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ABSTRACT In the aviation industry, safety remains vital, often compromised by pilot errors attributed to
factors such as workload, fatigue, stress, and emotional disturbances. To address these challenges, recent
research has increasingly leveraged psychophysiological data and machine learning techniques, offering the
potential to enhance safety by understanding pilot behavior. This systematic literature review rigorously
follows a widely accepted methodology, scrutinizing 80 peer-reviewed studies out of 3352 studies from five
key electronic databases. The paper focuses on behavioral aspects, data types, preprocessing techniques,
machine learning models, and performance metrics used in existing studies. It reveals that the majority of
research disproportionately concentrates on workload and fatigue, leaving behavioral aspects like emotional
responses and attention dynamics less explored. Machine learning models such as tree-based and support
vector machines are most commonly employed, but the utilization of advanced techniques like deep
learning remains limited. Traditional preprocessing techniques dominate the landscape, urging the need for
advanced methods. Data imbalance and its impact on model performance is identified as a critical, under-
researched area. The review uncovers significant methodological gaps, including the unexplored influence of
preprocessing on model efficacy, lack of diversification in data collection environments, and limited focus
on model explainability. The paper concludes by advocating for targeted future research to address these
gaps, thereby promoting both methodological innovation and a more comprehensive understanding of pilot
behavior.

INDEX TERMS Aviation safety, machine learning, deep learning,mental states classification, pilot behavior,
systematic review, psychophysiological signals, EEG.

I. INTRODUCTION
As the global aviation industry undergoes transformative
technological advancements, the role of pilots is concur-
rently evolving from simply operating machinery to making
critical decisions in high-stakes, dynamic environments [1].
In light of the complex nature of contemporary aviation
operations, a comprehensive understanding of pilot behavior
becomes paramount for enhancing aviation safety. Machine

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Wang .

Learning (ML) technologies, particularly when integrated
with psychophysiological data such as electroencephalogram
(EEG), present a promising route for in-depth investigation
into this vital area. These cutting-edge methodologies enable
researchers to acquire nuanced insights into various facets
of pilot behavior, including cognitive states and emotional
responses. This paper serves as a systematic literature review,
conducted in accordance with the rigorous methodological
guidelines [2], [3], [4]. It aims to offer an exhaustive synthesis
of existing research on the application of ML techniques and
psychophysiological data for understanding pilot behavior.
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A. IMPOTANCE OF AVIATION SAFTEY
As a critical component of modern transportation infrastruc-
ture, the aviation industry plays an indispensable role in
both global commerce and individual mobility. The industry
facilitates the movement of millions of passengers and vast
amounts of cargo annually, thereby serving as a linchpin
in the global economy. Given this scale of operation, the
imperative for ensuring aviation safety cannot be overstated;
the consequences of failure are cataclysmic, both in terms of
human life and economic impact [5].
However, the achievement of optimal safety levels is a

complex endeavor, influenced by a myriad of factors ranging
from technological innovation to regulatory oversight [6].
Advances in technology have undeniably contributed to
enhanced safety mechanisms, from state-of-the-art air traffic
control systems to predictive maintenance algorithms that
preempt mechanical failures. Nonetheless, the industry is not
immune to challenges [7], [8], [9], [10]. Factors such as
increasing air traffic, geopolitical tensions, and even natural
disasters pose new kinds of risks that require continuous
scrutiny and innovation in safety protocols [11].
Moreover, the stakes are not merely quantitative but also

qualitative. A single aviation accident can have a ripple
effect, undermining public confidence in air travel and
triggering economic repercussions that extend far beyond
the aviation sector. Regulatory bodies, therefore, are in a
perpetual state of vigilance, working in tandem with airlines,
aircraft manufacturers, and other stakeholders to formulate
and implement safety guidelines that are both rigorous and
adaptive to changing circumstances [12].

In summary, aviation safety is a multifaceted and ever-
evolving concern that requires a holistic approach, embracing
technological, human, and systemic factors. The high stakes
involved, both in terms of human lives and economic
implications, make it a subject of paramount importance that
warrants ongoing research and continual improvement.

B. ROLE OF PILOT BEHAVIOUR IN AVIATION
In the intricate system of aviation safety, the role of
pilot behavior emerges as a focal point, governed by an
intricate interplay of cognitive processes, emotional states,
and physiological responses. Pilots, situated at the nexus of
multifarious human-machine interactions, bear the colossal
responsibility of safeguarding not just the aircraft and its
passengers, but also the integrity of the entire aviation system.
Their actions, or lack thereof, can have immediate and far-
reaching consequences that extend from the cockpit to the
broader aviation ecosystem [13].
With the advent of increasingly automated flight systems,

the role of pilots has evolved significantly. While automation
has undeniably enhanced safety and efficiency, it has
also engendered new forms of cognitive workload and
psychological stress. Pilots are no longer solely vehicle
operators but have become complex decision-makers tasked
with managing an array of automated systems. They must

maintain situational awareness and be prepared to intervene
effectively in unexpected circumstances [14]. This shift
has introduced challenges related to attention allocation,
decision-making under pressure, and even ethical consider-
ations, such as how to respond in unavoidable emergency
situations.

Psychophysiological markers, such as EEG data, have
emerged as invaluable tools for gaining insights into pilots’
internal states, particularly during high-stakes scenarios like
take-offs, landings, and emergency situations. These data
types allow researchers to delve into the nuances of cognitive
load, attentional focus, and emotional regulation, which are
crucial for understanding how pilots make decisions under
stress [15], [16].

Moreover, the role of pilot behavior has systemic impli-
cations that ripple through the aviation safety ecosystem,
influencing everything from regulatory frameworks to the
design of new technologies [17], [18], [19]. For example,
a nuanced understanding of how pilots handle attentional
tunneling could inform the design of more intuitive cockpit
interfaces. Similarly, insights into emotional and physiolog-
ical responses to unexpected events could be invaluable for
the development of realistic training simulations.

In summary, the multifaceted and systemic impact of
pilot behavior necessitates its thorough investigation. Given
its complexity and far-reaching implications, it warrants
not just academic exploration, but also practical, real-world
applications, ideally supported by advanced methodologies
like ML and psychophysiological data analysis.

C. MACHINE LEARNING AND PSYCHOPHYSIOLOGICAL
DATA IN AVIATION RESEARCH
The advent ofML technologies represents a pivotal milestone
in aviation research, especially in the nuanced domain of pilot
behavior. These advanced computational techniques offer
a comprehensive framework for analyzing intricate, high-
dimensional psychophysiological data sets like EEG, which
are often beyond the scope of traditional statistical methods
to interpret in a meaningful manner [20].

ML algorithms, encompassing a broad array of models
such as tree-based, support vector machine (SVM), and
various neural networks, have proven to be immensely
effective in predicting and understanding multiple facets of
pilot behavior. These include, but are not limited to, cognitive
workload, emotional states, and even task engagement. The
capacity to leverage the voluminous and complex variables
available in psychophysiological data sets speaks volumes
about the transformative potential of ML in this research
domain [21]. The applications of these capabilities extend far
beyond academic inquiry and are making inroads into real-
world applications, including but not limited to, predictive
monitoring, adaptive cockpit interfaces, and even real-time
decision support systems.

Furthermore, the confluence ofMLwith psychophysiolog-
ical data yields an interdisciplinary approach that capitalizes
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on the strengths inherent in both domains. Psychophys-
iological data provides an unparalleled window into the
complex internal states of pilots, including cognitive and
emotional variables [22]. ML, on the other hand, serves as the
analytical framework capable of extracting granular insights
from this data. This synergistic relationship has given rise to
groundbreaking studies that have significantly extended our
understanding of human performance and decision-making
within aviation contexts [23], [24], [25], [26], [27], [28].

The structure of this paper is meticulously designed to
provide a holistic overview of the current state of research on
the application ofML techniques to psychophysiological data
for understanding pilot behavior. Following this introductory
section, the paper delineates its systematic review method-
ology, presents a comprehensive synthesis of key findings,
offers an extensive discussion contextualizing these results
within the broader landscape of aviation safety and pilot
behavior, and concludes by summarizing the salient insights
while identifying research gaps that offer promising avenues
for future inquiry.

II. METHODOLOGY
The methodology of this systematic review serves as the
architectural framework, designed to furnish robust, trans-
parent, and reproducible outcomes. Adhering scrupulously
to the guidelines [2], [3], [4], this section delineates the
meticulous steps taken to answer the posited research
questions. It provides an exhaustive description of the
protocols followed in the search, selection, and analysis of
literature, in addition to quality assessment. Fig. 1 presents a
graphical description of the procedure.

A. RESEARCH QUESTIONS
The present systematic review is directed by a set of carefully
formulated research questions. These questions are designed
not merely to clarify what is already known but to illuminate
areas requiring further exploration. The principal research
questions are:

• RQ1: What are the primary focus areas in the
application of ML to psychophysiological data for
understanding pilots’ behavior?
◦ What behavioral and cognitive states are most

studied?
• RQ2: How are preprocessing, data types, and feature
extraction approached in existing studies on psy-
chophysiological data for pilot behavior?
◦ Which psychophysiological data types are most

used?
◦ What artifacts are commonly found in the psy-

chophysiological data?
◦ What preprocessing techniques are prevalent?
◦ What features are commonly extracted?

• RQ 3 What are the types of models utilized to
understand the pilot behavior?
◦ Which evaluation mechanism and metrics were

utilized to assess the models?

FIGURE 1. The adopted steps of the systematic review.

• RQ4: What is the comparative performance of
various ML and DL models in predicting pilot
behavior?

◦ What implications do these performance metrics
hold?

• RQ5: What are the methodological limitations in
existing studies?

◦ What future research directions are suggested by the
methodological limitations?

B. LITERATURE SEARCH STRATEGY
The integrity of a systematic review is profoundly dependent
on the comprehensiveness and rigor of its literature search
strategy. To ensure a robust selection of studies pertinent to
the research questions, this review adopted a multi-faceted
search strategy, encompassing several academic databases
and employing a sophisticated set of search queries.

1) SEARCH QUERIES
Keywords and Boolean operators were strategically aligned
to construct queries that are both expansive and incisive.
Search terms were primarily derived from the research ques-
tions. Subsequently, terms related to ML were incorporated
based on authoritative sources such as [29]. Phrases such as
‘‘machine learning,’’ ‘‘psychophysiological data,’’ ‘‘EEG,’’
and ‘‘pilot behavior’’ were intricately woven together through
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Boolean operators like ‘‘AND’’ and ‘‘OR,’’ fashioning a
search net designed for both breadth and precision.

2) ACADEMIC DATABASES
The review encompassed an exhaustive search across a selec-
tion of databases renowned for their scholarly contributions,
namely IEEE Xplore, Scopus, PubMed, ScienceDirect, and
Google Scholar. These databases were strategically chosen
for their credibility and extensive coverage of academic
articles in the fields of engineering, science, and technology.
In Scopus and ScienceDirect, a comprehensive scan was
conducted on titles, abstracts, and keywords for each retrieved
study. For IEEE Xplore, the focus was primarily on metadata.
It is worth noting that PubMed was queried by scanning
both titles and abstracts, while in Google Scholar, only titles
were examined. Such differentiation in search strategies was
necessitated by the unique syntax and capabilities of each
database. Accordingly, modifications were made to the initial
search string to suit the particular idiosyncrasies of each
database.

3) TIME FRAME
The time frame selected for the search reflects a balance
between historical depth and contemporary relevance. A win-
dow of the last fifteen years was delineated, allowing for
an appraisal of seminal works while also encompassing the
most recent advancements. This temporal scope ensures that
the review remains at the cusp of contemporary scientific
thought.

C. INCLUSION AND EXCLUSION CRITERIA
The efficacy of a systematic review is substantially influenced
by the criteria governing the inclusion and exclusion of stud-
ies. These criteria act as sieves that sift through the amassed
literature, retaining articles of relevance and discarding those
that do not align with the objectives of the review.

Inclusion Criteria:

1. Peer-Reviewed Journals and Conferences:Only arti-
cles published in peer-reviewed journals or conference
proceedings were considered to ensure the research’s
quality and credibility.

2. Pilot Behavior: Research specifically targeting pilot
behavior, either in real-world or simulated environ-
ments, was included.

3. Machine Learning Models: Studies employing ML or
deep learning (DL) algorithms for data analysis were
considered.

4. Full-Text Availability: Studies were required to be
fully accessible, either through open access or institu-
tional subscriptions, for comprehensive analysis.

Exclusion Criteria:

1. Non-Peer-Reviewed Sources: Articles from non-peer-
reviewed sources, such as blogs, opinion pieces,
or commercial publications, were excluded.

2. Non-Aviation Contexts: Research targeting sectors
other than aviation, or general human behavior, was
excluded.

3. Non-English Publications: Research published in
languages other than English was not considered.

4. Unspecified or Ambiguous Methods: Studies lacking
transparent methodology were excluded to ensure the
integrity and reproducibility of the review.

D. QUALITY ASSESSMENT
Quality assessment is pivotal in the context of systematic
reviews for ensuring that the conclusions drawn are based
on rigorous and reliable studies. Each included study was
thoroughly evaluated using a predetermined set of criteria:

1. Relevance to Research Questions: Studies were
assessed based on the extent to which their objectives
and outcomes align with the questions posed by this
review. Those highly relevant to the review’s research
questions are considered to offer more meaningful
contributions to the aggregated findings.

2. Quality of Data: The robustness of psychophysio-
logical measures and the ML techniques used were
scrutinized.

3. Clarity and Completeness: The level of detail and
clarity with which the study’s methodology and
findings are presented were also considered. Well-
documented studies contribute to the review’s overall
credibility and facilitate future replication efforts.

E. DATA EXTRACTION
The data extraction phase constitutes a critical juncture in
the systematic review pipeline, serving as the foundational
bedrock for ensuing rigorous analytical undertakings. This
section meticulously outlines the orchestrated methodology
and structured approach employed for gleaning pertinent data
from the studies that met the previously established inclusion
and exclusion criteria.

1) SEARCH PROCESS
To synthesize a collection of studies pertinent to the
research aims, a rigorously formulated search query was
executed across selected academic databases. This initial
search yielded a total of 3352 potential studies for inclusion.
Following this, a dedicated de-duplication process was
undertaken, resulting in the removal of 2107 duplicate entries.
This left 1245 studies for further examination.

Subsequently, a comprehensive screening process was
carried out, wherein titles, abstracts, and keywords of
these 1245 studies were meticulously evaluated against the
inclusion and exclusion criteria. This narrowed down the list
to 104 studies deemed potentially relevant. A subsequent
full-text screening was conducted, further subjected to
quality assessment protocols, leading to the exclusion of an
additional 37 studies. At this juncture, the compilation stood
at 67 studies.
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Furthermore, to ensure a thorough and exhaustive review,
the references cited in these 67 studies were also examined.
This supplemental search led to the inclusion of an additional
13 studies that met the review’s criteria. Thus, the final
pool of studies included in this systematic review totals 80.
A visual representation of this sequential selection process is
illustrated in Fig. 2.

FIGURE 2. PRISMA flow diagram.

2) DATA EXTRACTION PROTOCOL
The data extraction process was designed to capture a rich set
of information from each study, thereby enabling a nuanced
analysis aligned with the research questions. For each study
included in this systematic review, the following data were
extracted:

1. Article Title: The title of the article was noted to
provide a preliminary understanding of the study’s
focus and scope.

2. Year of Publication: The publication year was
recorded to assess the temporal distribution of research
efforts and to identify trends or shifts in research focus
over time.

3. Publication Venue: The venue where the article was
published.

4. Behavioral Aspects: Specific behavioral states or traits
such as workload, fatigue, attention, and emotional
states like stress or anxiety were identified and
recorded.

5. Model Type: Information regarding the types of
models employed, such as ML, DL, or Statistical
Models, was extracted. This facilitated a comparative
analysis of the methodologies adopted in the existing
literature.

6. Model Categories: Within the ML models, specific
categories such as tree-based models, SVM, and
probabilistic models were noted to enrich the discussion
on methodological diversity.

7. Performance Metrics: Metrics such as accuracy,
recall, precision, and F1-score were extracted where
available. This data aimed to provide a detailed account
of the performance evaluations conducted in each study.

8. Psychophysiological Data Types: Types of psy-
chophysiological data such as EEG, electrocardio-
gram (ECG), and galvanic skin response (GSR) were
recorded to understand the range of data employed in
assessing pilot behavior.

9. Preprocessing Techniques: Methods used for prepro-
cessing, such as independent component analysis (ICA)
or bandpass filtering, were also captured. This allowed
for a comprehensive review of the techniques used to
refine psychophysiological data before model training.

10. Features Extracted: The types of features extracted
from the psychophysiological data, like power spectral
density (PSD), wavelet coefficients (WC), or statistical
measures, were noted. This contributed to the discus-
sion on feature engineering practices in the existing
literature.

11. Limitations and FutureWork:An assessment of each
study’s limitations and suggestions for future research
contribute to an understanding of gaps in the current
body of literature. This information is crucial for setting
the stage for future explorations.

F. DATA SYNTHESIS
The extracted datawere subjected to amulti-layered synthesis
process aimed at offering a nuanced understanding of the
literature. The first layer involved a descriptive statistical
analysis of basic metrics such as year of publication and
publication types of studies. The second layer honed in on
the behavioral aspects, where specific behavioral states like
workload, fatigue, and attention, as well as emotional states,
were analyzed. The aimwas to ascertain the breadth of human
performance-limiting states explored in existing literature
and identify under-researched areas. The final layer of syn-
thesis focused on the methodological paradigms employed
across the studies.Models used, types of psychophysiological
data, preprocessing techniques, and performance metrics
were categorized and analyzed to discern prevailing trends
and potential gaps.
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The synthesized data were visually represented through
charts and tables, facilitating a clearer interpretation and
comparison of findings. Moreover, the synthesis incorpo-
rated a narrative approach, integrating the quantitative and
qualitative findings to offer a cohesive and comprehensive
view of the research landscape on the application of
ML and psychophysiological data in understanding pilot
behavior.

III. RESULTS
This section serves as the empirical focal point of this
systematic review, presenting a rigorous analysis of the
data extracted from the 80 included studies. Adhering to
the data extraction protocol delineated in the methodology
section, this segment synthesizes the findings across multiple
dimensions, including the types of ML models employed,
their performance metrics, and the psychophysiological data
types used for predicting pilot behavior. Furthermore, this
section provides a granular breakdown of methodological
choices in existing literature, including data preprocessing
techniques, artifacts identified, and features extracted. The
results presented herein aim to offer a comprehensive
understanding of the current state of the art, serving as
a foundational base for the subsequent discussion section
where these findings will be interpreted, contextualized, and
evaluated.

A. QUALIFIED STUDIES OVERVIEW: A SYSTEMATIC
ENUMERATION OF EMPIRICAL INVESTIGATIONS
In order to provide a comprehensive overview of the
empirical investigations qualified for inclusion in this review,
multiple criteria have been considered for categorizing the
studies. An initial enumeration of the studies is presented
in Table 1, which lists each study by a unique Study ID,
along with its citation and title. This table serves as a sys-
tematic reference, facilitating cross-referencing throughout
this review.

FIGURE 3. Study publication distribution using a yearly calendar.

In addition to tabulated data, Fig. 3 offers a temporal map-
ping of the studies, illustrating the number of publications per

year. Upon examination of Fig. 3, it is evident that there has
been a notable surge in the number of studies published from
2015 onwards, signaling an increased research focus on the
subject matter. This could be attributed to various factors such
as technological advancements, policy changes, or shifts in
research priorities.

FIGURE 4. Publication type.

Fig. 4 supplements this by delineating the division between
journal articles and conference papers among the selected
studies. According to Fig. 4, a majority of the research is
published in journal articles, which often undergo rigorous
peer-review processes. The prevalence of journal articles
could be indicative of the maturity and established nature of
this research area.

B. TAXONOMY OF PILOT’S BEHAVIORAL AND COGNITIVE
STATES
The taxonomy of behavioral and cognitive states in aviation-
based empirical studies is visualized in Fig. 5, serving as a
cornerstone for this analysis. It segments the research focus
into five overarching categories: ‘Cognitive Load Indicators,’
‘Performance Metrics,’ ‘Attention Dynamics,’ ‘Emotional
Responses,’ and ‘Miscellaneous.’ Among these, ‘Cognitive
Load Indicators’ are markedly dominant, comprising a
substantial 75% of the selected studies. This predominance
creates a striking contrast with the other categories, each
of which constitutes a fraction of the total research corpus.
Such an imbalance underscores a significant skew in existing
research, leaning heavily towards quantifiable cognitive
metrics.

A more granular examination reveals that within ‘Cog-
nitive Load Indicators,’ ‘Workload’ accounts for 65% of
the studies, followed by ‘Fatigue’ at 25%. Less represented
sub-categories like ‘Stress,’ ‘Skill Level,’ ‘Drowsiness,’ and
‘Attention Reserve’ warrant attention for their minimal
inclusion. In the ‘Emotional Responses’ domain, ‘Emotion’
captures 60% of the focus, with ‘Reaction’ and ‘Situational
Awareness’ evenly sharing the remaining 40%. ‘Atten-
tion Dynamics’ is chiefly concerned with ‘Distraction’ at
34% and ‘Attention’ at 22%, but critically underrepresents
performance-limiting states such as ‘Diverted Attention’
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TABLE 1. List of the qualified studies.
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TABLE 1. (Continued.) List of the qualified studies.

FIGURE 5. Behavior aspects categories.

and ‘Startle/Surprise,’ each barely surpassing a 10% share.
The ‘Miscellaneous’ category, which accounts for 8% of
the studies, is primarily composed of works where the
behavioral aspect was neither the central focus nor explicitly
articulated.

C. METHODOLOGICAL DESIGN: PSYCHOPHYSIOLOGICAL
MEASURES, DATA PREPROCESSING, AND FEATURE
EXTRACTION
The following subsection focuses on delineating the method-
ologies adopted in existing studies, with particular attention
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to psychophysiological data employed, the artifacts identi-
fied, the methods used for data preprocessing, as well as
the features extracted and their corresponding extraction
techniques.

FIGURE 6. Comprehensive distribution of psychophysiological and other
data types in existing literature on pilot behavior.

The distribution of psychophysiological data types used
in research studies exhibits a notable range of diversity.
As delineated in Fig. 6, EEG data are most commonly
employed, accounting for 32% of the studies. This is
followed by ECG data, which make up 19% of the studies.
Interestingly, a ‘Miscellaneous’ category, comprising flight
data and subjective measures such as NASA Task Load
Index (NASA TLX), holds a non-trivial portion of 17%.
Eye-Tracking and GSR follow suit, constituting 14% and
7%, respectively. On the lower end, Respiration (Resp.),
Electrooculogram (EOG), and Electromyogram (EMG) data
appear less frequently, each making up less than 5% of the
studies.

Turning to Table 2, a detailed inspection reveals a rich
array of artifacts and their corresponding preprocessing
methods, sorted by psychophysiological data type. EEG data,
for instance, are predominantly subjected to preprocessing
methods such as ICA and bandpass filtering. Notably, some
studies collected EOG, ECG, and EMG data simultaneously
with EEG data and used them to identify heartbeats, muscle,
and eye-related artifacts in the EEG data using ICA. For
users of MATLAB, Artifact Subspace Reconstruction (ASR)
is frequently employed. These techniques mitigate challenges
posed by ocular and muscular artifacts common to EEG
data collection. Interestingly, some studies did not employ
any preprocessing techniques and proceeded directly to
feature extraction. A range of other preprocessing techniques,
including normalization, standardization, resampling, and
detrending, were also employed. Some studies opted for
manual inspection of the data to remove corrupted segments.
ECG and GSR data, although less varied in preprocessing
methods, also have unique sets of challenges and correspond-
ing techniques. ECG data commonly undergo QRS detection
to accurately identify heartbeats, while GSR data frequently

TABLE 2. Summary of artifacts and corresponding preprocessing
methods.

are subjected to low-pass filtering to remove high-frequency
noise.

Complementing this, Table 3 offers a more nuanced
examination of the features extracted from these psychophys-
iological data types. Within the domain of EEG, features
such as PSD and WC are frequently extracted, often
employing Fourier and WT. Some studies also extracted
statistical features like mean, median, skewness, and kurtosis,
often using time-domain methods. In addition, a cohort of
studies explored the extraction of non-linear, spatial, and
higher-level features like entropy, coherence, and phase-
locking value. Several methodologies for feature extraction
were noted, including Welch’s method, Morlet wavelet,
and Common Spatial Patterns. Furthermore, statistical tests
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FIGURE 7. The model’s types employed for identifying pilot’s behavior. Abbreviation: Autoencoders (AEN), Artificial Neural networks (ANN),
Deep Neural networks (DNN), Deep Belief Network (DBN), Multi-Linear Regression (MLR), Multilayer Perceptron (MLP), Naïve Bayes (NB),
Random Forest (RF), Gradient Boosting Machines (GBM), Decision Trees (DT), Adaptive Boosting (AdaBoost), Support Vector Machines (SVM),
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Least Absolute Shrinkage and Selection Operator (Lasso), Logistic
Regression (LR), Long Short-Term Memory (LSTM), K-Nearest Neighbors (KNN), Hidden Semi Markov Models (HSMM), Quadratic Discriminant
Analysis (QDA), Linear Discriminant Analysis (LDA), Naïve Bayes (NB), Gaussian Process (GP), Extra Tree (ET), Fine Tree (FT), Learning Vector
Quantization (LVQ), Extreme Gradient Boosting (XGBoost), Bayesian neural networks (BNN), Stochastic Configuration Network (SCN).

and information-theoretic measures such as PCA, Analysis
of Variance (ANOVA), Multivariate Analysis of Variance
(MANOVA), Friedman tests, andMutual Information Coeffi-
cient (MIC) were not uncommon. ML and DL methods also
appeared as tools not only for classification but for feature
extraction and selection as well.

In sum, the methodological paradigms underpinning the
existing literature are diverse, intricate, and tailored to the
unique challenges and opportunities presented by each type
of psychophysiological data. These empirically-grounded
observations provide a foundational base for subsequent
interpretive and evaluative discussions.

D. TAXONOMY OF MODELS TYPES AND PERFORMANCE
METRICS
The ensuing analysis is dedicated to providing a comprehen-
sive breakdown of the types of predictive models currently
deployed in the literature for the nuanced understanding of
pilot behavior. Fig. 7 shows a more nuanced analysis of
the model’s types employed to identify the pilot’s behavior.
A compelling trend that demands attention is the preeminent
use of ML models, which constitute a significant 65% of
the total models utilized. This prevalence likely reflects
the ML models’ capability for handling complex, high-
dimensional data. DL models are also noteworthy, albeit
to a lesser extent, representing 27% of the models used.

Statistical models account for the remaining 8%, indicating
a less frequent but nonetheless important role in the research
landscape.

Delving into the category of ML models, the analysis
reveals a rich and varied methodological landscape. Leading
this category are tree-based models, which account for 29%
of ML models. Such models are frequently favored for
their interpretability and robustness to noisy data. Following
closely is SVM, which make up 26% of ML models,
often chosen for their ability to handle high-dimensional
spaces effectively. Dimensionality reduction models, which
are crucial for simplifying complex datasets, comprise 14%.
KNN algorithm is also significant, accounting for 13%, and
are often employed for their simplicity and effectiveness
in classification tasks. Probabilistic models, which offer
nuanced probabilistic interpretations, account for 8%, while
linear models, known for their ease of interpretation, make
up 7%. Ensemble methods, which combine predictions from
multiple models to improve performance, hold a smaller
share of 3%. For further granularity, the tree-based models
include a variety of algorithms like DT, XGBoost, and RF
among others. Linear models predominantly feature LR and
Lasso Regression, while Dimensionality Reduction models
include techniques like LDA and PCA. Probabilistic models
encompass BNN and GP, and ensemble methods feature
techniques like Bagging and Boosting.
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TABLE 3. Summary of features extracted and extraction methods.

In the sphere of DL models, the existing studies unveil
an extensive array of architectures, reflecting the burgeoning

interest in leveraging complex neural network structures
for identifying pilot behavior. Contributing to 27% of the
total models deployed, DL techniques demonstrate their
growing influence in this domain. The architectures span a
variety of models, from traditional ANN to more complex
and specialized types like CNN and LSTM. Each of these
architectures brings unique advantages to the analysis of
psychophysiological data. For instance, CNNs are often
employed for their ability to automatically and adaptively
learn spatial hierarchies of features, making them ideal for
image and sequence data. LSTMs, on the other hand, excel in
handling time-series data, capturing long-term dependencies
which are often crucial in understanding behavioral states.
The presence of DBN and RNN further enriches the
landscape, signifying ongoing experimentation in the field to
identify the most effective DL approaches for specific tasks.
Even more specialized architectures like SCN and LVQ find
mentions, indicating that the field is continually evolvingwith
an expanding repertoire of advanced techniques. Statistical
models, while less frequently employed, consist primarily
of traditional techniques like ANOVA and MANOVA.
These models are often used for hypothesis testing and the
exploration of relationships between variables, providing a
contrast to the predictive focus of ML and DL models.

TABLE 4. The metrics used to evaluate the models’ performance.

On the metric front, as shown in Table 4, accuracy is
the most reported performance metric, featured in 65% of
the studies, likely due to its simplicity and straightforward
interpretation. Recall, which focuses on the model’s ability

5142 VOLUME 12, 2024



I. Alreshidi et al.: Advancing Aviation Safety Through ML and Psychophysiological Data

to identify all relevant instances, is reported in 29% of
the studies, indicating its importance in applications where
missing a positive instance is particularly costly. Precision
appears in 21% of the studies, often employed alongside
recall to provide a more complete picture of model per-
formance. Specificity and F1-score, metrics that consider
both false positives and negatives, are reported in 11%
and 13% of the studies respectively. The AUC, RMSE,
MSE, MAE, and Pearson’s correlation metrics appear less
frequently, suggesting their application in more specific or
specialized contexts. Notably, some studies adopt a multi-
metric approach, indicating a comprehensive methodology
for performance evaluation.

In summary, the existing literature exhibits a varied and
intricate array of predictive models and performance metrics,
reflecting the methodological diversity inherent in the field.
These findings serve as a robust foundation for subsequent
interpretative discussions and scholarly evaluations, offering
a comprehensive view of the methodological paradigms
shaping current research.

E. COMPARATIVE PERFORMANCE OF MACHINE
LEARNING AND DEEP LEARNING MODELS IN
PREDICTING PILOT BEHAVIOR
The current subsection seeks to offer an exhaustive analytical
examination of the average performance of diverse categories
of ML and DLmodels. As a robust methodological approach,
the performance accuracy for each category were extracted
from the selected studies, meticulously averaged, and subse-
quently visualized in a bar chart, denoted as Fig. 8.

FIGURE 8. The performance accuracy of the models utilized in the
literature.

The SVMandKNNmodels both share an identical average
performance accuracy of 77%. While these numbers are
certainly respectable, they do not represent the pinnacle of
performance among the categories. Remarkably, Ensemble
models eclipse other methodologies with an exceptional
average performance rate of 97%. This exceptional per-
formance could be attributed to the inherent capability of
Ensemble models to combine multiple weak learners, thereby
enhancing generalizability and robustness against overfitting.

Closely following Ensemble models, tree-based models
exhibit an average performance rate of 78%. As illustrated
in Fig. 9, XGBoost and GBM show a higher lower quartile at
64% and 86%, respectively, as well as a tighter interquartile
range within this category, suggesting greater robustness
in performance. Notably, ET appear to be exceptionally
consistent, with all quintiles at 97%.

DL models also command attention with their average
performance accuracy of 82%. For DL models, ANN and
CNN display robust performances with medians at 80% and
83%, respectively. LSTM models show a lower quartile at
62% but reach as high as 87%, indicating potential for high
performance but also room for improvement.

In contrast, Dimensionality Reduction and Probabilistic
models both manifest a relatively lower average performance
rate of 71%. Within Dimensionality Reduction models, LDA
and QDA show a broad range in their performance. LDA has
a lower quartile at 65% and an upper quartile at 81%, while
QDA exhibits a wider distribution with a lower quartile at
48% and an upper quartile at 89%. Similarly, Linear models
register an average performance rate of 77%, which is in
line with SVM and KNN. Within Probabilistic models, BNN
show remarkably consistent performance, with all quintiles
at 67%. In contrast, GP and NB manifest wide performance
ranges, from 43% to 96% and 37% to 91%, respectively.

IV. DISCUSSION
The Discussion section serves as a critical forum for inter-
preting the empirical findings presented in the results section.
In line with the research questions posited, this section aims
to offer an in-depth analysis of the current state of research
on the application of ML models and psychophysiological
data in understanding pilot behavior. It further contextualizes
these findings within the broader academic discourse and
identifies both methodological limitations and avenues for
future research.

A. EVALUATION OF RESEARCH FOCUS ON PILOT’S
BEHAVIOURAL AND COGNITIVE STATES (RQ1)
The analysis encapsulated in the results’ subsection B
offers a nuanced perspective on the existing body of
research surrounding pilot behavior. While ‘Cognitive Load
Indicators’ occupy a dominant position in the academic
discourse, it is essential to interrogate the reasons behind such
focused attention. One could speculate that the quantifiable
nature of indicators like ‘Workload’ and ‘Fatigue’ makes
them attractive candidates for empirical studies, possibly
offering more straightforward avenues for data collection and
analysis. However, this concentration exposes a conspicuous
void in other pivotal areas. The paucity of research on
performance-limiting states such as ‘Channelized Attention,’
‘Diverted Attention,’ and ‘Startle/Surprise’ is particularly
concerning. Given the critical nature of aviation operations
and the potential ramifications of performance-limiting states
on both safety and efficiency, this research gap represents a
glaring omission.
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FIGURE 9. A box plot for each model type category.

In considering the methodological underpinnings of
the existing literature, we encounter two predominant
approaches: multi-level and binary classifications. Multi-
level classifications, which are often employed to dissect
complex behavioral aspects like ‘Workload,’ offer a more
textured understanding but suffer from challenges related
to comparability and standardization across studies. The
absence of a universally accepted metric for defining ‘low,’
‘medium,’ or ‘high’ levels of a behavioral aspect could
potentially muddle the collective insights drawn from various
studies. In contrast, binary classifications, commonly used
for attributes like ‘Fatigue,’ offer clarity and are more easily
interpretable. However, this reductionist approach might
not capture the continuum of behavioral states pilots may
experience, potentially leading to an incomplete or skewed
understanding.

These methodological choices have far-reaching implica-
tions. For instance, the prevalent use of binary classifications
might be well-suited for real-time monitoring systems in

cockpits, where quick decisions are paramount. However,
such systems, if based solely on existing binary-classification
research, might lack the sensitivity to detect nuanced changes
in a pilot’s behavioral state, thereby reducing their overall
efficacy. Thus, a balanced methodological approach seems
warranted for future research. Adopting a hybrid model
that incorporates both multi-level and binary classifications
could offer a more holistic view, capturing both the nuanced
complexities and the actionable insights needed in practical
applications.

B. INTERPRETING METHODOLOGICAL PARADIGMS IN
PILOT BEHAVIOR RESEARCH (RQ2)
The present analysis of existing studies offers a comprehen-
sive perspective on the intricate methodologies adopted in the
domain of pilot behavior research, revealing both the depth
and the complexity of the current landscape. This diversity
not only reflects the multidisciplinary nature of the field
but also raises questions about methodological coherence
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and standardization, providing fertile ground for academic
scrutiny.

At the forefront of psychophysiological measures is EEG
data, which constitutes 32% of the studies reviewed. This
prevalence attests to EEG’s high temporal resolution and
its capability to capture complex neural activities, factors
that have rendered it a popular choice among researchers.
However, the data landscape is far from being monolithic.
ECG data, which accounts for 19% of the studies, is also
pivotal, often serving as an indicator of physiological stress
and cognitive workload. The role of Eye-Tracking data is
similarly significant, often employed to assess attentional
states and situational awareness. These alternative data
types underscore the multi-faceted nature of pilot behavior,
which cannot be comprehensively understood through neural
activities alone. The ‘Misc.’ category, comprising 17% of
the studies and including flight data and subjective measures
like the NASA TLX and Karolinska Sleepiness Scale, adds
another layer of complexity. This category suggests an
emerging trend towards the incorporation of multi-modal
and subjective data, potentially offering a more rounded
understanding of pilot behavior, a point that merits further
investigation in future studies.

Diving into data preprocessing, the study identifies a
wide array of techniques, each with its unique strengths
and limitations. For EEG data, the prevalent use of ICA
and bandpass filtering signifies a focus on mitigating
ocular and muscular artifacts. However, the rise of ASR
technique among MATLAB users signals the adoption of
specialized methods that are tailored to specific research
needs. Interestingly, some studies bypass preprocessing
altogether, a choice that may have implications for data
quality and interpretability. This diversity in preprocessing
methods raises critical questions about the standardization
and comparability of research outcomes. In the feature
extraction stage, the landscape is equally diverse. While
Fourier and WT are commonly employed for frequency-
domain feature extraction from EEG data, the study also
identifies a growing interest in statistical features and higher-
level non-linear and spatial features. This methodological
diversity is further enriched by the use of ML and DL
techniques, not just for classification but also for feature
extraction and selection.

The observed methodological paradigms thus present both
opportunities and challenges. On the one hand, the diversity
of methods enriches our understanding of pilot behavior
frommultiple psychophysiological perspectives. On the other
hand, the lack of methodological standardization hampers
cross-study comparisons and meta-analyses, an issue that
warrants attention in future research. The existing literature
on pilot behavior showcases a complex tapestry of method-
ological approaches, each designed to tackle the unique
challenges posed by different types of psychophysiological
data. This diversity offers a rich yet complex view of
current research practices, providing a foundational base for
subsequent academic discussions and critical evaluations.

C. INTERPRETATIVE DISCUSSION FOR MODEL TYPES AND
EVALUATION METRICS (RQ3)
This discussion aims to delve into the use of detection models
and performance metrics observed in existing literature,
particularly in the context of utilizing psychophysiological
data to identify pilot behavior. One of the most salient
aspects is the predominant deployment of ML models, which
constitute 65% of the total models utilized. This considerable
emphasis onMLmodels raises pertinent questions about their
comparative efficacy, especially in contexts where complex,
high-dimensional data are involved.

In the domain of DL models, the diversity of architectures
is particularly noteworthy. Contributing to 27% of the total
models used, DL models signify their burgeoning influence
in this area. Researchers have proposed various architectures,
some combining CNN with Long LSTM networks for
layered complexity. Other innovative proposals include deep
contractive autoencoder networks with softmax classifiers,
deep sparse autoencoder networks, and feature mapping
layers in stacked denoising autoencoders. This suggests that
the field is in a state of methodological flux, continuously
exploring and adapting to find the most effective DL models
for specific tasks. Traditional statistical models, although
foundational, appear less frequently, making up 8% of
the total models. Their limited use possibly suggests a
methodological shift towards more data-driven models.

The metrics employed for performance evaluation also
deserve critical examination. The prominence of accuracy,
reported in 66% of the studies, could indicate a focus on
overall classification effectiveness. However, the metric may
not suffice in cases where the dataset is heavily imbalanced,
underlining the need formore nuanced evaluationmetrics like
recall or precision. The adoption of multiple metrics in some
studies indicates a multi-faceted approach to performance
assessment but also points to a lack of standardization that
could impede cross-study comparisons.

In conclusion, the existing literature exhibits a rich array
of methodologies, from traditional statistical and ML models
to advanced DL models, each with their unique merits and
limitations. The variety of performance metrics used, while
indicative of methodological diversity, also suggests the need
for further standardization and comparative evaluation.

D. INTERPRETATIVE ANALYSIS BASED ON MODEL
PERFORMANCE (RQ4)
The comprehensive results presented in the results’
subsection E offer rich insights into the relative performance
of variousML and DLmodels in the domain of pilot behavior
prediction. The standout performance of Ensemble models,
averaging at an exceptional rate of 97%, is particularly
noteworthy. This could be attributed to the capacity of
Ensemble models to synthesize insights from multiple
weak learners, thereby enhancing their generalizability
and robustness against overfitting. However, this high
performance also raises questions about the diversity of base
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learners employed in these ensemble models and how that
contributes to their effectiveness. Tree-based models, with an
average performance rate of 78%, offer another interesting
point for discussion. While they perform well on average, the
variance in performance across different types of tree-based
models, such as RF and GBM, suggests that the choice of
specific tree algorithms and their hyperparameters could be a
crucial factor in achieving optimal performance.

The performance of DL models, averaging at 82%,
is notable for its potential to capture intricate patterns in
high-dimensional data. Yet, the distribution of performance
across various DL architectures such as CNNs, LSTMs,
and ANNs indicates that no single architecture dominates
in terms of efficacy. This divergence could be indicative of
the specialized nature of these architectures, optimized for
specific kinds of data or tasks within the broader realm of
pilot behavior prediction.

Dimensionality Reduction and Probabilistic models, with
their lower average performance rates of 71%, warrant a
discussion on their applicability and limitations. Given the
complex, high-dimensional nature of psychophysiological
data, these models may not capture the full scope of
relevant features or patterns, thus limiting their performance.
Future work might explore hybrid models that combine
these methods with higher-performing models to improve
accuracy. Moreover, the fact that some models show a wide
distribution in their performance statistics, such as GP and
NB, suggests a sensitivity to the specific conditions or
configurations under which they are employed. This could
be an important area for future investigation, particularly in
identifying what those conditions or configurations are.

In summary, the detailed results onmodel performance and
their distribution provide a multifaceted view of the current
methodological landscape in predicting pilot behavior. They
elucidate not just the strengths and weaknesses of various
model categories but also point to numerous questions
and directions for future research. This could include the
exploration of hybrid models, methodological innovations
to improve the performance of underperforming categories,
and more nuanced applications tailored to the specific needs
and challenges of psychophysiological data in pilot behavior
analysis.

E. METHODOLOGICAL LIMITATIONS AND FUTURE
RESEARCH DIRECTIONS (RQ5)
The assessment of the current literature reveals significant
gaps and areas for improvement, necessitating a focused
discussion on methodological limitations and future research
directions. One pressing concern is the largely unexamined
impact of preprocessing techniques onMLmodels. Although
numerous preprocessing methods are employed across stud-
ies, the extent to which these choices influence ML models
outcomes remains largely unexplored. This represents a
critical avenue for future research, as a better understanding
of this interplay could lead to more robust and generalizable
models.

Another limitation is the reliance on traditional prepro-
cessing techniques. The complexity of psychophysiological
data, fraught with various artifacts, calls for the exploration
of advanced preprocessing methods. Incorporating such
methods could potentially lead to more accurate and reliable
models for understanding pilot behavior, and thus should be
a focus of future research efforts.

Additionally, the impact of employing data imbalance
techniques on the performance of ML models has not been
fully explored and evaluated. Given the frequent occurrence
of imbalanced datasets in this domain, this lack of focus
raises concerns about the generalizability and reliability of
the reported results. Further, the disproportionate emphasis
on accuracy as the principal metric for evaluating model per-
formance becomes problematic, especially in cases involving
imbalanced datasets. A focus on accuracy alone may not
accurately reflect the model’s ability to predict minority
classes. Therefore, a multi-metric evaluation framework,
incorporating additional metrics like recall, precision, and the
F1-score, is crucial for a more balanced and comprehensive
assessment of model performance.

In the domain of DL, the utilization of 1D-CNN appears
to be underexplored in the context of psychophysiological
data analysis for pilot behavior. The architecture of 1D-
CNNs is well-suited for handling time-series data, offering
the potential for enhanced feature extraction and, ultimately,
more accurate predictions. Few studies in the selected corpus
have addressed the critical issue of model interpretabil-
ity or explainability, a paramount concern for real-world
applications where understanding model decisions can have
significant implications. This glaring omission in the current
literature underscores the need for greater methodological
rigor in future studies.

The literature’s focus on data from specific environmental
settings constrains the generalizability of the findings. Future
studies could benefit from collecting and analyzing data
from different environmental contexts, thereby enhancing the
ecological validity of the research and providing a more
comprehensive understanding of pilot behavior under varying
conditions. Furthermore, the feature extraction methods
employed in existing studies demonstrate a limited focus
on traditional statistical and frequency-domain features.
The exploration of spatial features, such as tangent space,
remains largely untapped. Given the promise of such
features in providing nuanced insights into cognitive states,
their exploration could be a significant contribution to
the field.

Lastly, the multidisciplinary nature of the field suggests
an overarching need for cross-disciplinary collaboration to
develop a more unified methodological framework. Such
a framework could accommodate the complexities inherent
in each type of psychophysiological data and the unique
challenges they present. This standardization could, in turn,
facilitate meta-analyses and cross-study comparisons, enrich-
ing our understanding of pilot behavior frommultiple vantage
points.
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V. CONCLUSION
This systematic literature review endeavors to offer a
nuanced and comprehensive understanding of the cur-
rent state of research that applies ML models for
the interpretation of psychophysiological data, specifically
focusing on the behavior of pilots. A multifaceted array of
findings have emerged from this review, which span the
gamut from the types of psychophysiological data employed
to the specific ML methodologies and their corresponding
performance metrics. Firstly, this review uncovers a pro-
nounced heterogeneity in the types of psychophysiological
data employed across studies, with EEG data standing
out as the most commonly used. This prominence of EEG
data could be indicative of the broader acceptance of its
reliability and efficacy in capturing cognitive states, yet it also
raises questions about the underutilization of other types of
data like ECG, GSR, and eye-tracking metrics.

Significantly, the review has identified a substantial gap in
the behavioral aspects studied, most notably the underrepre-
sentation of emotional responses and attention dynamics in
the existing literature. These areas, although critical to under-
standing human performance-limiting states, have been less
explored compared to workload and fatigue. Emotional states
and attention levels are not only crucial for aviation safety
but also enrich the understanding of pilot behavior in a more
holistic manner. The current methodological approaches
often categorize these aspects into broader categories, thereby
potentially missing nuanced interrelations between different
behavioral and cognitive states. Therefore, a more balanced
academic inquiry into these areas is warranted for a more
comprehensive understanding of pilot behavior.

When it comes to preprocessing methodologies, a diverse
range exists; however, a notable gap lies in the absence of
rigorous empirical evaluation exploring how these prepro-
cessing choices could impact the outcomes of ML models.
Given the intricacy of psychophysiological data, which often
contains various types of noise and artifacts, understanding
this relationship is not just academically interesting but also
practically vital. Additionally, a remarkable methodological
limitation is the scant attention given to the critical issue
of model interpretability and explainability. Given that ML
models are increasingly being considered for real-world
applications in aviation, the lack of focus on this aspect is
a significant shortcoming that future research must address.

The review also spotlights several key avenues for future
investigation. It suggests that examining the impact of
advanced preprocessing techniques, and how they interact
with different model types, could offer new pathways
to enhance model performance. The exploration of data
imbalance correction methods, the use of spatial features
like tangent space, and the incorporation of innovative model
architectures such as 1D-CNNs represent other promising
directions.

In sum, while the existing literature provides an invaluable
starting point for the scientific understanding of pilot
behavior through the lens of ML and psychophysiological

data, there is ample room for methodological refinement
and exploration. Addressing the identified gaps and under-
researched areas will not only elevate the scientific rigor but
also contribute to more nuanced, comprehensive, and prac-
tically applicable insights into pilot behavior. By focusing
on these aspects, future research can aim to substantially
advance the field, enriching both its academic depth and its
practical applicability in the broader context of aviation safety
and efficiency.
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