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A B S T R A C T   

This research addresses limitations found in existing 3D track reconstruction studies, which often focus solely on 
specific rail sections or encounter deployment challenges with rolling stock. To address this challenge, we 
propose an innovative solution: a rolling-stock embedded arch camera array scanning system. The system in-
cludes a semi-circumferential focusing vision array, an arch camera holder, and a Computer Numerical Control 
machine to simulate track traverse. We propose an optimal configuration that balances accuracy, full rail 
coverage, and modelling efficiency. Sensitivity analysis demonstrates a reconstruction accuracy within 0.4 mm 
when compared to Lidar-generated ground truth models. Two real-world experiments validate the system’s 
effectiveness following essential data preprocessing. This integrated technique, when combined with rail rolling 
stocks and robotic maintenance platforms, facilitates swift, unmanned, and highly accurate track reconstruction 
and surveying.   

1. Introduction 

McKinney reported that Europe spends €25 billion annually on rail 
infrastructure maintenance and renewal in 2020 [1]. Although the 
carrying pressure has reduced due to the epidemic [2], the maintenance 
cost remains substantial. Fig. 1 illustrates the classification of rail de-
fects, divided into head defects, web defects, and base defects. Head 
defects, such as head cracks, wall-thinning, and transverse fissures, 
primarily result from transverse and longitudinal fatigue induced by the 
rolling stocks [3]. Common web defects include head and web separa-
tion, split web, and piped rail. Base defects are categorized as broken- 
based and base fractures [3]. These defects pose risks of critical rail 
failure, such as derailment, shutdown, and casualties. According to the 
2021 report by Network Rail in the UK, surface fatigue damage 
accounted for 51 % of the total rail damage, while deformation and wear 
accounted for 46 % [4]. Non-destructive testing (NDT) technologies, 
such as ultrasonic [5–8], eddy current testing [9–12], magnetic particle 
inspection [13,14], acoustic emission [15–17], and thermal imaging 
[18–22], have been widely employed to detect these defects without 
causing harm to the rail[5–7,9–12,13,14,15–17,18–21]. Results ob-
tained through current NDT technology are typically presented as 1D 
signals or 2D images. In contrast, 3D models offer a more intuitive and 
comprehensive representation. In the realm of digital twins’ develop-
ment for rail maintenance, 3D reconstruction technology could create 

detailed rail models, incorporating surface and geometric information 
for remote maintenance and inspection [23]. These models provide a 
tight and seamless integration between the physical and virtual space. 

Various 3D reconstruction technologies have found applications in 
rail maintenance, including structured light [24,25], time-of-flight 
[26,27], triangulation [28], monocular vision [29], multi-eye vision 
[30,31]. These technologies serve as the foundation for remote rail 
maintenance. Guerrieri et al. proposed a mathematical model for 
reconstructing 3D rail models and measuring transverse and longitudi-
nal rail profiles, validating computer vision as a promising tool for rail 
inspection [32]. In terms of software applications, Gabara and Sawicki 
compared the results of capturing pictures of running rails (including 
double tracks, stones, sleepers, etc.) using two 3D reconstruction soft-
ware, RealityCapture and PhotoScan [33]. RealityCapture was sug-
gested more suitable for real-world applications due to its faster 
generation speed, superior visual quality, and higher robustness. Zhang 
et al. proposed a reconstruction process, employing structure-from- 
motion (SfM) and Multi-view Stereo (MVS) techniques, using five opti-
cal cameras to reconstruct the head of a single-row rail, including arti-
ficial defects [34]. Comparative analysis with MiniProf, a contact profile 
surface measurement equipment, showed promising results: the cross- 
section mean square error (MSE) of the reconstructed model is less 
than 0.23 mm in the laboratory environment and, outdoors, had a 95 % 
confidence level that the MSE of the rail head’s cross-sectional profile 
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was less than 0.5 mm with a root mean square error (RMSE) smaller than 
0.3 mm. It should be noted that this experiment focused solely on the rail 
head, while rail damage also occurs on the web and base. Adham et al. 
proposed a 3D reconstruction method using feature correspondence 
processes and SfM based on videos of the train operating environment 
[35]. Their findings suggest that running speed of 10 kph, resulting in 
90 % or 95 % overlap percentage, were optimal for creating 3D models 
of train running environments. Although their primary aim was to build 
3D models for train running environments, the research output provides 
valuable insights for reconstructing rails using videos. 

As far as we are concerned, existing related studies primarily focused 
on specific rail sections, such as the head, while sensitivity analysis 
concerning the relationship between camera layout and 3D recon-
struction result remains limited. Bridging this knowledge gap is crucial 
for designing a lean sensing system that balances complexity and per-
formance, a focal point addressed in this study. The key novelties of this 
article are as follows:  

(1) Introducing a solution for reconstructing the complete 3D profile 
of rails, enabling a comprehensive surface evaluation rather than 
focusing on specific parts.  

(2) Investigating the impact of camera number and layout, working 
distance, and moving step interval on 3D rail imaging. Opti-
mizing these parameters lead to more accurate reconstructed 

results that better represent real-world rails, reducing blind zones 
and providing a solid foundation for future data fusion of NDT.  

(3) Validating the performance of the proposed solution operating in 
on-track mode within an outdoor environment. 

The application of such research can aid engineers in remotely and 
intuitively observing rails, thereby improving work efficiency, reducing 
the need for on-site visits, and minimising accident risks. Furthermore, 
the recorded 3D profile capture rail structure and surface conditions, 
improving the traceability of historical data and serving as a foundation 
for future database establishment. 

2. Methods 

The workflow of the proposed system can be broadly divided into 
three stages, as shown in Fig. 2, including experiment design, 3D 
reconstruction, and performance evaluation. The detail of each step is 
presented below. 

2.1. Experiment design 

2.1.1. System configuration 
The 3D imaging platform is composed of four essential components: 

an arch sensor holder, a set of cameras, a set of connectors, and a 
Computer Numerical Control (CNC) scanning machine, as depicted in 

Fig. 1. Cross section and defects of rails [3].  

Fig. 2. The proposed workflow of this study.  

Fig. 3. Experimental setup. (a) system design; (b) a snapshot of the actual system; (c) cameras; (d) connectors (Connector 1: connecting the arch to the CNC machine; 
Connector 2: connecting the cameras to the arch; Connector 3: connecting the cameras to Connector 2.). 
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Fig. 3. The arch sensor holder serves the purpose of securely fixing and 
controlling the radial distance and angles of the cameras. Its design al-
lows for a maximum outer radius of 40 cm and a minimum inner radius 
of 15 cm. Constructed using polylactic acid (PLA) material through 3D 
printing, the arch is tailored to facilitate camera attachment. Due to 
space limitation within the 3D printer, the arch is divided into 6 parts, 
which were produced individually. 

The cameras used in the system are 8.0 Megapixel USB CAMERA, 
operating on DC 5 V power. These cameras offer a spatial resolution of 
1600 × 1200 pixels. Their positioning aligns consistently with the radial 
orientation of the arch, ensuring uniform imaging angles throughout the 
scanning process. The rail model employed in this study is the 30 cm 
CEN56E1, which represents the predominant rail type that accounts for 
approximately 70 % of usage in the UK. 

The CNC machine, depicted in Fig. 3(b), plays an important role in 
facilitating both horizontal movement and vertical fixation of the cam-
eras and the arch. This precision-controlled machine ensures accurate 
motion and positioning throughout the scanning procedure. For data 
collection and reconstruction, a computer with the Windows 11 x64, 
CPU Intel(R) Core(TM) i7-10750H CPU of 2.60 GHz with a memory of 
16 GB is employed. In addition, the indoor experiment takes place in a 
controlled environment with stable lighting conditions and no external 
natural interference. 

2.1.2. Variables settings 
To determine the optimal system specifications, the experiment 

involved testing 15 groups of configurations, as detailed in Table 1. 

These setups were designed based on variations in working distances, 
shot intervals, and camera layouts. Each configuration is labelled using 
the “X-Y-(Z)-L” format. Specifically, “X” represents the working distance 
(in cm), “Y” denotes the number of employed cameras, “(Z)” indicates 
the angles of each camera (in◦), and “L” denotes the moving step interval 
(in cm). 

2.1.2.1. Camera quantity and layout. The angle setting for the camera 
positions is established with the left end of the arch serving as the 
reference point, marked as 0◦. Subsequently, the angle between each 
adjacent camera position is set to 30◦. Fig. 4(a) illustrates an example 
configuration with 7 cameras, positioned at angles of 0◦, 30◦, 60◦, 90◦, 
120◦, 150◦, and 180◦. 

This study conducted tests using 4, 5, 6, and 7 cameras and evaluated 
their corresponding performance. To maintain a balanced distribution of 
inputs from the left and right sides, a symmetrical layout is adopted 
when the number of cameras is even. In cases of an odd number of 
cameras, an additional camera set at 90◦ is added in the layout. For 
example, when using 4 cameras, layout options include configurations 
such as 0-30-150-180, 0-60-120-180, or 30-60-120-150. In the case of 5 
cameras, the above-mentioned layouts are extended to 0-30-90-150- 
180, 0-60-90-120-180, or 30-60-90-120-150, respectively. 

2.1.2.2. Camera working distance and field of view. The working dis-
tance of the cameras refers to the distance between the cameras and the 
centre of the arch circle. In this study, the arch allows for a maximum 
working distance of 38 cm and a minimum working distance of 20 cm. 
To investigate the effects of varying working distance on the recon-
struction, specific intervals of four centimetres were selected to enhance 
discrimination. Consequently, the experiment considered four working 
distance options: 26, 30, 34, and 38 cm. 

2.1.2.3. Moving step interval. The moving step interval refers to the 
distance covered by the arch in the longitudinal direction during each 
movement, as shown in Fig. 4(b). In this experiment, various moving 
step interval were examined, namely 1, 2, 3, and 4 cm. It should be noted 
that due to the rail’s length of 30 cm, different step intervals required 
different numbers of positions to capture data. Specifically, for the 
moving step interval of 1, 2, 3, and 4 cm, the corresponding numbers of 
positions to capture data were 31, 16, 11, 8 and 7, respectively. These 
positions represent discrete locations along the rail where data was 
collected during the scanning process. 

Table 1 
The description of Groups.  

Group ID Description Number of Images 

1 38-7-(0-30-60-90-120-150-180)-1 217 
2 38-6-(0-30-60-120-150-180)-1 186 
3 38-6-(15-45-75-105-135-165)-1 186 
4 38-5-(0-60-90-120-180)-1 155 
5 38-5-(0-30-90-150-180)-1 155 
6 38-5-(30-60-90-120-150)-1 155 
7 38-4-(0-60-120-180)-1 124 
8 38-4-(30-60-120-150)-1 124 
9 34-7-(0-30-60-90-120-150-180)-1 217 
10 30-7-(0-30-60-90-120-150-180)-1 217 
11 26-7-(0-30-60-90-120-150-180)-1 217 
12 38-7-(0-30-60-90-120-150-180)-2 112 
13 38-7-(0-30-60-90-120-150-180)-3 77 
14 38-7-(0-30-60-90-120-150-180)-4 56 
15 38-7-(0-30-60-90-120-150-180)-5 49  

Fig. 4. (a) Group (1) layout (38–7-(0–30-60–90-120–150-180)-1). The blue polka dot represents the centre of the arch; the red circles with numbers illustrate the 
camera positions; the yellow dotted line indicates the working distance of 38 cm; the green dotted line indicates the maximum outer radius of 40 cm; the orange 
dotted line denotes the minimum inner radius of 15 cm; the deep red dotted line represents the minimum working distance of 20 cm. (b) an illustration of the moving 
step interval for Group 14, where the red dotted lines denote the positions of data capture with a distance of 4 cm between each adjacent position, leading to 8 data 
captures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.1.3. Data collection 
To maintain experimental consistency and minimize interference, 

each working distance underwent a single data collection process, with 
the exception of Group (3). The experiment involved the use of a CNC 
scanning machine and connector to control the movement of 7 cameras 
arranged in a layout of 0-30-60-90-120-150-180. Images were captured 
at a moving step interval of 1 cm, resulting in a total of 31 positions for 
data capture along the rail. Each image was taken after ensuring the CNC 
machine came to a complete stop, guaranteeing stability during image 
acquisition. Thus, a dataset consisting of 217 images (7 cameras x 31 
positions) was obtained for each working distance. Table 1 illustrates 
the parameters corresponding to the extracted images. 

For Groups 2–11, excluding Group (3), data were selected from the 
dataset obtained in Group (1). Whenever the working distance changed, 
the CNC machine returned to the starting position to initiate a repeat of 
the data capture process. In total, 1054 images were collected, including 
additional 186 pictures specifically for Group (3). 

2.2. 3D models reconstruction 

The experiment employed VisualSFM to accomplish the reconstruc-
tion of 3D point clouds, which involved a series of steps such as sparse 
point cloud reconstruction, dense point cloud reconstruction, mesh 
generation, and texture mapping. These stages were performed to obtain 
a comprehensive representation of the reconstructed object, including 
geometric structure and visual appearance. 

2.2.1. Sparse point cloud reconstruction 
The initial stage of 3D reconstruction involves sparse point cloud 

reconstruction. This stage utilizes the camera’s intrinsic matrix (K) and 
extrinsic parameters to transform the scene’s spatial points into an 
image point cloud. The extrinsic matrix, comprising a rotation matrix R 
and a translation matrix t, facilitates the transformations between the 
camera’s field of view capturing the external world and the optical data 
received by the camera sensor. The intrinsic matrix includes parameters 
like scale factor, focal length, principal point, skew, and geometric 
distortion. These parameters enable the conversion of optical informa-
tion acquired by the camera sensor into a two-dimensional pixel image. 
Determining these intrinsic and extrinsic parameters allows for the 
transformation of image pixel coordinates into camera coordinates, and 
subsequently into world coordinates. We primarily employed the offline 
structure-from-motion (SfM) approach, which integrates camera inter-
nal parameters (K) with extrinsic parameters (R and t) obtained from a 
collection of unordered pictures. By combining these parameters, a 3D 
sparse point cloud is constructed, providing an initial representation of 
the scene’s geometry. Equation (1) corresponds the mapping of physical 
world coordinates in an image to their digital world. 

x = K[R|t]X (1) 

where x stands for a pixel coordinate point in the image, X denotes its 
world coordinate point in the real world. Similarly, this equation implies 
that each pixel in the acquired images can be associated with a real- 
world 3D position. In summary, the extrinsic parameters facilitate the 
World-to-Camera transformation, while intrinsic parameters achieve the 
Camera-to-Pixel (including Camera-to-Image and Image-to-Pixel) 
transformation. Combining both transformations allows converting be-
tween pixel coordinates and global world coordinates via camera co-
ordinate transformations. 

2.2.1.1. Scale-invariant feature transform. The Scale-invariant Feature 
Transform (SIFT) is employed initially to extract keypoints from two 
pictures in the SfM method. Subsequently, the keypoints extracted from 
different images are linked using either the exhaustive technique or the 
proximity algorithm. To acquire R, t, and a sparse point cloud, the 
fundamental matrix F and the essential matrix E are solved using 

Singular Value Decomposition (SVD). The relationship between F and E 
is written as Eqs.(2) and (3). Thus, the essential information required for 
reconstruction is derived by the application of SVD. 

xT
1 Fx2 = 0 (2)  

E = KT
1 FK2 (3) 

where x1, x2 represent the different pixel positions of one point in 
different pictures, K1, K2 denote their corresponding intrinsic matrix. 
This method is iteratively executed, accumulating a substantial collec-
tion of point clouds comprising the salient features from all images and 
their interconnections. These feature points are critical for establishing 
correspondences between images. In other words, their matches imply 
the same real-world objects have been identified across different pixel 
coordinate systems. By locating common features across multiple cam-
era views, these points enable linking images through shared scene 
content. These feature correspondences provide tie points between the 
separate image spaces, grounded by corresponding physical objects. 
Establishing these feature matches is thus foundational for unifying 
distinct image perspectives into a cohesive real-world frame of refer-
ence. In essence, the cross-view feature correspondences underpin 
reconciling the different image coordinate spaces in terms of a unified 
world coordinate system. 

2.2.1.2. Bundle Adjustment. The fusion of individual point clouds is 
accomplished through Bundle Adjustment (BA), aiming to reduce the 
disparity between observed and projected image points’ locations. Ac-
cording to [36], this study assumes that the presence of n 3D points 
visible from m different perspectives. In this context, xij denotes the 
projection of the i th point on picture j. Additionally, binary variables vij 

are introduced, set a value of 1 when point i is visible in picture j, and 
0 otherwise. Then, the camera j and each 3D point i are parameterised by 
vector aj and a vector bi, respectively. BA minimises the total repro-
jection error, taking into account all 3D points and the camera param-
eters, represented as 

min
aj ,bi

∑n

i=1

∑m

j=1
vijd

(
Q

(
aj, bi

)
, xij

)2 (4) 

where d(x, y) denotes for the Euclidean distance between image 
points represented by vectors x and y, while Q

(
aj, bi

)
represents the 

expected projection of point i onto image j. Using accurate R and t ob-
tained by multiple iterations, multiple small point clouds are fused 
iteratively until the reconstruction of the sparse point cloud is 
completed. The proposed solution utilizes camera poses and 3D co-
ordinates of measured points as positional parameters, while previously 
extracted feature point image coordinates serve as known inputs. 
Through optimization, the technique determines optimal camera pa-
rameters along with the global world coordinates of points. 

2.2.2. Reconstruction of dense point cloud 
To gain dense point clouds, the initial sparse point clouds generated 

from SfM are further processed by Clustering Views for Multi-view 
Stereo (CVMS). According to Furukawa et al. [37], the CVMS method 
involves a series of steps, including merging of SfM points, removal of 
redundant images, enforcement of size constraints, and ensuring suffi-
cient coverage. The overlapping clustering formulation is defined as 
follows [37]: 

min
∑

k
|Ck|subject to (compactness) (5)  

∀k|Ck| ≤ α(size) (6)  

∀i
{# of covered points in Ii}

{# of points in Ii}
≥ δ(coverage) (7) 
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where {Ii} represents input images; {Ck} denotes overlapping image 
clusters; α is a constant determined by computational resources, 
particularly memory limitations; δ is the ratio of covered points. Equa-
tion (5) partitions the data into the minimum number of clusters based 
on the compactness criterion. Equation (6) constrains the size of each 
cluster to contain fewer points than a set value of points. Concurrently, 
Equation (7) ensures convergence by requiring substantial overlap be-
tween clusters and coverage of all feature points. This clustering process 
categorizes feature points into distinct but intersecting subsets accord-
ing to compactness. By fusing multiple images with known camera 
intrinsic and extrinsic parameters, the approach estimates 3D informa-
tion to generate a dense point cloud. In summary, the proposed method 
leverages compactness and overlap constraints to jointly cluster features 
and reconstruct 3D structure from multi-view calibrated imagery in a 
unified framework. 

2.3. Model evaluation 

Before evaluation, the model is imported into MeshLab, and any 
points that lie outside the model are removed manually to ensure ac-
curacy and consistency. 

2.3.1. Ground Truth reconstruction 
In this experiment, Ground Truth (GT) is generated by using Poly-

Cam software on an iPhone. A total of 76 images, captured from various 
angles, directions, and working distances using Lidar, serve as the basis 
for creating the GT. There are two reasons for choosing this method. 
First, although SfM has a high accuracy [38], the built models in this 
experiment lack multi-angle views of pictures, leading to decreased 
accuracy. Second, the Lidar-based method using a smart phone is rec-
ognised for its high accuracy [38]. 

2.3.2. Registration 
For analysis, registration is performed to geometrically align the GT 

and the produced models (EX). The denoised point cloud and GT are 
imported into CloudCompare. By matching scales, matching bounding- 
box centres, and manual translating/rotating, the reconstructed point 
cloud is adjusted to match the size of the GT. After that, fine registration 
is performed iteratively until the error between the two models, calcu-
lated suing an average of 5 × 105 corresponding points, falls within the 
threshold of 1 × 10−6. 

2.3.3. Distance calculation 
To calculate the distance error, the least square plane method is 

employed, involving fitting a plane using 12 local adjacent points. The 
principle is to minimise the parameter S to obtain the closest plane 
expression, shown in Eq. (8). 

S = min|f (x, y, z)| (8)  

f (x, y, z) =
∑n−1

i=0
(a0*xi + a1*yi + a2 − zi)

2 (9) 

where a0 = −A
C ,a1 = −B

C , a2 = −D
C, n is the number of input points. 

Among them, A, B, C, and D are constant making points (x, y, z) satisfy 
Eq. (10). 

A*x + B*y + C*z + D = 0 (C ∕= 0) (10) 

Finally, the Octree method, as the default algorithm, is used to 
calculate the distance between the GT and the reconstructed model, 
where the Octree level is set as 10. 

It is worth noting that choosing a reference model for distance 
calculation can yield various results. This study adopts two methods. 
The first one uses the GT as the reference, comparing it against the 
reconstructed point cloud to calculate the error. The second method uses 
the reconstructed point cloud as the reference, comparing it against the 
GT. This approach aims to identify any missing areas in the produced 
point cloud and assess the evenness of the point cloud distribution. The 
formula for calculating the distance error is as follows: 

μE =

∑n
i=1

∑m
j=1di,j

NCompared
(11)  

σE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑m

j=1

(
di,j − μE

)2

NCompared

√
√
√
√
√

(12) 

where μE represents the mean distance of error; σE is the standard 
deviation of errors corresponding to μE; di,j denotes the minimum dis-
tance from the point (i, j) in the compared point cloud to the reference 
point cloud; Ncompared is the total number of points in the compared point 
cloud. 

3. Results 

A total of 15 groups of experiments were conducted in this study, 
with 9 of them resulting in successful 3D reconstruction of rail models. 
The final rendered models exhibit a high degree of similarity to the GT, 
considering their shape, structure, and surface information, as shown in 
Fig. 5(a)-(b). However, the remaining 6 groups encountered challenges 
such as extensive missing areas or deformations, as demonstrated in 
Fig. 5(c)-(d). To determine the optimal experimental setup, this study 
investigates the impact of various experiment configurations, including 
camera layout, camera working distance, and data capture interval, on 
the precision and accuracy of rail reconstruction. 

For the visual and quantitative evaluation of reconstruction perfor-
mance, the Least Square Plane (LSP) method is proposed to fit the point 
cloud plane and calculate the error between the reference model and the 
produced model. The notation EX-GT means using the GT as the refer-
ence, which provides insights into the accuracy of the produced point 
clouds. Conversely, GT-EX means that the EX is used as the reference, 
allowing for the identification of missing areas in the produced model 
assuming a comprehensive reconstruction in the reference model. 

In the below visualisations of reconstruction errors, a ‘jet’ colour 
map is used to illustrate the error. The colour scale ranges from blue for 
small distances to red for larger distances. To highlight the difference, 
the scale saturation in the compared groups is adjusted to ensure 

Fig. 5. Built model of (a) Group (10) and (b) the Ground Truth; Failure models of (c) Group (7) and (d) Group (11).  
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consistency. 

3.1. Camera quantity and layout 

Out of the 8 groups of experiments investigating the impact of the 
camera number and layout (as shown in Table 2), Groups (1), 2, 6, and 8 
successfully reconstructed 3D models, while others (Groups (3), 4, 5, 
and 7) encountered failures in reconstruction. As a result, it can be 
concluded that achieving successful reconstruction requires a minimum 
of four cameras. Among the tested layouts, Group (8), featuring four 
cameras with a layout of 30-60-120-150, exhibits the leanest configu-
ration, while Group (1), consisting of seven cameras with a layout of 0- 
30-60-90-120-150-180 represents the most complex setup. 

Within these 4 successful groups, it is observed from the EX-GT re-
sults that with additional images from other angles (more cameras), 
resulting in an increased number of feature points, there is an increase in 
the mean error and volatility of the extracted point clouds. For example, 
Group (8) with 4 cameras exhibits the lowest mean error of 0.49 mm and 
standard deviation of 0.40 mm. Conversely, Group (1) with 7 cameras 
displays the largest standard deviation of error at 0.66 mm and a rela-
tively large mean error of 0.96 mm. This observation can be attributed to 
the introduction of redundant information when more cameras are 
involved, which consequently leads to errors in feature registration. 

The results of GT-EX suggest a trend where an increased number of 
cameras contributes to a decrease in the mean and standard deviation of 
reconstruction error. This indicates enhanced integrity of the produced 
model or fewer missing areas, such as Area A depicted in Fig. 6. This 
observation is caused by the reduced missing information due to the 
increased coverage provided by more cameras. For instance, Group (8) 
with 4 cameras, demonstrates the largest mean error of 1.70 mm and a 
standard deviation of errors at 3.84 mm, while Group (1) with 7 cameras 
exhibits the smallest mean error of 1.29 mm and a standard deviation of 
2.11 mm. In comparison to the extracted point clouds in Group (1), the 
small-scale overlap in Group (8) results in corresponding points with 
large distances, leading to a large mean error and standard deviation. In 
addition, the standard deviation of Group (8) is larger than its mean 
error, which is also caused by the far corresponding points or the low 
overlap, as evident in Fig. 6(d). 

Additionally, experiments with three cameras were also conducted 
with a systematic layout, including 38-3-(0-90-180), 38-3-(30-90-150), 
and 38-3-(60-90-120). However, the input images from these experi-
ments did not provide enough details to support a complete model 
reconstruction. 

Thus, in terms of reconstruction effectiveness, it is observed that 4 
cameras can build 3D models successfully and efficiently, while the 7- 
camera layout of Group (1) is recommended to form a complete and 

Table 2 
Reconstruction errors of different camera numbers and layouts.  

Group Description EX-GT GT-EX 
Mean 
(mm) 

Std. 
(mm) 

Mean 
(mm) 

Std. 
(mm) 

1 38-7-(0-30-60-90-120- 
150-180)-1  

0.96  0.66  1.29  2.11 

2 38-6-(0-30-60-120- 
150-180)-1  

1.30  0.81  1.65  2.53 

6 38-5-(30-60-90-120- 
150)-1  

0.56  0.47  1.54  3.53 

8 38-4-(30-60-120-150)- 
1  

0.49  0.40  1.70  3.84  

Fig. 6. Visualisation of reconstruction errors (unit: m) for different camera numbers and layouts. (a) EX-GT for Group (1); (b) GT-EX for Group (1); (c) EX-GT for 
Group (8); (d) GT-EX for Group (8). 

Table 3 
Reconstruction error of different camera working distances.  

Group Description EX-GT GT-EX 

Mean 
(mm) 

Std. 
(mm) 

Mean 
(mm) 

Std. 
(mm) 

1 38-7-(0-30-60-90-120- 
150-180)-1  

0.96  0.66  1.29  2.11 

9 34-7-(0-30-60-90-120- 
150-180)-1  

0.93  0.72  1.26  2.31 

10 30-7-(0-30-60-90-120- 
150-180)-1  

0.38  0.40  0.93  2.47  
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reliable point cloud with a mean error less than 1 mm. 

3.2. Camera working distance 

To investigate the effect of camera working distance, four groups of 
experiment were conducted, and the results are shown in Table 3 and 
Fig. 7. It is observed that Groups (1), 9, and 10 effectively reconstructed 
the 3D models, while Group (11) failed. This suggests that rails can be 
reconstructed within a working distance range of 30 to 38 cm. A working 
distance shorter than 30 cm is not suggested because the cameras cannot 
cover the complete view of the target object which leads to poor con-
nections between feature points. A working distance longer than 38 cm 
is expected to function but may compromise spatial resolution. 

The results of EX-GT for these three successful groups show that, as 
expected, the accuracy and precision of the extracted point clouds in-
crease with shorter working distances due to a higher spatial resolution. 
It has also been observed that the performance difference between 34 cm 
and 38 cm is not significant while the performance at 30 cm is improved 
dramatically in terms of both accuracy and precision. 

Additionally, the GT-EX results indicate a positive association be-
tween the mean error and the working distance, while showing a 
negative correlation with the standard deviation. A shorter working 
distance results in a smaller mean error in GT-EX due to a higher spatial 
resolution that results in an increased number of produced cloud points; 

while the standard deviation is larger caused by the unbalanced distri-
bution of point cloud, suggesting more areas with sparse point cloud in 
the produced model. To further explore the impact of working distance, 
Figure (a) and Fig. 8(b) show snapshots at working distances of 38 cm 
and 30 cm, respectively, but with the same angle of 60◦. Fig. 8(a) offers a 
larger field of view (FOV) with a compromised spatial resolution, while 
Fig. 8(b) has a smaller FOV with improved spatial resolution. The 
increasing 3D geometric linkages and restrictions are provided with 
more detailed information, improving the possibility of feature point 
identification. Numerically, the number of vertices in Group (1) is 5.7 ×

105, while that in Group (10) is 9.9 × 105. 
Eventually, the working distance is advised to be set between 30 and 

38 cm based on the selected cameras to ensure the mean error smaller 
than 1 mm. Considering the lowest means of errors in both GT-EX and 
EX-GT for the shortest working distance, 30 cm is suggested in this 
study. 

3.3. Camera scanning step interval 

This study examined the effects of five different data capture in-
tervals and the results are shown in Table 4. It is observed that Groups 
(1), 12, 13, and 14 were successful in reconstructing the 3D models, 

Fig. 7. Visualisation of reconstruction errors (unit: m) for different working distances. (a) EX-GT for Group (9); (b) GT-EX for Group (9); (c) EX-GT for Group (10); (d) 
GT-EX for Group (10). 

Fig. 8. Snapshots of different working distances at the angle of 60◦. (a) working 
distance: 38 cm; (b) working distance: 30 cm. 

Table 4 
Reconstruction error of different data capture intervals.  

Group Description EX-GT GT-EX 

Mean 
(mm) 

Std. 
(mm) 

Mean 
(mm) 

Std. 
(mm) 

1 38-7-(0-30-60-90-120- 
150-180)-1  

0.96  0.66  1.29  2.11 

12 38-7-(0-30-60-90-120- 
150-180)-2  

0.50  0.43  1.06  2.57 

13 38-7-(0-30-60-90-120- 
150-180)-3  

0.54  0.45  1.19  2.69 

14 38-7-(0-30-60-90-120- 
150-180)-4  

0.52  0.40  1.19  2.49  
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while Group 15 failed. A failed reconstruction is expected when the data 
capture interval is too long because of the incomplete coverage of the 
object between two adjacent data captures. In this experiment, a data 
capture interval smaller than or equal to 4 cm is suggested. 

Based on these successful experiments, it is found that excessively 
long and short intervals lead to increases errors. Specifically, Group (1) 
with an interval of 1 cm exhibits a significantly larger EX-GT mean error 
of 0.96 mm than that of Group (12) with an interval of 2 cm resulting in 
a mean error of 0.50 mm. It seems that the significant amount of 
redundant information in Group (1) compromises the performance of 
image registration. Furthermore, when the interval is increased from 2 
to 4 cm, the mean and standard deviation of errors increase slightly, as 
visualised in Fig. 9(a) and Fig. 9(c). This is because diminishing relevant 
feature points arise from decreased image coverage brought on by 
increasing intervals. In the end, failed reconstruction occurs when the 
interval is longer than 4 cm since there is an insufficient correlation 
between the images from two adjacent captures. 

The mean of the reconstructed point cloud increases as noisy data 
decreases from 1 to 2 cm intervals, whereas the mean decreases from 2 
to 4 cm due to reduced image coverage. As a result, an interval of 2 cm 
produced the lowest mean of GT-EX at 1.06 mm. When the interval in-
creases from 1 to 3 cm, a smaller number of available images leads to a 
decrease in the number of feature points and the connection between 
feature points, which results in an uneven distribution between point 
clouds and an increase in the standard deviation. This is likely because 
there are positions in the point cloud that are sensitive to the interval 
while there are other positions that are not. For example, with the 
greatest number of inputs, Group (1) has the lowest standard deviation 
of 2.11 mm, which leads to a more consistent, dense distribution of local 
point clouds in the reconstruction results. Group (12) contains half as 
many input images (112) as Group (1). As a consequence, the vertices of 
Group (12) are 3.5 × 105, while that of Group (1) is 4.5 × 105. More 
vertices make a model comprehensive and reduce its standard deviation. 
Although Group (1) has more vertices, increasing noise is added, which 
causes the mean to increase. However, additional images provide extra 
information for the determination of the spatial position of feature 

points, resulting in a reduced standard deviation even though Group (1) 
has more vertices. For instance, when the number of images is further 
decreased, the input images of Group 14 are only half as many as those 
of Group (12), and its vertices are 3.2 × 105 in size. The fact that the 
mean and standard deviation of Group (12), 13, and 14 are not signifi-
cantly different indicates that the change in point cloud vertices is not 
yet sensitive to the number of input images. The illustration demon-
strates that whereas the blank region of Group 14 is more concentrated 
in one place, like Area B in Fig. 9(d), Group (12)’s blank area of the point 
cloud is concentrated in three areas, like Multiple Missing Areas A in 
Fig. 9(b). Nevertheless, the mean and standard deviation of errors be-
tween these four groups is not much different. In this study, an interval 
of 2 cm is suggested to achieve high integrity and accuracy of the 
reconstructed model and maintain the mean error within 1 mm. 

3.4. Discussion & future work 

3.4.1. Movement condition 
In the above experiments, the current system implements the data 

capturing in a manner of static sampling while moving forward step-by- 
step. The potential influence of camera vibration, travel speed, outdoor 
conditions and other factors was not considered systematically at this 
stage. Its primary focus was to investigate how the three key parameters 
(camera layout, working distance and shot interval) impact 3D recon-
struction performance. However, in real-world implementation, the 
system operates in vibration conditions, posing an inevitable challenge 
that must be evaluated and addressed. 

To further validate the applicability of the approach, we conducted a 
new experiment mimicking a real-world environment where images 
were captured while in motion. The experiment employed the camera 
configuration of Group (10) (seven cameras with a 30 cm working dis-
tance) to simultaneously capture images of the targeted rail at two 
motion-speeds: 0.02 m/s and 0.04 m/s. These speeds were controlled by 
the CNC machine shown in Fig. 3(b). Under this condition, image 
blurring, as expected, occurred in the captured images due to the 

Fig. 9. Visualisation of reconstruction errors (unit: m) for different data capture intervals. (a) EX-GT for Group (12); (b) GT-EX for Group (12); (c) EX-GT for Group 
14; (d) GT-EX for Group 14. 
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relative movement between the cameras and the object, as well as the 
associated vibration of cameras. To address this challenge, a motion 
deblurring algorithm, DeblurGAN [39–41], was applied prior to recon-
struction. Repeating the previous evaluation process, the error analysis 
of the produced 3D models is presented in Table 5 and Fig. 10. 

As shown in the Table 5 and Fig. 10, the system can successfully 
reconstruct the track in 3D under motion. The means errors under both 
dynamic conditions are between 0.5 mm and 1 mm which are higher 
than that in the static state (0.38 mm, as shown in Table 3), indicating a 
degradation in model accuracy due to motion. Additionally, with 
increasing speed, both the mean and standard deviation of the error rise, 
which is primarily caused by increased image blurring induced by mo-
tion and vibrations. Furthermore, for the high-speed scenario, there are 
relatively large missing areas due to significant motion blur even after 
applying a deblur algorithm. Therefore, developing and implementing 
advanced image deblurring techniques is an important research direc-
tion for further improving the performance. Additionally, considering 
stabilizers or high-quality cameras with high-speed shutters can further 
reduce the impact of operating conditions on image quality. 

3.4.2. Error analysis 
To further investigate the reconstruction error of different locations, 

the point clouds of the rail are divided into three important sections 
(Head, Web, and Base). Based on the result of Group (10), the average 
errors of Head, Web and Base are 0.22 mm, 0.21 mm and 0.35 mm 
respectively. It demonstrates a comparable performance in head con-
struction to the study in [34] but offers additional information including 
the web and base areas. This prototype is promising to detect head 
damage during slow-speed travel conditions, such as corrugation on the 
rail head [42]. For further error reduction, a system with higher camera 
resolution and framerate, or considering stabilisers will be investigated. 

It should be noted that the accuracy of point cloud reconstruction 
cannot be directly interpreted as the resolution for damage detection of 
abnormal wear, such as corrugation. But it has some level of potential in 
identifying severe damage. The 3D model incorporates surface infor-
mation that captures real attributes including colour and texture. Eval-
uating the measurement precision of surface damage, such as corrosion 
or corrugation, requires additional assessment with specific Non- 
Destructive Testing (NDT) sensor through analysing surface informa-
tion using image processing or machine learning methods. This paper 
primarily concentrates on the task of 3D profile reconstruction. In future 

vision, this rail 3D reconstruction system will be fused with high- 
accuracy NDT sensors to build a full digital model for rail inspection 
and structural health monitor. It will be capable to inspect tiny local 
damage characterisation like corrugation and provide a space overview 
of damage location and distribution. 

In an initial case example shown in Fig. 11, a full reconstruction 
model with surface condition (Fig. 11(a)) is compared with the Ground 
Truth (Fig. 11(b)). It demonstrates that a surface white point can be 
reconstructed and identified effectively. 

3.4.3. Realistic on-track experiment 
To validate the feasibility under realistic operating conditions, the 

proposed system was integrated onto the front base of a rail track 
maintenance platform and tested in an outdoor environment. The ro-
botic maintenance platform, shown in Fig. 12(a), was developed for 
autonomous road-rail amphibious track inspection and repair [43,44]. 
Fig. 12(b) depicts the environmental conditions and system setup, from 
which data were captured while the platform ran along the track. The 
rail used in the experiment was a 10-meter-long CEN56E1 track, which 
included other railroad components such as fastener clips, nuts and 
bolts, sleepers, and rail steel. 

In this experiment, the arch and cameras (configured as Group (10) 
were integrated with the base of the robotic platform, operating at a 
working distance of 30 cm. The equipment maintained uninterrupted 
directional movement at the same maximum speed as the indoor test in 
Section 3.4.2, capturing a 1.5-meter section of railroad track as sample 
data. Following the same data preprocessing and reconstruction steps 
described in the previous section, the resulting point cloud and the final 
rendered model for the 1.5-meter rail section are shown in Fig. 13(a) and 
(b), respectively. This outcome demonstrates the feasibility of the pro-
posed system operating under an outdoor on-track environment. It 
should be noted that in this experiment, the quality of the images used 
for reconstruction was affected not only by motion blur but also by 
challenging illumination conditions. To address this challenge, it is 
recommended that future studies consider implementing controllable 

Table 5 
Reconstruction error of different moving speeds using the configuration of 
Group (10).  

Number Speed (m/s) EX-GT 

Mean (mm) Std. (mm) 

1  0.02  0.63  0.68 
2  0.04  0.96  0.81  

Fig. 10. Visualisation of reconstruction errors (unit: m) for different movement speeds using the configuration of Group (10). (a) EX-GT for the speed of 0.02 m/s; (b) 
EX-GT for the speed of 0.04 m/s. 

Fig. 11. Comparison of (a) Reconstructed 3D Model and (b) Actual photo at 
abnormal position. 
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illumination through the use of specialised lighting. 

3.4.4. Scanning 
In its current state, while each group of experiments was conducted 

with a fixed interval, it is worth noting that photos captured at varying 
intervals can be combined for 3D reconstruction in practical situations. 
The experimental results prove that the travel distance between two 
shots should not exceed 4 cm. In other words, even if the speed fluctu-
ates, the shooting frequency of cameras can be automatically adjusted 
based on the travel speed to satisfy this requirement. The maximum 
permissible travel speed will be determined by the sample rate of the 
cameras. 

The instrument is expected to be mounted on the bottom of the 
specific inspection trains (e.g. NetworkRail’s New Measurement Train 
(NMT) [45]) to achieve periodic condition inspection. Additionally, it 
can be integrated on the front-case of track based robotic maintenance 
systems (e.g., the robotic railway maintenance platform system [43]) to 
enable specific inspection tasks in track rail maintenance. 

4. Conclusions 

This paper presents a computer vision-based solution for a full 3D 
reconstruction of track rails. An arch layout camera array fusion scan-
ning system is designed and optimised to achieve the structural and 
exterior information reconstruction of CEN56E1 standard steel rails. An 
experimental prototype system was established, and 15 groups of ex-
periments were conducted to investigate the influence of the camera 
quantity and layout, field of view, and scanning step interval for the 
optimal 3D reconstruction quality. Through the sensitivity analysis 
using the EX-GT and GT-EX point cloud evaluation methods, the rec-
ommended specification was concluded that the camera number is 7 

cameras, and the layout is 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦; the 
recommended working distance and interval are 30 cm and 2 cm, 
respectively. The results demonstrate the proposed method can achieve 
a reconstruction accuracy within 0.4 mm compared to a ground truth 
reconstructed model by Lidar. A set of further experiments also vali-
dated that the system could operate effectively under outdoor 
conditions. 

Future work will focus on the development of new 3D reconstruction 
processes, dynamic monitoring, noise processing, quantification of 
interaction factors, and the development of automated integrated 
reconstruction processes with rolling stock vehicles. Additionally, 
forthcoming work will take into account the real-world NDT application 
conditions, considering factors such as lighting, debris, and damage, etc. 

CRediT authorship contribution statement 

Yizhong Wang: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Validation, Visualization, Writing – orig-
inal draft, Writing – review & editing. Haochen Liu: Writing – original 
draft, Writing – review & editing. Lichao Yang: Validation, Writing – 
review & editing. Isidro Durazo-Cardenas: Supervision, Writing – re-
view & editing. Bernadin Namoano: Supervision, Writing – review & 
editing. Chen Zhong: Formal analysis, Methodology. Yifan Zhao: 
Conceptualization, Supervision, Funding acquisition, Project adminis-
tration, Resources, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 12. (a) The robotic platform [43,44]. (b) System integration on the front base trolley.  

Fig. 13. Visualisation of 3D model for the outdoor on-track experiment. (a) the produced point cloud of the 1.5 m track; (b) the reconstructed model after texturing.  
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