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Abstract
Background  Clinical outcomes are normally captured less frequently than data from remote technologies, leaving 
a disparity in volumes of data from these different sources. To align these data, flexible polynomial regression was 
investigated to estimate personalised trends for a continuous outcome over time.

Methods  Using electronic health records, flexible polynomial regression models inclusive of a 1st up to a 4th 
order were calculated to predict forced expiratory volume in 1 s (FEV1) over time in children with cystic fibrosis. The 
model with the lowest AIC for each individual was selected as the best fit. The optimal parameters for using flexible 
polynomials were investigated by comparing the measured FEV1 values to the values given by the individualised 
polynomial.

Results  There were 8,549 FEV1 measurements from 267 individuals. For individuals with > 15 measurements (n = 178), 
the polynomial predictions worked well; however, with < 15 measurements (n = 89), the polynomial models were 
conditional on the number of measurements and time between measurements. The method was validated using BMI 
in the same population of children.

Conclusion  Flexible polynomials can be used to extrapolate clinical outcome measures at frequent time intervals to 
align with daily data captured through remote technologies.
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Introduction
Remote patient monitoring via non-invasive technologies 
has been widely hypothesised to reduce health care costs, 
increase patient autonomy, and improve clinical out-
comes [1]. Technologies such as wearable devices, bio-
sensors, and smartphones have increasingly been used 
in research to monitor people outside of the hospital 
with chronic respiratory, cardiovascular, neurological, or 
metabolic diseases [2]. Data captured from remote mon-
itoring, such as heart rate and step count every second 
from Fitbit activity trackers, are a rich source of informa-
tion on habitual metrics like physical activity that offer 
opportunities to explore individualised trends over time 
as novel predictors of clinical outcomes. The association 
between these novel biomarkers and clinical outcomes 
are important to understand to determine whether large-
scale implementation of remote monitoring in chronic 
diseases is advantageous to patients and health care sys-
tems. However, clinical outcomes are normally captured 
much less frequently, leaving a substantial disparity in 
volumes of data from these different sources. Despite the 
capture of granular data from daily remote monitoring, 
analyses typically collapse these data into a single average 
measure, thereby ignoring the heterogeneity.

When there is a single, distal clinical outcome such 
as death, hospitalisation, or healthcare cost, a sum-
mary of the magnitude, frequency, or variability of daily 
data as the independent variable can be associated with 
the single outcome as the dependent variable [3–6] or 
joint-modelling can be used [7]. However, when the out-
come for comparison is a continuous measure of disease 
severity that changes over time and is measured less fre-
quently, the associations between daily data and clinical 
outcome data are more difficult to estimate. For example, 
researchers may want to understand the associations 
over time between daily habitual physical activity and 
nutritional status measured by body mass index (BMI), 
or lung function measured by forced expiratory volume 
in 1 s (FEV1), or cardiovascular health measured by blood 
pressure. In this case daily remote monitored data is mis-
aligned with the clinical outcome measure (e.g., daily vs. 
quarterly).

Traditional methods to deal with misaligned data 
include collapsing data or imputation. Single imputation 
severely underestimates the variability of the outcome 
and multiple imputation is challenging to implement 
when the proportions of missing data are large, which is 
true when aligning daily data with data captured monthly 
or quarterly [8, 9]. Moreover, collapsing the exposure 
data into a small number of categories that match with 
the time points of outcome data is biased towards those 
with frequent clinical encounters, ignores the trajec-
tory of the individual predictor, and can exclude many 
measurements.

The aim of this study was to investigate flexible poly-
nomial regression as a method to estimate personalised 
trends for an outcome over time using FEV1 in children 
with cystic fibrosis (CF) as an example.

Motivation
Flexible polynomial regression is a method to predict a 
non-linear response variable, which is estimated by a 
term to an nth degree. Flexible polynomial regression 
was proposed as a method to estimate individualised 
trends in clinical outcomes to (1) align asynchronous 
daily data and clinical outcome data, and (2) mitigate 
noise when interpreting trends in outcomes (Fig.  1). 
The latter occurs because outcome measures including 
BMI, FEV1, or blood pressure are influenced by factors 
other than health status, such as patient effort, time of 
day, age, or treatments. This makes the interpretation of 
a clinically meaningful change challenging. With entire 
patient profiles available from electronic health records, 
there is opportunity for flexible polynomial regressions 
to estimate disease trajectories rather than relying on two 
points in time, e.g., at baseline and end of a study, to infer 
changes in health.

Methods
Data
Anonymised longitudinal laboratory spirometry mea-
surements from children with CF were obtained from 
Great Ormond Street Hospital (GOSH) in London UK. 
At GOSH, the lung function laboratory measures FEV1 
in children with CF who are old enough to complete the 
test (from ~4 years of age) at every outpatient clinical 
encounter, which is typically quarterly, as well as during 
hospitalisations, which are clinically indicated. A sudden 
drop in FEV1 often signals a pulmonary exacerbation, 
and a declining trajectory over time indicates deteriorat-
ing health. Conversely, an increase in FEV1 is associated 
with a positive response to treatment and/or an improve-
ment in health. Although different interpretation strate-
gies exist, traditionally a change of 10–12% is used as the 
threshold for inferring a clinically meaningful change 
between measurements [10, 11].

FEV1 is measured in litres (L), but it is conditional 
on sex, age, height, and ethnicity. Therefore, FEV1 was 
expressed as (%) predicted of a healthy population 
using the Global Lung Function Initiative (GLI) refer-
ence equations [12]. For simplicity, FEV1 % predicted 
is stated as FEV1% throughout. Individuals with FEV1 
measurements > 1 year apart were excluded on the 
assumption that there was not enough data to accurately 
estimate fluctuations in FEV1 over time periods less than 
a year. Individuals with < 2 FEV1 measurements were also 
excluded since at least two values are required to esti-
mate a trend.
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Analytical Plan
All analyses were carried out in R software [13]. Polyno-
mial regression models from a 1st up to a 4th order were 
calculated to predict FEV1 over time for every individual; 
the model with the lowest AIC for each individual was 
selected as the best fit. Several restrictions were imposed. 
The maximum of 4 polynomials was selected to avoid 
overfitting. The polynomial order must also be lower 
than the number of values, therefore for individuals with 
2 values, only a 1st order polynomial was tried, for indi-
viduals with 3 values, only a 1st and 2nd order were tried, 

etc. The optimal number of measurements, time between 
measurements, and distribution of measured values for 
the polynomial models to estimate individual trends in 
FEV1 were investigated by comparing the measured FEV1 
values (observed) to the values given by the individual-
ised polynomial (predicted).

To assess the stability of the flexible polynomial mod-
els against differing sample sizes, the method was carried 
out on a random sample of 80% of each individual’s mea-
surements and the polynomial allocation was compared 

Fig. 1  Illustration of data for an individual from a hypothetical study to demonstrate two major computational challenges with aligning asynchronous 
outcome measures, for example FEV1, with daily exposure outcomes, for example resting heart rate (dashed vertical lines represent a study window of 1.5 
years; grey dots indicate measured FEV1 values). (1) If collapsing the 547 days of heart rate data to match the 15 FEV1 measurements captured during the 
study window, 532 (97%) days of the heart rate data would be excluded. (2) Depending on the arbitrary timepoints when baseline and end of study val-
ues are measured, the change in FEV1 over the study period could be a large decrease of 16.3% (blue), a small decrease of 9.3% (green), or stable with no 
change (purple). This has important consequences for drawing conclusions on the effects of the study, since traditionally a difference of 10–12% between 
measurements is used as the threshold for inferring a clinically meaningful change [10]. A proposed alternative for both issues is to use flexible polynomial 
regression (yellow line) to mitigate noise and/or estimate a daily, weekly, or monthly value of FEV1 for aligning with data captured from remote monitoring
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to the original that used all the measurements. This was 
carried out in 100 iterations.

Validation
The flexible polynomial method was validated using BMI 
from the same population of children with CF at GOSH. 
As with FEV1, measurements > 1y apart and individuals 
with < 2 measurements were excluded.

Results
Data
A total of 8,715 FEV1 measurements from 291 people 
aged 3–18 years old between 2011 and 2021 in the GOSH 
lung function database were available. After excluding 
measurements > 1y apart and individuals with < 2 mea-
surements there were 8,549 measurements from 267 

individuals. There was an average of 32 FEV1 measure-
ments per person (range: 2-150), an average of 5 mea-
surements per person per year of data (range = 1–17), 
and an average of 53 days between consecutive measures 
(range: 1-365). Most repeated measures were within 6 
months (98%). A sample of participant data and the out-
put data from the flexible polynomial method for one 
individual is displayed in Table 1.

Flexible polynomial regression
The 4th and 1st order polynomials were chosen most as 
the best fit (for n = 83 individuals each), followed by 3rd 
order for 59 individuals, and 2nd for 42 individuals. For 
all observations, the mean absolute difference between 
observed and predicted FEV1% was 5.5% (SD = 5.8%), 
which is within the range of normal variability. 

Table 1  Example FEV1 data for one individual. The 3rd order polynomial model was selected as the best fit. From the model, FEV1% is 
predicted for every day between an individual’s first and last measured FEV1 value. The standard error of the model is 4.58, and the r2 is 
0.23
Model Input Model Output
Day of Data Measured FEV1% Predicted FEV1%

1 67.83 67.22

2 67.24

3 67.25

4 67.27

5 67.29

6 67.31

7 67.33

8 67.35

9 67.37

10 67.39

11 67.41

12 67.43

13 67.45

14 67.47

15 67.49

16 67.51

17 67.53

18 67.55

19 67.57

20 67.60

21 67.54 67.62

22 67.64

23 67.66

24 67.69

25 67.71

26 67.73

27 67.76

28 73.21 67.78

29 67.81

30 67.83

31 67.86

32 70.68 67.88

… … …
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Nonetheless, the range was large (0.0–77.7%), thus we 
investigated observations where the predicted values 
were greater than 20% of observed values (n = 211 (2.5%)). 
In these instances, we observed within-person outliers of 
measured FEV1%, and not erroneous or implausible pre-
dictions (e.g., Fig.  2, Profile 4 where observed FEV1% < 
40%).

For people with more than 15 measurements (n = 178 
(67%)), the polynomial predictions worked well when 
individual trajectories were visualised (Fig.  2A). In this 
subgroup the 4th order polynomial was also chosen 
most often as the best fit (n = 60), followed by 1st (n = 47), 
3rd (n = 42), and 2nd (n = 29). There were no significant 
relationships between the difference in observed and 
predicted FEV1% and the variability in time between 
measurements, length of time between measurements, or 
number of measurements, suggesting that the method is 
robust if there are at least 15 measurements (Fig. 2B). In 
CF, this equates to about 4 years of data when measure-
ments are taken at quarterly clinics.

When the number of measurements is sparse (i.e., < 15 
measurements; n = 89 individuals), the flexible polynomial 

approach produces results with greater uncertainty. 
Investigation of individualised daily predicted values in 
between measured observations revealed 14 individuals 
that had implausible FEV1 values that were either nega-
tive and/or greater than 30% of the mean of the individ-
ual’s observed values (Fig. 3A). These individuals had in 
common 7 or fewer observations, or they had < 15 obser-
vations with a gap in time larger than 6 months between 
measurements, which resulted in overfitting. Rather than 
excluding individuals with these parameters, the poly-
nomial models were altered to be conditional on num-
ber of measurements and length of time: those with less 
than 8 measurements were allocated a linear model, and 
those with less than 15 measurements were required to 
have less than 6 months between values to be included 
in modelling (Fig. 3B). There were 18 (14%) people with 
< 15 measurements but with > 6 months between at least 
one measurement and 60 (22%) people with < 8 measure-
ments whom the criteria were applied to.

In this subgroup of individuals with < 15 values, the lin-
ear model was chosen most often (n = 75), followed by the 
4th order (n = 9), 3rd order (n = 3), and 2nd order (n = 2). 

Fig. 2  Evaluating flexible polynomials for individuals with > 15 measurements. (A) FEV1 profiles for four individuals with the most measurements (Profile 
1, n = 150; Profile 2, n = 139; Profile 3, n = 111; Profile 4, n = 110), where grey dots indicate observed FEV1 measurements and black line indicates daily 
predicted FEV1 values from the flexible polynomials. These individuals have at least 8 years of data (days > 3000). (B) The observed – predicted FEV1 value 
per person compared to (i) the coefficient of variation (CV) of time between measurements, (ii) the mean time between measurements, (iii) the number 
of measurements
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Despite forcing most individuals to fit a linear model, the 
mean absolute observed – predicted FEV1% was still low 
at 3.8% (range = 0.0–26.7%; SD = 3.8%), again well within 
the range of normal variability.

Stability
To assess the stability of the model against sample size, 
the flexible polynomial method was carried out on a ran-
dom sample of 80% of the measurements in 100 itera-
tions and the polynomial assigned at each iteration was 
compared to the original polynomial. For over 75% of the 
iterations the polynomial assignment was consistent with 
the original. Furthermore, the majority of individuals 
were consistent for 100% of the iterations (n = 52). Linear 
models showed that the consistency of polynomial allo-
cation within an individual was not dependent on num-
ber of observations (slope = -0.02, 95%CI = -0.16–0.12), 
variability of FEV1% (slope = -0.01, 95%CI = -0.03–0.01), 
mean of FEV1% (slope = -0.17, 95%CI = -0.27–0.00), or 

average time between measurements (slope = 0.07, 95%CI 
= -0.11–0.25).

Extrapolation of data using flexible polynomials
The potential use of the flexible polynomial method lies 
in the extrapolation of an outcome value at every time 
point between two observed values to align the data with 
frequently captured exposures. To evaluate the stability 
of the extrapolation at different time points, the differ-
ence between all pairwise predicted values was compared 
to the difference between all pairwise observed values 
and assessed over different lengths of time for up to 6 
months between measurements. This resulted in 64,573 
paired FEV1 measurements. The mean absolute differ-
ence in predicted FEV1% was 0.6% (range = 0.0–24.0%, 
SD = 1.0%), which was much lower than the mean abso-
lute difference in observed FEV1% of 6.5% (range = 0.0–
81.1%, SD = 6.5%), confirming the use of the polynomial 
model to estimate change mitigates the noise within 

Fig. 3  Visualisations of the flexible polynomial results across 3 example individuals with less than 8 measurements, or with 8–14 measurements but 
greater than 6 months between at least one observation. Points indicate observed values; black lines/points indicate daily predicted values; grey shading 
indicates the 95% confidence interval. (A) Flexible polynomial method with no criteria applied. Individuals with few values far apart in time had between-
value predictions widely different than expected. (B) Flexible polynomial method with criteria applied. Profiles 1,2&3 have a linear model allocated be-
cause they have less than 8 measurements, and Profile 3 only has a model generated between the consecutive measurements within 6 months
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observed values. In a linear model the change in FEV1% 
across all pairwise comparisons were also constant 
at different lengths of time between measurements 
(slope = 1.5 × 10− 0.5, 95%CI = -1.8 × 10− 0.4 – 2.1 × 10− 0.4), 
suggesting that FEV1% extrapolation at 6 months is as 
stable as extrapolation at 1 week or 1 month.

Validation
The method was further validated using BMI as an out-
come measure in the same population of children with 
CF at GOSH (Fig.  4). There were 8,713 BMI measure-
ments from 291 children 3-18y. After exclusions there 
were 8,547 measurements from 267 children. The 1st 
order polynomial was chosen most as the best fit for 
87 individuals, followed by 4th order for 82 individuals, 
3rd for 50 individuals, and 2nd for 35 individuals. The 
mean absolute difference between observed and pre-
dicted BMI was low at 0.4 kg/m2 (range = 0.0–7.0 kg/m2, 
SD = 0.4  kg/m2). These values were within the normal 
range of BMI variability [14].

Discussion
The flexible polynomial model is a novel strategy to esti-
mate individual trajectories for infrequently measured 
data and to align the predicted measures with data cap-
tured daily (or more frequently than the outcome). With 
these models a value may be extrapolated at any time 
point including daily, weekly, or monthly to align with 
data captured frequently from remote monitoring. The 
flexible polynomial method was developed using lung 
function data (FEV1) but also worked well for BMI from 
the same population and may be applicable for other con-
tinuous outcomes. Our data are from children with CF 
attending a single centre, but the potential application of 
this method extend far beyond this.

To maximise the polynomial method, entire patient 
profiles on outcomes are necessary. This is more feasible 
now with the widespread implementation of electronic 
health records. Moreover, it is likely that more than 8 
values per person are captured within electronic health 
records moving forwards, especially if clinical encoun-
ters are quarterly (i.e., would require a minimum of two 
years of encounters). This will ensure robust use of the 

Fig. 4  Random selection of 25 individual profiles showing flexible polynomials applied to BMI.
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method as obvious errors did not occur with more than 
8 values if there was a maximum of 6 months between 
values. Conversely, it may be appropriate to only calcu-
late polynomial models for measurements taken during a 
study window to better capture the intra-individual vari-
ability over a shorter time period. Users should be care-
ful to ensure there are enough data points over smaller 
lengths of time to robustly calculate individualised trends 
in outcomes with the method.

A potential benefit of the method is that fluctuating 
exposures over small time periods can be more accu-
rately associated with outcomes. One possible example is 
a study investigating the effects of exercise on health. For 
instance, if one person exercises a small amount regularly 
every week, their total level of exercise over an entire 
study may look the same as someone who exercised a 
lot for 1–2 weeks, but not at all for the rest of the study. 
With flexible polynomial regression, the weeks of high 
amounts of exercise can be associated with outcomes 
extrapolated at the weekly level to ultimately infer a more 
accurate recommended level of exercise. Equally, aligning 
the data by exact time periods may not be optimal if you 
expect current exposures to influence future outcomes. 
For example, if someone exercises today it would likely 
not impact their BMI today. The binning and alignment 
of data to maximise the analyses should be carefully con-
sidered for each objective.

It is unclear whether the clinical outcome data should, 
in practice, be extrapolated at the daily level or whether 
daily predicted changes in outcomes are meaning-
ful. For instance, the magnitude of an association at the 
daily level may not be clinically relevant since we would 
not expect a habitual activity to have a large daily effect. 
Weekly or monthly extrapolation is less speculative, but 
it is also unknown how accurately these extrapolated 
values correlate with disease severity. Extrapolation of 
the daily, or monthly, effect size would assume a linear 
association and that the exposure was constant over the 
period, which is not necessarily the case. Future stud-
ies should corroborate the polynomial prediction with 
overall trends in disease through investigation with other 
outcomes.

This flexible polynomial method will maximize the use 
of remote monitoring data to investigate detailed habit-
ual patterns, especially where studies have not yet linked 
with clinical outcomes [15]. Furthermore, the potential 
application of flexible polynomials within longitudinally 
captured health data could extend beyond the ability to 
better align with remotely captured data; there may be 
non-remote data capture (e.g., continuous physiological 
monitoring within the intensive care setting) that may 
equally benefit from the method.

Conclusion
Flexible polynomials can be used to align data captured 
daily via remote monitoring and infrequently measured 
clinical outcomes. While the method was evaluated 
in outcomes related to children with CF, it has a wider 
potential application to observational studies and clinical 
trials using routinely collected data, beyond CF.
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