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A B S T R A C T 

We present MGLENS , a large series of modified gravity lensing simulations tailored for cosmic shear data analyses and forecasts 
in which cosmological and modified gravity parameters are varied simultaneously. Based on the FORGE and BRIDGE N -body 

simulation suites presented in companion papers, we construct 100 × 5000 deg 

2 of mock Stage-IV lensing data from two 4D 

Latin hypercubes that sample cosmological and gravitational parameters in f ( R ) and nDGP gravity , respectively . These are then 

used to validate our inference analysis pipeline based on the lensing power spectrum, exploiting our implementation of these 
modified gravity models within the COSMOSIS cosmological inference package. Sampling this new likelihood, we find that cosmic 
shear can achieve 95 per cent CL constraints on the modified gravity parameters of log 10 [ f R 0 ] < −4.77 and log 10 [ H 0 r c ] > 0.09, 
after marginalizing o v er intrinsic alignments of galaxies and including scales up to � = 5000. We also investigate the impact of 
photometric uncertainty, scale cuts, and covariance matrices. We finally explore the consequences of analysing MGLENS data with 

the wrong gravity model, and report catastrophic biases for a number of possible scenarios. The Stage-IV MGLENS simulations, 
the FORGE and BRIDGE emulators and the COSMOSIS interface modules will be made publicly available upon journal acceptance. 

Key words: gravitational lensing: weak – methods: numerical – dark energy – dark matter – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

ecent measurements from dedicated cosmic shear surv e ys such as
he Kilo De gree Surv e y 1 (Asgari et al. 2021 ; van den Busch et al.
022 ), the Dark Energy Surv e y 2 (Amon et al. 2021 ; Secco et al.
022 ), and the HyperSuprime Camera Surv e y 3 (Hikage et al. 2019 ;
amana et al. 2020 ) have established weak gravitational lensing

s one of the most competitive probe of the dark sector of our
niverse. In addition to constraining key parameters such as the

otal matter abundance �m 

, the clustering amplitude σ 8 and the
ark-energy equation of state w 0 , lensing data have also been used to
est the gravitational sector. Indeed, the matter density field could
e affected by deviations from the theory of General Relativity
GR) on cosmic scales, where the presence of a fifth force would
 E-mail: joachim.harnois-deraps@ncl.ac.uk 
 KiDS: kids.strw.leidenuniv.nl 
 DES: www.darkenergysurvey.org 
 HSC: www.naoj.org/Projects/HSC 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
ncrease the clustering in a manner detectable by lensing (Schmidt
008 ). In most viable models, a screening mechanism is invoked
o suppress the impact of modified gravity (MG hereafter) on small
cales or high-density regions, as required to satisfy the tight Solar
ystem constraints on GR (Hu & Sawicki 2007 ). Screening can be
chieved in a number of ways, including: 1 - Chameleon mechanism
Khoury & Weltman 2004a ), in which the range of the fifth force is
ecreased in regions of high space–time curv ature, thus, ef fecti vely
iding the additional force; 2 - Symmetron (Hinterbichler & Khoury
010 ; Hinterbichler et al. 2011 ), in which the coupling of the scalar
eld mediating the fifth force is density dependent; 3 - Vainshtein
creening (Vainshtein 1972 ), in which the screening effect is sourced
y the second deri v ati ve of the field value and happens mostly on
mall scales; 4 - k-moufla g e screening (Babiche v, Def fayet & Ziour
009 ). We refer to reader to Koyama ( 2016 ) for a re vie w on modified
heories of gravitation. 

In any case, a clear detection of the resulting excess clustering
n galaxy surv e ys is made difficult by the large uncertainty on the
alaxy bias, especially on small non-linear scales. Weak gravitational
ensing, ho we ver, naturally emerges as a potentially cleaner probe
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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f MG, being unaffected by this severe limitation (Schmidt 2008 ). 
hile travelling through the foreground large scale structure on its 
ay to our telescopes, the light emitted by distant galaxies acquires 

oherent distortions, which we measure in cosmic shear surv e ys.
ecently, Harnois-D ́eraps et al. ( 2015b ) constrained a series of
G models from the cosmic shear analysis of the Canada–France–
awaii Telescope lensing survey in a pathfinder analysis. Upgraded 

nvestigations including a number of systematics inherent to cosmic 
hear data have since been carried out with the KiDS and DES
ata (Joudaki et al. 2017 ; Abbott et al. 2019 ; Tr ̈oster et al. 2021 ;
ES Collaboration 2023 ), ho we ver the constraining po wer on MG

emains weak and model-dependent. As discussed in the abo v e 
eferences, exploring multiple MG hypotheses is essential in light of 
he current S 8 ≡ σ8 

√ 

�m 

/ 0 . 3 tension between low- and high-redshift 
osmological data analyses (e.g. Heymans et al. 2021 ), although it
ikely will not be the sole solution since MG mo v es S 8 upwards in
oth weak lensing and CMB data (Tr ̈oster et al. 2021 ), preserving
he tension. 

In these previous analyses, the constraints on MG parameters are 
erived from measurements of lensing two-point statistics, either 
he two-point correlation functions or the lensing power spectrum. 
hese choices of summary statistics are largely moti v ated by the
implicity of their modelling, which involves tractable modifications 
o the matter power spectrum that are well measured from N -
ody simulations. Recent computational efforts led to public power 
pectrum emulators , which predict the enhancement of clustering 
or a variety of MG models, o v er a wide range of cosmological
arameters 4 , 5 , 6 , 7 , 8 

It is expected that two-point statistics are not optimal for con- 
training MG, largely due to the fact that the screening mechanism is
ypically density-dependent. Instead, statistics that are more sensitive 
o low-density regions, for example those measuring signals around 
nderdense regions (e.g. Barreira et al. 2017 ; Davies, Cautun & 

i 2019 ) or upweighting these with marked correlation functions 
Armijo et al. 2018 ; Hern ́andez-Aguayo, Baugh & Li 2018 ; Peel
t al. 2018 ), have been shown to better constrain the parameters
hat describe a fifth force. The main difficulty with these alternative 

easurement methods is the absence of theoretical models to 
escribe this signal, forcing one to rely on emulators trained of a
arge number of accurate weak lensing simulations to facilitate their 
nterpretation. 

Searching for modifications to GR is a complicated enterprise, 
ince different theories predict sometimes radically different effects 
n the formation of large-scale structures, making this a model- 
ependent search. Moreo v er, among all e xisting MG simulations,
nly a few have been designed to enable the extraction of weak
ensing statistics at the field level, including for example the DUST- 
RAIN Pathfinder (Giocoli, Baldi & Moscardini 2018 ), in which MG 

odels were used to co-evolve dark matter and massive neutrinos. 
hese simulations have shown again that non-Gaussian statistics 
re better suited to break down the known de generac y between the
ncrease in structure formation caused by the fifth force, and the 
ecrease caused by neutrino free-streaming. Other simulation efforts 
tudying weak lensing statistics include that of Higuchi & Shirasaki 
 2016 ), Barreira et al. ( 2017 ), Shirasaki et al. ( 2017 ), and Li &
 MGEMU : github.com/LSSTDESC/mgemu 
 MGCAMB : github.com/sfu-cosmo/MGCAMB 

 FORGE : bitbucket.or g/ar noldcn/for ge emulator 
 HMCODE : github.com/alexander-mead/HMcode 
 REA CT : github.com/nebblu/ReA CT 
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hirasaki ( 2018 ), which examine various non-Gaussian statistics in 
ight cones produced by the ECOSMOG modified-gravity N -body 
olver (Li et al. 2012 ). Fast approximate N -body methods such as

G-COLA (Valogiannis & Bean 2017 ) are generally not accurate 
nough to model the small scales physics probed by lensing, ho we ver
peed-up of the MG sector as in Hern ́andez-Aguayo et al. ( 2022 )
ight pro v e helpful to reduce the computational cost o v erhead in the

uture. 
We present in this work the first suite of MG weak lensing

imulations designed for the analysis of current cosmic shear surv e ys.
ased on the FORGE (F Of R Gravity Emulator) simulations described

n Arnold et al. ( 2022 , hereafter A21 ) and the BRIDGE (BRaneworld-
nspired DGP Gravity Emulator) simulations presented in Cuesta- 
azaro et al. (in preparation), the Modified Gravity Lensing Sim- 
lations ( MGLENS ) consist of two suites of lensing maps in which
hree cosmological and one modified gravity parameters are varied 
n a Latin hypercube o v er a volume that encloses most of the 2 σ
osterior allowed by current lensing surv e ys. The two MG scenarios
re modelled separately, and their respective parameters capture 
he strength of the deviations from GR in the widely studied f ( R )
Hu & Sawicki 2007 ) and the normal branch of the DGP (nDGP
ereafter, see Dvali, Gabadadze & Porrati 2000 ) gravity models, 
espectively. With its 2 × 50 nodes, MGLENS has enough sampling 
oints to emulate with better than 2.5 per cent accuracy most lensing
tatistics. This is timely, as upcoming surv e ys might be able to place
tringent constraints on MG even with two-point statistics when 
estricted to specific gravity models (Bose et al. 2020 ), ho we ver
ven stronger constraints can be achieved with non-Gaussian lensing 
robes, and the latter can also help us to explore the full de generac y
etween different gravity models and cosmology (Davies et al. 
019 ). 
As a first application, we use MGLENS to validate a cosmic

hear analysis pipeline based on the emulation of the matter power
pectrum assuming either f ( R ) or nDG gravity models. We next
roceed to forecast the constraining power of upcoming Stage- 
V lensing surv e ys on the MG parameters, and investigate their
e generac y with cosmological parameters for a few representative 
cenarios of interest. In our second application, we deliberately 
nalyse MGLENS simulations with the wrong gravity model and 
xplore the impact on the inferred cosmology and gravity parameters. 
pcoming companion papers will use these simulations in forecasts 
ased on higher order statistics, where Gaussian process regression 
GPR) or neural network (NN) emulators are used to interpolate 
he statistics between the nodes and therefore model the likelihood 
 v er the full parameter volume for these alternative measurement
ethods. We emphasize that the MGLENS suite is designed to co v er
 parameter space that is broad enough to enable the analysis
f Stage-III lensing surv e ys, as done in Harnois-D ́eraps et al.
 2021 ). 

The first part of this paper summarizes the gravitational physics 
hat are captured by the FORGE and BRIDGE simulation suites 
Sections 2.1 and 2.2 ), while Section 2.3 includes a brief o v erview
f their numerical implementation within the high-performance N - 
ody code AREPO-MG (Arnold, Leo & Li 2019 ; Hern ́andez-Aguayo 
t al. 2021 ). After re vie wing the construction of our matter power
pectrum emulator in Section 2.4 and the modelling aspects of 
eak lensing two-point statistics in Section 2.5 , we describe and
alidate our weak lensing simulations in Section 3 . We validate
ur cosmological inference pipeline in Section 4 , then present the
esults from a series of likelihood analyses where we investigate the
etection potential from measurements of the weak lensing power 
pectrum in a Stage-IV surv e y such as those to be probed by the Vera
MNRAS 525, 6336–6358 (2023) 
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ubin, 9 Euclid , 10 or Nancy Grace 11 telescopes. Finally, we explicitly
emonstrate in Section 4.4 the model-dependence of such searches
y running cosmological analyses on MG data assuming the wrong
ravity model, recording extreme biases both on the gravity and
osmology sectors. 

Throughout this paper we assume a flat � CDM universe. 

 B  AC K G R  O U N D  

lthough GR is well tested on small scales in laboratory experiments
nd in the Solar system (e.g. Will 2006 , 2014 ), possible deviations are
t the moment largely unconstrained on cosmological scales (Mpc
nd abo v e). To quantify such deviations in a self-consistent way, it
s useful to develop an array of simple representative models to be
sed as templates for making predictions, which can be compared
o observational data. There is a large (probably infinite) number of
urrently viable MG models, and this paper focuses on two of the
ost widely studied examples, namely the Hu-Sawicky f ( R ) and the

DGP gravity models, which we introduce in this section. Note that
lthough these do not support self-acceleration and therefore require
ark energy as well, they are two viable, representative MG models
hat can guide our search. 

.1 f ( R ) gravity 

he modified Einstein equations in f ( R ) gravity can be obtained from
 modified Einstein–Hilbert action in which the standard Ricci scalar
 is supplemented by an algebraic function, f ( R ) (hence its name): 

 = 

1 

16 πG 

∫ 
d 4 x 

√ −g ( R + f ( R)) + S m 

( g μν, ψ i ) . (1) 

n this expression G is the gravitational constant, g μν is the metric,
 ≡ det ( g μν) is its determinant, and S m 

the action of the matter field,
hich depends on the metric and the different matter fluids ψ i .
arying S with respect to g μν , we obtain: 

 μν + f R R μν − g μν

(
1 

2 
f ( R) − � f R 

)
− ∇ μ∇ νf R = 8 πGT m 

μν, (2) 

here R μν and G μν are respectively the Ricci and Einstein tensors,
 μ is the covariant derivative compatible with the space–time metric
 μν (i.e. ∇ λg μν = 0), � ≡ ∇ 

μ∇ μ = g μν∇ μ∇ ν is the d’Alembert
perator in the 4D space–time, f R ≡ d f ( R )/d R and T m 

μν is the energy–
omentum tensor for matter. 
Despite the small modification to the standard Einstein–Hilbert

ction, equation ( 2 ) differs from the usual Einstein equation in that
t contains up to fourth-order, rather than second-order, deri v ati ves
f the metric, as a result of the terms � f R and ∇ μ∇ ν f R . Ho we ver,
oth terms are second deri v ati ves of a scalar quantity f R , which
ndicates that the fourth-order differential equation ( 2 ) can be written
s a second-order Einstein equation if f R is treated as a (new) scalar
egree of freedom (the scalaron field), which has its own evolution
quation obtained by taking the trace of equation ( 2 ). Namely: 

 f R = 

1 

3 
[ R − f R R + 2 f ( R) + 8 πGρm 

] ≡ d V eff ( f R ) 

d f R 
, (3) 

here ρm 

is the non-relativistic matter density of the Universe – this
erms originates from the trace of the energy momentum tensor, and
NRAS 525, 6336–6358 (2023) 

 Rubin: www.lsst.org 
0 Euclid : euclid-ec.org 
1 Grace: wf irst.gsf c.nasa.gov 

f  

1

s

hus relativistic species do not contribute directly (i.e. through direct
oupling) to the dynamics of the scalar field. In the second equality
bo v e we hav e defined an ef fecti ve potential, V eff ( f R ), of the scalaron
eld. 
Cosmological structure formation can be well described by

he quasi-static and weak-field approximations (see e.g. Barrera-
inojosa et al. 2021 , for some quantitative analyses of beyond-
e wtonian ef fects in cosmological settings). The former approxima-

ion applies in the limit of slo w, non-relati vistic, motions of matter,
here the time deri v ati ves of the metric potentials can be neglected;

he latter assumes that the potentials created by large-scale structure
re shallow so that their higher order products can also be ignored.
n the presence of a scalar field as in the case of f ( R ) gravity, these
pproximations also apply to the scalaron itself since, as we will
how shortly, the latter can be considered as the potential of the
odified gravitational force. Note that in general the quasi-static

pproximation only means that the perturbations of the scalaron
av e ne gligible time deri v ati ves compared to spatial deri v ati ves, 12 

hough in the case of f ( R ) models with a viable chameleon screening
echanism, this can apply to the full scalar field f R . Under these

pproximations, the modified Einstein’s equation ( 2 ) and the scalaron
quation of motion ( 3 ) become: 

 

2 � = 

16 πG 

3 
a 2 ( ρm 

− ρ̄m 

) + 

1 

6 
a 2 ( R( f R ) − R̄ ) , (4) 

 

2 f R = −a 2 

3 
[ R( f R ) − R̄ + 8 πG ( ρm 

− ρ̄m 

)] , (5) 

here � is the gravitational potential, ∇ is the gradient operator in
D space, and a is the scale factor. Overbars denote the cosmic mean,
r background, value of the quantity. Note that the modified Poisson
quation ( 4 ) can be rewritten as 

 

2 � = 4 πG a 2 δρm 

− 1 

2 
∇ 

2 f R , (6) 

y using equation ( 5 ), with δρm 

≡ ρm 

− ρ̄m 

. This shows that −f R /2
an be considered as the potential of the modified gravity force. 

In this work we consider the Hu & Sawicki ( 2007 ) f ( R ) model, for
hich the functional form of f ( R ) is given by 

 ( R) = −m 

2 c 1 

c 2 

( −R/m 

2 ) n 

( −R/m 

2 ) n + 1 
, (7) 

here m 

2 ≡ �m 

H 

2 
0 with H 0 and �m 

, respectively, the values of the
ubble parameter and the matter density parameter today, while c 1 ,
 2 , and n are free dimension-less model parameters, with n a non-
e gativ e inte ger. In the limit | ̄R | � m 

2 (which holds for the entire
osmic history up to today in the models to be studied), the scalaron
eld can then be expressed as 

 R � − ∣∣f̄ R 0 ∣∣
(

R̄ 0 

R 

)n + 1 

, (8) 

here R̄ 0 , f̄ R 0 are, respectively, the present-day values of the
ackground Ricci scalar and f̄ R . We fix the value of the power-
a w inde x to n = 1 for simplicity (other values of n , such as n =
 and 2, lead to qualitatively similar behaviours of the model, see
.g. Ruan et al. 2022 ) and we vary f̄ R 0 in the range [10 −4.5 ; 10 −7.0 ],
here larger values lead to larger deviations from GR. See Arnold

t al. ( 2022 ) and Table A1 below for a complete list of the exact
 ̄R 0 values included in this paper, along with other cosmological
2 See e.g. Oyaizu ( 2008 ); Bose, Hellwing & Li ( 2015 ) for some results 
howing the goodness of the quasi-static approximation in f ( R ) gravity. 

https://www.lsst.org
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arameters used in our simulations. Note that hereafter we use f R 0 
nstead of f̄ R 0 to impro v e notation. 

It is well established that viable f ( R ) models for the late-time
niverse must invoke the chameleon screening mechanism (Brax 

t al. 2004 ; Khoury & Weltman 2004a , b ; Mota & Shaw 2006 ; Brax
t al. 2008 ), an intrinsically non-linear behaviour originating from 

he functional form of f ( R ). The R ( f R ) term in the scalaron equation of
otion, equation ( 5 ), can be considered as a description of the non-

inear self-interaction of the scalaron and, along with its interaction 
ith matter, this determines ho w f R v aries in space. If appropriate
arameter values are adopted, for dense spherical objects – such 
s dark matter haloes in this toy example – inside a homogeneous 
edium of matter, f R will transitions from the background value f̄ R 

ar from the object to nearly zero at its centre, and the transition takes
lace in a thin shell at the boundary of the object, which means that
 R stays constant in all but a thin shell. Because f R is the potential
f the modified gravity force, this means that this force vanishes, 
r is efficiently ‘screened’, for most parts inside and outside the 
bject. Another way to see how this screening mechanism works is
y looking at equation ( 6 ), which shows that inside the object where
 R is nearly identically zero, the modified gravity force vanishes. 

Large-scale structures offer a variety of environments, from high- 
ensity regions such as the cores of clusters and galaxies, to low-
ensity regions in cosmic voids. As a result, these are ideal places
or investigating signatures of chameleon screening and constraining 
 ( R ) gravity. Ho we ver, it also poses a computational challenge as
he non-linear nature of the chameleon mechanism can only be 
ccurately predicted with high-resolution simulations such as FORGE . 

.2 nDGP gravity 

n the gravitational model of Dvali, Gabadadze & PorratiDvali et al., 
ll particle species are assumed to be confined to a 4D hypersurface
r ‘brane’, while gravitons can propagate along a fourth spatial 
imension and leak into the 5D ‘bulk’ space–time. The action of
his braneworld model is given by 

 = 

∫ 
brane 

d 4 x 
√ −g 

R 

16 πG 

+ 

∫ 
bulk 

d 5 x 
√ 

−g (5) 
R 

(5) 

16 πG 

(5) 
, (9) 

here g , R , G are the values on the brane and have the same meaning
s before, while the counterpart bulk quantities are denoted by g (5) ,
 

(5) , and G 

(5) . 
A new parameter can be introduced from the ratio between G 

(5) 

nd G , known as the cross-over scale and denoted by r c : 

 c ≡ 1 

2 

G 

(5) 

G 

. (10) 

his can be considered as a critical scale abo v e (below) which gravity
s well described by the 5D (4D) part of the action. Since r c is a
imensional quantity, its value is often quoted via H 0 r c / c , which
an be considered as the ratio between the cross-o v er scale and the
orizon size c / H 0 (the speed of light c is dropped out hereafter since
 = 1 in natural units). 

The DGP model has two distinct branches of solutions. The first
s a self-accelerating branch (sDGP), which supports an accelerated 
ate-time cosmic expansion without the need for exotic dark energy 
pecies. The sDGP model, ho we ver, is not deemed as a viable
lternative to standard � CDM due both to theoretical difficulties such 
s ghost instabilities (e.g. Luty, Porrati & Rattazzi 2003 ; Charmousis
t al. 2006 ) and to tensions between its predictions and observational
ata sets (e.g. Fairbairn & Goobar 2006 ; Maartens & Majerotto 2006 ;
ang et al. 2008 ; Lombriser et al. 2009 ). In this paper, we work with
he normal branch (nDGP; Schmidt 2009 ) model, for which the
odified Friedmann equation is given by 

H ( a) 

H 0 
= 

√ 

�m 

a −3 + �DE ( a) + �rc −
√ 

�rc , (11) 

n which �rc ≡ 1 / (4 H 

2 
0 r 

2 
c ). Similarly to the Hu-Sa wick y f ( R ) model,

he nDGP model does not support self-acceleration, and as a result
ome additional dark energy component has to be added in order to
xplain the late-time cosmic acceleration. This naturally makes it less 
ppealing as an alternative to � CDM, but it is nevertheless widely
sed in studies of modified gravity as a representative model featuring
he Vainshtein screening mechanism (Vainshtein 1972 ; Babichev & 

effayet 2013 ) and other interesting phenomenology. In this study, 
e take advantage of this flexibility by tuning the additional dark

nergy component �DE ( a ) such that it counteracts the effect on the
ackground expansion and gives rise to an expansion history identical 
o that of � CDM: the moti v ation for this is to enforce expansion
istories that are identical between nDGP and � CDM, so that the
wo models only differ in terms of structure formation. Therefore, 
epartures from GR are quantified e xclusiv ely by the parameter H 0 r c .
s we can see from equation ( 11 ), if H 0 r c → ∞ then the expansion
f the Universe reduces to � CDM, with the additional dark energy,
hose density parameter is denoted by �DE ( a ) in equation ( 11 ),

loser to a cosmological constant � . 
Cosmological structure formation in the nDGP model is again 

o v erned by a modified Poisson equation: 

 

2 � = 4 πGa 2 δρm 

+ 

1 

2 
∇ 

2 ϕ, (12) 

nd an equation of motion for the scalar field ( ϕ) (Koyama & Silva
007 ): 

 

2 ϕ + 

r 2 c 

3 β a 2 c 2 

[
( ∇ 

2 ϕ ) 2 − ( ∇ i ∇ j ϕ ) 2 
] = 

8 π G a 2 

3 β
δρm 

, (13) 

here 

( a) ≡ 1 + 2 H r c 

(
1 + 

Ḣ 

3 H 

2 

)
= 1 + 

�m 

a −3 + 2 �� 

2 
√ 

�rc ( �m 

a −3 + �� 

) 
, 

(14) 

s a time-dependent function, with �� 

≡ 1 − �m 

. In the nDGP 

odel we consider here, β decreases o v er time is al w ays positive.
he field ϕ is called the ‘brane-bending mode’, a scalar quantity
escribing the position of the 4D brane along the fourth spatial
imension. 
Again, from equation ( 12 ), we can observe that the brane-bending

calaron field acts as the potential of a fifth force. We can deduce
rom equation ( 13 ) that its solutions have very different behaviours in
wo opposite limits: (i) low-density regions, where ∇ 

2 ϕ is small and
o the ( ∇ 

2 ϕ) 2 and ( ∇ i ∇ j ϕ) 2 terms in equation ( 13 ) are subdominant
in this case we have ∇ 

2 ϕ ∼ 8 πGa 2 δρm 

/ (3 β), and so the strength
f the fifth force is proportional to that of the standard Newtonian
orce, leading to an enhancement of Newton’s constant from G to
1 + 1/3 β) G ; (ii) high-density regions, where ∇ 

2 ϕ is large, but the
uadratic terms in equation ( 13 ) become even larger, so that ∇ 

2 ϕ 

 πGa 2 δρm 

/ (3 β) – in this case the fifth force term in equation ( 12 )
s much smaller than the standard Poisson term. This is essentially
he Vainshtein screening mechanism at work. 

The BRIDGE simulations used in this work co v er nDGP models with
 0 r c values between 0.25 and 10 (see Table A1 for further details,

nd Cuesta-Lazaro et al., in preparation). These simulations share 
he same cosmological parameter values and initial conditions as the 
ORGE simulations, and differ only in the gravity model. Moreo v er,
MNRAS 525, 6336–6358 (2023) 
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e matched the order in the strength of the MG parameters, such
hat models close to GR in FORGE are also close to GR in BRIDGE . 

.3 N -body simulations 

o date, cosmological simulations are the only known tool for making
ccurate predictions of physical quantities and observables of the
arge-scale structure down to the small non-linear scales where
erturbation theory fails. The need for simulations in the study of
odified gravity models is even stronger because of the additional

on-linear behaviours caused by the fifth force. Over the past decade,
arious simulation techniques and codes have been developed for
uch models (see e.g. Winther et al. 2015 ; Li 2018 ; Llinares 2018 , and
eferences therein, for some re vie ws and code comparison results). 

The simulated lensing data described in this paper are based on
he FORGE and BRIDGE simulation suites described, respectively, in
21 and Cuesta-Lazaro et al. (in preparation). Four parameters are
aried simultaneously, namely the matter density parameter �m 

,
he structure growth parameter S 8 ≡ σ8 

√ 

�m 

/ 0 . 3 where σ 8 is the
sual root-mean-squared of the density fluctuations smoothed on
 h 

−1 Mpc scales, the reduced Hubble parameter h and either f R 0 
r H 0 r c for the FORGE or the BRIDGE suite, respectively. These two
D parameter spaces are each sampled at 50 nodes organized in
 Latin Hyper cube, as detailed in Table A1 . Details of the N -
ody calculations are provided in the references mentioned above,
ut we provide here a brief summary of the numerical methods 
sed. 
For the FORGE simulations, the non-linear evolution of the particle

istribution is obtained by the AREPO Poisson solver (Springel 2010 ;
einberger, Springel & Pakmor 2020 ), which is used to compute

he standard Newtonian force. This is augmented by a multigrid
elaxation solver for equation ( 5 ) based on a second-order-accurate
nite difference scheme, which computes the fifth force arising from
 ( R ) gravity on the local grid elements. Adaptive mesh refinement
AMR) is adopted, in which grid elements where the matter density
xceeds some threshold are refined (split) into eight child cells with
oubled spatial resolution: this ensures that higher resolution is used
n regions where a higher accuracy is needed in the scalar field solver.
he additional force is then interpolated onto the positions of particles
nd used to update their velocities using the standard leapfrog
cheme, achieving second-order accuracy in the time integral. The
elaxation algorithm described in Bose et al. ( 2017 ) and extended by
uan et al. ( 2022 ) has been implemented, improving the numerical

tability and convergence rate; complete details on AREPO-MG can be
ound in Arnold et al. ( 2019 ). 

The BRIDGE simulations are also carried out with AREPO and using
ultigrid relaxation with the same code structure, except that we

re instead solving the differential equation go v erning the dynamics
f the brane-bending mode ϕ given by equation ( 13 ). Since this
quation differs in type from equation ( 5 ), the algorithm introduced
n Li, Zhao & Koyama ( 2013a ); Li et al. ( 2013b ) is used instead to
nsure numerical stability. To further impro v e the efficiency of the
ode, the scheme described in Barreira, Bose & Li ( 2015 ) is used,
here, instead of solving the scalar field equation on all levels of
esh refinements (labelled by l ), it is only solved on the lowest few

evels; in other words, the scalaron solver is truncated at some level
 = l trunc , and the solutions of ϕ on level l trunc is interpolated to all
igher levels. Barreira et al. ( 2015 ) show that this truncation, while an
pproximation, leads to negligible errors in the quantities of interest
n cosmology. This is because the Vainshtein screening mechanism
s very efficient at suppressing the fifth force in high-density regions,
hich happen to be the highly refined regions of the simulation grid;
NRAS 525, 6336–6358 (2023) 
hile the truncation and interpolation causes certain errors in the
alculated fifth force in such regions, these are small errors on a
mall quantity, which have a small overall impact on the simulation
esults. For further details of the implementation in AREPO-MG , see
ern ́andez-Aguayo et al. ( 2021 ). 
Each of the FORGE and BRIDGE simulation suites consists of a

otal of 200 collision-less, dark-matter-only runs co v ering the 50
 ( R ) and nDGP models mentioned abo v e. F or each node we have run
wo independent realizations with initial conditions chosen such that
he sampling variance is greatly reduced in the mean matter power
pectrum (see A21 , for more details), at two different resolutions. The
igh-resolution simulations employ 1024 3 particles in a 500 h 

−1 Mpc
imulation box, at a mass resolution of m p � 9.1 × 10 9 h −1 M �13 ,
hile the low-resolution simulations evolve 512 3 particles in a

imulation box size of 1500 h 

−1 Mpc , with a mass resolution of m p 

 1.5 × 10 12 h −1 M � (the values of m p quoted here are for the fiducial
 CDM node). The gravitational softening lengths are, respectively,

5 and 75 h 

−1 kpc for the high- and low-resolution runs. For all
imulations, we have fixed the power index of the primordial power
pectrum, the present-day baryonic density parameter and the dark
nergy equation of state to n s = 0.9652, �b = 0.049199, and w =
1. Note that the lensing maps described in this paper only use the

igh-resolution runs, and that corresponding GR- � CDM simulations
xist for all 50 nodes. 

All simulations start at z ini = 127, with initial conditions (ICs)
enerated using the 2 LPTIC (Crocce, Pueblas & Scoccimarro 2006 )
ode, an IC generator based on N-GENIC (Springel et al. 2005 )
hat uses second-order Lagrangian perturbation theory to compute

ore accurately the initial particle displacements for a given matter
ower spectrum. The linear matter power spectra for all models are
enerated with the public Boltzmann code CAMB (Lewis, Challinor &
asenby 2000 ), with the cosmological parameters specified in
able A1 . Note that for all f ( R ) and nDGP models, we assume that the

inear power spectra are identical to their � CDM counterparts , i.e.
he � CDM models with the same cosmological parameters – this is
 good approximation since at the initial time ( z = 127) any effect of
odified gravity is negligible for the models considered here. In other
ords, they share the same primordial amplitude A s . Finally, for each

osmological model, we pre-compute the redshifts z at which particle
ata 14 have to be written to disc such that the consecutive projections
f half-simulation boxes can be used to construct contiguous light
ones up to z = 3.0. We describe the construction of our mass
hells in Section 3.1 . We note that the matter power spectrum of
he FORGE simulations has been shown in A21 to agree within a
ew per cent with HALOFIT for node-00 up to k = 10 h −1 Mpc, and
o a slightly lesser level with approximate methods (MG-COLA)
nd fit functions REACT for non-GR cases. The P ( k ) emulator itself
s calibrated up to z = 2, beyond which the departure from GR
re highly attenuated. Because of projection effects, the connection
etween k -scales and angular separations is not clear, ho we ver we
how in Section 3 that this few per cent level of accuracy generally
olds at least up to multipoles of � = 5000. We have also verified
ith simulations ran with higher mass resolution that scales up to
 = 8.0 h −1 Mpc are converged to better than two per cent, meaning
hat resolution limits only affect multipoles larger than � ∼ 5000 (see
ppendix B ). 
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It is important to emphasize here that the σ 8 and S 8 quantities 
eported in this work correspond to the input truth values at which
he GR- � CDM N -body simulations are run. When turning on MG
o we ver, the non-linear excess structure generated by the fifth force
ncreases the late time σ 8 values by an amount difficult to predict, 
ence our choice of labelling the simulations by their GR- � CDM
uantities. 15 

Although this paper focuses on two-point statistics, it serves the 
dditional purpose of presenting the infrastructure necessary for 
ompanion papers based on lensing statistics beyond two-point. 
ne of the key ingredients for such measurements is the covariance 
atrix, for which analytical solutions generally do not exist. We 

herefore use the public SLICS simulations. 16 For this, a suite of
54 fully independent N -body runs that evolve 1536 3 particles in a
ox size of 505 h −1 Mpc on the side. These are all produced at a
xed cosmology 17 and vary only in their initial conditions, therefore 
roviding an ideal tool for estimating sample covariance. We refer 
he reader to Harnois-D ́eraps & van Waerbeke ( 2015 ) for full details
n the SLICS N -body ensemble. Both of these approaches currently 
ssume GR and are therefore designed to analyse data in which we
earch for weak MG signature. We decided to keep this matrix fixed
ven for stronger models, which results in error bars that are likely
nderestimated. A non-GR analytical covariance matrix could be 
btained by using the FORGE P ( k ) emulator instead of HALOFIT in its
alculations, which w ould lik ely result in slightly larger error bars
unless it is ran at a cosmology with smaller S 8 ) which w ould mak e

G detection even more difficult. The most accurate posterior is 
btained when the covariance matrix is evaluated at the best-fitting 
osmology. This does not al w ays mak e a noticeable difference in the
nd (see e.g. Burger et al. 2023 ), hence we leave for the future the
tudy of the dependence covariance matrix on gravitocosmological 
arameter. 
The SLICS, FORGE and BRIDGE simulations are post-processed 

niformly, creating mock surv e y light cones suitable for cosmologi- 
al inference. Details on the post-processing involved are presented 
n Section 3.1 . Beforehand, we first introduce the basic ingredients 
hat enter our theoretical predictions. 

.4 Modified gravity emulators 

he information content of the large-scale structure is largely 
ncapsulated in the matter power spectrum, P δ( k ; z), a two-point
tatistics that is directly measurable from the matter density fields 

in simulations and that can be inferred from galaxy surv e ys
ia clustering or cosmic shear measurements. For example, the 
 -body simulations described in A21 are used to construct the 
ublic P δ FORGE emulator, obtained by training a Gaussian process 
egressor (GPR) on the measurements obtained from the 50 FORGE 

odes; the emulator provides predictions that are accurate to better 
han 2.5 per cent up to k = 10 . 0 h Mpc −1 o v er the majority of the
arameter volume. 
As an alternative, we use here the same measurements to train 

nstead fully connected neural networks (FCNN), which are es- 
ecially powerful at high-dimensional interpolation (as in Cuesta- 
azaro et al., in preparation). We train in this work a neural network
ith the same characteristics on both FORGE and BRIDGE data, as a
5 We use σ 8 and S 8 in place of σGR 
8 and S GR 

8 to declutter notation. 
6 SLICS: slics.roe.ac.uk
7 GR- � CDM SLICS cosmology: �m 

= 0.2905, σ 8 = 0.826, h = 0.6898, 
 s = 0.969. 

2

T
m  

1

unction of redshift. Because the number of training simulations is 
elatively small, we found empirically that larger networks tend to 
 v erfit the training data. We ran hyperparameter optimization with
PTUNA, 18 and as long as the number of hidden units w as k ept small
e found no significant benefits of further optimizing the model. In

he end, we opted for a neural network defined by an input layer
omposed of the four cosmological parameters ( �m 

, h , σ 8 and the
odified gravity parameter, either f̄ R0 for f ( R ), or H 0 r c for nDGP

ravity) plus the redshift z, two hidden layers of 256 units each,
nd an output layer that returns the power spectrum evaluated at
he different k -bins. In between hidden layers, we use a Gaussian
rror linear unit acti v ation function (Hendrycks & Gimpel 2016 ) to
dd a differentiable non-linearity to the relation between inputs and 
utputs. 
To find the optimal parameters that reproduce the statistics mea- 

ured in the N -body simulations, we minimize the L 1 loss function,
efined as: 

 1 = 

1 

N 

N ∑ 

i= 0 

| y i true − y i predicted | (15) 

sing the Adam optimizer (Kingma & Ba 2014 ). In the abo v e
xpression, the y i are the true and predicted matter power spectra for
ach of the simulations and each of the snapshots in the simulation
uite, and N is the batch size used in the training. 

Moreo v er, we a v oid fine-tuning the learning rate with a scheduler
hat reduces the learning rate by a factor of 10 when the validation loss
oes not impro v e after 30 epochs. We also stop training the model
hen the validation loss does not impro v e after 100 epochs. An in-
epth description of the emulator and its validation are presented in
uesta-Lazaro et al. (in preparation), together with the emulator’s 
ode. More precisely, the emulator outputs the modified gravity 
nhancement factor , B ( k , z), which is defined as: 

( k; z) = P δ, MG ( k; z) /P δ, HaloFIT ( k; z) . (16) 

ere P δ, MG ( k; z) is the measurement for a modified gravity model
rom either the FORGE or BRIDGE simulations, and P δ, HaloFIT ( k; z)
s the prediction by HALOFIT (Takahashi et al. 2012 ) for the
 CDM counterpart of that model (we refer the reader to A21

or a more complete description of how this is achieved in
ractice). The MG enhancement can be as high as 40 per cent
epending on the model, for the FORGE nodes. We find that the
CNN slightly outperforms the GPR at modelling the enhancement 
actor and is therefore our method of choice, for all gravity 
odels. 
Finally, we notice that in the weak f R 0 limit the emulator does not

onv erge e xactly to the GR case: residual de viations of a fe w per cent
re observed at all scales. These same residuals are also present in the
ower spectrum training set, as reported in fig. 5 of A21 . Although
enerally small, some segments of our analysis require a smooth 
onvergence to GR, hence we linearly interpolate the emulated B ( k )
n the range log 10 [ f R 0 ] = [ −7 , −6 . 0], enforcing B ( k ) = 1.0 at the
ower end and for any values smaller than −7. The weak nDGP limit
oes not show such residuals and hence interpolation is not necessary
n that case. 

.5 Cosmic shear two-point functions 

wo-point functions are the primary cosmic shear measurement 
ethods and exists in different fla v ours, including two-point cor -
MNRAS 525, 6336–6358 (2023) 

8 : OPTUNA: optuna.org 

https://slics.roe.ac.uk
https://optuna.org
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Figure 1. Normalized redshift distribution of the five tomographic bins 
considered in our mock surv e y. 
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Table 1. Properties of our Stage-IV surv e y. The specifications closely follow 

those presented in Martinet et al. ( 2021a ), with n eff = 6.0 gal arcmin −2 per 
tomographic bin and σ ε = 0.27 per component. 

tomo z range 〈 z〉 
bin1 0.0–0.4676 0 .286 
bin2 0.4676–0.7194 0 .600 
bin3 0.7194–0.9625 0 .841 
bin4 0.9625–1.3319 1 .134 
bin5 1.3319–3.0 1 .852 

Figure 2. Cross-correlation coefficient matrix of our lensing power spectrum 

data vector, defined as r ij = C ij / 
√ 

C ii C jj . The upper-left triangle shows the 
analytical calculations, while the lower right part is estimated from 954 fully 
independent convergence maps constructed from the SLICS (Section 3.1 ). 
The redshift bins increase towards the upper-right corner. We show here the 
autocorrelations only to enhance the visibility, but cross-redshift correlations 
show a similar level of agreement. 
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elation functions, angular power spectra, band powers, or COSEBIs
see Asgari et al. 2021 , for a comparison between some of these).
ne of the key advantage of these cosmic shear statistics is that

heir modelling can be directly linked to the matter power spectrum,
 δ( k ; z). Thanks to an increased precision in the estimation of the

edshift distributions, the lensing catalogues are now routinely split
nto different redshift bins, allowing for tomographic analyses of the
ata that better measure those parameters impacting the growth rate
f large-scale structure. Specifically, predictions for the cosmic shear
ower spectrum C 

κ,ij 

� can be obtained from a Limber integration
 v er the matter power spectrum via (see Kilbinger et al. 2017 , for a
e vie w): 

 

κ,ij 

� = 

∫ χH 

0 

q i ( χ ) q j ( χ ) 

χ2 
P δ

(
� + 1 / 2 

χ
; z( χ ) 

)
d χ, (17) 

here χH is the comoving distance to the horizon, and ( i , j ) label the
ifferent tomographic bins. The lensing kernels q i ( χ ) are computed
s: 

 

i ( χ ) = 

3 

2 
�m 

(
H 0 

c 

)2 
χ

a( χ ) 

∫ χH 

χ

n i ( χ ′ ) 
d z 

d χ ′ 
χ ′ − χ

χ ′ d χ ′ , (18) 

here n i ( z) is the redshift distribution of the source galaxies in
omographic bin i . 

The matter power spectrum entering equation ( 17 ) can be obtained
rom an array of public codes such as HALOFIT (Takahashi et al. 2012 ),
Mcode (Mead et al. 2021 ), COSMICEMU (Heitmann et al. 2014 ),

ACCOEMULATOR (Angulo et al. 2021 ), or the EUCLIDEMULATOR

Euclid Collaboration; Knabenhans et al. 2019 ). Whereas these codes
rovide highly accurate predictions tools for many cosmological
odels, their gravity model is restricted to that of GR only. We there-

ore generate MG lensing predictions by multiplying the HALOFIT

redictions by B ( k ; z) as in equation ( 16 ), and then inserting the
esults into equation ( 17 ). The Limber integral is carried out by
OSMOSIS 19 cosmology package (Zuntz et al. 2015 ), which we also
se for parameter inference (see Section 4 ). 
Our mock Stage-IV lensing surv e y is designed to investigate

ome of the conditions that would allow MG to be detected by
pcoming two-point statistics analyses. We opted for a source
edshift distribution described by: 

 ( z) = A 

z a + z ab 

z b + c 
, (19) 

ith A = 1.7865, a = 0.4710, b = 5.1843, c = 0.7259. This n ( z)
s shown in Fig. 1 and is taken from Martinet et al. ( 2021a , b ) and
arnois-D ́eraps, Martinet & Reischke ( 2022 ). This sample is further

plit into five tomographic bins, each with a galaxy density of n gal =
.0 gal arcmin −2 and shape noise of σ ε = 0.27 per component.
NRAS 525, 6336–6358 (2023) 

9 COSMOSIS : cosmosis.readt hedocs.io/en/lat est/index.ht ml 

G  

t  

s  
ur method assumes no o v erlap between the tomographic bin,
 simplifying assumption that does not occur in realistic data
istrib utions b ut is of no consequence in a cosmic shear forecast.
 summary of the mock surv e y properties is presented in Table 1 .
e assume a surv e y area of 5000 deg 2 , which corresponds to the

otal area sampled by our flat-sky simulations at each cosmological
odes (see Section 3 ). 
Section 4 details our likelihood sampling analysis, which takes

s input a data vector, a covariance matrix, and a theoretical model
n which cosmology , gravity , and nuisance parameters are varied
imultaneously. As our baseline we use an analytical covariance
atrix that describes the mode correlations, the shape noise, and the

ampling co variance e xpected for the different elements of our data
ector. The calculations are fully detailed and validated in Harnois-
 ́eraps, Giblin & Joachimi ( 2019 ) and Joachimi et al. ( 2021a ) and we

efer the reader to these for more information. In short they include
he Gaussian, non-Gaussian, and Super-Sample Covariance terms
iven a cosmology, a tomographic redshift distribution, a surv e y
rea, and binning specifications for the angular multipoles. The non-
aussian term requires an e xpensiv e trispectrum evaluation, while

he SSC term assumes a circular surv e y geometry of 5000 deg 2 . We
how in Fig. 2 the cross-correlation coefficient matrix obtained with

https://cosmosis.readthedocs.io/en/latest/index.html
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ur surv e y specifications, 20 and compare our results to an estimate
btained from the SLICS, which we describe in Section 3.1 . Aside
ome residual noise patterns, both methods completely agree. We 
ill quantify the impact of switching between these two later on, but
asically the effect is completely subdominant given our statistical 
recision. This comparison validates both the theoretical approach 
nd the SLICS maps, which will be used in companion non-Gaussian 
tatistics studies. 

 W E A K  LENSING  SIMULATIONS  

he MGLENS weak lensing simulations are constructed by ray- 
racing 21 through series of mass shells obtained by collapsing the 
article data either along one of the Cartesian ax es (flat-sk y method)
r along the radial direction (curv ed-sk y). Both methods hav e their
ros and cons; we focus mainly on the flat-sky results in this paper
or their ability to probe deeper in the small, non-linear regime, 
nd discuss the curv ed-sk y method in Appendix A . In either case,
he mass sheets have a comoving thickness equal to exactly half 
he simulation box size (i.e. 250 h −1 Mpc), and between 15 and 23
hells are needed to continuously fill the light cones up to z = 3,
epending on cosmology. We finally produce convergence maps for 
he five tomographic redshift bins shown in Fig. 1 . In this paper we
o not train our emulator on statistics measured from these maps and
nstead aim for their v alidation, ho we v er this logical e xtension will
e presented in companion papers. 

.1 Weak lensing maps and power spectra 

ur flat-sky method hea vily b uilds from the SIMULLENS algorithm, 
he multiple-plane technique described in Harnois-D ́eraps & van 

aerbeke ( 2015 ): at each pre-selected redshift, the particles from
alf the simulation volume are projected along the shorter direction 
nd assigned onto a 12 288 2 grid. This process is repeated with the
ther half-volume, and for the other two Cartesian axes, such that six
ensity planes are extracted per snapshot. 
Light-cone mass maps, δ2 D 

( θ , z lens ), are extracted from the density
lanes with an opening angle of 10 deg 2 and 7745 2 pixels. At
ach redshift, one of the six aforementioned planes is randomly 
elected and a random origin offset is added. This means that 
orrelations between different mass shells are broken, but it was 
hown in Zorrilla Matilla, Waterval & Haiman ( 2020 ) that this has
 subdominant effect on weak lensing statistics due to the line-of-
ight projection. Closely following Harnois-D ́eraps et al. ( 2019 ), 
e repeat this whole ray-tracing procedure in order to create 25 
seudo -independent light cones δ2 D 

( θ , z lens ) maps from each N -
ody run. 22 Periodic boundary conditions are used wherever the 
rea of the light cone becomes larger than the simulation box 
tself. 

In the multiple-plane approximation, each of these mass shells acts 
s a discrete gravitational lens, distorting the light as it passes through
t. Within the Born approximation, the conv ergence κ e xperienced 
y photons propagating along the direction θ and originating from a 
0 We use the SLICS cosmology in the analytical covariance matrix calcula- 
ions. 
1 Ray-tracing in this paper assumes the Born approximation. 
2 We change the random seeds between the 25 cones at a given cosmology, 
ut use the same 25 seeds for every cosmology node, thereby keeping to a 
inimum the sampling variance across cosmological models. 

e
a  

t

o  

2

ource redshift distribution n ( z) can be computed as: 

i ( θ ) = 

∑ 

lens 

δ2 D 

( θ , z lens ) q 
i ( χ ( z lens )) , (20) 

here q i ( χ ) is the tomographic lensing kernel given by equation
 18 ), and the inde x ‘lens’ runs o v er all fore ground lens planes in the
ight cone. 

The cosmic shear power spectra are estimated from the square of
he F ourier-transformed conv ergence map, first av eraged in annuli of
hickness �� = 35 centred on � ∈ [35–5000]: 

 

κ,ij 

� = 〈 κi ( � ) κj ( � ) 〉 d �, (21) 

ith 〈 ... 〉 d � denoting an angular av erage o v er the solid angle of the
nnulus. Our measurements are then rebinned into 25 logarithmically 
paced bands o v er the same � -range to further reduced the sampling
oise. We refer the reader to Harnois-D ́eraps & van Waerbeke 
 2015 ) for more details on the numerical implementation of our
ensing power spectrum estimation method, which includes a mass- 
ssignment de-biasing step; we have also checked that our measure- 
ents are consistent with those using the public code LENSTOOLS 23 

Petri 2016 ). Our fiducial cosmological inference excludes � < 150
odes as these are not well measured on our 10 × 10 deg 2 patches,

nd are affected by the finite lens thickness. The high- � limit is an
ptimistic scenario, since in the real Universe these multipoles are 
lagued with systematic effects such as baryonic feedback, which 
re difficult to model and largely uncertain (Chisari et al. 2018 ). We
herefore consider as well a more conserv ati ve scenario that further
xcludes the � > 3000 modes. Note that we only extract the auto-
ngular power spectra in this work, ho we ver it is straightforward to
xtend this to include cross-redshift terms as well. 

.2 Validation 

s a first validation test, we examine the fractional error between
he C � measured from the FORGE and BRIDGE simulations and 
heir respective emulator predictions. We can see in Fig. 3 that
he agreement is generally at the few per cent level except for the
owest redshift bin, where the deviations are much larger. These 
re caused by reduced accuracy in the multiple lens approximation, 
ombined with flat-sky projection effects and broken correlations, 
ielding tilted residuals in the left-most panel. Note that ho we ver
arge this might seem, the precision of lensing surv e ys is massiv ely
educed at low redshifts, as seen by the black dashed lines, such that
hese differences should not lead to noticeable biases at the inference
tage. On small scales (large � -modes) most of the measurements
catter inside the 2.5 per cent region, consistent with the advertised
.5 per cent accuracy on the power spectrum emulator reported in
21 . The intermediate scales (300 <� < 1000) exhibit a larger scatter

eaching ∼ 5 per cent at times, caused by limits in the emulator 
redictions combined with a small amount of residual sampling 
 ariance. For e very tomographic bin, we have verified that the mean
ractional error o v er all models and all � -modes is al w ays less than
.007, which corresponds to 0.5 σ stat in the highest tomographic 
in, and much less in all other bins. From this we can expect that
mulation of weak lensing statistics from these simulations should 
lso reach 2–3 per cent absolute accuracy. This is also validated at
he cosmological inference level presented in Section 4.3 . 

We next compare the gravitational and cosmological dependence 
f the signal measured in simulations to that computed by the
MNRAS 525, 6336–6358 (2023) 

3 lenstools.readthedocs.io/en/ latest/ 
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Figure 3. Fractional error between the emulated lensing power spectrum and that measured from the FORGE (upper) and BRIDGE (lower) simulations. The grey 
lines are obtained for all 50 nodes, each time averaged over the 50 light cones (two per initial conditions). The black dashed lines indicate the 1 σ statistical error 
expected from our mock survey. Redshift increases from left to right, and the thin horizontal lines mark the 2.5 per cent precision target. 
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mulators, shown in Fig. 4 for a representative sample of FORGE

odels. These are labelled as strong (model-13), medium (model-
8), and weak (model-04), referring to the strength of their departure
rom GR. The match is excellent here and for most other cases;
iscrepancies occur only for a handful of nodes with exceptionally
ow �m 

, which are poorly modelled by HALOFIT and by the FORGE

mulator. This is well documented in A21 and is not expected to affect
ur cosmology and gravity inference results, which are all centred
n larger values of the matter density. The emulator predictions (in
ed solid) is generally within the statistical precision of our mock
urv e y (shown with the dashed black lines) for � < 1000, beyond
hich it occasionally deviates by a few per cent. This is caused
y residual inaccuracies in the FORGE emulator itself, which was
eported in A21 (see their fig. 5) to emulate the simulated matter
ower spectrum only to a few per cent precision. Similar agreements
re found for all other FORGE and BRIDGE models, which validates
oth the cosmology dependence of the light cones and the COSMOSIS

mplementation of the two MG emulators. 
Also shown in Fig. 4 are the predictions for the pure GR case (see

he thin red-dashed curve), obtained by setting B ( k , z) = 1.0 while
eeping the cosmology unchanged. The difference with respect to
he solid red line is solely due to the absence of the fifth force,
nd falls well outside the statistical error for most models. In other
ords, in absence of observational and astrophysical systematics

hat are not included in this figure, deviations from GR would likely
e observed to a high significance in our survey, if the Universe
ollowed either the medium or strong FORGE models. This raises a
e y question: giv en our mock surv e y, how weak could be detectable
eviations from GR, if they exist? The first step in answering this
s to understand what redshift and angular scales mostly contribute
owards such a measurement, an e x ercise that we carry out next with
 Fisher analysis. 
NRAS 525, 6336–6358 (2023) 
.3 Fisher information 

he origin of the constraining potential on f R 0 and H 0 r c from
easurements of the lensing power spectrum is best understood

y first fixing the cosmology in the emulators and varying only the
odified gravity parameter. This is shown in Fig. 5 for cosmology

therwise identical to our GR simulation (model-00), where we
ompare the measurements from the flat-sky GR- � CDM simulations
solid black) to the FORGE and BRIDGE predictions with different
alues of their MG parameters (the thin dotted lines). Also shown
re the expected statistical uncertainty. This figure suggests that the
nformation about the f R 0 parameter mostly comes from the high
edshift and high- � modes, where the deviations with respect to
R are amplified and the statistical error bars vastly reduced. In

omparison, the constraints on H 0 r c arise from larger scales as well,
gain with the strongest detection potential coming from the highest
edshift bins. This difference is driven by the type of fifth forces
nd screening mechanisms. In this section we dissect these signals
nd shine light on the data elements that better contribute to their
onstraints. 

We carry out this investigation with a Fisher analysis (see e.g.
akada & Jain 2009 , for a similar Fisher matrix calculation), which

s cheaper to run than a full MCMC while providing exactly the
nformation we are seeking. Given measurements of the lensing
ower spectrum, the Fisher information about a parameter π is obtain
rom 

 π = 

[
d C � 

d π

]
Cov −1 

[
d C � 

d π

]T 

, (22) 

here Cov is the covariance matrix shown in Fig. 2 , which we assume
o be cosmology independent in our calculation. A matrix product is
aken between the three terms, resulting in a single scalar quantity
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Figure 4. Ratio between the tomographic weak lensing power spectrum of different FORGE models and that of the GR model (model-00). The three rows 
respectively refer to three chosen models with different strengths of deviation from GR: weak (model-04), medium (model-18), and strong (model-13). Departure 
from unity is caused by differences in both cosmological and gravitational parameters. The main objective of this figure is to show that measurements from 

MGLENS maps (shown by the thin black lines) are in excellent agreement with the predictions of C 

κ
� using the FORGE matter power spectrum emulator (the 

solid red lines). The pair of thick dashed lines indicate the ±1 σ statistical uncertainty expected from our mock Stage-IV lensing surv e y, and redshift increases 
from left to right, as indicated abo v e the upper panels. As a comparison, we also plot with the thin dashed red lines the GR predictions from HALOFIT at these 
cosmologies. The BRIDGE simulations and predictions reach a similar level of agreement. 

Figure 5. Top: Comparison between the lensing measurements on our GR simulations (model-00, shown with the black solid) relative to GR-theory (obtained 
from HALOFIT , red solid), along with the expected 1 σ error from a 5000 deg 2 tomographic Stage-IV cosmic shear surv e y (dashed black). Predictions from f ( R ) 
models with respect to GR are shown as thin dotted lines, which can be used as a rough indicator of how well these models can be constrained. As before, 
redshift bins increases from left to right. Bottom: Same as top panels, but now the dotted lines show nDGP model with different values of H 0 r c . 
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Figure 6. Fisher information as a function of � max , the highest mode included 
in the data vector, shown here for different selections of tomographic bins. 
The top and bottom panels are for f R 0 and H 0 r c , respectively. 
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Table 2. Priors used in our cosmological inference. Except for δz i , all 
parameters are sampled with a uniform (i.e. flat) prior; a Gaussian prior of 
width 0.01 is applied on the redshift parameters, reflecting a realistic precision 
we should have on the redshift distributions. The last two parameters are 
sometimes held fixed, see the main text for more details. 

Parameter Range 

�m 

0.1–0.55 

S GR 
8 0.6–0.9 

h 0.6–0.82 
log 10 [ f R 0 ] −8.0 – −4.5 
log 10 [ H 0 r c ] −0.6–1.0 

A IA −5.0–5.0 
δz i −0.1–0.1 
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er parameter π . In short, the contribution to the information is large
or elements of the data vector that are highly sensitive to changes
n π (i.e. their deri v ati ve is large) and for which the covariance is
mall (the inverse is large). The inverse of F provides an optimistic
stimate of the covariance about π , which in our 1D case gives

f R0 = 

√ 

F 

−1 
f R0 

and σH 0 r c = 

√ 

F 

−1 
H 0 r c 

. 
Starting our dissection, we compute the Fisher information for

ifferent selections of the full data vector, first allowing variations
n the maximal multipole included in our surv e y, � max . The results
re shown in Fig. 6 with the solid black line, where for f R 0 we
bserve that the increase in information remains significant for
ll scales included here. We notice a slight transition past � max =
500 where the slope becomes shallower, due to the non-linear
oupling between the different Fourier modes (Takada & Jain
009 ). The flattening of the slope is more pronounced for H 0 r c ,
here a full information saturation is observed beyond � = 3000,

imilar to that found by Takada & Jain ( 2009 , see their fig. 3)
hen estimating the information content about the global amplitude
f the matter power spectrum. It is generally true that including
ore angular scales results in an increase of Fisher information

bout almost any parameter, ho we ver the rate at which the Fisher
nformation grows and saturates, and its dependence on redshift,
llows us to better understand what parts of the data are most 
seful. 
We ne xt e xplore the impact of adding each of the tomographic bins

ne at a time. The second line from the top shows the information
ontained solely in the highest tomographic bin, while the other lines
orrespond to different combinations of the lower redshift bins. It is
lear from this that most of the information is contained in bin 5, the
ther four bins providing only a modest additional gain. 
Using all scales and all tomographic bins, we could expect a

etection of at least 3 σ if f R 0 > 2.3 × 10 −7 or if H 0 r c < 5.1, in absence
f systematics and assuming that the cosmology is perfectly known
rom external data. We could include variations with cosmology and
arginalization o v er systematics in an upgraded Fisher calculation,

o we ver we choose instead to run full MCMC on mock data, yielding
he most accurate picture of the inference capabilities provided by
he MGLENS simulations. 
NRAS 525, 6336–6358 (2023) 
 C O S M O L O G Y  I NFERENCE  

his section presents the inference method with which we quantify
ur ability to distinguish cosmological and gravitational parameters
n different scenarios. After validating our inference pipeline on
redictions obtained from the FORGE and BRIDGE P ( k ) emulators,
e run a sensitivity test on both MG models, this time varying both

osmological and gravity parameters but first ignoring secondary
ignals and systematic uncertainties. We next validate the pipeline
n measurements from the MGLENS simulations, then investigate the
atastrophic impact of analysing mock MG data with the wrong
ravity model, thereby demonstrating the strong model-dependence
f this approach. We finally study the impact of various systematics
ffects on these measurements. 

In all cases our data vector consists of the auto- and cross-
pectra measured from the weak, medium, and strong FORGE / BRIDGE

odels in all five tomographic bins. Our likelihood assumes a
tandard multi v ariate Gaussian functional form with a fixed co-
ariance matrix (see Section 2.5 ). The predictions are computed
t arbitrary cosmologies using equation ( 17 ) augmented with the
 ( k , z) emulators, with a flat prior on the four parameters ( �m 

,
 8 , h , and either log 10 [ f R 0 ] or log 10 [ H 0 r c ]) that spans the range for
hich the emulators are supported, listed in Table 2 . One exception

o this rule is the lower bound on log 10 [ f R 0 ] which we set to −8
n order to reduce prior effects in the weak MG limit. Otherwise
he inference pipeline could wrongly reject log 10 [ f R 0 ] ∼ −7 simply
ecause it is poorly sampled. As explained before, we set B ( k , z) to
.0 whenever log 10 [ f R 0 ] ∈ [ −8 , −7]. Since the MG parameter range
 xtends o v er sev eral orders of magnitude, sampling them in log-
pace reduces prior volume effect that would otherwise artificially
pweight the larger values. In theory, one would need to sample MG
alues up to ±∞ , to reco v er GR, but in practice log 10 [ f R 0 ] = −8
nd log 10 [ H 0 r c ] = 1.0 are undetectable with the Stage-IV surv e y
nder consideration here and therefore serve as our GR limits. As
e discuss later, 1D posteriors significantly o v erlapping with these

imits are consistent with GR and only yield one-sided limits on the
G parameters. The other cosmological parameters are held fixed

o the values used in the N -body runs. In order to better focus on
he gravity/cosmology interplay, the nuisance parameters related to
ntrinsic alignments and photometric uncertainty are first set to zero.
his is relaxed in Section 4.5 , at which point they are also varied in

he likelihood sampling. 
We carry out our cosmology inferences with the likelihood sampler

ULTINEST (Feroz, Hobson & Bridges 2009 ), which is run within
OSMOSIS . This sampling method has been used and validated in
 number of previous works, notably in the cosmic shear analysis
f the KiDS-1000 data (Asgari et al. 2021 ) and of the DES-Year
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 data (Secco et al. 2022 ). It has been reported in Lemos et al.
 2023 ) that the projected contours could be slightly o v erconstraining
n some cases compared to alternati ve samplers, ho we ver we opted
or MULTINEST as it is much faster and its accuracy is sufficient to
upport the scientific goals of this paper. The chains all ran in 5000
teps and are analysed with GETDIST. 24 

.1 Likelihood-based forecasts on f R 0 and H 0 r c 

orecasts on weak lensing f R 0 and H 0 r c constraints found in the
iterature need to be revisited, mostly due to recent impro v ements
n modelling the deep non-linear matter power spectrum in presence 
f a screened fifth force. For example, Pratten et al. ( 2016 ) forecast
hat with a full-sky 3D weak lensing analysis based on spectroscopic 
ata, and assuming that the cosmological background is fixed by 
MB data, one could constrain f R 0 < 5 × 10 −6 . Their χ2 analysis is

impler than our full MCMC approach, they used a hybrid one-loop 
erturbation theory and halo-model to compute the P ( k ) in presence
f MG, and unlike us they do not include WL systematics. Other
xamples include the Euclid forecast of Thomas, Abdalla & Weller 
 2009 ) that predicts from a Fisher analysis that the nDGP signal will
e clearly detectable from lensing alone. 25 Martinelli et al. ( 2011 )
nd Casas et al. ( 2017 ) also predicts clear detection of MG signal
rom Euclid , this time using MGCAMB (Hojjati et al. 2011 ) for the
 ( k ) modelling, including � -modes up to 5000, and assuming the
ommonly used ( μ, �) phenomenological parametrization. None of 
hese adequately investigate the sensitivity of modern cosmic shear 
urv e ys. Perhaps the most realistic forecast to date is that from Bose
t al. ( 2020 ), which investigate the constraining power of an LSST-
ike surv e y on f ( R ) and nDGP gra vity, b ut it ignored tomography and
econdary signals caused by intrinsic alignments of galaxy. The rest 
f this paper is therefore a step forward in realism, as we present a
eries of forecasts based on tomographic cosmic shear, progressively 
ncluding most of the ingredients that are rele v ant for lensing. Before
ringing on the full machinery, we first start with simplified scenarios 
n order to gain a better physical and statistical understanding of the
easurements at hand. 
Fig. 7 (top panel) presents the posterior distributions from three 

ikelihood samplings, in which the data are taken directly from the 
ORGE emulator predictions, at cosmology-00 and for log 10 [ f R 0 ] =
6 . 5 , −6 . 0, and −5.5. We observe a strong degeneracy between
 R 0 and S 8 , expected from the fact that these two parameters both
odulate the o v erall amplitude of the lensing signal. This degrades

he constraining performance with respect to our previous Fisher 
alculation (Section 3.3 ). If S 8 was fixed, we could indeed detect
ith high significance these three models (imagine slicing through 

he S 8 − f R 0 contours along the vertical dashed line at the input S 8 
 alue), ho we ver the two weakest models are hitting the GR-limit
hen S 8 becomes large. The f R 0 = 10 −5 . 5 model, on the other hand,
ould be detected at the ∼3 σ level. This is an order of magnitude

ess constraining than what was found by our 1D Fisher forecast, but
s more realistic as we are now fully including gravity-cosmology 
egeneracies. 
The lower panel of Fig. 7 shows a similar e x ercise carried out on

DGP data taken directly from the BRIDGE emulator. We observe 
hat in all cases the three parameters are correctly inferred, and 
hat the [ S 8 − H 0 r c ] de generac y direction is inverted compared
4 GETDIST : getdist.readthedocs.io/en/ latest/ . 
5 In their work, Thomas et al. ( 2009 ) use a different DGP parametrization, 
eplacing H 0 r c by a derived α parameter. 

b  

l
a
m
v

o f R 0 due to the fact that in this model strongest deviations
ccur for smaller H 0 r c values. Finally, whereas the posterior from
eakest nDGP model in this figure (grey contours, correspond- 

ng to log 10 [ H 0 r c ] = 0.2) is prior-dominated towards the higher
 0 r c bound, the other two models are not: H 0 r c < 1.0 could
e detected beyond 3 σ in this forecast. Once again this error is
ess constraining than our Fisher forecast, as expected from the 
dded realism. Fixing cosmology would significantly help in this 
easurement as well, as the posteriors are narrow along a fixed S 8 

alue. 
MNRAS 525, 6336–6358 (2023) 
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Figur e 8. Mar ginalized constraints on the FORGE (upper) and BRIDGE (lower) 
parameters when analysing lensing maps from the GR simulations. Given our 
prior limits and the important de generac y between S 8 and the MG parameters, 
we reco v er the e xpectation that the input truth is well inside the 1 σ contours, 
but not necessarily at the centre. 
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.2 Reco v ering the GR- � CDM simulation 

ig. 8 presents our first inference validation test on the MGLENS

imulations, where we run our analysis pipeline on the GR-only
imulations, assuming consecutively a FORGE and BRIDGE gravity
odel (top and bottom panels, respectively). It is important to note

ere that our noise-free data have been measured from 5000 deg 2 , and
ur analytical covariance matrix assumes the same area and includes
hape noise. We therefore expect the input truth to lie close to the
entre of the 1 σ regions, but offset can be caused by residual sampling
ariance in the mocks and interpolation errors from the emulators.
his is indeed consistent with what we observe in Fig. 8 , establishing
NRAS 525, 6336–6358 (2023) 
hat we correctly infer the input cosmological parameters, and prefer
odified gravity models that are beyond detection, with: 

og 10 [ f R0 ] < −5 . 42 , 

nd 

og 10 [ H 0 r c ] > 0 . 140 , 

n absence of systematics (both upper limits are reported with
5 per cent CL). Note that these one-sided limits depend on the
rior range we adopt: larger sampled volumes (on the weak MG
ide) down-weight the tails and hence artificially increase the
onstraining power. For example, truncating the MCMC chains at
og 10 [ f R 0 ] = [ −7.0, −7.5, −8.0] yield upper limits of [ −5.36, −5.42,
nd −5.48], respectively. We selected the middle value in this work,
ut care must be taken when comparing these results with others
ound in the literature. Similarly, we truncate the nDGP chains at
og 10 [ H 0 r c ] = 0.8 to a v oid f alse tw o-sided constraints coming from
itting the prior edge. Note that the results obtained here seem at first
o contradict Fig. 5 , in which models with f R 0 > 10 −6 . 0 are more
hat 3 σ away from GR at high-redshift (see the right-most panel),
ut this observation ignores the [ f R 0 − S 8 ] de generac y, which hinder
ossible MG detections. 
An important feature of this figure is that the de generac y between

 R 0 and S 8 vanishes when sampling lower f R 0 values, as seen
n the lower part of the contours which are close to vertical;
his is also seen in Fig. 7 . That is likely due to the fact that a
mall f R 0 tends to have little modification to the clustering in the
inear regime on large scales, where the amplitude of clustering is
nfluenced by S 8 more directly; instead, it tends to cause stronger
eviations to its GR counterpart only at the very small scales, where
here is also a stronger non-linearity, thus a weaker connection
o the amplitude parameter S 8 . Put together, these two factors,
he relatively stronger effect of f R 0 on small scales and stronger
on-linearity, naturally break the de generac y between f R 0 and S 8 
hen f R 0 is small. This is not the case for other FORGE models
ith a stronger MG sector, as we will see in the following 

ection. 
For nDGP, shown on the bottom panel of Fig. 8 , the degeneracy

ith S 8 is present at e very v alue of H 0 r c , e ven for weak deviations
rom GR, but the input cosmology is well reco v ered, ev en though
his model is at the edge of the latin hypercube. 

.3 Reco v ering the FORGE and BRIDGE simulations 

e now turn our attention to other MGLENS nodes, with Fig. 9 show-
ng the inferred parameters when analysing a series of FORGE and
RIDGE data vectors (left and right panels, respectively), specifying

he correct gravity framework ( f ( R ) or DGP) at the moment; we
nvestigate later the result of specifying the wrong framework. We
resent, from top to bottom, models with increasing deviations from
R. Once again the input cosmologies are reco v ered within 1 σ ,
hich validates both the MGLENS simulations and the COSMOSIS

mplementation of the FORGE and BRIDGE emulators in our end-
o-end cosmological inference. One of the most important features
een here is the strong de generac y between the MG parameters
 f R 0 , H 0 r c ) and S 8 . Looking now at the posteriors, according to
hese results, if the gravitational physics of our Universe matched
he medium or strong models in these surv e y conditions, we could
trongly rule out GR and constrain the MG sector with our surv e y.
he marginalized posteriors on the parameters of interests are
ummarized in Table 3 , where, for example, our measurement for the
eak FORGE yields log 10 [ f R 0 ] = −6.62 + 0 . 79 

−0 . 79 , which is fully consistent
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Figur e 9. Mar ginalized constraints on the FORGE (left) and BRIDGE (right) parameters, for models-04 (upper panels, weak MG), −18 (middle panels, medium 

MG), and −13 (lower panels, strong MG), when analysing lensing maps from the MGLENS simulations. No systematics are included here. 
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ith the input truth ( −6.09). Similar results can be seen for the
DGP inference analyses, where the large values of H 0 r c are heavily
isfa v oured, while successfully reco v ering the input simulation 
alues. 
The observed [ f R 0 , S 8 ] degeneracy limits the precision we can
chieve on these two parameters separately, which incites us to 
efine a combination that is better measured. Inspired by the � 8 

σ 8 ( �m 

/0.3) α composite lensing parameter, we introduce a new 
MNRAS 525, 6336–6358 (2023) 
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Table 3. Measurements of the modified gravity parameters inferred from 

the tomographic weak lensing power spectrum analysis of the FORGE and 
BRIDGE simulations. We show the results for a selection of models (top to 
bottom show GR, f ( R ), and nDGP gravity). The last column shows the impact 
of marginalizing o v er the A IA nuisance parameter. In our FORGE and BRIDGE 

emulators, the GR node is taken at log 10 [ f R 0 ] = −7.0 and log 10 [ H 0 r c ] = 1.0, 
respectively. Upper and lower limits are reported at 95 per cent CL. 

Model Parameter Truth No-syst IA 

GR �m 0.313 0.302 + 0 . 010 
−0 . 006 0.298 + 0 . 015 

−0 . 012 

S GR 
8 0.840 0.835 + 0 . 009 

−0 . 004 0.830 + 0 . 015 
−0 . 006 

log 10 [ f R 0 ] −∞ < −5.42 < −4.77 
log 10 [ H 0 r c ] ∞ > 0.140 > 0.090 

FORGE -weak �m 0.316 0.313 + 0 . 017 
−0 . 017 0.313 + 0 . 017 

−0 . 019 

S GR 
8 0.617 0.618 + 0 . 008 

−0 . 006 0.618 + 0 . 008 
−0 . 007 

log 10 [ f R 0 ] −6.09 −6.62 + 0 . 79 
−0 . 79 −6.63 + 0 . 78 

−0 . 78 

ζR 0 −25.3 −27.2 + 3 . 9 −2 . 4 −27.3 + 3 . 7 −2 . 4 

FORGE -medium �m 0.323 0.320 + 0 . 008 
−0 . 006 0.319 + 0 . 012 

−0 . 0098 

S GR 
8 0.893 0.892 + 0 . 008 

−0 . 003 0.886 + 0 . 014 
−0 . 0053 

log 10 [ f R 0 ] −5.43 −5.32 + 0 . 13 
−0 . 19 −5.19 + 0 . 22 

−0 . 26 

ζR 0 −3.55 −3.49 + 0 . 06 
−0 . 05 −3.51 + 0 . 10 

−0 . 075 

FORGE -strong �m 0.347 0.362 + 0 . 018 
−0 . 018 0.365 + 0 . 016 

−0 . 016 

S GR 
8 0.841 0.861 + 0 . 017 

−0 . 012 0.864 + 0 . 016 
−0 . 014 

log 10 [ f R 0 ] −4.90 −5.32 + 0 . 50 
−0 . 39 −5.34 + 0 . 49 

−0 . 44 

ζR 0 −4.33 −4.15 + 0 . 12 
−0 . 09 −4.10 + 0 . 12 

−0 . 12 

BRIDGE -weak �m 0.316 0.313 + 0 . 015 
−0 . 017 0.314 ± 0.018 

S GR 
8 0.617 0.616 + 0 . 009 

−0 . 011 0.6162 ± 0.0084 

log 10 [ H 0 r c ] 0.602 0.49 + 0 . 26 
−0 . 33 0.51 ± 0.26 

ζr c × 10 3 0.36 0.36 + 0 . 12 
−0 . 35 0.36 + 0 . 16 

−0 . 34 

BRIDGE -medium �m 0.323 0.322 + 0 . 006 
−0 . 005 0.3245 + 0 . 0080 

−0 . 0063 

S GR 
8 0.893 0.893 + 0 . 007 

−0 . 004 0.8886 + 0 . 0082 
−0 . 0057 

log 10 [ H 0 r c ] −0.163 −0.189 + 0 . 065 
−0 . 035 −0.209 + 0 . 071 

−0 . 064 

ζr c −1.478 −1.68 + 0 . 22 
−0 . 26 −1.67 + 0 . 36 

−0 . 31 

BRIDGE -strong �m 0.347 0.342 + 0 . 006 
−0 . 006 0.340 + 0 . 0098 

−0 . 012 

S GR 
8 0.841 0.850 + 0 . 013 

−0 . 008 0.855 + 0 . 011 
−0 . 0095 

log 10 [ H 0 r c ] −0.443 −0.395 + 0 . 095 
−0 . 076 −0.355 + 0 . 091 

−0 . 079 

ζr c −0.845 −1.00 + 0 . 11 
−0 . 15 −1.047 ± 0.089 
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26 The precision is defined here as the ratio between the error and the best- 
fitting value for a given parameter. 
27 The p -value is computed from the χ2 conditional distribution function 
and the number of degrees of freedom; it is routinely used for rejection of 
null-hypotheses. 
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ariable which runs across the minor axis of the de generac y ellipse: 

α
R 0 

≡ log 10 [ f R 0 ] 

(
S GR 

8 

0 . 82 

)α

, (23) 

here α is a free parameter to be optimized. For small values of f R 0 ,
= 5.0 returns a ζ α

R 0 
that is mostly orthogonal to both S 8 and �m 

,
aking this an attractive target measurement for future cosmic shear

xperiments. We post-pone to future work the impact of letting α
ree in a likelihood analysis. 

The equi v alent de generac y-breaking parameter for nDGP models
an be constructed as 

α
r c 

≡ log 10 [ H 0 r c ] 

(
S GR 

8 

0 . 82 

)α

, (24) 

here α = 26 works better for the nDGP models. We show in
ig. 10 the marginalized constraints on these two new parameters,
α
R 0 

and ζ α
r c 

, where the de generac y with respect to S 8 and �m 

is
NRAS 525, 6336–6358 (2023) 
ighly suppressed. The accuracy on these composite parameters
s increased, where for example a 8 per cent measurement 26 of
og 10 [ f R 0 ] results in a 3 per cent precision on ζ α

R 0 
in the strong FORGE

odel. Similar impro v ements are seen on nDGP parameters, where
 22 per cent measurement of log 10 [ H 0 r c ] becomes a 13 per cent
easurement of ζ α

r c 
in the strong BRIDGE model. The measurements

eported in Table 3 indicate a net gain in precision for all models. 
By construction, the variables ζ α

R 0 
and ζ α

r c 
down-weight parameter

egions of weak modified gravity, which therefore interacts with prior
imits. These parameters are therefore mostly useful for medium and
trong modified gravity models, but we advise against using them
or one-sided limits. 

.4 Degeneracies between gravity models and cosmology 

ne of the main difficulties in detecting deviations from GR comes
rom the abundance of models to be tested, which each affect the
rowth of structures in different w ays. A k ey question to be answered
s whether one can confuse a clear detection of gravity model ‘A’
t some cosmology with a different gravity model ‘B’ at a different
osmology. The first part of the answer is already provided in the
R-only validation test, where both the FORGE and BRIDGE emulators

ecognize negligible deviations from GR in the GR-only model, both
nferring the right cosmology. This is encouraging since it suggests
hat GR can be recognized as such. 

Complications arise when analysing truly non-GR data with the
rong gravity model. The lower panels of Fig. 11 shows such

xamples, where three FORGE data vectors are analysed with the
RIDGE emulator. For the weak model (left), this results in a minor
ias in �m 

and S 8 , and a wide posterior on H 0 r c that hits the upper
dge prior, leading to inconclusive detection of MG. The central and
ight panels, ho we ver, re veal catastrophic biases on the cosmological
arameters for the medium and strong models. The two cosmological
arameters are shifted towards higher values, while the posteriors
ndicate an apparent H 0 r c detection. We report these shifts in Table 4 ,
n units of statistical precision σ . Similarly catastrophic results are
bserved when, on the contrary, we analyse nDGP data with the
ORGE emulator (see the upper panels of Fig. 11 ); in this case most
nferred cosmological parameters are also far from the truth, and
he f R 0 parameter is falsely detected with high significance for the

edium nDGP model. Biases also occur if data from a modified
ravity universe is analysed within GR, in which case the additional
tructure formation caused by the fifth force is interpreted as a higher
 8 value, as expected from the de generac y between these quantities.
e see again that the weak models has almost no impact on the

nferred cosmology (shift ∼1 σ ), whereas the stronger models can
ffset �m 

and S 8 by tens of σ . For example, with sub-per cent
tatistical precision on S 8 , a bias of � S 8 = 0.05 is almost a 8 σ shift.

This inevitably raises the question of whether we could disco v er
hat we are analysing the data with the wrong gravity model. One
f the approaches commonly used is to examine the goodness-
f-fit , which informs us on the quality of the data-model match.
his can be computed with the p -value measured at the best-fitting
arameters for different gravity models, from which one can test
if ferent hypotheses. 27 A p -v alue belo w 0.01 generally indicates that
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Figur e 10. Mar ginalized constraints on the two composite parameters introduced in this paper, ζ α
R 0 

and ζ α
r c 

(see equations 23 and 24 ), which are best measured 
by cosmic shear data when cosmology and modified gravity parameters are jointly varied. These are extracted from the MGLENS simulated data at the weak f ( R ) 
(left) and medium nDGP (right) gravity models. 

Figure 11. Catastrophic impact of mixing the gravity model. (Upper:) Marginalized parameter constraints when analysing BRIDGE simulations (left is the weak 
model, centre is the medium, right is the strong model-05) with the FORGE emulator, yielding to catastrophic biases. (Lower:) Counterpart of the upper panels, 
now analysing FORGE simulations with the BRIDGE emulator. 
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he hypothesis should be rejected. In our case this test is done with
oise-free data, so the p -values can approach 1.0 in case of excellent
ts. The ideal case here would be to obtain low p -values whenever

he wrong gravity model is being used. Table 4 presents the measured
 -values for different plausible analysis scenarios. It turns out that 
ome simulated data (e.g. FORGE -weak and BRIDGE -weak) can be 
ell fitted by all three gravity models (i.e. their p -values are high),
ue to weakness of the departure from GR. f ( R ) gravity can also
rovide a good fit to the BRIDGE -medium data, which is achieved
t the cost of significantly lowering �m 

. This bias is clearly seen
n the up per central panel of Fig. 11 . One would have problems,
n such a case, to distinguish between gravity models from the sole
oodness-of-fit results. Other test cases are easier to reject based 
n their bad goodness-of-fit, such as FORGE -strong and BRIDGE -
trong, which can only be well fit with the correct gravity model.
e also observe that analysing some models within GR pushes the

ikelihood outside of our already wide prior, which is in itself an
ndication that something is off with the modelling, even though 
he solution (to switch gravity model) might not be obvious at 
rst. 
Other metrics are better suited for model-selection, notably the 

ayesian Evidence ratio (Hobson, Bridle & Lahav 2002 ; Marshall, 
MNRAS 525, 6336–6358 (2023) 



6352 J. Harnois-D ́eraps et al. 

M

Table 4. Impact on the cosmological parameters �m 

and S 8 when analysing MG simulated data with the wrong gravity model. Column � CDM + GR shows 
the results of analysing MGLENS simulations with a GR model (i.e. HALOFIT ), while the ‘Wrong MG’ columns consider FORGE data analysed with the BRIDGE 

emulator and vice versa. The parameter shifts are computed as | bestfit – true | / σ , and the p -values assume four free parameters. Posteriors o v erlapping with prior 
edges are flagged as such. We also show the evidence ratio R , defined in the main text, which is often used in model selection. It can be interpreted here as the 
odds of the true model describing the data compared to the alternative model (GR or wrong MG), and R ∼ O(1) means that both models are equally likely. 

True True model � CDM + GR Wrong MG 

Gravity model Param Shift p -value Shift p -value R Shift p -value R 

FORGE -weak �m 

0.2 σ 1.0 0.25 σ 1.0 1.08 0.8 σ 1.0 1.17 
S 8 0.1 σ < 0.1 σ 0.5 σ

FORGE -medium �m 

0.4 σ 1.0 prior – – prior – –
S 8 0.1 σ limited limited 

FORGE -strong �m 

0.8 σ 1.0 9.2 σ 0.68 3.42e5 29.6 σ 0.0 2.18 
S 8 1.4 σ 11.0 σ 11.7 σ

BRIDGE -weak �m 

0.2 σ 1.0 1.1 σ 1.0 2.44 1.3 σ 1.0 2.46 
S 8 0.1 σ 2.2 σ 0.9 σ

BRIDGE -medium �m 

0.1 σ 1.0 prior – – 17.0 σ 1.0 836 
S 8 0.0 σ limited 1.2 σ

BRIDGE -strong �m 

0.8 σ 1.0 prior – – 12.9 σ 0.0 2.18 
S 8 0.8 σ limited 19.0 σ

R  

m  

o  

e  

i  

t  

t  

p  

s
 

a  

d  

s  

−  

o  

t  

t  

m  

h  

r
 

t  

h  

c  

r  

o  

t  

w  

b  

s  

a  

s
 

t  

(  

t  

e  

t

4

T  

c  

a  

b  

a  

f  

s  

�  

s  

H  

l  

T  

s
 

s  

a  

t  

n  

t  

g  

c  

p

P

a

P

I  

i  

d  

D  

s  

i  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/4/6336/7263281 by guest on 30 January 2024
ajguru & Slosar 2006 ), which relies on computing the prior-
arginalized likelihood, a quantity directly available from the output

f our MULTINEST chains. Specifically, the ratio between the Bayesian
vidences, R [1 , 2] ≡ Z 1 / Z 2 , which are respectively computed by
nte grating o v er the full posterior volumes obtained from analysing
he same data with models 1 and 2, provides the Bayesian probability
hat model 1 better describes the data o v er model 2. Both models are
lausible when R is of the order of unity, while model 1 would be
trongly fa v oured o v er model 2 for R � 1 . 0. 

We therefore compute the evidence ratios between f ( R ), nDGP,
nd GR given the weak, medium, and strong FORGE and BRIDGE

ata. F or e xample, the evidences obtained from analysing FORGE -
trong simulation with the three gravity models are log[ Z f ( R) ] =
16 . 6, log[ Z DGP ] = −17 . 4, and log[ Z GR ] = −29 . 4, from which we

btain R [ f ( R) , DGP ] = 2 . 18 and R [ f ( R) , GR ] = 3 . 42 × 10 5 . In
his case, GR can be safely ruled out, but none of the two MG
heories can be rejected based on the evidence ratio, albeit a only

inor preference for the f ( R ) model. The p -value is more informative
ere, being close to 0.0 when using the wrong model. All results are
eported in Table 4 . 

Interestingly, the two weak MG cases provide evidence ratios of
he order of unity when analysed with all gravity models, and all
ave p -values of the order of unity as well. This means that given the
urrent summary statistics, the data are not precise enough for us to
eco v er with certainty the true gravity model. Possible solutions to
 v ercome this are to augment the analysis with prior knowledge of
he cosmological parameters from e.g. the CMB, or analyse the data
ith higher order statistics to further break degeneracies, which will
e the subject of future work. In any case, having a variety of MG
imulations is critical to properly understand how gravity models
re degenerate with cosmology and propose meaningful mitigation
trategies. 

It is worth mentioning that the evidence metric is dependent on
he prior volume, and for this reason the Suspiciousness statistics
Lemos et al. 2020 ) is often viewed as superior, being more robust
o prior-effects, although computationally e xpensiv e (see Joachimi
t al. 2021b , for a recent discussion on the application of such metrics
o real cosmological data). 
NRAS 525, 6336–6358 (2023) 
.5 Impact of systematics 

he results from the beginning of Section 4 are obtained in unrealisti-
ally clean conditions; as discussed previously, cosmic shear surv e ys
re in fact affected by poorly constrained intrinsic alignments (IA),
y uncertainty on the photometric redshift (photo- z) distributions
nd shape calibration, as well as by largely unconstrained baryonic
eedback. Additionally the weak lensing signal is mildly sensitive to
ome of the other cosmological parameters such as the baryon density

b , the sum of neutrino masses �m ν or the tilt in the primordial power
pectrum, n s , such that our constraints are likely slightly o v erprecise.
ere we focus on two of these, namely the photo- z and the IA,

eaving a more comprehensive study of the others for future work.
o some extent the impact of baryon can be reduced by removing
ome of the non-linear scales, which we also touch upon below. 

Using COSMOSIS for the calculation of the theoretical cosmic
hear predictions has key advantages when it comes to modelling
nd marginalizing o v er the known weak lensing systematics. First,
he public version includes an implementation of the widely used
on-linear alignment model (Bridle & King 2007 ), which describes
he IA contamination from a linear coupling between the intrinsic
alaxy orientations and the local tidal field. This results in a two-
omponent secondary signal that can be computed from the matter
ower spectrum as (Hirata & Seljak 2004 ; Bridle & King 2007 ): 

 II ( k, z) = 

(
A IA C̄ 1 ̄ρ( z) 

D ( z) 

)2 

a 4 ( z) P δ( k, z) (25) 

nd 

 GI ( k, z) = −A IA C̄ 1 ̄ρ( z) 

D ( z) 
a 2 ( z) P δ( k, z) . (26) 

n the abo v e e xpressions, P δ( k , z) is the matter power spectrum
ncluding the MG enhancement, ρ̄( z) is the background matter
ensity, D ( z) is the ‘rescaled linear growth factor’ defined as
 ≡ D(1 + z), and C̄ 1 is a constant calibrated in Brown et al. ( 2002 ),

et to 5 × 10 −14 M 

−1 
� h 

−2 Mpc 3 . These are then inserted in the Limber
ntegral (equation 17 ), where now the lensing kernels q i ( χ ) q j ( χ )
re replaced by q i ( χ ) n j ( χ ) and n i ( χ ) n j ( χ ) for the GI and II terms,
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Figur e 12. Mar ginalized constraints on the parameters best probed by 
lensing, with and without including contamination from intrinsic alignment 
in the modelling, inferred from the MGLENS simulated lensing data. 
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espectively. A further redshift dependence can be implemented with 
 multiplicative term of the form (

1 + z 

1 + z pivot 

)ηIA 

ith z pivot and ηIA two additional free parameters. This model has 
een shown to accurately capture the IA signal in many cosmic shear
nalyses (see e.g. Troxel et al. 2018 ; Asgari et al. 2021 ), with weak
igns of potential limitations in the most recent DES-Y3 analysis by 
ecco et al. ( 2022 ). In all cases, IA significantly biases the inferred
osmology if left unmodelled, ho we ver the redshift e volution is
nly weakly constrained in these surv e ys. In fact, assuming no IA
edshift evolution affects the inferred cosmology by less than 0.3 σ ,
hich is significantly less than the shift caused by switching to 

he more physical model that includes tidal torquing (Blazek et al. 
019 ). Choosing the right IA model given the data is still an open
ssue (Campos, Samuroff & Mandelbaum 2023 ), and in light of
his uncertainty we opted to ignore the poorly constrained redshift 
volution of the IA signal in our forecasts. We therefore model IA
ith a single scaling parameter, A IA , which we vary o v er the range

 −5.0, 5.0] in line with these previous analyses, and set ηIA = 0. 
A second advantage of using COSMOSIS is that it deals with the

ncertainty on the redshift distribution by shifting the tomographic 
 

i ( z) by a constant quantity δi 
z , which we treat independently for

ach tomographic bin i : n i ( z) = n i ( z + δi 
z ). It has been shown that

n some cases these shift parameters are correlated (Wright et al. 
020 ), ho we ver we ignore this here. Our five δi 

z parameters are
ampled assuming a Gaussian prior of width 0.01, similar to the 
ccurac y achiev ed by current weak lensing surv e ys (for e xample,
n accuracy between 0.0084 and 0.0116 on these δz parameters is 
chieved with the KiDS-1000 data, see Hildebrandt et al. 2021 ). 
e do not include the uncertainty on shape calibration (i.e. the m -

ias, see Giblin et al. 2021 ) as it is currently subdominant compared
o the effect of IA and photometric redshift (Asgari et al. 2021 ;
ecco et al. 2022 ). Importantly, we neglect the impact of baryon
eedback, which is arguably the largest approximation in our analysis. 
ndeed, baryons significantly redistribute the matter distribution and 
uppress the lensing signal by tens of per cent depending on the
cales and baryonic physics (Semboloni et al. 2011 ; Harnois-D ́eraps 
t al. 2015a ). We could extend our results by using for instance the
atter power spectrum provided by HMCode (Mead et al. 2021 ) 

n which the impact of baryons is modelled, but we leave this for
uture work. We finally assume a constant total neutrino mass set
o �m ν = 0.0 eV, in order to be consistent with the FORGE and
RIDGE simulations. All of these analysis choices have an impact on 

he inference and will need to be revisited in order to make robust
onstraints on the MG parameters from cosmic shear data, ho we ver
ur simplified likelihood e v aluations represent an important first step 
n this direction. 

We show in Fig. 12 (and summarize the results in Table 3 ) the
mpact of IA on the marginalized constraints for some of the FORGE

nd BRIDGE models. As expected, the presence of IA degrades the 
onstraints on most parameters, where for example the 1.4 per cent 
easurement of S 8 value in the FORGE medium model becomes a 

.9 per cent measurement. The same model sees the constraints on 
og 10 [ f R 0 ] degrade from a 5.4 per cent to a 6.7 per cent measurement.

e also note that for some models (e.g. FORGE medium, BRIDGE 

trong), the IA contamination acts mostly along the [ f R 0 − S 8 ] or
 H 0 r c − S 8 ] de generac y directions, whereas for other models the
osterior is inflated in all dimensions (e.g. FORGE -strong). Finally 
ow- S 8 models appear to be less affected (e.g. FORGE weak), which
s expected since the IA signal also scales with S 8 , causing them
o be harder to distinguish from the cosmological signal given our
x ed co variance matrix. Also worth repeating here is that our data
ector includes the cross-tomographic terms, which are more affected 
y IA as they are highly sensitive to the ‘GI’ alignment term, i.e.
he coupling between the background shearing and the intrinsic 
lignment of foreground galaxies (Hirata & Seljak 2004 ). These 
ncrease the contamination, but at the same time further help in
onstraining the IA sector and therefore self-calibrate. Indeed, A IA is 
ne of parameters that is best measured by cosmic shear data (Asgari
t al. 2021 ; Secco et al. 2022 ; Heydenreich et al. 2022 ), even though it
s an ‘ef fecti ve’ model that depends on a number of physical selection
ffects such as galaxy types, colours, and bias (Blazek et al. 2019 ).
nterestingly, there is a mild de generac y between the A IA and the MG
arameters, such that using the wrong gravity model can lead to an
pparent IA signal. The effect is generally small, but can lead to a
alse detection larger than 1 σ , as it is the case for the GR analysis of
he strong BRIDGE model. 

The redshift error are in comparison very small due to the narrow
nformative Gaussian prior that we are able to use. We have tested
 few chains with the photo- z nuisance turned on and found almost
o visible effect on the marginalized contours. Since this is the case
or all models analysed we conclude that under these circumstances 
MNRAS 525, 6336–6358 (2023) 
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M

Figure 13. Impact of scale cuts on the marginalized constraints obtained 
from the analysis of MGLENS simulated lensing data in the strong FORGE 

model. 
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hoto- z errors are completely subdominant to IA and we do not
nvestigate this any further. 

Regarding baryons, a common approach to protect analyses
gainst their uncertain impact consists in excluding the deeply non-
inear scales from the data vector (as in, e.g. Troxel et al. 2018 ; Amon
t al. 2021 ), which in our case are the high- � modes. Lowering the
ighest � from 5000 to 3000 typically results in a degraded constraint
n the modified gravity parameters, largely due to an increased
e generac y with S 8 , but this degradation is not catastrophic, as shown
n Fig. 13 . This is consistent with our Fisher calculations, according
o which the information partly saturates by � = 3000. Therefore,
hile we expect the impact of varying � max to lower the precision,

he amount by which it does is not easily predictable due to the
ighly non-trivial degeneracies that exists in the high-dimensional
ikelihood space. 

Finally, as mentioned earlier, an ingredient central to cosmological
nference is the covariance matrix, which in the case of two-
oint statistics can be either modelled analytically or estimated
umerically. This choice is not guaranteed to exists for all probes,
nd in fact many other weak lensing statistics must rely on an
nsemble of mock data such as the SLICS to estimate the matrix.
he validation process of these multipurpose mocks generally

ncludes a comparison with the analytical predictions for covariance
atrix about two-point statistics. A first step of this comparison is

hown already in Fig. 2 , which visually demonstrate that the cross-
orrelation coefficient matrices are consistent with one another. A full
uantitati ve v alidation must go beyond this, and we sho w in Fig. 14
he cosmological inference resulting from using the two matrices. We
bserve that both posteriors fully overlap, providing identical best-
tting values on �m 

, and differences on S 8 that vary by less than 0.2 σ .
he upper limits of log 10 [ f R 0 ] shift by under 4 per cent, from −5.42

o −5.18. Note that the differences observed here are not exclusively
aused by inaccuracies in the mocks, as many other factors can source
mportant deviations, such as choices in the implementation of shape
oise or masking (Joachimi et al. 2021a ). In particular, the total
urv e y areas match in both cases, ho we ver the analytical calculations
ssume a spherical surv e y whereas the mocks are square-shaped.
hus the small observed shifts in the cosmological inferences should
e viewed as systematic uncertainties, not as biases, which thereby
stablishes the precision on the covariance one can expect from these
LICS mocks for any alternative weak lensing probes. 
NRAS 525, 6336–6358 (2023) 
Also note that in an actual data analysis, the accuracy of the B δ( k ,
) emulator itself should be propagated into the covariance matrix in
rder to capture the modelling uncertainty. 

 DI SCUSSI ONS  A N D  C O N C L U S I O N S  

his paper introduces the MGLENS simulations, a large set of lensing
aps sampling five cosmological and MG parameters within a

olume that is wide and dense enough to analyse current Stage-III
osmic shear surv e ys. We demonstrate that the lensing power spectra
easured from these simulations match well with the theoretical pre-

ictions obtained by the BRIDGE and FORGE emulators, validating at
he same time both the simulation suite and our gravitocosmological
nference pipeline implemented within COSMOSIS . 

We next carry out a series of investigations using MGLENS and
ur analysis pipeline. Notably, we find that next-generation lensing
urv e ys will be powerful at constraining the gravity sector: in our
implified systematics-free analysis, we forecast that 5000 deg 2 of
pcoming data could lead to 3 σ detection of a value of f R 0 as
eak as 5.5 × 10 −5 , and H 0 r c as low as 1.0. We acknowledge
 number of caveats, including the absence of marginalization
 v er baryon feedback, or fixing the values of other cosmological
arameters that have a secondary impact on the cosmic shear signal.
hese will inevitably translate into a slightly larger uncertainty
udget in an more complete data analysis, ho we ver the statistical
ower displayed in our surv e y should remain relatively unchanged.
oreo v er, these forecasts are for cosmic shear data alone; adding

lustering, g alaxy–g alaxy lensing and/or CMB data could impro v e
he constraints further. An additional gain of precision could be
chieved by analysing the data with non-Gaussian statistics. 

When inferring cosmology from different input model vectors,
e identify in many cases a strong de generac y between the input S 8 
alue (related to the primordial power spectrum amplitude A s ) and the
odified gravity parameters; we propose new composite parameters

hat are better measured by lensing, namely ζ α
R 0 

and ζ α
r c 

, on which the
recision is increased by up to a factor of two. 
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We lastly explored the impact of analysing data with the wrong 
ravity model, typically finding a catastrophic impact on the inferred 
osmology with biases exceeding at times 20 σ in some cases, as
ell as an unphysical detection of MG features. The goodness-of- 
t is generally best when using the correct gravity models, but not
l w ays: some data are well fitted by more than one model and the
ayesian evidence ratio is unable to tell them apart. This means that
ther analysis methods will need to be developed in order to better
ifferentiate the gravity sector, such as the Suspiciousness metric, 
he recent empirical approach of Campos et al. ( 2023 ), or by looking
t probes different from the lensing power spectrum. 

The MGLENS simulations are organized as a series of flat-sky 
nd curv ed-sk y conv ergence maps, which can be analysed with any
eak lensing statistics. Combined with the large SLICS ensemble 
roduced for the e v aluation of covariance matrix, the MGLENS suite
re ideally suited to explore the sensitivity of novel statistics to cos-
ological and gravitational parameters. To validate this approach, we 

est our inference framework with either an analytical or simulation- 
ased covariance matrix, finding an excellent recovery of the input 
ata vector in both cases. Cosmic shear analyses beyond two-point 
tatistics will be presented in companion papers. Our goal is to 
rovide the community with some of the best tools with which to
earch for MG in current and upcoming lensing surv e ys. 
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PPENDI X  A :  C U RV E D - S K Y  W E A K  LENSING  

I G H T  C O N E S  

e develop a curved-sky ray-tracing algorithm adapted from UFAL-
ON 

28 (Z ̈urcher et al. 2021 ), in which the particle data falling into
pherical mass shells are assigned onto a HEALPIX (G ́orski et al.
005 ) maps with NSIDE = 4096 , instead of the Cartesian grids used
n this paper. We again use periodic boundary conditions to fill the
ight-cone volume whenever it exits the simulation box, and repeat
he procedure for 24 different observer’s positions. We modified
he original UFALCON full-sky map making algorithm to implement
nstead a pencil-beam method, significantly reducing the memory
oad required to fill the high-redshift shells. This is achieved by
tacking the simulation boxes along the [RA-Dec] = [0,0] direction
nly, and masking an y pix el with RA/Dec > 12 deg. Pseudo -
ndependent light cones are then extracted by selecting at random one
f the 24 shells for each redshift, repeating the procedure 24 times
er N -body simulation. The curv ed-sk y angular power spectrum
easurements are obtained from the standard HEALPY 

29 routine
AP2ALM , which performs Legendre transforms on the sphere and
rovides measurements for � ∈ [1 −12 288], which we rebin to match
he flat-sky measurements for an improved comparison. 

We show that both flat- and curv ed-sk y lensing simulations
roduce similar C 

κ
� measurements. Fig. A1 presents the ratio between

he lensing spectra from two models (the f ( R ) model-49 and the
R model-00). The thin black lines present the mean o v er all flat-

ky measurements while the thin blue lines show the curv ed-sk y
qui v alent. The agreement between these two methods is excellent
n the first four tomographic bins, whereas the last tomographic bin
xhibits strong discrepancies on large scales. This is caused by the
ixing between the maps and the mask, and can be remo v ed with

seudo - C � estimators such as NAMASTER (Alonso et al. 2019 ). 
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Table A1. Cosmological and gravity parameters of the FORGE and BRIDGE simulations. The listed values of the structure growth parameters σ 8 and S 8 correspond 
to the input truth in the corresponding GR + � CDM simulations; the actual values in MGLENS are larger than these. Note that the emulators are specifically 
trained on �m 

, S 8 , h , and either log 10 [ f R 0 ] or log 10 [ H 0 r c ]. In this paper we focus on weak, medium, and strong models, which are respectively models-04, −18, 
and −13. 

Model �m 

σ 8 S 8 h f R 0 H 0 r c 

00 0 .31315 0 .82172 0 .83954 0 .6737 0 Inf 
01 0 .54725 0 .49342 0 .66642 0 .78699 3 .5502e-06 0 .72533 
02 0 .53961 0 .63783 0 .85542 0 .68393 3 .0776e-06 0 .81161 
03 0 .10721 1 .2297 0 .73513 0 .6109 3 .3107e-06 0 .76647 
04 0 .31592 0 .60111 0 .61685 0 .68845 8 .0706e-07 3 .9962 
05 0 .15741 0 .91175 0 .66044 0 .71067 1 .2093e-05 0 .37375 
06 0 .35339 0 .71886 0 .78021 0 .78052 5 .2037e-06 0 .56467 
07 0 .1124 1 .2341 0 .75539 0 .79318 3 .1185e-05 0 .25000 
08 0 .39303 0 .72152 0 .82585 0 .752 7 .1372e-07 6 .7113 
09 0 .18096 1 .0378 0 .80599 0 .76132 9 .1585e-07 3 .3057 
10 0 .42927 0 .5035 0 .60228 0 .77667 4 .5479e-06 0 .62132 
11 0 .40249 0 .55523 0 .64312 0 .6912 1 .3401e-06 1 .7208 
12 0 .21286 1 .0669 0 .89867 0 .70661 7 .1154e-06 0 .47331 
13 0 .34671 0 .78191 0 .84059 0 .70056 1 .2573e-05 0 .36029 
14 0 .15464 0 .9339 0 .6705 0 .77273 4 .0961e-06 0 .65314 
15 0 .28172 0 .71367 0 .69158 0 .64968 4 .9744e-06 0 .59191 
16 0 .37032 0 .61264 0 .68066 0 .76204 2 .7753e-06 0 .86134 
17 0 .41627 0 .74242 0 .87454 0 .63427 1 .4375e-05 0 .33547 
18 0 .32331 0 .85987 0 .89266 0 .81749 3 .6751e-06 0 .6877 
19 0 .47784 0 .56403 0 .71183 0 .66724 6 .7404e-06 0 .49385 
20 0 .20509 0 .75641 0 .62541 0 .64437 5 .8109e-06 0 .53938 
21 0 .44103 0 .50237 0 .60912 0 .62046 6 .2281e-06 0 .51583 
22 0 .46403 0 .5862 0 .72906 0 .80296 1 .4121e-06 1 .5615 
23 0 .13644 1 .2584 0 .84862 0 .62473 1 .0481e-06 2 .4364 
24 0 .18832 0 .85396 0 .67659 0 .80174 1 .668e-05 0 .32401 
25 0 .12066 1 .3159 0 .83454 0 .69563 2 .4559e-06 0 .91639 
26 0 .28854 0 .65331 0 .6407 0 .73943 8 .7041e-06 0 .43601 
27 0 .45016 0 .72241 0 .88492 0 .71954 2 .174e-05 0 .2835 
28 0 .17155 1 .1394 0 .86159 0 .62768 1 .5757e-06 1 .4266 
29 0 .51949 0 .59577 0 .78399 0 .74473 9 .6963e-06 0 .40305 
30 0 .43909 0 .61327 0 .74195 0 .67856 1 .7774e-06 1 .3111 
31 0 .49786 0 .58288 0 .75088 0 .80806 1 .8337e-06 1 .2109 
32 0 .40909 0 .54179 0 .63268 0 .73799 1 .211e-06 1 .9119 
33 0 .23227 0 .86433 0 .76052 0 .60028 1 .9037e-05 0 .30276 
34 0 .3839 0 .61174 0 .69201 0 .6557 2 .2527e-06 1 .0462 
35 0 .26234 0 .88665 0 .82914 0 .76998 1 .0089e-06 2 .8097 
36 0 .25453 0 .76212 0 .702 0 .66918 1 .7789e-05 0 .31312 
37 0 .29762 0 .79347 0 .79031 0 .673 2 .3584e-06 0 .97764 
38 0 .22423 0 .88911 0 .76866 0 .64603 1 .3881e-05 0 .34755 
39 0 .30799 0 .71046 0 .71985 0 .66001 1 .1732e-06 2 .1452 
40 0 .51288 0 .61834 0 .80849 0 .79098 7 .8299e-06 0 .45407 
41 0 .14061 1 .1712 0 .80186 0 .73101 1 .0743e-05 0 .38798 
42 0 .33782 0 .66702 0 .70781 0 .72256 7 .9806e-07 5 .0232 
43 0 .5252 0 .66452 0 .87924 0 .81347 2 .3279e-05 0 .27454 
44 0 .19435 1 .0172 0 .8187 0 .63911 2 .7347e-05 0 .25781 
45 0 .26963 0 .91366 0 .86618 0 .75511 9 .4886e-06 0 .41903 
46 0 .49135 0 .50927 0 .65176 0 .60766 2 .5865e-05 0 .26599 
47 0 .47207 0 .58056 0 .72827 0 .61562 2 .0816e-06 1 .1234 
48 0 .24424 0 .85676 0 .77304 0 .71436 6 .6853e-07 10 .0000 
49 0 .36187 0 .56321 0 .61856 0 .72861 2 .0258e-05 0 .2929 
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M

Figure A1. Comparison between the curved- and flat-sky lensing power spectra. Plotted is the ratio between the measurements from the nodes 49 and 00, for all 
five tomographic redshift bins. The right-most plot exhibits large-scales systematics due to masking, which are increasingly important towards higher redshifts. 
Our flat-sky methods are mostly immune to this. 

A

W  

f  

v  

F  

p  

p
 

t  

a  

a  

c  

t  

r  

o

F  

s  

(  

t

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/4/6336/7263281 by guest on 30 Janu
PPENDIX  B:  P(K)  VA LIDATION  

e present in this section the matter power spectra P m ( k ) measured
rom dedicated � CDM + GR N -body runs in which the box size is
aried between 1000, 500, and 200 h −1 Mpc. The upper panel of
ig. B1 presents the three measurements at z = 0, while the bottom
anel shows the ratio with respect to the L200 case – given that the
article count is fixed to 1024 3 , the latter has the highest resolution. 
Small fluctuations in the ratio are observed at low k modes are due

o residual sapling variance. While the L1000 measurements shows
 5 per cent difference in power at most scales, the L500 case shows
n excellent match up to k = 8.0 Mpc h −1 . Equi v alent measurements
arried out at z = 1 reach the same conclusion, thereby establishing
hat our N -body runs are converged to a few per cent o v er the scales
ele v ant for lensing ( k < 5–8.0 Mpc h −1 , depending on the redshift
f the sources). 
NRAS 525, 6336–6358 (2023) 
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igure B1. (upper:) Power spectra measured at z = 0 from GR-only N -body
imulations in which the box size is varied, keeping the particle count fixed.
lower:) Ratio between the three curves shown in the upper panel curves and
he L200 case. 
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