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Contemporary software development with modern programming languages leverages 

Integrated Development Environments, smart text editors, and similar tooling with code 

completion capabilities to increase the efficiency of software developers. Recent code 

completion research has shown that the combination of natural language processing with 

recurrent neural networks configured with long short-term memory can improve the 

accuracy of code completion predictions over prior models. It is well known that the 

accuracy of predictive systems based on training data is correlated to the quality and the 

quantity of the training data. This dissertation demonstrates that by expanding the 

training data set to include more references to specific Python third-party modules, the 

quality of the predictions increase for those specific Python third-party modules without 

degrading the quality of predictions of the originally represented modules.  
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Chapter 1 

Introduction 

 

 

Background 

     The software development process has centered around the Integrated Development 

Environment (IDE) as the primary tool for developers (Gail C Murphy, 2019). These 

IDEs analyze the content and structure of the code in projects to form a contextual 

awareness about the developer’s intent, and to provide capabilities to minimize the work 

of the developer. One of the most used capabilities provided by an IDE is code 

completion (G.C. Murphy et al., 2006). The ability for the IDE to suggest the method to 

call based on the context of the developer’s location in the code has become a ubiquitous 

feature that is expected, with Murphy stating code completion to be as popular as Cut and 

Paste. 

     The reasoning behind why code completion is so popular in IDEs is debated, with 

Stylos & Clarke (2007) claiming it is because of API exploration and discovery, and 

Mărășoiu, Church, & Blackwell (2015) stating it is due to the improvement to the speed 

and accuracy of the developer. The root cause of why it is so popular may not be fully 

determined, but the result of broad demand amongst developers for code completion is 

accepted and supported by prior research. 
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     Code completion provides the developer with a set of options available at a specific 

context point in the code, such as a method for a specific type. With smaller types, this is 

a highly effective mechanism of providing rapid results, usually sorted alphabetically, 

that relies on the developer’s knowledge of the type to choose the correct method. 

However, as development languages have grown to support more complex constructs, the 

types available in those languages have grown in the number of methods that they make 

available. These lists of methods can exceed several hundred, making it unwieldy for a 

developer to find the right method, or even know which the right method is to select. 

Mărășoiu, Church, & Blackwell (2015) defines two strategies for reducing the list of 

possible methods shown to the developer: lexical and semantic. 

     The lexical strategy relies on pattern matching to restrict the suggestions provided to 

the developer. Typically, this is done by pattern matching from the start of the method, 

and reducing the list of available methods as the developer types more characters. Some 

IDEs improve upon this by matching the exact character sequence against anywhere in 

the method name, such as JetBrains IntelliJ in Figure 1. Other IDEs look for the letters to 

appear anywhere without requiring the sequence to match, such as Visual Studio Code’s 

Python matcher shown in Figure 2. 
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Figure 1 – JetBrains IntelliJ Lexical Code Completion 

 

Figure 2 – Visual Studio Code Python Lexical Code Completion 

     These efforts require the IDE to know the context of the developer. For both cases, it 

is the type and an understanding of all the possible options available for that context. This 

is typically solved with a local index; such is the case of PyCharm 2020.2. The local 

index is created by the IDE when a new version of the language runtime is detected, as 
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seen in Figure 3. However, the suggestions by PyCharm 2020.2’s code completion is 

similar to IntelliJ’s in only using the exact sequence.  

 

Figure 3 – PyCharm 2020.2 Creating the Python Index 

     Semantic code completion expands the definition of the context beyond that of just the 

type. This model attempts to constrain the possible results based on the valid options 

available for the type at the place in the code where the type is used. Consider that a 

Python socket should not be bindable before it is created. In Figure 4, we can see that the 

code completion for a socket has five starred elements. These represent the most likely 

candidates for the developer to use. Following that is the alphabetical list of options. The 

most likely option is socket, which is used to create a new socket. 

 

Figure 4 – Python Socket Code Completion in Visual Studio Code Part 1 
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     If the code for creating a socket is already written, the context changes but the type 

remains the same. Figure 5 shows the code completion for the same type but after 

creating the socket. In this context, we have a created socket type, so the most likely next 

step is to bind it to an address. 

 

Figure 5 – Python Socket Code Completion in Visual Studio Code Part 2 

     Figures 4 and 5 show the difference in semantic code completion in Visual Studio 

Code, while Figure 3 shows lexical code completion in Visual Studio Code. Why does 

the same editor show both? Because semantic code completion falls back to lexical code 

completion. These are not mutually exclusive options, but a means of presenting the 

developers the ability to receive suggestions about what is the most likely option for their 

context, but still allow them to quickly reach the methods they know they want to use 

when they want to use it. 
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     In all the above examples, the code completion is demonstrating a few distinct 

systems working together to provide the results. Ignoring the user interface elements, the 

core components is a system in the editor to create a best guess about the language type 

the developer is referring to and other contextual information. This contextual 

information could include the line of code, and depending on the model, several prior 

lines of code. The editor then asks the code completion system to provide suggestions 

based on that contextual information. The code completion then returns the list of 

suggestions back to the editor. This interaction can happen all within the editor, or the 

editor can call out to a language service, such as Microsoft’s Python Language Server 

(Microsoft/Python-Language-Server, 2018/2020). 

     The Pythia code completion system implements the semantic model using a novel 

combination of natural language processing using word2vec and recurrent neural 

networks to improve the accuracy of suggestions provided (Svyatkovskiy et al., 2019).  

 

Problem Statement 

     Python, like most programming languages, has a set of standard libraries considered 

part of the core software development kit (SDK). In the case of Python version 3.9, the 

standard library contains the built-in functions, constants, types, and exceptions; and over 

two hundred modules exposing a wide range of functionality (The Python Standard 

Library — Python 3.9.0 Documentation, n.d.). These libraries will be referred to as the 

Python Standard Libraries. Building on top of the Python standard libraries is over 

267,000 projects, as of late 2020, shared through the Python Package Index (PyPi) for 

consumption in Python applications (Search Results · PyPI, n.d.). A filtered list of those 
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projects to those that have a Development Status of Production / Stable yielded over 

10,000 libraries. Those libraries, and others not tracked on PyPi, but are not part of the 

Python Standard Libraries are referred to as Third-Party Libraries. 

     Python modules must meet specific criteria and undergo a strict onboarding process to 

be included in the standard library set. The result is that the included modules are more 

highly specialized, targeting specific functionality with close affinity instead of being 

broad libraries with diverse capabilities (19. Adding to the Stdlib — Python Developer’s 

Guide, n.d.).  

     Third-party libraries lack the same disciplined approach of the standard library. This 

leads the Third-party libraries to vary greatly in size and complexity. The boto project is 

the Python SDK for accessing Amazon Web Services (AWS), and has just shy of 50 

different functional capabilities in one module (Boto · PyPI, n.d.). Another example is 

NumPy, which is a Python module for scientific computing (Numpy · PyPI, n.d.). The 

NumPy project has over 334,000 lines of code in a single module (The NumPy Open 

Source Project on Open Hub, n.d.), which is not the typical small module included in the 

Python standard library. 

     Applications written in Python have utilized libraries beyond just the standard 

libraries. D’Souza called out this distinction between standard and third-party libraries in 

his analysis of 20,000 GitHub Python projects which were scanned against 11 standard 

and 9 third-party libraries (D’Souza et al., 2016). D’Souza’s paper introduces a system 

called PyReco to provide code completion recommendations using a nearest neighbor 

classified on the usage patterns located in the ASTs of the parsed Python projects. Their 

analysis distinguished between the Python standard libraries and the third-party libraries, 



8 

 

  

pre-determining the important libraries to use for benchmarking against prior code 

completion strategies. Pythia does not make this distinction, and instead just uses the ten 

most frequent libraries used in their smaller dataset.  

     In Pythia’s results, only four were third-party libraries. The NumPy library was 

second only to the os standard library in frequency. Despite its frequent occurrences in 

the Pythia dataset and having significantly more methods than the eight following 

libraries, it still had a significantly lower accuracy than any of the standard libraries. Of 

the ten libraries measured by Pythia, the 6 standard libraries were significantly more 

accurate than the 4 third-party libraries. This lack of improvement to the accuracy of 

third-party libraries created an imbalance that favors the accuracy of the Python standard 

libraries and created an inefficiency for the developer. 

     Pythia’s accuracy for the Third-Party Libraries ranged from 16% to 38% worse than 

the Python Standard Libraries (Svyatkovskiy et al., 2019). The data set used was the top 

2,700 non-forked Python projects on GitHub, with the ranking of top based on the 

number stars a project had at the time of the search. From this dataset, Svyatkovskiy, 

Zhao, Fu, & Sundaresan (2019) identified the 10 most frequent Python modules used in 

the data set, and accuracy changes for each module. 

     The standard Python libraries, as part of the standard distribution, are more often used 

across the widest variety of applications. Developers are more familiar with these 

libraries, relying on code completion to present options that they are most likely to 

already know. The goal of the developer is to get to the method they know they want to 

use, and lexical code completion will be the most efficient in these use cases. However, 

the third-party libraries, with their significantly larger surface areas, and less frequent 



9 

 

  

usage, benefit significantly more from the accurate contextual predications provided by 

semantic code completion. Pythia presented suggestions that are less accurate, while the 

developers expected a higher level of accuracy. Since the developers expected accuracy, 

the result of inaccurate code completion suggestions is a mistaken belief that the 

developer code is wrong (Mărășoiu et al., 2015). This has led to wasted time and overall 

developer inefficiency. 

 

Dissertation Goal 

     The goal was to increase the accuracy of suggestions for third-party Python libraries in 

the Pythia recommender by dynamically modifying the input dataset during the 

preprocessing process.  

     The original Pythia preprocessing phase passed all the Python files in its dataset to an 

AST parser, which extracted contextual information, and built the matrices passed into 

word2vec as seen in figure 6. However, there is a step prior to preprocessing in which 

Pythia located the 2,700 target repositories in GitHub, cloned the repositories, and 

located all the Python source files in the cloned repositories. This is the data collection 

phase. 
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Figure 6 – Pythia Preprocessing Phase 

     The data collection phase needed to be enhanced to collect a larger universe of data 

than the original 2,700 repositories. All Python projects were scanned to inventory the 

modules included in every source file. This information was used during the 

preprocessing phase to include more repositories until the ratio of a specific third-party 

library was within a variably defined tolerance of a specified standard library. 

     The intended result of increasing the training dataset to include more third-party 

libraries is to allow the model training process to evaluate more occurrences of third-

party module usage in a wider range of use cases. This will enable Pythia’s model to raise 

the accuracy level of code completion suggestions for third-party libraries to be more in 

line with the accuracy of the Python standard libraries. Closing the prediction accuracy 

gap between Python standard and third-party libraries resulted in more consistent 

efficiency for the developer using the code completion prediction system. 
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Research Questions 

     The Pythia model leveraged 2,700 non-forked Python open-source projects from 

GitHub ranked by number of stars as the training dataset (Svyatkovskiy et al., 2019). 

There was no attempt to adjust the quantity of third-party libraries included in that 

dataset. 

     The primary hypothesis addressed by this research was that if the number of non-

forked Python open-source projects from GitHub used as input data increased to include 

more projects that reference third-party libraries, the resulting accuracy for those third-

party libraries will also increase. 

     A key question resolved is the appropriate strategy to use to select new projects to 

increase the projects in the input data set. It was not sufficient to just add more projects 

by moving from 2,700 projects to a higher number. Those new projects may not use the 

same third-party libraries and may introduce new third-party libraries. A blind increase in 

the quantity of projects resulted in widening the number of the third-party libraries at a 

lower accuracy. The goal was to identify projects that will increase the accuracy of the 

third-party libraries in the original data set to show a correlation between the selection of 

input data and the quality of the accuracy output by the model represented by Pythia.  

 

Relevance and Significance 

     The modern software developer depends on code completion to increase their 

efficiency and effectiveness with programming languages. Research by Mărășoiu, 

Church, and Blackwell (2015); Stylos and Clarke (2007); Murphy, Kersten, and Findlater 
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(2006) have demonstrated the integral nature of code completion in the developer 

experience. The research differed on why code completion is important. Stylos and 

Clarke (2007) state that API exploration and discovery is the significant usage model. 

Mărășoiu, Church, and Blackwell (2015) suggests that the speed and accuracy of 

development was the most significant use case. Murphy, Kersten, and Findlater (2006) 

survey found that code completion is as popular as Cut and Paste. Whichever use case is 

considered, they all agree on the broad demand and importance of code completion as a 

necessary capability for developers. 

     Code completion suggests a set of possible methods relevant to a specific type at a 

contextual point in the source code. Some types have hundreds of methods, or enough 

that scrolling through an alphabetical list becomes more time consuming than alternative 

approaches to discovering the correct method. Mărășoiu, Church, and Blackwell (2015) 

identified two common strategies for reducing the set of suggestions presented to the 

developer: lexical and semantic. The lexical strategy uses pattern matching to reduce the 

suggestions provided based on filtering the possible methods using a partial match of the 

characters typed by the developer. Common approaches for the partial match are 

matching the consecutive characters either anchored at the start or anywhere in the 

method; or matching all the characters regardless of position in the method name. As the 

developer types more characters, the list of suggestions is reduced through continued 

matching. The semantic strategy uses the grammar of the programming language to 

reduce the suggestions provided to the developers. Leveraging the grammar allows the 

system to restrict the list of candidate methods to those allowed at the contextual point in 

the code that triggered the search. Filtering private methods from a candidate result set is 
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a simple example, but this can be extended to include more contextual attributes. For 

example, an uninstantiated object could filter all but static or class methods.  

     Both the lexical and semantic models address filtering the set of possible suggestions 

provided to the developer, but neither addresses the ordering of the methods suggested. 

Further, they each have some limitations. The lexical strategy requires the developer to 

already know something about the method they want to call since the pattern match is 

based on the characters in the method name (Proksch et al., 2015). The semantic strategy 

requires the developer to understand the correctness of the suggested methods. Consider 

the example of a developer using a socket type, and the code completion suggests both 

open and close methods in an alphabetical list. The developer is forced to choose without 

any effective guidance. 

     The combination of filtering and ranking of the suggestion list is called Intelligent 

Code Completion (ICC) (Proksch et al., 2015). ICC leverages more contextual 

information about the type at the point of the suggestion request, and in some cases, 

historical usage from other similar scenarios, to provide a filtered list of methods with all 

or a subset of the list ranked in a suggested order of relevance to the specific context. 

     Python’s lack of strong typing prevents the use of a typed variable to derive the 

context. D’Souza, Yang, and Lopes (2016) identified this challenge in their paper 

introducing their Python code completion system, PyReco. Their approach is to parse a 

large source dataset of Python projects, convert to ASTs, and analyze assignments to 

determine the most likely type. 

 



14 

 

  

Barriers and Issues 

     GitHub is not a static representation of projects, or their attributes. The source code in 

the projects in GitHub have likely changed, as has the star ranking used to select the top 

entries. Using the exact same 2,700 projects used by Pythia is not possible without the 

specific list of projects they used, and the Git SHA commit code for each of projects they 

used. The model selected by Pythia can be reproduced, but it will not result in the same 

dataset. This may result in a skewing of the initial baseline results. 

     Adding new projects to the input dataset will increase the number of sources using the 

Python Standard Libraries. This may result in a change in accuracy for the Python 

Standard Libraries and make probable that the increase in third-party library accuracy 

will result in a gap between the standard library and third-party library remaining. 

     It is possible that third-party libraries that are significant in the 2,700 projects in the 

initial dataset may not be significant in other projects. This would impact the ability to 

identify other candidate projects to include in the input dataset to raise the accuracy of the 

third-party libraries. 

     The training of the models used by Pythia is compute intensive and time consuming 

(Svyatkovskiy et al., 2019). Svyatkovskiy, Zhao, Fu, & Sundaresan (2019) describes 

several strategies employed to reduce the computation time, including reducing the 

number of AST nodes used, pruning lowest used word2vec vectors, and parallel batch 

processing using GPUs. The increase over 2,700 projects will have a direct impact on the 

required computation time of the softmax. This may result in a potential upper limit on 

the number of projects that can be included in the input dataset. 
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Assumptions, Limitations, and Delimitations 

     A key assumption is that using 2,700 top-starred non-forked open-source projects on 

GitHub queried at any time will result in comparable results generated by the Pythia 

research at the time of their query. This means that having the exact same 2,700 projects 

with exact same source code will not be required, only having a comparable dataset 

generated in the same manner. 

     Another assumption is that the model used in Pythia can function using more projects 

in the input dataset. While the time to generate the results is expected to increase, the 

overall model and selection of hyperparameters is expected to function with the increased 

dataset. 

     There are three delimitations between this research as the Pythia project. First, this 

research will not replicate the integration of the resulting data into the text editor as done 

in Pythia research. This integration is not related to the accuracy of the data and is only a 

means of demonstrating its utilization. The results can be demonstrated through the test 

cases. Second, this project will not implement model quantization implemented by 

Pythia. This was done to reduce the size of the dataset prior to being sent to the client 

systems. This quantization reduced the size of the dataset and reduced the predictive 

accuracy of the model. However, the results shared by Pythia are all pre-quantization, and 

post-quantization results were not shared, just summarized as reducing the top-5 accuracy 

by 3% (Svyatkovskiy et al., 2019). Third, the research will focus on the accuracy results, 

and not define specific performance characteristics. While some systems report 
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suggestion list performance, not all do, and there is not enough consistency between the 

models to try and replicate specific parameters.  

Summary 

     This research seeks to improve the accuracy of Python code completion by building 

on the prior research of Svyatkovskiy, Zhao, Fu, and Sundaresan (2019) with Pythia. The 

Pythia model showed using natural language processing combined with recurrent neural 

networks using long short-term memory can improve accuracy over current statistical 

models. Pythia’s accuracy is tied to the frequency of programming patterns it learns 

during the training cycle (He et al., 2021). This research will increase the exposure of 

third-party libraries to the Pythia training model to result in higher accuracy for those 

third-party libraries. 
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Chapter 2 

Review of the Literature 

 

 

Introduction 

     Gail C. Murphy, Mik Kersten, and Leah Findlater (2006) monitored a number of 

developers to determine how they used Eclipse. Their results showed that editing 

commands are used the most, but it also showed that Eclipse’s Content Assist (code 

completion) is used as much as common editing commands, which they specifically 

called. The tables showing the top 10 commands executed by the most developers and the 

top 10 commands as percentage of use are reproduced below as Table 1 and Table 2 

respectively. 

Command No. of Users 

Delete 41 

Save 41 

Paste 41 

Content Assist 41 

Copy 41 

Undo 41 

Cut 40 

Refresh 40 

Show View 40 
Table 1 – Top 10 Commands Executed by the Most Developers 
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Command Use (%) 

Delete 14.3 

Save 11.3 

Next Word 7.3 

Paste 6.8 

Content Assist 6.7 

Previous Word 5.9 

Copy 4.6 

Select Previous Word 3.4 

Step (debug) 3.2 
Table 2 – Top 10 Commands Executed Across all 41 Developers 

     Stylos and Clarke’s (2007) research looked at the usability of two different object 

construction models: the default constructor (“create-set-call”) and required constructor. 

Their research worked with three groups of developers: 

• Systemic Developers – Professional C or C++ developers with 5 or more years of 

experience 

• Pragmatic Developers – Professional C# developers with 2 or more years of 

experience 

• Opportunistic Developers – Professional Visual Basic developers with 2 or more 

years of experience 

     With all three groups of developers, they were provided a series of tasks involving the 

design, implementation, and reading of code without the support of code support tooling, 

such as code completion. One of the observations in the study was that all participants 

used code-completion as a “primary means of exploration,” even while debugging. 

     Mărășoiu, Church, and Blackwell (2015) analyzed the usage of code completion 

amongst six software developers with diverse levels of experience in the Dart language 

and most having no exposure to the libraries used in the experiment. The results 

confirmed the findings of Murphy, Kersten, and Findlater (2006) regarding the extensive 
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use of code completion amongst the developers. However, the findings challenged Stylos 

and Clarke’s (2007) conclusion that code completion was used primarily for API 

exploration. The results suggested that the code completion was to increase the efficiency 

of writing code by filtering the suggestion list to find the appropriate option to accept. 

Further, the results showed that a significant number of code completion suggestions 

were not accepted by the developers.  

     In Mărășoiu, Church, and Blackwell’s (2015) research, they observed that only 40.1% 

of code completions results in an accepted suggestion. When they analyzed 10,000 code 

completion suggestions from developers experienced with Dart and the used APIs inside 

Google, that result only rose to 44.2%. They concluded that the quality of code 

completion suggestions is still a significant challenge to be addressed. 

     Mărășoiu, Church, and Blackwell’s (2015) also observed that when code completion 

did not offer useful suggestions, the developers considered that as indicative of errors 

elsewhere in their code. The result was a correlation between ineffective code completion 

suggestions and developer inefficiencies. 

 

Intelligent Assistants 

     The complexity and size of computer source code is an ever-increasing problem. The 

first version of Unix was 4,768 lines of assembly code in 13 files totaling 146.41kb 

(GitHub - Dspinellis/Unix-History-Repo at Research-V1-Snapshot-Development, n.d.). 

Linux in early 2020 was 27.8 million lines of code (Linux in 2020: 27.8 Million Lines of 

Code in the Kernel, 1.3 Million in Systemd - Linux.Com, n.d.). Despite that growth in size 
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and complexity, some challenges have remained the same. Terry Winograd (1973) 

postulated that software could be developed to assist the developer in tackling this 

complexity. He identified four key areas of helping: Error Checking, Question 

Answering, Trivia, and Debugging. His definition of Trivia outlines the concept of code 

completion. He states “Often, a programmer really doesn’t want to bother knowing the 

answer to a question. If he has a variable named ITEM which is to be added to LIST, he 

must worry about whether ITEM is the item itself, or a singleton list containing the item, 

and whether the list is ordered, or does not contain duplicate items, etc.” What he is 

proposing is that some developer assistant could be aware of the context of the source 

code that the developer is working on. He continues “Rather than asking for all this 

information, he [the developer] would rather say to his moderately stupid assistant, 

‘Write the appropriate call to add ITEM to LIST.’” This defines the concept behind 

modern code generation tooling, but it also covers the basis of code completion. In short, 

the developer’s assistant should know what the thing is the developer is working with, the 

context or state it is in, and what the developers wants to or should do next with it. 

Winograd’s work was a thought experiment proposing a future state for developers that 

might be possible. 

     Fifteen years later, Gail E. Kaiser and Peter H. Feiler (1988) developed Project Marvel 

based on Winograd’s model of an Intelligent Assistant for developers. Kaiser and Feiler’s 

(1988) approach to implementing Winograd’s vision was to develop a system based on 

the concepts of insight and opportunistic processing. Insight is defined as being aware of 

the developer’s environment, or context, and being able to leverage that knowledge to 

share information or proposed actions the development should know about. Opportunistic 
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processing is the developer’s environment using insight to take certain actions 

automatically, thus freeing the developer to work on their source code more efficiently. 

Common examples of this behavior are the background compilation, error checking, and 

automatic linting performed in modern IDEs. 

     Kaiser and Feiler’s (1988) insight concept directly address the concept of code 

completion. Their approach was to consider the developer’s environment as objects, in 

the object-oriented context. If everything is an object, and all possible objects can be 

identified, then a database of all possible information, could be constructed for use during 

the development cycle. This included relationships between objects, which allowed for 

identification of context. 

     This model of static awareness predicts code using a combination of identifying what 

the developer’s context is and doing a lookup against the object database to determine the 

results of a prediction. As new types are added to the program, their information, 

including interaction relationships, would be added to the database. 

     Project Marvel was significantly more than just code completion. It was an entire 

environment that had a defined model for the process the programmer must follow. The 

database of objects and their relationships is like the run-time type identification available 

in many modern object-oriented languages. The implementation approach of Project 

Marvel is no longer appropriate, but the conceptual approach of using rich type 

information to make the developers environment more intelligent is the foundation of 

modern IDEs. 
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Code Completion 

Optimistic Code Completion 

     Robbes and Lanza (2008) define code completion as taking an “input token to be 

completed and a context used to access all necessary information in the system, and 

outputs an ordered sequence of possible completions”. In their paper, they propose an 

improvement over the code completion systems provided in Eclipse, Visualworks, and 

Squeak. Those three systems provide a filtered code completion system based on a 

specific data type and optional input from the user. The filtered model starts with the 

universe of all possible results based on a provided datatype and filters the suggestion list 

based on the characters typed by the user and presents the suggestions alphabetically. 

Figure 7 shows Eclipse providing filtered code completion of 11 results out of 22 sorted 

alphabetically, with shorter parameter lists given priority.  
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Figure 7 – Filtered Code Completion in Eclipse (Robbes & Lanza, 2008) 

     Robbes and Lanza (2008) propose that the three code completion systems all suffer 

from the same overall problem of making it difficult to find the single right suggestion 

because it is hidden amongst many incorrect suggestions due to the alphabetical sort. 

They classify this model of code completion as “pessimistic” due to its assumption of 

returning a large data set. They propose an “optimistic” model that would expect a 

shorter list of suggestions. The goal of an optimistic model would result in a smaller 

suggestion list that would not need to be alphabetized. They defined the following three 

assumptions to qualify a result set as optimistic: 

• The result set is small. They used 3 as the limit in their paper. 
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• The match being sought must have a high probability of being in the smaller 

result set. 

• The programmer typed prefix used for filtering must be short.  

      Robbes and Lanza (2008) only compare the accuracy score of method calls 

predictions, and no other constructs such as types, keywords, and variables. They take 

this approach because method calls are a significantly larger percentage of the predicted 

elements within a program (Robbes & Lanza, 2008). Their paper divides code completion 

strategies into two broad categories of typed and untyped. Robbes and Lanza (2008) use 

the Squeak IDE with Smalltalk as the language evaluated because it is untyped, and they 

reason that untyped languages require more improvement in code completion strategies 

over typed languages. However, they do include some typed code completion algorithms 

in the evaluation using a type inference engine built into Squeak. 

      Robbes and Lanza (2008) evaluated a total of 8 different strategies. The two 

pessimistic models served as a typed and untyped baseline. The six optimistic strategies 

were based on information gathered from the code changes captured in the AST, and 

were based around the following code history hypotheses: 

• Structure – Local methods are called more often than distant methods. 

• Names – Recently changed method names. 

• Bodies – Recently changed method bodies. 

• Inserted – Recently inserted code. 

• Sessions – Per-Session vocabulary defined as terms, such as class names, 

methods, and variables, introduced in the past hour. 
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• Typed Per-Session vocabulary. 

      Robbes and Lanza (2008) show the results of untyped code completion algorithms 

compared against each other for 7 projects; their SpyWare monitoring project and 6 

student projects. Table 3 below shows the results scored from least to most accurate using 

a 0 to 100 scale.  

Project SpyWare Student1 Student2 Student3 Student4 Student5 Student6 

Baseline 12.15 11.17 10.72 15.26 14.35 14.69 14.86 

Structure 34.15 23.31 26.92 37.37 31.79 36.46 37.72 

Names 36.57 30.11 34.69 41.32 29.84 39.80 39.68 

Inserted 62.66 75.46 75.87 71.25 69.03 68.79 59.95 

Bodies 70.14 82.37 80.94 77.93 79.03 77.76 67.46 

Sessions 71.67 79.23 78.95 70.92 77.19 79.56 66.79 

Table 3 – Scores for the untyped algorithms of all projects (Robbes & Lanza, 2008) 

      The results from Robbes and Lanza (2008) show a significant improvement above the 

baseline, however, it is based on information within an application. They do not identify 

the difference in accuracy between developer created methods, third-party library 

methods, or standard languages methods. Their code completion algorithms are all based 

on the actions of the developer, which implies that accuracy of a type imported into a 

project and not used before, cannot have the same accuracy results. Further, in their 

models, only the sessions model is not overtly biased towards developer created code. 

The sessions model is biased towards the methods used within the last hour, and that 

model should favor developers that remain in the same context. However, the selection of 
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one hour is not explained, and there is no data concerning the number of times a 

developer switches contexts within a session to help qualify the results. 

Intelligent Code Completion 

      Bruch, Monperrus, and Mezini (2009) defined the term Intelligent Code Completion 

as a system that learns by analyzing prior source code. They stated that the problem of 

too many incorrect suggestions being returned during code completion is still an unsolved 

problem and impairs developer productivity. They provide the example of the Java 

Standard Widget Toolkit (SWT) Text class having more than 160 callable methods, 

including all the methods in Java’s Object type, with some of those methods never being 

called on the Text object. For example, the wait method on Java’s Object is a method that 

was never called in their scan of the Eclipse codebase. From that same scan, they 

identified that only 5 methods out of over 160 are ever called on Text in the Eclipse code 

base. That leaves the developer with over 155 incorrect choices to filter out of the 

proposed suggestions during code completion. 

      Bruch, Monperrus, and Mezini (2009) identify the key criterion about methods, 

beyond frequency of use, is the context that it is called within. They provide the example 

of the configuration code that only happens in a Dialog.create() and the code for reading 

the input data in the Dialog.close(). This is information that can be used to filter the 

proposed suggestions based on the context of the code completion suggestion request. 

      Their paper proposes that intelligent code completion system must be capable of the 

following two behaviors: 
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1. Filter code completion suggestions from the list that are not relevant to the current 

context. 

2. Rank the relevance of every proposed code completion suggestion. 

      The combination of these two behaviors will reduce the number of code completion 

suggestions that the user will receive and order those suggestions so that more relevant 

suggestions are earlier in the list. 

      Bruch, Monperrus, and Mezini (2009) developed and measured the accuracy of three 

strategies to analyze existing source code. Their test was limited to the accuracy of 

calling the Java SWT library in over 27,000 test cases. Similar to Robbes and Lanza 

(2008), they limited the resulting options presented to the developer. However, instead of 

the fixed number of entries used by Robbes and Lanza (2008), they chose a 30% 

confidence level as a threshold for filtering the results. 

Frequency Based Code Completion 

      Bruch, Monperrus, and Mezini’s (2009) first strategy is a frequency-based solution. 

This model assumes that the more frequently a developer calls a method for a specific 

type, the more likely it is going to be called again for the same type. The relevance rank 

is determined by ordering the methods called for a type by the absolute number of times 

that method is called. 

Association Rule Based Code Completion 

      Bruch, Monperrus, and Mezini’s (2009) second strategy is to look for association 

rules based on patterns in the code. They provide an example of mapping the typical 

behavior of calling setter methods inside a constructor, which would lead to a rule of 
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Object creation implies setter methods (Bruch et al., 2009). Similarly, a second rule could 

be when Dialog.close() is called, it will be followed by getText() method calls. 

Best Matching Neighbors Code Completion 

      Bruch, Monperrus, and Mezini’s (2009) third strategy is a novel application of the k-

nearest-neighbor (kNN) algorithm, and this is the primary contribution of their paper. 

They define the Best Matching Neighbors (BMN) algorithm as a kNN algorithm 

modified to the context of code completion. Their modifications are mapping the context 

of the variable to a vector; design of a novel distance measure; selection mechanism of 

nearest neighbors; and mapping nearest snippets to method recommendations (Bruch et 

al., 2009). 

Results 

      Bruch, Monperrus, and Mezini (2009) use precision, recall, and the F1-measure to 

evaluate their algorithms. Recall is the percentage of relevant methods returned, with 

100% meaning all methods for a type were in the suggestion set. Precision is the 

percentage of methods actually needed by the developer. The F1-measure used, equally 

weights recall and precision. The F1-measure was used as the primary metric for tuning 

the experiments, with the goal of maximizing the F1-measure. Figure 8 below shows the 

results of comparing the Eclipse Code Completion System (EcCCS), Frequency Code 

Completion System (FreqCCS), Association Rule Code Completion System (ArCCS), 

and Best Matching Neighbors Code Completion System (BMNCCS) strategies. 
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Figure 8 – Performance of EcCCS, FreqCCS, ArCCS, and BMNCCS (Bruch et al., 2009) 

      Bruch, Monperrus, and Mezini (2009) conclude that they were able to demonstrate a 

significant improvement using their BMN strategy, but that there is room for 

improvement in generalizing the solution for standard libraries. This highlights one of the 

challenges Bruch, Monperrus, and Mezini’s (2009) work, in that it was evaluated within a 

narrow scope for a single subset of a larger framework. Their decision to tune their 

strategies based on the F1-measure for just SWT, does not indicate that these results will 

apply when multiple frameworks and libraries are included in the dataset. Despite that, 

their results do show that analysis of existing source code can improve the prediction 

results of code completion. Further, it is evidence that mapping source code to vectors for 

leveraging vector-based algorithms for prediction is a viable option. However, their paper 

does not provide significant details, or show metrics related to the issue they identified 

about the context of where code completion happens. 
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Intelligent Code Completion with Bayesian Networks 

      Proksch, Lerch, and Mezini (2015) developed an approach using Bayesian networks 

that directly builds upon the Best Matching Neighbors (BMN) strategy of Bruch, 

Monperrus, and Mezini (2009). Proksch, Lerch, and Mezini (2015) acknowledge the 

advancement of the BMN strategy but identify a couple of specific areas for 

improvement. First, context is not sufficiently addressed in the results generation and in 

the prediction accuracy analysis. Second, runtime impacts of the model were not 

considered, specifically the speed of the results and the size of the required dataset. 

      Proksch, Lerch, and Mezini (2015) define three aspects used in comparing their 

approach with the BMN strategy: prediction quality, prediction speed, and model sizes. 

Their approach replaces the use of BMN with a Pattern-based Bayesian Network (PBN). 

This key difference allows the merging of different patterns, and to map the patterns to 

probabilities instead of just Boolean values. Further, the PBN is clustered, allowing for a 

model that can be tuned to balance prediction quality and size of the resulting model. 

      Proksch, Lerch, and Mezini (2015) provide details on how they analyze existing 

source code. Their approach is to capture object usages. They define object usages as a 

representation of any method that is called, and the context in which the object usage was 

observed (Proksch et al., 2015). This context information was implied by Bruch, 

Monperrus, and Mezini (2009), but its collection and usage were not explained, and is 

one of the key elements that Proksch, Lerch, and Mezini (2015) use to improve upon the 

BMN strategy. However, while Proksch, Lerch, and Mezini (2015) claim to extract as 

much reusable context information as possible, they do limit its usefulness by focusing on 

frameworks over libraries. Their rationale is that frameworks provide more structural 
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information with well-defined extension points, and that the typical usage model of 

frameworks is through extension with classes and interfaces defined in the framework. 

Their paper states that they expect the result of using frameworks to yield more 

contextual information that will provide more specific proposals. 

      The PBN approach seeks to provide a probabilistic result to the question of how 

likely a specific method call will happen within a given context. Figure 9 shows the 

conditional probabilities of PBN object usage, and figure 10 shows the structure model of 

the Pattern Based Bayesian Network. 

 

Figure 9 – Conditional Probabilities in a Based Bayesian Network (Proksch et al., 2015) 

 

Figure 10 – Structural Representation of the Bayesian Network used in PBN (Proksch et al., 2015) 
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      The PBN model clusters by selecting a random object usage to be the center of the 

cluster from the set of all usages for a given type. All other object usages below a 

distance threshold are placed into the same cluster and removed from the available set of 

object usages. This process repeats until all object usages are assigned to a cluster. Each 

cluster becomes the pattern node state in the Bayesian network. The probability is 

calculated as the number of object usages in the cluster divided by the total number of 

object usages (Proksch et al., 2015). Distance is calculated using cosine similarity, and 

the distance threshold is the parameter used to tune the trade-off of quality and model 

size. The lower the distance threshold, the higher quality, but larger the model size. 

Thresholds range from 0.0 to 1.0 and indicated in the result data as 𝑃𝐵𝑁𝑑, thus a distance 

of 0.10 is denoted as 𝑃𝐵𝑁10, and the distance of 1.00, is denoted as 𝑃𝐵𝑁100. 

      The results for PBN show that it can significantly reduce the model size while 

retaining comparable results to BMN, as seen in figure 11. This graph presents PBN and 

BMN both using definition contextual information (the +D marker). Other contextual 

information and combinations were tried but were all lower quality than just definition 

information. Figure 12 shows the effect of increasing the number of object usages for one 

type (SWT Button) on model size and inference speed over different distances. 
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Figure 11 – Quality and Size for Different Distances Compared to BMN (Proksch et al., 2015) 

 

Figure 12 – Effect of Increasing Number of Object Usages for SWT Button (Proksch et al., 2015) 

      PBN can achieve similar quality as BMN with better performance and smaller data 

sizes. However, the authors state the same concerns with their results identified earlier in 

their paper with the BMN strategy. Specifically, focusing on just the SWT framework 

may mean this model will not be generally applicable to other frameworks. This should 

be considered an applicable limitation when considering libraries, standard or third-party, 

since they were deliberately out of scope for this analysis. 
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Improving Best Matching Neighbor for Dynamically Typed Languages 

      D’Souza, Yang, and Lopes (2016) also build upon the Best Matching Neighbors 

(BMN) strategy of Bruch, Monperrus, and Mezini (2009) to demonstrate the applicability 

to dynamically typed languages, specifically testing with Python. D’Souza, Yang, and 

Lopes (2016) chose to use the BMN model over the Pattern Based Bayesian Networks 

(PBN) presented by Proksch, Lerch, and Mezini (2015) because their experiments 

demonstrated that a Vector Space Model outperformed the Naïve Bayes, Bayesian 

Network, and Tree Augment Naïve Bayes classifiers. 

      D’Souza, Yang, and Lopes (2016) identified that the prior research for code 

completion focused primarily on statically typed languages, usually Java. They developed 

a code completion model named PyReco to demonstrate how to apply prior research to 

the dynamically typed language Python. Their approach uses a significantly larger set of 

input source repositories for model training. They chose approximately 20,000 Python 

GitHub projects with the most stars. From these source files, they extracted the Python 

library and module information, object assignments, method calls, attributes, and object 

termination through forward parsing of the AST generated from the Python Standard 

Libraries AST parser. Further, contextual information, such as conditionals and loops, are 

captured in the resulting graph structure that they use to model the analyzed source code. 

      The output of the static code analysis is then transformed into vectors used for the 

training objects, and queried based on the method-call frequency (D’Souza et al., 2016). 

Manhattan distance is used in calculating the nearest neighbors based on the method-call 

frequency. Recommendations are then created by traversing the methods invoked in 

decreasing order of frequency. A notable change from the approach of Bruch, Monperrus, 
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and Mezini’s (2009) BMN model is that D’Souza, Yang, and Lopes (2016) retain the 

original frequency values instead of the Boolean values distilled from the frequency 

values. This retains the knowledge of which methods are called more frequently than 

others for use in the recommendations. 

      D’Souza, Yang, and Lopes (2016) are not able to compare their approach to the 

approach of Bruch, Monperrus, and Mezini (2009) or Proksch, Lerch, and Mezini (2015) 

because they are evaluating the code completion accuracy of different programming 

languages. To demonstrate improvement, the paper compares its results against JEDI 

(Halter, 2012/2020), a popular open source Python code completion engine. The paper 

asserts that JEDI can be used in automated code completion tests that provide the ability 

to gather quantitative results at scale. However, they also performed manual comparisons 

against the JetBrains PyCharm IDE (PyCharm: The Python IDE for Professional 

Developers by JetBrains, n.d.), which they assert has a more powerful code completion 

engine than JEDI (D’Souza et al., 2016). 

      The experiments were evaluated for a total of 20 Python libraries, 11 standard 

libraries and 9 third-party libraries. The selection of those 20 libraries were based on the 

D’Souza, Yang, and Lopes’s (2016) determination of popularity within the Python 

community and frequency of library occurrence within the dataset of source repositories. 

      D’Souza, Yang, and Lopes (2016) evaluated their results using Mean Reciprocal 

Rank (MRR) and Recall. They chose MRR because the goal was to identify how high the 

result was in the resulting suggestion list, and not how long the resulting suggestion list 

is. The Precision measurement would penalize longer lists, even if the result was the first 

choice. Further, since the developer will only choose one item from the list, the MRR is 
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equivalent to the Mean Average Precision (MAP) measurement. Table 4 below shows the 

results of PyReco and JEDI for the 10 Python standard libraries. Table 5 below shows the 

result of PyReco and JEDI for the 9 Python third-party libraries. In all but one case, the 

PyReco system outperforms JEDI in both MRR and Recall. The one exception is 

argparse. The authors propose that with argparse, and with the low values for mock, it is 

due to unique nature of how these libraries work, and the lack of training data based on 

normal method call stacks and object assignments. The results of the manual comparison 

to PyCharm just capture the rank of relevant result, and PyReco improved over PyCharm 

for 16 out of the 20 libraries tested. Further, for the mock, ctypes, and google libraries, 

PyCharm failed to provide any recommendations. 

Library PyReco-MRR JEDI-MRR PyReco-Recall JEDI-Recall 

os 0.592 0.037 0.943 0.356 

re 0.727 0.196 0.967 0.853 

ctypes 0.369 0.146 0.565 0.161 

logging 0.425 0.080 0.730 0.615 

datetime 0.485 0.040 0.845 0.429 

time 0.516 0.0068 0.951 0.068 

json 0.632 0.0137 0.950 0.068 

collections 0.418 0.161 0.776 0.665 

struct 0.646 0.237 0.927 0.843 

subprocess 0.560 0.260 0.925 0.741 

argparse 0.306 0.424 0.422 0.518 

Table 4 – PyReco Results for Python Standard Libraries (D’Souza et al., 2016) 
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Library PyReco-MRR JEDI-MRR PyReco-Recall JEDI-Recall 

Django 0.467 0.001 0.687 0.003 

numpy 0.424 0.009 0.783 0.006 

mock 0.252 0.000 0.472 0.000 

sqlalchemy 0.551 0.092 0.871 0.419 

PyQt4 0.559 0.000 0.896 0.000 

theano 0.674 0.000 0.930 0.000 

wx 0.568 0.000 0.842 0.000 

google 0.638 0.001 0.910 0.002 

flask 0.481 0.000 0.819 0.000 

Table 5 – PyReco Results for Python Third-Party Libraries (D’Souza et al., 2016) 

      D’Souza, Yang, and Lopes (2016) have demonstrated that the use of a nearest 

neighbor classification algorithm, combined with a large corpus of training data can 

provide improved results for Python code completion. They do identify some potential 

issues with their results. First, they only used 20 libraries, and while broader than single 

library tests, it may not expand well to a more generalized use case. Second, the manual 

evaluation was performed only once, and the results may change over time. Third, bugs 

in the scanned source code in the repositories used as the input dataset could skew the 

training model, and thus the results may contain some false positives. Despite these 

issues, D’Souza, Yang, and Lopes (2016) have shown the application of typed code 

completion approaches to untyped languages is possible. 
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Long Short-Term Memory Neural Networks Pythia 

      Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) state that existing models do not fully 

leverage the capabilities of Natural Language Processing (NLP) using the long-range 

sequential characteristics of source code represented in ASTs. Prior research has focused 

on the use of vectorized source code fragments, rather than introducing techniques from 

NLP to vectorize the AST. Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) developed the 

Pythia model to leverage the word2vec algorithm developed by Mikolov, Corrado, Chen, 

and Dean (2013) at Google to vectorize flattened sequences extracted from the AST 

representation of source code. These word2vec vectors are then used as the input to a 

Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) as the training 

data. 

      Pythia’s novel approach to vectorizing source code using word2vec is an evolution 

over the prior Boolean vector model used by Bruch, Monperrus, and Mezini (2009) for 

their Best Matching Neighbors (BMN) model and shared by D’Souza, Yang, and Lopes 

(2016) for their modified BMN approach, or the frequency vector model used by 

Proksch, Lerch, and Mezini (2015) for their Pattern Based Matching (PBM) model. The 

key evolution is using an established model for representing complex word embedding 

rather than the minimally required vectors they needed to drive their models. 

      Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) leverage the word embeddings to 

drive their LSTM training model, which provides richer historical context for the use of 

specific syntax tokens. They show that by using this richer historical context, they were 

able to improve the accuracy of code completion suggestions provided to the developer. 

They demonstrate this improvement by measuring the Top-k accuracy and the Mean 
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Reciprocal Rank (MRR) against a Markov chain code completion system, which they 

consider as the current state of the art. The Top-k accuracy is defined as  

𝐴𝑐𝑐(𝑘) =  
𝑁𝑡𝑜𝑝 − 𝑘

𝑄
, (1) 

𝑀𝑅𝑅 =  
1

𝑄
𝑥 ∑

1

𝑟𝑎𝑛𝑘𝑖
, (2)

𝑄

𝑖=1

 

Where 𝑁𝑡𝑜𝑝 − 𝑘 represents the top k suggestions, Q is the total set of data samples, and 

𝑟𝑎𝑛𝑘𝑖 is the prediction rank of a recommendation. Using Top-k, the top-1 represents how 

often the first code completion suggestion is correct, and top-5 measures how often the 

correct code completion suggestion is in the first 5 suggestions. The results of Pythia and 

Markov Chain for the same data set are shown in Table 6. 

Class Name Top-5 Accuracy 

Markov Chain 

Top-5 Accuracy 

Pythia 

os 0.863 0.950 

numpy 0.575 0.697 

list 0.978 0.989 

str 0.974 0.988 

os.path 0.895 0.957 

sys 0.821 0.959 

wx 0.272 0.533 

logging 0.846 0.914 

time 0.951 0.980 

tensorflow 0.511 0.754 

Table 6 – Accuracy of Pythia and Markov Chain (Svyatkovskiy et al., 2019) 
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      Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) tried four different neural network 

models and made it a hyperparameter for their automated testing. First is a fully 

connected LSTM RNN. Second is the Gated Recurrent Units RNN (GRU) with predicted 

embedding. Third is LSTM with predicted embedding. Fourth, is LSTM with attention 

for temporal data. In terms of Top-5 accuracy, all four models were close to each other, 

ranging between 0.91 and 0.93. However, the size of the resulting models was 

significantly different, as is visible in Table 7. 

Model Architecture Top-5 Accuracy Model Size (MB) 

LSTM + fully connected 0.91 202 

GRU + predicted embedding 0.91 152 

LSTM + predicted embedding 0.92 152 

LSTM + attention 0.93 164 

Table 7 – Top-5 Accuracy of Different RNN Models for Pythia (Svyatkovskiy et al., 2019) 

      The Pythia model chose to use LSTM with predicted embedding for their final model. 

This provided a small loss in Top-5 accuracy for a reduction of 12 megabytes in the 

trained model. The slight increase in quality using LSTM with attention is supported by 

the findings of Li, Wang, Lyu, and King (2018) in their paper exploring using Neural 

Attention and Pointer Networks to improve code completion suggestions. Li, Wang, Lyu, 

and King (2018) explore a similar approach to Pythia, with a key difference between the 

two models the use of attention instead of predicted embedding. 

      Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) provide the results showing overall 

accuracy and MRR of four different code strategies compared to Pythia. These results are 

visible in Table 8 below. The results clearly show that Pythia is significantly improved 
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against the other models. The different models tested were Alphabetic, which is the 

complete list of all possible results sorted alphabetically; Frequency, which is the 

complete list of all possible results sorted by frequency of use; Frequency-if, which is the 

complete list of all possible results sorted by frequency of use taking if-else blocks into 

account; and Markov Chain modeling the relationship between different sequences of 

method invocation chains. 

Model Top-1 Accuracy Top-5 Accuracy MRR 

Alphabetic 0.36 0.47 0.372 

Frequency 0.38 0.64 0.495 

Frequency-If 0.40 0.67 0.521 

Markov Chain 0.58 0.83 0.704 

Pythia 0.71 0.92 0.814 

Table 8 – Comparison of Accuracy and MRR of Python and Four Models (Svyatkovskiy et al., 2019) 

      Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) used 2,700 top-stared and non-forked 

Python projects as the corpus of source data. This is significantly less than the 20,000 

used by D’Souza, Yang, and Lopes (2016) for their Python code completion model, but 

with significantly better results. Pythia had an overall MRR of 0.814, but PyReco 

averaged approximately 0.500, with a max MRR of 0.727 (D’Souza et al., 2016; 

Svyatkovskiy et al., 2019). Pythia achieves superior results trained on less data for more 

general-purpose cases including Python standard and third-party libraries. 

      The results for Pythia are an improvement over prior models, but it continues to 

demonstrate higher accuracy for standard libraries over third-party libraries. The 
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reduction in data set size and increased accuracy is an opportunity to improve third-party 

accuracy by introducing more source code repositories into the source corpus. 

 

Measuring Code Completion 

Prefix Scoring with Change Replay 

      Robbes and Lanza (2008) developed a novel approach to comparing multiple code 

completion strategies as a means of comparing their different strategies presented in their 

paper. Their approach is the capturing of changes creating during the development effort 

and use that information as a source of history similar to a version control history model 

they called an evolving AST. As the program is changed, the AST will reflect those 

changes. They capture the atomic AST events reflecting adding, changing, removing, and 

moving nodes within the AST and composite changes that represent multiple atomic 

events. These events are stored in the order of execution so they can be replayed in order, 

duplicating the developer’s context. 

      Replaying the stored AST events in order but stopping prior to the point a method 

name is captured, allows the replay engine to try different code completion algorithms at 

the same contextual point the developer experienced when the original context was 

captured. In trying different code completion engines, Robbes and Lanza (2008) can 

capture key metrics useful in demonstrating the accuracy and efficiency of each 

algorithm for the same contextual situation and feed this data into their evaluation model. 

Instead of the traditional precision and recall metrics for measuring prediction algorithm, 

they give shorter prefixes and higher ranked results more weight. The seek to calculate Gi 
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for each prefix, where I is the prefix length (Robbes & Lanza, 2008) using the following 

formula: 

𝐺𝑖 =  
∑

𝑟𝑒𝑠𝑢𝑙𝑡𝑠(𝑖, 𝑗)
𝑗

10
𝑗=1

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠(𝑖)
 (3) 

      In this calculation, i is the prefix length; j is the index; results(i, j) are the number of 

correct predictions at index j for prefix length i, and attempts(i) is the times the 

benchmark was run for the prefix length i. An accuracy of 100% for a given algorithm, 

would have a grade of 1 for that prefix length. With the graded accuracy, a score is 

calculated favoring shorter prefixes of 2 to 8 and multiplied by 100 for easier reading. 

𝑆 =  
∑

𝐺𝑖 + 1
𝑖

7
𝑖=1

∑
1
𝑘

7
𝑘=1

 𝑥 100 (4) 

      Robbes and Lanza’s (2008) premise is that with a standard means of calculating code 

completion accuracy taking the developers context into account, different strategies for 

generating code completion suggestions can be measured and compared. However, they 

assumed that user input is anchored at the front as a prefix. Code completion strategies 

since their paper was published support user input for filtering as a prefix, postfix, infix, 

as individual character filters, and combinations of these models. Robbes and Lanza’s 

(2008) formulas might be adaptable for any one of those user input models but would not 

be as easily adaptable for mixed user input models. Finally, their grading and scoring 

models are not just looking for the highest ranked solution, but the highest rank in the 

shortest suggestion list and with the shortest user supplied prefix. The size of the 

suggestion list is not relevant to the accuracy if the relevant results are at the top of the 
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list, and a user supplied prefix is no longer an applicable measure given the different 

filtering models in modern code completion systems.  

Mean Reciprocal Rank 

      Mean Reciprocal Rank (MRR) captures the rank of the relevant result that the 

developer considers accurate. The Mean Reciprocal Rank defines 𝑄 as the number of 

data queries, 𝑟𝑎𝑛𝑘𝑖 as the ranked position of the first relevant result for the i-th query, 

and is calculated with the following formula: 

𝑀𝑅𝑅 =  
1

𝑄
∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑄|

𝑖=1

 (5) 

      The MRR calculation is used by D’Souza, Yang, and Lopes (2016) to evaluate 

PyReco; by Asaduzzaman, Roy, Schneider, and Hou (2016) to evaluate their Context-

sensitive Code Completion; by Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) to 

evaluate Pythia; and by He, Xu, Zhang, Hao, Feng, and Xu (2021) to evaluate PyArt. 

This makes the use of MRR one of the more consistently used measurables for code 

completion suggestion accuracy. 

Top-k Accuracy 

      Top-k accuracy measures the likeliness that a result will be in first k results from a 

code completion suggestion request. Results in when 𝑘 = 1 are the most accurate, since 

the developers expected result was the first entry in the result set. Different research used 

different values for k in addition to top-1. All of the papers using a top-k, reported the 

results of the top-1. This measure is used by Asaduzzaman, Roy, Schneider, and Hou 

(2016) to evaluate their Context-sensitive Code Completion; by Nguyen, Hilton, 
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Codoban, Nguyen, Mast, Rademacher, Nguyen, and Dig (2016) to measure the accuracy 

of their APIREC model; by Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) to evaluate 

Pythia; and by He, Xu, Zhang, Hao, Feng, and Xu (2021) to evaluate PyArt. Top-k is 

another one of the more consistently used measurables for code completion suggestion 

accuracy. 

Recall 

      Bruch, Schäfer, and Mezini (2008) define Recall as the ratio between relevant 

recommendations made by a system for a given query and the total number of 

recommendations that should have been made. While Recall is used as part of the 

evaluation of the Pattern-Based Bayesian Network model (Proksch et al., 2015); of 

Context-sensitive Code Completion (Asaduzzaman et al., 2016); of PyReco (D’Souza et 

al., 2016); and PyArt (He et al., 2021); it is rarely used as a primary evaluation metric. 

Further, a number of papers, including the research by Svyatkovskiy, Zhao, Fu, and 

Sundarsan (2019) for Pythia do not use Recall.  

Precision 

      Bruch, Schäfer, and Mezini (2008) define Precision as the ratio between relevant 

recommendations made by a system for a given query and the total number of 

recommendations actually made by the system. Like recall, this metric is used by a 

number of research papers, but not with consistency. Further, it does not address the key 

question of is the relevant response earlier in the list. As the code completion systems 

have improved, the objective is not to measure if the right response is in the suggestions 

list, but where it is in the suggestions list. Hence, Pythia does not use Precision. 
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Replicating Pythia 

      Schuster, Song, Tromer, and Shmatikov (2020) replicated the Pythia model replacing 

PTVS (Microsoft/PTVS, 2015/2020) with46steroidd (Welcome to Astroid’s 

Documentation! — Astroid 2.5.9.Dev10+g432aa99 Documentation, n.d.) for parsing 

Python source files into an AST, and replacing ML.NET (ML.NET | Machine Learning 

Made for .NET, n.d.) with PyTorch (PyTorch, n.d.). This replicated model was used to 

demonstrate data poisoning vulnerabilities when using neural nets for code completion. 

To demonstrate the viability of those attacks, they implemented Pythia, using 2,800 top-

starred repositories from GitHub after some filtering for minimum and maximum AST 

node counts. This demonstrates that the Pythia model is replicable. Further, it 

demonstrates that key elements of the Pythia implementation, such as the AST parser and 

the machine learning library used, are replaceable with comparable frameworks. 
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Chapter 3 

Methodology 

 

 

Introduction 

      This research proposed a strategy to increase the code-completion accuracy of third-

party Python libraries in the Pythia prediction model. To deliver this increased accuracy, 

the input data used for training and testing was increased to include more examples of 

Python code using targeted third-party libraries. 

      Pythia is an approach to code-completion that has demonstrated a significant 

improvement over other approaches for accuracy (Svyatkovskiy et al., 2019). It has also 

been proven to be reproduceable using alternate but comparable tooling to the original 

approach (Schuster et al., 2020). Schuster, Song, Tromer, and Shmatikov (2020) provided 

details about their hyperparameters for Pythia training that differ from the paper from 

Svyatkovskity, Zhao, Fu, and Sundaresan (2019), such as the vocabulary criteria, number 

of hidden units, and training epochs for the LSTM neural network. This allowed the 

model generation to be significantly accelerated compared to the original Pythia approach 

with only a small loss in accuracy. Schuster, Song, Tromer, and Shmatikov (2020) state 

the accuracy difference may be related to the Pythia’s reliance on undocumented internal 

APIs in Visual Studio. Given that the approach was to show a relative increase in 

accuracy between third-party Python libraries and Python standard libraries, this overall 

accuracy degradation was not relevant.  
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      The overall workflow of the proposed new model is reflected in figure 13 below. This 

model consists of four stages of operation: Data Collection; Preprocessing; Offline Model 

Training; and Testing. Each of these four stages of operations are discussed below. The 

general operational flow is modeled on Pythia’s workflow with key changes to the 

selection of the AST data passed to the Matrix Builder and the Test Suite instead of 

Pythia’s integration with IDEs. Specific differences from the Pythia workflow are 

discussed below. 
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embedding
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Evaluator
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Figure 13–- Workflow from source code to testing. 

 

Data Collection 

      The core proposal in this dissertation is to increase the number of GitHub Python 

projects evaluated by the model generator. The challenge was that it is not known prior to 

evaluating the initial candidate set of Python projects and the resulting accuracy if more 

projects are required in the dataset or not. Further, GitHub searches are non-deterministic 



49 

 

  

due to the ever-changing number of projects, files within the projects, and stars 

associated with a project.  

 

GitHub Data Collector 

      To create a fixed set of GitHub projects to work with over multiple queries, a 

command line tool was created to search GitHub ordered by number of stars descending 

and store the results in an SQLite database. This was the Universal Dataset used as a 

static foundation for all further dataset generations. Since GitHub is not deterministic 

between search queries, multiple overlapping queries were run sequentially to collect as 

many matching projects as possible, while ignoring duplicate projects. These multiple 

runs were for projects with different minimal sizes in kilobytes. This process was 

repeated until the maximum number of target projects was reached or exceeded. 

      GitHub was searched for the 30,000 projects ordered by number of stars descending 

at the following eight different minimum projects sizes in kilobytes in descending order: 

0, 1, 10, 100, 1000, 5000, 10000, 100000. For each project, detailed information was 

collected based on the available GitHub data fields and meta information available. These 

fields included, but were not limited to, the GitHub ID, result sort order, creation date, 

last update date, Git clone URLs, branch information, fork status, stars, size, owner ID, 

and programming language. For each project discovered, the GitHub project tree was 

walked to discover all Python files associated with the default branch of the repository, 

and the GitHub access URL, SHA code, and path name was stored. When these searches 

were completed, a snapshot of GitHub at a moment in time had been created. That 

snapshot allowed for the unique identification of distinct repositories based on the 
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GitHub ID. For each of those distinct repositories identified, all files relevant to the AST 

processing were located using GitHub’s URL to the raw source code file. This allowed 

all files to be accessed without having to clone the projects. Further, this model allowed 

for consistently repeating the rest of the model without being impacted by constant 

changes to GitHub over time. 

 

Preprocessing 

Dataset Generator 

      A key requirement of this workflow was the ability to regenerate a new dataset that is 

a subset of the universal dataset based on specific input criteria. The initial dataset 

utilized the same criteria defined by Svyatkovskity, Zhao, Fu, and Sundaresan (2019). 

This was defined as the 2,700 non-forked top-starred Python projects. The Pythia dataset 

was identified as containing 15.8 million method calls, but without knowing the specific 

projects and their sizes, and if the method call count was in the input dataset or the testing 

dataset, it is not possible to use both the repository count, and method count as a target 

for the input dataset. The repository count was chosen since it was the broadest match 

that could be reasonably replicated. The subset of data was then divided into development 

and test sets at 70% and 30% respectively as was used by Pythia. Further, the 

development test set was split at random into training and validation sets with 80% and 

20% respectively. These ratios were used for all datasets generated and not just the initial 

dataset. All the information required to generate the dataset, and the usage classification 

of each repository was stored as a set in the database. This allowed for rerunning with the 

same data on demand. 
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      This need for regeneration on demand using different parameters was supported by 

the creation of a command line tool that regenerated a new dataset from the universal 

dataset, dataset configuration parameters, and an optional source sub-dataset. When a 

sub-dataset was supplied, the new dataset extended the supplied sub-dataset with unused 

unique repositories found in the universal dataset. This allowed for the input dataset to be 

incrementally extended. The newly generated dataset was stored in the database as a 

unique dataset, including the identity of the source dataset and the update parameters. 

This allowed for reusing the same set of data and an audit trail of how it was generated. 

 

Code Processing 

      All source files identified in the input dataset were parsed into their representative 

Abstract Syntax Tree (AST). This parsing phase removed non-code nodes and retained 

nodes representing member access expressions and method invocations. Meta 

information about the file, such as module imports information and type definitions, if 

any, were captured and stored with the file information to assist with non-training 

analysis. This information allowed the dependency evaluation process to identify how 

many files depend on specific Python standard and third-party modules. Further, this 

assisted in type predictions when the AST was flattened for consumption by the matrix 

builder.  

      Each syntax node and token name were mapped to an integer between 1 and V to 

assign a token index to each token. V is an autotuned parameter representing the 

vocabulary size. All tokens in the vocabulary were mapped in the range of 1..V, while all 

tokens outside of the vocabulary were mapped in the range of V+1..∞. The size of the 
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vocabulary was defined based on the frequency of the tokens being greater than the 

tunable hyperparameter for the token frequency threshold. The initial default for the 

token frequency threshold was 500 as used in Pythia. Any token equal to or greater than 

that threshold was mapped in the 1..V range. 

      Variable names were normalized into typed or untyped equivalents that simplified 

their uniqueness to a generated name. As an example, the variable named myText with a 

type of string is relabeled as string_1. Variables of undeterminable type were assigned the 

type of untyped. Union types were assigned the type of all relevant types identified. 

Aliases were normalized so multiple aliases for the same type will be treated 

equivalently. This simplified the matching process and minimized the impact of variable 

name uniqueness during the training process. Further, eliminating the unique variable 

names reduced the vocabulary size significantly. 

      Each AST was generated using pre-order depth-first traversal of the Python tokens. 

Tokens were partitioned based on their relevance leading towards a method call, with 

irrelevant tokens, such as comments, being discarded. The scan was used to generate an 

in-order sequential sequence of relevant AST tokens with a “.” as the end of sequence 

termination character. These token sequences were used by word2vec as training 

sequences during testing to represent the user generated code when generating a 

completion projection, and during evaluation for the correctness of the prediction. When 

generating training sequences, up to T lookback tokens prior to the method call were 

retained. T is a tunable hyperparameter for the model, and the initial default was 1000 as 

used by Pythia. This was tuned based on performance and results of testing. 
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Dependency Evaluator 

      There was a need to determine if the input dataset needed to be grown with more 

projects using specific modules. A Dependency Evaluator that examined parsed AST 

meta information, the results of any existing prior test results, and configuration 

information to determine if the dataset needed to be expanded and regenerated was 

planned. If a new dataset was required or a revision to an existing dataset, the 

Dependency Evaluator was going to generate a new dataset configuration and trigger 

dataset regeneration. Two tunable hyperparameters were planned to be added to support 

this stage. The first was a tolerance threshold to control when a dataset is out of or in 

tolerance ranges. The second was a maximum number of regenerations before the 

generated dataset automatically accepted the current results and moved to the next phase 

of processing.  

 

Encoding Code Snippets 

      The sequence of nodes from flattened AST were mapped into matrices as input to 

word2vec. The AST is walked pre-order depth first to retain a representation of the 

contextual relationship between the code tokens. Method calls were used for the labels 

and were one-hot encoded. The matrices were then used by word2vec to produce low-

dimensional dense vectors that were used by the LSTM. This preserved the semantic 

relationships discovered through AST parsing. The output softmax produced by 

word2vec was used as the input for the LSTM training and as the output classification 

matrix, as implemented in Pythia (Svyatkovskiy et al., 2019). 
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Offline Model Training 

Pythia Deep Learning Model Training 

      The Pythia model training uses a Long Short-Term Memory (LSTM) Recurrent 

Neural Network (RNN) to generate the prediction softmax (Svyatkovskiy et al., 2019). 

The diagram of Pythia’s RNN architecture is shown in Figure 14. Svyatkovskity, Zhao, 

Fu, and Sundaresan (2019) used 2 RNN layers with 100 hidden units per layer and a 

dropout rate of 0.8. Schuster, Song, Tromer, and Shmatikov (2020) replicated Pythia 

using the same 2 RNN layers, but with 8 hidden units per layer and a dropout rate of 0.75 

with a small decrease in overall accuracy. However, the time to generate the models 

using Schuster, Song, Tromer, and Shmatikov’s (2020) method was reduced to 15 hours 

for a single GPU from approximately 41 hours with multiple GPUs using Svyatkovskity, 

Zhao, Fu, and Sundaresan’s (2019) method. This single GPU method also reduced the 

complexity of the model generation by removing the need to pad and batch the training 

buffers used in the multi-GPU LSTM.  
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Figure 14–- Pythia Neural Network Architecture 

 

      This dissertation measured the ratio of Python standard library accuracy to Python 

third-party library accuracy using Schuster, Song, Tromer, and Shmatikov’s (2020) 

method. This ratio was similar to the data shared by Svyatkovskity, Zhao, Fu, and 

Sundaresan’s (2019), and the simpler method was used to reduce the overall complexity 

and model generation time. This allowed for faster feedback from the prediction testing 

to the dataset generation to adjust dependencies for another model generation cycle. 

 

Hyperparameter Tuning 

      Svyatkovskity, Zhao, Fu, and Sundaresan’s (2019) have defined the hyperparameters 

for their training of Pythia in figure 15. Most of these hyperparameters were the initial 

settings for this dissertation's model. Schuster, Song, Tromer, and Shmatikov’s (2020) 

replication of Pythia showed that some of these hyperparameters can be eliminated or 

changed to reduce complexity and generation time with little to no impact on overall 

accuracy. Their hyperparameters were considered where appropriate. 
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Figure 15–- Pythia Hyperparameters (Svyatkovskiy et al., 2019) 

 

Evaluation 

Key Questions 

 

      To evaluate the results of this dissertation, the following questions were answered: 

1. Does the replicated implementation of Pythia produce a ratio between Python 

standard libraries and Python third-party libraries similar to the original Pythia 

analysis by Svyatkovskity, Zhao, Fu, and Sundaresan’s (2019)? 

2. Will increasing the number of projects in the input dataset to include more 

projects with references to specific Python third-party libraries improve the 

accuracy of those third-party libraries? 

3. How many additional projects are required to be added to increase the accuracy 

significantly? 
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Evaluation Metrics 

      The two primary metrics that were captured to measure the improvement of the 

generation model are the Top-k accuracy and the mean reciprocal rank (MRR). 

Svyatkovskity, Zhao, Fu, and Sundaresan’s Pythia paper (2019) publish an overall MRR 

and Top-5 accuracy, and the Top-5 for the 10 most frequent libraries their dataset 

included. This dissertation uses the Pythia overall MRR and Top-5 as a baseline to 

compare against. 

      The secondary metric used to indicate improvement was the shift in the K counts 

from missing to K>5 to K5 to K1. The shifting of K counts shows how the dataset is 

improving that is sometimes not visible in the Top-K and MRR. As an example, a shift 

from missing to K>5 is an improvement of the model and was visible in the MRR, but 

not reflected in the Top-5. Similarly, a move from K5 to K1, was not significantly 

reflected in the MRR for larger datasets. 

      Given the initial dataset for Pythia was not identified, it was not possible to ensure the 

recreation of their top-10 Python libraries given a fully random dataset. Therefore, the 

dataset generator supported encouraging more projects with the same libraries identified 

in Pythia’s results. This was used to measure against the same libraries. Finally, the 

model was run without the dataset generation biased to include the Pythia top-10 libraries 

to demonstrate the ability to generate improved results for a random set of 10 Python 

libraries. 
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Differences from Pythia 

Preprocessing 

      The preprocessing phase differed from the original Pythia model by introducing the 

ability to regenerate the input dataset to include more projects that use third-party Python 

modules. This involved the new data collection process, dataset generator, and the 

dependency evaluator. Other aspects of the Pythia model remained, though the 

implementation differed slightly due to alternative tooling used. 

 

Model Training 

      The offline model training was simplified by removing the parallel processing and 

reducing the number of hidden layers. This reduced the cycle time for each model test 

with a generated dataset and reduced the time to implement. The reduced complexity also 

removed other potential variables from the comparison that could adversely impact the 

results. 

 

Model Quantization 

      Model quantization was not implemented. This process’s purpose was to reduce the 

physical size of the stored model as an optimization for serving results to clients. It is not 

significant to the accuracy results of predictions. 
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Serving Recommendations 

      The ability to serve recommendations to an IDE is not required to test the prediction 

accuracy of the implemented model. This is only necessary to demonstrate the integration 

with developer tools. Since it is not required to evaluate the predictions, it was not 

implemented. 

 

Conclusion 

      This research showed that by increasing the number of projects into the Pythia dataset 

using guidance based on the frequency of Python third-party modules included, the 

accuracy of Pythia for those third-party modules is increased. The successful 

demonstration of that improvement justifies the additional effort to include this guided 

dataset adjustment into existing Pythia based code recommendation systems. 
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Chapter 4 

Results 

 

Introduction 

      The Pythia model was replicated using Python 3.11, gensim 4.3.1 for Word2Vec 

processing, keras 2.12.0, and tensorflow 2.12.0. Numerous hardware configurations in 

AWS and Google Cloud were tried, but the below configurations were stable and 

produced results reliably in reasonable timeframes. Based on memory, CPU, GPU, and 

disk needs, the following runtime environments were used: 

• Local computer with AMD Ryzen 9 5960X 16 core processors / 32 cores, 64 GB 

RAM, NVIDIA GeForce RTX 3070 Ti with 40GB GPU memory, and 

approximately 8TB SSD storage. 

• Google Collab Pro+ with NVIDIA A100 GPU with 40GB GPU RAM, 83.6GB 

CPU RAM and 166.8 SSD. 

• AWS r6a.4xlarge EC2 with 16 vCPU, 128GB RAM, and 2TB storage. 

 

      The tests were successfully completed without exhausting the initial GitHub 

repositories collected during the proposal phase.  
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Changes from Planned Methodology 

      The automated dependency evaluator planned for in the methodology was not 

implemented. The processing of data on different platforms (local, Google Collab, and 

AWS EC2s) required the frequent migration of data between the platforms. This 

migration drove up the time needed and the costs of each pass. It was necessary to 

manually select the dependencies and use broader step sizes in the dataset instead of the 

planned auto-incrementing steps in repository sizes based on the results of individual 

tests. 

 

Baseline Model 

      The Pythia paper from Svyatkovskity, Zhao, Fu, and Sundaresan (Svyatkovskiy et al., 

2019) list ten Python libraries with the Top-5 accuracy results. They do not list individual 

MRR results, but instead provide an overall Top-1 accuracy score, Top-5 accuracy score, 

and MRR for Pythia. They identify the source data for the overall scores as the “test set 

for the Pythia neural model and various baselines.”  

      This left a few possibilities for how they computed their over results: 

• The calculation is the aggregation over the entirety of the test data set, but not the 

validation or training data sets. 

• The calculation is the aggregation over a different, but unidentified, combination 

of the test, validation, and training data sets. 

• The calculation is an aggregation of the ten libraries used in the Top-5 Pythia 

results. 
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      The first two options are impossible to replicate without the original source input data 

used by Pythia and the exact computation used. Neither of this information was provided. 

The last calculation cannot be replicated without the exact formula and the original 

source input libraries used by Svyatkovskiy. 

 

      To circumvent this gap in information, the baseline version of this dissertation’s 

implementation was compared against the Pythia K5 accuracy only for the ten libraries 

with measurable results by Svyatkovskiy. One of the ten libraries had no measurable 

results in this dissertation’s baseline, which generated an outlier situation that skewed 

those results. To compensate for that scenario, the baseline was compared against all ten 

and the nine libraries with results in both models. The average change in K5 accuracy 

over the libraries with and without the outlier were calculated between Pythia and this 

dissertation’s baseline. The comparison between Pythia and the baseline model used in 

this dissertation is shown in Table 9 below. This table shows the Python libraries used in 

Svyatkovskiy’s paper, the K5 accuracy reported for Pythia, the K5 accuracy generated by 

this dissertations baseline model, and improvement percentage over the Pythia K5 

achieved by the baseline model. 

 

Library Pythia K5 

Accuracy 

Dissertation  K-5 

Accuracy 

Improvement 

os 0.863 0.976 +2.71% 

numpy 0.575 0.843 +21.02% 



63 

 

  

list 0.978 0.975 -1.40% 

str 0.974 0.968 -2.01% 

os.path 0.895 0.980 +2.39% 

sys 0.821 0.947 +1.61% 

wx 0.272 0.000 -100.00% 

logging 0.846 0.970 +6.11% 

time 0.951 0.977 -0.33% 

tensorflow 0.511 0.838 +75.96% 

Table 9 - Comparison of Pythia and Baseline Model for K5 Accuracy 

 

      The average change across all ten libraries identified by Pythia is an improvement of 

0.61%. When the outlier of the wx library is removed, the average of the improvement 

across the nine remaining libraries is 11.79%. Considering the full set of ten libraries 

shows that this dissertation’s baseline model is comparable to Pythia’s results in terms of 

K5 accuracy, the only per-library metric provided by Svyatkovskiy. When the outlier of 

the wx library is removed, the baseline model shows a measurable improvement over the 

results presented by Svyatkovskiy. 

 

      Since the MRR results of Svyatkovskiy are not directly reproducible, the MRR for the 

ten Pythia identified libraries, the MRR for the Pythia libraries without the outlier of wx, 

and the MRR for all libraries included in the test data set was calculated and compared 

against the MRR provided by Svyatkovskiy. The results of this MRR calculation are 

provided in Table 10 below. 
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Pythia Baseline w/ Outlier Baseline w/o Outlier Baseline w/ All Libraries 

0.814 0.765 0.849 0.705 

Table 10 - Comparison of Pythia and Baseline Model for MRR 

 

      The table shows that when comparing the baseline model MRR, including the outlier, 

against Svyatkovskiy’s MRR result, leads to a 6.02% decrease in MRR. However, when 

comparing the baseline model MRR, excluding the outlier, against Svyatkovskiy’s MRR 

result, leads to a 4.30% increase in MRR. Comparing the MRR average of all libraries in 

the baseline model’s test set against Svyatkovskiy’s MRR results in a 13.39% decrease in 

MRR. The challenge here is that without being able to use Svyatkovskiy’s input dataset 

to calculate a baseline MRR, it is not possible to have a meaningful comparison in 

absolute MRR values.  

      Given this limitation in showing accurate MRR comparisons against Svyatkovskiy, 

this dissertation uses the K5 accuracy comparison to establish the validity of the baseline 

model being able to replicate the capabilities of Pythia. Comparable model parity is 

shown for the libraries tested by Svyatkovskiy with the outlier with a difference of 

0.61%. While excluding the outlier model raises this difference to 11.79% showing a 

significant improvement. The expectation is that for the same libraries, the baseline 

model will generate similar or better results than the Pythia model as documented by 

Svyatkovskiy. 
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      This dissertation calculated the impact of increasing the quantity of specific libraries 

based on their relative change over the baseline model’s in K1, K5, and MRR. It also 

calculated the improvement in the target counts where a prediction moves from missing 

to greater than K5, to K5, and to K1. Given the lack of required information to precisely 

replicate the Svyatkovskiy Pythia model, the baseline model was used as a comparable 

stand in for the Pythia model, and improvements against the baseline model are expected 

to replicate against Svyatkovskiy Pythia in a similar fashion.  

 

Expansion by 100 Repositories 

      The first expansion set test used a maximum quantity of 100 new repositories per 

target library. This represents a 3.70% increase in the total number of repositories in the 

dataset, which expanded from 2,700 repositories to a maximum of 2,800 repositories. 

 

      The following libraries were selected to be expanded by 100: markdown, yaml, and 

tqdm. The reason for their selection was because the ratio of count to missing was 

significant, the current MRR had room for improvement, and the test data sets were not 

significant in size. This allowed for the models to be recreated and tested frequently 

during the hyperparameter tuning phase of the model generation. 

 

markdown Library 

      The markdown library in the baseline model had a total of 2,167 identified method 

calls in the test data set, with 876 of those method calls being K1 accurate, 907 being K5 
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accurate, 3 being greater than K5 accurate, and 1,257 missing from the prediction list. 

This resulted in a K1 accuracy rate of 40.42%, a K5 accuracy rate of 41.86% and an 

MRR of 0.410 as seen in table 11. 

 

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

2,167 876 907 3 1,257 0.40425 0.41855 0.41015 

Table 11 - Markdown Library Results using Baseline Model 

 

      The dataset was expanded by 100 repositories that included imports of the markdown 

library. This increase only applied to the training and validation dataset, and not to the 

testing dataset. The same testing dataset was used in all tests to ensure that the changes to 

the results were not impacted by the tests, only by the input datasets. The results of 

adding 100 additional markdown including repositories resulted in a significant 

improvement, with the raw results visible in table 12 below. 

 

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

2,167 941 1,009 11 1,147 0.43424 0.46562 0.44733 

Table 12 - Markdown Library Results using Baseline+100 Model. 

 

      The change between the baseline dataset and the baseline+100 dataset is visible in 

table 13 below. The results show a significant left shift improvement in the counts of 

predictions. The K1 count increased by 7.42%, K5 count increased by 11.25%, the 
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greater than K5 (Kn) counts increased by 266.67%, and the missing predictions count 

(Kmissing) reduced by 8.75%. K1 and K5 accuracy directly correlates to their count 

improvements, so they improved by 7.42% and 11.25% respectively. MRR improved by 

9.07%. This is provided in table 13 below. 

 

ΔK1 ΔK5 ΔKn ΔKmissing ΔK1 Acc. ΔK5 Acc. ΔMRR 

+7.42% +11.25% 266.67% -8.75% +7.42% +11.25% +9.07% 

Table 13 - Markdown Library Improvement Results of Baseline v Baseline+100 

 

tqdm Library 

      The tqdm library in the baseline model had a total of 1,475 identified method calls in 

the test data set, with 902 of those method calls being K1 accurate, 977 being K5 

accurate, 17 being greater than K5 accurate, and 481 missing from the prediction list. 

This resulted in a K1 accuracy rate of 61.15%, a K5 accuracy rate of 66.24% and an 

MRR of 0.635 as seen in table 11. 

 

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

1,475 902 977 17 481 0.61153 0.66237 0.63451 

Table 14- TQDM Library Results using Baseline Model 

 

      The dataset was expanded by 100 repositories that included imports of the tqdm 

library. This increase only applied to the training and validation dataset, and not to the 
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testing dataset. The same testing dataset was used in all tests to ensure that the changes to 

the results were not impacted by the tests, only by the input datasets. The results of 

adding 100 additional repositories including the tqdm module resulted in a minor 

improvement that was less significantly visible than shown with the markdown library. 

The raw results are visible in table 15 below. 

 

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

1,475 905 987 7 481 0.61356 0.66915 0.63830 

Table 15 – TQDM Library Results using Baseline+100 Model. 

 

      The change between the baseline dataset and the baseline+100 dataset is visible in 

table 16 below. The results show a minor left shift improvement in the counts of 

predictions. The K1 count increased by 0.33%, K5 count increased by 1.02%, the greater 

than K5 (Kn) counts decreased by 58.82%, and the missing predictions count (Kmissing) 

remained the same. K1 and K5 accuracy directly correlates to their count improvements, 

so they improved by 0.33% and 1.02% respectively. MRR improved by 0.60%. This is 

provided in table 16 below. 

 

ΔK1 ΔK5 ΔKn ΔKmissing ΔK1 Acc. ΔK5 Acc. ΔMRR 

+0.33% +1.02% -58.82% 0.00% +0.33% +1.02% +0.60% 

Table 16 – TQDM Library Improvement Results of Baseline v Baseline+100 
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yaml Library 

      The yaml library in the baseline model had a total of 564 identified method calls in 

the test data set, with 114 of those method calls being K1 accurate, 114 being K5 

accurate, 0 being greater than K5 accurate, and 450 missing from the prediction list. This 

resulted in a K1 accuracy rate of 20.21%, a K5 accuracy rate of 20.21% and an MRR of 

0.202 as seen in table 17. 

 

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

564 114 114 0 450 0.20213 0.20213 0.20213 

Table 17 - Yaml Library Results using Baseline Model 

 

      The dataset was expanded by 100 repositories that included imports of the yaml 

library. This increase only applied to the training and validation dataset, and not to the 

testing dataset. The same testing dataset was used in all tests to ensure that the changes to 

the results were not impacted by the tests, only by the input datasets. The results of 

adding 100 additional yaml including repositories resulted in no change to the results. 

The raw results are shown in table 18 below. It was expected based on the experience 

with the tqdm library, that the results of adding 100 yaml repositories would yield little 

improvement. The result of no improvement was not expected. 

 

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 
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564 114 114 0 450 0.20213 0.20213 0.20213 

Table 18 - Yaml Library Results using Baseline+100 Model. 

 

Results Analysis 

      The results with 100 additional repositories were mixed across the three tests 

performed. The markdown library had significant improvements with an increase in K1 

and K5 accuracy, the MRR score, and a left shift in the counts from missing through to 

K1. However, tqdm’s results were marginal at best. The K1 and K5 accuracy improved, 

but not significantly. Similarly, the MRR increased by not significantly. The only left 

shift was from the already identified predictions from Kn to K5 to K1. Finally, the results 

for yaml were disappointing with no change in any of the calculated values. 

 

      Numerous different hyperparameters were tried to improve the model with no 

improvement, and most yielded worse results. Examining the new repositories included 

into input dataset showed that additional code being analyzed was very similar to the 

existing code being analyzed. There were some additional patterns of usage for tqdm, but 

there were no significant usages difference for yaml. This lack of diversity in the code 

base was visible in the testing data by showing no significant improvements in 

identifying new patterns. There was nothing new for the training to learn with the current 

dataset over what it had learned. It improved on what it had already learned but did not 

find something new. 
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      This is not a fault of the model, but of the input dataset. The model was able to 

improve the predictability of items it could already find, the Kmissing to K5 and K1, but 

it could not find new predictions. The working theory being that there is a floor to the 

improvement value of an additional 100 repositories, which is only a 3.70% increase, that 

it is not bringing enough diversity to the training set to improve the results. Given the 

small size of tqdm and yaml tests relative to the entire dataset, 0.039% and 0.015% 

respectively, of the overall test dataset, it is probable they required more usage patterns 

for training to identify the small number of unique usage patterns in the test dataset. For 

reference, markdown represented 0.058% of the test dataset and saw significant 

improvement. The tqdm library saw a small improvement with 100 additional 

repositories at 0.039% of the test dataset, and yaml saw no improvement with 100 

additional repositories and 0.015% of the test dataset. There is a floor to the improvement 

with 100 additional repositories that likely has a correlation to the size of the test dataset. 

 

Expansion by 270 Repositories 

      Based on the results of testing with 100 additional repositories, two options were 

available to move the analysis forward: increase the size of the tests for the target 

libraries relative to the overall test dataset or increase the number of libraries being added 

into the input dataset. The former option would require re-baselining the model and 

would create bespoke testing channels based on the specific library sets. This was not 

conducive to proving the general improvement of the Pythia model through increasing 

the input dataset and was discarded as an option. 
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      It was decided to increase the number of libraries added to the input dataset. The 

analysis in the prior section shows that 100 additional libraries, or 3.70%, was too small. 

The new number of additional libraries would be 10% of the repository count, or 270 

additional libraries. This would be a significant enough increase to provide more input 

data diversity.  

 

markdown Library 

      The markdown library in the baseline model had a total of 2,167 identified method 

calls in the test data set. The model was enhanced with 270 additional repositories 

containing the markdown library. The result was with 1,042 of those method calls being 

K1 accurate, 1,096 being K5 accurate, 8 being greater than K5 accurate, and 1,063 

missing from the prediction list. This resulted in a K1 accuracy rate of 48.08%, a K5 

accuracy rate of 50.58% and an MRR of 0.493 as seen in table 19 below. 

 

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

Baseline 876 907 3 1,257 0.40425 0.41855 0.41015 

Baseline+100 941 1,009 11 1,147 0.43424 0.46562 0.44733 

Baseline+270 1,042 1,096 8 1,063 0.48085 0.50577 0.49256 

Table 19 – Markdown Library Results for Baseline, Baseline+100, and Baseline+270 Models 

 

      This dataset with 270 additional repositories yielded significant improvements over 

the baseline and the baseline with 100 additional repositories. The raw results of all 3 
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tests are below in table 19. The baseline+100 yielded improvements of 7.42%, 11.25%, 

and 9.06% over the baseline for K1 accuracy, K5 accuracy, and MRR, respectively. The 

baseline+270 yielded improvements of 18.95%, 20.84%, and 20.09% over the baseline 

for K1 accuracy, K5 accuracy, and MRR, respectively. The baseline+270 improved over 

baseline+100 for K1, K5, and MRR by 10.73%, 8.62%, 10.11% respectively. Table 20 

below shows the percentage change from baseline to the baseline plus 100 and 270 

additional markdown repositories. The table also shows the percentage change between 

100 and 270 markdown repositories.  

 

      The increased repositories also impacted the predictions greater than K5 and the 

missing predictions. The missing predictions were reduced by 15.43% with 270 

additional repositories compared to the baseline, and 7.32% when compared to the 

baseline+100. The predictions above K5 went down by 27.27% between baseline+270 

and baseline+100. This shows that more of the expected predictions were now being 

captured by both the baseline+100 and baseline+270 models. The baseline+100 had K>5 

predictions increase by 266.67 over baseline. This implies that many of the missing 

predictions that are now identified are still in the K>5 predictions list. However, with 

baseline+270, this number is reduced by 27.27% over the baseline+100. This shows that 

the baseline+270 is not only finding more predictions, but significantly more of them are 

in the K1 to K5 prediction range. 

 

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 
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Baseline+100 

v Baseline 

7.42% 11.25% 266.67% -8.75% 7.42% 11.25% 9.07% 

Baseline+270 

v Baseline 

18.95% 20.84% 166.67% -15.43% 18.95% 20.84% 20.90% 

Baseline+270 

v 

Baseline+100 

10.73% 8.62% -27.27% -7.32% 10.73% 8.62% 10.11% 

Table 20 – Markdown Library Change % for Baseline, Baseline+100, and Baseline+270 Models 

 

      The MRR reinforces this conclusion by showing the improvement in the rank of the 

predictions by 10.11% using the baseline+270 compared to from the baseline+100 model. 

When compared to baseline, the MRR shows a 20.90% improvement in the rank of the 

predictions. These MRR improvements reinforce the improvements visible in the K1 and 

K5, plus the shift from Kmissing to K>5. 

 

tqdm Library 

      The tqdm library in the baseline model had a total of 1,475 identified method calls in 

the test data set. The baseline model results were significantly better than markdown, and 

the resulting improvement to tqdm by adding 100 repositories was not as significant. 

Adding 100 tqdm repositories yielded improvements of 0.33%, 1.02%, and 0.60% over 

baseline for K1, K5, and MRR respectively. The number of missing predictions was 

unchanged. The number of K>5 predictions reduced by 58.82%, the only significant 

change, but in raw numbers the change was less significant, being a 17 to 7 reduction.  
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      The addition of 270 tqdm repositories improved over the baseline and baseline+100, 

but not significantly. K1 improved by 2.00%, K5 by 1.13%, K>5 by 64.49%, and MRR 

by 1.78%. Kmissing was still unchanged. Compared to baseline+100, the baseline+270 

improvement was 1.66%, 0.10%, 14.29%, and 1.18% for K1, K5, K>5, and MRR, 

respectively. These results show that the baseline+270 has improved prediction rank for 

already known predictions but did not identify any of the missing predictions. It is an 

improvement, but not a significant improvement. The raw results are in table 21 below. 

The comparative percentage improvements of the models are in table 22 below. 

 

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

Baseline 902 977 17 481 0.61153 0.66237 0.63451 

Baseline+100 905 987 7 481 0.61356 0.66915 0.63830 

Baseline+270 920 988 6 481 0.62373 0.66983 0.64580 

Table 21 - TQDM Library Results for Baseline, Baseline+100, and Baseline+270 Models 

 

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

Baseline+100 

v Baseline 

7.42% 11.25% 266.67% -8.75% 7.42% 11.25% 9.07% 

Baseline+270 

v Baseline 

18.95% 20.84% 166.67% -15.43% 18.95% 20.84% 20.90% 
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Baseline+270 

v 

Baseline+100 

10.73% 8.62% -27.27% -7.32% 10.73% 8.62% 10.11% 

Table 22 – Yaml Library Change % for Baseline, Baseline+100, and Baseline+270 Models 

 

      The results for tqdm show improvement using more input data, but with a higher 

starting prediction quality for tqdm combined with less diversity of code usage, means 

that finding new prediction patterns are harder for this library. The improvements from 

more data do exist, but not with the same significance as seen with markdown. 

 

yaml Library 

      The yaml library in the baseline model had a total of 1,475 identified method calls in 

the test data set, and a poor prediction quality with a K1 and K5 accuracy of 20.21% and 

20.21% respectively. The addition of 100 yaml repositories to the baseline model resulted 

in no change to any of the measurements. 

 

      The addition of 270 yaml repositories yielded a significant improvement over the 

baseline and baseline+100 models with K1, K5, Kmissing, and MRR improving by 

34.21%, 78.95%, 24.00%, and 52.67% respectively. The baseline+270 model improved 

the ability to find missing predictions, which resulted directly in improved K1 and K5 

results. The K>5 metric increased instead of reducing because of missing predictions not 

being in the K1 or K5 prediction lists. The result is that the MRR improved by 52.67%.  
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      The raw metrics are in table 23 below and comparative percentages for the models are 

visible in table 24 below. 

 

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

Baseline 114 114 0 450 0.20213 0.20213 0.20213 

Baseline+100 114 114 0 450 0.20213 0.20213 0.20213 

Baseline+270 153 204 18 342 0.27128 0.36170 0.30860 

Table 23 - Yaml Library Results for Baseline, Baseline+100, and Baseline+270 Models 

 

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR 

Baseline+100 

v Baseline 

0.00% 0.00% N/A 0.00% 0.00% 0.00% 0.00% 

Baseline+270 

v Baseline 

34.21% 78.95% N/A -24.00% 34.21% 78.95% 52.67% 

Baseline+270 

v 

Baseline+100 

34.21% 78.95% N/A -24.00% 34.21% 78.95% 52.67% 

Table 24 – Yaml Library Change % for Baseline, Baseline+100, and Baseline+270 Models 

 

      The results for yaml show significant improvement using more input data. However, 

it required more input data than markdown to show improvement. Further, starting with a 
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lower initial prediction quality allowed for a more significant improvement than 

markdown or tqdm. 

 

Results Analysis 

      The results with 270 additional repositories showed improvements at various levels of 

significance. Libraries with a higher prediction quality, such as tqdm with an MRR of 

0.63451, have less room for improvement, so a less significant improvement was 

expected. Similarly, libraries with lower prediction quality, such as yaml with an MRR of 

0.20213, have more room for improvement, so a more significant improvement was 

expected. The markdown library had a prediction quality between the other two, with an 

MRR of 0.41015, and it showed improvement in both models using additional libraries. 

Increasing the expansion size to 270 repositories yielded better results for all three 

libraries. While the three did not have the same level of improvement, there was an 

inverse correlation between the lower the initial quality and a higher improvement in the 

quality of the predictions. A deeper analysis of this correlation is left to future research. 

 

Impact Beyond Target Module 

      The expansion of additional repositories for a specific target module impacts the 

predictions of the model for the specific target module, but the additional repositories 

bring in other modules than the specific target module. The additional repositories must 

not degrade the overall performance of the model for the non-target modules to maintain 

the expected performance of the generated model.  
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      The Pythia paper provides three overall metrics when comparing against other 

models, K1 Accuracy, K5 Accuracy, and MRR. However, it does not provide the details 

of the input or test data sets that would allow for these overall metrics to be replicated 

using the same technique. To account for this insufficient information, this dissertation 

selected the 10 modules that were clearly used by Pythia in Svyatkovskiy’s paper and 

added 31 more modules. These 41 modules were used in all tests against all models. For 

each module in each test suite, the K1 Accuracy, K5 Accuracy, Kn Count, and K-missing 

Count, and MRR were calculated. The sum of all method calls in the test suite is 

3,747,192. This total method count is constant for all models tested with the other 

measures being variable by model. The sum of K1, K5, Kn, and K-missing are each 

calculated along with its percentage against the constant total. Finally, the average MRR 

is calculated for each model across all 41 modules. These metrics allow comparing the 

results of each model against the baseline and each other. 

 

      The tables 25 and 26 below show the raw counts, MRR, and percentages for the 

overall results for the baseline and the 10 derivative models that were tested. While only 

markdown, tqdm, and yaml were used to measure the impact of expanding a specific 

module, other modules were run through the same process to ensure that the overall 

baseline remained stable independent of the module selected. 
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Module K1 Calls K5 Calls Kn Kmissing MRR 

Baseline 2,772,862 3,464,843 249,932 32,417 0.70453 

markdown-100 2,763,246 3,460,939 254,261 31,992 0.70719 

markdown-270 2,782,032 3,467,626 249,261 30,305 0.71785 

tensorflow.python.ops. 

array_ops-270 

2,782,032 3,467,626 249,261 30,305 0.71785 

numpy.random-270 2,793,479 3,473,222 243,785 30,185 0.70911 

tqdm-100 2,768,410 3,462,466 252,593 32,133 0.70342 

tqdm-270 2,774,217 3,463,070 252,470 31,652 0.70510 

yaml-100 2,762,635 3,461,007 253,955 32,230 0.70314 

yaml-270 2,775,664 3,466,599 249,027 31,566 0.70969 

flask-270 2,777,943 3,467,538 249,540 30,114 0.72756 

pytest-270 2,764,001 3,463,086 253,646 30,460 0.71162 

Table 25 - Overall Raw Counts and MRR for Baseline and 10 Derivative Models 
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Module K1% K5% Kn% Kmissing% 

Baseline 74.00 92.47 6.67 0.87 

markdown-100 73.74 92.36 6.79 0.85 

markdown-270 74.24 92.54 6.65 0.81 

tensorflow.python.ops. 

array_ops-270 

74.24 92.54 6.65 0.81 

numpy.random-270 74.55 92.69 6.51 0.81 

tqdm-100 73.88 92.40 6.74 0.86 

tqdm-270 74.03 92.42 6.74 0.84 

yaml-100 73.73 92.36 6.78 0.86 

yaml-270 74.07 92.51 6.65 0.84 

flask-270 74.13 92.54 6.66 0.80 

pytest-270 73.76 92.42 6.77 0.81 

Table 26 - Overall Percentages for Baseline and 10 Derivative Models 

 

      The data shows that across the 10 variants of the baseline model that were tested, the 

overall metrics remained relatively stable. The K1% changed slightly for all variants, but 

within a small range of the baseline. Only 3 modules degraded K1%, and they were no 

more than 0.37% away from the baseline. Similarly, 7 modules improved their K1%, but 

no more than 0.74%. Examining the K5% shows comparable results, but over a narrower 

range with 5 modules degrading and 5 modules improving. The 5 modules that degraded 

were within 0.11% of the baseline and the 5 modules that improved were within 0.24% of 

the baseline. 
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      The changes were more noticeable in the Kn% and Kmissing% metrics, but still 

small. However, the Kn% is not a clear good or bad indicator since a reduction in Kn% 

could mean an increase in K1% or K5% or it could mean an increase in Kmissing%. 

Similarly, an increase in Kn% could mean a decrease in K1% or K5% or it could mean a 

decrease in Kmissing%. The more relevant number is Kmissing%, which decreased for 

all variants, with a maximum decrease of 7.1%. This decrease in Kmissing% means that 

all variants improved their ability to produce more predictions. 

 

      The analysis of the Mean Residual Rank (MRR) supports the overall data analysis of 

K1%, K5%, and Kmissing%. The MRR only degraded for 2 variants, and both were 

within 0.20% of the baseline. However, the other 8 variants improved, with a maximum 

overall improvement of 3.27%. The two variants that degraded in MRR were expanded 

with 100 repositories, and both of those showed positive improvements when 270 

repositories were used. 

 

      These overall metrics show that the additional repositories had a minor impact overall 

on the K1%, K5%, and MRR accuracy but did help to improve the number of predictions 

found. The additional repositories targeted a specific subset of the modules included, 

which represents a subset of the overall model data. Since the additional repositories 

bring with it unpredictable and effectively random additional modules, the overall minor 



83 

 

  

impact is the expected result. Figure 16 shows the distribution of the 3,747,192 method 

calls across K5, Kn, and Kmissing for all model variants. 

 

 

Figure 16 - Distribution of Method Calls 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

      Analysis of the results clearly shows improvement of predictions with additional 

repositories containing a specified target library, while maintaining the same overall 

predictive quality across the entire test suite. Figure 16 above shows the stability of 

predictive quality across 10 variant models, Figures 17 and 18 below show the 

improvement specific to the markdown module, Figures 19 and 20 below show the 

improvement specific to the tqdm module, and Figures 21 and 22 below show the 

improvement specific to the yaml module.  

 

      The Accuracy by Model charts show the percentage of accuracy for K1, K5, and 

MRR metrics for the different models. These charts show the change in accuracy from 

the baseline model to the baseline with 100 additional repositories model, to the baseline 

with 270 additional repositories model. The higher the result, the higher the accuracy of 

the prediction. The Missing Predictions by Model charts show changes in the count of 

missing predictions between the same models. The lower the value, the less predictions 

missing from the model. 
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Figure 17 - Markdown Accuracy for Baseline, Baseline+100, and Baseline+270 

 

 

Figure 18 - Missing Markdown Predictions for Baseline, Baseline+100, and Baseline+270 
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Figure 19 - tqdm Accuracy for Baseline, Baseline+100, and Baseline+270 

 

 

Figure 20 - Missing tqdm Predictions for Baseline, Baseline+100, and Baseline+270 
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Figure 21 - yaml Accuracy for Baseline, Baseline+100, and Baseline+270 

 

 

Figure 22 - Missing yaml Predictions for Baseline, Baseline+100, and Baseline+270 
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      These results prove the hypothesis that increasing the input quantity of repositories 

containing specific third-party Python modules increased the predictive quality of the 

Pythia model. Furthermore, the results show that this increase in predictive quality results 

in no loss of overall predictive quality of the variant models. 

Implications 

      This dissertation demonstrated the ability to increase the accuracy of code prediction 

for a specific third-party Python module. This concept should be applicable to internal 

Python modules and other languages beyond Python. The ability to create targeted 

models for specific use cases could improve the accuracy of predictions in focused 

development efforts with highly specialized third-party libraries, such as game 

development, finance, statistics, and LSTM model development. 

      Instead of a single general purpose predictive model being used for all use cases, a 

targeted model could be generated by use case. While the model generation time is not 

short enough to enable real or near-time, a specialized model is achievable within hours 

using consumer grade computing resources locally and on the cloud. 

Recommendations 

      The parsing function narrowly focused specific elements of the Python code and did 

not account for more complex constructs, such as polymorphism and specialized Python 

methods. Further, this dissertation leveraged Gensim for tokenization and type 

identification. Both could be addressed with a more specialized approach to the Python 

parser, as was done by Svyatkovskiy for Pythia.  
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      During the analysis of the data for this dissertation, a correlation between the number 

of exposed methods in a given module to the accuracy was noticed. Specifically, when 

the module had a lower number of exposed methods, a higher accuracy was achieved 

using less unique usages in the training set. This correlation was observed, is intuitive, 

but not proven, and would be worthy of exploration in future research. 

      The dynamic nature of available open-source code available in online hosted 

repositories combined with the webhooks available from similar repository hosts, such as 

GitHub, provide an opportunity for automated model generation. Specifically, 

repositories for specific languages could be monitored in a repository host, and when 

enough repositories have been added or updated, these repositories could be cloned and 

used as additional input content for model generation. Further, older repositories that 

have grown stale could be eventually expunged from the input data set. This would allow 

for the prediction models to reflect active code usage patterns and language versions. 

Summary 

      This dissertation shows that by adding additional repositories containing a specific 

module into the Pythia input dataset, it is possible to increase the accuracy of the third-

party method calls within the specific module without negatively impacting the other 

predictions provided by the Pythia model. While increasing the repository count by 3.7% 

resulting in some positive results, a 10% increase yielded more consistent improvements 

across multiple third-party Python modules. The prediction improvement was 

demonstrated across 3 different Python third-party modules using 6 different model 

variants. The lack of negative impact to predictive quality was demonstrated using 10 

different model variants. 
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Appendix A – Hyperparameters 

Hyperparameter Description Value Used 

LookbackTokens Number of lookback tokens 100 

GensimWorkers Gensim Worker Threads 15 

WindowSize word2vec window size 5 

EmbeddingVectorDimensions 

word2vec embedded vector 

dimensions 

150 

EmbeddingEpochs word2vec epochs 10 

MinimumFrequencyThreshold Minimum frequency of a token 50 

MinimumLabelFrequencyThreshold 

Minimum frequency of a method 

call 

25 

MinimumModuleFrequencyThreshold 

Minimum frequency of a Python 

module 

500 

TokenPadding Token used for padding <PAD> 

TokenUnknown Token used for unknown tokens <UNK> 

TokenEOS Token used for end of sentence . 

Figure 23 - Gensim word2vec Hyperparameters 
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Hyperparameter Description Value Used 

LookbackTokens Number of lookback tokens 100 

BatchSize Batch sample size 512 

HiddenDimensions 

Number of LSTM hidden 

dimensions 

256 

LearningRate Learning rate for LSTM 0.0001 

LRWeightDecay Decay rate per epoch 0.97 

ClipNorm Clipping rate 3 

LSTMEpochs Number of LSTM epochs 20 

Dropout 

Dropout rate for individual 

LSTM units 

0.4 

L2Regularizer LSTM L2 regularizer 0.0001 

LRWarmupEpochs Number of warmup epochs 0 

LossMethod LSTM loss function 

sparse_categorical_crossen

tropy 

Activation LSTM activation method softmax 

Optimizer LSTM optimization method Adam 

Figure 24 - LSTM Hyperparameters 
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Appendix B – Experiment Result Data 

module_name count k1 k5 kn k_missing mrr 

numpy 962,356 575,828 811,728 149,603 1,025 0.70719 

os 440,614 390,136 429,917 9,297 1,400 0.92554 

list 412,277 347,572 402,037 8,302 1,938 0.90275 

str 393,713 327,275 381,164 10,744 1,805 0.89528 

posixpath 292,597 212,912 285,803 6,730 64 0.83346 

tensorflow 201,677 121,076 168,920 31,068 1,689 0.70626 

dict 178,616 135,055 169,185 8,026 1,405 0.84095 

sys 142,761 115,432 139,118 3,025 618 0.88147 

re 94,908 65,983 91,871 2,899 138 0.80840 

logging 67,673 49,796 65,635 1,585 453 0.83169 

numpy.random 67,418 45,281 62,852 4,521 45 0.78067 

unittest 60,321 58,351 59,981 213 127 0.97990 

google.protobuf.descript

or 
57,798 57,535 57,751 9 38 0.99704 

time 54,017 46,458 52,761 777 479 0.91084 

datetime 52,695 36,086 50,292 1,899 504 0.79893 

json 45,274 37,573 45,010 46 218 0.90833 

pandas 43,799 33,079 41,345 1,790 664 0.83785 

tensorflow.python.ops.ar

ray_ops 
21,939 10,294 17,206 4,496 237 0.60823 

tensorflow.python.frame

work.ops 
21,509 18,401 21,192 87 230 0.91200 

pandas._testing 19,087 14,981 18,423 193 471 0.86389 

numpy.testing 17,458 11,698 17,117 201 140 0.79290 

six 16,609 14,397 16,300 152 157 0.91819 

ui_mainwindow 14,907 1,263 2,391 1,255 11,261 0.12043 

jax.numpy 12,551 5,741 9,065 2,256 1,230 0.57521 

os.path 11,498 9,336 11,267 100 131 0.88422 

requests 11,289 8,655 10,940 195 154 0.85736 

emitter 10,142 8,453 8,965 13 1,164 0.85726 

keras 5,241 4,604 5,124 59 58 0.92290 

jax 4,247 2,847 3,739 188 320 0.76006 

scipy 4,004 3,289 3,726 88 190 0.86941 

dataframe 2,876 1,289 1,718 93 1,065 0.51543 

markdown 2,167 876 907 3 1,257 0.41015 

tqdm 1475 902 977 17 481 0.63451 

yaml 564 114 114 0 450 0.20213 

flask 454 70 70 0 384 0.15419 

beautifulsoup 337 85 88 0 249 0.25668 

werkzeug 133 69 73 2 58 0.52986 

djangocache 80 42 42 0 38 0.52500 
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pytest 61 28 29 0 32 0.46449 

sqlalchemy 50 0 0 0 50 0.00001 

Figure 25 - Baseline Data 

 

module_name count k1 k5 kn k_missing mrr 

numpy 962,356 570,721 808,643 152,734 979 0.70282 

os 440,614 389,157 429,975 9,239 1,400 0.92428 

list 412,277 348,418 402,326 8,035 1,916 0.90425 

str 393,713 326,316 381,177 10,731 1,805 0.89416 

posixpath 292,597 212,228 285,812 6,721 64 0.83193 

tensorflow 201,677 120,450 168,148 31,840 1,689 0.70365 

dict 178,616 134,587 168,881 8,354 1,381 0.83894 

sys 142,761 115,232 139,116 3,051 594 0.88097 

re 94,908 66,220 91,940 2,830 138 0.80942 

logging 67,673 49,384 65,599 1,621 453 0.82806 

numpy.random 67,418 45,185 62,986 4,387 45 0.78056 

unittest 60,321 58,167 59,982 212 127 0.97804 

google.protobuf.descriptor 57,798 57,536 57,749 11 38 0.99714 

time 54,017 46,449 52,796 742 479 0.91116 

datetime 52,695 35,418 50,148 2,043 504 0.79098 

json 45,274 37,523 45,001 55 218 0.90769 

pandas 43,799 32,903 41,216 1,974 609 0.83471 

tensorflow.python.ops.array_ops 21,939 10,010 17,095 4,607 237 0.59778 

tensorflow.python.framework.ops 21,509 18,212 21,196 83 230 0.90761 

pandas._testing 19,087 15,036 18,392 224 471 0.86515 

numpy.testing 17,458 12,066 17,136 182 140 0.80662 

six 16,609 14,458 16,301 193 115 0.91996 

ui_mainwindow 14,907 1,223 2,390 1,256 11,261 0.11779 

jax.numpy 12,551 5,726 9,031 2,290 1,230 0.57191 

os.path 11,498 9,232 11,228 139 131 0.87887 

requests 11,289 8,745 10,986 194 109 0.86370 

emitter 10,142 8,510 8,993 9 1,140 0.86128 

keras 5,241 4,586 5,119 64 58 0.92020 

jax 4,247 2,831 3,728 199 320 0.75697 

scipy 4,004 3,221 3,708 106 190 0.85695 

dataframe 2,876 1,214 1,709 102 1,065 0.49820 

markdown 2,167 941 1,009 11 1,147 0.44733 

tqdm 1475 917 979 15 481 0.64103 

yaml 564 110 114 0 450 0.19708 

flask 454 78 85 0 369 0.17952 

beautifulsoup 337 84 88 0 249 0.25520 
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werkzeug 133 82 86 7 40 0.63357 

djangocache 80 42 42 0 38 0.52500 

pytest 61 28 29 0 32 0.46722 

sqlalchemy 50 0 0 0 50 0.00001 

Figure 26 - Markdown-100 Variant 

 

module_name count k1 k5 kn k_missing mrr 

numpy 962,356 579,634 812,792 148,723 841 0.71007 

os 440,614 390,304 430,203 9,160 1,251 0.92608 

list 412,277 348,600 402,152 8,286 1,839 0.90421 

str 393,713 328,251 381,516 10,435 1,762 0.89708 

posixpath 292,597 214,001 286,163 6,370 64 0.83563 

tensorflow 201,677 121,232 168,461 31,551 1,665 0.70593 

dict 178,616 136,051 169,496 7,784 1,336 0.84442 

sys 142,761 116,107 139,221 2,946 594 0.88475 

re 94,908 66,409 91,827 2,951 130 0.81042 

logging 67,673 49,574 65,532 1,705 436 0.82955 

numpy.random 67,418 45,416 63,046 4,327 45 0.78216 

unittest 60,321 58,378 59,964 230 127 0.97984 

google.protobuf.descriptor 57,798 57,563 57,747 13 38 0.99746 

time 54,017 46,287 52,741 797 479 0.90896 

datetime 52,695 36,153 50,276 1,934 485 0.80018 

json 45,274 37,421 45,013 43 218 0.90651 

pandas 43,799 33,062 41,395 1,921 483 0.83826 

tensorflow.python.ops.array_ops 21,939 9,980 17,095 4,607 237 0.59788 

tensorflow.python.framework.ops 21,509 18,091 21,156 123 230 0.90392 

pandas._testing 19,087 14,906 18,378 238 471 0.86083 

numpy.testing 17,458 11,777 17,174 168 116 0.79651 

six 16,609 14,402 16,314 180 115 0.91866 

ui_mainwindow 14,907 1,244 2,380 1,288 11,239 0.11837 

jax.numpy 12,551 5,480 8,816 2,505 1,230 0.55334 

os.path 11,498 9,344 11,243 124 131 0.88519 

requests 11,289 8,719 10,952 228 109 0.86147 

emitter 10,142 9,413 9,716 21 405 0.94189 

keras 5,241 4,575 5,109 74 58 0.91776 

jax 4,247 2,805 3,708 219 320 0.75049 

scipy 4,004 3,225 3,702 112 190 0.85706 

dataframe 2,876 1,148 1,679 132 1,065 0.48243 

markdown 2,167 1,042 1,096 8 1,063 0.49256 

tqdm 1475 897 970 24 481 0.63162 

yaml 564 153 194 28 342 0.30478 
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flask 454 84 85 0 369 0.18613 

beautifulsoup 337 150 156 0 181 0.45352 

werkzeug 133 83 87 6 40 0.63757 

djangocache 80 42 42 0 38 0.52500 

pytest 61 29 29 0 32 0.47541 

sqlalchemy 50 0 0 0 50 0.00001 

Figure 27 - Markdown-270 Variant 

 

module_name count k1 k5 kn k_missing mrr 

numpy 962,356 572,735 809,899 151,432 1,025 0.70454 

os 440,614 388,782 429,835 9,402 1,377 0.92369 

list 412,277 348,679 402,153 8,186 1,938 0.90406 

str 393,713 326,943 381,104 10,804 1,805 0.89478 

posixpath 292,597 213,138 285,778 6,755 64 0.83359 

tensorflow 201,677 120,740 168,731 31,357 1,589 0.70557 

dict 178,616 135,661 169,515 7,696 1,405 0.84331 

sys 142,761 115,703 139,025 3,118 618 0.88244 

re 94,908 65,700 91,742 3,028 138 0.80548 

logging 67,673 49,536 65,556 1,664 453 0.82976 

numpy.random 67,418 45,603 62,812 4,561 45 0.78269 

unittest 60,321 58,348 59,982 212 127 0.97983 

google.protobuf.descriptor 57,798 57,520 57,738 22 38 0.99699 

time 54,017 46,332 52,770 768 479 0.90995 

datetime 52,695 35,946 50,280 1,911 504 0.79730 

json 45,274 37,342 45,011 45 218 0.90600 

pandas 43,799 32,950 41,275 1,903 621 0.83569 

tensorflow.python.ops.array_ops 21,939 9,830 17,069 4,633 237 0.59311 

tensorflow.python.framework.ops 21,509 18,321 21,178 101 230 0.91015 

pandas._testing 19,087 15,013 18,401 215 471 0.86443 

numpy.testing 17,458 11,538 17,139 179 140 0.78872 

six 16,609 14,419 16,311 141 157 0.91765 

ui_mainwindow 14,907 1,245 2,383 1,263 11,261 0.11918 

jax.numpy 12,551 5,624 8,989 2,398 1,164 0.56708 

os.path 11,498 9,382 11,270 97 131 0.88747 

requests 11,289 8,624 10,936 211 142 0.85658 

emitter 10,142 8,509 8,956 22 1,164 0.85951 

keras 5,241 4,626 5,109 74 58 0.92344 

jax 4,247 2,869 3,761 206 280 0.76573 

scipy 4,004 3,349 3,736 78 190 0.87937 

dataframe 2,876 1,228 1,717 94 1,065 0.50194 

markdown 2,167 868 905 5 1,257 0.40836 
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tqdm 1475 905 987 7 481 0.63830 

yaml 564 110 110 4 450 0.19600 

flask 454 70 70 0 384 0.15419 

beautifulsoup 337 86 88 0 249 0.25817 

werkzeug 133 65 74 1 58 0.51116 

djangocache 80 42 42 0 38 0.52500 

pytest 61 29 29 0 32 0.47541 

sqlalchemy 50 0 0 0 50 0.00001 

Figure 28 - tqdm-100 Variant 

 

module_name count k1 k5 kn k_missing mrr 

numpy 962,356 574,582 810,056 151,299 1,001 0.70586 

os 440,614 389,210 429,723 9,514 1,377 0.92422 

list 412,277 349,107 402,375 7,990 1,912 0.90499 

str 393,713 327,723 381,354 10,572 1,787 0.89605 

posixpath 292,597 212,514 285,771 6,762 64 0.83263 

tensorflow 201,677 121,560 168,858 31,448 1,371 0.70785 

dict 178,616 135,722 169,075 8,173 1,368 0.84275 

sys 142,761 115,370 139,135 3,008 618 0.88086 

re 94,908 65,941 91,700 3,070 138 0.80742 

logging 67,673 49,707 65,579 1,641 453 0.83053 

numpy.random 67,418 45,695 62,937 4,436 45 0.78405 

unittest 60,321 58,374 60,009 185 127 0.98018 

google.protobuf.descriptor 57,798 57,493 57,751 9 38 0.99674 

time 54,017 46,693 52,749 789 479 0.91336 

datetime 52,695 36,314 50,211 1,980 504 0.80124 

json 45,274 37,870 45,021 35 218 0.91174 

pandas 43,799 33,593 41,358 1,844 597 0.84399 

tensorflow.python.ops.array_ops 21,939 10,062 17,354 4,348 237 0.60451 

tensorflow.python.framework.ops 21,509 18,463 21,170 114 225 0.91376 

pandas._testing 19,087 14,981 18,401 215 471 0.86352 

numpy.testing 17,458 11,727 17,146 172 140 0.79461 

six 16,609 14,401 16,305 147 157 0.91776 

ui_mainwindow 14,907 1,321 2,392 1,254 11,261 0.12290 

jax.numpy 12,551 5,404 8,798 2,589 1,164 0.55085 

os.path 11,498 9,252 11,252 126 120 0.88103 

requests 11,289 8,722 10,954 193 142 0.86106 

emitter 10,142 8,412 8,966 12 1,164 0.85425 

keras 5,241 4,555 5,132 67 42 0.91922 

jax 4,247 2,825 3,750 217 280 0.75916 

scipy 4,004 3,243 3,715 99 190 0.86244 
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dataframe 2,876 1,148 1,681 130 1,065 0.48102 

markdown 2,167 863 905 5 1,257 0.40659 

tqdm 1475 920 988 6 481 0.64580 

yaml 564 167 198 18 348 0.32100 

flask 454 67 70 0 384 0.15015 

beautifulsoup 337 82 88 0 249 0.25223 

werkzeug 133 68 73 2 58 0.53052 

djangocache 80 42 42 0 38 0.52500 

pytest 61 24 28 1 32 0.42214 

sqlalchemy 50 0 0 0 50 0.00001 

Figure 29 - tqdm-270 Variant 

 

module_name count k1 k5 kn k_missing mrr 

numpy 962,356 571,319 809,310 152,021 1,025 0.70329 

os 440,614 389,267 429,997 9,217 1,400 0.92448 

list 412,277 346,815 401,612 8,749 1,916 0.90113 

str 393,713 326,705 381,067 10,841 1,805 0.89441 

posixpath 292,597 213,427 285,980 6,553 64 0.83481 

tensorflow 201,677 120,775 168,380 31,655 1,642 0.70445 

dict 178,616 133,425 168,710 8,523 1,383 0.83480 

sys 142,761 116,023 139,326 2,841 594 0.88481 

re 94,908 65,753 91,875 2,895 138 0.80567 

logging 67,673 49,721 65,668 1,552 453 0.83113 

numpy.random 67,418 43,871 62,672 4,701 45 0.76690 

unittest 60,321 58,385 59,985 209 127 0.98008 

google.protobuf.descriptor 57,798 57,562 57,742 18 38 0.99737 

time 54,017 46,475 52,785 753 479 0.91130 

datetime 52,695 36,043 50,253 1,938 504 0.79856 

json 45,274 37,608 45,011 45 218 0.90891 

pandas 43,799 33,242 41,358 1,825 616 0.84002 

tensorflow.python.ops.array_ops 21,939 9,671 17,128 4,574 237 0.59185 

tensorflow.python.framework.ops 21,509 18,059 21,191 88 230 0.90303 

pandas._testing 19,087 15,003 18,420 196 471 0.86435 

numpy.testing 17,458 11,597 17,124 194 140 0.79001 

six 16,609 14,420 16,315 137 157 0.91840 

ui_mainwindow 14,907 1,259 2,427 1,219 11,261 0.11986 

jax.numpy 12,551 5,621 8,927 2,394 1,230 0.56445 

os.path 11,498 9,286 11,248 119 131 0.88137 

requests 11,289 8,604 10,960 175 154 0.85622 

emitter 10,142 8,620 8,990 12 1,140 0.86725 

keras 5,241 4,526 5,093 90 58 0.91299 
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jax 4,247 2,798 3,694 233 320 0.75015 

scipy 4,004 3,282 3,714 100 190 0.86668 

dataframe 2,876 1,286 1,745 66 1,065 0.51724 

markdown 2,167 870 905 5 1,257 0.40806 

tqdm 1475 904 978 16 481 0.63641 

yaml 564 114 114 0 450 0.20213 

flask 454 70 70 0 384 0.15419 

beautifulsoup 337 88 88 0 249 0.26113 

werkzeug 133 70 74 1 58 0.53733 

djangocache 80 42 42 0 38 0.52500 

pytest 61 29 29 0 32 0.47541 

sqlalchemy 50 0 0 0 50 0.00001 

Figure 30 - yaml-100 Variant 

 

module_name count k1 k5 kn k_missing mrr 

numpy 962,356 575,680 811,451 149,880 1,025 0.70688 

os 440,614 390,268 430,143 9,159 1,312 0.92593 

list 412,277 349,909 402,572 7,809 1,896 0.90634 

str 393,713 327,625 381,834 10,074 1,805 0.89647 

posixpath 292,597 212,660 285,920 6,613 64 0.83324 

tensorflow 201,677 121,148 168,913 31,235 1,529 0.70660 

dict 178,616 135,289 169,460 7,796 1,360 0.84267 

sys 142,761 116,377 139,264 2,903 594 0.88591 

re 94,908 66,191 91,755 3,035 118 0.80831 

logging 67,673 49,900 65,699 1,541 433 0.83316 

numpy.random 67,418 45,109 62,820 4,553 45 0.77947 

unittest 60,321 58,421 59,974 220 127 0.98024 

google.protobuf.descriptor 57,798 57,532 57,743 17 38 0.99705 

time 54,017 46,498 52,754 784 479 0.91141 

datetime 52,695 36,097 50,277 1,930 488 0.80013 

json 45,274 37,693 45,019 37 218 0.91012 

pandas 43,799 33,213 41,473 1,777 549 0.84089 

tensorflow.python.ops.array_ops 21,939 9,786 17,233 4,469 237 0.59537 

tensorflow.python.framework.ops 21,509 18,321 21,184 95 230 0.91058 

pandas._testing 19,087 15,008 18,417 199 471 0.86473 

numpy.testing 17,458 11,375 17,152 166 140 0.78431 

six 16,609 14,445 16,320 153 136 0.91936 

ui_mainwindow 14,907 1,244 2,434 1,212 11,261 0.11935 

jax.numpy 12,551 5,375 8,892 2,429 1,230 0.55097 

os.path 11,498 9,231 11,271 107 120 0.88006 

requests 11,289 8,652 10,992 186 111 0.85869 
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emitter 10,142 8,601 8,978 24 1,140 0.86567 

keras 5,241 4,571 5,114 69 58 0.91861 

jax 4,247 2,770 3,660 267 320 0.74306 

scipy 4,004 3,276 3,702 112 190 0.86334 

dataframe 2,876 1,100 1,674 137 1,065 0.47100 

markdown 2,167 901 950 6 1,211 0.42637 

tqdm 1475 904 981 13 481 0.63570 

yaml 564 153 204 18 342 0.30860 

flask 454 70 70 0 384 0.15419 

beautifulsoup 337 131 156 0 181 0.42335 

werkzeug 133 69 73 2 58 0.52919 

djangocache 80 42 42 0 38 0.52500 

pytest 61 29 29 0 32 0.47541 

sqlalchemy 50 0 0 0 50 0.00001 

Figure 31 - yaml-270 Variant 
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