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Abstract
This paper studies e-grocery order fulfillment policies by leveraging both customer 
and e-grocery-based data. Through the utilization of historical purchase data, prod-
uct popularity trends, and delivery patterns, allocation strategies are informed to 
optimize performance metrics such as fill rate, carbon emissions, and cost per order. 
The study aims to conduct a sensitivity analysis to identify key drivers influencing 
these performance metrics. The results highlight that fulfillment policies optimized 
with the utilization of the mentioned data metrics demonstrate superior performance 
compared to policies not informed by data. These findings underscore the critical 
role of integrating data-driven models in e-grocery order fulfillment. Based on the 
outcomes, a grocery allocation policy, considering both proximity and product avail-
ability, emerges as promising for simultaneous improvements in several performance 
metrics. The study recommends that e-grocery companies leverage customer data to 
design and optimize delivery-oriented policies and strategies. To ensure adaptability 
to new trends or changes in delivery patterns, continual evaluation and improvement 
of e-grocery fulfillment policies are emphasized.
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(a%,b%,c%)	� Percentage of products in class A, B, and C, respectively
(LA,LB,LC)	� Ranges for generation of pait in L scenario for class A, B, and C
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(MA,MB,MC)	� Ranges for generation of pait in M scenario for class A, B, and 
C

(HA,HB,HC)	� Ranges for generation of pait in H scenario for class A, B, and 
C

(x%,y%,z%)	� Percentage of products in class X, Y, and Z
(X%,Y%,Z%)	� Cumulative probability of ordering products in class X, Y, and 

Z
C	� Delivery cost km
evan	� Emissions per km traveled by van
ecar	� Emissions per km traveled by car
dlocal	� Average distance between the customer’s home and a local 

store
XYZ/ABC	� Degree of overlapping between XYZ and ABC classes
K	� Geographical dispersion factor
d%	� Delivery trip inefficiency
g%	� Probability of going complementary shopping
pot	� Customer’s probability of ordering product t in the next
pait	� Historical probability of product availability for product t in 

depot i ∈ D
di	� Distance between depot i ∈ D and the customer
dij	� Distance between depot i ∈ D and j ∈ D
α	� Importance of improving product availability over reducing 

travel distance
ASi	� Availability score for depot i ∈ D
CSi	� Combined score for depot i ∈ D
MASiz	� Merged availability score for depot i ∈ D and depot z ∈ D
MCSiz	� Merged combined score for depot i ∈ D and depot z ∈ D
sru	� Availability setting in the simulation run ru
Λru	� Set of allocated depots for the fulfillment of the order at order 

time ru
Nru	� Basket size in the simulation run ru
Bru	� Set of Nru distinct products ordered in the simulation run ru
ASit_ru	� Binary variable that represents whether product t is available in 

depot i ∈ Λru (1) or not (0) in the simulation run ru
pick_in_farthestru	� Binary variable that represents whether one or more items of 

the customer order are picked in the farthest allocated depot (1) 
or not (0) in the simulation run ru

pick_in_middleru	� Binary variable that represents whether one or more items of 
the customer order are picked in the middle allocated depot (1) 
or not (0) in the simulation run ru

go_buyru	� Binary variable that represents whether the customer does com-
plementary shopping (1) or not (0) in the simulation run ru

RU	� Number of runs in the Monte Carlo simulation
RE	� Number of replications of the Monte Carlo simulation
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1  Introduction

The digital revolution has reshaped consumer behaviors and preferences, propel-
ling the growth of e-commerce and online purchasing [8], PwC [39, 40]. Con-
sumers are increasingly turning to online platforms to fulfill their shopping needs, 
drawn by the convenience of browsing a vast array of products, making purchases 
from the comfort of their homes, and having items delivered directly to their 
doorsteps [55]. Within this landscape, the e-grocery sector has gained substantial 
traction, capitalizing on the changing consumer dynamics [30]. E-grocery com-
bines the convenience of online shopping with the necessity of grocery items, 
offering consumers a convenient way to acquire essential goods without the need 
to visit physical stores.

E-grocery platforms offer a plethora of benefits to consumers [10]. The ability 
to order groceries online provides a level of convenience that is particularly appeal-
ing to busy urban residents, individuals with limited mobility, and those seeking to 
minimize time spent on routine shopping activities. Also, a notable advantage lies in 
the typically broader product range offered by online fulfillment centers compared 
to local stores. E-grocery shoppers can enjoy a wide array of choices when mak-
ing their purchases online. Furthermore, e-grocery aligns with the growing demand 
for environmental sustainability, as online orders can be consolidated, reducing the 
number of trips to physical stores and potentially lowering overall carbon emissions 
[36]. However, as the e-grocery industry continues to evolve, several challenges 
related to product availability, order fulfillment costs, and environmental impact 
need to be addressed [32, 34]. These challenges highlight the need for continuous 
innovation and improvement within the industry. Maintaining a diverse range of 
available products, optimizing the logistics and delivery processes to manage costs 
effectively, and finding ways to further reduce the carbon footprint of e-grocery 
operations remain critical areas of focus. Within this study, we treat these three focal 
areas as integral sustainable practices. We consider sustainability from three vital 
perspectives – social, environmental, and economic. Social sustainability focuses 
on satisfying customers and fostering loyalty. Environmental sustainability involves 
reducing the environmental impact, particularly carbon emissions. Economic sus-
tainability aims at cost-efficiency and profitability.

In the e-grocery context, finding available products that meet the preferences 
of online shoppers is of paramount importance. The digital shelf must mirror the 
physical store’s inventory, offering customers a seamless and accurate selection 
experience [31]. However, e-grocery customers face the risk of encountering two 
types of stock-outs: pre-purchase out-of-stock and post-purchase out-of-stock. 
While pre-purchase stock-outs occur when customers are informed about a prod-
uct’s unavailability before placing an order, post-purchase stock-outs can arise 
due to delays between order placement and fulfillment or inaccuracies in product 
availability information. These instances of stock-outs can result in customer dis-
satisfaction, missed sales opportunities, and a potential decline in customer loy-
alty [15]. Moreover, these implications highlight the importance of considering 
social sustainability solutions as well.
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The delivery phase further compounds the challenges faced by e-grocery plat-
forms. To minimize last-mile delivery costs and environmental impact, online cus-
tomers are often assigned to specific grocery stores or fulfillment centers based on 
their proximity [22, 35, 53]. While this strategy reduces delivery distances, it may 
lead to scenarios where products selected by customers during online shopping 
become unavailable at the time of delivery. To address this issue, e-grocery plat-
forms frequently employ substitution strategies, providing alternative products when 
initially selected items are out of stock [31]. Achieving a balance between product 
availability, delivery efficiency, and customer satisfaction remains a critical concern.

This paper aims to bridge the existing research gap by exploring e-grocery 
order fulfillment policies that leverage customer and e-grocery-based data. The 
central objectives include enhancing product availability, promoting sustainabil-
ity, and optimizing cost efficiency in last-mile delivery. To achieve these goals, 
we develop and compare different order fulfillment center allocation policies for 
online customers, evaluating their performance based on pre-defined objectives.

To guide the study, we address the following research questions:

RQ1:	� How e-grocery fulfillment policies affect this industry’s performance from 
sustainable delivery perspectives (i.e., product availability, cost-efficiency 
and carbon emission)?

RQ2:	� How customer and e-grocery relevant data can be utilized effectively for 
managing e-grocery fulfilment?

In addressing RQ1, our aim is to investigate the influence of e-grocery fulfill-
ment policies on the industry’s performance, with a particular focus on product 
availability, cost-efficiency, and carbon emissions in delivery, all of which are 
key aspects associated with sustainability. To achieve this, we devise e-grocery 
fulfillment policies that strategically allocate resources, such as e-grocery stores, 
depots, or fulfillment centers, for processing online orders. These policies are 
designed based on insights derived from customer and e-grocery-related data, as 
discussed in RQ2. We then proceed to simulate these policies and assess their 
performance using key performance metrics, which include: fill rate (product 
availability), carbon emissions, and cost per order.

In RQ2, the effective utilization of customer and e-grocery-based data is explored 
to improve developed fulfillment policies, ensuring they are optimized for perfor-
mance. This involves leveraging historical purchase data, product popularity trends, 
and delivery patterns to inform allocation strategies. We conduct a sensitivity analy-
sis to ascertain how performance metrics are influenced by input data. We utilize an 
experimental design and apply ANOVA to identify factors significantly impacting 
performance metrics. Through the application of ANOVA, the intention is to miti-
gate potential biases stemming from the utilization of hypothetical data.

The organization of this paper is as follows: In Sect.  2, an extensive review 
of the existing literature is presented, encapsulating cutting-edge research on 
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challenges and solution methodologies in the realm of e-grocery. Special empha-
sis is placed on delineating issues concerning product availability and the strate-
gies associated with allocating fulfillment centers for order processing. Moving 
to Sect. 3, the structure of the problem is expounded upon, elucidating the pivotal 
constituents and considerations intrinsic to the domain of e-grocery fulfillment. 
Section 4 delves into the intricacies of our chosen simulation modeling approach, 
illuminating how it is harnessed to address the problem at hand. The culmination 
of our analysis is found in Sect. 5, where we furnish the outcomes of our simula-
tions, spotlighting the efficacy and performance of the bespoke e-grocery fulfill-
ment policies developed in this study. Finally, Sect. 6 serves as a comprehensive 
denouement, encapsulating the synthesis of our efforts and encapsulating the sali-
ent revelations derived from this research endeavor.

2 � Literature review

The objective of this section is to present an exhaustive panorama of the latest 
advances in research concerning e-grocery predicaments, particularly pertaining to 
the issues of product availability and the allocation of depots for fulfillment oper-
ations. The analytical survey is rooted in the examination of 39 pertinent papers, 
sourced from the Scopus database, and employs a semi-systematic review methodol-
ogy. Through the synthesis of insights gleaned from this amalgam of sources, this 
section furnishes valuable vantages into the existing academic corpus, establishing 
a bedrock upon which subsequent sections may build for deeper exploration and 
scrutiny.

2.1 � Product availability relevant works

As discussed previously, within the realm of e-commerce, the unavailability of a 
desired product can precipitate dissatisfaction among online customers, potentially 
prompting them to resort to visiting nearby physical grocery stores to secure the elu-
sive item(s). This transition to in-person shopping, particularly if accomplished via 
private vehicular transportation, can inadvertently amplify carbon emissions [36]. 
Thus, the orchestration of product availability assumes a dual significance: not only 
is it pivotal for ensuring customer contentment, but it also bears weighty implica-
tions for the broader spectrum of environmental sustainability.

Hoang and Breugelmans [14] categorize strategies aimed at tackling the intricate 
challenge of bolstering customer contentment in the face of product unavailability 
into two distinct groupings: those concentrated on preventing stock-outs and those 
centered on mitigating the repercussions of stock-outs on customer satisfaction. The 
former classification encompasses investigations into assortment optimization where 
Kim and Lennon [19] and Rodriguez Garcia et al. [44] delve into assortment opti-
mization strategies, exploring how the careful selection and arrangement of products 
can contribute to maintaining product availability in grocery settings. Seidel [47] 
and Siawsolit and Gaukler [48] focus on the multi-centered fulfillment paradigm, 
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investigating how distributing fulfillment across multiple centers can enhance prod-
uct availability in the grocery supply chain. Rodriguez Garcia et al. [44], Lamballais 
Tessensohn et al. [21], and Milella et al. [33] explore technology-driven interven-
tions, examining how technologies can be leveraged to optimize inventory man-
agement and improve product availability. Ulrich et al. [51], Siawsolit and Gaukler 
[48], and Liu [24] investigate strategies involving the utilization of delivery win-
dows, examining how efficient scheduling and coordination of deliveries contrib-
ute to maintaining consistent product availability. Wang and Yang [54] and Ulrich 
et  al. [51] focus on enhancing the prediction of demand, exploring how accurate 
forecasting can positively impact inventory management and contribute to sus-
tained product availability. And, Marques et  al. [28] delve into the application of 
lean principles, exploring how the principles of lean inventory management can be 
employed to streamline processes and ensure continuous product availability in gro-
cery operations.

The latter focus on strategies such as substitutions. Seidel [47], Hoang and 
Breugelmans [14], Kim and Lennon [19], and Breugelmans et  al. [5] explore the 
role of substitutions as a strategy to manage product unavailability in e-grocery set-
tings. Breugelmans et  al. [5] investigate the impact of virtual rearrangements of 
online shelves, studying how the presentation of products can be strategically altered 
to address stock-outs. Breugelmans et al. [5], Kim and Lennon [19], and Pizzi and 
Scarpi [38] focus on pre-purchase stockout alerts, examining how providing custom-
ers with timely information about product availability influences purchasing deci-
sions. Kim and Lennon [19], Kumar et al. [20], Breugelmans et al. [5], and Peinkofer 
et al. [37] discuss supplementary availability cues, investigating various methods to 
signal product availability to online shoppers. Breugelmans et al. [5], Jinzhong and 
Jian [17], Bhargava et al. [4], and Kim and Lennon [19] explore the use of financial 
incentives as a strategy to manage and mitigate the impact of product unavailability. 
Kim and Lennon [19] and Pizzi and Scarpi [38] delve into strategic communication 
methodologies, studying how effective communication can positively influence cus-
tomer perceptions and responses to product unavailability.

Nevertheless, despite the considerable body of scholarly work in this field, a gap 
remains. Notably lacking is an examination of e-grocery fulfillment policies that 
intricately assign dedicated e-grocery stores to individual customers while concur-
rently leveraging data from both customers and the e-grocery platform. It is within 
this gap that our study takes on the challenge of not only exploring the creation 
of such policies but also rigorously assessing their effectiveness across a range of 
objectives. The following section offers a detailed exposition of these policies in all 
their facets.

2.2 � E‑grocery depot allocation policies in order fulfillment related works

The strategic allocation of fulfillment centers stands as a pivotal determinant 
for effectuating efficient and satisfactory online order completion. With a spe-
cialized focus on storing, packaging, and dispatching products from e-com-
merce platforms, fulfillment centers hold sway over the quality of the consumer 
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experience. Conventionally, in the retail landscape, the allocation of these cent-
ers’ hinges on cost efficiency, often prioritizing the proximity of the center to the 
customer to meet immediate demands. This approach typically seeks to optimize 
cost structures and delivery timelines [1, 2, 11, 25]. However, it is vital to strike 
a delicate balance between cost optimization and customer satisfaction, as desig-
nating a distant center may entail longer delivery times or higher shipping costs. 
While the rationale of opting for the nearest fulfillment center for cost efficiency 
appears logical, it may not invariably constitute the optimal decision-making 
approach. Ideally, a holistic strategy should account for diverse objectives and 
trade-offs to ensure both customer satisfaction and cost-effectiveness [27].

Existing research mostly employed mathematical modeling to determine opti-
mal fulfillment center assignment strategies, often emphasizing single objec-
tives. Common objectives encompass minimizing last-mile delivery expenses [1, 
42, 50, 57]. Additional factors, such as shipment volumes [16, 56], dimensional 
attributes [6, 16, 27], and the costs associated with storage and handling [11, 
18, 23, 25–27, 52], have also been factored in. Yet, these studies predominantly 
revolved around optimizing single objectives, without accounting for the intri-
cate interplay and trade-offs among multiple objectives.

Scarce research explores the dual realms of product availability and environ-
mental sustainability in home delivery contexts. While certain studies touched 
on the influence of delivery times on consumer choices [2, 3, 6, 41, 46]), few 
delved into ensuring adequate product availability during online shopping. Typi-
cally, product availability has been treated as a constraint rather than an opti-
mization objective within the existing body of literature. A handful of studies 
[27, 41] have explored the repercussions of allocation policies on customer sat-
isfaction. Notably, Mahar et  al. [27] explored this within the realm of in-store 
shoppers, while Razmi et  al. [41] addressed customer satisfaction in a broader 
context.

To bridge this research gap, it becomes important to address both product 
availability and economic and environmental sustainability considerations in 
the context of home delivery operations. Product availability is pivotal within 
the domain of e-commerce, as customers anticipate finding the items they seek 
while shopping online. As previously mentioned, product unavailability may 
lead to customer dissatisfaction and potential revenue loss. Furthermore, cus-
tomers might opt to visit physical stores to obtain missing items when they 
become aware of unavailability just before the scheduled delivery, which could 
potentially lead to an increase in carbon emissions if they choose to travel by 
car [9]. This research aims to fill this gap by examining allocation policies for 
online fulfillment centers that achieve a dual purpose: enhancing product avail-
ability for customers and simultaneously reducing delivery costs and carbon 
emissions for e-grocery businesses. By effectively balancing these three goals, 
the study strives to present a holistic framework for enhancing the efficiency of 
online order fulfillment. This approach aims to enhance overall customer satis-
faction while also promoting environmental sustainability.
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3 � Problem statement

In the case of e-grocery shopping, customers typically employ the company’s 
mobile app or website to place their orders, which are subsequently fulfilled by 
dedicated fulfillment centers responsible for delivering items to specified addresses. 
During the creation of their shopping baskets, customers often verify product avail-
ability through the e-grocery’s online platforms. If a desired product isn’t accessible 
at the chosen store, customers may consider switching to another e-grocery provider. 
Central to this process are challenges stemming from unavailable products that cus-
tomers intend to purchase, materializing as either pre-purchase out-of-stock or post-
purchase out-of-stock scenarios.

This research endeavors to augment product availability for e-grocery customers 
by crafting and executing fulfillment center dedication policies harnessing both cus-
tomer and e-grocery relevant data. One avenue for achieving this may involve modi-
fying the allocation of e-depots based on customer buying patterns, with a specific 
focus on their frequently chosen items. Through the dedication of stores stocked 
with high-demand products, the likelihood of encountering post-purchase out-of-
stock situations can be diminished, potentially boosting customer satisfaction. This 
implies that the fulfillment center tasked with fulfilling a customer’s orders might 
vary depending on the products being sought, thereby aligning with evolving cus-
tomer preferences. By enacting a personalized and efficient fulfillment process tai-
lored to immediate needs, the probability of meeting customer expectations and 
heightening satisfaction is amplified (i.e., social sustainability).

Moreover, this study aims to delve into how these e-grocery dedication poli-
cies can concurrently curtail average delivery costs and minimize carbon emis-
sions for the e-grocery entity (i.e., economic and environmental sustainability). To 
realize this goal, the investigation will delve into pertinent data to be tracked from 
the e-grocery system, encompassing customer purchasing habits, product demand, 
delivery distances, inventory levels, and carbon emissions. Through the analysis and 
application of this data, the study will formulate potential e-grocery dedication poli-
cies that grapple with these potentially conflicting objectives, striving to enhance 
product availability, slash delivery costs, and mitigate environmental impact. The 
Monte Carlo simulation methodology is employed to replicate and assess the per-
formance of the devised policies across diverse scenarios. This approach permits the 
examination and evaluation of the policies under assorted conditions, shedding light 
on their potential advantages and trade-offs. The specifics of the simulation mod-
eling approach, encompassing the data employed, model structure, and performance 
metrics, will be elaborated upon in Sect. 4 of this study.

4 � Simulation modelling and utilization of e‑grocery data

Effectively harnessing and accurately managing data holds paramount importance 
in the efficient management of an e-grocery system and in making well-informed 
choices. The data sourced from the e-grocery system can offer invaluable insights 
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into customer purchasing behaviors, product demands, delivery distances, and 
carbon emissions. This data can be utilized to optimize the distribution of ful-
fillment centers to customers, yielding improved product availability, diminished 
delivery expenses, and decreased carbon emissions. Moreover, data tracking 
empowers the e-grocery system to promptly respond to shifts in customer prefer-
ences and market dynamics. Through consistent data monitoring and analysis, the 
system can adapt and refine its operations to align with evolving customer needs 
and sustain its competitiveness in the market.

Within the scope of this study, the importance of data tracking and its accessi-
bility in the administration of e-grocery systems is emphasized as a critical factor. 
Additionally, the research aims to pinpoint the specific categories of valuable data 
to be monitored within the e-grocery system, utilizing this data to establish and 
evaluate effective e-grocery delivery policies. Adopting a data-driven approach 
holds the potential to streamline the management of e-grocery systems, facilitate 
well-informed decision-making, and enhance the overall customer experience.

To enhance product availability, reduce delivery expenses, and mitigate carbon 
emissions within the e-grocery industry, precise data tracking originating from 
the e-grocery system is indispensable. Two essential data parameters that warrant 
meticulous tracking encompass:

•	 Probability of fulfilling product t in e-grocery i (pait): This parameter indi-
cates probability of a specific product being accessible in a given e-grocery 
store. Monitoring and dissecting this probability affords the ability to pinpoint 
e-grocery outlets with higher probabilities of fulfilling customer orders.

•	 Probability of purchasing product t in the next order for the e-grocer (pot): 
This parameter illustrates the chances of a customer purchasing a particu-
lar product in their forthcoming order. Tracing this probability offers deeper 
insights into customer preferences and requirements, which can guide deci-
sions regarding inventory management and the allocation of fulfillment cent-
ers.

By leveraging probability values derived from historical e-grocery data, it 
becomes possible to formulate and implement a robust e-grocery assignment policy. 
For example, a customer’s profile can be taken into account, along with cross-refer-
encing the availability of frequently requested items across different fulfillment cent-
ers. This approach empowers the e-grocery app to highlight and prioritize the store 
with the highest probability of stocking the desired products.

The central objective of this research is to create and evaluate specialized alloca-
tion policies for e-grocery, incorporating these data-driven methodologies. To assess 
the effectiveness and impact of these policies, simulation techniques are employed. 
The simulation utilized in this study is based on the following assumptions and 
parameters within the e-grocery system:

•	 No substitution: The simulation excludes any form of replacements for unavail-
able products. Should a product be unavailable, it is not substituted with an alter-
native.
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•	 Order repetition: The simulation involves 500 iterations of recurring orders for a 
single customer, with each order duplicated independently 50 times.

•	 Product Variety: The e-grocery system provides a diverse assortment of 500 
product types that customers can select from when placing their orders.

•	 No Minimum Order Requirement: Customers are not constrained by any mini-
mum order size; they are free to place orders of any magnitude.

•	 Customer and Product Classification: Customer-preferred items are catego-
rized into XYZ classes using a Pareto analysis of their order frequency. In par-
allel, e-grocery products are assigned to ABC classes based on their inventory 
management. In this classification, X and A denote highly demanded and selling 
classes, Y and B indicate moderately demanded and selling classes, and Z and C 
signify lowly demanded and selling classes, correspondingly.

•	 Randomized values for “pait”: Stochastic values for the probability of fulfilling a 
product (pait) are allocated utilizing predefined random distributions. These val-
ues encapsulate the likelihood of each product’s availability across the e-grocery 
depots.

•	 Consideration of Visiting Physical Stores: If the e-grocery system fails to ful-
fill one or more products, customers retain the option to journey to the nearest 
physical store to procure those items. The probability of this occurrence is taken 
into account.

•	 Candidate e-grocery depots: The selection encompasses three potential e-gro-
cery depots for order fulfillment: D1, D2, and D3. D1 is located in closest prox-
imity to the customer, D2 maintains a moderate distance, and D3 is situated at 
the greatest distance from the customer’s locale.

•	 Pre-Determined Depot Allocation: The assignment of depots to customers is 
established prior to order placement and remains constant throughout the pro-
cess of assembling the shopping basket.

•	 Distance Calculation Mechanism: The computation of each depot’s distance 
(D1, D2, and D3) from the customer’s position entails multiplying the geograph-
ical dispersion factor (k) with the distance between the local grocery store and 
the customer’s location (dlocal). These calculated distances facilitate depot assign-
ments to customers. Figure 1 provides a visual representation of this context.

•	 Optimized Delivery Logistics: The conveyance of products is conducted using 
vans, with delivery routes optimized to accommodate additional orders, thereby 
maximizing operational efficiency.

•	 Handling Multiple Depot Assignments: In scenarios where more than one depot 
is assigned for order fulfillment, all items are consolidated within the nearest 
depot and dispatched in a singular delivery.

•	 Key Performance Indicators: The assessment of system performance is based 
on the fill rate of customer orders, delivery expenses, and carbon emissions per 
basket.

The simulation methodology employs the Monte Carlo technique to generate ran-
dom data, and an experimental design is implemented for sensitivity analysis. This 
approach empowers the study to evaluate how various parameters influence the per-
formance of the system.
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4.1 � Context parameters, design factors, input data

In this section, we outline the parameters, design factors, and input data used in the 
simulation model.

4.1.1 � Context parameters

Within the simulation, certain parameters are designated as predefined variables 
that form the foundation of the simulation models. These variables retain unchang-
ing values across the simulation runs and are denoted as fixed variables or con-
text parameters. The ensuing explanations outline the meanings attributed to these 
parameters:

•	 (a, b, c): We designate a, b, and c as 20%, 30%, and 50%, respectively, indicating 
that 20%, 30%, and 50% of the e-grocery products belong to classes A, B, and C, 
respectively.

•	 (LA, LB, LC): This represents the low uniform probability scenario for the availa-
bility of class A, B, and C products, respectively. For example, we set LA = [70%, 
90%], LB = [70%, 90%], and LC = [70%, 90%]. This means that at the start of the 
simulation, a random availability probability for each product class is generated 
from a uniform distribution of [70%, 90%].

•	 (MA, MB, MC): This corresponds to the moderate uniform probability scenario 
for the availability of class A, B, and C products, respectively. For instance, we 
set MA = [95%, 100%], MB = [90%, 95%], and MC = [80%, 90%]. This means that 
at the beginning of the simulation, a random availability probability for each 
product class is created from uniform distributions of [95%, 100%], [90%, 95%], 
and [80%, 90%], respectively.

•	 (HA, HB, HC): This represents the high uniform probability scenario for the 
availability of class A, B, and C products, respectively. For example, we set 
HA = [99%, 100%], HB = [85%, 95%], and HC = [70%, 85%]. This means that at 

Fig. 1   Representation of the distances between the customer’s delivery address, the local store, and the 
depots
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the start of the simulation, a random availability probability for each product 
class is generated from uniform distributions of [99%, 100%], [85%, 95%], and 
[70%, 85%], respectively.

•	 (x, y, z): These denote the percentages of products belonging to classes X, Y, and 
Z, respectively, which are defined based on customer ordering frequency within 
the entire product assortment. We set x, y, and z as 20%, 30%, and 50%, respec-
tively. It is important to note that classes X, Y, and Z do not represent the same 
product groups as classes A, B, and C in e-grocery. While the latter is defined 
based on inventory value, the former is defined based on customer preferences.

•	 (PX, PY, PZ): These represent the probabilities of ordering from class X, Y, and 
Z, respectively, for an online customer. Here, we set PX, PY, and PZ to 80%, 15%, 
and 5%, respectively. For example, a customer orders from class X, Y, and Z with 
probabilities of 0.80, 0.15, and 0.05, respectively.

•	 c: This denotes the delivery cost per kilometer, taking into account driver and 
fuel-related expenses. The value of c is set to 1.29 €/km [52].

•	 evan: This represents the amount of emissions in CO2 equivalent per kilometer 
traveled during delivery. We assume a diesel commercial van, and evan is set to 
0.23156 kgCO2e/km [7].

•	 ecar: This signifies the amount of emissions in CO2 equivalent per kilometer 
traveled by the customer’s car. ecar is set to 0.17067 kgCO2e/km [7].

•	 dlocal: This represents the distance between the customer’s location and their local 
store in an urban context. For the purpose of this simulation, dlocal is set to 2 km, 
based on the study by Siragusa and Tumino [49].

4.1.2 � Design factors

In this section, we clarify the design factors that have been considered in the experi-
mental design. It’s important to note that, in order to address RQ2, we have adopted 
a full factorial design approach. This approach aims to minimize potential biases 
that could arise from the use of hypothetical data. Specifically, we have incorporated 
two levels for each of the four design factors, which are delineated as follows:

•	 XYZ/ABC relations: In this design factor, we consider two levels: a high level 
and a low level. In the high-level, there is a perfect overlap between customer 
preferences (X, Y, Z classes) and the inventory value (A, B, C classes) of the 
grocery store.  High level means that the types of products the customer’s order 
(X, Y, Z classes) align perfectly with the inventory classes (A, B, C classes) of the 
grocery store. However, in the low-level scenario, there is an imperfect overlap 
between customer preferences and inventory classes. Specifically, the customer’s 
most frequently ordered X and Y classes align with the grocery store’s C class 
products, while the customer’s Z class products align with A and B class prod-
ucts at a ratio of 40% and 60%, respectively. This mismatch between customer 
preferences and inventory classes introduces a discrepancy in the product assort-
ment available to customers. Table 1 shows those relations.

•	 k—geographical dispersion factor: As elaborated in Sect.  3, the simulation 
accounts for the geographical distribution of customers and fulfillment depots by 
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introducing a multiplier factor, denoted as k, as visualized in Fig. 1. The mag-
nitude of k defines the separation between two points, where a higher k value 
signifies an increased distance. Precisely, the distance between a customer and 
the local physical store is represented as dlocal in Fig. 1. Within the experimental 
design, two distinct levels of k are under scrutiny, accommodating diverse geo-
graphical dispersion scenarios for depots:

Low level: k = 1, indicating low geographical dispersion of the depots.
High level: k = 5, indicating high geographical dispersion of the depots.

•	 d%: delivery trip inefficiency: To estimate the cost and carbon emissions of 
delivery in a more realistic manner, the experimental design incorporates the 
concept of a complete tour, where a customer’s order is delivered as part of a 
larger set of orders for multiple customers. This means that multiple orders are 
delivered together, optimizing the delivery route and reducing the overall dis-
tance traveled. To account for this, the delivery distance for a single basket is cal-
culated by (1), taking into consideration the combined distance of all the orders 
included in the tour.

where the first expression represents the distance between the customer point and 
the distribution depot, and d% denotes a measure of delivery trip inefficiency. 
The value of d% reflects the degree of inefficiency in the delivery trip, with a 
higher percentage indicating a greater level of inefficiency and resulting in a 
longer travel distance for the delivery tour assigned to the customer point. In the 
experimental design, two levels of d% are taken into account to accommodate 
different levels of delivery trip inefficiency.

In the high-level determination of d%, the experimental design takes into 
account that, on average, there are twelve orders to be delivered in a tour. All the 
delivery addresses are located within a square area, as depicted in Fig. 2. The cus-
tomer point is located at a distance of l from the central depot. To find the average 

(1)customer point − depot location × d%

Table 1   Levels of XYZ/ABC 
factor levels

A B C

Low
 X 0 0 100%
 Y 0 0 100%
 Z 40% 60% 0

High
 X 100% 0 0
 Y 0 100% 0
 Z 0 0 100%
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tour travel distance, a traveling salesman optimization solution is employed. To 
accomplish this, eleven delivery addresses are randomly generated within the 
square area, as shown in Fig. 2. The location of the customer point remains fixed 
and is l units away from the depot. The traveling salesman optimization procedure 
is then applied to determine the optimal tour length that begins at the depot, visits 
all twelve delivery addresses, and concludes at the starting depot. The tour length 
is divided by twelve to estimate the distance covered by a single household within 
that tour. Subsequently, d% is calculated by dividing the distance portion by l, 
representing the distance between the customer point and the distribution depot. 
By repeating this experiment 50 times, a reasonably accurate estimation of d% is 
obtained, which is determined to be 53.5%. Consequently, the high level of d% is 
set at 53.5% in the experimental design.

•	 High level: d% = 53.5%
•	 Low level: d% = 16.7%

In the low-level calculation of d%, the experimental design assumes that in 
the journey to reach the customer’s delivery address, all the other eleven delivery 
addresses are arranged in a straight line, as depicted in Fig. 3. Consequently, the 
optimal tour length amounts to 2 l, considering the round trip. Dividing this value 

Fig. 2   Random generation of 11 delivery addresses in an area 2l*2l
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by the number of customers (i.e., 12), we determine that the distance associated 
with the delivery of a single basket corresponds to (2/12) × 100 = 16.7%.

•	 g%: probability of a customer engaging in complementary shopping: This 
factor represents the likelihood of a customer visiting their local grocery store to 
purchase any unavailable items when one or more products from their order are 
not in stock. The experimental design considers different levels for this factor, 
which are outlined as follows:

•	 Low level: g% = 20%
•	 High level: g% = 80%

4.1.3 � Historical input data

While formulating depot allocation policies, our approach relies on the utilization of 
historical data. This encompasses the likelihood of product availability at a specific 
depot during the fulfillment stage, as well as a customer’s past purchasing history 
categorized according to product types. In a practical context, such data can be con-
veniently traced and retrieved from e-grocery application software. Subsequently, 
we will delineate the two specific categories of data that necessitate monitoring and 
recording:

1.	 Probability of Product Availability during Fulfillment: This dataset offers valuable 
insights into the probability of a product being accessible at a particular depot 
during the process of fulfilling customer orders. This information aids in assessing 
the readiness and feasibility of obtaining products from different depots.

2.	 Customer Purchase History Segmented by Product Type: This dataset records the 
historical buying patterns of customers, organized according to distinct product 
types. It facilitates the scrutiny of customer preferences, thereby enabling well-
informed choices concerning product assortment and allocation tactics across 
different depots.

Likelihood of product availability during fulfillment The probability of product 
availability during the fulfillment stage reflects the frequency with which products 
can be successfully obtained for fulfilling customer orders. As outlined in Sect. 4, 
this probability is represented as pait, indicating the likelihood of satisfying a cus-
tomer’s request for product t from e-grocery i. Conversely, the complementary prob-
ability, 1—pait, signifies the chance of product t being unavailable at depot i during 
the delivery phase. As elucidated in Sect. 4.1.1, the simulation process generates a 
random probability of product availability from uniform distributions as specified in 

Fig. 3   Possible locations of delivery addresses in the low-level situation
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Table 2. These distribution ranges are established according to the product classes: 
A, B, and C. For instance, referring to Table 2, in the scenario of moderate availabil-
ity, a random availability probability is generated within the range of [0.8, 0.9] for 
each product falling under class C.

Within the simulation model, a random probability value is generated for the 
parameter “pait” from the defined ranges outlined in Table 2. Once this value is gen-
erated, it remains constant throughout the entire duration of the simulation run until 
its completion.

Customer buying patterns per product category The customer’s purchasing his-
tory categorized by product type is a representation of the likelihood that product 
“t” will be added to the customer’s upcoming basket. This probability is denoted as 
“pot,” as defined in Sect. 4 and is assumed to be derived from the customer’s past 
buying behavior. Various methodologies can be explored to ascertain this probabil-
ity [12]. One of the direct and meaningful approaches involves calculating it based 
on the historical frequency of the product’s purchase by the customer.

According to Rivière et al. [42], product popularity tends to follow a Pareto dis-
tribution. Within this distribution, the pool of items is divided into three classes: 
X, Y, and Z, categorized according to their ranked frequencies. Specifically, in the 
customer’s order, 20% of the items fall into class X and are bought 80% of the time, 
while classes Y and Z encompass 30% and 50% of the items, respectively, with pur-
chase rates of 15% and 5%. For simplicity, it’s assumed that within each class, the 
likelihood of purchasing any particular product is uniform.

4.2 � Depot allocation policies

In this section, we present the developed depot allocation policies:

4.2.1 � Policy C: Proximity‑based single depot assignment

This basic and widely adopted approach for allocating a fulfillment depot based on 
proximity involves designating D1 as the primary fulfillment center for the e-gro-
cery customer.

4.3 � Policy A: Maximum availability depot assignment

Under Policy A, this approach entails allocating a depot to the customer based on 
the depot’s highest product availability score. The availability score (ASi) for each 
depot “i” within the set of depots “D” is computed using Eq. (2):

Table 2   Ranges for pait 
generation in simulation

Class A Class B Class C

Scenario L [70%,90%] [70%,90%] [70%,90%]
Scenario M [95%,100%] [90%,95%] [80%,90%]
Scenario H [99%,100%] [85%,95%] [70%,85%]
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where (2) computes the score by multiplying the probability of the customer in 
question placing an order for product “t” and the probability of depot “i” fulfilling 
that specific product “t” in the e-grocery context. In this approach, the depot “i” that 
holds the maximum ASi value is designated to cater to the customer’s requirements.

4.3.1 � Policy S: Maximum combined score depot assignment

This strategy revolves around assigning a depot based on the highest combined 
score, as illustrated in Eq. (3):

Given Eq. (3), the process commences by calculating the availability score (ASi) 
for each depot “i” using Eq. (2). Subsequently, the combined score (CSi) for depot 
“i” is ascertained by taking the weighted summation of the normalized ASi and the 
normalized distance (di) between the depot and the customer. The process of nor-
malization employs linear scaling. In this context, “di” signifies the geographical 
distance in kilometers between depot “i” and the customer’s location.

The coefficient "α" is a weighting factor, ranging between 0 and 1. This coef-
ficient captures the balance between enhancing product availability and minimizing 
travel distances. When α = 0, the primary emphasis is placed on optimizing delivery 
costs and reducing emissions. Conversely, when α = 1, the top priority is granted to 
ensuring product availability. In the simulation models, α is set at 0.5, thus ensuring 
that equal significance is attributed to both product availability and distance consid-
erations. Following the computation of CSi values, the depot holding the highest CSi 
score is selected to fulfill the customer’s order.

4.3.2 � Policy 2C: Proximity‑based dual depot assignment

Implemented as Policy 2C, this approach involves designating the two nearest ful-
fillment depots, namely D1 and D2, to handle the customer’s delivery. This strategy 
offers visibility into the inventories of both D1 and D2 to the customer. In instances 
where the ordered products are present at D1, a consolidation takes place at this 
depot to facilitate a singular delivery. However, in cases where the products are 
absent at D1, no consolidation occurs, and the items are dispatched individually 
from D2.

4.3.3 � Policy 2A: Dual high availability depot assignment

Policy 2A entails assigning two depots characterized by the highest com-
bined availability scores for the products in the customer’s order. The merged 

(2)ASi =
∑

t
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(3)CSi = � ×
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(

ASi
)
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)
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availability score, denoted aMASiz, is computed for the pairing of two depots, “i” 
and "z," chosen from the depots in the set D, as outlined in Eq. (4):

It’s important to note that in (4), the variables have specific meanings: "pait" 
corresponds to the probability of fulfilling product “t” in e-grocery “i,” “pazt” 
signifies the probability of fulfilling product “t” in e-grocery “z,” and “pot” repre-
sents the probability of the customer in question ordering product “t”. Taking into 
account the highest value of MASiz, the two depots, “i” and “z,” which exhibit the 
greatest combined availability score, are designated to serve the customer.

4.3.4 � Policy 2S: Dual high combined score depot assignment

Under Policy 2S, the focus is on designating two depots with the highest merged 
combined scores. These scores result from considering both product availability 
and minimizing distance. The computation procedure is detailed in Eq. (5):

As per Eq. (5), the process begins by calculating the merged availability score 
(MASiz) using Eq.  (4). Subsequently, the merged combined score (MASiz) for 
depots “i” and "z" within the set "D" is determined. This computation involves 
the weighted summation of the normalized MASiz and the normalized travel dis-
tance required for order fulfillment ( di × d% + diz ). Both of these quantities are 
normalized using linear scaling, with the weighting factor "α" set to 0.5. It’s 
worth noting that "diz" represents the distance between depot “i” and depot "z," 
while "d%" signifies the inefficiency factor of the delivery trip.

Ultimately, the two allocated depots are depots “i” and "z" within the set "D" 
that possess the highest MASiz score.

4.3.5 � Policy 3C: Triad of closest depots assignment

Operating under Policy 3C, this strategy involves allocating the three depots that 
exhibit the closest proximity to the customer’s delivery address for fulfilling their 
order. As a result, the customer’s order is handled by Depot 1, Depot 2, and Depot 
3.

To assess the effectiveness of each policy, we conduct simulations within the 
e-grocery system and evaluate their performance based on the subsequent metrics:

(4)Siz =
∑

t

pot ×
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(
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×
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•	 Fill rate: This metric gauges the proportion of ordered products that are avail-
able for the customer’s order, reflecting how effectively the requested items are 
fulfilled.

•	 Delivery cost per basket: This metric quantifies the cost linked with delivering 
each individual customer basket, considering variables like travel distance and 
delivery inefficiencies.

•	 Carbon emission amount per basket: This metric computes the environmental 
impact of delivering each customer basket, quantifying it in terms of carbon 
emissions.

In Sect. 4.3, we offer a comprehensive explanation of the employed simulation 
model and the methodology employed for calculating these performance metrics.

4.4 � Simulation model

This section offers an in-depth overview of the simulation framework and the con-
figurations employed in the simulation process. Initially, we establish "ru" as the 
replication number, indicating the frequency at which the simulation is replicated.

4.4.1 � Product availability configurations

To comprehensively explore the impact of product availability on e-grocery assign-
ment policies, we take into account that each depot can fall under one of three dis-
tinct product availability scenarios (L/M/H), elaborated in Sect.  4.1.3.1. To thor-
oughly assess the efficacy of the formulated policies and appraise their performance 
across a spectrum of product availability levels prevalent in the e-grocery domain, 
we define six distinct product availability configurations as outlined in Table 3. This 
method enables us to scrutinize policy performance across varying availability con-
ditions and ascertain their applicability in specific scenarios. The allocation of dif-
ferent depots to diverse product availability scenarios facilitates an all-encompassing 
assessment of policy efficiency and offers insights into their performance across dif-
ferent availability configurations.

As indicated in Table 3, the initial product availability configuration entails inves-
tigating the situation where Depot 1, Depot 2, and Depot 3 possess product avail-
ability levels denoted as L (low), M (medium), and H (high) correspondingly. It’s 
crucial to acknowledge that the precise probability ranges associated with these 

Table 3   Product availability settings for depots

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6

Depot 1 L L M H M H
Depot 2 M H L L H M
Depot 3 H M H M L L
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availability levels are established in alignment with the predefined product classes, 
as elucidated in Table 2.

4.4.2 � Depot allocation

In the simulation run ru, the customer is assigned one or multiple depots in accord-
ance with the chosen policy. The collection of depots allocated for that specific sim-
ulation run, designated as Λru, signifies the depots designated to cater to the fulfill-
ment of the customer’s order.

4.4.3 � Basket generation

The generation process for the customer’s order (basket) adheres to a methodology 
akin to that of Rivière et al. [42], encompassing the subsequent two steps:

Step 1: Basket Size Generation: The initial step involves generating the size of 
the customer’s basket. Drawing inspiration from observations in physical grocery 
channels [29], where the distribution of basket sizes follows a truncated negative 
binomial distribution, a similar assumption is extended to the realm of e-grocery 
while disregarding any minimum order constraints. To establish the average bas-
ket size, literature presents divergent findings due to variations in grocers and 
contexts. In this simulation model, we draw on the insights of Yuan et al. [58], 
who scrutinized a Walmart Online Grocery database case. Their outcomes are 
adapted into a truncated negative binomial distribution, yielding an average bas-
ket size of 21.4 unique items, visually depicted in Fig. 4. This probability distri-
bution is subsequently employed to generate the basket size "Nru" for each indi-
vidual simulation run, "ru".

Fig. 4   Basket size frequency distribution for basket generation in the simulation
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Step 2: Product Type Generation in the Basket: Generation of product types in 
the basket is the next step. With a total assortment of 500 products, each product 
has a probability (pot) of being included in the customer’s basket. The number of 
product types generated corresponds to the number of basket sizes (Nru), assum-
ing that one product is ordered per product type.

4.4.4 � Product availability status generation

Subsequent to basket size determination, the process proceeds to generate the prod-
uct types to be included in the basket. In consideration of a comprehensive product 
assortment encompassing 500 items, each individual product holds a distinct prob-
ability (pot) of being chosen for inclusion in the customer’s basket. The count of 
generated product types aligns with the determined basket size (Nru), assuming a 
one-to-one correspondence between product types and the quantity of items in the 
basket.

4.4.5 � Computation of Performance Metrics

The evaluation of the online grocery system’s performance metrics is accomplished 
through the following methodology:

Fill rate is computed by (6):

As per Eq. (6), the fill rate for the particular order placed in simulation run "ru" 
is determined by calculating the proportion of products within the order, denoted 
as “Bru,” that are accessible within the assigned depots “i” belonging to the set 
“Λru” This result is divided by the order size "Nru." The term maxi∈Λru(ASit_ru) signi-
fies the highest availability status of product “t” across all allocated depots within 
“Λru” In cases where product “t” is available in at least one of the allocated depots, 
maxi∈Λru(ASit_ru) is equivalent to 1; conversely, it is set to 0 if the product is unavail-
able across all assigned depots.

Delivery cost per basket (DCB) is computed by (7):

where i,j,z ∈ Λru and i < j < z. The delivery cost per basket in the simulation run ru 
(DCBru) is computed by multiplying the delivery cost per kilometer (c) by the total 
distance traveled. When two or more depots are designated for order fulfillment, 
the ordered products are consolidated at the nearest depot. As a result, the trave-
led distance comprises two elements: the distance covered for home delivery and 
the distance associated with transshipment between depots. The home delivery dis-
tance is determined by multiplying the distance “di” between the nearest assigned 
depot “i” ∈ Λru and the customer by the delivery tour inefficiency “d%.” This factor 
accounts for any inefficiencies in the delivery route. If an intermediate depot “j” is 

(6)Fill rateru =

∑

t∈Bru
maxi∈Λru

�

ASit_ru
�

Nru

(7)DCBru = c ×
(

di × d% + pick_in_middleru × dij + pick_in_farthestru × diz
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allocated for the customer order and at least one product is selected from there, the 
binary variable “pick_in_middleru” is set to 1; otherwise, it’s set to 0. Consequently, 
the transshipment distance “dij” between the closest depot “i” and the intermediate 
depot “j” is also incorporated. Similarly, if the farthest depot “z” is assigned, and at 
least one product is selected from there, the binary variable “pick_in_farthestru” is 
set to 1; otherwise, it’s set to 0. Consequently, the travel distance “diz” between the 
closest assigned depot “i” and the farthest depot “z” is also factored into the calcula-
tion of the delivery cost per basket.

Emission amount per basket (EB) is computed by (8):

The emissions per basket in simulation run “ru” are determined by two distinct 
components: emissions associated with the delivery process and emissions linked to 
complementary shopping endeavors. The computation of emissions tied to the deliv-
ery process involves multiplying the emissions per kilometer for a van, denoted as 
“evan,” by the total travel distance. The calculation of the travel distance parallels the 
method employed for determining the delivery cost per basket. It incorporates both 
the home delivery distance and any transshipment distances between depots.

Incorporating emissions from complementary shopping, we introduce a binary 
variable “go_buyru.” When “go_buyru = 1,” it signifies that the customer engages 
in complementary shopping. Conversely, when “go_buyru = 0,” no emissions are 
attributed to this activity. In simulation run “ru,” there exists a probability “g%” that 
“go_buyru = 1.” In cases where the customer undertakes complementary shopping 
(i.e., “go_buyru = 1”), it’s assumed they travel to a local store by car, completing a 
round trip. The computation of emissions tied to complementary shopping entails 
multiplying the emissions per kilometer for an average car, denoted as “ecar,” by a 
factor of two (round trip), and subsequently by the average distance separating the 
customer from a local grocery store, represented as “d”.

4.5 � Monte Carlo simulation and replications

To thoroughly evaluate the performance of each policy, a Monte Carlo simulation is 
conducted utilizing MS Excel. This simulation encompasses 500 repetitive orders to 
ensure robust and comprehensive assessment. Within each Monte Carlo replication, 
the establishment of steady-state conditions is achieved by calculating the progres-
sive mean of every performance metric across each run.

The warm-up period, which signifies the initial transient phase, is identified 
through visual analysis of performance metric graphs, following the methodology 
outlined by Hoad et  al. [13]. Subsequently, the outcomes from the warm-up runs 
are excluded from the analysis. The results for the replication are then computed 
by averaging the remaining runs. This process mirrors the approach adopted by 
Sandıkçı and Sabuncuoğlu [45].

The Monte Carlo simulation is replicated 50 times in total. To acquire the 
final outcomes for each performance metric, averages of the results from the 

(8)
EBru =evan ×

(

di × d% + pick_in_middleru × dij + pick_in_farthestru × diz
)

+ go_buyru × ecar × 2 × dlocal
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replications are computed, accompanied by 95% confidence intervals. This com-
prehensive methodology offers a dependable and accurate assessment of the per-
formance exhibited by each policy.

4.6 � Simulation flow charts

To visually show the algorithmic sequence of the simulation models, a flow chart 
is presented, drawing inspiration from the model outlined in Appendix A. The 
purpose of this flow chart is to offer a graphical representation of the step-by-step 
progression followed in each simulation experiment. This visualization enhances 
comprehension of the algorithmic workflow.

This flow chart is executed for each simulation experiment, representing vari-
ous combinations of factor levels and policies. Table 4 furnishes a concise sum-
mary of the four design factors, each spanning two levels. Consequently, a total of 
16 (= 24) distinct simulation experiments are conducted. When accounting for the 
inclusion of seven diverse assignment policies, the cumulative number of experi-
ments reaches 112 (= 16 × 7).

5 � Results and discussion

In this section, we compile a comprehensive summary encompassing the out-
comes and ensuing discussions. Furthermore, we delve into the verification and 
validation processes associated with the models utilized in the study.

Table 4   Levels of the design factors

Factors Low level
(0)

High level
(1)

XYZ/ABC A B C 

X 0 0 100% 

Y 0 0 100% 

Z 40% 60% 0 

A B C

X 100% 0 0 

Y 0 100% 0 

Z 0 0 100% 

k 1 5
d% 16.7% 53.5%
g% 20% 80%
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5.1 � Verification and validation of the model

A significant element of any simulation study is the verification and validation of 
the simulation model [43]. We explain the application procedures of them in this 
section.

5.1.1 � Verification

The simulation model undergoes a comprehensive verification process to ensure its 
accuracy. This involves conducting thorough computational checks to validate the 
correctness of the model’s algorithms and calculations. Additionally, the simula-
tion results are carefully examined by manipulating input variables to confirm that 
the allocated depot(s) align with the selected allocation policy. For example, when 
implementing policy C, it is expected that D1 is always allocated, whereas policy A 
assigns an equal probability to each depot. By verifying these allocation patterns, we 
can ensure that the model consistently follows the intended policies. Furthermore, 
the model’s correctness is evaluated by observing how the allocated depot(s) change 
when the parameter α is adjusted for policies S and 2S. According to the conceptual 
model, as α transitions from 0 to 1, the distribution of allocated depots should shift 
from C/2C to A/2A. This analysis validates whether the model accurately reflects 
the expected behavior.

Once the verification process is successfully completed, the model enters the vali-
dation phase. During validation, the model’s outputs are compared with real-world 
data or established knowledge to confirm its reliability and fidelity to the actual sys-
tem being simulated. By undertaking these verification and validation procedures, 
we can confidently assert the accuracy and reliability of the simulation model. This 
enables us to utilize the model effectively for studying and analyzing e-grocery sys-
tems, knowing that it faithfully represents the allocation policies and exhibits the 
expected behavior.

5.1.2 � Validation

The validation of the model is conducted in the absence of a real system, utilizing 
the expertise of two experienced individuals proficient in simulation modeling and 
e-grocery implementations. These experts carefully review the critical performance 
metrics, such as cost per basket, considering both the available literature and their 
own extensive knowledge in the field. Through this validation process, the model’s 
outputs are evaluated for their accuracy and alignment with established benchmarks.

After successfully completing the validation phase, the model proceeds to the 
experimentation stage. A total of 50 separate and independent replications are con-
ducted, aimed at ensuring the robustness and credibility of the obtained results. 
These replications are pivotal in establishing the reliability of the findings.

The ensuing sub-sections meticulously dissect and analyze the outcomes of 
these experiments. This analysis provides a holistic understanding of the perfor-
mance and efficiency exhibited by the e-grocery system within a multitude of sce-
narios. The diverse scenarios under consideration enable the exploration of how the 
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system operates under varying conditions, shedding light on its adaptability and 
effectiveness.

5.2 � Simulation results

Figures  5, 6, 7 and 8 encapsulate the simulation results for the diverse combina-
tions outlined in Table 3. Figure 5 visually encapsulates each experimental configu-
ration, while Figs. 6, 7 and 8 offer graphical representations elucidating the interplay 
between assignment policy and three pivotal metrics: fill rate, delivery cost per bas-
ket, and emissions per basket. Our observations yield the following key insights:

•	 The Policy C: Proximity-Based Single Depot Assignment yields the lowest fill 
rate output, whereas the Policy 3C: Triad of Closest Depots Assignment results 
in the highest fill rate.

•	 Notably, in scenarios where there is substantial alignment between customer 
preferences and grocery inventory classes (high XYZ/ABC level), the fill rate 
values demonstrate a propensity to be higher. In contrast, scenarios character-

Fig. 5   Description of each experiment
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ized by a limited alignment (low XYZ/ABC level) tend to yield lower fill rate 
values. This highlights the significance of meticulous inventory management 
strategies tailored to the unique preferences of e-grocery customers. Such tai-
lored approaches hold the potential to substantially enhance fill rate perfor-
mance.

•	 In terms of delivery cost per basket, the Policy C: Proximity-Based Single 
Depot Assignment consistently generates the lowest cost, aligning with expec-
tations. Additionally, Policy S: Maximum Combined Score Depot Assign-
ment, which amalgamates both product availability and distance metrics, con-
sistently produces relatively favorable cost and carbon emissions values.

•	 A comparison between the fill rate performances of the “S”  and “C” policies 
reveals the superior performance of the “S”  policy. As such, adopting the “S” 
policy holds the potential to enhance all three-performance metrics concurrently.

•	 The trends observed in carbon emissions align closely with those of cost per-
formance.
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•	 For e-grocery enterprises targeting a fill rate performance exceeding 95%, the 
Policy 2S: Dual High Combined Score Depot Assignment emerges as a viable 
option. Notably, this policy, which leverages both depot availability and distance 
metrics, not only achieves impressive fill rate performance but also delivers rela-
tively favorable cost outcomes.

Given a multi-objective perspective, the “S”  and “2S” policies appear promising. 
Subsequently, their performances are further scrutinized by varying the α value—
a representation of the weight attributed to product availability in combined score 
calculations. The results of this assessment are succinctly summarized in Sect. 5.2.1.

In summary, the comprehensive analysis underscores the potential advantages 
associated with the “S” and "2S" policies. These policies exhibit the capability 
to concurrently enhance multiple performance metrics, rendering them valuable 
choices for e-grocery enterprises aiming to optimize their operational outcomes.

5.2.1 � Policy S under different α scenarios

Within this section, our focus centers on the experiments executed under the ambit 
of the “S” policy, with a deliberate manipulation of the α values. We endeavor to 
assess the ramifications of altering α values, specifically exploring the values of 0, 
0.25, 0.5, 0.75, and 1. The outcomes stemming from these experiments are meticu-
lously detailed and showcased in Figs. 9 through 12. Figure 9 contributes a compre-
hensive depiction of the experiments carried out within the scope of the “S” policy, 
visually outlining the array of α values subjected to testing.

Figure 10 shows α values vs. fill rate relationship. The graphical representation 
in Fig. 10 provides insight into the interplay between varying α values and the cor-
responding fill rate outcomes. It is discernible that as the α value escalates, there is 
a discernible enhancement in the fill rate performance metric. This effect is particu-
larly pronounced within experiments characterized by a low overlap between XYZ/
ABC factors in comparison to those with a high overlap. These findings underscore 
that in  situations where the XYZ/ABC overlap is limited, assigning heightened 

Fig. 9   Description of each experiment of Policy S
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significance to the product availability status within depots becomes pivotal for 
achieving superior fill rates.

The graphical representation in Fig. 11 sheds light on the relationship between 
varying α values and the resultant delivery cost per basket. A prevailing trend is 
apparent, wherein an augmentation of the α value is linked to an escalation in the 
cost per basket. This observation can be rationalized by the fact that as the α value 
increases, the significance placed on the distance between the fulfillment center 
and the customer’s location diminishes. As a result, this shift in emphasis triggers 
a surge in delivery costs, given that other factors, such as product availability, gain 
prominence in the decision-making process governing allocation.

Figure 12 showcases the relationship between α and emissions per basket. Nota-
bly, as α increases, there is a corresponding increase in the emissions per basket. 
This outcome can be attributed to the reduced importance of the distance between 
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the fulfillment center and the customer point when α is higher. Consequently, this 
leads to higher delivery costs and, subsequently, an elevated emission rate.

Considering Figs. 10, 11 and 12 collectively, it can be deduced that, in terms of 
a multi-objective approach, selecting α = 0.75 may offer the most advantageous out-
come. This choice substantially improves the fill rate performance while only mod-
erately increasing the cost and carbon emissions.

The same analysis and conclusions can be applied to the 2S policy, and the cor-
responding results are presented in the subsequent section.

5.2.2 � Policy 2S under different α scenarios

In this section, we examine the experiments performed with the 2S policy, utilizing 
five distinct α values: 0, 0.25, 0.5, 0.75, and 1. The outcomes of these experiments 
are illustrated in Figs. 13, 14 and 15. It should be noted that the description of the 
experiments conducted with the 2S policy remains the same as those conducted with 
the S policy, as depicted in Fig. 9.

Figure 13 depicts the relationship between α and fill rate in the 2S policy. It can 
be observed that the fill rate in the 2S policy is less responsive to changes in α com-
pared to the S policy. This can be attributed to the fact that the 2S policy assigns 
two depots to each customer point, thereby increasing the availability of products in 
the e-grocery system. As a result, the performance metrics of delivery cost per bas-
ket and carbon emissions per basket have a greater impact. Furthermore, the graph 
reveals that the fill rate performance is lower in experiments with a low XYZ/ABC 
overlap compared to those with a high XYZ/ABC overlap. This suggests that when 
the XYZ/ABC overlap is low, the weight (α) assigned to the product availability sta-
tus in depots becomes more significant in determining the fill rate.

In Fig. 14, the relationship between α and delivery cost per basket for the 2S 
policy is presented. It can be observed that the lowest cost per basket is predomi-
nantly achieved at α values of 0.25 and 0.5. As α increases beyond these values, 
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the delivery cost per basket tends to rise gradually. This indicates that assigning 
a moderate weight to both product availability and distance metrics (α = 0.25 and 
0.5) can lead to more favorable cost outcomes in the 2S policy.

Figure 15 visually presents the relation between varying α values and the ensu-
ing carbon emissions per basket, specifically within the context of the “Dual 
High Combined Score Depot Assignment” (2S) policy. Similar to the observa-
tions gleaned from Fig.  14, it becomes evident that the lowest levels of carbon 
emissions per basket are consistently associated with α values of 0.25 and 0.5. 
Notably, as the α value exceeds these thresholds, a gradual increment in carbon 
emissions per basket becomes apparent.
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This empirical trend accentuates that assigning a moderate weight to both prod-
uct availability and distance metrics (α = 0.25 and 0.5) can yield more favorable 
outcomes in terms of mitigating carbon emissions within the framework of the 2S 
policy.

After a thorough analysis of the experimental results, we further investigate the 
significant factors influencing each performance metric using ANOVA. The findings 
from this analysis will be discussed in the subsequent section.

5.3 � Discussion

•	 Proposition 1. The factors XYZ/ABC and the assignment policy affect the fill rate 
performance significantly.

•	 The results from an ANOVA test suggest that the fill rate performance is heav-
ily affected by the two factors: XYZ/ABC and the number of depot assignment 
policies for customers. Remember that customer preferred products are classi-
fied into XYZ classes based on a Pareto analysis of their ordering frequency. X, 
Y, and Z represent highly, moderately, and lowly ordered classes, respectively. 
E-grocery products are classified into ABC classes based on their inventory man-
agement. A, B, and C represent highly, moderately, and lowly selling classes, 
respectively. When those are at high levels, the fill rate increases significantly. In 
other words, when assessing the performance of the fill rate, these two elements 
should be given special attention.

•	 Proposition 2. Delivery cost and emission per basket are affected by those four 
factors: XYZ/ABC, the assignment policy, k, d%, significantly.

•	 The ANOVA results demonstrate that four factors have a significant effect on the 
cost and emission performance metric. Of these, the highest impact is caused by 

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

alpha=0 alpha=0.25 alpha=0.5 alpha=0.75 alpha =1

kg
CO

2e
/b

as
ke

t

α Values

Fig. 15   α versus emissions per basket for 2S policy



	 B. Y. Ekren et al.

1 3

the k factor, as an increase in the dispersion of households at a high level of k 
leads to a higher cost per basket. The second most significant factor is d%, as a 
high level of d% increases both the cost and emission outputs.

•	 Proposition 3. The best policy for an e-grocery company looking to minimize 
environmental and economic impact without considering fill rate is policy C, as 
it usually results in decreased travel distance.

•	 If the e-grocery company should consider a cost-efficient and sustainable strat-
egy in its business, in this case, Policy C is typically the best choice since it 
tends to result in a shorter travel distance. However, in certain situations, the 
other policies may be more effective in terms of emissions per basket and fill rate 
performance. For example, if the distance factors are low (k = 0 and d% = 0) and 
the probability of complementary shopping is high (g% = 1) for a customer with 
XYZ/ABC = 1, Policies A, S, 2C, 2A, 2S will not only result in an increased fill 
rate but a decrease in carbon emissions compared to the base policy C. This is 
likely because the improvement in product availability cuts down on the need for 
complementary shopping. However, delivery cost per basket is still the best in 
the C policy.

•	 Proposition 4. By using customer historical purchasing data to create a pre-pur-
chase depot allocation policy, it is possible to significantly improve the fill rate 
for the customer.

•	 The results demonstrate that, on average, policy A increases the fill rate by 5.93% 
in comparison to policy C, which is based on customers’ buying habits. Conse-
quently, more sophisticated algorithms that use customer-based past information 
could potentially lead to even better product availability, resulting in higher cus-
tomer satisfaction.

•	 Proposition 5. Using customer-based historical data, a single-depot allocation 
policy is still a viable option for an e-grocery due to its simplicity.

•	 Comparing C and S policies in Fig. 7, their respective delivery cost per basket 
performance metrics are similar, however, S policy’s fill rate metric is much 
higher than that of policy C. This suggests that more score-based solutions 
should be explored to improve multi-objective delivery cost and fill rate-related 
issues.

•	 Proposition 6. If preventing the environmental and economic effects of home 
delivery is a priority, and increasing the fill rate is desirable, then a data-driven 
policy which takes both availability and distance into account could be a good 
option. The focus on availability versus distance can be changed based on the 
e-grocery

•	 ’s desired goals. Policy S merges policy C and policy A by taking into account 
both distance and availability. The α value can be adjusted depending on the 
goals of the e-grocery. For example, when the overlap between XYZ and ABC is 
high, policy S with α = 0.5 works better than when the overlap is low.
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6 � Conclusion

This paper looks into e-grocery problems, which are mainly defined as when cus-
tomers cannot purchase the products they intended to buy (pre-purchase out-of-
stock) or when the desired products are not available for delivery (post-purchase out-
of-stock). We analyze e-grocery allocation policies as a means of addressing these 
issues, while also considering the improvement of multiple objectives, such as max-
imizing product availability (i.e. fill rate) and making deliveries more sustainable 
and cost-efficient. We focus on two research questions: How e-grocery fulfillment 
policies affect this industry’s performance from sustainable delivery perspectives 
(i.e., product availability, cost-efficiency and carbon emission)? And How customer 
and e-grocery relevant data can be utilized effectively for managing e-grocery ful-
filment? The first research question involves the development of e-grocery fulfill-
ment policies that allocate stores, depots, or fulfillment centers for processing online 
orders. The allocation policies are designed to allocate stores, depots, or fulfilment 
centers for processing online orders, addressing pre-purchase out-of-stock and post-
purchase out-of-stock scenarios. The seven distinct policies, including Proximity-
Based Single Depot Assignment (Policy C), Maximum Availability Depot Assign-
ment (Policy A), Dual High Combined Score Depot Assignment (Policy 2S), and 
others, were formulated to provide a range of approaches that balance product avail-
ability, distance metrics, and customer preferences.

In RQ2, the effective utilization of customer and e-grocery-based data is explored 
to improve developed fulfillment policies, ensuring they are optimized for perfor-
mance. This involves leveraging historical purchase data, product popularity trends, 
and delivery patterns to inform allocation strategies. We conduct a sensitivity analy-
sis to ascertain how performance metrics are influenced by input data. We utilize an 
experimental design and apply ANOVA to identify factors significantly impacting 
performance metrics. Through the application of ANOVA, the intention is to miti-
gate potential biases stemming from the utilization of hypothetical data.

6.1 � Research implications

This paper contributes to the existing academic literature by looking at product 
availability and home delivery issues in e-commerce, both of which have rarely been 
addressed together. We focus on the pre-purchase allocation of fulfilment centers to 
customers, which has not been thoroughly studied in the literature. This is especially 
pertinent due to the increasing environmental pressure on last-mile logistics and 
heightened customer satisfaction expectations in the e-grocery sector. Our research 
provides a significant contribution to the depot allocation problem in complex e-gro-
cery management by considering customer-based solutions utilizing current data.
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6.1.1 � Managerial implications

This research explores how e-grocery companies can use the generated data and 
depot allocation to improve their competitiveness and cost efficiency. By taking 
advantage of customer-based historical data structure, e-groceries can increase prod-
uct availability for online shoppers. Seven different depot assignment policies are 
studied to evaluate how e-grocery companies can use proactive allocation policies. 
Additionally, the research also considered two performance metrics beyond delivery 
cost: fill rate and emissions per basket, which can be adapted according to the e-gro-
cery’s needs. From these results, e-groceries may use the existing policies or create 
new ones to best suit their needs.

6.2 � Limitations and future developments

This simulation study has some limitations, much like any others. For example, it 
was not possible to validate the simulation models directly on real data since there 
was no such real case and data. Future works could be done to apply these poli-
cies to real companies to compare the results from the computer-generated evidence. 
Additionally, our focus has primarily been on e-shoppers, neglecting considera-
tion of physical store buyers in cases where a store operates in both realms. This 
aspect warrants attention for a more comprehensive understanding of the dynam-
ics involved. The models fail to account for fixed costs when implementing vari-
ous e-grocery methods in the distribution process. Furthermore, the depot allocation 
policies are only based on customer’s purchasing preferences and depots’ stock-out 
parameters, and could be improved by incorporating other advanced methodologies 
such as big data analytics and machine learning, artificial intelligence, etc. Further-
more, the study does not account for customer’s purchasing probability for their 
next order, which could be addressed by integrating a Markov Process modelling 
approach. Lastly, the possibility of splitting deliveries from different depots to the 
customer point instead of transshipment between depots is something that could be 
further explored.
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Appendix A: Flow chart
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