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Radar-based millimeter-Wave sensing for
accurate 3D Indoor Positioning - Potentials and
Challenges

Andrey Sesyuk, Student, IEEE, Stelios loannou Member, IEEE, and Marios Raspopoulos, Member, IEEE

Abstract— The 3D nature of modern smart applications
has imposed significant 3D positioning accuracy require-
ments, especially in indoor environments. However, a major
limitation of most existing indoor localization systems is
their focus on estimating positions mainly in the horizontal
plane, overlooking the crucial vertical dimension. This ne-
glect presents considerable challenges in accurately deter-
mining the 3D position of devices such as drones and indi-
viduals across multiple floors of a building let alone the cm-
level accuracy that might be required in many of these ap-
plications. To tackle this issue, millimeter-wave (mmWave)
positioning systems have emerged as a promising technol-
ogy offering high accuracy and robustness even in com-
plex indoor environments. This paper aims to leverage the
potential of mmWave radar technology to achieve precise
ranging and angling measurements presenting a compre-
hensive methodology for evaluating the performance of
mmWave sensors in terms of measurement precision while
demonstrating the 3D positioning accuracy that can be
achieved. The main challenges and the respective solutions
associated with the use of mmWave sensors for indoor
positioning are highlighted, providing valuable insights into
their potentials and suitability for practical applications.

Index Terms—3D, Indoor

millimeter-wave radar

Positioning Systems,

[. INTRODUCTION

HE explosive growth of the Internet of Things (IoT) and

the emergence of many Location-Based Services (LBS)
and mobile smart applications make localization an even
more important key-enabling technology in the Information
and Communications Technology (ICT) world while many
of these LBSs impose very high 3D localization accuracy
requirements. Several approaches have been proposed during
the last few decades to address the challenges of indoor
localization however most of them only estimate positions on
a horizontal (x — y) plane and many times neglect the vertical
(z) dimension. This lack of vertical information could lead into
problems, such as the inability to determine whether a device is
held up high or in a pocket etc., while accurate 3D positioning
is also critical in scenarios such as drone-assisted crop seeding,
search and rescue operations, and wireless communication [1],
where sub-meter or cm-level accuracy is likely essential.

This work was co-funded by the European Union under the pro-
gramme of social cohesion “THALIA 2021-2027”, through Research and
Innovation Foundation (Project: CONCEPT/0722/0031)

To address this demand, there are several technologies that
are utilized for 3D indoor positioning and all of them have
their advantages and disadvantages. For instance, Wi-Fi, a
technology that has been extensively utilized by either adopt-
ing fingerprinting approaches (RSS, CSI or FTM-based) [2]-
[4] as well as various geometric approaches [5] is considered
a technology that can be fairly easy to set up at a relatively
low cost, however it demonstrates poor accuracy in NLOS
conditions compared to technologies like UWB. Likewise,
Bluetooth, given its simplicity and inexpensiveness, is similar
to Wi-Fi, however, it is prone to radio interference therefore it
is typically linked with low positioning accuracy [6]. VLC and
Ultrasound, despite the fact that they demonstrate relatively
good accuracy compared to other technologies, they are both
extremely short-ranged and applicable only in Line of Sight
situations [7] [8]. Also, audible sound, considering the fact that
it is widely supported in various types of environments and
able to achieve sub-meter level accuracy, cannot be utilized
in common positioning scenarios mainly due to the disturbing
noise it causes [9]. Finally, UWB and mmWave technologies
demonstrate the most promising results compared to other
technologies reaching centimeter-level accuracy even in mul-
tipath scenarios and are relatively insensitive to interference.
A more comprehensive survey of the technologies used for
positioning can be found in [10]. Our focus on this paper is
on mmWave.

MmWave is currently used in some Wi-Fi systems (e.g.
IEEE802.11ad) while it is planned to be used in 5G communi-
cations due to its flexibility to use wider bandwidths and hence
its strong potential in achieving much higher data rates and
capacity. mmWave systems typically operate in frequencies
between 26 to 100G H z. At those very high frequencies there
is large availability of bandwidth which could lead to fine
timing resolution and hence high ranging accuracy. The very
small wavelength also allows the development of small and
compact massive phase antenna arrays that enable the accurate
estimation of angles (azimuth and elevation) of arrival. All
this accurate context could be used for achieving cm-level 3D
positioning accuracy or better [11]. In this work, we capitalize
on the potential of mmWave technology to accurately provide
ranging and angling information, and sustain the momentum
of ongoing research efforts in this topic by demonstrating
its suitability to achieve cm-level accuracy, while presenting
the most important challenges it imposes. This work is an
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extended version of our work which was presented in [12].

The remainder of this paper is organized as follows: in
Section II the recent related works and developments in 3D
localization using mmWave technology are presented while
Section III discusses the challenges and difficulties that could
be faced when implementing mmWave positioning systems.
Section IV describes the methodology and setup used for the
experimentation using both 2-DOF and 3-DOF sensors while
Section V presents the results of the 2-DOF and 3-DOF range
and angle precision analysis conducted using three types of
off-the-shelf mmWave sensors as well as the accuracy achieved
using various approaches and critically discusses the findings.
Section VI is the conclusion.

[I. RELATED WORK

In response to the increasing demand for precise 3D indoor
positioning in smart applications, there has been a growing
surge in research and development efforts in recent years.
These efforts are aimed at exploring advanced technologies
to meet this need. The authors of [10] offer a comprehensive
survey of 3D indoor localization techniques and approaches.
It delves into various modern technologies, providing insights
and evaluations. Notably, the authors of this paper reference
some works relevant to mmWave technology. While position-
ing research using this mmWave technology is in its early
stages, early theoretical findings and practical experiments
reveal its potential to deliver the high accuracy demanded
by modern smart applications. Some of these works include
systems which utilize a single mmWave base station setup as
described in [13] in which the authors propose a method that
fuses user equipment (UE) motion features, mmWave line-of-
sight (LoS), and first-order reflection paths’ Angle of Arrival
(AoA) and Time of Arrival (ToA) for indoor positioning. They
present an improved least mean square (LMS) algorithm to
refine multipath AoA estimation and a modified multipath
unscented Kalman filter (UKF) for position tracking. The re-
sults of these methods show significant enhancements in LoS-
Ao0A estimation and centimeter-level 3D positioning accuracy,
around 60cm. Notably, this strategy is effective even in sce-
narios with insufficient anchor nodes. A similar approach, as
presented in [14], leverages multipath channels, with multiple-
input multiple-output (MIMO) antennas estimating the angles
of multipath coherent signals, and OFDM signals handling de-
lay estimation. By integrating MIMO and OFDM technologies
within a wireless communication system, an array antenna is
employed to estimate the AoA of multipath signals. Spatial
smoothing algorithms are applied in the frequency domain to
estimate the Time Difference of Arrival (TDoA) of multiple
coherent signals. This approach has been validated through
simulations in a 6m x 8m x 4.5m indoor space. The results
indicate that positioning accuracy using a single sensor reaches
submeter levels in 95% of cases and is less than 0.4m in 60%
of cases. The richness of multipath components in mmWave
systems is also exploited in [15] which introduces a multipath-
assisted localization (MAL) model based on mmWave radar
for indoor electronic device localization. This model effec-
tively incorporates multipath effects when describing reflected

signals, enabling precise target position determination using
the MAL area formed by the reflected signal. Importantly, this
model can provide 3D target information even when traditional
Single-Input Single-Output (SISO) radar falls short. A 60GHz
signal-based positioning and tracking system is discussed in
[16], which effectively filters out multiple reflections and
diffuse scattering, ensuring a high level of accuracy. Operating
within a longitudinal range of 0.46m to 5.55m and a lateral
span from 1.91m to 3.04m, the system determines the target’s
position through the calculation of the local centroid in the
associated point cloud. Overall, the system achieves a plane
positioning accuracy with a 99% confidence level and an
error of approximately 30-40cm. Another work utilising an
AoA approach is proposed in [17] in which the authors
conduct AoA and signal measurements in a 35m x 65.5m
open space, achieving position accuracy ranging from 16cm
to 3.25m. A hybrid approach is presented in [18], where a
novel 3-D indoor positioning scheme using mmWave massive
multiple-input multiple-output (mMIMO) systems is based on
the combination of received signal strength and angle of arrival
(RSS-Ao0A) positioning scheme, which employs only a single
access point equipped with a large-scale uniform cylindrical
array. The authors design a novel hybrid RSS-Ao0A positioning
scheme for the computations of the 3-D coordinates of the
target mobile terminal. They demonstrate that their approach
achieves azimuth and elevation precision around 0.5 degrees
depending on the quality of the received signal.

Reconfigurable Intelligent Surfaces (RIS), renowned for
their ability to controllably manipulate radio propagation are
also gaining attention from researchers working on posi-
tioning. For instance, in [19], the authors investigate a 3D
positioning algorithm for a mmWave system leveraging RIS, to
enhance the positioning performance of mobile users (MUs).
They use a two-stage weight least square (TSWLS) algorithm
to obtain the closed-form solution of the MU’s position.
Similarly in [20] the authors address the channel estimation
for RIS-aided mmWave communication systems based on a
localization method. They propose the concept of reflecting
unit set (RUS) to improve the flexibility of RIS. The authors
then propose a novel coplanar maximum likelihood-based
(CML) 3D positioning method based on the RUS and derive
the Cramer-Rao lower bound (CRLB) for the positioning
method. Furthermore, they develop an efficient positioning-
based channel estimation scheme with low computational
complexity. They demonstrate that cm-level accuracy can be
achieved averaging around 5c¢m depending on the received
signal quality.

Drone 3D localization is popular within the research com-
munity. For example, in [21] the authors presented a self-
localization system for autonomous drones that utilizes a
single mmWave anchor. The system leverages a novel dual
polarized, dual modulated mmWave anchor and mmWave-
IMU Fusion self-localization algorithm to achieve precise,
high-speed 3D localization. The authors have demonstrated
a median localization error of 7cm and a 90" percentile less
than 15¢m, even in NLOS scenarios. [22] presents an active
drone detection system that uses a mmWave radar mounted on
a drone to estimate 3D position of a drone using 2D measure-
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ments. The results indicated an average 3D positioning error
of 2.17m. In [23] the authors developed a 3GPP-compliant
drone-based 3D indoor localization solution employing an
integration of time-based and angle-based techniques to im-
prove the situational awareness in emergency situations and
support emergency services. They have managed to achieve
a horizontal and vertical positional error 1.05m and 0.7m at
26G H z. A similar work is presented in [24] where the authors
propose a security system based on a mmWave radar, using
a processing workflow based on machine learning techniques,
achieving 99.32% accuracy and 99.54% F1 score. Another
work utilizing machine learning is presented in [25], where a
custom CNN model achieves an accuracy of 95%.

Other interesting works include [26], where the authors
theoretically derive the Cramér-Rao Bound (CRB) for posi-
tion and rotation angle estimation uncertainty using mmWave
signals from a single transmitter, even in the presence of scat-
terers. They demonstrate that under open Line of Sight (LoS)
conditions, it is feasible to estimate a target’s position and
orientation angle by leveraging information from multipath
signals. However, this approach comes with a noticeable per-
formance penalty. Additionally, the authors of [27] showcase
the advantages of array antennas in determining a device’s
orientation. Notably, the accuracy of mmWave technology-
based positioning appears to be closely linked to the distance
from the target.

[1l. CHALLENGES

During the development and setup of the positioning sys-
tem described in this work, several challenges have emerged
regarding the usage of mmWave sensors which could po-
tentially cause significant difficulties when these are used
for positioning. This section describes all these challenges
and subsequently explains the solutions we implemented to
overcome them.

1) Accuracy and Sensing: Although mmWave sensors have
been introduced to be used mainly for ranging measurements
for the automotive industry, they have emerged as a promising
radar-like technology for indoor positioning applications due
to their high accuracy in estimating distance (and angles) to
objects mainly because of the availability of a very wide
bandwidth on mmWave frequencies and the availability of
phase antenna arrays on the sensor board. However, the accu-
racy of mmWave sensors is highly dependent on the sensing
conditions, such as the scattering caused due to reflective
surfaces, the angle of incidence, and the distance between
the sensor and the target object. In addition, the complexity
of the indoor environment including multipath effects, can
affect the accuracy of mmWave sensing. Therefore, careful
consideration of the sensing conditions and the deployment
of mmWave sensors is essential to achieve high accuracy
in indoor positioning applications. Our experimentation has
indicated that the presence of metallic objects in the close
vicinity of the target or within the field of view of the sensor
causes problems.

2) Stationary Positioning: In addition to the sensing con-
straints, the fact that these sensors rely strongly on the

Doppler-effect principle, challenges emerge when stationary
targets need to be detected. To be sensed by a mmWave
radar sensor, an object must be constantly in motion for the
sensor to be able to detect the Doppler shift and distinguish it
from stationary objects and background noise. To overcome
this challenge, researchers are currently exploring several
approaches. One promising solution could be the fusion of
mmWave data with information collected from inertial sensors.
For our experiments, this limitation was overcome since the
continuous rotation of the propellers of the drone turned out
to be beneficial as it causes micro-doppler effects [28].

3) Multi-object Detection/Clustering: An inherent limitation
of the off-the-shelf mmWave sensors compared to systems
that use receivers on the target is the fact that they oper-
ate based on the radar principle reducing the capability of
identifying correctly specific objects. The mmWave sensor
emits electromagnetic waves at high frequencies that bounce
off surrounding objects and return as echoes. By analyzing
the time delay and amplitude of these echoes, the sensor can
determine the location and characteristics of the objects in the
environment relative to each sensor. These echoes, however,
can become mixed together in complicated environments with
multiple objects, making it difficult to differentiate and identify
specific objects. This becomes especially more challenging
when using multiple sensors to identify a position of a specific
object in the presence of other moving or stationary objects.
The solution to this multi-object identification is clustering.
Literature reports various clustering approaches that can be
used for this purpose [29]-[31].

The clustering technique used in this work to identify a
specific target is known as the z-score method [32], which
is widely employed for identifying and managing outliers
in datasets. This method begins by calculating the mean
and standard deviation of the dataset and then computes the
z-score for each data point, measuring its deviation from
the mean in terms of standard deviations. By establishing a
threshold, typically based on a certain number of standard
deviations away from the mean, outliers can be identified and
subsequently removed from the initial detected objects list to
obtain a new filtered list of clustered points.

The ability of the mmWave sensors (like the Texas Instru-
ments IWR1642BOOST) to measure the relative range and
azimuth of a detected object facilitates this clustering process
as it allows the estimation of the relative (z,y) coordinate of
the target. As this target is detected from multiple sensors its
relative coordinates need to be converted to absolute ones by
utilizing the rotation/translation equations shown below (eq.
1-2) in which 6 is the absolute orientation of the sensor and
Tirans, Ytrans are the 2D coordinates of each sensor relative
to the chosen 0,0 point Once this is done, the measurements
from each sensor correspond to the same axes system, and their
(z,y) coordinates can be matched to identify the range/angle
measurements from the multiple sensors to the same object.

Taps = £ oSO + ysinb + Tyrans (D)

Yabs = —xsinb + yCOS(9 + Ytrans (2)
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The analogous clustering process for IWR1843BOOST sen-
sors closely mirrors the aforementioned methodology consid-
ering also the z-dimension in the clustering process as these
sensors additionally measure the elevation angle to the target.
Similar to the IWR1642BOOST, these relative coordinates are
translated to a common axis system by utilising the equations
mentioned in Section V-B.2.a, ensuring uniformity across
sensor data. Subsequently, the z-score method is employed
here too to eliminate outliers.

4) Timing Synchronization: Timing synchronization is criti-
cal in mmWave positioning systems that use multiple sensors
to accurately determine the location of objects. When multiple
sensors are used, they must be synchronized so that they
can collectively capture and analyze the echoes returned from
the environment. If the sensors are not synchronized, the
echoes may arrive at different times, leading to incorrect
and inconsistent measurements, which can result in inaccurate
positioning data. The timing synchronization ensures that the
sensors are accurately aligned in time, allowing them to
capture the echoes simultaneously and consistently. Therefore,
timing synchronization is critical to the performance and
accuracy of mmWave positioning systems.

To achieve timing synchronization, a timestamp was placed
at the beginning of each data string. The timestamp corre-
sponds to the exact recording time, allowing for accurate
alignment with the real-time clock. By matching these times-
tamps with the current time, the data strings within a specific
timeframe were then organized into a list. Once the data
string list is established, it is then filtered using the clustering
technique mentioned previously and utilized to identify a
specific object within the environment. At the beginning of
each positioning session all the hosts in the setup update their
time using the same universal clock over the Internet.

5) Placement and Orientation of the Sensors: When it
comes to maximizing the effectiveness of mmWave radar
devices in capturing the best field of view for a given scene
of interest, several key best practices come into play. These
practices are particularly crucial when dealing with varying
room dimensions and aiming to calculate the most optimal
sensor orientation to cover the majority of a room. Firstly, it’s
essential to consider the room dimensions. The size and shape
of the space significantly impact the placement and angle
of mmWave sensors. In larger rooms, positioning sensors in
multiple corners or along the walls can help achieve better
coverage. In contrast, smaller rooms may require a more
centralized placement to prevent blind spots. Additionally,
understanding the reflective properties of the room’s surfaces,
such as walls, floors, and objects within the room, can aid
in optimizing sensor placement. These reflective surfaces can
impact the propagation of radar waves and affect the device’s
ability to detect objects accurately. When aiming to capture the
majority of the room from a corner, to maximize coverage,
angling the radar device in a way that covers a wide field
of view is crucial. This can often be achieved by tilting the
sensor downwards slightly from the corner and orienting it to
cover both the horizontal and vertical dimensions of the room.
Adjusting the sensor’s vertical tilt allows it to detect objects
closer to the floor and higher up, ensuring comprehensive

coverage within the room.

Moreover, in scenarios where precision is paramount, em-
ploying multiple mmWave radar devices with varying angles
and orientations can be beneficial. These devices can com-
plement each other’s coverage and reduce the likelihood of
missing objects or obstructions. When setting up a mmWave
multilateration positioning system, it is essential to pay atten-
tion to the Dilution of Precision (DOP) and specifically vertical
DOP (VDOP) when trying to achieve 3D positioning accuracy.
DOP plays a crucial role in 3D indoor positioning, as it directly
affects the accuracy and reliability of position estimates [33].
While DOP values are commonly considered in the horizontal
plane, they are equally important in the vertical plane [34].
A key approach to optimizing DOP involves strategically
selecting and configuring the positioning of the sensors in the
system. By optimizing the spatial distribution of these sensors,
the geometric configuration is enhanced, leading to lower
DOP values. This, in turn, results in improved accuracy and
reliability of the position solution. Furthermore, the integration
of additional sensors can be strategically employed to enhance
the accuracy and robustness of the 3D positioning system.

IV. METHODOLOGY

A. System Overview

The methodological framework to investigate the research
question posed in the introduction is presented in this section,
describing the experimental system setup and equipment used
while considering the particular challenges that the available
mmWave products impose towards achieving the desired 3D
accuracy. The current market availability of mmWave radar
sensors has steered this investigation in mainly two directions:
one using 2-DoF (Degrees of Freedom) sensors that support
ranging and azimuth measurements and one using 3-DoF
sensors that additionally measure the elevation of targets.
For each of these cases we performed a precision analysis
of the most predominantly-used mmWave ranging sensors
currently in the market and thereafter used the ranging/angular
information to conduct positioning using various methods.

B. 2-DOF Sensor Setup

1) Equipment: The two mmWwave radar sensors that were
used for the 2-DOF precision analysis were the Texas Instru-
ments (TI) IWR1642BOOST and Infineon Distance2Go. The
TI sensor is equipped with 4 receiving (Rx) and 2 transmitting
(Tx) antennas operating at frequencies between 76-81GH z
with a 120-degree field of view and ranging capabilities of up
to 72 meters. In contrast, the Infineon Distance2Go mmWave
sensor is equipped with 1 Rx and 1 Tx antenna and operates
between 24-26G H z with a field of view of 20 degrees and a
maximum detection range of around 20 meters. While the TI
sensor performs range and angle measurements, the Infineon
one can only measure range. The experimental setup involved
utilizing a DJI Air 2S drone as the target for ranging and
angular measurements. It is a compact drone with dimensions
of 183.0x77.0%x253.0mm.
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Fig. 1: mmWave 3D Positioning Experimental Setup using 2-
DOF mmWave Sensors (Y: Yaw, P: Pitch, R: Roll)

2) Experimental Setup: Both the precision analysis and the
3D positioning accuracy experimentation using 2-DOF sensors
were carried out in an 8.85x6.85m engineering laboratory the
top-view of which is shown in Figures 1 and 2. The precision
analysis was conducted to compare the ranging and angular
capabilities of the two mmWave sensors. In this analysis,
the sensor under test was placed in location K and range
measurements were collected every 0.5m while the drone
was flying in a straight line in front of the sensor (0.5 to
8m). To assess the ability of the sensors to conduct range
measurements at different angles, the orientation of the sensor
was systematically varied from O to 60 degrees (15-degree
step). This comprehensive analysis aimed to gather precise
data on the sensors’ precision, resolution, and reliability at
different distances and angles. Also, the precision of the TI
sensor in measuring the angle of departure was evaluated using
the same setup.

For positioning accuracy experimentation, the positioning
system comprises mainly of a number of TI mmWave sensors
each of which is connected to a Raspberry Pi 4 that serves as
a gateway collecting the data from each TI sensor and sending
it to the central PC for processing. Each sensor has its own
Raspberry Pi 4 where the data string is sent through a UDP
connection and parsed. A number of TI sensors were deployed
in various locations within the lab (indicated with different
capital letters in Figure 1 while position estimation was
done using 3 approaches: (1) 3D Algebraic Multilateration,
(2) 3D Recursive Multilateration and (3) an improved 3D-
triangulation approach. Different combinations of sensors were
used for each case to investigate the effects of Dilution of Pre-
cision (DOP). Eight ground-truth points (1-8) were randomly
selected across the lab space. Each point was meticulously
marked, and their corresponding coordinates were recorded.
The drone was positioned precisely on these marked points
and subsequently lifted to hover over them at various heights.
To ensure the precision of positioning the drone at the exact
ground truth location, three laser pointers were positioned
along the x, y an z axes of that location pointing towards

Fig. 2: mmWave 3D Positioning Experimental Setup using 2-
DOF mmWave Sensors (3D View)

the drone as shown in Figure 3. The drone was let to hover
still once the laser focus point from the three lasers appeared
in the center of the drone which is considered the drone real
location. While the drone was at each measurement location,
the range and angle measurements from each sensor were
sent to a central PC that produces the metadata needed to
perform 3D positioning calculations using the two approaches
mentioned above. For all the measurements conducted in this
paper a set of 10 mmWave readings were collected from each
sensor at every drone location, which were then averaged
excluding possible outliers using the z-score approach. This
setup allowed for a direct comparison of the accuracy and
performance of the two methods for real-time 3D positioning,
providing valuable insights into capabilities and suitability for
both the methods and the technology for practical applications.

C. 3-DOF Sensor Setup

1) Equipment:  Similarly to IWRI1642BOOST, the
IWR1843BOOST possesses a Frequency Modulated
Continuous Wave (FMCW) transceiver which enables
the measurement of range, azimuth angle and velocity of the
target. However, due to an additional TX antenna, in addition

Fig. 3: Laser-based positioning of the drone on ground truth
locations
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Fig. 4: mmWave 3-DOF Precision Analysis Setup using 3-
DOF mmWave Sensors

to the azimuth angling information, it is also able to provide
the elevation data of the target. A similar system setup was
used for this setup like the one used for the IWR1642BOOST
in which each sensor is connected to a Raspberry PI that
parses the collected context and sends it to a central PC
through a UDP connection.

2) Experimental  Setup: ~An  experiment utilizing
IWR1843BOOST mmWave sensors was performed to
conduct a 3-DOF precision analysis to assess the sensor’s
performance under various azimuth and elevation angles. As
it can be seen in Figure 4 the mmWave sensor, mounted on
a versatile tripod that allowed both vertical and horizontal
adjustments, provided an ideal platform for manipulating
the sensor’s orientation. In contrast to the setup in Section
IV-B.2, where the drone was systematically moved away from
the sensor, in this setup, the drone was stationary positioned
at a specific point while the tripod used moved at different
distances away from the target (0 to 6.5m). The azimuth
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Fig. 5: mmWave 3D Positioning Experimental Setup using 3-
DOF mmWave Sensors

angle, representing the horizontal orientation, and the elevation
angle, representing the vertical orientation, were adjusted to
different degrees to test the sensor’s precision under diverse
angling conditions. This comprehensive approach aimed to
uncover any potential limitations or strengths of the mmWave
sensor in different spatial configurations.

In the pursuit of advancing positioning experiments, a 3-
DOF positioning accuracy experiment was conducted utiliz-
ing the IWR1843BOOST, similar to 2-DOF experiment that
employed the IWR1642BOOST mmWave sensors where the
drone was hovered across multiple scattered points across the
room. This exploration took place in a separate laboratory
setting (see Figures 5 and 6), emphasizing the versatility
and adaptability of the sensor systems across different en-
vironments. To ensure a comprehensive assessment of the
system’s capabilities, the sensors were mounted on adaptable
tripods, allowing for flexibility in placement and orientation.
Two distinctive sensor setups, denoted as Setup A and Setup
B, were meticulously devised to examine varying anchor
configurations and orientations. In Setup A, two sensors were
strategically positioned in the corners, facing diagonally to-
ward the center of the room, while two additional sensors
faced each other in parallel to the wall. This configuration
aimed to optimize room coverage, with a slight downward tilt
applied to enhance the spatial perception of the environment.
Additionally, a fifth sensor was centrally placed along one of
the walls, oriented upward to capture data from an alternative
perspective. Setup B featured four sensors situated in the
corners and oriented diagonally toward the central point of the
room. This arrangement was specifically designed to enhance
coverage of the central area, with a deliberate tilt to maximize
the effectiveness of the system. In this setup, a fifth sensor
was strategically elevated and directed downward, compared
to the upward orientation in the previous arrangement. The
details of these two setups are tabulated in Table V.

V. RESULTS

Fig. 6: mmWave 3D Positioning Experimental Setup using 3-
DOF mmWave Sensors - 3D View
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A. 2-DOF Sensor

1) Precision Analysis: To evaluate the accuracy and sensing
quality of the IWR1642BOOST and the Infineon sensors a
range/angle precision analysis experimentation was carried out
using the setup described in section IV-B.2. A drone was
flown along a straight line, while a mmWave sensor was
placed at different orientations at location K as shown in
Fig. 1. Given that the Infineon sensor has a relatively narrow
field of view (around 20 degrees), the analysis of distance
accuracy in comparison to the TI sensor was conducted up
to 15 degrees. The results of this comparison are shown in
Fig. 7 and a notable observation is the difference in distance
errors between the two sensors. Both at 0 and 15 degrees, the
TI sensor outperforms the Infineon sensor. Specifically, the
TI sensor demonstrates an average distance error of around
0.17m, whereas the Infineon sensor exhibits a higher error of
0.32m. While the error remains relatively consistent as the
distance increases for both sensors, the analysis indicates a
decrease in accuracy with larger angles. At 15 degrees, there
is a slight increase in error, approximately 0.05m, compared
to the error at O degrees.

Following the comparison between the two sensors, the
distance and azimuth angle accuracy of the TI sensor were
further tested beyond 15 degrees, as depicted in Figures 8 and
9. Figure 8 specifically illustrates the distance error of the TI
mmWave sensor across angles ranging from 0 to 60 degrees.

Upon closer inspection, it becomes evident that while the
error remains consistent for each analyzed angle, there is a
noticeable and constant increase in error. At O degrees, the
average distance error stands at 0.17m, gradually rising to
approximately 0.32m at 60 degrees. It is worth noting that
considering the wide field of view spanning 60 degrees, an
error of 0.17m may not appear excessively large. However, a
limitation is encountered as the sensor ceases to detect objects
beyond a range of 6 meters.

Following the range-precision analysis, an experiment was
conducted to evaluate the azimuth angle precision of the TI
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Fig. 8: IWR1642BOOST Distance Accuracy

sensor. Similar experimental methodology was used, with the
object moving away from the sensor while adjusting the sensor
angle from O to 60 degrees. The results can be seen in Figure
9. During the experiment, the azimuth angle error exhibited
variations ranging from 0.5 to 3.5 degrees. Notably, it was
observed that the error improved with increasing distance.
This improvement can be attributed to the fact that as the
object moves farther away, its target size diminishes, making
it relatively easier to identify accurately.

2) 2-DOF Sensor 3D Positioning: Utilizing the experimental
setup described in Section IV-B.2, a set of ranging and
angular measurements was collected from TI mmWave sensors
while the drone was flown at 8 well-known 3D locations as
shown in Figure 1. Using these measurements 3D positioning
estimation was conducted both using a two 3D multilateration
and a triangulation approach. Ground-truth location precision
is crucial for the validity of this work as it serves as the

35
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87 ~-¥ ~30°| ]
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Azimuth Error (degrees®)
N

Distance (m)

Fig. 9: IWR1642BOOST Azimuth Accuracy
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reference for evaluating the accuracy of the approach. While
flying around the lab, the drone was instructed to hover
at the particular points of interest and while hovering the
precise location of the drone was determined using laser
pointers placed on both perpendicular walls and the floor
(as seen in Figure 3), the cross-section of which determined
the exact point at where the drone must be hovered. When
taking into account the position of the drone, specifically the
center of the drone was considered as the real position to be
derived. The utilization of a drone as the positioning target
presents a significant advantage for the mmWave sensor in its
identification capabilities. The dynamic nature of the drone,
particularly the rotation of its propellers, induces a micro
Doppler shift in the signals received by the sensor [28]. This
micro Doppler shift phenomenon arises from the motion of
scattering objects, in this case, the rotating propellers, causing
a change in the frequency of the reflected signals as previously
mentioned in Section III.

a) 3D Multilateration Approach: Multilateration serves as
a fundamental technique for achieving 3D positioning across
a wide range of scientific and technological domains. It har-
nesses distance measurements from multiple reference points
to determine the exact location of an object within three-
dimensional space by using at least 4 sensors. Through the
exploitation of geometric relationships between the object and
these reference points, multilateration algorithms facilitate the
calculation of intersecting spheres or hyperboloids, ultimately
yielding the object’s coordinates. In this work, 3D position
estimation is done using the standard algebraic solution [35]
of the 3D multilateration problem where the unknown 3D
position p; = (2;,¥:,2;)7 is calculated algebraically given
their relative distance measurements d; ; to a set of k anchors
with known coordinates denoted as P,j = (x;,y;,2;)". The
formulation of this approach can be seen below:

AG-1x3Pi = D-1)x1 3)
where
(Ik—m) (yk_yl) (Zk_zl)
A ($k - $2) (?/k - yz) (Zk - 22)
(xr —2p—1) (Y& —yr—1) (2x — 2K—1)
d§,1 —d?)k—i-mi —m%-i—y,% —y%-!—zi —z%
D1 diy —dip +af — a3 +yp — v+ 2 — 2

2 2 2 "2 2 "2 2 2
di o — dig + Tk — Ty T Yk — Vi1 T 2k — %

The algebraic solution is compared to the recursive multilat-
eration approach presented in [36]. Unlike the traditional alge-
braic multilateration method described above, which estimates
the position of an object based on distance measurements from
multiple reference points, recursive multilateration refines its
position estimation iteratively by using a recursive least square
approach which attempts to find the most optimal solution. The
recursive approach starts by estimating a the position using 3

known anchors while measurements from additional anchors
are gradually introduced (if available) until all anchors have
been added. Every iteration includes the estimation of a new
position and from this new position estimate, the distance to
all the known anchors is calculated and compared to the actual
distance measurements. The sum of the squared distance errors
forms the metric that needs to be minimized to return the
optimal solution. However, we have noticed that in several
random cases, this approach fails to return an optimal solution,
leading to high 3D positioning errors as shown later.

Different combinations of sensors were used to investigate
the effects of DOP. The first experiment was conducted using
ranging measurements collected from 4 TI sensors deployed in
the 4 corners of the room in locations A, B, C and F as shown
in Figure 1 and the results for both the standard algebraic
solution as well as the recursive one are tabulated in Table I.
It appears that an average error in the ranging measurement of
0.06m translates into a 0.14m and 0.1m average positioning
error in x and y using the standard algebraic solution while a
considerable error is observed in the z-axis (5.72m average).
These are translated into an average 3D positioning error
of 5.76m. The results appear to improve when using the
recursive multilateration approach (vertical error of 1.69m
and an average 3D error of 1.72m), however the error in the
vertical dimension still remains significant. This is attributed to
the fact that all sensors are placed on the same height resulting
in a very high VDOP averaging around 23.6.

The reason why our results often exhibit better accuracy
in the horizontal plane compared to the vertical plane can
be attributed to the distribution of sensors. In the horizontal
plane, the sensors are spread out more widely, allowing for
better sensor geometry. This improved distribution of sensors
results in lower HDOP values, indicating reduced potential for
horizontal positioning errors. The IWR1642BOOST mmWave
sensor, with its narrow 15-degree elevation field-of-view, poses
a limitation on the distribution of sensors in the vertical plane.
As a consequence, the accuracy of height estimation in 3D
positioning may be more susceptible to errors and uncertain-
ties. Nevertheless, it was attempted to position 4 sensors at
different heights (1m, 1.5m, 2m and 2.5m) to demonstrate
the potential improvement. Table II verifies this hypothesis
by indicating significant improvement of algebraic solution in
the z-axis (0.13m) bringing the 3D positioning error down
to 0.31m which is attributed to the significant improvement
of the VDOP (average 1.54). Interestingly enough it appears
that the recursive solution fails to identify the optimal solution
leading to significantly high errors. To further investigate the
DOP significance we set up another experiment consisting of 6
anchors (the four anchors of the previous case plus one sensor
at the ceiling (position I) and one on the floor (position J)).
This new constellation or anchors reduces both the VDOP as
well as the HDOP and this reflected on both the multilateration
approches. The average 3D positioning error reduces down to
0.24m while the one from the recursive version reduces down
to 0.39m. Interestingly the standard algebraic solution still
outperforms the recursive one as can be seen in Table III.

b) 3D Triangulation Approach: Considering the inaccuracy
of the multilateration approach in the z-axis, particularly when
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TABLE I: 4 Anchor Configuration - Equal Height

Distance Algebraic Multilateration Recursive Multilateration
Point Error(m) XYZ Error(m) 3D XYZ Error(m) 3D HDOP | VDOP
T Y z Error(m) T Y z Error(m)
1 -0.04 0.12 | 0.23 0.08 0.27 0.02 | -0.27 | -1.02 1.05 1.12 43.05
2 -0.06 0.22 | 0.07 -9.46 9.46 0.28 | -0.02 | -1.23 1.26 1.10 25.95
3 0.09 0.12 | 0.00 -1.35 1.35 0.09 | -0.12 | 0.36 0.39 I.11 4.95
4 0.03 -0.21 | -0.09 0.43 0.49 -0.12 | -022 | 4.77 4.78 I.11 8.35
5 -0.02 -0.22 0.12 | -16.40 16.40 0.02 -0.26 2.39 2.40 1.06 4.95
6 0.10 -0.07 | 0.08 | -T1.T1 I1.11 0.00 | -0.06 | -1.68 1.68 I.11 10.59
7 -0.09 0.05 | 0.06 -6.56 6.56 039 | 0.09 1.54 1.59 1.24 44770
8 -0.02 -0.13 | -0.16 0.40 0.45 -0.22 | 0.17 | -0.56 0.62 1.25 46.41
Average 0.06 0.14 | 0.10 5.72 5.76 0.14 | 0.I5 | 1.69 1.72 1.14 23.61
Std Dey 0.03 0.07 | 0.07 6.15 6.11 0.14 | 0.09 | 140 1.39 0.07 18.70
TABLE Il: 4 Anchor Configuration - Different Height
Distance Algebraic Multilateration Recursive Multilateration
Point Error(m) XYZ Error(m) 3D XYZ Error(m) 3D HDOP | VDOP
T Y z Error(m) T Y z Error(m)
1 0.07 -0.19 | -0.20 | -0.15 0.32 -0.29 | 0.00 | -0.37 0.47 1.07 1.80
2 0.05 -0.09 | -0.25 | 0.03 0.27 028 | -0.31 | -0.12 0.44 1.06 1.61
3 -0.14 023 | 0.02 | 047 0.52 0.1T | -0.09 | -0.33 0.36 1.12 1.75
4 -0.06 -0.13 | -0.29 | 0.12 0.34 -1.59 1 -0.02 | 1.94 2.51 1.31 1.49
5 -0.06 4.07 | 0.08 | 0.02 0.14 0.16 | -2.94 | -0.19 2.81 1.22 1.41
6 -0.12 0.21 0.07 | 0.03 0.22 -1.53 1 -027 | 1.96 2.50 1.07 1.03
7 0.13 0.06 | -022 | 0.04 0.23 -0.39 | -0.17 | 0.09 0.44 I.10 0.93
8 -0.07 -029 | 023 | -0.I1T 0.38 0.13 | 027 | -0.33 0.45 1.06 1.16
Average 0.09 0.16 | 0.16 | 0.13 0.31 091 | 017 | 0.99 1.40 1.41 1.54
Std Dev 0.04 0.08 | 011 | 0.14 0.11 1.02 | 012 | 107 1.43 0.09 0.33
TABLE Ill: 6 Anchor Configuration - Different Height
Distance Algebraic Multilateration Recursive Multilateration
Point Error(m) XYZ Error(m) 3D XYZ Error(m) 3D HDOP | VDOP
T Y z Error(m) T Yy z Error(m)
1 0.00 -0.18 | 0.07 | -0.56 0.59 -0.07 | 0.01 | -0.14 0.15 0.93 1.60
2 -0.08 0.1T | -0.05 | -0.27 0.30 -0.12 | -0.27 | -0.06 0.30 0.95 1.63
3 0.04 -0.02 | -0.03 0.17 0.17 0.64 0.01 0.67 0.93 0.93 1.70
4 -0.12 -0.04 | 0.11 | -0.12 0.17 0.01 | -0.34 | -0.05 0.35 0.96 1.60
5 -0.02 -0.05 | 0.08 [ 0.07 0.11 0.52 | -0.I5 | 0.03 0.55 0.93 1.44
6 -0.07 0.07 | -0.03 | 0.07 0.10 -0.01 | -0.14 | -0.31 0.34 0.88 1.74
7 0.13 -0.08 | -0.02 | 0.48 0.49 0.08 | 0.05 | 0.19 0.22 0.91 1.68
8 0.11 0.03 | 0.00 | -0.01 0.03 024 | 0.10 | 0.10 0.28 0.95 1.45
Average 0.07 0.07 | 0.05 | 022 0.24 021 | 013 | 0.19 0.39 0.94 1.48
Std Dev 0.05 0.05 | 0.04 | 020 0.20 024 | 012 | 021 0.25 0.03 0.11
DOP optimization is not possible, and capitalizing on the equation 4.
ability of the IWR1642BOOST sensor to measure the azimuth 0 0 9
angle, the experimental setup was adjusted, deploying 2 sets h =z — dy —di + (22 — =) 4)

of two sensors on top of each other as shown in Figure 3.
Sensor D is placed on top of A, sensor E on top of C, while
sensor F was left on its own on the far-most right corner.
3D position estimation is achieved by using a combination
of typical triangulation formulation using the azimuth angles
measured from the 3 corners while the z-axis coordinate is
estimated based on the height formulation (4) below which
estimates the height h in the Complexity-Reduced Trilateration
Approach (COLA) approach presented in [37]. Although only
4 sensors are practically required to achieve 3D positioning
using this approach, our setup consists of 5 in 3 different
corners. An absolute minimum requirement is that 3 azimuth
measurements are collected from the 3 corners to estimate the
x and y of the target while one pair of two sensors from 1
corner is needed to estimate the height. In our approach the
pair which had a shorter horizontal distance to the estimated
z,y of the target was selected to estimate the height using

2(z9 — 21)

Results tabulated in Table IV indicate a significant im-
provement in the z-axis (0.11m) while there is also a good
improvement in the x and y axes (error being 0.09m and
0.08m) bringing the 3D positioning accuracy down to 0.17m.

B. 3-DOF Sensor

Texas Instrument’s IWR1843BOOST is considered as a
newer upgrade to the IWR1642BOOST sensor used in the
previous experiments. The additional antenna, enables the
measurement of the elevation angle in addition to the azimuth
and range, facilitating three degrees of freedom (DOF). This,
in theory, means that 3D positioning could now be achieved
using only one sensor. In this section a precision analysis is
conducted using the experimental setup described in Section
IV-C.2 as well as 3D positioning experiment results using
single- and multi-sensor configuration are showcased.
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TABLE IV: 3D Triangulation Positioning

Point Azimuth XYZ Error(m) 3D
Error(°) X y z Error(m)

1 1.02 0.13 0.14 | -0.03 0.20

2 0.72 -0.03 | 0.09 0.16 0.19

3 0.91 -0.08 | -0.09 | 0.14 0.19

4 1.88 -0.04 | -0.13 | 0.16 0.22

5 1.51 0.25 0.11 -0.13 0.31

6 0.91 0.09 | -0.08 | -0.30 0.32

7 0.39 0.06 0.03 0.04 0.08

8 2.20 0.05 | -0.02 | -0.03 0.06
Average 1.20 0.09 0.08 0.11 0.17
St Dev 0.61 0.04 0.04 0.09 0.09

1) Precision Analysis: The aim of this analysis is to evaluate
the elevation accuracy of the IWR1843BOOST sensor at
different azimuths and distances. By inspecting Figure 10,
it can be observed that the elevation error across different
azimuth angles follows a similar pattern where the error
gradually increases with an increase of the azimuth angle and
the distance. At bore-sight (0 degrees azimuth - Figure 10a) the
sensor measures the elevation quite accurately with the error
ranging between 1-2 degrees up to an elevation angle of 30
degrees. Beyond an elevation angle of 30 degrees the sensor
fails to provide elevation measurements at distance beyond
2.5m. Increasing the azimuth angle has negative effect on the
elevation measurement accuracy as shown in Figures 10b, 10c
and 10d. It can then be concluded from these plots that the
sensor demonstrates a fairly acceptable elevation measurement
accuracy (averaging at 3 degrees) within a vertical field of
view of around 60 degrees (-30° to +30°). That combined
with the 90-degree azimuth field-of-view, illustrates that the
sensor could cover the majority of the room if placed in the
corner.

2) 3-DOF Sensor 3D Positioning:  Following the
IWR1843BOOST elevation precision analysis, it is worth
capitalizing on the ability of the sensor to measure elevation
in addition to azimuth and range to perform 3D positioning
using a single anchor.

a) 3-DOF Single-Anchor 3D Positioning: To analyse the
positioning accuracy when a single IWR1843BOOST sensor
is used, a similar approach to that used in the precision
analysis was adopted. This involved a drone flying in front
of the sensor while the sensor was incrementally rotated to
vary both azimuth and elevation angles. This experiment was
conducted at various distances from the sensor to capture data
across a range of positions. Having available, the range(r),
the azimuth(f) and the elevation(¢) measurements from the
anchor to the target one can estimate the coordinates of the
target with respect to the body-frame coordinate system of
the anchor using standard spherical to Cartesian coordinate
conversion according to Figure 11 and Equation 5:

! cos(0)cos(¢)
y'| =r |cos(0)sin(d) )
z' sin(0)

To properly determine the coordinates of the target within
the room’s coordinate plane, it was imperative to align the co-
ordinate system of the sensor (body frame coordinate system)

to that of the room (Local Coordinate System). Achieving this
alignment involves a series of calculations that account for the
sensor’s yaw, pitch, and roll. These adjustments were critical
in ensuring that the sensor’s data correspond accurately to the
room’s coordinate plane, allowing for reliable 3D positioning.
Assuming that the anchor is first rotated by an angle v around
the z-axis (yaw), then by an angle 6 around y-axis (pitch) and
finally by an angle ¢ around the z-axis (roll) the 3x3 rotation
matrix is given by:

R=R. Ry R, (6)
where, ~
1 0 0
R, =10 cos(¢) —sin(¢p)
|0 sin(¢)  cos(e)
[ cos(§) 0 sin(9)
R, = 0 1 0 @)
| —sin(f) 0 cos(0)
[cos(¢p)  —sin(y) 0
R, = |sin(¢) cos(yp) O
| O 0 1
With reference to Figure 12 and considering that body-frame
measurement from a sensor positioned at A = [2,yq24] is
P’ = [2/y'2'] then the local coordinates P = [zyz] of the

target can be calculated using:
P=[R-PT)T + A 8)

The IWR1843BOOST was used to conduct a single sensor
3D positioning experiment, evaluating its performance over
a distance of 6.5 meters. The evaluation revealed a varying
level of accuracy contingent on azimuth and elevation angles.
With reference to the results presented in Figure 13, when
the sensor was aligned at 0 degrees azimuth, it demonstrated
exceptional 3D accuracy which was slowly increasing as the
distance and elevation from the target were increased. As
it was expected, at large elevation angles (e.g. 45 degrees)
and at long distances the sensor was failing to provide a
measurement. This is indicated by the gaps in the surface
plots in Figure 13. The contour plots at the bottom of each
surface plot indicate the range of Distance/Elevation values
that the error is below an intuitively-selected accepted 3D
positioning error (0.4m). As it was expected the positioning
accuracy appears to deteriorate faster as the azimuth angle
starts increasing limiting the usability and reliability of the
sensors at very low elevation and azimuth maximums. In a
scenario were multiple sensors are used, one could use the
range, azimuth and elevation measurements as a measure of
the reliability of the single-anchor position estimation and
either use or discard the particular anchor from the entire
positioning algorithm.

This adaptability in adjusting the sensor’s coordinate sys-
tem, regardless of its orientation, proved to be a pivotal
advantage. It enabled us to place and orient the sensor in
positions that were previously challenging due to issues related
to sensor clustering. This flexibility allowed us to direct the
sensor towards unconventional angles, such as placing it on
the ceiling facing downward or on the floor facing upward.
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Fig. 11: Spherical to Cartesian Conversion

b) 3-DOF Multi-Anchor 3D Positioning: In this experiment,
a 3-DOF multi-anchor 3D positioning system was imple-
mented using IWR1832BOOST mmWave sensors. The study
involved the use of five sensors, in the environment shown
in Figure 5, where two distinct setups were tested, each with
slight variations. In Setup A, one sensor was placed lower

than the others and faced upward, while in Setup B, a sensor
was positioned higher than the rest and faced downward. Both
configurations were rigorously examined using 3 different
approaches: an Averaged Multi-Anchor Positioning Approach,
a classical Multilateration Approach and a multiangulation
approach using Angle of Departure (AoD) The obtained results
can be seen in Table V. The experiment consisted of a drone
hovering over multiple randomly selected points at various
heights. Each of the sensors would capture and position the
drone, outputting the 3D coordinates (zyz) using the single-
anchor positioning approach presented in the previous para-
graph (V-B.2.a) as well as the azimuth and elevation angling
and ranging data for the Triangulation and Multilateration
approaches respectively. As shown in Section V-B.2.a, it is
possible to achieve the 3D position using only one 3-DOF
mmWave sensor, however this setup consisted of five, the
position estimates of which were averaged to estimate the final
drone position.

Averaged Multi-Anchor Approach: Capitalizing on the ca-
pability of the IWR1843BOOST sensor to perform single-
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angle positioning the averaged approach consists of utilizing
more than one (5 in this experiment) while having their esti-
mates averaged to estimate the target position. Our algorithm
involved discarding estimates which appeared as outliers or
they have been estimated using measurements at long dis-
tances, high azimuth and elevation angles which we observed
in the precision analysis are likely to cause large positioning
errors. The outcomes demonstrated a remarkable precision,
with an error of approximately 17c¢m observed using Setup
A and 16cm using Setup B. The minimal disparity between
the results of the two setups indicates the robustness of the
system. However, it can be observed from Table V that the
configuration where one sensor was positioned on top facing
downward exhibited superior results in the Z-axis compared to
the alternative setup. Qualitatively, we can also report that we
observed that Setup B resulted in less sensor failures, resulting
in more estimates being considered in the averaging process
and the final calculation of the target position. Figure 14 is
a visual demonstration of the positioning accuracy achieved
using Setup B when the drone was flown along the trajectory
indicated with a blue dotted line. Ground truth locations where
available at the points indicated with a blue circle while red
diamonds are the actual position estimates. Comparing these
findings to a 2-DOF 3D triangulation approach presented in
section V-A.2.b, it is noteworthy that the results were very
similar, with a 3D error of approximately 17cm also. Overall,
this experiment showcases the potential and reliability of
the implemented system in real-world applications requiring
precise 3D object localization.

Multilateration Approach: Using the ranging information
from at least 4 sensors, we were able to establish the 3D
position of the target using multilateration similarly to the
approach described in Section V-A.2. The results demonstrated
a 3D error of 0.21m using Setup A and 0.86m using Setup B.
It can be seen that the higher errors compared to the averaged
approach are mostly due to high errors in the Z-axis, especially
using Setup B. These errors are due to the fact that the sensors
are positioned at relatively similar heights compared to Setup
A where one sensor is positioned much lower and aimed
looking up. This leads to a worsened distribution of the sensors

vertically and therefore higher VDOP which as discussed in
Section III-.5, leads to poor multilateration performance.

Multiangulation Approach: To implement the AoD ap-
proach, angling information (azimuth and elevation) from
at least 3 sensors to the target is required to establish the
3D position of the targeted object. The formulation of this
approach can be found in [38]. As it can be seen in Table V,
the average 3D error using the AoD approach was calculated
to be around 0.22m using Setup A and around 0.25m using
Setup B.

C. Discussion

1) 2-DOF case: The results of the 2-DOF precision analysis
and positioning estimations highlight the potential of mmWave
technology for achieving range and angle measurement preci-
sion and thereafter high 3D positioning accuracy. The preci-
sion analysis revealed that out of the two sensor types that were
used the Texas Instruments sensor outperformed the Infineon
one in terms of range and angle measurement precision at a
wider field of view. Due to the fact that the Infineon sensor
is only able to identify objects up to a 20-degree angle, it
becomes evident that this sensor is not appropriate for a system
where at least 4 sensors are required to cover the visibility of
an entire room. On the other hand, TI sensor has shown very
promising results, showcasing ranging precision of 0.17m at 0
degrees and a capability of identifying an object at 60 degrees
with an accuracy of 0.3m up to 6m.

The 3D positioning estimation using the 2-DOF sensor was
done using both a 3D multilateration and a triangulation ap-
proach. The multilateration approach demonstrated a relatively
high 3D positioning error of 0.8m in the z-axis estimation.
This indicated the challenges associated with accurately esti-
mating the z-axis using multilateration alone. To address these
limitations in z-axis estimation, a 2D triangulation approach
utilizing azimuth angles from 3 sensors was used combined
with a lateration approach to estimate the height utilizing
sensors placed on top of each other. Although only one
additional sensor is required to be placed at a higher altitude
above one of the existing sensors to be able to estimate the
height, we have deployed 2 sets at the two corners of the room
to ensure sufficient measurements in case one of these fails to
return measurements due to either blockages or long distances.
This modification in the sensor setup resulted in a reduction of
the z-axis error down to 0.11m, leading to an overall decrease
in the 3D positioning error down to 0.17m. The errors in the
x and y axes also improved, indicating the effectiveness of the
triangulation approach in precise 3D positioning estimation.

2) 3-DOF Case: Transitioning to the 3-DOF sensor, the
limitations encountered with the 2-DOF sensor, including the
implementation requirements of various multilateration and
triangulation techniques, were overcome by leveraging the
enhanced capabilities of the 3-DOF sensor to measure the
elevation of the target in addition to the distance and az-
imuth. This sensor streamlined the 3D positioning process by
directly outputting the 3D coordinates of the detected object,
eliminating the need for intricate multi-step methodologies.
While the precision analysis demonstrated comparable results
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Fig. 13: IWR1843BOOST Single Sensor Positioning Accuracy
TABLE V: 3-DOF Multi-Anchor 3D Positioning Results (Y: Yaw, P: Pitch, R: Roll)
Setup A
Averaged Approach Multilateration Approach Multiangulation Approach
Point XYZ Error(m) 3D XYZ Error(m) 3D XYZ Error(m) 3D Sensor
X y z Error(m) X y z Error(m) X y z Error(m) Setup
1 0.11 | 0.02 | 0.22 0.25 0.10 | 0.04 | 0.25 0.27 0.01 | 0.21 | 0.25 0.33 A
2 0.09 | 0.20 | 0.01 0.22 0.30 | 0.16 | 0.46 0.57 0.32 | 0.04 | 0.06 0.33 Y:45°,P:15°,R:0°
3 0.01 | 0.02 | 0.10 0.10 0.15 | 0.04 | 0.05 0.16 0.04 | 0.05 | 0.16 0.18 B
4 0.06 | 0.09 | 0.07 0.13 0.32 | 0.02 | 0.62 0.70 0.17 | 0.07 | 0.15 0.23 Y:0°,P:-30°,R:0°
5 0.09 | 0.14 | 0.01 0.17 0.09 | 0.10 | 0.31 0.34 0.10 | 0.00 | 0.06 0.11 C
6 0.00 | 0.12 | 0.14 0.18 0.16 | 0.09 | 0.08 0.20 0.18 | 0.02 | 0.21 0.27 Y:-45°,P:15° R:0°
7 0.08 | 0.06 | 0.01 0.10 0.05 | 0.06 | 0.09 0.12 0.07 | 0.08 | 0.06 0.12 D
8 0.04 | 0.09 | 0.12 0.16 0.10 | 0.09 | 0.01 0.13 0.24 | 0.07 | 0.21 0.33 Y:-90°,P:15°,R:0°
9 0.07 | 0.11 | 0.02 0.13 0.03 | 0.09 | 0.08 0.13 0.02 | 0.05 | 0.09 0.11 E
Average | 0.07 | 0.10 | 0.09 0.17 0.14 | 0.08 | 0.21 0.21 0.13 | 0.07 | 0.14 0.22 Y:90°,P:15°,R:0°
St Dev 0.04 | 0.05 | 0.08 0.05 0.10 | 0.04 | 0.21 0.21 0.11 | 0.06 | 0.07 0.10
Setup B
1 0.02 | 0.11 | 0.02 0.11 0.24 | 0.04 | 0.56 0.61 0.14 | 0.02 | 0.03 0.14 B
2 0.03 | 0.09 | 0.09 0.13 0.26 | 0.00 | 0.15 0.30 0.23 | 0.13 | 0.17 0.31 Y:31°,P:15°,R:0°
3 0.02 | 0.00 | 0.13 0.13 0.16 | 0.04 | 0.73 0.75 0.04 | 0.19 | 0.21 0.29 C
4 0.08 | 0.02 | 0.08 0.11 042 | 0.15 | 0.66 0.79 0.20 | 0.20 | 0.17 0.33 Y:-58°,P:15°,R:0°
5 0.13 | 0.02 | 0.02 0.13 0.09 | 0.11 | 0.30 0.34 0.06 | 0.11 | 0.06 0.14 D
6 0.24 | 0.02 | 0.01 0.24 0.43 | 0.05 | 0.56 0.71 0.37 | 0.00 | 0.08 0.38 Y:-121°,P:15°,R:0°
7 0.28 | 0.14 | 0.05 0.32 0.19 | 0.14 | 1.28 1.30 0.13 | 0.14 | 0.13 0.23 E
8 0.01 | 0.18 | 0.02 0.18 0.11 | 0.19 | 1.17 1.19 0.04 | 0.19 | 0.05 0.20 Y:117°,P:15°,R:0°
9 0.06 | 0.02 | 0.08 0.10 0.11 | 0.01 1.75 1.75 0.24 | 0.12 | 0.01 0.27 F
Average | 0.10 | 0.06 | 0.05 0.16 022 | 0.08 | 0.79 0.86 016 | 0.12 | 0.10 0.25 Y:-180°,P:30°,R:0°
St Dev 0.10 | 0.06 | 0.04 0.07 0.13 | 0.06 | 0.51 0.47 0.11 | 0.07 | 0.07 0.08
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Fig. 14: 3D Positioning using Multiple 3-DOF mmWave
Anchors. Blue circles indicate ground truths and red diamonds
estimated positions

to the 2-DOF sensor, a significant advancement was noted
in the expanded field of view. The 3-DOF sensor introduced
an elevation angle measurement capability, enabling single-
anchor 3D positioning, offering more comprehensive spatial
coverage when multiple sensors are placed around the room.
The utilization of multiple 3-DOF anchors demonstrated a 3D
positioning accuracy of 16c¢m as well as notably improved
the system’s efficiency, leading to quicker response times
and smoother overall functionality. Comparing this approach
to classical multilateration and triangulation approaches has
indicated that not only this approach had better results but also
offers much flexibility as its algebraic implementation does not
impose limitations in terms of the number of required sensors
(4 for the multilateration and 3 for the triangulation). This
is practically a significant benefit as in a practical scenario
the cost of implementing a 3D positioning system could be
significantly reduced.

Comparing the results mentioned in Section II with the
findings in [17] and [15], it is evident that our approaches
yielded a similar level of accuracy. In [17], the authors
achieved positioning accuracy ranging from 16¢m to 3.25m
using the AoA technique in an open space while the authors
of [15] demonstrated an accuracy of 15¢m. Despite the fact
that we were operating in a more cluttered environment, we
achieved an accuracy of 16c¢m, which is comparable to the
aforementioned works.

VI. CONCLUSION

In this paper, we have demonstrated the potential of
mmWave radar sensory technology to be used for accurate cm-
level 3D indoor localization. To explore its full capabilities,
we have compared mmWave sensor from two vendors (Texas
Instruments, Infineon) while we specifically compared the
positioning potential of two types of sensors with different
degrees of freedom: one that measures distance and azimuth
angle to the target (2-DOF) and another one that additionally
measures elevation (3-DOF). The measurement precision anal-
ysis and experimental positioning results indicate promising

capabilities of both systems in achieving accurate 3D posi-
tioning. Using a 2-DOF sensor system we have achieved a 3D
positioning accuracy of 17c¢m using a 3D trilateration approach
whereas with a 3-DOF sensor system we achieved a very sim-
ilar accuracy averaging at 16cm in a multi-anchor setup with
some enhanced robustness and flexibility in implementation.
Despite this high accuracy, the technology imposes several
challenges, difficulties, and limitations when it comes to
setting up and using a multi-sensor positioning system. These
challenges include sensing limitations of mmWave sensors,
the difficulty of detecting stationary targets, the complexity of
multi-object detection, and the need for timing synchroniza-
tion. These challenges were addressed through careful system
design and the implementation of appropriate solutions.
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