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Abstract—Deep learning models have become very efficient
and robust for several computer vision applications. However, to
harness the benefits of state-of-art deep networks in the realm
of disease detection and prediction, it is crucial that high-quality
datasets be made available for the models to train on. This work
recognizes the lack of training data (both in terms of quality and
quantity of images) for using such networks for the detection of
Alzheimer’s Disease. To address this issue, a Wasserstein Gen-
erative Adversarial Network (WGAN) is proposed to generate
synthetic images for augmentation of an existing Alzheimer brain
image dataset. The proposed approach is successful in generating
high-quality images for inclusion in the Alzheimer image dataset,
potentially making the dataset more suitable for training high-
end models. This paper presents a two-fold contribution: (i) a
WGAN is first developed for augmenting the non-dominant class
(i.e. Moderate Demented) of the Alzheimer image dataset to bring
the sample count (for that class) at par with the other classes,
and (ii) another lightweight WGAN is used to augment the entire
dataset for increasing the sample counts for all classes.

Index Terms—Alzheimer Disease, Data Augmentation, Deep
Learning, Generative Adversarial Network (GAN), Imbalanced
Datasets, Wasserstein Generative Adversarial Network (WGAN).

I. INTRODUCTION

Alzheimer’s Disease (AD) is a progressive neurological
condition that starts gradually and worsens over time. Its
primary onset symptom is difficulty in recalling recent events.
It is an irreversible disease, and no known medication can
modify its course [1]. However, there have been promising
recent medical advancements [2]. As of 2020, over the world
nearly 50 million people had Alzheimer’s disease, and the
current estimate is around 55 million, with the number of
AD patients expected to reach approximately 140 million
by 2050 [3]. Consequently, significant efforts have been di-
rected towards developing onset detection tools, particularly
during pre-symptomatic phases, to mitigate or prevent disease
progression [4], [5]. Recent state-of-art neuro-imaging tech-
niques like positron emission tomography (PET) and magnetic
resonance imaging (MRI) have been devised and employed
to identify AD biomarkers at the molecular and structural
levels [6]. Through these methods, researchers have observed
declines in certain brain regions’ size in individuals with AD
as they transition from mildly impaired cognitive abilities to
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Alzheimer’s disease, as compared to healthy older individuals.
Utilizing these brain region alterations, automated detection
tools have been developed for Alzheimer’s disease, as well
as for other diseases (e.g., using X-ray images to identify
COVID-19 progression).

Deep learning (DL), an advanced machine learning ap-
proach, has surpassed classical machine learning in its ability
to detect intricate patterns within complex high-dimensional
data, especially in the realm of computer vision [7]. With
the advancement of neuroimaging techniques, the development
of extensive multimodal neuroimaging datasets has become
possible. As a result, there has been a surge of research interest
in applying DL to achieve early diagnosis and automated
categorization of Alzheimer’s disease [8].

Utilizing deep neural networks with bio-image datasets can
be challenging due to limited availability of data [9]. Data
augmentation addresses this issue by creating diverse versions
of the initial data through techniques like reflection, transla-
tion, and rotation. However, these basic approaches lack the
ability to generate new images that retain the original sample’s
underlying characteristics. For specialized tasks like disease
detection in MRI images, a more robust data augmentation
process is crucial. This paper presents an image augmentation
DL model that aims to generate new samples while preserving
the intrinsic characteristics of the original dataset.

There is another complication is this entire scenario — which
is the inherent imbalance present in the number of samples
(images) available for the different classes. It is natural to
have a very large number of ‘normal’ samples in any disease
dataset, while the number of samples for different variations
of the disease (e.g. Mild Dementia, Moderate Dementia, Very
Mild Dementia, etc.) may be significantly less for some
classes. This is a severe issue with ML/DL algorithms training
using such datasets. This is because such algorithms tend to fa-
vor the majority class, as it has more data points to learn from.
Machine learning models use balanced metrics by default,
which may result in poor model performance and incorrect
classification of the minority class. To deal with this problem,
one possible solution is to employ sampling technique(s) if
the task is a classification one with an imbalanced dataset.
Downsampling and upweighting is a useful way to handle
imbalanced data. In this specific context, downsampling refers



to the practice of training on a significantly reduced subset
of examples from the majority class. Conversely, upweighting
involves assigning an increased weight to the downsampled
class, which is equivalent to the ratio by which the downsam-
pling is performed. There are also other techniques such as
Synthetic Minority Over-sampling Technique (SMOTE) and
Adaptive Synthetic Sampling that can help with imbalanced
datasets. In addition to these approaches, the use of Generative
Networks may also be explored for this task. This paper
presents one such proposal.

Generative Adversarial Networks (GANs) are a deep learn-
ing method for generative modeling, often employing convolu-
tional neural networks. They can generate novel data instances
based on the training data, aiming to replicate the statistical
properties of the training set. GAN-based data augmentation
outperforms na”1ve approaches, producing higher-quality gen-
erated images. GANs can create authentic-looking images,
benefiting various learning scenarios, such as semi-supervised
and fully supervised learning [10], and reinforcement learning,
despite their initial unsupervised learning purpose [11]. GANs
use a discriminator neural network to indirectly train the
generator by assessing input data realism. The discriminator
continuously updates, and the generator is trained to deceive
it rather than minimizing distances to specific images. This
unique training process enables GANs to learn and generate
data without explicit supervision'.

Contribution: Given the scarcity of high-quality pub-
licly available datasets for training deep neural networks in
Alzheimer’s disease (AD) detection, we introduce a data
augmentation model based on Wasserstein Generative Ad-
versarial Networks (WGAN) [?]. This WGAN-based model
utilizes AD MRI images as input data to synthetically enhance
the Alzheimer’s disease dataset, with a particular focus on
the Moderate Demented class. The primary objective of this
research is to augment the Alzheimer’s disease dataset to
facilitate future studies and enable the development of more
efficient, automated, and accurate prognosis systems. This
paper makes a dual contribution: firstly, the development
of a WGAN to augment the non-dominant class (i.e. the
Moderate Demented class, which only has 64 images in the
original dataset, as compared to the Mild/Very-Mild/Normal
classes which have 896/2240/3200 images respectively) in the
Alzheimer image dataset, aligning its sample count with other
classes, and secondly, the utilization of a lightweight WGAN
to augment the entire dataset, thereby increasing sample counts
for all classes for ensuring better training for ML/DL models.

The paper’s structure is as follows: Section II provides
a concise overview of relevant research. In Section III, we
elaborate on the proposed approach and methodology. Section
IV presents an evaluation of the system’s performance and
results. Finally, Section VI concludes the paper with closing
remarks.

Uhttps://theaisummer.com/gan-computer-vision/#vanilla-gan-generative-
adversarial-networks-2014

II. RELATED WORK

Various models have been implemented in the literature to
generate image datasets for augmenting AD MRI images. Here
is a brief overview of some existing models:

Park et al. [12] employed generative adversarial networks
(GANS) to predict the molecular progression of Alzheimer’s
disease. They utilized GANs to analyze RNA-seq data from
a 5xXFAD animal AD model, which replicates significant AD
characteristics, including substantial amyloid deposition in the
brain. Their focus was on configuring the generator to produce
specific samples and identify biologically relevant genes.

Based on their findings, the researchers proposed the use of
latent space interpolation to generate transition curves for sev-
eral genes exhibiting pathogenic alterations from the normal
to AD states. This approach revealed numerous pathogenic
processes with progressive changes, such as inflammatory
systems and synapse functioning. These pathways, as shown
by transition curve patterns, have previously been associated
with the pathogenesis of AD.

An intriguing discovery from their study was that changes
in cholesterol biosynthesis commence early in the course of
Alzheimer’s disease, indicating that cholesterol metabolism is
affected downstream of amyloid buildup and might be among
the initial impacts in AD progression.

The study presented in [13] introduces a novel three-
component adversarial network-based technique for
Alzheimer’s disease (AD) detection, known as the Brain
slice generative adversarial network for Alzheimer’s disease
detection (BSGAN-ADD). This method combines deep
convolutional neural network (CNN) based AD diagnosis
with generative adversarial network (GAN) based brain slice
image enhancement.

In another study by Han et al. [14], a two-step technique
for detecting Alzheimer’s disease at various stages is proposed.
This method utilizes a Generative Adversarial Network-based
approach for multiple adjacent brain MRI slice reconstruction,
employing Wasserstein loss with Gradient Penalty. Three
healthy slices are used to reconstruct the subsequent three un-
seen healthy/AD instances. The results demonstrate consistent
AD detection at an early stage with an AUC of 0.780 and
considerably improved detection of AD at a late stage with an
AUC of 0917 [14].

Zhou et al. [15] conducted a study demonstrating the
potential of using GAN frameworks to enhance image quality
and improve AD classification performance. Their approach
involved combining a 3-dimensional fully convolutional net-
work with the GAN-generated images as inputs to predict AD
enormity. They assessed image quality using complex metrics
like Blind/Reference-less Image Spatial Quality Evaluator
(BRISQUE), and Natural Image Quality Evaluator (NIQE).
The model’s validation was carried out using samples from
the Australian Imaging, Biomarker, and Lifestyle Flagship
Study of Aging (AD data from 107 persons) and the National
Alzheimer’s Coordinating Center (AD data from 565 persons)
[15].
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Fig. 1. Sample distribution of different classes in the chosen dataset

Islam and Zhang proposed a generative adversarial network-
based model [16] for creating synthetic medical images,
specifically targeting three stages of Alzheimer’s disease: Nor-
mal Control (NC) group, Mild Cognitive Impairment (MCI)
stage, and full-blown Alzheimer’s Disease (AD) samples.

In their research [17], Garali et al. introduced new fea-
tures derived from 1% and 2™ derivatives computed on brain
PET scans to enhance picture categorization for Alzheimer’s
disease. The brain images were separated into volumes of
interest (similar to 3D regions-of-interest) using an atlas, and
the orientation field for each VOI was analyzed to assess
the features’ ability to distinguish AD from Healthy Control
(HC). Their approach involved creating 3D gradient images,
computing the first and second derivatives of each VOI, and
then feeding these features into a Support Vector Machine
(SVM) classifier. The classification accuracy was found to be
higher when using mean, first, and second derivatives features
from VOIs compared to using only the mean value.

III. PROPOSED METHODOLOGY

The significance of data quality and quantity in determining
the performance of deep learning models is widely acknowl-
edged. A well-constructed dataset enables a deep learning
model to learn the intrinsic data characteristics without the
need for explicit programming. In this study, we propose
a WGAN-based approach to synthetically generate training
images. The goal is to enhance the development of deep
learning models for AD detection [18].

A. Dataset

We have adopted an open access Kaggle dataset’, which
includes only a meagre 64 MRI images in the Moderate
Demented class, while including significantly higher number
of images in the other categories viz. Mild Demented (896),
Non-Demented (3200), and Very Mild Demented (2240).

Zhttps://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-
images
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Fig. 2. Samples from the ‘Moderate Demented’ class of the chosen dataset

Fig. 1 illustrates the distribution of various classes in the
chosen dataset. As alluded to briefly in Section-I, the very
small number of images in the ‘Moderate Demented’ class
creates an imbalance in the dataset (highlighted in red color),
which in turn would affect model training and performance.
It is therefore imperative that the number of images in the
Moderate Demented class be boosted before attempting to use
an augmentation approach.

The image size used for this work remains unchanged
at 175x 175, without any resizing, to prevent a decrease in
classification accuracy due to deformations. This size selection
considers the model’s training duration while ensuring a high
level of model efficacy. Sample images from the dataset are
showcased in Fig. 2.

B. The Model

As is now widely known, a Generative Adversarial Network
(GAN) is a type of deep learning model used for generative
modelling. The primary objective of a GAN is to generate
new data instances that resemble a given training dataset.
It essentially comprises of two distinct neural networks: the
generator and the discriminator. The former is primarily re-
sponsible for producing synthetic data samples, while the latter
tries to distinguish between the real data (i.e. the training
data) and the fake data (i.e. the samples generated by the
generator). The main goal of the critic is to estimate the
Wasserstein distance (also known as Earth Mover’s distance?®)
between the real data distribution and the generated data
distribution. During the training process, the critic aims to
provide accurate estimates of the Wasserstein distance, while
the generator tries to produce data samples that minimize
this distance. The aim of the GAN training process is to
reach a point where the generated data is highly realistic and
closely matches the characteristics of the original training data.

3The Earth Mover’s Distance; available at:

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
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Fig. 3. Block diagram for the proposed Dual-WGAN approach for boosting
the Moderate Demented class, and then augmenting the entire dataset.

Despite their impressive capabilities, GANs also have some
inherent shortcomings, including but not limited to, Mode
Collapse, training convergence issues, and heavy dependence
on the data quality and quantity.

Considering that conventional GANs are prone to short-
comings, Wasserstein GAN (WGAN) was developed [19]. A
WGAN is essentially a GAN that alters the GAN goal to
encourage it to develop interpretable and meaningful repre-
sentations [20]. The salient features of the WGAN, which are
utilized in this work are improved training stability (leading
to better convergence) and absence of mode collapse. Because
WGAN aids model convergence, we can employ a more
complicated model for the generator and discriminator to train
it to lean complicated patterns such as those seen in brain MRI
images. It is to be noted that in WGANS, the Discriminator is
often referred to as a Critic.

C. Methodology and Approach

The methodology adopted in this work is illustrated in
Fig. 3. The first WGAN model (WGAN-1) is used for boosting
the number of samples in the Moderate Demented class, and
is used to generate 500 synthetic images from the 64 real
images in that class. Thereafter, the second model, WGAN-2,
is employed to augment the entire dataset (all the 4 classes) to
generate more synthetic images. It needs to be mentioned that
while the proposed Dual-WGAN approach is being illustrated
in this work for one chosen dataset for one particular disease,
the same approach can readily be employed for the boosting
and augmentation of the image dataset for any disease if there
is a massive imbalance amongst the different classes.

IV. BOOSTING THE MODERATE DEMENTED CLASS
This section contains the details of the Generator and Critic
models in WGAN-1 used for boosting the minority class.
A. WGAN-1 Generator Architecture

The architecture and the details of the different layers in
the Generator for WGAN-1 model are presented in Table I
from where it can be observed that the Generator comprises

TABLE I

DETAILS OF THE WGAN-1 GENERATOR MODEL

Generator: Sequential
Layer (type) Output Shape Param #
Dense (None, 2048) 206848
Reshape (None, 4, 4, 128) 0
UpSampling2D (None, 8, 8, 128) 0
Conv2D (None, 8, 8, 256) 295168
BatchNormalization (None, 8, 8, 256) 1024
Activation (ReLU) (None, 8, 8, 256) 0
Conv2D (None, 8, 8, 128) 295040
BatchNormalization (None, 8, 8, 128) 512
Activation (ReLU) (None, 8, 8, 128) 0
UpSampling2D (None, 16, 16, 128) | 0
Conv2D (None, 16, 16, 128) | 147584
BatchNormalization (None, 16, 16, 128) | 512
Activation (ReLU) (None, 16, 16, 128) | 0
UpSampling2D (None, 32, 32, 128) | 0
Conv2D (None, 32, 32, 128) | 147584
BatchNormalization (None, 32, 32, 128) 512
Activation (ReLU) (None, 32, 32, 128) | O
UpSampling2D (None, 96, 96, 128) | 0
Conv2D (None, 96, 96, 128) 147584
BatchNormalization (None, 96, 96, 128) 512
Activation (ReLU) (None, 96, 96, 128) | 0
Conv2D (None, 96, 96, 1) 1153
Activation (tanh) (None, 96, 96, 1) 0
Total parameters: 1,244,033
Trainable parameters: 1,242,497
Non-trainable parameters: | 1,536

TABLE 11

DETAILS OF THE CRITIC MODEL

Critic: Sequential
Layer (type) Output Shape Param #
Conv2D (None, 48, 48, 32) 320
Activation (LeakyReLU) (None, 48, 48, 32) 0
Dropout (None, 48, 48, 32) 0
Conv2D (None, 24, 24, 64) 18496
ZeroPadding2D (None, 25, 25, 64) 0
BatchNormalization (None, 25, 25, 64) 256
Activation (LeakyReLU) (None, 25, 25, 64) 0
Dropout (None, 25, 25, 64) 0
Conv2D (None, 13, 13, 128) | 73856
BatchNormalization (None, 13, 13, 128) 512
Activation (LeakyReLU) (None, 13, 13, 128) | 0
Dropout (None, 13, 13, 128) | 0
Conv2D (None, 13, 13, 128) | 147584
BatchNormalization (None, 13, 13, 128) 512
Activation (LeakyReLU) (None, 13, 13, 128) | 0
Dropout (None, 13, 13, 128) | O
Conv2D (None, 13, 13, 256) | 295168
BatchNormalization (None, 13, 13, 256) 1024
Activation (LeakyReLU) (None, 13, 13, 256) | O
Dropout (None, 13, 13, 256) | O
Flatten (None, 43264) 0
Dense (None, 1) 43265
Total parameters: 580,993
Trainable parameters: 579,841
Non-trainable parameters: | 1,552

of 6 Conv2D layers interspersed with UpSampling and
BatchNormalization layers. While the first 4 Conv2D
layers utilize the ReLU activation function, the last Conv2D
layer employs the tanh ativation function. The overall param-
eter count is 1,244,033 out of which 1,242,497 are trainable
parameters.
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B. WGAN-1 Critic Architecture

As alluded to earlier, in a WGAN, the Critic is a neural
network that assesses the ‘quality’ of data samples, including
both the real samples (i.e. the training data) and the generated
samples (produced by the Generator). The architecture and the
details of the different layers in the Critic for WGAN-1 model
are presented in Table II from where it can be observed that

Generated images for the Moderate Demented class for every 1000 epochs between the first and the last epoch, using WGAN-1.

the Critic comprises of 5 Conv2D layers interspersed with
Padding and BatchNormalization layers. Dropout
is also utilized between the successive layers to mitigate
overfitting. All the 5 Conv2D layers utilize the LeakyReLU
activation function, while the last Dense layer employs the
Sigmoid activation function. The overall parameter count is
580,993 out of which 579,841 are trainable parameters.



TABLE III

DETAILS OF THE WGAN-2 GENERATOR MODEL

Generator: Sequential

Layer (type) Output Shape Param #
Dense (None, 2048) 206848
Reshape (None, 4, 4, 128) 0
UpSampling2D (None, 8, 8, 128) 0
Conv2D (None, 8, 8, 256) 295168
BatchNormalization (None, 8, 8, 256) 1024
Activation (ReLU) (None, 8, 8, 256) 0
UpSampling2D (None, 16, 16, 256) | 0
Conv2D (None, 16, 16, 256) | 590080
BatchNormalization (None, 16, 16, 256) 1024
Activation (ReLU) (None, 16, 16, 256) | 0
UpSampling2D (None, 32, 32, 256) | 0
Conv2D (None, 32, 32, 256) | 590080
BatchNormalization (None, 32, 32, 256) 1024
Activation (ReLU) (None, 32, 32, 256) | O
UpSampling2D (None, 96, 96, 256) | 0
Conv2D (None, 96, 96, 128) | 295040
BatchNormalization (None, 96, 96, 128) | 512
Activation (ReLU) (None, 96, 96, 128) | 0
Conv2D (None, 96, 96, 1) 1153
Activation (tanh) (None, 96, 96, 1) 0
Total parameters: 1,981,953

Trainable parameters: 1,980,161

Non-trainable parameters: | 1,792

C. WGAN-1 Results

Next, the results as obtained from the WGAN-1 model are
presented. Fig. 4 illustrates the convergence of the proposed
WGAN-1 model using its Critic Loss as a metric. The exper-
iment was performed for 10 times, and the differently colored
plots in Fig. 4 denote different trials. In WGAN:S, it is known
that the quality of the generated images becomes increasingly
better as the Critic Loss keeps decreasing. This indicates that
an optimal stopping point for the WGAN training is when the
Critic Loss is ‘stabilized’ i.e. stops decreasing significantly.
This is clearly evident in Fig. 4 where the Critic Loss is seen
to be reaching a stable minimum state for all the 10 trials.

The output images from the Generator for the different
stages of the training process are included in Fig. 5, from
where the consistency in the WGAN-1 performance across
the 10 trials can be observed.

V. AUGMENTING THE ENTIRE DATASET

This section presents the details of the WGAN-2 model
which is used for the generation of synthetic images for all
the 4 classes in the Alzheimer Brian Image dataset.

A. WGAN-2 Generator and Critic Architectures

The architecture and the details of the different layers in
the Critic for WGAN-2 model are presented in Table III from
where it can be observed that the Generator for WGAN-2 is
less elaborate as compared to the Generator of the WGAN-1
model, and requires lesser number of filters for the different
Conv2D layers resulting in a significant reduction in the
number of trainable parameters. The Critic remains the same
as the one utilized for WGAN-1.
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B. WGAN-2 Results

This section presents the results of the dataset augmentation
as performed using WGAN-2. For the ‘Mild Demented’ class,
the Critic Loss plot and samples of generated images are
presented in Fig. 6 and Fig. 9(first column) respectively. From
Fig. 6 it can be observed that the Critic Loss does indeed
stabilizes after around 3000 epochs.

Another pertinent observation from Fig. 6 is that the image
generated after the first epoch in this case is ‘better’ than the
one generated for the Moderate Demented case (in Fig. 6).
This could be attributed to the Generator learning better due
to the higher number of training samples (896 versus 64).
However, the spikes in the Critic Loss plot even after the
training for 2000 epochs indicate that due to the varying nature
of the samples in the Mild Demented dataset, the quality of the

generated images stabilizes well after the 4000 epoch point,
where the training may be stopped.

Similarly, for the Very Mild Demented class, the Critic Loss
plot is presented in Fig. 7 from where it can be observed that
the optimal Loss values appear just before the 3000 epoch
point. This can also be observed from Fig. 9 where for the
Very Mild Demented outputs, the quality of the generated
images diminishes after the 4000 epoch mark. Lastly, although
not required for this dataset (since this dataset already has the
Normal class as the majority class), for the sake of completion,
the Non-Demented class of images was also generated using
the WGAN-2, and the Critic Loss plot and the generated
images are presented in Fig. 8 and Fig. 9 respectively.

VI. CONCLUSION

In this paper, we introduced a Dual-WGAN-based boosting
and augmentation technique for first generating synthetic im-
ages for the minority class, and then augmenting the entire 4-
class Alzheimer dataset. This is relevant to the current research
landscape, where advanced deep learning models exist for dis-
ease detection but are constrained by the availability of high-
quality and sufficient training data. The approach presented in
this paper offers a solution by augmenting existing datasets
with high-quality synthetic images.
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