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Abstract: We consider a numerical approximation for stochastic fractional differential equations
driven by integrated multiplicative noise. The fractional derivative is in the Caputo sense with the
fractional order α ∈ (0, 1), and the non-linear terms satisfy the global Lipschitz conditions. We first
approximate the noise with the piecewise constant function to obtain the regularized stochastic
fractional differential equation. By applying Minkowski’s inequality for double integrals, we establish
that the error between the exact solution and the solution of the regularized problem has an order
of O(∆tα) in the mean square norm, where ∆t denotes the step size. To validate our theoretical
conclusions, numerical examples are presented, demonstrating the consistency of the numerical
results with the established theory.
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1. Introduction

Consider the following stochastic fractional differential equation driven by multiplica-
tive white noise, with α ∈ (0, 1) [1]:{

C
0 Dα

t u(t) = f (t, u(t)) +
∫ t

0 g(t, u(s))dW(s), t ∈ (0, T],
u(0) = u0,

(1)

where W(s) is Brownian motion defined over a probability space (Ω,F ,P) and C
0 Dα

t v(t)
denotes the Caputo fractional derivative defined by [2]

C
0 Dα

t v(t) =
1

Γ(1− α)

∫ t

a

v′(τ)dτ

(t− τ)α
.

The non-linear functions f (t, x), g(t, x) satisfy the following globally Lipschitz condi-
tions and the linear growth conditions with some suitable constant C > 0:

| f (t, x)− f (t, y)| ≤ C|x− y|, |g(t, x)− g(t, y)| ≤ C|x− y|, x, y ∈ R,

| f (t, x)| ≤ C(1 + |x|), |g(t, x)| ≤ C(1 + |x|), x ∈ R.

It is well-known that (1) is equivalent to the following stochastic Volterra integral
equations (SVIEs) with a weakly singular kernel of the form [1]

u(t) = u0 +
1

Γ(α)

∫ t

0

f (ζ, u(ζ))
(t− ζ)1−α

dζ +
1

Γ(α)

∫ t

0

∫ ζ

0

g(ζ, u(s))
(t− ζ)1−α

dW(s)dζ. (2)
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It is evident that the solution to Equation (2) relies not only on the current states
but also on past states. This characteristic makes stochastic Volterra integral equations
(SVIEs) able to model the different problems involving memory and noise across various
domains of science and technology. Examples include biological population models [3,4],
mathematical finance models [5,6], and others [7]. In the realm of mathematics, numerous
studies have been conducted, such as those by [8,9]. Ravichandran et al. [10] considered a
fractional integrodifferential system with state-dependent delay in Banach spaces. They
used Krasnoselskii’s fixed-point theorem and the Leray–Schauder alternative theorem
to consider the controllability and continuous dependence of these systems. Similarly,
ref. [11] examined the conditions of a slightly different system to also find its controllability.
Dhayal et al. [12] considered a second-order stochastic differential equation driven by
fractional Brownian motion with many different Hurst parameters. Various Caputo-based
fractional equations are also discussed in the current literature, such as the Caputo–Fabrizo
fractional order differential equation with multiple lags. Zhang et al. [13] introduced the
premise for finding the acquired difference form and obtained a solution by applying the
fractional PCEC algorithm. These systems are widely used in control theory.

When α = 1, the stochastic Volterra integral equations (SVIEs) (2), along with their
numerical schemes, have been thoroughly investigated [14,15]. In contrast, the singular
Volterra integral equations of the same form have received less attention. Some results
concerning their existence and uniqueness have been established under a (global) Lip-
schitz condition and a linear growth condition, which can be found in [16–18] and the
references therein.

When substituting (t− s)α−1 with alternative well-behaved functions, the exploration
of numerical schemes for (regular) stochastic Volterra integral equations (SVIEs) has gained
attention only in recent times. Tudor and Tudor [19] considered the strong convergence of
one-step numerical approximations for Itô–Volterra equations, providing a convergence rate
in the Lp(Ω) norm. Wen and Zhang [20] analyzed an enhanced version of the rectangular
method for stochastic Volterra equations, demonstrating a convergence order of O(∆t).
Subsequently, Wang [21] approximated SVIE solutions using a class of stochastic differential
equations (SDEs) and introduced two numerical methods: the stochastic theta method
and the splitting method. Xiao et al. [22] presented a split-step collocation method for
SVIEs, establishing its convergence with an order of O(∆t

1
2 ). Liang et al. [23] found that

the Euler–Maruyama (EM) method achieves superconvergence on the order (∆t) if the
kernel function in the diffusion term satisfies specific boundary conditions. More recently,
research has extended to the Euler scheme for a broader class of equations, such as SVIEs
with delay, stochastic Volterra integro-differential equations, and stochastic fractional
integro-differential equations. For further exploration, we refer to [16,24–28] and the
references therein.

The numerical treatment of stochastic Volterra integral equations (SVIEs) with a
weakly singular kernel of the form (2) has been minimally explored in the existing litera-
ture. The primary challenge stems from the singularity of the integrand kernel. In such
cases, the potent and essential Itô formula, commonly employed for stochastic differential
equations (SDEs), is not applicable to SVIEs with a singular kernel.

Li et al. [29] addressed this issue by examining the Euler–Maruyama scheme for solv-
ing (2) with α > 1

2 . They established that the convergence order of the scheme is O(∆tα− 1
2 )

for α > 1
2 . Another contribution by Kamrani [1] focused on the numerical approximation

of (2) with additive noise when g = 1. Kamrani approximated the additive noise using a
piecewise constant function, leading to a regularized equation. The study demonstrated
that the error between the exact solution and the solution of the regularized problem is
O(∆t). This regularized equation was further approximated using the Jacobian method.

In this paper, we extend Kamrani’s approach [1] to address (2) in the presence of
multiplicative noise. We begin by examining the regularity of the solution of (2) and
subsequently approximate the noise using piecewise constant functions to derive the
regularized equation. The regularized equation is further approximated using an L1
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scheme. Our analysis establishes that the error between the exact solution and the solution
of the regularized problem is O(∆tα) for any α ∈ (0, 1) by applying Minkowski’s inequality
for double integrals. This extends and improves upon the results presented in [29], where
the authors only considered the case with α > 1

2 and achieved a convergence order of only

O(∆tα− 1
2 ) for α > 1

2 .
Let us briefly review the main results obtained in this paper. Let t0 < t1 < t2 < . . . <

tn−1 < tn = T be a partition of [0, T] and let ∆t be the step size. We approximate the white

noise dW(t)
dt by a piecewise constant function dŴ(t)

dt defined by [1]

dŴ(t)
dt

=



W(t1)−W(t0)
∆t ≈

√
∆t·η1
∆t , t ∈ [t0, t1),

W(t2)−W(t1)
∆t ≈

√
∆t·η2
∆t , t ∈ [t1, t2),

W(t3)−W(t2)
∆t ≈

√
∆t·η3
∆t , t ∈ [t2, t3),

...
...

W(tn)−W(tn−1)
∆t ≈

√
∆t·ηn
∆t , t ∈ [tn−1, tn),

where ηi ∼ N (0, 1), i = 1, 2, 3, . . . , n are the normally distributed random variables.

For simplicity, we may write dŴ(t)
dt as χi(t) =

{
1, [ti, ti+1),
0, otherwise,

dŴ(t)
dt

=
n

∑
i=1

√
∆tχi(t)ηi

∆t
=

n

∑
i=1

χi(t)ηi√
∆t

.

We then obtain the following regularized stochastic fractional differential equation of (1):

ũ(t) = u0 +
1

Γ(α)

∫ t

0

f (ζ, ũ(ζ))
(t− ζ)1−α

dζ +
1

Γ(α)

∫ t

0

∫ ζ

0

g(ζ, ũ(s))
(t− ζ)1−α

dŴ(t)
dt

dtdζ. (3)

In Theorem 2, we consider the error of convergence for the additive noise case
and show that the convergence order is O(∆t). In Theorem 4, we consider the error
of convergence for the multiplicative noise case and show that the convergence order is
O(∆tα), α ∈ (0, 1).

The paper is organized as follows. In Section 2, we consider the approximation for
the additive case. In Section 3, we consider the approximation for the multiplicative noise.
In Section 4, we give some numerical simulations where the fractional derivatives are
approximated using the L1 scheme. In the Appendix A, we include Minkowski’s inequality
for double integrals, which is the main tool used in the proofs of error estimates.

Throughout this paper, we denote C as a generic constant that is independent of the
step size ∆t, which could be different for different occurrences.

2. The Additive Noise Case

In this section, we will consider the approximation of (2) for the additive noise case,
that is, g(t, u(s)) = g1(s) in (2), which is independent of u. We first study the regularity
of (2).

The following Grönwall Lemma is used in this paper.

Lemma 1 (Grönwall Inequality ([1], Lemma 4.1)). Let z : R+ → R+ be a function satisfying,
for all t ∈ [0, T], the inequality

z(t) ≤ a + K
∫ t

0
(t− s)σz(s)ds,

with some constants a ≥ 0, K > 0 and σ > −1. Then there exists a constant C = C(σ, K, T) such
that z(t) ≤ aC for all t ∈ [0, T].
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Lemma 2. Let u(t) be the solution of (2) with g(t, u(s)) = g1(s). Then, there exists a constant
C = C(T) such that

E|u(t2)− u(t1)|2 ≤ C(t2 − t1)
2α.

Proof. Note that

u(t2)− u(t1) =

[ ∫ t2

0
(t2 − ζ)α−1 f (ζ, u(ζ))dζ −

∫ t1

0
(t1 − ζ)α−1 f (ζ, u(ζ))dζ

]
+

[ ∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s)dW(s)dζ

]
= I + I I.

For I, we have

I =
∫ t2

t1

(t2 − ζ)α−1 f (ζ, u(ζ))dζ −
∫ t1

0

[
(t1 − ζ)α−1 f (ζ, u(ζ))− (t2 − ζ)α−1 f (ζ, u(ζ))

]
dζ,

= I1 + I2.

For I2, we obtain

E|I2|2 = E
∣∣∣∣ ∫ t1

0

[
(t1 − ζ)α−1 f (ζ, u(ζ))− (t2 − ζ)α−1 f (ζ, u(ζ))

]
dζ

∣∣∣∣2,

= E
∣∣∣∣ ∫ t1

0

[
(t1 − ζ)α−1 − (t2 − ζ)α−1

]
f (ζ, u(ζ))dζ

∣∣∣∣2,

≤ E
[ ∫ t1

0

(
(t1 − ζ)α−1 − (t2 − ζ)α−1

)
dζ

][ ∫ t1

0

(
(t1 − ζ)α−1 − (t2 − ζ)α−1

)]
f 2(ζ, u(ζ))dζ,

≤ C
[ ∫ t1

0

(
(t1 − ζ)α−1 − (t2 − ζ)α−1

)
dζ

]2

·E max
0≤ζ≤t

f 2(ζ, u(ζ)),

which implies that

E|I2|2 ≤ (t2 − t1)
2α · max

0≤ζ≤t
E f 2(ζ, u(ζ)) ≤ C(1 +E|u(0)|2)(t2 − t1)

2α.

For I1, we obtain

E|I1|2 = E
∣∣∣∣ ∫ t2

t1

(t2 − ζ)α−1 f (ζ, u(ζ))dζ

∣∣∣∣2 ≤ E
∫ t2

t1

(t2 − ζ)α−1 f 2(ζ, u(ζ))dζ ·
[ ∫ t2

t1

(t2 − ζ)α−1dζ

]
,

≤ C
[ ∫ t2

t1

(t2 − ζ)α−1dζ
]2
[

max
0≤ζ≤t

E f 2(ζ, u(ζ))
]
≤ C(t2 − t1)

2α

[
1 +E|u(0)|2

]
≤ C∆t2α.

Now we turn to I I.

I I =
∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s)dW(s)dζ,

≤
[ ∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ −

∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ

]
+

[ ∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s)dW(s)dζ

]
,

= I I1 + I I2.

For I I1, we have
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E|I I1|2 = E
∣∣∣∣ ∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ −

∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ

∣∣∣∣2,

≤ E
∣∣∣∣ ∫ t2

t1

(t2 − ζ)α−1
[ ∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)

]
dζ

∣∣∣∣2.

Splitting (t2 − ζ)α−1 into two parts yields

E|I I1|2 ≤ E
∣∣∣∣ ∫ t2

t1

(t2 − ζ)
α−1

2

[ ∫ ζ

0
(t2 − ζ)

α−1
2 g1(s)dW(s)

]
dζ

∣∣∣∣2.

By applying the Cauchy–Schwarz inequality, we arrive at

E|I I1|2 ≤ E
[ ∫ t2

t1

(t2 − ζ)α−1dζ

]
·
∫ t2

t1

[ ∫ ζ

0
(t2 − ζ)

α−1
2 g1(s)dW(s)

]2

dζ,

≤ ∆tα
∫ t2

t1

E
∣∣∣∣ ∫ ζ

0
(t2 − ζ)

α−1
2 g1(s)dW(s)

∣∣∣∣2dζ.

Using the Ito isometry property, we obtain

E|I I1|2 ≤ ∆tα ·
∫ t2

t1

∫ ζ

0
(t2 − ζ)α−1∣∣g1(s)

∣∣2dsdζ.

Note that
∣∣g1(s)

∣∣2 is bounded so we arrive at

E|I I1|2 ≤ C∆tα ·
∫ t2

t1

∫ ζ

0
(t2 − ζ)α−1dsdζ ≤ C∆tα ·

∫ t2

t1

(t2 − ζ)α−1dζ ≤ C∆t2α.

For I I2, we obtain

E|I I2|2 = E
∣∣∣∣ ∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s)dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s)dW(s)dζ

∣∣∣∣2,

= E
∣∣∣∣ ∫ t1

0

∫ ζ

0

[
(t2 − ζ)α−1 − (t1 − ζ)α−1

]
g1(s)dW(s)dζ

∣∣∣∣2.

Splitting (t2 − ζ)α−1 − (t1 − ζ)α−1 into two yields

E|I I2|2 = E
∣∣∣∣ ∫ t1

0

[
(t2 − ζ)α−1 − (t1 − ζ)α−1

] 1
2

·
∫ ζ

0

[
(t2 − ζ)α−1 − (t1 − ζ)α−1

] 1
2

g1(s)dW(s)dζ

∣∣∣∣2.

By applying the Cauchy–Schwarz inequality, we have

E|I I2|2 ≤
( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1dζ

)( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1

)
· E
∣∣∣∣ ∫ ζ

0
g1(s)dW(s)

∣∣∣∣2dζ.
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Using the Ito isometry property, we yield

E|I I2|2 ≤
( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1dζ

)2

dζ

∣∣∣∣ ∫ ζ

0
|g1(s)

∣∣∣∣2ds.

Note that g(s, u(s)) is bounded so we obtain

E|I I2|2 ≤ C
( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1dζ

)2

= C
( ∫ t1

0

∫ t2

t1

(x− ζ)α−2dxdζ

)2

.

By interchanging the double integrals, we arrive at

E|I I2|2 ≤ C
( ∫ t2

t1

∫ t1

0
(x− ζ)α−2dζdx

)2

≤ C
( ∫ t2

t1

(x− t1)
α−1dx

)2

,

≤ C
(
(t2 − t1)

α

)2

= C(t2 − t1)
2α = C∆t2α.

Hence, we obtain
E|u(t2)− u(t1)|2 ≤ C(t2 − t1)

2α,

which completes the proof of Lemma 2.

We now introduce the following two theorems obtained in [1] for the additive noise
case. Theorem 1 considers the stability of the solution of the regularized problem (3),
and Theorem 2 considers the error estimates.

Theorem 1 ([1], Theorem 4.2). Let ũ(t) be the solution of (3). Then, we have

E
( ∫ T

0

∣∣ũ(t)dt
∣∣2) ≤ C

(
1 +E|ũ(0)|2

)
.

Theorem 2 ([1], Theorem 4.3). Let u(t) and ũ(t) be the solutions of (2) and (3), respectively.
Then, we have the following inequality:

E
∫ 1

0

∣∣u(t)− ũ(t)
∣∣2 ≤ C(∆t)2.

3. The Multiplicative Noise Case

In this section, we shall consider the approximation of (2) for the multiplicative noise
case. We first consider the stability of the solution for the multiplicative noise case.

Theorem 3. Let ũ(t) be the solution of (3). Then, we have

E
( ∫ T

0

∣∣ũ(t)dt
∣∣2) ≤ C

(
1 +E|ũ(0)|2

)
.

Proof. The proof of Theorem 3 is similar to the proof of Theorem 1, which can be found
in [1]. For the length of the paper, we omit the proof here.

Let us first consider the regularity of the solution of (2) when g(t, u(s)) is independent
of t, i.e., g(t, u(s)) = g1(s, u(s)) for some function g1.

Lemma 3. Let u(t) be the solution of (2) with g(t, u(s)) = g1(s, u(s)). Then, we have

E|u(t2)− u(t1)|2 ≤ C(t2 − t1)
2α.

Proof. Note that
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u(t2)− u(t1) =

[ ∫ t2

0
(t2 − ζ)α−1 f (ζ, u(ζ))dζ −

∫ t1

0
(t1 − ζ)α−1 f (ζ, u(ζ))dζ

]
+

[ ∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s, u(s))dW(s)dζ

]
,

= I + I I.

For I, we may establish the same result as in Lemma 1 using the same notion. We obtain

E|I|2 ≤ C(t2 − t1)
2α.

Now we turn to I I.

I I =
∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s, u(s))dW(s)dζ,

≤
[ ∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ −

∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ

]
+

[ ∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s, u(s))dW(s)dζ

]
,

= I I1 + I I2.

For I I1, we have

E|I I1|2 = E
∣∣∣∣ ∫ t2

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ −

∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ

∣∣∣∣2,

≤ E
∣∣∣∣ ∫ t2

t1

(t2 − ζ)α−1
[ ∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)

]
dζ

∣∣∣∣2.

Splitting (t2 − ζ)α−1 into two yields

E|I I1|2 ≤ E
∣∣∣∣ ∫ t2

t1

(t2 − ζ)
α−1

2

[ ∫ ζ

0
(t2 − ζ)

α−1
2 g1(s, u(s))dW(s)

]
dζ

∣∣∣∣2.

By applying the Cauchy–Schwarz inequality (3), we arrive at

E|I I1|2 ≤ E
[ ∫ t2

t1

(t2 − ζ)α−1dζ

]
·
∫ t2

t1

[ ∫ ζ

0
(t2 − ζ)

α−1
2 g1(s, u(s))dW(s)

]2

dζ,

≤ ∆tα
∫ t2

t1

E
∣∣∣∣ ∫ ζ

0
(t2 − ζ)

α−1
2 g1(s, u(s))dW(s)

∣∣∣∣2dζ.

Using the Ito isometry property, we obtain

E|I I1|2 ≤ ∆tα ·
∫ t2

t1

∫ ζ

0
(t2 − ζ)α−1∣∣g1(s, u(s))

∣∣2dsdζ.

Note that
∣∣g1(s, u(s))

∣∣2 is bounded such that we have

E|I I1|2 ≤ C∆tα ·
∫ t2

t1

∫ ζ

0
(t2 − ζ)α−1dsdζ ≤ C∆tα ·

∫ t2

t1

(t2 − ζ)α−1dζ ≤ C∆t2α.

For I I2, we obtain
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E|I I2|2 = E
∣∣∣∣ ∫ t1

0

∫ ζ

0
(t2 − ζ)α−1g1(s, u(s))dW(s)dζ −

∫ t1

0

∫ ζ

0
(t1 − ζ)α−1g1(s, u(s))dW(s)dζ

∣∣∣∣2,

= E
∣∣∣∣ ∫ t1

0

∫ ζ

0

[
(t2 − ζ)α−1 − (t1 − ζ)α−1

]
g1(s, u(s))dW(s)dζ

∣∣∣∣2.

Splitting (t2 − ζ)α−1 − (t1 − ζ)α−1 into two yields

E|I I2|2 = E
∣∣∣∣ ∫ t1

0

[
(t2 − ζ)α−1 − (t1 − ζ)α−1

] 1
2

·
∫ ζ

0

[
(t2 − ζ)α−1 − (t1 − ζ)α−1

] 1
2

g1(s, u(s))dW(s)dζ

∣∣∣∣2.

By applying the Cauchy–Schwarz inequality, it follows that

E|I I2|2 ≤
( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1dζ

)( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1

)
· E
∣∣∣∣ ∫ ζ

0
g1(s, u(s))dW(s)

∣∣∣∣2dζ.

Using the Ito isometry property, we obtain

E|I I2|2 ≤
( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1dζ

)2

dζ

∣∣∣∣ ∫ ζ

0
|g1(s, u(s))

∣∣∣∣2ds.

Note that g1(s, u(s)) is bounded; hence, we have

E|I I2|2 ≤ C
( ∫ t1

0
(t2 − ζ)α−1 − (t1 − ζ)α−1dζ

)2

= C
( ∫ t1

0

∫ t2

t1

(x− ζ)α−2dxdζ

)2

.

By interchanging the double integrals, we arrive at

E|I I2|2 ≤ C
( ∫ t2

t1

∫ t1

0
(x− ζ)α−2dζdx

)2

≤ C
( ∫ t2

t1

(x− t1)
α−1dx

)2

,

≤ C
(
(t2 − t1)

α

)2

= C(t2 − t1)
2α = C∆t2α.

Hence, we obtain
E|u(t2)− u(t1)|2 ≤ C(t2 − t1)

2α,

which completes the proof of Lemma 3.

Remark 1. The difference between Lemma 2 and Lemma 3 are as follows. Lemma 2 considers
the case for (2) driven by additive noise with g(t, u(s)) = g1(s), whereas Lemma 3 considers the
case for (2) driven by multiplicative noise with g(t, u(s)) = g1(s, u(s)). Both cases yield the same
regularity order O(∆tα), α ∈ (0, 1).

Now, we introduce the main theorem in this section.

Theorem 4. Let u(t) and ũ(t) be the solutions of (2) and (3), respectively. Then, we have

E
∫ 1

0

∣∣u(t)− ũ(t)
∣∣2 dt ≤ C∆t2α.
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Proof. Note that the solution ũ(t) of the regularized stochastic fractional differential equa-
tion takes the following form:

ũ(t) =u0 +
1

Γ(α)

∫ t

0
(t− ζ)α−1 f (ζ, ũ(ζ))dζ +

1
Γ(α)

∫ t

0

[ ∫ ζ

0
(t− ζ)α−1g(ζ, ũ(s))

dŴ(s)
ds

ds
]

dζ.

Denote
e(t) = u(t)− ũ(t).

Then, e(t) satisfies the following equation:

e(t) =
1

Γ(α)

∫ t

0
(t− ζ)α−1

[
f (ζ, u(ζ))− f (ζ, ũ(ζ))

]
dζ +

1
Γ(α)

∫ t

0

[ ∫ ζ

0
(t− ζ)α−1g(ζ, u(s))

dW(s)
ds

ds

−
∫ ζ

0
(t− ζ)α−1g(ζ, u(s))

dŴ(s)
ds

ds
]

dζ

+
1

Γ(α)

∫ t

0

∫ ζ

0
(t− ζ)α−1

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
dsdζ,

which implies that

E
∫ T

0
|e(t)|2dt

≤ CE
∫ T

0

( ∫ t

0
(t− ζ)α−1

[
f (ζ, u(ζ))− f (ζ, ũ(ζ)

]
dζ

)2

dt

+ CE
∫ T

0

[ ∫ t

0

∫ ζ

0
(t− ζ)α−1g(ζ, u(s))

dW(s)
ds

dsdζ −
∫ t

0

∫ ζ

0
(t− ζ)α−1g(ζ, u(s))

dŴ(s)
ds

dsdζ

]2

dt

+ CE
∫ T

0

(
1

Γ(α)

∫ t

0

∫ ζ

0
(t− ζ)α−1

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
dsdζ

)2

dt

= I + I I + I I I.

For I, using a variable change ν = t− ζ, we have

I = E
∫ T

0

( ∫ t

0
(t− ζ)α−1

[
f (ζ, u(ζ))− f (ζ, ũ(ζ)

]
dζ

)2

dt,

= E
∫ T

0

( ∫ t

0
να−1

[
f (t− ν, u(t− ν))− f (t− ν, ũ(t− ν)

]
dν

)2

dt,

= E
∫ T

0

( ∫ T

0
χ[0,t](ν) · να−1

[
f (t− ν, u(t− ν))− f (t− ν, ũ(t− ν)

]
dν

)2

dt,

where χ[0,t](ν) is defined as

χ[0,t](ν) =

{
1, T ≥ t ≤ ν,
0, 0 ≥ t ≤ ν,

=

{
1, 0 ≤ ν ≤ t,
0, t ≤ ν ≤ T.
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Applying Minkowski’s inequality for the double integrals of Lemma A1, we arrive at

I = E
∫ T

0

( ∫ T

0
χ[0,t](ν) · να−1

[
f (t− ν, u(t− ν))− f (t− ν, ũ(t− ν)

]
dν

)2

dt,

≤
[ ∫ T

0

(
E
∫ T

0

∣∣∣∣χ[0,t](ν) · να−1[ f (t− ν, u(t− ν))− f (t− ν, ũ(t− ν)
]∣∣∣∣2dt

) 1
2

dν

]2

,

=

[ ∫ T

0
να−1

(
E
∫ T

0

∣∣∣∣χ[0,t](ν)
[

f (t− ν, u(t− ν))− f (t− ν, ũ(t− ν)
]∣∣∣∣2dt

) 1
2

dν

]2

,

which implies that

I ≤ C
[ ∫ T

0
να−1

(
E
∫ T

ν

∣∣∣∣[ f (t− ν, u(t− ν))− f (t− ν, ũ(t− ν)
]∣∣∣∣2dt

) 1
2

dν

]2

.

Using the Lipschitz condition for f , we obtain

I ≤ C
[ ∫ T

0
να−1

(
E
∫ T

ν
e2(t− ν)dt

) 1
2

dν

]2

≤ C
[ ∫ T

0
να−1

(
E
∫ T−ν

0
e2(ζ)dζ

) 1
2

dν

]2

.

By applying a variable change ν = T − ν̃, we arrive at

I ≤ C
[ ∫ T

0
(T − ν̃)α−1

(
E
∫ ν̃

0
e2(ζ)dζ

) 1
2

dν̃

]2

= C
[ ∫ T

0
(T − ν)α−1

(
E
∫ ν

0
e2(ζ)dζ

) 1
2

dν

]2

.

Now, we turn to I I. We have

I I = CE
∫ T

0

[ ∫ t

0

∫ ζ

0

g(ζ, u(s))
(t− ζ)1−α

dW(s)dζ −
∫ t

0

∫ ζ

0

g(ζ, u(s))
(t− ζ)1−α

(
dŴ(s)

ds

)
ds dζ

]2

dt.

Applying a change of variable ν = t− ζ, we have

I I = CE
∫ T

0

[ ∫ t

0

∫ t−ν

0

g(t− ν, u(s))
ν1−α

dW(s)dν−
∫ t

0

∫ t−ν

0

g(t− ν, u(s))
ν1−α

(
dŴ(s)

ds

)
ds dν

]2

dt,

which implies that

I I ≤CE
∫ T

0

[ ∫ T

0
χ[0,t]

∫ t−ν

0

g(t− ν, u(s))
ν1−α

dW(s)dν−
∫ T

0
χ[0,t]

∫ t−ν

0

g(t− ν, u(s))
ν1−α

(
dŴ(s)

ds

)
ds dν

]2

dt.

Applying Minkowski’s inequality for the double integrals of Lemma A1, we arrive at

I I ≤
( ∫ T

0

[
E
∫ T

0

∣∣∣∣χ[0,t]

∫ t−ν

0

g(t− ν, u(s))
ν1−α

[
dW(s)

ds
− dŴ(s)

ds

]
ds
∣∣∣∣2dt

] 1
2

dν

)2

,

=

( ∫ T

0

[
E
∫ T

ν

∣∣∣∣ ∫ t−ν

0

g(t− ν, u(s))
ν1−α

[
dW(s)

ds
− dŴ(s)

ds

]
ds
∣∣∣∣2dt

] 1
2

dν

)2

,

=

( ∫ T

0
να−1

[
E
∫ T

ν

∣∣∣∣ ∫ t−ν

0
g(t− ν, u(s))

[
dW(s)

ds
− dŴ(s)

ds

]
ds
∣∣∣∣2dt

] 1
2

dν

)2

.
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Note that, for 0 = t0 < t1 < . . . < tm < tm+1 = t− ν,

E
∣∣∣∣ ∫ t−ν

0
g(t− ν, u(s))

[
dW(s)

ds
− dŴ(s)

ds

]
ds
∣∣∣∣2,

= E
∣∣∣∣ m+1

∑
i=1

[ ∫ ti

ti−1

g(tm+1, u(s))dW(s)−
∫ ti

ti−1

g(tm+1, u(τ))
W(ti)−W(ti−1)

∆t
dτ

]∣∣∣∣2,

= E
∣∣∣∣ m+1

∑
i=1

[ ∫ ti

ti−1

g(tm+1, u(s))dW(s)−
∫ ti

ti−1

(
1

∆t

∫ ti

ti−1

g(tm+1, u(τ))dτ

)
dW(s)

]∣∣∣∣2,

= E
∣∣∣∣ m+1

∑
i=1

[ ∫ ti

ti−1

(
1

∆t

∫ ti

ti−1

[
g(tm+1, u(s))− g(tm+1, u(τ))

]
dτ

)
dW(s)

]∣∣∣∣2,

= E
m+1

∑
i=1

∫ ti

ti−1

(
1

∆t

∫ ti

ti−1

[
g(tm+1, u(s))− g(tm+1, u(τ))

]
dτ

)2

ds,

which implies that

E
∣∣∣∣ ∫ t−ν

0
g(t− ν, u(s))

[
dW(s)

ds
− dŴ(s)

ds

]
ds
∣∣∣∣2,

≤ E
m+1

∑
i=1

∫ ti

ti−1

[
1

∆t2

( ∫ ti

ti−1

12dt
)
·
( ∫ ti

ti−1

[
g(tm+1, u(s))− g(tm+1, u(τ))

]2

dτ

)]
ds,

≤ E
m+1

∑
i=1

∫ ti

ti−1

[
1

∆t

∫ ti

ti−1

[
g(tm+1, u(s))− g(tm+1, u(τ))

]2

dτ

]
ds.

Applying the Lipschitz condition for g and Lemma 3, we have

E
∣∣∣∣g(tm+1, u(s))− g(tm+1, u(τ))

∣∣∣∣ ≤ E|u(s)− u(τ)|2 ≤ C|s− τ|2,

which implies that

E
∣∣∣∣ ∫ t−ν

0
g(t− ν, u(s))

[
dW(s)

ds
− dŴ(s)

ds

]
ds
∣∣∣∣2,

≤ E
m+1

∑
i=1

∫ ti

ti−1

[
1

∆t

∫ ti

ti−1

[
g(tm+1, u(s))− g(tm+1, u(τ))

]2

dτ

]
ds ≤ C∆t2α.

Thus, we obtain

I I ≤
[ ∫ T

0
να−1

[ ∫ T

0
∆t2dt

] 1
2

dν

]2

≤ C∆t2α

[ ∫ T

0
να−1dν

]2

≤ C∆t2α.

For I I I, using a change of variable ν = t− ζ, it follows that

I I I = E
∫ T

0

( ∫ t

0

∫ ζ

0
(t− ζ)α−1

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
dsdζ

)2

dt,

= CE
∫ T

0

( ∫ t

0

∫ t−ν

0
να−1

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
dsdν

)2

dt,

= CE
∫ T

0

( ∫ T

0
χ[0,t](ν)

∫ t−ν

0
να−1

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
dsdν

)2

dt.
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Applying Minkowski’s inequality for the double integrals of Lemma A1, we have

I I I ≤
[ ∫ T

0

(
E
∫ T

0

∣∣∣∣χ[0,t](ν)
∫ t−ν

0
να−1

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
ds
∣∣∣∣2dt

) 1
2

dν

]2

,

=

[ ∫ T

0

(
E
∫ T

0

∣∣∣∣ ∫ t−ν

0
να−1

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
ds
∣∣∣∣2dt

) 1
2

dν

]2

,

=

[ ∫ T

0
να−1

( ∫ T

ν

∣∣∣∣ ∫ t−ν

0

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
ds
∣∣∣∣2dt

) 1
2

dν

]2

.

Following the same argument as for the estimate of the term I I, we obtain

E
∣∣∣∣ ∫ t−ν

0

[
g(ζ, u(s))− g(ζ, ũ(s))

]
dŴ(s)

ds
ds
∣∣∣∣2 ≤ CE

∫ t−ν

0
|e(s)|2ds.

Therefore, using the variable change ζ = t− ν,

I I I ≤
[ ∫ T

0
να−1

( ∫ T

ν

[ ∫ t−ν

0
E|e(s)|2ds

]
dt
) 1

2

dν

]2

≤
[ ∫ T

0
να−1

( ∫ T−ν

0

[ ∫ ζ

0
E|e(s)|2ds

]
dζ

) 1
2

dν

]2

,

Using the variable change ν = T − ν̃, we arrive at

I I I ≤
[ ∫ T

0
(T − ν̃)α−1

( ∫ ν̃

0

[ ∫ ζ

0
E|e(s)|2ds

]
dζ

) 1
2

dν̃

]2

,

=

[ ∫ T

0
(T − ν)α−1

( ∫ ν

0

[ ∫ ζ

0
E|e(s)|2ds

]
dζ

) 1
2

dν

]2

,

≤
[ ∫ T

0
(T − ν)α−1

( ∫ ν

0

[ ∫ ν

0
E|e(s)|2ds

]
dζ

) 1
2

dν

]2

,

≤ C
[ ∫ T

0
(T − ν)α−1

(
E
∫ ν

0
e2(s)ds

) 1
2

dν

]2

.

Hence, we obtain

E
( ∫ T

0
e2(t)dt

)
≤ C

[ ∫ T

0
(T − ν)α−1

(
E
∫ ν

0
e2(ζ)dζ

) 1
2

dν

]2

+ C∆t2α.

Denote e1(ν) =

[
E
( ∫ ν

0 e2(ζ)dζ

)] 1
2

. We therefore obtain

e1(T) ≤
∫ T

0
(T − ν)α−1e1(ν)dν + C∆tβ.

By applying the Grönwall Lemma 1, we have

e1(T) ≤ C∆tα,

which implies that

E
∫ 1

0

∣∣u(t)− ũ(t)
∣∣2 ≤ C∆t2α.

The proof of Theorem 4 is now complete.



Mathematics 2024, 12, 365 13 of 18

Remark 2. The difference between Theorem 2 and Theorem 4 are as follows. Theorem 2 considers
the convergence order for (2) driven by additive noise, whereas Theorem 4 considers the convergence
order for (2) driven by multiplicative noise with g(t, u(s)). The additive case yields a convergence
order of O(∆t), α ∈ (0, 1), whereas the multiplicative case achieves a convergence order of O(∆tα),
α ∈ (0, 1).

4. Numerical Simulations

In this section, we shall consider the numerical simulations for the following problem
with different values of f and g.

C
0 Dα

0 u(t) = f (t, u(t)) +
∫ t

0
g(t, u(s))dW(s), (4)

u(0) = u0. (5)

Let 0 = t0 < t1 < · · · < tN = T be the partition of [0, T] and let ∆t be the step size.
At t = tn, we have

C
0 Dα

0 u(t)
∣∣∣
t=tn

= f (tn, u(tn)) +
∫ tn

0
g(tn, u(s))dW(s).

We shall approximate the Caputo fractional derivative C
0 Dα

0 u(t)
∣∣∣
t=tn

with the L1

scheme [30]

C
0 Dα

0 u(t)
∣∣∣
t=tn
≈ ∆t−α

n

∑
j=0

wj,nu(tn−j),

where the weights wj,n are defined by

Γ(2− α)wj,n =


1, j = 0,
21−α − 2, j = 1,
(j− 1)1−α + (j + 1)1−α − 2j1−α, j = 2, 3, . . . , n− 1,
(j− 1)1−α − (α− 1)j−α − j1−α, j = n.

Further, we will approximate the integral
∫ tn

0 g(tn, u(s))dW(s) by the following rect-
angular integration formula:

∫ tn

0
g(tn, u(s))dW(s) ≈

n

∑
j=1

∫ tj

tj−1

g(tn, u(tj−1))ηj =
n

∑
j=1

∆tg(tn, u(tj−1))ηj,

where ηj =
√

∆tN (0, 1). Here N (0, 1) denotes the standard normally distributed random
variable calculated by the MATLAB function ”randn”.

Let Un ≈ u(tn) be the approximate solution. We may obtain the following numerical
method for Un, n = 1, 2, . . . , N with U0 = u0:

∆t−α
n

∑
j=0

wj,nUn−j = f (tn, Un) +
n

∑
j=1

∆tg(tn, U j−1)ηj. (6)

In our numerical simulations, we chose T = 1 and the different step sizes h1 = 1
16 ,

h2 = 1
32 , h3 = 1

64 , and h4 = 1
128 . Since there are no exact solutions for our problems, we

shall use a reference solution calculated with a sufficiently small step size h = ∆t = 2−12.
Since we did not obtain the convergence order of the scheme defined in (6), we shall

use the following method to compute the experimentally determined order of convergence
(EOC) p > 0.
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We shall calculate the error at T = tN = Nh = 1. Assume that we have the following
error estimate, which depends on the step size h = ∆t; that is, if p > 0,

error(h) = ||UN − u(tN)|| ≤ Chp, p > 0.

By choosing tNi = Nihi = T = 1 with the different step sizes hi =
1
2i for i = 4, 5, 6, 7,

we have

error(hi) = E
[
||UNi − u(T)||2

] 1
2

≈ Chp
i ,

which implies that the convergence order p > 0 satisfies, with i = 4, 5, 6,

error(hi)

error(hi+1)
≈
(

hi
hi+1

)p

,

or

p ≈
( log2

( error(hi)
error(hi+1)

)
log2

( hi
hi+1

) )
.

We obtain 3 different EOCs with 4 step sizes hi, i = 4, 5, 6, 7 and take the average of
the three EOCs, which are found in the EOC column of Tables 1–5.

In Tables 1–5, we provide the approximation results by using the following different f
and g.

f (t, u(t)) = −u(t) + t +
Γ(2)

Γ(2− α)
t1−α, g(t, u(t)) = 1, (7)

f (t, u(t)) = −u(t) + t2 + 2
t1.5

Γ(2.5)
t1−α, g(t, u) = t, (8)

f (t, u(t)) = −u(t) + t2 + 2
t1.5

Γ(2.5)
t1−α, g(t, u) = u, (9)

f (t, u(t)) = −u(t) + t2 + 2
t1.5

Γ(2.5)
t1−α, g(t, u) = sin(u), (10)

f (t, u(t)) = −u(t) + t2 + 2
t1.5

Γ(2.5)
t1−α, g(t, u) = u3 − u. (11)

We note that, across all cases, the experimentally determined convergence orders are
nearly O(∆t) for various α ∈ (0, 1). These observed orders outperform the theoretical
order ∆tα, α ∈ (0, 1) in the context of multiplicative noise cases. In future investigations,
we will consider the factors contributing to the superior performance of experimentally
determined convergence orders compared to their theoretical counterparts in the presence
of multiplicative noise.

Table 1. The convergence orders for Equations (4) and (5) defined by (7).

α h1 = 1
16 h2 = 1

32 h3 = 1
64 h4 = 1

128 EOC

0.2 1.1869× 10−3 5.8082× 10−4 2.8542× 10−4 1.3972× 10−4 1.03
1.0310 1.0250 1.0305

0.4 2.5771× 10−3 1.2469× 10−3 6.0768× 10−4 2.9570× 10−4 1.04
1.0473 1.0370 1.0392

0.6 4.4683× 10−3 2.1448× 10−3 1.0357× 10−3 4.9966× 10−4 1.05
1.0589 1.0502 1.0516

0.8 6.9502× 10−3 3.3953× 10−3 1.6528× 10−3 7.9956× 10−4 1.04
1.0335 1.0386 1.0476

1 8.0788× 10−3 4.0749× 10−3 2.0344× 10−3 1.0043× 10−3 1.00
0.9874 1.0021 1.0184
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Table 2. The convergence orders for Equations (4) and (5) defined by (8).

α h1 = 1
16 h2 = 1

32 h3 = 1
64 h4 = 1

128 EOC

0.2 3.6254× 10−2 1.7819× 10−2 8.9154× 10−3 4.4166× 10−3 1.01
1.0247 0.99904 1.0134

0.4 2.9412× 10−2 1.4521× 10−2 7.2194× 10−3 3.5814× 10−3 1.01
1.0183 1.0082 1.0114

0.6 3.1514× 10−2 1.5556× 10−2 7.6321× 10−3 3.7425× 10−3 1.02
1.0185 1.0273 1.0281

0.8 3.2311× 10−2 1.6120× 10−2 7.9141× 10−3 3.8351× 10−3 1.02
1.0032 1.0264 1.0452

1 4.9803× 10−2 2.4976× 10−2 1.2433× 10−2 6.1283× 10−3 1.01
1.0057 1.0116 1.0232

Table 3. The convergence orders for Equations (4) and (5) defined by (9).

α h1 = 1
16 h2 = 1

32 h3 = 1
64 h4 = 1

128 EOC

0.2 3.8205× 10−2 1.9042× 10−2 9.4368× 10−3 4.6378× 10−3 1.01
1.0046 1.0128 1.0249

0.4 3.3152× 10−2 1.6205× 10−2 7.9161× 10−3 3.8499× 10−3 1.04
1.0326 1.0336 1.0400

0.6 3.1321× 10−2 1.4878× 10−2 7.0823× 10−3 3.3676× 10−3 1.07
1.0740 1.0708 1.0725

0.8 3.4886× 10−2 1.6429× 10−2 7.7244× 10−3 3.6156× 10−3 1.09
1.0864 1.0888 1.0952

1 4.7068× 10−2 2.3335× 10−2 1.1548× 10−2 5.6754× 10−3 1.02
1.0123 1.0148 1.0248

Table 4. The convergence orders for Equations (4) and (5) defined by (10).

α h1 = 1
16 h2 = 1

32 h3 = 1
64 h4 = 1

128 EOC

0.2 3.1570× 10−2 1.5542× 10−2 7.6456× 10−3 3.7412× 10−3 1.03
1.0224 1.0234 1.0312

0.4 2.9524× 10−2 1.4249× 10−2 6.8956× 10−3 3.3313× 10−3 1.05
1.0510 1.0471 1.0496

0.6 2.9624× 10−2 1.3939× 10−2 6.5793× 10−3 3.1055× 10−3 1.08
1.0876 1.0832 1.0831

0.8 3.4298× 10−2 1.6103× 10−2 7.5450× 10−3 3.5191× 10−3 1.09
1.0908 1.0937 1.1003

1 4.7021× 10−2 2.3320× 10−2 1.1543× 10−2 5.6735× 10−3 1.02
1.0117 1.0146 1.0247

Table 5. The convergence orders for Equations (4) and (5) defined by (11).

α h1 = 1
16 h2 = 1

32 h3 = 1
64 h4 = 1

128 EOC

0.2 5.8169× 10−2 2.7932× 10−2 1.3664× 10−2 6.6809× 10−3 1.04
1.0583 1.0315 1.0323

0.4 3.8562× 10−2 1.9719× 10−2 9.8286× 10−3 4.8399× 10−3 1.00
0.9676 1.0045 1.0220

0.6 1.9561× 10−2 9.7425× 10−3 4.7290× 10−3 2.2623× 10−3 1.04
1.0056 1.0427 1.0638

0.8 2.3815× 10−2 1.1518× 10−2 5.7530× 10−3 2.8175× 10−3 1.03
1.0480 1.0015 1.0299

1 4.5648× 10−2 2.2806× 10−2 1.1329× 10−2 5.5780× 10−3 1.01
1.0011 1.0094 1.0221

Table 1 presents the approximation results in the presence of additive noise with
G(t, u(t)) = 1. Three experimental orders of convergence are computed using step sizes hi
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for i = 4, 5, 6, 7. The experimentally determined order of convergence in the EOC column
is obtained by averaging the EOC values. Across various fractional orders α, an EOC of
approximately 1 is consistently achieved.

Tables 2–5 examine additional cases, and they exhibit a comparable average EOC of
approximately 1. This observation suggests that the experimental orders of convergence
for both additive and multiplicative noise scenarios are similar.

The left graph illustrates the experimental orders of convergence corresponding to
Table 1, where α = 0.4, and various step sizes are considered. The EOC line represents the
average of the EOC values, clearly indicating an EOC of approximately 1 for the additive
noise case.

On the right, the graph displays the experimental orders of convergence for Table 5,
with α = 0.4 and different step sizes. The EOC line, representing the average of the EOC
values, distinctly shows an EOC of approximately 1 for the multiplicative noise case.

5. Conclusions

This paper considers the numerical approximation of stochastic fractional differential
equations driven by integrated multiplicative noise. The approach involves employing a
piecewise constant function to approximate the noise, leading to the derivation of a regular-
ized stochastic fractional differential equation. We establish the regularity of the solution
and analyze the convergence order of the proposed approximation scheme. To conduct
numerical simulations, we employ the L1 scheme for approximating the Caputo fractional
derivative. The results of our numerical simulations reveal convergence orders of nearly
O(∆t) for cases involving multiplicative noise. Surprisingly, these experimentally deter-
mined convergence orders outperform the expected theoretical orders of O(∆t)α, α ∈ (0, 1).
In future research, we will investigate the reasons behind this discrepancy and further
explore the implications of our findings.
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Appendix A

In the Appendix A, we will provide Minkowski’s inequality for double integrals.
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Lemma A1 (Minkowski’s inequality for double integrals). Suppose that we have the following
σ-finite measure spaces: (E1,A, λ) and (E2,B, µ), and suppose that f : E1 × E2 → R is A⊗B-
measurable. Then, we have[ ∫

E1

( ∫
E2

∣∣ f (x, y)
∣∣ µ(dy)

)p

λ(dx)
] 1

p

≤
∫

E2

( ∫
E1

∣∣ f (x, y)
∣∣p λ(dx)

) 1
p

µ(dy),

which is satisfied ∀ p, r ∈ [1, ∞). An equality occurs if p = 1.

Proof. We omit the proof here. For more details, please see Theorem 13.14 in [31].
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