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Abstract: Using tibial sensors in total knee replacements (TKRs) can enhance patient outcomes
and reduce early revision surgeries, benefitting hospitals, the National Health Services (NHS),
stakeholders, biomedical companies, surgeons, and patients. Having a sensor that is accurate, precise
(over the whole surface), and includes a wide range of loads is important to the success of joint force
tracking. This research aims to investigate the accuracy of a novel intraoperative load sensor for
use in TKRs. This research used a self-developed load sensor and artificial intelligence (AI). The
sensor is compatible with Zimmer’s Persona Knee System and adaptable to other knee systems.
Accuracy and precision were assessed, comparing medial/lateral compartments inside/outside
the sensing area and below/within the training load range. Five points were tested on both sides
(medial and lateral), inside and outside of the sensing region, and with a range of loads. The average
accuracy of the sensor was 83.41% and 84.63% for the load and location predictions, respectively.
The highest accuracy, 99.20%, was recorded from inside the sensing area within the training load
values, suggesting that expanding the training load range could enhance overall accuracy. The main
outcomes were that (1) the load and location predictions were similar in accuracy and precision
(p > 0.05) in both compartments, (2) the accuracy and precision of both predictions inside versus
outside of the triangular sensing area were comparable (p > 0.05), and (3) there was a significant
difference in the accuracy of load and location predictions (p < 0.05) when the load applied was below
the training loading range. The intraoperative load sensor demonstrated good accuracy and precision
over the whole surface and over a wide range of load values. Minor improvements to the software
could greatly improve the results of the sensor. Having a reliable and robust sensor could greatly
improve advancements in all joint surgeries.

Keywords: joint force sensor; intraoperative load measuring; artificial intelligence; total knee
replacement

1. Introduction

The device made and used in this paper was an intraoperative load sensor that used
artificial intelligence (AI) to predict the load and location of force in the knee during surgery.
This device temporarily replaced the tibial insert to predict the load in both the medial
(inside) and lateral (outside) compartments of the knee to allow surgeons to balance the soft
tissue in real time with the use of an objective measuring tool. The introduction described
the need for such a device by explaining the total knee replacement (TKR) procedure and
failure and current devices and their limitations.

1.1. Total Knee Replacements

A total knee replacement (TKR) is the best option for pain relief and restoring function
to the knee joint in patients with arthritis. The only treatment for end-stage osteoarthritis
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(OA) is a knee replacement due to irreparable damage to the articular cartilage [1]. Knee
replacement surgery is needed when the knee joint is so worn or damaged that there
is reduced mobility and increased pain. There are several factors that contribute to the
increase in knee replacement surgeries in the United Kingdom (UK), including the ageing
population, longer life expectancy, and an increase in BMI. Over the last three years in
the UK (1 January 2018 to 31 December 2020), 226,350 primary TKRs were performed [2].
According to the National Joint Registry (NJR), TKRs are performed mostly for end-stage
OA in the UK, where in the NJR’s 18th annual report, OA was listed as the reason for
surgery in 96.6% of all primary knee procedures [2]. However, due to the complicated
nature of knee joints, including forces and joint tension, there can be a need for early
revision surgeries. According to the NJR, knee replacement surgeries have been performed
in the UK since the 1970s, and about 6% of the surgeries require revision [2]. Revision TKRs
are complex procedures and carry greater risks to the patients and higher costs for the
NHS than primary TKRs. According to the NHS, the average cost for a revision surgery is
about GBP 20,000 [3], and over 10 years, revision knee surgeries have cost the NHS over
1.7 billion pounds [2].

Reducing the number of early revision TKRs would be of benefit to the NHS and the
patients. To do this, soft tissue balancing in the joint should be ensured. Ample research
supports this idea where postoperative instability was reported as a major cause for early
TKR revisions [4], and more research observed that 50% of early revision TKRs were related
to instability, malalignment, or fixation problems, confirming imbalance as a significant
cause for revision [5]. Another study found that unbalanced ligaments accounted for
35% of early TKR revisions [6]. Through a comparison of the revision rates in TKRs,
it was concluded that the theoretical advantage of having a well-balanced knee is an
improvement in the implant’s longevity [7]. Functional and patient-reported outcomes
were also studied to confirm their improvement when the knee is balanced. Notably,
patients with balanced knees are more likely to have an increased ROM and decreased
pain [8]. Gustke et al. reported that balanced knees have better pain, functional, and activity
scores than unbalanced knees after a one-year follow-up [9].

However, currently, balancing the knee is performed by the surgeon holding the leg
and ‘feeling’ for a balanced knee. This artisan technique of joint balancing does not always
produce a balanced knee. Research by MacDessi et al. demonstrated that surgeons struggle
to identify a balanced knee where in an analysis of 322 TKRs, expert surgeons were only
able to accurately determine a balanced knee 63% of the time at 10◦ of flexion, 57.5% at 45◦

of flexion, and 63.7% at 90◦ of flexion [10,11]. Therefore, there is a need for an accurate joint
force measuring device to allow for the balancing of the joint intraoperatively.

1.2. Current Devices and Limitations

Currently, there are two intraoperative sensors that have been researched, which are
VERASENSE (Orthosensor) and eLibra (Zimmer Biomet). One study found that TKRs
balanced with VERASENSE had lower medial and lateral compartmental loads than man-
ually balanced knees, concluding that sensors provide objective feedback for soft tissue
balancing and can potentially improve knee balancing and rotational alignment [12]. Refer-
ence [13] compared sensor-assisted TKRs to manually balanced TKRs and found that the
sensor-assisted group had improved ligament balancing with a significant reduction in
manipulation under anaesthesia required after the TKR. Another study compared 75 intra-
operative sensor-guided TKRs with a control group in which balancing was obtained using
classic instruments and found that the sensor group had a substantially lower unexpected
usage of constrained inserts (5.3%) when compared to the control group (13.8%) [14]. Con-
strained inserts limit varus–valgus and rotational movement [15] and lead to increased
polyethylene wear, which leads to osteolysis and component loosening [16–19]. A system-
atic review compared manually balanced knees to sensor-balanced knees and, although it
did not find a statistically significant reduction in ROM or functional outcomes, found that
there was a reduction in manipulation under anaesthesia [20]. Although there have been
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good results of knees balanced with VERASENSE, there is a need for a more robust and
comprehensive sensor because of the limitations of both devices.

First, for both VERASENSE and eLibra, the sensors were in a triangle shape in the me-
dial and lateral compartments, meaning the sensing area is only within this area. Therefore,
when contact points were outside, the accuracy of the device was greatly compromised. A
study on VERASENSE’s accuracy confirmed this by finding that the biases for loading in
the areas outside of the sensing area were more than two (outer anterior) and three (outer
posterior) times greater than that of loading within the sensing area [21]. Additionally,
VERASENSE was only calibrated to withstand passive forces, up to 310 N (69.7 lbf) and
eLibra 300 N (67.4 lbf) in each compartment, and therefore, when research was being
carried out on active loading, the devices were no longer reliable [22].

2. Self-Developed Load Sensor
2.1. Housing Unit

The load transducer used in this research included a metal housing unit with slits for
load propagation to the sensing units. The housing unit of the transducer uses the Persona
Knee System’s complex adjustable shim design to increase the thickness while using the
sensor. Specifically, the transducer in this research was made to fit the Persona Knee System
by Zimmer Biomet in size E/F for the right knee. The sensor replaced the Persona TASP
Top Right CR 3-11/EF part and was made from an aluminium alloy, which was fabricated
using computer numerical control (CNC) machining.

The Persona TASP Top Right CR 3-11/EF, Persona TASP Right EF + 0 Bottom, and
the Persona Cemented Tibial Sizing Plate Size F Right were all compatible with the sensor
and can be used in the same manner that the final tibial insert was used. Moreover, this
technology was easily adaptable to other implant systems, and a more general design has
also been created in the same manner.

This transducer used the slits to propagate the load to the strain gauges and artificial
intelligence (AI) to increase the accuracy and precision of the force measurements and
provide surgeons with a better tool for intraoperative load measuring, which can be seen
in Figure 1.
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2.2. Electronics

The sensors chosen were linear strain gauges since the sensing range was larger than
other sensors and could support both dynamic and static loads. Three linear uniaxial
350 Ohm (SGT-1/350-TY11) precision strain gauges by Omega Engineering, Inc., Manch-
ester, UK were used s in each compartment. The use of three was necessary for providing
the AI with enough data based on the size and shape of the tibial insert surface.

The strain gauges formed part of the Wheatstone bridges along with another set of
three strain gauges, which were attached to the same material to balance the bridge when
unloaded and to provide temperature compensation. In total, 12 strain gauges were used
for this device (6 active gauges attached to the tibial insert and 6 passive gauges used
for temperature compensation) to create six half-bridge Wheatstone bridges. The sensor
and strain gauges can be seen in Figure 2. Since there was an absence of a closed-formed
relationship between the change in output voltage and the load and location applied, AI
was needed.
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Figure 2. (A) Active sensor. (B) Temperature compensation.

The Wheatstone bridges were connected to load cell amplifiers (HX711-SEN-13879)
by Sparkfun distributed by Cool Components in London, UK and then a microcontroller
(Teensy 4.1 Microcontroller) on a printed circuit board (PCB) by PJRC distributed by Cool
Components in London, UK. In Figure 2A,B the active gauges and the dummy gauges were
paired with each other according to the numbers written next to them.

2.3. Artificial Intelligence (AI)

There was no closed form or linear solution to relate the applied load and location to
the readings from the circuit due to the complex geometry of the sensor. As a result, AI was
employed to bridge this gap, and when applied properly, it is a perfect tool for a variety
of pattern recognition problems. Moreover, AI allows for the sensing area to be increased
over the surface of the sensor. Figure 3A depicts the typical location of the sensors in one
compartment. Figure 3B depicts the sensing area using triangulation where loads outside
of this area were not accurate. Figure 3C shows the increase in the sensing area when AI is
used to train the system.
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An artificial neural network (ANN) is a subset of AI that classifies patterns and predicts
outputs based on inputs, which was why it was chosen for this sensor. ANNs contain
nodes, which have an input layer, hidden layer, and output layer. A combination of weights
and biases was added to the system, and then, if the threshold was met, the inputs (with
weights and biases added) were passed to the activation function and then the output
(Figure 4). The advantage of using ANNs was its ability to create non-linear relationships
between input and output data based on available data. This means that the sensor can
predict the load and location outside of the sensing area and generalise well, which allows
the sensor to respond well to real-time data.
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Figure 4. Artificial neural network structure [23].

1. Collecting Training Data

In order to use this network in real time, it must be trained. A training dataset must
be fed to the network to determine the correct weights in biases for future prediction
with real-time data. To collect this training data, data from each compartment (medial
and lateral) were collected separately along with the load and location information. This
was carried out to increase the chances of reaching a global minimum by allowing for
fine-tuning of the parameters specific to each network. In total, four ANNs were used and
implemented simultaneously to run this sensor.

To apply the loads in an organized manner, a coordinate grid system was made from
5 mm grids and aligned with the sensor for easy removal and reapplication. The training
points were added based on the available space on the surface of the sensor, where the
origin was based on where the farthest point to the right lies on the X-axis. The medial side
had a total grid size of 3 × 6 with 18 points, and the lateral side had a total grid size of
3 × 6 as well but with 17 training points depicted in Figure 5.
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The physical load sensor was made to fit the Persona Knee System developed by
Zimmer Biomet in size E/F for the right knee, as seen in Figure 6. The sensor replaced
the top part (No. 1 in Figure 6), which was the polyethylene insert that connects with the
femoral implant once replaced, as seen in Figure 7A, as well. The Zimmer Specific sensor,
Persona No. 3 (Figure 7B), the Shim 0 mm No. 2 (Figure 7C), and the tibial tray No. 4
(Figure 7D) were used together to mimic the configuration of the actual implanted knee
system (Figure 8A–C). This was carried out to create congruency between training and the
real-time use of the device.
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To generate the training data for the ANN, a range of loads were applied to different
locations. This was carried out using a Universal Testing Machine (UTM) by Testometric
Micro 350/719 (Rochdale, UK). Compressive loads were applied to the surface using a
7.17 mm ball bearing (Figure 9). At each point on the Cartesian-coordinate grid, a series
of loads, 49 N, 147 N, 98 N, and 196 N (5 kg, 15 kg, 10 kg, and 20 kg, respectively), were
sequentially applied to each point on the surface. These loads were chosen to provide
enough points to extrapolate more loads while providing a large enough range for this
application, the passive loads in the knee, while still adhering to the hardware limitations
due to the highly concentrated point loads. The resultant voltage readings from the
unbalanced Wheatstone bridge were collected and stored for processing and training of
the ANN. The training dataset was constructed in this manner to map the behaviour of
the sensors at each point, then the network learns and generalises this behaviour when the
contact point is larger, finding the centre of pressure using this previously created “map”
of loads and locations.
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2. Pre-processing Collected Training Data

The collected data were pre-processed to create the inputs and outputs for the ANN.
The load and location predictions were trained in separate ANNs; however, for both, the
inputs included the changes in voltages from the three strain gauges of the unbalanced
Wheatstone bridges. Higher loads were extrapolated by creating a best-fit curve and added
to the training dataset; then, all the values were normalised between the range of [0, 1] to
allow all the values to fit on the same scale. Finally, synthetic noise was added by randomly
adding noise in the range of [−5%, 5%] to the voltage reading, which aimed to help the
network generalise better. After pre-processing had occurred, the next step was to train
the networks, which involved tuning the parameters. Optimising these parameters was
carried out by visualising the regression plots and the mean squared error to understand
how the network performed on the testing dataset. Each network required investigation
into the optimal network parameters. For example, the number of hidden layers and the
training algorithm were variable parameters which were tuned to optimise the ANN. For
the location networks, the outputs were the (X, Y) coordinates based on a Cartesian grid
system created for each compartment. For the load ANN, the output was the weight in kgs.

3. Optimised Network Parameters

After the pre-processing, the training data were fed to the ANN, wherein the Bayesian
regulation (BR) algorithm was used, with 85% of the data being used for training and 15%
for testing. There was no validation set for this algorithm since it uses its own calculation
of the mean square error for validation. The number of hidden layers used was 5 for the
load networks and 10 for the location networks; this was optimised based on trial and error
and the general methodology described by the authors in a previous publication for the
same application [24].
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In summation, the database for training was created by applying loads to different
locations on the surface of the sensor, pre-processing the data, and feeding it to an ANN
using the Bayesian regulation (BR) algorithm and an 85%-to-15% data split between the
training and testing set. The inputs (for each compartment) to the network were the change
in voltages, and the output for one network was the load, and the other network had two
outputs to determine the location, which were the X and Y coordinates.

2.4. Aims

The aims of this paper were to investigate the accuracy and precision of the ANN in
predicting the load and location on the sensor:

Testing the location:

1. Points outside sensing area;
2. Points not inputted into the ANN;
3. Difference in medial/lateral sides.

Testing the load:

1. Loads outside of the training load range;
2. Loads not inputted to the ANN;
3. Difference in medial/lateral sides.

3. Methodology

The loads and locations chosen for testing the sensor’s performance were selected
to evaluate different aims of this sensor. This included the impact of using AI on the
performance of the sensor when contact points were inside the triangle sensing region
versus outside, the performance of one compartment compared to the other, and the
performance of the sensor when the loads applied were inside versus outside of the
training load range.

To test the sensor, the same UTM was used to apply a known load in Newtons (N) to
the sensor at various locations on each compartment of the sensor. A larger ball bearing
was used for testing the sensor where the ball bearing was used for collecting the training
data (7.17 mm) and for testing (19.08 mm), which was seen in Figure 9 to understand the
network’s ability to generalise with different contact points. The load was applied for 5 s
before the value was recorded to allow for fluctuations; this was repeated 10 times for each
load and location. Additionally, static loads were used since this was the expected use of
the sensor.

Using a larger ball bearing was thought to more closely mimic the load applied
intraoperatively by the femoral component. Since the training and testing points were far
from the sensors, the contact point did not impact the deformation experienced by the
strain gauges. This was demonstrated by Figure 10, where when the forces were the same,
so were R1 and R2 for both ball bearing sizes.
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To test the performance of the sensor, the loads applied to the sensor were 29 N (3 kg),
128 N (13 kg), and 226 N (23 kg). This included loads both within and outside of the
training dataset. Choosing these loads provided loads that have never been applied to the
sensor and are outside of the training range (for both compartments) to understand the
ability of the network to predict new loads at new locations. These loads were applied to
five different locations on each compartment in order to cover the whole surface of the
sensor. Since each load was applied at 10 different locations over the surface of the sensor,
this provided a good number of loads to investigate the aims. These testing points can be
seen in Figure 11A and are described in Table 1. Moreover, Figure 11B depicts the chosen
points in relation to the sensing area, where the red triangles indicate the sensing area of
the sensor using triangulation.
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Figure 11. (A) Testing points on the surface of the sensor where the black numbers refer to the location
of the applied testing load. (B) Testing points in relation to the sensing area where the red triangle
refers to the sensing area and the black numbers as the location of the testing loads in proximity to
the sensing area.

Table 1. Testing points with (X, Y) coordinates.

Medial Compartment (X, Y) Lateral Compartment (X, Y)

Point 1 (1.5, 0.5) (1.5, 0.5)
Point 2 (0.5, 1.5) (0.5, 2.5)
Point 3 (1.0, 3.0) (2.0, 3.0)
Point 4 (2.5, 2.5) (3.0, 4.0)
Point 5 (1.5, 5.5) (1.5, 5.5)

In order to evaluate the performance of the load and location predictions, the difference
between the predicted and actual values was evaluated for each of the aims. The accuracy
was described as the systematic error of the average differences between the 10 trials; the
precision was described as the standard deviation of the differences between the 10 trials;
and the mean squared error (MSE) was described as the average of the square of the
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differences between the actual and estimated values. For all results, the statistical level of
significance was set to p = 0.05.

4. Results

The results were investigated based on the ability of the AI to predict the load and
location of testing points for a number of aims.

4.1. Load Predictions

The total average accuracy for the sensor was 83.41% in predicting the load and
84.63% in predicting the location. This accuracy includes the whole surface of the tibial
insert and loads, which were not included in the training of the network. The following
included a comparison of the load predictions by (1) compartment, (2) sensing area, and
(3) training range.

1. Compartments

The medial and lateral load predictions were separated and compared. The actual
loads applied were 3 kg, 13 kg, and 23 kg, as seen in Figure 12. The average load predictions
for the medial compartment (R2 = 0.996) and the lateral compartment (R2 = 0.992) were
depicted in Figure 12 as well. Both medial and lateral compartments were comparable to
the actual load values applied.
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2. Sensing Area

One of the aims of using AI was to increase the sensing area beyond the triangular
sensing area seen in VERASENSE. Based on the curvature of the sensor and the location
of the strain gauges, medial points 1, 4, and 5 and lateral points 1 and 4 were considered
outside of the sensing area, and the rest were inside of the sensing area, as seen in Figure 11.
Figure 13 depicts the accuracy of each load prediction inside and outside of the sensing
region for both compartments.
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Figure 13. Accuracy of each load prediction inside versus outside of the sensing area.

3. Training Range

To observe the impact of loads applied outside of the training dataset, the training
range was considered between 5 and 25 kg. This was because, at some points in the centre
of the sensor, 25 kg was added. Therefore, 3 kg was the only load that was never introduced
to the ANN. So, 25 kg was neglected, and the testing load of 13 kg was classified as inside
the training dataset, and 3 kg was classified as below the training dataset. Figure 14 displays
the average MSE of each point, comparing the loads applied below vs. within the load
training range. The average MSE for all points was almost doubled for the load applied
below the training load range (3 kg).
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4.2. Location Predictions

In Figure 15, the actual points (the same as Figure 11A) were plotted in relationship to
the predicted points for the average of all the loads applied. The accuracy of the location
predictions for all the loads applied was based on the distance of the prediction from the
actual point and then the farthest point the network could predict and still be on the surface
of the sensor.



Sensors 2024, 24, 585 12 of 17Sensors 2024, 24, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 15. Average location predictions for medial and lateral compartments compared to the actual 
location of the applied load where the black numbers represent the location of the actual applied 
loads and the green as the predicted locations of the applied loads. 

1. Compartments 
Figure 16 shows the average accuracy of the location predictions for each point in 

both the medial and lateral compartments, where there was little difference in the accu-
racy of the location predictions. 

 
Figure 16. Accuracy of location predictions in medial and lateral compartments. 

  

82% 82% 78%

91%
83%87% 87%

75%
66%

84%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Point 1 Point 2 Point 3 Point 4 Point 5

A
cc

ur
ac

y 
(%

)

Location (Point #)

Accuracy of Location Predictions in Medial and Lateral 
Compartments 

Medial Lateral

Figure 15. Average location predictions for medial and lateral compartments compared to the actual
location of the applied load where the black numbers represent the location of the actual applied
loads and the green as the predicted locations of the applied loads.

1. Compartments

Figure 16 shows the average accuracy of the location predictions for each point in both
the medial and lateral compartments, where there was little difference in the accuracy of
the location predictions.
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2. Sensing Area

The points were classified as either inside or outside of the sensing area in the same
manner as the load predictions. The average results of the location predictions based on
the sensing area for the three loads applied can be seen in Figure 17.
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3. Training Region

The MSE of the location predictions below the training region versus within the load
training region were, on average, higher below the training region (2.10) versus within
(1.14), as seen in Figure 18. Compared to the load predictions, the MSE for both below and
within the training region were lower for the location predictions compared to the load
predictions.
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5. Discussion

The aims of this research were to investigate the accuracy of the TKR sensor by
investigating the ability of AI to simultaneously predict both the load and location of a
known load. The following objectives were targeted, which included investigating (a) the
sensor’s medial/lateral compartments, (b) locations inside/outside of the sensing region,
and (c) the loads inside/outside of the training loading range.

The main findings were that (1) there was no significant difference between medial
and lateral load and location prediction accuracies and precisions (p > 0.05); (2) there was
no significant difference in the accuracy or precision of the load or location predictions
inside versus outside the triangular sensing area (p > 0.05); and (3) there was a significant
difference in the accuracy of load and location predictions (p < 0.05) when the load applied
was below the training loading range. This could be because of the noise from the system
causing a high signal-to-noise ratio at lower input loads.

The average accuracy across the whole sensor was 83.41% for the load predictions and
84.63% for the location predictions. The highest accuracy of 99.20% was recorded from
the average of the predictions from point 2 (inside the sensing area) across the medial and
lateral compartments at 13 kg, which was within the training load values. Moreover, the
lower load, 3 kg (below the training load input), was worse than either the 13 kg or 23 kg
load predictions (p < 0.05), which was demonstrated by the accuracy of the loads outside the
training loading region being significantly worse than inside (p < 0.05) (40.57% vs. 91.15%).
Therefore, when removing the 3 kg load predictions, the accuracy increases to 95.64% across
the whole surface of the device. Additionally, the highest accuracy of prediction for the
location was found at point 2 on the medial side and was 96.66%. Kuriyama et al. omitted
location from their sensor altogether and had a relatively small sensing area; however, they
were able to have a good resolution (4.45 N–0.45 kg) [25]. Reference [26] had a maximum
error of 2% for their load sensor; however, their sensor was only tested with loads below
1 kg (10 N), which was not the value of the load range during TKRs. Moreover, their
sensor had an operation range between 0 and 5.1 kg (0–50 N), did not sense over the
whole surface, and did not display the location. Another force sensor used piezoresistive
sensors to measure the load in the knee with an error of 0.51 kg (±5 N); however, the sensor
only had a measurement range between 0 and 4.59 kg (0–45 N) and did not measure the
location [27]. Reference [28] claimed to have an error of 0.5% in location and load prediction
in a laboratory setting; however, when using a bone model, the error jumped to 13%, which
may be because of the flat tibial tray design. Considering the large load sensing range of
the sensor in that research, the accuracy was acceptable.

The precision of the predictions for both load and location was good; however, the
average location prediction was much more precise than the load (p < 0.05). The average
precision for the load predictions was 2.377 kg, where the location precision was 0.418 mm.
This includes areas outside of the sensing area and loads outside of the training limits.
Nicolet-Petersen et al. (2018) found that when observing points across the VERASENSE
through a range of loads, the precision was 1.815 kg, which was not significantly different
from the precision found using this sensor [21]. Alternatively, when comparing the precision
of the load predictions by point (both inside and outside of the sensing area), the average
was 0.462 kg, which was better than the average of 1.213 kg (p < 0.05) found in a study using
VERASENSE [21]. Similar to the accuracy and the precision, the MSE between the medial
and lateral sides were similar for the load and location predictions (p > 0.05); a comparison
of the load and location predictions outside and inside the sensing area also had similar
MSE (p > 0.05). Finally, in comparing the MSE of the load and location predictions to
VERASENSE, the results were was 13.167 and 15.425, respectively (p > 0.05), which were
similar. Similar results were seen with the location predictions of the medial compartment,
where this sensor had an average location MSE of 0.731, and VERASENSE had an average
MSE of 0.677 (p > 0.05). So, in summation, the MSE values for the VERASENSE and the
sensor in this research were comparable.
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To increase the reproducibility of the results, a Cartesian grid system should be printed
on the surface of the sensors, which would decrease errors from misalignment of the grid on
the surface. Although the sensor can detect higher loads, it was implied that the accuracy
would decrease based on the investigation of the loads below and within the sensing range.
Therefore, the accuracy of the higher loads could be greatly improved by adjustments
made to the hardware, allowing point loads up to 45 kg, which would greatly increase the
accuracy of the sensor at this range.

6. Conclusions

Intraoperative load sensors aim to measure intercompartmental loads and provide sur-
geons with a quantitative tool to balance the loads. This tool can be beneficial for surgeons,
patients, hospitals, the National Health Services (NHS), stakeholders, and biomedical
companies. Surgeons and patients can see a reduction in early revision surgeries and better
postoperative outcomes. Hospitals, the NHS, and stakeholders can benefit from better pa-
tient outcomes, lower costs in revision surgeries, and shorter hospital stays postoperatively.
Moreover, biomedical companies and stakeholders can use the data of load distributions
intraoperatively to better design implant systems and inform regulatory agencies.

This sensor was amended to fit Persona’s shim system and can also be adjusted to
have a more general design to incorporate other implant systems. The benefit of this sensor
was that its use of AI allowed it to identify loads and locations over the entire surface of
the insert while also upholding high accuracy and precision over a wide range of loads.
The design of the hardware and software was carried out in such a way as to improve
the accuracy of intraoperative knee sensing by increasing the sensing surface and the
sensing load range compared to other knee force sensors found in the literature. This
research investigated the accuracy of the sensor by investigating the ability of AI to predict
both the load and location of a point load, which was different from what was used for
training. The sensor performed with good accuracy and precision in both contact load
and location predictions. The main findings were that both medial and lateral load and
location prediction accuracies were similar (p > 0.05), the accuracy and precision inside and
outside of the sensing area were comparable (p > 0.05), and finally, there was a significant
difference in the accuracy of load and location predictions (p < 0.05) when the load applied
was below the training load range. Incorporating a wider range of load values into the
training process could significantly enhance the results of the sensor. An added benefit of
using AI is that retraining can be performed quickly and simply as more research is carried
out on the performance and training process. This ensures that the sensor’s performance
can evolve continuously as new data emerge.
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