trained, fine-tuned and adapter parameters. f
denotes the feature extractor, which is composed of many layers, g, which are
the minimal unit for adaptation in our search space.

ant of this problem, whereby a classifier should perform few-shot adaptation not
only across visual categories, but also across diverse visual domains (Triantafil-
lou et al., 2020; Ullah et al., 2022). In this cross-domain problem formulation,
customising the feature extractor to the novel domains is important, and several
studies address this through dynamic feature extractors (Requeima et al., 2019;
Bateni et al., 2020) or ensembles of features (Dvornik et al., 2020; Li et al.,
2021; Liu et al., 2021). Another group of studies employ simple, yet effective,
fine-tuning strategies for adaptation (Dhillon et al., 2020; Hu et al., 2022b; Li
et al., 2022; Xu et al., 2022) that are predominantly heuristically motivated.
Thus, an important question that arises from previous work is: How can one
design the optimal adaptation strategy? In this chapter, we take a step towards
answering this question.

Fine-tuning approaches to few-shot adaptation must manage a trade-off be-
tween adapting a large or small number of parameters. The former allows for
better adaptation, but risks overfitting on a few-shot training set. The latter
reduces the risk of overfitting, but limits the capacity for adaptation to novel
categories and domains. The recent PMF (Hu et al., 2022b) manages this trade-
off through careful tuning of learning rates while fine-tuning the entire feature
extractor. TSA (Li et al., 2022) and ETT (Xu et al., 2022) manage it by freezing
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the feature extractor weights, and inserting some parameter-efficient adaptation
modules, lightweight enough to be trained in a few-shot manner. FLUTE (Tri-
antafillou et al., 2021) manages it through selective fine-tuning of a tiny set of
FILM (Perez et al., 2018) parameters, while keeping most of them fixed. Despite
this progress, the best way to manage the adaptation/generalisation trade-off in
fine-tuning approaches to few-shot learning (FSL) is still an open question. For
example, which layers should be fine-tuned? What kind of adapters should be
inserted, and where? While PMF, TSA, ETT, FLUTE, and others provide some
intuitive recommendations, we propose a more systematic approach to answer
these questions.

We advance the adaptation-based paradigm for FSL by developing a neu-
ral architecture search (NAS) algorithm that searches for and finds the optimal
adaptation architecture. Given an initial pre-trained feature extractor, our NAS
determines the subset of the architecture that should be fine-tuned, as well as
the subset of layers where adaptation modules should be inserted. We draw
inspiration from recent work in NAS (Guo et al., 2020; Cai et al., 2020; Chen
et al., 2021; Chu et al., 2021; Zhang et al., 2022) that proposes revised versions
of the stochastic Single-Path One-Shot (SPOS) (Guo et al., 2020) weight-sharing
strategy. Specifically, given a strong pre-trained backbone such as a ResNet (He
et al., 2016) or a Vision Transformer (ViT) (Dosovitskiy et al., 2021), we form a
search space defined by the inclusion or non-inclusion of task-specific adapters
per layer, and the freezing or fine-tuning of learnable parameters per layer. Based
on this search space, we construct a supernet (Brock et al., 2018) that we train by
sampling a random path in each forward pass (Guo et al., 2020). Our supernet
architecture is illustrated schematically in Figure 6.1, where the aforementioned
decisions are drawn as decision nodes (⋄), and possible paths are marked in
dotted lines.

While the supernet training remains somewhat similar to the standard NAS
approaches, the subsequent search poses new challenges due to the inherent
characteristics of the FSL setting. Specifically, as cross-domain FSL considers a
number of datasets including novel domains at test time, it becomes questionable
whether searching for a single model – which is the prevalent paradigm in NAS
(Liu et al., 2019a; Cai et al., 2019; Li et al., 2020b; Wang et al., 2021a) – is the
best choice. On the other hand, per-episode architecture selection is too slow
and might overfit to the small support set.

Motivated by the aforementioned challenges, we propose a novel NAS algo-
rithm that shortlists a small number of architecturally-diverse configurations at
training time, but defers the final selection until the dataset and episode is known
at test time. We empirically show that this is not only computationally efficient,
but also improves results noticeably, especially when only a limited amount of
domains is available at training time. We term our method Neural Fine-Tuning
Search (NFTS).

NFTS defines a generic search space that is relevant to both major backbone
architecture families (i.e., convolutional networks and transformers), and the
choice of which specific adapter modules to consider is a hyperparameter, rather
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than a hard constraint. In this chapter, we consider using adapter modules that
are currently state-of-the-art for ResNets and ViTs (TSA and ETT, respectively),
but more adaptation architectures can be added to the search space.

Our contributions are summarised as follows:

• We provide the first systematic Auto-ML approach to finding the optimal
adaptation strategy that trades-off adaptation flexibility and overfitting risk
in multi-domain FSL.

• Our novel NFTS algorithm automatically determines which layers should
be frozen or adapted, and where new adaptation parameters should be
inserted for best few-shot adaptation.

• We advance the state-of-the-art in the well-established and challenging
Meta-Dataset (Triantafillou et al., 2020), and the more recent and diverse
Meta-Album (Ullah et al., 2022) benchmarks.

6.2 Neural Fine-Tuning Search

In this chapter, we develop an instantiation of the SPOS strategy for the multi-
domain FSL problem. We construct a search space suited for parameter-efficient
adaptation of a prior architecture to a new set of categories, and extend SPOS to
learn on a suite of datasets, and efficiently generalise to novel datasets. This is
different than the traditional SPOS paradigm of training and evaluating on the
same dataset and same set of categories.

6.2.1 Few-Shot Learning Background

Let D = {Di}Di=1 be the set of D classification domains, and D̄ = {X, Y } ∈ D
a task containing n samples along with their designated true labels {X̄, Ȳ } =
{xj, yj}nj=1. Few-shot classification is the problem of learning to correctly classify
a query set Q = {XQ, YQ} ∼ D̄ by training on a support set S = {XS , YS} ∼ D̄
that contains very few examples of each class in Q. This can be achieved by
finding the parameters θ of a classifier fθ with the objective

argmax
θ

∏
D

p(YQ|fθ(S, XQ)). (6.1)

In practice, if θ is randomly initialised and trained using stochastic gradient de-
scent on a small support set S, it will overfit and fail to generalise to Q. To
address this issue, one can exploit knowledge transfer from some seen classes to
the novel classes. Formally, each domain D̄ is partitioned into two disjoint sets
D̄train and D̄test, which are commonly referred to as “meta-train” and “meta-test”,
respectively. The labels in these sets are also disjoint, i.e., Ytrain∩Ytest = ∅. In that
case, θ is trained by maximising the objective in Equation 6.1 using the meta-
train set, but the overall objective is to perform adequately when transferring
knowledge to meta-test.
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The knowledge transferred from meta-train to meta-test can take various
forms (Hospedales et al., 2022). As discussed earlier, we aim to generalise a
family of few-shot methods (Hu et al., 2022b; Li et al., 2022; Xu et al., 2022)
where parameters θ are transferred before a subset of them ϕ ⊂ θ are fine-tuned;
and possibly extended by attaching additional “adapter” parameters α that are
trained for the target task. For meta-test, Equation 6.1 can therefore be rewritten
as

argmax
α,ϕ

∏
Dtest

p(YQ|fα,ϕ(S, XQ)), (6.2)

In this chapter, we focus on finding the optimal adaptation strategy in terms of
(i) the optimal subset of parameters ϕ ⊂ θ that need to be fine-tuned, and (ii)
the optimal task-specific parameters α to add.

6.2.2 Defining the Search Space

Let gϕk
be the minimal unit for adaptation in an architecture. We consider these

to be the repeated units in contemporary deep architectures, e.g., a convolutional
layer in a ResNet, or a self-attention block in a ViT. If the feature extractor fθ
comprises of K such units with learnable parameters ϕk, then we denote θ =⋃K

k=1 ϕk, assuming all other parameters are kept fixed. For brevity in notation
we will now omit the indices and refer to every such layer as gϕ. Following the
state-of-the-art (Triantafillou et al., 2021; Hu et al., 2022b; Li et al., 2022; Xu
et al., 2022), let us also assume that task-specific adaptation can be performed
either by inserting additional adapter parameters α into gϕ, or by fine-tuning the
layer parameters ϕ.

This allows us to define the search space as two independent binary decisions
per layer: (i) The inclusion or non-inclusion of an adapter module attached to
gϕ, and (ii) the decision of whether to use the pre-trained parameters ϕ, or re-
place them with their fine-tuned counterparts ϕ′. The size of the search space is,
therefore, (22)K = 4K . For ResNets, we use the proposed adaptation architecture
of TSA (Li et al., 2022), where a residual adapter hα, parameterised by α, is

Table 6.1: The search space, as described in Section 6.2.2. When sampling a
layer gϕ,ϕ′,α, it can be sampled in one of the following variants: (i) ϕ: fixed pre-
trained parameters, no adaptation, (ii) α: fixed pre-trained parameters, with
adaptation, (iii) ϕ′: fine-tuned parameters, no adaptation, (iv) ϕ′, α fine-tuned
parameters, with adaptation.

gϕ,ϕ′,α(x) (ResNet) gϕ,ϕ′,α(x) (ViT)

ϕ , − gϕ(x) z(Aqkv[q ; gϕ(x)])
ϕ , α gϕ(x) + hα(x) z(Aqkv[q ; gϕ(x)] + hα1) + hα2

ϕ′, − gϕ′(x) z(Aqkv[q ; gϕ′(x)])
ϕ′, α gϕ′(x) + hα(x) z(Aqkv[q ; gϕ′(x)] + hα1) + hα2
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Algorithm 3: Supernet training.
Input: Supernet fθ,α,ϕ′. Datasets D. Step sizes η1, η2. Path pool P .

Prototypical loss L (Eq. 6.5).
Output: Trained supernet fθ,α,ϕ′.
repeat

Sample dataset D̄ ∼ D
Sample episode S, Q ∼ D̄
Sample path p ∼ P with learnable parameters αp, ϕ′

p and frozen
parameters ϕp ⊂ θ
αp ←− αp − η1∇αpL(f

p
θ,α,ϕ′ ,S,Q)

ϕ′
p ←− ϕ′

p − η2∇ϕ′
p
L(fp

θ,α,ϕ′ ,S,Q)
until prototypical loss converges

connected to gϕ
gϕ,ϕ′,α(x) = gϕ,ϕ′(x) + hα(x), (6.3)

where x ∈ RW,H,C . For ViTs, we use the proposed adaptation architecture of
ETT (Xu et al., 2022), where a tuneable prefix is prepended to the multi-head
self-attention module Aqkv, and a residual adapter is appended to both Aqkv and
the feed-forward module z in each decoder block

gϕ,ϕ′,α(x) = z(Aqkv[q ; gϕ,ϕ′(x)] + hα1) + hα2, (6.4)

where x ∈ RD and [· ; ·] denotes the concatenation operation. Note that in the
case of ViTs the adapter is not a function of the input features, but simply an
added offset.

Irrespective of the architecture, every layer gϕ,ϕ′,α is parameterised by three
sets of parameters, ϕ, ϕ′, and α, denoting the initial parameters, fine-tuned pa-
rameters and adapter parameters respectively. Consequently, when sampling a
configuration (i.e., path) from that search space, every such layer can be sampled
as one of the variants listed in Table 6.1.

6.2.3 Training the Supernet

Following SPOS (Guo et al., 2020), our search space is actualised in the form of
a supernet fθ,α,ϕ′; a “super” architecture that contains all possible architectures
derived from the decisions detailed in Section 6.2.2. It is parameterised by: (i)
θ, the frozen parameters from the backbone architecture fθ, (ii) α, from the
adapters hα, and (iii) ϕ′, from the fine-tuned parameters per layer gϕ,ϕ′,α.

We use a prototypical loss L(f, S,Q) as the core objective during supernet
training and the subsequent search and fine-tuning.

L(f,S,Q) = 1

|Q|

|Q|∑
i=1

log
e−dcos(CQi

,f(Qi))∑|C|
j=1 e

−dcos(Cj ,f(Qi))
, (6.5)
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Algorithm 4: Training time evolutionary search.
Input: Supernet fθ,α,ϕ′. Datasets D. Step sizes η1, η2. Prototypical loss L

(Eq. 6.5). NCC accuracy A (Eq. 6.11).
Output: Optimal path p∗.
Initialise population P randomly
Initialise fitness of P as ΨP ←− 0
repeat

Sample episodes from all datasets S, Q ∼ D
for each candidate p ∈ P do

for a small number of epochs do
αp ←− αp − η1∇αpL(f

p
θ,α,ϕ′ ,S,S)

ϕ′
p ←− ϕ′

p − η2∇ϕ′
p
L(fp

θ,α,ϕ′ ,S,S)
end
Ψp ←− A(fp

θ,α,ϕ′ ,S,Q)
end
offspring←− recombine the M best candidates of P w.r.t. ΨP

P ←− P + offspring
eliminate the M worst candidates of P w.r.t. ΨP

until population fitness converges or max. iterations

where CQi
denotes the embedding of the class centroid that corresponds to the

true class of Qi, and dcos denotes the cosine distance. The set of class centroids
C is computed as the mean embeddings of support examples that belong to the
same class:

C =
{ 1

|Sy=l|

|S|∑
i=1

f(Sy=l
i )

}L

l=1
, (6.6)

where L denotes the number of unique labels in S.
For supernet training specifically, let P be a set of size 4K , enumerating all

possible sequences of K layers that can be sampled from the search space. De-
noting a path sampled from the supernet as fp

θ,α,ϕ′, we minimise an expectation
of the loss in Equation 6.5 over multiple episodes and paths, so the final objective
becomes:

argmin
α,ϕ′

Ep∼PES,Q L(fp
θ,α,ϕ′ ,S,Q). (6.7)

Algorithm 3 summarises the supernet training algorithm in pseudocode.

6.2.4 Searching for an Optimal Path

A supernet fθ,α,ϕ′ trained with the method described in Section 6.2.3 contains 4K

models, intertwined via weight sharing. As explained in Section 6.1, our goal is
to search for the best-performing one, but the main challenge is related to the
fact that we do not know what data is going to be used for adaptation at test
time. One extreme approach, would be to search for a single solution at training
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time and simply use it throughout the entire test, regardless of the potential
domain shift. Another, would be to defer the search and perform it from scratch
each time a new support set is given to us at test time. However, both have
their shortcomings. As such, we propose a generalization of this process where
searching is split into two phases – one during training, and a subsequent one
during testing.

Meta-training time. The search algorithm is responsible for pre-selecting a
set of N models from the entire search space. Its main purpose is to mitigate
potential overfitting that can happen at test time, when only a small amount
of data is available, while providing enough diversity to successfully adjust the
architecture to the diverse set of test domains. Formally, we search for a sequence
of paths (p1, p2, ..., pN) where:

pk = argmax
p∈P

ES,QA(f
p
θ,α∗,ϕ′∗ ,S,Q), s.t. (6.8)

α∗, ϕ′∗ = argmin
α,ϕ′

L(fp
θ,α,ϕ′ ,S,S) (6.9)

∀j=1,...,k−1 dcos(pk, pj) ≥ T, (6.10)

where T denotes a scalar threshold for the cosine distance between paths pk
and pj, and A is the classification accuracy of a nearest centroid classifier (NCC)
(Snell et al., 2017),

A(f,S,Q) = 1

|Q|

|Q|∑
i=1

[argmin
j

dcos(CQj
, f(Qi)) = YQi

]. (6.11)

Noticeably, we measure accuracy of a solution using a query set, after fine-
tuning on a separate support set (Equation 6.9), then average across multiple
episodes to avoid overfitting to a particular support set (Equation 6.8). We also
employ a diversity constraint, in the form of cosine distance between binary
encodings of selected paths (Equation 6.10), to allow for sufficient flexibility in
the following test time search.

To efficiently obtain sequence {p1, ..., pN}, we use evolutionary search to find
points that maximise Equation 6.8, and afterwards select the N best performers
from the evolutionary search history that satisfy the constraint in Equation 6.10.
Algorithm 4 summarises training-time search.

Meta-testing time. For a given meta-test episode, we decide which one of the
pre-selected N models is best suited for adaptation on the given support set
data. It acts as a failsafe to counteract the bias of the initial selection made at
training time in cases when the support set might be particularly out-of-domain.
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Table 6.2: Comparison to the state-of-the art methods on Meta-Dataset. Single
domain setting – only ImageNet is seen during training and search. Performance
of competitor methods was taken from Li et al. (2022) and Hu et al. (2022b)
when possible, otherwise from the original published papers. Reporting mean
accuracy over 600 episodes. ∗Additional data used for training.
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Liu et al. (2021) 48.5 47.9 63.8 31.8 46.9 61.6 57.5 80.1 65.4 52.7 80.8 41.4 46.5 52.6
Snell et al. (2017) 53.1 68.8 66.6 39.7 50.5 60.0 49.0 85.3 - - - 41.0 47.1 56.1
Saikia et al. (2020) 54.1 70.7 68.3 41.4 51.9 67.6 50.3 87.3 - - - 48.0 51.8 59.2
Triantafillou et al. (2020) 63.4 69.8 70.8 41.5 52.8 61.9 59.2 86.0 - - - 48.1 60.8 61.4
Li et al. (2022) 72.2 74.9 77.3 44.7 59.5 78.2 67.6 90.9 82.1 70.7 93.9 59.0 82.5 73.3
Ours 74.9 76.5 81.6 50.5 62.7 80.2 67.2 94.5 83.0 71.5 94.0 59.7 81.9 75.2

Vi
T-

S ∗Hu et al. (2022b) 76.8 85.0 86.6 54.8 74.7 80.7 71.3 94.6 - - - 62.6 88.3 77.5
Xu et al. (2022) 79.9 85.9 87.6 61.8 67.4 78.1 71.3 96.6 - - - 62.3 85.1 77.6
Ours 83.0 85.5 87.6 62.2 71.0 81.9 74.5 96.0 79.4 72.6 95.2 62.6 87.9 79.2

Formally, the final path p∗ to be used in a particular episode is defined as:

p∗ = argmin
p∈{p1,...,pN}

L(fp
θ,α∗,ϕ′∗ ,S,S), s.t. (6.12)

α∗, ϕ′∗ = argmin
α,ϕ′

L(fp
θ,α,ϕ′ ,S,S) (6.13)

Noticeably, we test each of the N models by fine-tuning it on the support set
(Equation 6.13) and testing its performance on the same support set (Equation
6.12). This is because the support set is the only source of data we have at
test time and we cannot extract a disjoint validation set from it without risking
the quality of the fine-tuning process. It is important to note that, while this
step risks overfitting, the pre-selection of models at training time, as described
previously, should already limit the subsequent search to only models that are
unlikely to overfit. Since N is kept small in our experiments, we use a naive grid
search to find p∗.

This approach is a generalization of existing NAS approaches, as it recovers
both when N = 1 or N = 4K . Our claim is that intermediate values of N
are more likely to give us better results than any of the extremes, due to the
reasons mentioned earlier. In particular, we would expect pre-selecting 1 <
N ≪ 4K models to introduce reasonable overhead at test time while improving
results, especially in cases when exposure to different domains might be limited
at training time. In our evaluation we compare N = 3 and N = 1 to test this
hypothesis. We do not include comparison to N = 4K as it is computationally
unfeasible in our setting (performing equivalent of training time search for each
test episode would require us to fine-tune ≈ 14 ∗ 106 models in total).
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Table 6.3: Comparison to the state-of-the art methods on Meta-Dataset. Multi-
domain setting – the first 8 datasets are seen during training and search. Per-
formance of competitor methods was taken from Li et al. (2022) and Hu et al.
(2022b) when possible, otherwise from the original published papers. Reporting
mean accuracy over 600 episodes. ∗Additional data used for training.
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Requeima et al. (2019) 83.7 73.6 59.5 50.2 50.8 91.7 74.7 88.9 - - - 39.4 56.5 66.9
Wang et al. (2019) 82.0 74.8 68.8 46.6 58.4 91.6 76.5 90.5 74.9 61.3 94.6 48.9 57.2 69.5
Dvornik et al. (2020) 85.5 71.0 71.0 64.3 56.2 94.1 81.8 82.9 66.5 56.9 94.3 52.0 51.0 71.4
Liu et al. (2021) 85.8 76.2 71.6 64.0 56.8 94.2 82.4 87.9 67.0 57.3 90.6 51.5 48.2 71.8
Triantafillou et al. (2021) 82.8 75.3 71.2 48.5 58.6 92.0 77.3 90.5 75.4 62.0 96.2 52.8 63.0 72.7
Li et al. (2021) 89.4 80.7 77.2 68.1 58.8 94.5 82.5 92.0 74.2 63.5 94.7 57.3 63.3 76.6
Li et al. (2022) 89.9 81.1 77.5 66.3 59.5 94.9 81.7 92.2 82.9 70.4 96.7 57.6 82.8 78.4
Ours 90.1 83.8 82.3 68.4 61.4 94.3 82.6 92.2 83.0 75.1 95.4 58.8 81.9 80.7

Vi
T-

S ∗Hu et al. (2022b) 88.3 91.0 86.6 74.2 74.6 91.8 79.2 94.1 - - - 62.6 88.9 83.1
Ours 89.1 92.5 86.3 75.1 74.6 92.0 80.6 93.5 75.9 70.8 91.3 62.8 87.2 83.4

6.3 Experiments

6.3.1 Experimental Setup

Evaluation on Meta-Dataset We evaluate NFTS on the extended Meta-Dataset
(Requeima et al., 2019; Triantafillou et al., 2020), currently the most commonly
used benchmark for few-shot classification, that consists of 13 datasets: FGVC
Aircraft, CU Birds, Describable Textures (DTD), FGVCx Fungi, ImageNet (ILSVRC
2012), Omniglot, QuickDraw, VGG Flowers, CIFAR-10/100, MNIST, MSCOCO,
and Traffic Signs. There are 2 evaluation protocols: single domain learning
and multi-domain learning. In the single domain setting, only ImageNet is seen
during training and meta-training, while in the multi-domain setting the first
eight datasets are seen (FGVC Aircraft to VGG Flower). For meta-testing at least
600 episodes are sampled for each domain.

Evaluation on Meta-Album Further, we evaluate NFTS on the more recently
introduced Meta-Album (Ullah et al., 2022). Meta-Album is more diverse than
Meta-Dataset. We use the currently available Sets 0-2, which contain over 1000
unique labels across 30 datasets spanning 10 domains including microscopy, re-
mote sensing, manufacturing, plant disease, character recognition and human
action recognition tasks, etc. Unlike Meta-Dataset, where their default evalu-
ation protocol is variable-way variable-shot, Meta-Album evaluation follows a
5-way variable-shot setting, where the number of shots is typically 1, 5, 10 and
20. For meta-testing, results are averaged over 1800 episodes.

Architectures We employ two different backbone architectures, a ResNet-18
(He et al., 2016) and a ViT-small (Dosovitskiy et al., 2021). Following TSA (Li
et al., 2022), the ResNet-18 backbone is pre-trained on the seen domains with
the knowledge-distillation method URL (Li et al., 2021) and, following ETT (Xu
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Table 6.4: Comparison of our method against Meta-Album baselines, as reported
in Fig. 2b of their paper (Ullah et al., 2022). The setting is cross-domain 5-way
[1, 5, 10, 20]-shot, and accuracy scores are averaged over 1800 tasks drawn
from Set0, Set1 and Set2.

From Scratch Fine Tuning Matching Net ProtoNet FO-MAML NFTS

1-shot 30.42 40.43 34.49 38.07 33.94 43.76
5-shot 38.31 50.87 44.32 51.17 44.50 57.59
10-shot 39.58 53.42 49.23 55.18 48.62 60.10
20-shot 39.83 55.12 52.99 59.67 51.35 60.97

et al., 2022), the ViT-small backbone is pre-trained on the seen portion of Ima-
geNet with the self-supervised method DINO (Caron et al., 2021). We consider
TSA residual adapters (Rebuffi et al., 2017; Li et al., 2022) for ResNet and Prefix
Tuning (Li and Liang, 2021; Xu et al., 2022) adapters for ViT. This is mainly to
enable direct comparison with prior work on the same base architectures that
use exactly these same adapter families, without introducing new confounders
in terms of mixing adapter types (Li et al., 2022; Xu et al., 2022). However our
framework is flexible, meaning it can accept any adapter type, or even multiple
types in its search space.

6.3.2 Comparison to State of the Art

Meta-Dataset The results on Meta-Dataset are shown in Table 6.2 and Table
6.3 for single-domain and multi-domain training setting respectively. We can
see that NFTS obtains the best average performance across all the competitor
methods for both ResNet and ViT architectures. The margins over prior state-of-
the-art are often substantial for this benchmark with +1.9% over TSA in ResNet-
18 single domain, +2.3% in multi-domain and +1.6% over ETT in VIT-small
single domain. The increased margin in the multi-domain case is intuitive, as
our framework has more data with which to learn the optimal path(s).

We re-iterate that PMF, ETT, and TSA are special cases of our search space
corresponding respectively to: (i) Fine-tune all and include no adapters, (ii)
Include ETT adapters at every layer while freezing all backbone weights and
(iii) Include TSA adapters at every layer while freezing all backbone weights.
We also share initial pre-trained backbones with ETT and TSA (but not PMF, as
it uses a stronger pre-trained model with additional data). Thus the margins
achieved over these competitors are attributable to our systematic approach to
finding suitable architectures in terms of where to fine-tune and where to insert
new adapter parameters.

Meta-Album The results on Meta-Album are shown in Figure 6.4 as a function
of number of shots within the 5-way setting, following Ullah et al. (2022). We
can see that across the whole range of support set sizes, our NFTS outperforms
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Table 6.5: Ablation study on Meta-Dataset comparing four special cases of the
search space in terms of average accuracy: (i) ϕ,−: No adaptation, no fine-
tuning, (ii) ϕ, α: Adapt all, (iii) ϕ′,−: Fine-tune all, (iv) ϕ′, α: Adapt and fine-
tune all. NFTS-{1,N} refer to conventional and deferred episode-wise NAS re-
spectively.

Method Single Domain Multi-Domain
R

es
N

et
-1

8
ϕ ,− 67.8 67.8
ϕ , α 70.4 76.5
ϕ′,− 70.2 76.3
ϕ′, α 70.8 76.9
NFTS-1 73.6 80.1
NFTS-N 75.2 80.7

Vi
T-

S

ϕ ,− 71.8 71.8
ϕ , α 73.8 77.3
ϕ′,− 74.0 77.5
ϕ′, α 74.4 78.9
NFTS-1 78.7 83.1
NFTS-N 79.2 83.4

the well-tuned baselines from Ullah et al. (2022). The margins are substantial,
e.g., greater than 5% at 5-way/5-shot operating point. This result confirms that
our framework scales to even more diverse datasets and domains than those
considered previously in Meta-Dataset.

6.3.3 Ablation study

To analyse more precisely the role that our architecture search plays in few-shot
performance, we also conduct an ablation study of our final model against four
corners of our search space: (i) Initial model only, using a pre-trained feature
extractor and simple NCC classifier, which loosely corresponds to SimpleShot
(Wang et al., 2019), (ii) Full adaptation only, using a fixed feature extractor,
which loosely corresponds to TSA (Li et al., 2022), ETT (Xu et al., 2022), FLUTE
(Triantafillou et al., 2021), and others – depending on base architecture and
choice of adapter, (iii) Fully fine-tuned model, which loosely corresponds to PMF
(Hu et al., 2022b), and (iv) Combination of full fine-tuning and adaptation.
From the results in Table 6.5 we can see that both fine-tuning (ii), adapters (iii),
and their combination (iv) give improvement on the linear readout baseline (i).
However, all of them are worse than the systematically optimised adaptation
architecture of NFTS.

Furthermore, the ablation compares the results using the top-1 adaptation
architecture found by SPOS architecture search against our novel progressive
approach that defers the final architecture selection to an episode-wise decision.
Our deferred architecture selection improves on fixing the top-1 architecture
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(a) Correlation between inclusion/non-inclusion of learnable parame-
ters α and ϕ′, and validation performance.

(b) Top 3 performing paths subject to diversity constraint.

Figure 6.2: Qualitative analysis of our architecture search. Figure 6.2a sum-
marises the whole search space by answering the question: How important
is to adapt (α) or fine-tune (ϕ′) each block? The color of each square indi-
cates the point-biserial correlation (over all searched architectures) between
adapting/fine-tuning layer gi and validation performance. Figure 6.2b shows
the top 3 performing candidates subject to a diversity constraint, after 15 gener-
ations of evolutionary search. Dark blue indicates that the layer is adapted/fine-
tuned and light blue that it is not.

from meta-train, demonstrating the value of per-dataset/episode architecture
selection (see also Sec 6.3.4).

6.3.4 Further Analysis

The ablation study quantitatively demonstrates the benefit of architecture search
over common fixed adaptation strategies. In this section, we aim to analyse:
What kind of adaptation architecture is discovered by our NAS strategy, and
how it is discovered?

Discovered Architectures We first summarise results of the entire search space
in terms of which layers are preferential to fine-tune or not, and which layers are
preferential to insert adapters or not in Figure 6.2a. The blocks indicate layers
(columns) and adapters/fine-tuning (rows), with the color indicating whether
that architectural decision was positively (green) or negatively (red) correlated
with validation performance. We can see that the result is complex, without a
simple pattern, as assumed by existing work (Hu et al., 2022b; Li et al., 2022;
Xu et al., 2022). That said, our NAS does discover some interpretable trends.
For example, adapters should be included at early/late ResNet-18 layers and not
at layers 5-9.
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Figure 6.3: Population of paths(candidate architectures) in the search space af-
ter 1, 5, and 15 generations of evolutionary search. Each dot is a 2-d TSNE
projection of the binary vector representing an architecture, and its color shows
the validation performance for that architecture. The supernet contains a wide
variety of models in terms of validation performance, and the search algorithm
converges to a well-performing population. The top 3 performing paths that are
given in 6.2b are highlighted in the far right figure (Generation 15) in purple
outline.

Table 6.6: How the diverse selection of architectures from Figure 6.2b perform
per unseen downstream domain in Meta-Dataset. Shading indicates episode-
wise architecture selection frequency, numbers indicate accuracy using the cor-
responding architecture. The best dataset-wise architecture (bold) is most often
selected (shading).

CIFAR-10 82.0 81.2 83.3
CIFAR-100 75.9 75.0 75.1
MNIST 95.5 94.4 95.1
MSCOCO 58.1 57.8 56.4
Tr. Signs 81.7 82.2 81.8

We next show the top three performing paths subject to diversity constraint
in Figure 6.2b. We see that these follow the strong trends in the search space
from Figure 6.2a. For example, they always adapt (α) block 14 and never adapt
block 9. However, otherwise they do include diverse decisions (such as whether
to fine-tune (ϕ′) block 15) which was not strongly indicated in Figure 6.2a.

Finally, we analyse how our small set of N = 3 candidate architectures in
Figure 6.2b is used during meta-test. This small set allows us to perform an
efficient minimal episode-wise NAS, including for novel datasets unseen during
training. The results in Table 6.6 show how often each architecture is selected
by held out datasets during meta-test (shading), and what is the per-dataset
performance using only that architecture. It is evidence of how our approach
successfully learns to select the most suitable architecture on a per-dataset basis,
even for unseen datasets. This unique capability goes beyond prior work (Hu
et al., 2022b; Li et al., 2022; Xu et al., 2022) where all domains must rely on the
same adaptation strategy despite their diverse adaptation needs.
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Path Search Process In addition, Figure 6.3 illustrates the path search process.
In this figure, we illustrate our 2K-dimensional architecture search space as a 2D
t-SNE projection, where the dots are candidate architectures of the evolutionary
search process at different iterations. The dots are colored red (low) to green
(high), according to their validation accuracy. From the results we can see that:
The initial set of candidates is broadly dispersed and generally low performing
(left), and gradually converge toward a tighter cluster of high performing candi-
dates (right). The top 3 performing paths subject to a diversity constraint (also
illustrated in Figure 6.2b) are annotated in purple outline.

6.4 Discussion

This chapter presents NFTS, a novel neural architecture-search based approach
that discovers the optimal adaptation architecture for gradient-based few-shot
learning. NFTS contains several recent strong heuristic adaptation architectures
as special cases within its search space, which are all outperformed by our pro-
posed systematic architecture search, leading to a new state-of-the-art on Meta-
Dataset and Meta-Album. While we use a simple and coarse search space for
easy and direct comparison to prior work’s hand-designed adaptation strategies,
future work can extend this framework to include a richer range of adaptation
strategies, and a finer-granularity of search.

6.4.1 Insights About Neural Fine-Tuning Search

Our proposed framework displays high performance when deployed in a few-
shot learning setting. However, there are some trade-offs to be considered when
training a large foundation model.

Search space complexity/search time trade-off

In this section we discuss the subtleties of designing the search space for NFTS.
In Section 6.2, we formulate the search space as the inclusion/non-inclusion of a
single adaptation architecture per layer, and the decision of whether to fine-tune
that layer or keep it frozen. With these two simple binary decisions, the search
space is 4K possible models, where K is the number of layers to be adapted or
fine-tuned.

Of course, the search space could be expanded with many more adaptation
architectures, e.g., BitFit (Zaken et al., 2022), LoRA (Hu et al., 2022a), bias
tuning, and others. However, it is important to keep in mind that while enriching
the search space can lead to better models, it can also substantially increase
the convergence times of both supernet training and evolutionary search. For
example, consider that adding one more binary decision can increase the search
space from 4K to 8K , and 4K << 8K for deep architectures, e.g., if K = 32.
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Increased cost when searching N architectures

As analysed in Section 6.3.3, our approach can be used in either

• Top-1 architecture mode: Where each episode is a pure fine-tuning opera-
tion given the chosen architecture.

• Top-N architecture mode: Where each episode can perform its own small
architecture selection routine based on the shortlisted architectures pro-
duced during evolutionary search, as well as fine-tuning

We remark that while the latter imposes a slightly increased cost during testing
(N = 3× in practice), this is similar or less than competitors who repeat adapta-
tion with different learning rates during testing (Hu et al., 2022b) (4× cost), or
exploit a backbone ensemble (8× cost) (Dvornik et al., 2020; Liu et al., 2021).
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Chapter 7

Scientific Impact of Thesis

The contributions presented in this thesis have advanced the world’s knowledge
of stochastic deep learning in the context of two major fields of modern machine
learning research: (i) adversarial robustness, and (ii) neural architecture search.
This section details how these contributions either can affect, or have already
affected these fields of research.

7.1 Contributions

7.1.1 Weight-Covariance Alignment

The main finding of WCA is that one is theoretically guaranteed to dampen the
effect of an adversarial perturbation in the input, by using a specific type of
stochastic classifier. The weight vectors of that classifier need to be aligned with
the eigenvectors of its covariance matrix in order for our theoretical guarantees
to hold. We further show that it is more effective to use an anisotropic covariance
matrix to achieve this kind of alignment. Since we are the first to propose the use
of an anisotropic covariance matrix in the field of stochastic adversarial defence,
our method of optimising it with stochastic gradient descent is also an important
contribution.

Impact WCA has been studied by a number of follow-up research efforts as
related work (Liang and Chan, 2022; Däubener and Fischer, 2022; Lee et al.,
2023). It was most impactful in the work of Däubener and Fischer (2022), which
discusses the effect of stochasticity during inference, as well as the importance
of sample size during attack. Their work can also be seen as a generalisation of
our analysis of stochastic loss landscapes in Chapter 4.

Limitations and Future Work Our study of WCA is limited to stochastic clas-
sifiers. This immediately leaves two open questions for future work and further
analysis:

69
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• How could we extend WCA to improve robustness against adversarial at-
tacks when the target variable is continuous, rather than a class label?

• Is there a positive effect when WCA is achieved in layers other than the
classification layer, e.g., if the backbone is also stochastic?

Furthermore, our theoretical analysis of WCA that is associated with guaran-
tees of robustness, is conducted for the case of binary classification. There is a
strong assumption in our work, that our theoretical analysis generalises grace-
fully to a multi-class classification setting. We present experimental evidence of
this, of course, but it is not explicitly proven.

Finally, our proposed WCA regularisation term is optimised along with the
rest of the network parameters using stochastic gradient descent. As mentioned
in Chapter 3, this is a challenge, because stochastic gradient descent tends to
maximise the dot product of the classifier weight vectors and the covariance
matrix by inflating their values rather than achieving alignment. We remedy this
issue by means of constraints, and ℓ2 regularisation. Future work may consider to
optimise the value of the WCA term by means other than gradient-based search
that directly, rather than implicitly, focus on alignment; options include bi-level
optimisation, evolutionary search, and others.

7.1.2 Smoothing the Loss Landscape

This work is the first to contribute a thorough analysis of the loss landscapes
of several stochastic and non-stochastic adversarial defences. We demonstrate
that a stochastic attack that repeatedly samples adversarial input images in the
neighborhood of an initially-generated adversarial example, effectively smooths
the rugged loss surface of several adversarial defences.

Impact Our research has been cited as related work in a recent paper pre-
print of Niroomand et al. (2023) that analyses the loss landscapes of Gaussian
processes.

Limitations and Future Work In our work, we have analysed the loss land-
scape of stochastic and other defences as a function of the input, to illustrate
how SNNs hinder the process of perturbation search. Future work can consider
analysing the loss landscape as a function of the network parameters, rather than
the input. This analysis can help us answer questions such as: We know that the
TRADES (Zhang et al., 2019a) adversarial training objective outperforms the
PGD (Madry et al., 2018) objective when it comes to downstream robustness.
How does TRADES navigate the loss landscape w.r.t. the parameters compared
to PGD, and why does it lead to a better solution?
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7.1.3 Neural Fine-Tuning Search

Our latest work combines ideas of neural architecture search and parameter-
efficient adaptation to fine-tune large pre-trained models that achieve state-of-
the-art performance on previously unseen downstream tasks. This work contains
two main findings:

• Fine-tuning/adapting an entire pre-trained architecture to a downstream
task is sub-optimal. There exist fine-tuning/adaptation configurations that
are non-trivial to find, but achieve a significant performance boost during
downstream evaluation.

• Different architectures in the defined search space are able to specialise on
different aspects of the data, as a consequence of having been trained with
a path dropout strategy. Using a number of different architectures as an
ensemble, is therefore beneficial.

We consider these findings to be of great importance, especially in the current
era of machine learning, where using large pre-trained models as backbones has
become more common than ever.

Impact This work is currently being applied on large language models (LLMs),
in participation to the NeurIPS LLM Efficiency Challenge1, where the goal is to
adapt 7-billion parameter pre-trained LLMs to downstream language tasks, using
1 GPU for 1 day.

Limitations and Future Work We have limited the scope of our work to apply
NFTS to a few-shot learning setting. Future work may consider applying NFTS to
other common supervised tasks such as domain adaptation, and self-supervised
tasks such as contrastive learning. There are two significant differences between
each family of downstream tasks from the perspective of NFTS: (i) the data
separation, e.g., (meta-) train, validation, and test, and (ii) the search objective.

The core idea of this work – that it is effective to place adapters and fine-
tune only certain parts of the architecture that are not easy to find – unveils a
problematic property in the modern machine learning paradigm that uses pre-
trained foundation models, that relates to model explainability. Why do some
layers encode knowledge optimally while others do not? Can these layers be
identified without the need for complicated and expensive retraining and search?
It is important for future work to focus on questions like these, especially due to
this paradigm’s sudden increase in popularity.

1https://llm-efficiency-challenge.github.io/

https://llm-efficiency-challenge.github.io/
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Appendix A

Weight-Covariance Alignment for
Adversarially-Robust Neural
Networks

A.1 Proof of Theorem 1

Proof. The definition of h can be expanded to

h(x⃗) = w⃗Tf(x⃗) + w⃗T z⃗ + b, z⃗ ∼ N (0,Σ), (A.1)

and be reinterpreted as

h(x⃗) ∼ N (w⃗Tf(x⃗) + b, w⃗TΣw⃗). (A.2)

Going further, we can see that the distribution of the margin function is

mh(x⃗, y) ∼ N (y(w⃗Tf(x⃗) + b), w⃗TΣw⃗), (A.3)

for which the probability of being less than zero is given by the cumulative dis-
tribution function for the normal distribution,

P (mh(x⃗, y) < 0) = Φ

(
−y(w⃗Tf(x⃗) + b)√

w⃗TΣw⃗

)
. (A.4)

From the increasing monotonicity of Φ, we also have that

max
δ⃗:∥δ⃗∥p≤ϵ

Φ

(
−y(w⃗Tf(x⃗+ δ) + b)√

w⃗TΣw⃗

)
= Φ

(
maxδ⃗:∥δ⃗∥p≤ϵ−y(w⃗Tf(x⃗+ δ) + b)

√
w⃗TΣw⃗

)
. (A.5)

Suppose the adversarial perturbation, δ, causes the output of the non-stochastic
version of h to change by a magnitude of ∆h̃

p(x⃗, ϵ). There are a number of ways,
such as local Lipschitz constants (Tsuzuku et al., 2018; Gouk and Hospedales,
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Table A.1: Values for learning rate and weight decay for all experiments in our
ablation study.

Benchmark Learning rate Weight decay

CIFAR-10 10−2 10−4

CIFAR-100 10−2 10−4

SVHN 10−2 10−4

FMNIST 10−4 10−4

2020), that can be used to bound the quantity for simple networks. Substituting
∆h̃

p into the previous equation yields

max
δ⃗:∥δ⃗∥p≤ϵ

P (mh(x⃗+ δ, y) ≤ 0) ≤ Φ

(
−y(w⃗Tf(x⃗) + b) + ∆h̃

p(x⃗, ϵ)√
w⃗TΣw⃗

)
. (A.6)

Finally, we know that the difference in probabilities of misclassification when the
model is and is not under adversarial attack δ, is given by

Gh
p,ϵ(x⃗, y) = max

δ⃗:∥δ⃗∥p≤ϵ
P (mh(x⃗+ δ, y) ≤ 0)− P (mh(x⃗, y) ≤ 0). (A.7)

Combining Equations A.4 and A.6 with Equation A.7 results in

G(x⃗, y) ≤ Φ

(
−y(w⃗Tf(x⃗) + b) + ∆h̃

p(x⃗, ϵ)√
w⃗TΣw⃗

)
− Φ

(
−y(w⃗Tf(x⃗) + b)√

w⃗TΣw⃗

)
. (A.8)

Because the Lipschitz constant of Φ is 1√
2π

, we can further bound G by

G(x⃗, y) ≤
∆h̃

p(x⃗, ϵ)√
2πw⃗TΣw⃗

. (A.9)

A.2 Hyperparameters of Experiments

In Table A.1, we provide the hyperparameter setup for all the experiments in
our ablation study. Note that we use the same values for both the isotropic and
anisotropic variants of our model within the same benchmark. We further clarify
that we use a batch size of 128 across all experiments. To choose these values,
we split the training data into a training and a validation set and performed grid
search. The grid consisted of negative powers of 10 {10−1, 10−2, 10−3, 10−4} for
both hyperparameters.
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Table A.2: PGD test scores on CIFAR-10 using WRN-34-10, for different values
of attack strength ϵ.

PGD(ϵ/255) Clean 1 2 4 8 16 32 64 128

No Defence 0.97 0.63 0.60 0.26 0.12 0 0 0 0
WCA-Net 0.97 0.80 0.80 0.77 0.73 0.70 0.34 0.10 0

A.3 Larger Architectures

In the main body of the thesis we explore how our method scales with the size
of the backbone’s architecture by experimenting with LeNet++ (small, 60 thou-
sand parameters) and ResNet-18 (medium, 11 million parameters). In Table A.2
we also provide some experimental results on CIFAR-10 with the much larger
Wide-ResNet-34-10 architecture (46 million parameters)

A.4 Enforcing Norm Constraints

In Section 3.2.1 we elaborate on how we use an ℓ2 penalty to prevent the magni-
tude of the classifier vectors w⃗ and covariance matrix Σ from increasing uncon-
trollably. Another approach for controlling the magnitude of the parameters, is
enforcing norm constraints after each gradient descent update, using a projected
subgradient method. The projected subgradient method changes the standard
update rule of the subgradient method from

θ⃗(t+1) ← θ⃗(t) − α∇θ⃗L(θ⃗
(t)), (A.10)

to

u⃗(t) ← θ⃗(t) − α∇θ⃗L(θ⃗
(t)) (A.11)

θ⃗(t+1) ← argmin
v⃗∈Ω

∥v⃗ − u⃗(t)∥22, (A.12)

where Ω is known as the feasible set. In our case there are three sets of pa-
rameters: the feature extractor weights, the linear classifier weights, and the
covariance matrix. No projection needs to be applied to the extractor weights,
as they are unconstrained. The linear classifier weights have an ℓ2 constraint on
the vector associated with each class, so their feasible set it an ℓ2 ball—there is a
known closed form projection onto the ℓ2 ball (e.g., Gouk et al., 2021). The feasi-
ble set for the covariance matrix is the set of positive semi-definite matrices with
bounded singular values. This constraint can be enforced by performing a singu-
lar value decomposition on the updated covariance matrix, clipping the values
to the appropriate threshold, and reconstructing the new projected covariance
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matrix (Lefkimmiatis et al., 2013). The final algorithm is given by

Y (t) ← Σ⃗(t) − α∇ΣL(ϕ⃗(t), w⃗(t), L(t))

u⃗
(t)
i ← w⃗i − α∇w⃗i

L(ϕ⃗(t), w⃗(t), Lt)

ϕ⃗(t+1) ← ϕ⃗(t) − α∇ϕ⃗L(ϕ⃗
(t), w⃗(t), Lt)

w⃗
(t+1)
i ← 1

max(1, ∥u⃗
(t)
i ∥2
γ

)
u⃗
(t)
i

U (t)S(t)V (t) ← Y (t)TY (t) (A.13)

Σ(t) ← U (t)S̃(t)V (t)

L(t+1)TL(t+1) ← Σ(t), (A.14)

where (A.13) is performing a singular value decomposition, S̃ represents the
clipped version of S, and (A.14) is computing the Cholesky decomposition.



Appendix B

Attacking Adversarial Defences by
Smoothing the Loss Landscape

B.1 Proof of Theorem 2

Proof. The proof is based on using a Bernstein inequality. Let Z1, ..., Zm be inde-
pendent random variables taking positive values in [a, b], and let S = 1

m

∑m
i Zi.

From (Lafferty et al., 2008), Bernstein’s inequality tells that

P (|S − E[S]| > t) ≤ 2exp

(
−mt2

2Var[S] + 2
3
rt

)
, (B.1)

where r = b− a. By setting δ = P (|S −E[S]| > t) this can be rearranged to show
that, with probability at least 1− δ,

|S − E[S]| ≤
√

2Var[S]ln(1/δ)
m

+
2rln(1/δ)

3m
. (B.2)

The result follows from using Zi = L(hθ(Xi), c) and upper bounding Var[S] and
r. Because hθ is k-Lipschitz and L is L-Lipschitz on the co-domain of hθ, we can
say that L(hθ(·), ·) is kL-Lipschitz. From this Lipschitz property, we know that
b ≤ a+ kL, and therefore r ≤ kL.

Denote by X ′
i and S ′ random variables that follow the same distribution as

Xi and S, respectively. The bound for the variance arises from

Var[S] (B.3)
= ES[(ES′ [S ′]− S)2] (B.4)

≤ EXi
EX′

i

[( 1

m

m∑
i=1

(L(hθ(X
′
i), c)− L(hθ(Xi), c))

)2]
(B.5)

≤ EXi
EX′

i

[
∥X ′

i −Xi∥22k2L2
]

(B.6)

= 2k2L2dσ2, (B.7)
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Figure B.1: Sensitivity study of σ. If the value of σ is either too low or too
high, the attack is not as effective. The local minima in this curve are caused by
randomness and are slightly different in each execution, while the global minima
are always in the ballpark of σ = 0.05.

where the first inequality is due to Jensen’s inequality, and the second is from
the Lipschitz property of the model. The final equality arises because X ′ −X ∼
N (0, 2σ2I), and the expected value of the squared Euclidean norm of a sample
from a Gaussian distribution is the trace of the covariance matrix.

B.2 Experimental Setup: Hyperparameters

For PGDWT, we set an attack strength of ϵ = 8/255 and a step size of α = 0.01, as
is standard practice. For ZOOWT we set k = 100 and α = 0.01. The number of WT
samples and EoT iterations in our main experiments are both set to m = n = 16.
We justify this hyperparameter choice in the analysis of Appendix B.3. Finally,
selecting an appropriate value for σ is important. If the value of σ is too high,
then the WT samples will be too far from x, lying on points too dissimilar to x to
provide an informative gradient signal. If the value of σ is too low, the sampled
points will be too close to x, and there will be no smoothing effect. We found
that σ = 0.05 is a suitable value for normalized images, and use it across all
experiments. Fig. B.1 summarises our sensitivity study on σ.

It should be mentioned that in the case of AA we do not apply EoT, as it is
not a stochastic defence and therefore does not produce stochastic gradients. In
addition, all stochastic models evaluated in this paper are retrained, following
the instructions in the original published material, when available. As a result,
the accuracy scores may not exactly reflect the scores from the original papers.

B.3 Ablation Study: Selection of m and n

We also conduct an experiment using a grid of EoT and WT samples from {1,
2, 4, 8, 16, 32}. Fig. B.2 presents an overhead plot of the resulting network
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(a) PNI (He et al.,
2019)

(b) L2P (Jeddi et al.,
2020)

(c) SE-SNN (Yu
et al., 2021)

(d) WCA (Eustra-
tiadis et al., 2021)

Figure B.2: Analysis of the interaction between WT and EoT on stochastic de-
fences. WT and EoT are complementary. Neither can achieve peak performance
alone, and best performance requires combining them (lighter color = lower ac-
curacy).

accuracy as a function of number of samples for each of EoT and WT. Darker
colors indicate higher accuracy, starting from the point (1, 1), i.e., 1 iteration of
EoT and 1 WT sample (the input image itself). We see that: (i) After (16, 16) the
performance of the attack quickly saturates across all defences. This justifies our
use of m = n = 16 samples in the main experiment. (ii) Even at the limit of 32
samples, neither attack method on its own performs as well as their combination.
This shows that simply increasing the number of EoT samples can not replicate
the effect of WT (and vice-versa).

B.4 Strong Defences with Smooth Loss Landscapes

In the main body of the thesis, we see the effect of our attack on gradient-
obfuscating adversarial defences that construct a noisy loss landscape to con-
fuse the adversary. To further support future adversarial defence research, in
this section we want to inform the reader about how the loss landscapes of non-
obfuscating defences should look like.

To that end, we choose the 9 highest-scoring adversarial defences from the
ℓ∞ CIFAR-10 leaderboard of the widely used RobustBench (Croce et al., 2021)
and visualise their loss landscapes in Fig. B.4. The visualisation method is the
same that produced Fig. 2.2; except that none of the defences are stochastic and
therefore EoT is not used to obtain better gradient estimates.
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(a) PNI
(He et al., 2019)

(b) L2P
(Jeddi et al., 2020)

(c) SE-SNN
(Yu et al., 2021)

(d) PNI + PGDWT (e) L2P + PGDWT (f) SE-SNN + PGDWT

(g) WCA
(Eustratiadis et al., 2021)

(h) AA
(Alfarra et al., 2021)

(i) k-WTA
(Xiao et al., 2020)

(j) WCA + PGDWT (k) AA + PGDWT (l) k-WTA + PGDWT

Figure B.3: Loss landscapes of PNI, L2P, SE-SNN, WCA, AA and k-WTA when
under attack by PGDWT. The WT has smoothed the landscapes compared to
those shown in Fig. 2.2.
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(a) Rebuffi et al.
(Rebuffi et al., 2021)

(b) Gowal et al.
(Gowal et al., 2020)

(c) Rade et al.
(Rade and Moosavi-Dezfooli,

2021)

(d) Sridhar et al.
(Sridhar et al., 2021)

(e) Wu et al.
(Wu et al., 2020)

(f) Zhang et al.
(Zhang et al., 2021a)

(g) Carmon et al.
(Carmon et al., 2019)

(h) Wang et al.
(Wang et al., 2020b)

(i) Hendrycks et al.
(Hendrycks et al., 2019)

Figure B.4: Landscapes of non-obfuscating adversarial defences that score com-
petitively on RobustBench (Croce et al., 2021).





Appendix C

Neural Fine-Tuning Search for
Few-Shot Learning

C.1 Hyperparameter Setting

Table C.1 reports the hyperparameters used for all of our experiments. Note the
following clarifications:

• “Number of epochs” refers to multiple forward passes of the same episode,
while “Number of episodes” refers to the number of episodes sampled in
total.

• The batch size is not mentioned, because we only conduct episodic learn-
ing, where we do not split the episode into batches, i.e., we feed the entire
support and query set into our neural network architectures.

• Learning rate warmup, where applicable, occurs for the first 10% of the
episodes.

We further specify something important: While our strongest competitors Li et al.
(2022); Xu et al. (2022) tune their learning rates for meta-testing (e.g., TSA
uses LR=0.1 for seen domains and LR=1.0 for unseen, and ETT uses a differ-
ent learning rate per downstream Meta-Dataset domain), we treat meta-testing
episodes as completely unknown, and use the same hyperparameters we used
on the validation set during search.

C.2 Detailed Ablation Study

Tables C.2 and C.3 provide the exact scores per Meta-Dataset domain that are
summarised in Table 6.5 in the main body of the thesis, for single domain and
multi-domain FSL respectively.
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ResNet-18 ViT-S
Hyperparameter SDL (MD) MDL (MD) MDL (MA) SDL (MD) MDL (MD)

Backbone architecture URL URL Supervised DINO DINO
Adapter architecture TSA TSA TSA ETT ETT

TR
A

IN
Number of episodes 50000 80000 20000 80000 160000
Number of epochs 1 1 1 1 1
Optimizer adadelta adadelta adadelta adamw adamw
Learning rate 0.05 0.05 0.05 0.00007 0.00007
Learning rate schedule - - - cosine cosine
Learning rate warmup - - - linear linear
Weight decay 0.0001 0.0001 0.0001 0.01 0.01
Weight decay schedule - - - cosine cosine

SE
A

R
C

H

Number of episodes 100 100 100 100 100
Number of epochs 20 20 20 40 40
Optimizer adadelta adadelta adadelta adamw adamw
Learning rate 0.1 0.1 0.1 0.000003 0.000003
Weight decay 0.0001 0.0001 0.0001 0.1 0.1
Initial population size 64 64 64 64 64
Top-K crossover 8 8 8 8 8
Mutation chance 5% 5% 5% 5% 5%
Top-N paths 3 3 3 3 3
Diversity threshold 0.4 0.4 0.4 0.2 0.2

TE
ST

Number of episodes 600 600 1800 600 600
Number of epochs 40 40 40 40 40
Optimizer adadelta adadelta adadelta adamw adamw
Learning rate 0.1 0.1 0.1 0.000003 0.000003
Weight decay 0.0001 0.0001 0.0001 0.1 0.1
Regulariser strength 0.04 0.04 0.04 - -

Table C.1: Hyperparameter setting for all experiments presented in Section
6.3, in the main body of the thesis. The notation is as follows: SDL=Single
domain learning, MDL=Multi-domain learning, MD=Meta-Dataset, MA=Meta-
Album, TRAIN=Supernet training phase, SEARCH=Evolutionary search phase,
TEST=Meta-test phase.
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ϕ ,− 64.5 69.6 71.1 41.2 56.4 74.8 64.2 84.6 75.0 63.9 82.1 55.9 77.7 67.8
ϕ , α 69.6 67.7 75.0 42.5 59.5 71.3 64.9 88.8 77.4 70.0 90.2 58.4 80.1 70.4
ϕ′,− 69.9 74.7 73.3 39.5 57.3 71.9 65.4 89.0 76.5 66.3 93.6 54.4 81.4 70.2
ϕ′, α 67.6 69.1 77.0 39.3 59.7 77.8 66.1 87.4 81.7 69.5 91.9 55.1 78.7 70.8
NFTS-1 73.2 76.5 81.6 42.1 61.3 80.2 66.9 90.0 82.9 68.8 94.0 58.4 80.6 73.6
NFTS-N 74.9 76.5 81.6 50.5 62.7 80.2 67.2 94.5 83.0 71.5 94.0 59.7 81.9 75.2

Vi
T-

S

ϕ ,− 73.4 73.6 81.6 56.3 60.3 69.4 70.8 90.4 70.4 61.5 83.8 60.5 81.7 71.8
ϕ , α 76.9 83.2 86.7 59.3 63.7 75.8 65.1 89.5 70.7 67.4 81.1 54.8 82.9 73.8
ϕ′,− 76.8 80.9 85.8 61.4 65.9 73.2 68.5 91.0 69.9 66.1 82.5 57.6 78.8 74.0
ϕ′, α 77.0 83.4 82.4 58.6 66.7 73.1 65.0 95.9 76.7 66.1 87.7 58.7 82.9 74.4
NFTS-1 83.0 85.5 87.3 62.2 68.8 81.9 72.9 95.3 79.4 72.6 95.2 62.6 87.5 78.7
NFTS-N 83.0 85.5 87.6 62.2 71.0 81.9 74.5 96.0 79.4 72.6 95.2 62.6 87.9 79.2

Table C.2: Ablation study on Meta-Dataset comparing four special cases of the
search space: (i) ϕ,−: No adaptation, no fine-tuning, (ii) ϕ, α: Adapt all, (iii)
ϕ′,−: Fine-tune all, (iv) ϕ′, α: Adapt and fine-tune all. NFTS-{1,N} refer to
conventional and deferred episode-wise NAS respectively. Single domain setting:
Only ImageNet is seen during training and search. Reporting mean accuracy over
600 episodes.
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ϕ ,− 64.5 69.6 71.1 41.2 56.4 74.8 64.2 84.6 75.0 63.9 82.1 55.9 77.7 67.8
ϕ , α 89.3 78.3 76.1 62.7 57.2 93.8 76.0 90.8 77.8 66.1 90.5 56.9 79.5 76.5
ϕ′,− 90.2 76.7 70.6 63.1 57.8 88.2 79.3 88.9 78.2 68.2 96.1 51.7 82.9 76.3
ϕ′, α 86.1 78.9 77.2 60.5 57.6 94.1 79.5 86.5 81.0 67.2 96.1 52.6 81.8 76.9
NFTS-1 90.1 82.1 79.9 67.9 61.4 94.3 82.6 92.2 82.4 73.8 95.4 58.1 81.0 80.1
NFTS-K 90.1 83.8 82.3 68.4 61.4 94.3 82.6 92.2 83.0 75.1 95.4 58.8 81.9 80.7

Vi
T-

S

ϕ ,− 73.4 73.6 81.6 56.3 60.3 69.4 70.8 90.4 70.4 61.5 83.8 60.5 81.7 71.8
ϕ , α 85.7 84.3 81.8 68.7 70.4 89.1 77.0 90.2 73.5 61.4 82.6 53.7 72.4 77.3
ϕ′,− 83.0 84.5 81.1 70.9 72.4 88.6 74.6 90.4 75.1 63.5 87.0 54.0 75.5 77.5
ϕ′, α 82.5 85.9 82.7 68.9 73.7 90.4 77.1 94.0 73.4 66.2 85.9 55.9 77.4 78.9
NFTS-1 89.1 90.3 86.3 75.1 74.6 92.0 80.6 93.5 75.9 70.8 91.3 62.7 87.2 83.1
NFTS-N 89.1 92.5 86.3 75.1 74.6 92.0 80.6 93.5 75.9 70.8 91.3 62.8 87.2 83.4

Table C.3: Ablation study on Meta-Dataset comparing four special cases of the
search space: (i) ϕ,−: No adaptation, no fine-tuning, (ii) ϕ, α: Adapt all, (iii)
ϕ′,−: Fine-tune all, (iv) ϕ′, α: Adapt and fine-tune all. NFTS-{1,N} refer to
conventional and deferred episode-wise NAS respectively. Multi-domain setting:
The first 8 datasets are seen during training and search. Reporting mean accu-
racy over 600 episodes.
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