
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2023

Increasing Code Completion Accuracy in Pythia Models for Non-Increasing Code Completion Accuracy in Pythia Models for Non-

Standard Python Libraries Standard Python Libraries

David Buksbaum

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item
This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Increasing Code Completion Accuracy in Pythia Models

for Non-Standard Python Libraries

by

David T. Buksbaum

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

College of Computing and Engineering

Nova Southeastern University

2023

An Abstract of a Dissertation Submitted to Nova Southeastern University

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Increasing Code Completion Accuracy in Pythia Models

for Non-Standard Python Libraries

by

David T. Buksbaum

November 29, 2023

Contemporary software development with modern programming languages leverages

Integrated Development Environments, smart text editors, and similar tooling with code

completion capabilities to increase the efficiency of software developers. Recent code

completion research has shown that the combination of natural language processing with

recurrent neural networks configured with long short-term memory can improve the

accuracy of code completion predictions over prior models. It is well known that the

accuracy of predictive systems based on training data is correlated to the quality and the

quantity of the training data. This dissertation demonstrates that by expanding the

training data set to include more references to specific Python third-party modules, the

quality of the predictions increase for those specific Python third-party modules without

degrading the quality of predictions of the originally represented modules.

Acknowledgements

While an individual receives a doctorate at the end of a significant effort, it is not the

individual alone who invested in that effort. So many made it possible for me to

accomplish this journey. I could never thank them all, so thank you to anyone I missed.

My committee chair and advisor Dr. Francisco Mitropoulos has been exceptionally

patient with me as the universe opted to provide me with an endless stream of non-

dissertation distractions along my journey. His pointed questions at just the right time

were invaluable. I must also thank the rest of the committee members, Dr. Michael

Laszlo and Dr. Sumitra Mukherjee. Their questions and feedback were essential to

helping me rethink what sometimes seemed like an endless quagmire of complexity.

The professors for all my courses and NSU have been truly invaluable in guiding my

thinking from a pre-doctorate perspective to one required to complete this task.

There are those I have worked with that were critical to my ability to complete this

dissertation. Specifically, I must thank Robert Palatnick for both his understanding in

allowing me the time away from work to pursue this effort and his encouragement to do

so. Alexandros Deliyannis listened to me prattle on endlessly about my approach and

pushed me to explain it better which led to my understanding it better. There are many

others I worked with that need thanks and to all of them – thank you.

To my dearest friend Shaheen for providing just the right mixture of sarcasm, humor, and

support. Pushing me when I needed it, reminding me to step away when I needed to,

questioning my sanity multiple times, and always being there. Cheers Mate!

My children, Jared, Scott, and Rachel have shared my time with this effort for too many

years, and they kept the grumbling about it to a minimum. Now they are entering the

stage where I can support their similar journeys. My wife Hope has given the most. Her

understanding and support never wavered despite compromising for years to let me

pursue this dream of mine. While she believes I misunderstood the goal of a mid-life

crisis, she always encouraged me to complete it. I thank and love them all dearly.

And last, but certainly not least, my parents Murray and Nina. They knew this would

happen long before I even dreamt of it. Buying my first computer at 10 years old; driving

me to numerous hobbyist meetups; paying unforeseen phone bills while I wandered the

world of Usenet and BBSes; never once complaining despite no understanding of what I

was doing. They provided endless encouragement to pursue my dreams, to grow and go

further, even when I had become complacent. All that I have accomplished is because of

their belief in me and the start they gave me, and I am eternally grateful.

This is for you dad.

D.T.B.

v

Table of Contents

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures x

Chapters

1. Introduction 1

Background 1

Problem Statement 6

Dissertation Goal 9

Research Questions 11

Relevance and Significance 11

Barriers and Issues 14

Assumptions, Limitations, and Delimitations 15

Summary 16

2. Review of the Literature 17

Introduction 17

Intelligent Assistants 19

Code Completion 22

 Optimistic Code Completion 22

 Intelligent Code Completion 26

 Intelligent Code Completion with Bayesian Networks 30

 Improving Best Matching Neighbor for Dynamically Typed Languages 34

 Long Short-Term Memory Neural Networks 38

Measuring Code Completion 42

 Prefix Scoring with Change Replay 42

 Mean Reciprocal Rank 44

 Top-k Accuracy 44

 Recall 45

 Precision 45

vi

Replicating Pythia 46

3. Methodology 47

Introduction 47

Data Collection 48

 GitHub Data Collector 49

Preprocessing 50

 Dataset Generator 50

 Code Processing 51

 Dependency Evaluator 53

 Encoding Code Snippets 53

Offline Model Training 54

 Pythia Deep Learning Model Training 54

 Hyperparameter Tuning 55

Evaluation 56

 Key Questions 56

 Evaluation Metrics 57

Differences from Pythia 58

 Preprocessing 58

 Model Training 58

 Model Quantization 58

 Serving Recommendations 59

Conclusion 59

4. Results 60

Introduction 60

Changes from Planned Methodology 61

Baseline Model 61

Expansion by 100 Repositories 65

 markdown Library 65

 tqdm Library 67

 yaml Library 69

 Results Analysis 70

Expansion by 270 Repositories 71

 markdown Library 72

 tqdm Library 74

 yaml Library 76

 Results Analysis 78

Impact Beyond Target Module 78

5. Conclusions, Implications, Recommendations, and Summary 84

Conclusions 84

Implications 88

Recommendations 88

Summary 89

vii

Appendices 90

A. Hyperparameters 91

B. Experiment Result Data 93

References 101

viii

List of Tables

Table 1 – Top 10 Commands Executed by the Most Developers 17

Table 2 – Top 10 Commands Executed Across all 41 Developers 18

Table 3 – Scores for the untyped algorithms of all projects (Robbes & Lanza, 2008) 25

Table 4 – PyReco Results for Python Standard Libraries (D’Souza et al., 2016) 36

Table 5 – PyReco Results for Python Third-Party Libraries (D’Souza et al., 2016) 37

Table 6 – Accuracy of Pythia and Markov Chain (Svyatkovskiy et al., 2019) 39

Table 7 – Top-5 Accuracy of Different RNN Models for Pythia (Svyatkovskiy et al.,

2019) 40

Table 8 – Comparison of Accuracy and MRR of Python and Four Models (Svyatkovskiy

et al., 2019) 41

Table 9 - Comparison of Pythia and Baseline Model for K5 Accuracy 63

Table 10 - Comparison of Pythia and Baseline Model for MRR 64

Table 11 - Markdown Library Results using Baseline Model 66

Table 12 - Markdown Library Results using Baseline+100 Model. 66

Table 13 - Markdown Library Improvement Results of Baseline v Baseline+100 67

Table 14- TQDM Library Results using Baseline Model 67

Table 15 – TQDM Library Results using Baseline+100 Model. 68

Table 16 – TQDM Library Improvement Results of Baseline v Baseline+100 68

Table 17 - Yaml Library Results using Baseline Model 69

Table 18 - Yaml Library Results using Baseline+100 Model. 70

Table 19 – Markdown Library Results for Baseline, Baseline+100, and Baseline+270

Models 72

ix

Table 20 – Markdown Library Change % for Baseline, Baseline+100, and Baseline+270

Models 74

Table 21 - TQDM Library Results for Baseline, Baseline+100, and Baseline+270 Models

75

Table 22 – Yaml Library Change % for Baseline, Baseline+100, and Baseline+270

Models 76

Table 23 - Yaml Library Results for Baseline, Baseline+100, and Baseline+270 Models

77

Table 24 – Yaml Library Change % for Baseline, Baseline+100, and Baseline+270

Models 77

Table 25 - Overall Raw Counts and MRR for Baseline and 10 Derivative Models 80

Table 26 - Overall Percentages for Baseline and 10 Derivative Models 81

x

List of Figures

Figure 1 – JetBrains IntelliJ Lexical Code Completion 3

Figure 2 – Visual Studio Code Python Lexical Code Completion 3

Figure 3 – PyCharm 2020.2 Creating the Python Index 4

Figure 4 – Python Socket Code Completion in Visual Studio Code Part 1 4

Figure 5 – Python Socket Code Completion in Visual Studio Code Part 2 5

Figure 6 – Pythia Preprocessing Phase 10

Figure 7 – Filtered Code Completion in Eclipse (Robbes & Lanza, 2008) 23

Figure 8 – Performance of EcCCS, FreqCCS, ArCCS, and BMNCCS (Bruch et al., 2009)

29

Figure 9 – Conditional Probabilities in a Based Bayesian Network (Proksch et al., 2015)

31

Figure 10 – Structural Representation of the Bayesian Network used in PBN (Proksch et

al., 2015) 31

Figure 11 – Quality and Size for Different Distances Compared to BMN (Proksch et al.,

2015) 33

Figure 12 – Effect of Increasing Number of Object Usages for SWT Button (Proksch et

al., 2015) 33

Figure 13–- Workflow from source code to testing. 48

Figure 14–- Pythia Neural Network Architecture 55

Figure 15–- Pythia Hyperparameters (Svyatkovskiy et al., 2019) 56

Figure 16 - Distribution of Method Calls 83

xi

Figure 17 - Markdown Accuracy for Baseline, Baseline+100, and Baseline+270 85

Figure 18 - Missing Markdown Predictions for Baseline, Baseline+100, and

Baseline+270 85

Figure 19 - tqdm Accuracy for Baseline, Baseline+100, and Baseline+270 86

Figure 20 - Missing tqdm Predictions for Baseline, Baseline+100, and Baseline+270 86

Figure 21 - yaml Accuracy for Baseline, Baseline+100, and Baseline+270 87

Figure 22 - Missing yaml Predictions for Baseline, Baseline+100, and Baseline+270 87

Figure 23 - Gensim word2vec Hyperparameters 91

Figure 24 - LSTM Hyperparameters 92

Figure 25 - Baseline Data 94

Figure 26 - Markdown-100 Variant 95

Figure 27 - Markdown-270 Variant 96

Figure 28 - tqdm-100 Variant 97

Figure 29 - tqdm-270 Variant 98

Figure 30 - yaml-100 Variant 99

Figure 31 - yaml-270 Variant 100

1

Chapter 1

Introduction

Background

 The software development process has centered around the Integrated Development

Environment (IDE) as the primary tool for developers (Gail C Murphy, 2019). These

IDEs analyze the content and structure of the code in projects to form a contextual

awareness about the developer’s intent, and to provide capabilities to minimize the work

of the developer. One of the most used capabilities provided by an IDE is code

completion (G.C. Murphy et al., 2006). The ability for the IDE to suggest the method to

call based on the context of the developer’s location in the code has become a ubiquitous

feature that is expected, with Murphy stating code completion to be as popular as Cut and

Paste.

 The reasoning behind why code completion is so popular in IDEs is debated, with

Stylos & Clarke (2007) claiming it is because of API exploration and discovery, and

Mărășoiu, Church, & Blackwell (2015) stating it is due to the improvement to the speed

and accuracy of the developer. The root cause of why it is so popular may not be fully

determined, but the result of broad demand amongst developers for code completion is

accepted and supported by prior research.

2

 Code completion provides the developer with a set of options available at a specific

context point in the code, such as a method for a specific type. With smaller types, this is

a highly effective mechanism of providing rapid results, usually sorted alphabetically,

that relies on the developer’s knowledge of the type to choose the correct method.

However, as development languages have grown to support more complex constructs, the

types available in those languages have grown in the number of methods that they make

available. These lists of methods can exceed several hundred, making it unwieldy for a

developer to find the right method, or even know which the right method is to select.

Mărășoiu, Church, & Blackwell (2015) defines two strategies for reducing the list of

possible methods shown to the developer: lexical and semantic.

 The lexical strategy relies on pattern matching to restrict the suggestions provided to

the developer. Typically, this is done by pattern matching from the start of the method,

and reducing the list of available methods as the developer types more characters. Some

IDEs improve upon this by matching the exact character sequence against anywhere in

the method name, such as JetBrains IntelliJ in Figure 1. Other IDEs look for the letters to

appear anywhere without requiring the sequence to match, such as Visual Studio Code’s

Python matcher shown in Figure 2.

3

Figure 1 – JetBrains IntelliJ Lexical Code Completion

Figure 2 – Visual Studio Code Python Lexical Code Completion

 These efforts require the IDE to know the context of the developer. For both cases, it

is the type and an understanding of all the possible options available for that context. This

is typically solved with a local index; such is the case of PyCharm 2020.2. The local

index is created by the IDE when a new version of the language runtime is detected, as

4

seen in Figure 3. However, the suggestions by PyCharm 2020.2’s code completion is

similar to IntelliJ’s in only using the exact sequence.

Figure 3 – PyCharm 2020.2 Creating the Python Index

 Semantic code completion expands the definition of the context beyond that of just the

type. This model attempts to constrain the possible results based on the valid options

available for the type at the place in the code where the type is used. Consider that a

Python socket should not be bindable before it is created. In Figure 4, we can see that the

code completion for a socket has five starred elements. These represent the most likely

candidates for the developer to use. Following that is the alphabetical list of options. The

most likely option is socket, which is used to create a new socket.

Figure 4 – Python Socket Code Completion in Visual Studio Code Part 1

5

 If the code for creating a socket is already written, the context changes but the type

remains the same. Figure 5 shows the code completion for the same type but after

creating the socket. In this context, we have a created socket type, so the most likely next

step is to bind it to an address.

Figure 5 – Python Socket Code Completion in Visual Studio Code Part 2

 Figures 4 and 5 show the difference in semantic code completion in Visual Studio

Code, while Figure 3 shows lexical code completion in Visual Studio Code. Why does

the same editor show both? Because semantic code completion falls back to lexical code

completion. These are not mutually exclusive options, but a means of presenting the

developers the ability to receive suggestions about what is the most likely option for their

context, but still allow them to quickly reach the methods they know they want to use

when they want to use it.

6

 In all the above examples, the code completion is demonstrating a few distinct

systems working together to provide the results. Ignoring the user interface elements, the

core components is a system in the editor to create a best guess about the language type

the developer is referring to and other contextual information. This contextual

information could include the line of code, and depending on the model, several prior

lines of code. The editor then asks the code completion system to provide suggestions

based on that contextual information. The code completion then returns the list of

suggestions back to the editor. This interaction can happen all within the editor, or the

editor can call out to a language service, such as Microsoft’s Python Language Server

(Microsoft/Python-Language-Server, 2018/2020).

 The Pythia code completion system implements the semantic model using a novel

combination of natural language processing using word2vec and recurrent neural

networks to improve the accuracy of suggestions provided (Svyatkovskiy et al., 2019).

Problem Statement

 Python, like most programming languages, has a set of standard libraries considered

part of the core software development kit (SDK). In the case of Python version 3.9, the

standard library contains the built-in functions, constants, types, and exceptions; and over

two hundred modules exposing a wide range of functionality (The Python Standard

Library — Python 3.9.0 Documentation, n.d.). These libraries will be referred to as the

Python Standard Libraries. Building on top of the Python standard libraries is over

267,000 projects, as of late 2020, shared through the Python Package Index (PyPi) for

consumption in Python applications (Search Results · PyPI, n.d.). A filtered list of those

7

projects to those that have a Development Status of Production / Stable yielded over

10,000 libraries. Those libraries, and others not tracked on PyPi, but are not part of the

Python Standard Libraries are referred to as Third-Party Libraries.

 Python modules must meet specific criteria and undergo a strict onboarding process to

be included in the standard library set. The result is that the included modules are more

highly specialized, targeting specific functionality with close affinity instead of being

broad libraries with diverse capabilities (19. Adding to the Stdlib — Python Developer’s

Guide, n.d.).

 Third-party libraries lack the same disciplined approach of the standard library. This

leads the Third-party libraries to vary greatly in size and complexity. The boto project is

the Python SDK for accessing Amazon Web Services (AWS), and has just shy of 50

different functional capabilities in one module (Boto · PyPI, n.d.). Another example is

NumPy, which is a Python module for scientific computing (Numpy · PyPI, n.d.). The

NumPy project has over 334,000 lines of code in a single module (The NumPy Open

Source Project on Open Hub, n.d.), which is not the typical small module included in the

Python standard library.

 Applications written in Python have utilized libraries beyond just the standard

libraries. D’Souza called out this distinction between standard and third-party libraries in

his analysis of 20,000 GitHub Python projects which were scanned against 11 standard

and 9 third-party libraries (D’Souza et al., 2016). D’Souza’s paper introduces a system

called PyReco to provide code completion recommendations using a nearest neighbor

classified on the usage patterns located in the ASTs of the parsed Python projects. Their

analysis distinguished between the Python standard libraries and the third-party libraries,

8

pre-determining the important libraries to use for benchmarking against prior code

completion strategies. Pythia does not make this distinction, and instead just uses the ten

most frequent libraries used in their smaller dataset.

 In Pythia’s results, only four were third-party libraries. The NumPy library was

second only to the os standard library in frequency. Despite its frequent occurrences in

the Pythia dataset and having significantly more methods than the eight following

libraries, it still had a significantly lower accuracy than any of the standard libraries. Of

the ten libraries measured by Pythia, the 6 standard libraries were significantly more

accurate than the 4 third-party libraries. This lack of improvement to the accuracy of

third-party libraries created an imbalance that favors the accuracy of the Python standard

libraries and created an inefficiency for the developer.

 Pythia’s accuracy for the Third-Party Libraries ranged from 16% to 38% worse than

the Python Standard Libraries (Svyatkovskiy et al., 2019). The data set used was the top

2,700 non-forked Python projects on GitHub, with the ranking of top based on the

number stars a project had at the time of the search. From this dataset, Svyatkovskiy,

Zhao, Fu, & Sundaresan (2019) identified the 10 most frequent Python modules used in

the data set, and accuracy changes for each module.

 The standard Python libraries, as part of the standard distribution, are more often used

across the widest variety of applications. Developers are more familiar with these

libraries, relying on code completion to present options that they are most likely to

already know. The goal of the developer is to get to the method they know they want to

use, and lexical code completion will be the most efficient in these use cases. However,

the third-party libraries, with their significantly larger surface areas, and less frequent

9

usage, benefit significantly more from the accurate contextual predications provided by

semantic code completion. Pythia presented suggestions that are less accurate, while the

developers expected a higher level of accuracy. Since the developers expected accuracy,

the result of inaccurate code completion suggestions is a mistaken belief that the

developer code is wrong (Mărășoiu et al., 2015). This has led to wasted time and overall

developer inefficiency.

Dissertation Goal

 The goal was to increase the accuracy of suggestions for third-party Python libraries in

the Pythia recommender by dynamically modifying the input dataset during the

preprocessing process.

 The original Pythia preprocessing phase passed all the Python files in its dataset to an

AST parser, which extracted contextual information, and built the matrices passed into

word2vec as seen in figure 6. However, there is a step prior to preprocessing in which

Pythia located the 2,700 target repositories in GitHub, cloned the repositories, and

located all the Python source files in the cloned repositories. This is the data collection

phase.

10

Figure 6 – Pythia Preprocessing Phase

 The data collection phase needed to be enhanced to collect a larger universe of data

than the original 2,700 repositories. All Python projects were scanned to inventory the

modules included in every source file. This information was used during the

preprocessing phase to include more repositories until the ratio of a specific third-party

library was within a variably defined tolerance of a specified standard library.

 The intended result of increasing the training dataset to include more third-party

libraries is to allow the model training process to evaluate more occurrences of third-

party module usage in a wider range of use cases. This will enable Pythia’s model to raise

the accuracy level of code completion suggestions for third-party libraries to be more in

line with the accuracy of the Python standard libraries. Closing the prediction accuracy

gap between Python standard and third-party libraries resulted in more consistent

efficiency for the developer using the code completion prediction system.

11

Research Questions

 The Pythia model leveraged 2,700 non-forked Python open-source projects from

GitHub ranked by number of stars as the training dataset (Svyatkovskiy et al., 2019).

There was no attempt to adjust the quantity of third-party libraries included in that

dataset.

 The primary hypothesis addressed by this research was that if the number of non-

forked Python open-source projects from GitHub used as input data increased to include

more projects that reference third-party libraries, the resulting accuracy for those third-

party libraries will also increase.

 A key question resolved is the appropriate strategy to use to select new projects to

increase the projects in the input data set. It was not sufficient to just add more projects

by moving from 2,700 projects to a higher number. Those new projects may not use the

same third-party libraries and may introduce new third-party libraries. A blind increase in

the quantity of projects resulted in widening the number of the third-party libraries at a

lower accuracy. The goal was to identify projects that will increase the accuracy of the

third-party libraries in the original data set to show a correlation between the selection of

input data and the quality of the accuracy output by the model represented by Pythia.

Relevance and Significance

 The modern software developer depends on code completion to increase their

efficiency and effectiveness with programming languages. Research by Mărășoiu,

Church, and Blackwell (2015); Stylos and Clarke (2007); Murphy, Kersten, and Findlater

12

(2006) have demonstrated the integral nature of code completion in the developer

experience. The research differed on why code completion is important. Stylos and

Clarke (2007) state that API exploration and discovery is the significant usage model.

Mărășoiu, Church, and Blackwell (2015) suggests that the speed and accuracy of

development was the most significant use case. Murphy, Kersten, and Findlater (2006)

survey found that code completion is as popular as Cut and Paste. Whichever use case is

considered, they all agree on the broad demand and importance of code completion as a

necessary capability for developers.

 Code completion suggests a set of possible methods relevant to a specific type at a

contextual point in the source code. Some types have hundreds of methods, or enough

that scrolling through an alphabetical list becomes more time consuming than alternative

approaches to discovering the correct method. Mărășoiu, Church, and Blackwell (2015)

identified two common strategies for reducing the set of suggestions presented to the

developer: lexical and semantic. The lexical strategy uses pattern matching to reduce the

suggestions provided based on filtering the possible methods using a partial match of the

characters typed by the developer. Common approaches for the partial match are

matching the consecutive characters either anchored at the start or anywhere in the

method; or matching all the characters regardless of position in the method name. As the

developer types more characters, the list of suggestions is reduced through continued

matching. The semantic strategy uses the grammar of the programming language to

reduce the suggestions provided to the developers. Leveraging the grammar allows the

system to restrict the list of candidate methods to those allowed at the contextual point in

the code that triggered the search. Filtering private methods from a candidate result set is

13

a simple example, but this can be extended to include more contextual attributes. For

example, an uninstantiated object could filter all but static or class methods.

 Both the lexical and semantic models address filtering the set of possible suggestions

provided to the developer, but neither addresses the ordering of the methods suggested.

Further, they each have some limitations. The lexical strategy requires the developer to

already know something about the method they want to call since the pattern match is

based on the characters in the method name (Proksch et al., 2015). The semantic strategy

requires the developer to understand the correctness of the suggested methods. Consider

the example of a developer using a socket type, and the code completion suggests both

open and close methods in an alphabetical list. The developer is forced to choose without

any effective guidance.

 The combination of filtering and ranking of the suggestion list is called Intelligent

Code Completion (ICC) (Proksch et al., 2015). ICC leverages more contextual

information about the type at the point of the suggestion request, and in some cases,

historical usage from other similar scenarios, to provide a filtered list of methods with all

or a subset of the list ranked in a suggested order of relevance to the specific context.

 Python’s lack of strong typing prevents the use of a typed variable to derive the

context. D’Souza, Yang, and Lopes (2016) identified this challenge in their paper

introducing their Python code completion system, PyReco. Their approach is to parse a

large source dataset of Python projects, convert to ASTs, and analyze assignments to

determine the most likely type.

14

Barriers and Issues

 GitHub is not a static representation of projects, or their attributes. The source code in

the projects in GitHub have likely changed, as has the star ranking used to select the top

entries. Using the exact same 2,700 projects used by Pythia is not possible without the

specific list of projects they used, and the Git SHA commit code for each of projects they

used. The model selected by Pythia can be reproduced, but it will not result in the same

dataset. This may result in a skewing of the initial baseline results.

 Adding new projects to the input dataset will increase the number of sources using the

Python Standard Libraries. This may result in a change in accuracy for the Python

Standard Libraries and make probable that the increase in third-party library accuracy

will result in a gap between the standard library and third-party library remaining.

 It is possible that third-party libraries that are significant in the 2,700 projects in the

initial dataset may not be significant in other projects. This would impact the ability to

identify other candidate projects to include in the input dataset to raise the accuracy of the

third-party libraries.

 The training of the models used by Pythia is compute intensive and time consuming

(Svyatkovskiy et al., 2019). Svyatkovskiy, Zhao, Fu, & Sundaresan (2019) describes

several strategies employed to reduce the computation time, including reducing the

number of AST nodes used, pruning lowest used word2vec vectors, and parallel batch

processing using GPUs. The increase over 2,700 projects will have a direct impact on the

required computation time of the softmax. This may result in a potential upper limit on

the number of projects that can be included in the input dataset.

15

Assumptions, Limitations, and Delimitations

 A key assumption is that using 2,700 top-starred non-forked open-source projects on

GitHub queried at any time will result in comparable results generated by the Pythia

research at the time of their query. This means that having the exact same 2,700 projects

with exact same source code will not be required, only having a comparable dataset

generated in the same manner.

 Another assumption is that the model used in Pythia can function using more projects

in the input dataset. While the time to generate the results is expected to increase, the

overall model and selection of hyperparameters is expected to function with the increased

dataset.

 There are three delimitations between this research as the Pythia project. First, this

research will not replicate the integration of the resulting data into the text editor as done

in Pythia research. This integration is not related to the accuracy of the data and is only a

means of demonstrating its utilization. The results can be demonstrated through the test

cases. Second, this project will not implement model quantization implemented by

Pythia. This was done to reduce the size of the dataset prior to being sent to the client

systems. This quantization reduced the size of the dataset and reduced the predictive

accuracy of the model. However, the results shared by Pythia are all pre-quantization, and

post-quantization results were not shared, just summarized as reducing the top-5 accuracy

by 3% (Svyatkovskiy et al., 2019). Third, the research will focus on the accuracy results,

and not define specific performance characteristics. While some systems report

16

suggestion list performance, not all do, and there is not enough consistency between the

models to try and replicate specific parameters.

Summary

 This research seeks to improve the accuracy of Python code completion by building

on the prior research of Svyatkovskiy, Zhao, Fu, and Sundaresan (2019) with Pythia. The

Pythia model showed using natural language processing combined with recurrent neural

networks using long short-term memory can improve accuracy over current statistical

models. Pythia’s accuracy is tied to the frequency of programming patterns it learns

during the training cycle (He et al., 2021). This research will increase the exposure of

third-party libraries to the Pythia training model to result in higher accuracy for those

third-party libraries.

17

Chapter 2

Review of the Literature

Introduction

 Gail C. Murphy, Mik Kersten, and Leah Findlater (2006) monitored a number of

developers to determine how they used Eclipse. Their results showed that editing

commands are used the most, but it also showed that Eclipse’s Content Assist (code

completion) is used as much as common editing commands, which they specifically

called. The tables showing the top 10 commands executed by the most developers and the

top 10 commands as percentage of use are reproduced below as Table 1 and Table 2

respectively.

Command No. of Users

Delete 41

Save 41

Paste 41

Content Assist 41

Copy 41

Undo 41

Cut 40

Refresh 40

Show View 40
Table 1 – Top 10 Commands Executed by the Most Developers

18

Command Use (%)

Delete 14.3

Save 11.3

Next Word 7.3

Paste 6.8

Content Assist 6.7

Previous Word 5.9

Copy 4.6

Select Previous Word 3.4

Step (debug) 3.2
Table 2 – Top 10 Commands Executed Across all 41 Developers

 Stylos and Clarke’s (2007) research looked at the usability of two different object

construction models: the default constructor (“create-set-call”) and required constructor.

Their research worked with three groups of developers:

• Systemic Developers – Professional C or C++ developers with 5 or more years of

experience

• Pragmatic Developers – Professional C# developers with 2 or more years of

experience

• Opportunistic Developers – Professional Visual Basic developers with 2 or more

years of experience

 With all three groups of developers, they were provided a series of tasks involving the

design, implementation, and reading of code without the support of code support tooling,

such as code completion. One of the observations in the study was that all participants

used code-completion as a “primary means of exploration,” even while debugging.

 Mărășoiu, Church, and Blackwell (2015) analyzed the usage of code completion

amongst six software developers with diverse levels of experience in the Dart language

and most having no exposure to the libraries used in the experiment. The results

confirmed the findings of Murphy, Kersten, and Findlater (2006) regarding the extensive

19

use of code completion amongst the developers. However, the findings challenged Stylos

and Clarke’s (2007) conclusion that code completion was used primarily for API

exploration. The results suggested that the code completion was to increase the efficiency

of writing code by filtering the suggestion list to find the appropriate option to accept.

Further, the results showed that a significant number of code completion suggestions

were not accepted by the developers.

 In Mărășoiu, Church, and Blackwell’s (2015) research, they observed that only 40.1%

of code completions results in an accepted suggestion. When they analyzed 10,000 code

completion suggestions from developers experienced with Dart and the used APIs inside

Google, that result only rose to 44.2%. They concluded that the quality of code

completion suggestions is still a significant challenge to be addressed.

 Mărășoiu, Church, and Blackwell’s (2015) also observed that when code completion

did not offer useful suggestions, the developers considered that as indicative of errors

elsewhere in their code. The result was a correlation between ineffective code completion

suggestions and developer inefficiencies.

Intelligent Assistants

 The complexity and size of computer source code is an ever-increasing problem. The

first version of Unix was 4,768 lines of assembly code in 13 files totaling 146.41kb

(GitHub - Dspinellis/Unix-History-Repo at Research-V1-Snapshot-Development, n.d.).

Linux in early 2020 was 27.8 million lines of code (Linux in 2020: 27.8 Million Lines of

Code in the Kernel, 1.3 Million in Systemd - Linux.Com, n.d.). Despite that growth in size

20

and complexity, some challenges have remained the same. Terry Winograd (1973)

postulated that software could be developed to assist the developer in tackling this

complexity. He identified four key areas of helping: Error Checking, Question

Answering, Trivia, and Debugging. His definition of Trivia outlines the concept of code

completion. He states “Often, a programmer really doesn’t want to bother knowing the

answer to a question. If he has a variable named ITEM which is to be added to LIST, he

must worry about whether ITEM is the item itself, or a singleton list containing the item,

and whether the list is ordered, or does not contain duplicate items, etc.” What he is

proposing is that some developer assistant could be aware of the context of the source

code that the developer is working on. He continues “Rather than asking for all this

information, he [the developer] would rather say to his moderately stupid assistant,

‘Write the appropriate call to add ITEM to LIST.’” This defines the concept behind

modern code generation tooling, but it also covers the basis of code completion. In short,

the developer’s assistant should know what the thing is the developer is working with, the

context or state it is in, and what the developers wants to or should do next with it.

Winograd’s work was a thought experiment proposing a future state for developers that

might be possible.

 Fifteen years later, Gail E. Kaiser and Peter H. Feiler (1988) developed Project Marvel

based on Winograd’s model of an Intelligent Assistant for developers. Kaiser and Feiler’s

(1988) approach to implementing Winograd’s vision was to develop a system based on

the concepts of insight and opportunistic processing. Insight is defined as being aware of

the developer’s environment, or context, and being able to leverage that knowledge to

share information or proposed actions the development should know about. Opportunistic

21

processing is the developer’s environment using insight to take certain actions

automatically, thus freeing the developer to work on their source code more efficiently.

Common examples of this behavior are the background compilation, error checking, and

automatic linting performed in modern IDEs.

 Kaiser and Feiler’s (1988) insight concept directly address the concept of code

completion. Their approach was to consider the developer’s environment as objects, in

the object-oriented context. If everything is an object, and all possible objects can be

identified, then a database of all possible information, could be constructed for use during

the development cycle. This included relationships between objects, which allowed for

identification of context.

 This model of static awareness predicts code using a combination of identifying what

the developer’s context is and doing a lookup against the object database to determine the

results of a prediction. As new types are added to the program, their information,

including interaction relationships, would be added to the database.

 Project Marvel was significantly more than just code completion. It was an entire

environment that had a defined model for the process the programmer must follow. The

database of objects and their relationships is like the run-time type identification available

in many modern object-oriented languages. The implementation approach of Project

Marvel is no longer appropriate, but the conceptual approach of using rich type

information to make the developers environment more intelligent is the foundation of

modern IDEs.

22

Code Completion

Optimistic Code Completion

 Robbes and Lanza (2008) define code completion as taking an “input token to be

completed and a context used to access all necessary information in the system, and

outputs an ordered sequence of possible completions”. In their paper, they propose an

improvement over the code completion systems provided in Eclipse, Visualworks, and

Squeak. Those three systems provide a filtered code completion system based on a

specific data type and optional input from the user. The filtered model starts with the

universe of all possible results based on a provided datatype and filters the suggestion list

based on the characters typed by the user and presents the suggestions alphabetically.

Figure 7 shows Eclipse providing filtered code completion of 11 results out of 22 sorted

alphabetically, with shorter parameter lists given priority.

23

Figure 7 – Filtered Code Completion in Eclipse (Robbes & Lanza, 2008)

 Robbes and Lanza (2008) propose that the three code completion systems all suffer

from the same overall problem of making it difficult to find the single right suggestion

because it is hidden amongst many incorrect suggestions due to the alphabetical sort.

They classify this model of code completion as “pessimistic” due to its assumption of

returning a large data set. They propose an “optimistic” model that would expect a

shorter list of suggestions. The goal of an optimistic model would result in a smaller

suggestion list that would not need to be alphabetized. They defined the following three

assumptions to qualify a result set as optimistic:

• The result set is small. They used 3 as the limit in their paper.

24

• The match being sought must have a high probability of being in the smaller

result set.

• The programmer typed prefix used for filtering must be short.

 Robbes and Lanza (2008) only compare the accuracy score of method calls

predictions, and no other constructs such as types, keywords, and variables. They take

this approach because method calls are a significantly larger percentage of the predicted

elements within a program (Robbes & Lanza, 2008). Their paper divides code completion

strategies into two broad categories of typed and untyped. Robbes and Lanza (2008) use

the Squeak IDE with Smalltalk as the language evaluated because it is untyped, and they

reason that untyped languages require more improvement in code completion strategies

over typed languages. However, they do include some typed code completion algorithms

in the evaluation using a type inference engine built into Squeak.

 Robbes and Lanza (2008) evaluated a total of 8 different strategies. The two

pessimistic models served as a typed and untyped baseline. The six optimistic strategies

were based on information gathered from the code changes captured in the AST, and

were based around the following code history hypotheses:

• Structure – Local methods are called more often than distant methods.

• Names – Recently changed method names.

• Bodies – Recently changed method bodies.

• Inserted – Recently inserted code.

• Sessions – Per-Session vocabulary defined as terms, such as class names,

methods, and variables, introduced in the past hour.

25

• Typed Per-Session vocabulary.

 Robbes and Lanza (2008) show the results of untyped code completion algorithms

compared against each other for 7 projects; their SpyWare monitoring project and 6

student projects. Table 3 below shows the results scored from least to most accurate using

a 0 to 100 scale.

Project SpyWare Student1 Student2 Student3 Student4 Student5 Student6

Baseline 12.15 11.17 10.72 15.26 14.35 14.69 14.86

Structure 34.15 23.31 26.92 37.37 31.79 36.46 37.72

Names 36.57 30.11 34.69 41.32 29.84 39.80 39.68

Inserted 62.66 75.46 75.87 71.25 69.03 68.79 59.95

Bodies 70.14 82.37 80.94 77.93 79.03 77.76 67.46

Sessions 71.67 79.23 78.95 70.92 77.19 79.56 66.79

Table 3 – Scores for the untyped algorithms of all projects (Robbes & Lanza, 2008)

 The results from Robbes and Lanza (2008) show a significant improvement above the

baseline, however, it is based on information within an application. They do not identify

the difference in accuracy between developer created methods, third-party library

methods, or standard languages methods. Their code completion algorithms are all based

on the actions of the developer, which implies that accuracy of a type imported into a

project and not used before, cannot have the same accuracy results. Further, in their

models, only the sessions model is not overtly biased towards developer created code.

The sessions model is biased towards the methods used within the last hour, and that

model should favor developers that remain in the same context. However, the selection of

26

one hour is not explained, and there is no data concerning the number of times a

developer switches contexts within a session to help qualify the results.

Intelligent Code Completion

 Bruch, Monperrus, and Mezini (2009) defined the term Intelligent Code Completion

as a system that learns by analyzing prior source code. They stated that the problem of

too many incorrect suggestions being returned during code completion is still an unsolved

problem and impairs developer productivity. They provide the example of the Java

Standard Widget Toolkit (SWT) Text class having more than 160 callable methods,

including all the methods in Java’s Object type, with some of those methods never being

called on the Text object. For example, the wait method on Java’s Object is a method that

was never called in their scan of the Eclipse codebase. From that same scan, they

identified that only 5 methods out of over 160 are ever called on Text in the Eclipse code

base. That leaves the developer with over 155 incorrect choices to filter out of the

proposed suggestions during code completion.

 Bruch, Monperrus, and Mezini (2009) identify the key criterion about methods,

beyond frequency of use, is the context that it is called within. They provide the example

of the configuration code that only happens in a Dialog.create() and the code for reading

the input data in the Dialog.close(). This is information that can be used to filter the

proposed suggestions based on the context of the code completion suggestion request.

 Their paper proposes that intelligent code completion system must be capable of the

following two behaviors:

27

1. Filter code completion suggestions from the list that are not relevant to the current

context.

2. Rank the relevance of every proposed code completion suggestion.

 The combination of these two behaviors will reduce the number of code completion

suggestions that the user will receive and order those suggestions so that more relevant

suggestions are earlier in the list.

 Bruch, Monperrus, and Mezini (2009) developed and measured the accuracy of three

strategies to analyze existing source code. Their test was limited to the accuracy of

calling the Java SWT library in over 27,000 test cases. Similar to Robbes and Lanza

(2008), they limited the resulting options presented to the developer. However, instead of

the fixed number of entries used by Robbes and Lanza (2008), they chose a 30%

confidence level as a threshold for filtering the results.

Frequency Based Code Completion

 Bruch, Monperrus, and Mezini’s (2009) first strategy is a frequency-based solution.

This model assumes that the more frequently a developer calls a method for a specific

type, the more likely it is going to be called again for the same type. The relevance rank

is determined by ordering the methods called for a type by the absolute number of times

that method is called.

Association Rule Based Code Completion

 Bruch, Monperrus, and Mezini’s (2009) second strategy is to look for association

rules based on patterns in the code. They provide an example of mapping the typical

behavior of calling setter methods inside a constructor, which would lead to a rule of

28

Object creation implies setter methods (Bruch et al., 2009). Similarly, a second rule could

be when Dialog.close() is called, it will be followed by getText() method calls.

Best Matching Neighbors Code Completion

 Bruch, Monperrus, and Mezini’s (2009) third strategy is a novel application of the k-

nearest-neighbor (kNN) algorithm, and this is the primary contribution of their paper.

They define the Best Matching Neighbors (BMN) algorithm as a kNN algorithm

modified to the context of code completion. Their modifications are mapping the context

of the variable to a vector; design of a novel distance measure; selection mechanism of

nearest neighbors; and mapping nearest snippets to method recommendations (Bruch et

al., 2009).

Results

 Bruch, Monperrus, and Mezini (2009) use precision, recall, and the F1-measure to

evaluate their algorithms. Recall is the percentage of relevant methods returned, with

100% meaning all methods for a type were in the suggestion set. Precision is the

percentage of methods actually needed by the developer. The F1-measure used, equally

weights recall and precision. The F1-measure was used as the primary metric for tuning

the experiments, with the goal of maximizing the F1-measure. Figure 8 below shows the

results of comparing the Eclipse Code Completion System (EcCCS), Frequency Code

Completion System (FreqCCS), Association Rule Code Completion System (ArCCS),

and Best Matching Neighbors Code Completion System (BMNCCS) strategies.

29

Figure 8 – Performance of EcCCS, FreqCCS, ArCCS, and BMNCCS (Bruch et al., 2009)

 Bruch, Monperrus, and Mezini (2009) conclude that they were able to demonstrate a

significant improvement using their BMN strategy, but that there is room for

improvement in generalizing the solution for standard libraries. This highlights one of the

challenges Bruch, Monperrus, and Mezini’s (2009) work, in that it was evaluated within a

narrow scope for a single subset of a larger framework. Their decision to tune their

strategies based on the F1-measure for just SWT, does not indicate that these results will

apply when multiple frameworks and libraries are included in the dataset. Despite that,

their results do show that analysis of existing source code can improve the prediction

results of code completion. Further, it is evidence that mapping source code to vectors for

leveraging vector-based algorithms for prediction is a viable option. However, their paper

does not provide significant details, or show metrics related to the issue they identified

about the context of where code completion happens.

30

Intelligent Code Completion with Bayesian Networks

 Proksch, Lerch, and Mezini (2015) developed an approach using Bayesian networks

that directly builds upon the Best Matching Neighbors (BMN) strategy of Bruch,

Monperrus, and Mezini (2009). Proksch, Lerch, and Mezini (2015) acknowledge the

advancement of the BMN strategy but identify a couple of specific areas for

improvement. First, context is not sufficiently addressed in the results generation and in

the prediction accuracy analysis. Second, runtime impacts of the model were not

considered, specifically the speed of the results and the size of the required dataset.

 Proksch, Lerch, and Mezini (2015) define three aspects used in comparing their

approach with the BMN strategy: prediction quality, prediction speed, and model sizes.

Their approach replaces the use of BMN with a Pattern-based Bayesian Network (PBN).

This key difference allows the merging of different patterns, and to map the patterns to

probabilities instead of just Boolean values. Further, the PBN is clustered, allowing for a

model that can be tuned to balance prediction quality and size of the resulting model.

 Proksch, Lerch, and Mezini (2015) provide details on how they analyze existing

source code. Their approach is to capture object usages. They define object usages as a

representation of any method that is called, and the context in which the object usage was

observed (Proksch et al., 2015). This context information was implied by Bruch,

Monperrus, and Mezini (2009), but its collection and usage were not explained, and is

one of the key elements that Proksch, Lerch, and Mezini (2015) use to improve upon the

BMN strategy. However, while Proksch, Lerch, and Mezini (2015) claim to extract as

much reusable context information as possible, they do limit its usefulness by focusing on

frameworks over libraries. Their rationale is that frameworks provide more structural

31

information with well-defined extension points, and that the typical usage model of

frameworks is through extension with classes and interfaces defined in the framework.

Their paper states that they expect the result of using frameworks to yield more

contextual information that will provide more specific proposals.

 The PBN approach seeks to provide a probabilistic result to the question of how

likely a specific method call will happen within a given context. Figure 9 shows the

conditional probabilities of PBN object usage, and figure 10 shows the structure model of

the Pattern Based Bayesian Network.

Figure 9 – Conditional Probabilities in a Based Bayesian Network (Proksch et al., 2015)

Figure 10 – Structural Representation of the Bayesian Network used in PBN (Proksch et al., 2015)

32

 The PBN model clusters by selecting a random object usage to be the center of the

cluster from the set of all usages for a given type. All other object usages below a

distance threshold are placed into the same cluster and removed from the available set of

object usages. This process repeats until all object usages are assigned to a cluster. Each

cluster becomes the pattern node state in the Bayesian network. The probability is

calculated as the number of object usages in the cluster divided by the total number of

object usages (Proksch et al., 2015). Distance is calculated using cosine similarity, and

the distance threshold is the parameter used to tune the trade-off of quality and model

size. The lower the distance threshold, the higher quality, but larger the model size.

Thresholds range from 0.0 to 1.0 and indicated in the result data as 𝑃𝐵𝑁𝑑, thus a distance

of 0.10 is denoted as 𝑃𝐵𝑁10, and the distance of 1.00, is denoted as 𝑃𝐵𝑁100.

 The results for PBN show that it can significantly reduce the model size while

retaining comparable results to BMN, as seen in figure 11. This graph presents PBN and

BMN both using definition contextual information (the +D marker). Other contextual

information and combinations were tried but were all lower quality than just definition

information. Figure 12 shows the effect of increasing the number of object usages for one

type (SWT Button) on model size and inference speed over different distances.

33

Figure 11 – Quality and Size for Different Distances Compared to BMN (Proksch et al., 2015)

Figure 12 – Effect of Increasing Number of Object Usages for SWT Button (Proksch et al., 2015)

 PBN can achieve similar quality as BMN with better performance and smaller data

sizes. However, the authors state the same concerns with their results identified earlier in

their paper with the BMN strategy. Specifically, focusing on just the SWT framework

may mean this model will not be generally applicable to other frameworks. This should

be considered an applicable limitation when considering libraries, standard or third-party,

since they were deliberately out of scope for this analysis.

34

Improving Best Matching Neighbor for Dynamically Typed Languages

 D’Souza, Yang, and Lopes (2016) also build upon the Best Matching Neighbors

(BMN) strategy of Bruch, Monperrus, and Mezini (2009) to demonstrate the applicability

to dynamically typed languages, specifically testing with Python. D’Souza, Yang, and

Lopes (2016) chose to use the BMN model over the Pattern Based Bayesian Networks

(PBN) presented by Proksch, Lerch, and Mezini (2015) because their experiments

demonstrated that a Vector Space Model outperformed the Naïve Bayes, Bayesian

Network, and Tree Augment Naïve Bayes classifiers.

 D’Souza, Yang, and Lopes (2016) identified that the prior research for code

completion focused primarily on statically typed languages, usually Java. They developed

a code completion model named PyReco to demonstrate how to apply prior research to

the dynamically typed language Python. Their approach uses a significantly larger set of

input source repositories for model training. They chose approximately 20,000 Python

GitHub projects with the most stars. From these source files, they extracted the Python

library and module information, object assignments, method calls, attributes, and object

termination through forward parsing of the AST generated from the Python Standard

Libraries AST parser. Further, contextual information, such as conditionals and loops, are

captured in the resulting graph structure that they use to model the analyzed source code.

 The output of the static code analysis is then transformed into vectors used for the

training objects, and queried based on the method-call frequency (D’Souza et al., 2016).

Manhattan distance is used in calculating the nearest neighbors based on the method-call

frequency. Recommendations are then created by traversing the methods invoked in

decreasing order of frequency. A notable change from the approach of Bruch, Monperrus,

35

and Mezini’s (2009) BMN model is that D’Souza, Yang, and Lopes (2016) retain the

original frequency values instead of the Boolean values distilled from the frequency

values. This retains the knowledge of which methods are called more frequently than

others for use in the recommendations.

 D’Souza, Yang, and Lopes (2016) are not able to compare their approach to the

approach of Bruch, Monperrus, and Mezini (2009) or Proksch, Lerch, and Mezini (2015)

because they are evaluating the code completion accuracy of different programming

languages. To demonstrate improvement, the paper compares its results against JEDI

(Halter, 2012/2020), a popular open source Python code completion engine. The paper

asserts that JEDI can be used in automated code completion tests that provide the ability

to gather quantitative results at scale. However, they also performed manual comparisons

against the JetBrains PyCharm IDE (PyCharm: The Python IDE for Professional

Developers by JetBrains, n.d.), which they assert has a more powerful code completion

engine than JEDI (D’Souza et al., 2016).

 The experiments were evaluated for a total of 20 Python libraries, 11 standard

libraries and 9 third-party libraries. The selection of those 20 libraries were based on the

D’Souza, Yang, and Lopes’s (2016) determination of popularity within the Python

community and frequency of library occurrence within the dataset of source repositories.

 D’Souza, Yang, and Lopes (2016) evaluated their results using Mean Reciprocal

Rank (MRR) and Recall. They chose MRR because the goal was to identify how high the

result was in the resulting suggestion list, and not how long the resulting suggestion list

is. The Precision measurement would penalize longer lists, even if the result was the first

choice. Further, since the developer will only choose one item from the list, the MRR is

36

equivalent to the Mean Average Precision (MAP) measurement. Table 4 below shows the

results of PyReco and JEDI for the 10 Python standard libraries. Table 5 below shows the

result of PyReco and JEDI for the 9 Python third-party libraries. In all but one case, the

PyReco system outperforms JEDI in both MRR and Recall. The one exception is

argparse. The authors propose that with argparse, and with the low values for mock, it is

due to unique nature of how these libraries work, and the lack of training data based on

normal method call stacks and object assignments. The results of the manual comparison

to PyCharm just capture the rank of relevant result, and PyReco improved over PyCharm

for 16 out of the 20 libraries tested. Further, for the mock, ctypes, and google libraries,

PyCharm failed to provide any recommendations.

Library PyReco-MRR JEDI-MRR PyReco-Recall JEDI-Recall

os 0.592 0.037 0.943 0.356

re 0.727 0.196 0.967 0.853

ctypes 0.369 0.146 0.565 0.161

logging 0.425 0.080 0.730 0.615

datetime 0.485 0.040 0.845 0.429

time 0.516 0.0068 0.951 0.068

json 0.632 0.0137 0.950 0.068

collections 0.418 0.161 0.776 0.665

struct 0.646 0.237 0.927 0.843

subprocess 0.560 0.260 0.925 0.741

argparse 0.306 0.424 0.422 0.518

Table 4 – PyReco Results for Python Standard Libraries (D’Souza et al., 2016)

37

Library PyReco-MRR JEDI-MRR PyReco-Recall JEDI-Recall

Django 0.467 0.001 0.687 0.003

numpy 0.424 0.009 0.783 0.006

mock 0.252 0.000 0.472 0.000

sqlalchemy 0.551 0.092 0.871 0.419

PyQt4 0.559 0.000 0.896 0.000

theano 0.674 0.000 0.930 0.000

wx 0.568 0.000 0.842 0.000

google 0.638 0.001 0.910 0.002

flask 0.481 0.000 0.819 0.000

Table 5 – PyReco Results for Python Third-Party Libraries (D’Souza et al., 2016)

 D’Souza, Yang, and Lopes (2016) have demonstrated that the use of a nearest

neighbor classification algorithm, combined with a large corpus of training data can

provide improved results for Python code completion. They do identify some potential

issues with their results. First, they only used 20 libraries, and while broader than single

library tests, it may not expand well to a more generalized use case. Second, the manual

evaluation was performed only once, and the results may change over time. Third, bugs

in the scanned source code in the repositories used as the input dataset could skew the

training model, and thus the results may contain some false positives. Despite these

issues, D’Souza, Yang, and Lopes (2016) have shown the application of typed code

completion approaches to untyped languages is possible.

38

Long Short-Term Memory Neural Networks Pythia

 Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) state that existing models do not fully

leverage the capabilities of Natural Language Processing (NLP) using the long-range

sequential characteristics of source code represented in ASTs. Prior research has focused

on the use of vectorized source code fragments, rather than introducing techniques from

NLP to vectorize the AST. Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) developed the

Pythia model to leverage the word2vec algorithm developed by Mikolov, Corrado, Chen,

and Dean (2013) at Google to vectorize flattened sequences extracted from the AST

representation of source code. These word2vec vectors are then used as the input to a

Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) as the training

data.

 Pythia’s novel approach to vectorizing source code using word2vec is an evolution

over the prior Boolean vector model used by Bruch, Monperrus, and Mezini (2009) for

their Best Matching Neighbors (BMN) model and shared by D’Souza, Yang, and Lopes

(2016) for their modified BMN approach, or the frequency vector model used by

Proksch, Lerch, and Mezini (2015) for their Pattern Based Matching (PBM) model. The

key evolution is using an established model for representing complex word embedding

rather than the minimally required vectors they needed to drive their models.

 Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) leverage the word embeddings to

drive their LSTM training model, which provides richer historical context for the use of

specific syntax tokens. They show that by using this richer historical context, they were

able to improve the accuracy of code completion suggestions provided to the developer.

They demonstrate this improvement by measuring the Top-k accuracy and the Mean

39

Reciprocal Rank (MRR) against a Markov chain code completion system, which they

consider as the current state of the art. The Top-k accuracy is defined as

𝐴𝑐𝑐(𝑘) =
𝑁𝑡𝑜𝑝 − 𝑘

𝑄
, (1)

𝑀𝑅𝑅 =
1

𝑄
𝑥 ∑

1

𝑟𝑎𝑛𝑘𝑖
, (2)

𝑄

𝑖=1

Where 𝑁𝑡𝑜𝑝 − 𝑘 represents the top k suggestions, Q is the total set of data samples, and

𝑟𝑎𝑛𝑘𝑖 is the prediction rank of a recommendation. Using Top-k, the top-1 represents how

often the first code completion suggestion is correct, and top-5 measures how often the

correct code completion suggestion is in the first 5 suggestions. The results of Pythia and

Markov Chain for the same data set are shown in Table 6.

Class Name Top-5 Accuracy

Markov Chain

Top-5 Accuracy

Pythia

os 0.863 0.950

numpy 0.575 0.697

list 0.978 0.989

str 0.974 0.988

os.path 0.895 0.957

sys 0.821 0.959

wx 0.272 0.533

logging 0.846 0.914

time 0.951 0.980

tensorflow 0.511 0.754

Table 6 – Accuracy of Pythia and Markov Chain (Svyatkovskiy et al., 2019)

40

 Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) tried four different neural network

models and made it a hyperparameter for their automated testing. First is a fully

connected LSTM RNN. Second is the Gated Recurrent Units RNN (GRU) with predicted

embedding. Third is LSTM with predicted embedding. Fourth, is LSTM with attention

for temporal data. In terms of Top-5 accuracy, all four models were close to each other,

ranging between 0.91 and 0.93. However, the size of the resulting models was

significantly different, as is visible in Table 7.

Model Architecture Top-5 Accuracy Model Size (MB)

LSTM + fully connected 0.91 202

GRU + predicted embedding 0.91 152

LSTM + predicted embedding 0.92 152

LSTM + attention 0.93 164

Table 7 – Top-5 Accuracy of Different RNN Models for Pythia (Svyatkovskiy et al., 2019)

 The Pythia model chose to use LSTM with predicted embedding for their final model.

This provided a small loss in Top-5 accuracy for a reduction of 12 megabytes in the

trained model. The slight increase in quality using LSTM with attention is supported by

the findings of Li, Wang, Lyu, and King (2018) in their paper exploring using Neural

Attention and Pointer Networks to improve code completion suggestions. Li, Wang, Lyu,

and King (2018) explore a similar approach to Pythia, with a key difference between the

two models the use of attention instead of predicted embedding.

 Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) provide the results showing overall

accuracy and MRR of four different code strategies compared to Pythia. These results are

visible in Table 8 below. The results clearly show that Pythia is significantly improved

41

against the other models. The different models tested were Alphabetic, which is the

complete list of all possible results sorted alphabetically; Frequency, which is the

complete list of all possible results sorted by frequency of use; Frequency-if, which is the

complete list of all possible results sorted by frequency of use taking if-else blocks into

account; and Markov Chain modeling the relationship between different sequences of

method invocation chains.

Model Top-1 Accuracy Top-5 Accuracy MRR

Alphabetic 0.36 0.47 0.372

Frequency 0.38 0.64 0.495

Frequency-If 0.40 0.67 0.521

Markov Chain 0.58 0.83 0.704

Pythia 0.71 0.92 0.814

Table 8 – Comparison of Accuracy and MRR of Python and Four Models (Svyatkovskiy et al., 2019)

 Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) used 2,700 top-stared and non-forked

Python projects as the corpus of source data. This is significantly less than the 20,000

used by D’Souza, Yang, and Lopes (2016) for their Python code completion model, but

with significantly better results. Pythia had an overall MRR of 0.814, but PyReco

averaged approximately 0.500, with a max MRR of 0.727 (D’Souza et al., 2016;

Svyatkovskiy et al., 2019). Pythia achieves superior results trained on less data for more

general-purpose cases including Python standard and third-party libraries.

 The results for Pythia are an improvement over prior models, but it continues to

demonstrate higher accuracy for standard libraries over third-party libraries. The

42

reduction in data set size and increased accuracy is an opportunity to improve third-party

accuracy by introducing more source code repositories into the source corpus.

Measuring Code Completion

Prefix Scoring with Change Replay

 Robbes and Lanza (2008) developed a novel approach to comparing multiple code

completion strategies as a means of comparing their different strategies presented in their

paper. Their approach is the capturing of changes creating during the development effort

and use that information as a source of history similar to a version control history model

they called an evolving AST. As the program is changed, the AST will reflect those

changes. They capture the atomic AST events reflecting adding, changing, removing, and

moving nodes within the AST and composite changes that represent multiple atomic

events. These events are stored in the order of execution so they can be replayed in order,

duplicating the developer’s context.

 Replaying the stored AST events in order but stopping prior to the point a method

name is captured, allows the replay engine to try different code completion algorithms at

the same contextual point the developer experienced when the original context was

captured. In trying different code completion engines, Robbes and Lanza (2008) can

capture key metrics useful in demonstrating the accuracy and efficiency of each

algorithm for the same contextual situation and feed this data into their evaluation model.

Instead of the traditional precision and recall metrics for measuring prediction algorithm,

they give shorter prefixes and higher ranked results more weight. The seek to calculate Gi

43

for each prefix, where I is the prefix length (Robbes & Lanza, 2008) using the following

formula:

𝐺𝑖 =
∑

𝑟𝑒𝑠𝑢𝑙𝑡𝑠(𝑖, 𝑗)
𝑗

10
𝑗=1

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠(𝑖)
 (3)

 In this calculation, i is the prefix length; j is the index; results(i, j) are the number of

correct predictions at index j for prefix length i, and attempts(i) is the times the

benchmark was run for the prefix length i. An accuracy of 100% for a given algorithm,

would have a grade of 1 for that prefix length. With the graded accuracy, a score is

calculated favoring shorter prefixes of 2 to 8 and multiplied by 100 for easier reading.

𝑆 =
∑

𝐺𝑖 + 1
𝑖

7
𝑖=1

∑
1
𝑘

7
𝑘=1

 𝑥 100 (4)

 Robbes and Lanza’s (2008) premise is that with a standard means of calculating code

completion accuracy taking the developers context into account, different strategies for

generating code completion suggestions can be measured and compared. However, they

assumed that user input is anchored at the front as a prefix. Code completion strategies

since their paper was published support user input for filtering as a prefix, postfix, infix,

as individual character filters, and combinations of these models. Robbes and Lanza’s

(2008) formulas might be adaptable for any one of those user input models but would not

be as easily adaptable for mixed user input models. Finally, their grading and scoring

models are not just looking for the highest ranked solution, but the highest rank in the

shortest suggestion list and with the shortest user supplied prefix. The size of the

suggestion list is not relevant to the accuracy if the relevant results are at the top of the

44

list, and a user supplied prefix is no longer an applicable measure given the different

filtering models in modern code completion systems.

Mean Reciprocal Rank

 Mean Reciprocal Rank (MRR) captures the rank of the relevant result that the

developer considers accurate. The Mean Reciprocal Rank defines 𝑄 as the number of

data queries, 𝑟𝑎𝑛𝑘𝑖 as the ranked position of the first relevant result for the i-th query,

and is calculated with the following formula:

𝑀𝑅𝑅 =
1

𝑄
∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑄|

𝑖=1

 (5)

 The MRR calculation is used by D’Souza, Yang, and Lopes (2016) to evaluate

PyReco; by Asaduzzaman, Roy, Schneider, and Hou (2016) to evaluate their Context-

sensitive Code Completion; by Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) to

evaluate Pythia; and by He, Xu, Zhang, Hao, Feng, and Xu (2021) to evaluate PyArt.

This makes the use of MRR one of the more consistently used measurables for code

completion suggestion accuracy.

Top-k Accuracy

 Top-k accuracy measures the likeliness that a result will be in first k results from a

code completion suggestion request. Results in when 𝑘 = 1 are the most accurate, since

the developers expected result was the first entry in the result set. Different research used

different values for k in addition to top-1. All of the papers using a top-k, reported the

results of the top-1. This measure is used by Asaduzzaman, Roy, Schneider, and Hou

(2016) to evaluate their Context-sensitive Code Completion; by Nguyen, Hilton,

45

Codoban, Nguyen, Mast, Rademacher, Nguyen, and Dig (2016) to measure the accuracy

of their APIREC model; by Svyatkovskiy, Zhao, Fu, and Sundarsan (2019) to evaluate

Pythia; and by He, Xu, Zhang, Hao, Feng, and Xu (2021) to evaluate PyArt. Top-k is

another one of the more consistently used measurables for code completion suggestion

accuracy.

Recall

 Bruch, Schäfer, and Mezini (2008) define Recall as the ratio between relevant

recommendations made by a system for a given query and the total number of

recommendations that should have been made. While Recall is used as part of the

evaluation of the Pattern-Based Bayesian Network model (Proksch et al., 2015); of

Context-sensitive Code Completion (Asaduzzaman et al., 2016); of PyReco (D’Souza et

al., 2016); and PyArt (He et al., 2021); it is rarely used as a primary evaluation metric.

Further, a number of papers, including the research by Svyatkovskiy, Zhao, Fu, and

Sundarsan (2019) for Pythia do not use Recall.

Precision

 Bruch, Schäfer, and Mezini (2008) define Precision as the ratio between relevant

recommendations made by a system for a given query and the total number of

recommendations actually made by the system. Like recall, this metric is used by a

number of research papers, but not with consistency. Further, it does not address the key

question of is the relevant response earlier in the list. As the code completion systems

have improved, the objective is not to measure if the right response is in the suggestions

list, but where it is in the suggestions list. Hence, Pythia does not use Precision.

46

Replicating Pythia

 Schuster, Song, Tromer, and Shmatikov (2020) replicated the Pythia model replacing

PTVS (Microsoft/PTVS, 2015/2020) with46steroidd (Welcome to Astroid’s

Documentation! — Astroid 2.5.9.Dev10+g432aa99 Documentation, n.d.) for parsing

Python source files into an AST, and replacing ML.NET (ML.NET | Machine Learning

Made for .NET, n.d.) with PyTorch (PyTorch, n.d.). This replicated model was used to

demonstrate data poisoning vulnerabilities when using neural nets for code completion.

To demonstrate the viability of those attacks, they implemented Pythia, using 2,800 top-

starred repositories from GitHub after some filtering for minimum and maximum AST

node counts. This demonstrates that the Pythia model is replicable. Further, it

demonstrates that key elements of the Pythia implementation, such as the AST parser and

the machine learning library used, are replaceable with comparable frameworks.

47

Chapter 3

Methodology

Introduction

 This research proposed a strategy to increase the code-completion accuracy of third-

party Python libraries in the Pythia prediction model. To deliver this increased accuracy,

the input data used for training and testing was increased to include more examples of

Python code using targeted third-party libraries.

 Pythia is an approach to code-completion that has demonstrated a significant

improvement over other approaches for accuracy (Svyatkovskiy et al., 2019). It has also

been proven to be reproduceable using alternate but comparable tooling to the original

approach (Schuster et al., 2020). Schuster, Song, Tromer, and Shmatikov (2020) provided

details about their hyperparameters for Pythia training that differ from the paper from

Svyatkovskity, Zhao, Fu, and Sundaresan (2019), such as the vocabulary criteria, number

of hidden units, and training epochs for the LSTM neural network. This allowed the

model generation to be significantly accelerated compared to the original Pythia approach

with only a small loss in accuracy. Schuster, Song, Tromer, and Shmatikov (2020) state

the accuracy difference may be related to the Pythia’s reliance on undocumented internal

APIs in Visual Studio. Given that the approach was to show a relative increase in

accuracy between third-party Python libraries and Python standard libraries, this overall

accuracy degradation was not relevant.

48

 The overall workflow of the proposed new model is reflected in figure 13 below. This

model consists of four stages of operation: Data Collection; Preprocessing; Offline Model

Training; and Testing. Each of these four stages of operations are discussed below. The

general operational flow is modeled on Pythia’s workflow with key changes to the

selection of the AST data passed to the Matrix Builder and the Test Suite instead of

Pythia’s integration with IDEs. Specific differences from the Pythia workflow are

discussed below.

Word2vec code
embedding

Matrix Builder

AST Parser

Dependency
Evaluator

Dataset
Generator

Pythia Deep
Learning Model

Training

Hyperparameter
tuning

Github Data
Collector

Test Suite

Source Code
Repositories

Universal Dataset

Generated Data
Subset

R
e

ge
n

e
ra

te

Adjust

Figure 13–- Workflow from source code to testing.

Data Collection

 The core proposal in this dissertation is to increase the number of GitHub Python

projects evaluated by the model generator. The challenge was that it is not known prior to

evaluating the initial candidate set of Python projects and the resulting accuracy if more

projects are required in the dataset or not. Further, GitHub searches are non-deterministic

49

due to the ever-changing number of projects, files within the projects, and stars

associated with a project.

GitHub Data Collector

 To create a fixed set of GitHub projects to work with over multiple queries, a

command line tool was created to search GitHub ordered by number of stars descending

and store the results in an SQLite database. This was the Universal Dataset used as a

static foundation for all further dataset generations. Since GitHub is not deterministic

between search queries, multiple overlapping queries were run sequentially to collect as

many matching projects as possible, while ignoring duplicate projects. These multiple

runs were for projects with different minimal sizes in kilobytes. This process was

repeated until the maximum number of target projects was reached or exceeded.

 GitHub was searched for the 30,000 projects ordered by number of stars descending

at the following eight different minimum projects sizes in kilobytes in descending order:

0, 1, 10, 100, 1000, 5000, 10000, 100000. For each project, detailed information was

collected based on the available GitHub data fields and meta information available. These

fields included, but were not limited to, the GitHub ID, result sort order, creation date,

last update date, Git clone URLs, branch information, fork status, stars, size, owner ID,

and programming language. For each project discovered, the GitHub project tree was

walked to discover all Python files associated with the default branch of the repository,

and the GitHub access URL, SHA code, and path name was stored. When these searches

were completed, a snapshot of GitHub at a moment in time had been created. That

snapshot allowed for the unique identification of distinct repositories based on the

50

GitHub ID. For each of those distinct repositories identified, all files relevant to the AST

processing were located using GitHub’s URL to the raw source code file. This allowed

all files to be accessed without having to clone the projects. Further, this model allowed

for consistently repeating the rest of the model without being impacted by constant

changes to GitHub over time.

Preprocessing

Dataset Generator

 A key requirement of this workflow was the ability to regenerate a new dataset that is

a subset of the universal dataset based on specific input criteria. The initial dataset

utilized the same criteria defined by Svyatkovskity, Zhao, Fu, and Sundaresan (2019).

This was defined as the 2,700 non-forked top-starred Python projects. The Pythia dataset

was identified as containing 15.8 million method calls, but without knowing the specific

projects and their sizes, and if the method call count was in the input dataset or the testing

dataset, it is not possible to use both the repository count, and method count as a target

for the input dataset. The repository count was chosen since it was the broadest match

that could be reasonably replicated. The subset of data was then divided into development

and test sets at 70% and 30% respectively as was used by Pythia. Further, the

development test set was split at random into training and validation sets with 80% and

20% respectively. These ratios were used for all datasets generated and not just the initial

dataset. All the information required to generate the dataset, and the usage classification

of each repository was stored as a set in the database. This allowed for rerunning with the

same data on demand.

51

 This need for regeneration on demand using different parameters was supported by

the creation of a command line tool that regenerated a new dataset from the universal

dataset, dataset configuration parameters, and an optional source sub-dataset. When a

sub-dataset was supplied, the new dataset extended the supplied sub-dataset with unused

unique repositories found in the universal dataset. This allowed for the input dataset to be

incrementally extended. The newly generated dataset was stored in the database as a

unique dataset, including the identity of the source dataset and the update parameters.

This allowed for reusing the same set of data and an audit trail of how it was generated.

Code Processing

 All source files identified in the input dataset were parsed into their representative

Abstract Syntax Tree (AST). This parsing phase removed non-code nodes and retained

nodes representing member access expressions and method invocations. Meta

information about the file, such as module imports information and type definitions, if

any, were captured and stored with the file information to assist with non-training

analysis. This information allowed the dependency evaluation process to identify how

many files depend on specific Python standard and third-party modules. Further, this

assisted in type predictions when the AST was flattened for consumption by the matrix

builder.

 Each syntax node and token name were mapped to an integer between 1 and V to

assign a token index to each token. V is an autotuned parameter representing the

vocabulary size. All tokens in the vocabulary were mapped in the range of 1..V, while all

tokens outside of the vocabulary were mapped in the range of V+1..∞. The size of the

52

vocabulary was defined based on the frequency of the tokens being greater than the

tunable hyperparameter for the token frequency threshold. The initial default for the

token frequency threshold was 500 as used in Pythia. Any token equal to or greater than

that threshold was mapped in the 1..V range.

 Variable names were normalized into typed or untyped equivalents that simplified

their uniqueness to a generated name. As an example, the variable named myText with a

type of string is relabeled as string_1. Variables of undeterminable type were assigned the

type of untyped. Union types were assigned the type of all relevant types identified.

Aliases were normalized so multiple aliases for the same type will be treated

equivalently. This simplified the matching process and minimized the impact of variable

name uniqueness during the training process. Further, eliminating the unique variable

names reduced the vocabulary size significantly.

 Each AST was generated using pre-order depth-first traversal of the Python tokens.

Tokens were partitioned based on their relevance leading towards a method call, with

irrelevant tokens, such as comments, being discarded. The scan was used to generate an

in-order sequential sequence of relevant AST tokens with a “.” as the end of sequence

termination character. These token sequences were used by word2vec as training

sequences during testing to represent the user generated code when generating a

completion projection, and during evaluation for the correctness of the prediction. When

generating training sequences, up to T lookback tokens prior to the method call were

retained. T is a tunable hyperparameter for the model, and the initial default was 1000 as

used by Pythia. This was tuned based on performance and results of testing.

53

Dependency Evaluator

 There was a need to determine if the input dataset needed to be grown with more

projects using specific modules. A Dependency Evaluator that examined parsed AST

meta information, the results of any existing prior test results, and configuration

information to determine if the dataset needed to be expanded and regenerated was

planned. If a new dataset was required or a revision to an existing dataset, the

Dependency Evaluator was going to generate a new dataset configuration and trigger

dataset regeneration. Two tunable hyperparameters were planned to be added to support

this stage. The first was a tolerance threshold to control when a dataset is out of or in

tolerance ranges. The second was a maximum number of regenerations before the

generated dataset automatically accepted the current results and moved to the next phase

of processing.

Encoding Code Snippets

 The sequence of nodes from flattened AST were mapped into matrices as input to

word2vec. The AST is walked pre-order depth first to retain a representation of the

contextual relationship between the code tokens. Method calls were used for the labels

and were one-hot encoded. The matrices were then used by word2vec to produce low-

dimensional dense vectors that were used by the LSTM. This preserved the semantic

relationships discovered through AST parsing. The output softmax produced by

word2vec was used as the input for the LSTM training and as the output classification

matrix, as implemented in Pythia (Svyatkovskiy et al., 2019).

54

Offline Model Training

Pythia Deep Learning Model Training

 The Pythia model training uses a Long Short-Term Memory (LSTM) Recurrent

Neural Network (RNN) to generate the prediction softmax (Svyatkovskiy et al., 2019).

The diagram of Pythia’s RNN architecture is shown in Figure 14. Svyatkovskity, Zhao,

Fu, and Sundaresan (2019) used 2 RNN layers with 100 hidden units per layer and a

dropout rate of 0.8. Schuster, Song, Tromer, and Shmatikov (2020) replicated Pythia

using the same 2 RNN layers, but with 8 hidden units per layer and a dropout rate of 0.75

with a small decrease in overall accuracy. However, the time to generate the models

using Schuster, Song, Tromer, and Shmatikov’s (2020) method was reduced to 15 hours

for a single GPU from approximately 41 hours with multiple GPUs using Svyatkovskity,

Zhao, Fu, and Sundaresan’s (2019) method. This single GPU method also reduced the

complexity of the model generation by removing the need to pad and batch the training

buffers used in the multi-GPU LSTM.

55

Figure 14–- Pythia Neural Network Architecture

 This dissertation measured the ratio of Python standard library accuracy to Python

third-party library accuracy using Schuster, Song, Tromer, and Shmatikov’s (2020)

method. This ratio was similar to the data shared by Svyatkovskity, Zhao, Fu, and

Sundaresan’s (2019), and the simpler method was used to reduce the overall complexity

and model generation time. This allowed for faster feedback from the prediction testing

to the dataset generation to adjust dependencies for another model generation cycle.

Hyperparameter Tuning

 Svyatkovskity, Zhao, Fu, and Sundaresan’s (2019) have defined the hyperparameters

for their training of Pythia in figure 15. Most of these hyperparameters were the initial

settings for this dissertation's model. Schuster, Song, Tromer, and Shmatikov’s (2020)

replication of Pythia showed that some of these hyperparameters can be eliminated or

changed to reduce complexity and generation time with little to no impact on overall

accuracy. Their hyperparameters were considered where appropriate.

56

Figure 15–- Pythia Hyperparameters (Svyatkovskiy et al., 2019)

Evaluation

Key Questions

 To evaluate the results of this dissertation, the following questions were answered:

1. Does the replicated implementation of Pythia produce a ratio between Python

standard libraries and Python third-party libraries similar to the original Pythia

analysis by Svyatkovskity, Zhao, Fu, and Sundaresan’s (2019)?

2. Will increasing the number of projects in the input dataset to include more

projects with references to specific Python third-party libraries improve the

accuracy of those third-party libraries?

3. How many additional projects are required to be added to increase the accuracy

significantly?

57

Evaluation Metrics

 The two primary metrics that were captured to measure the improvement of the

generation model are the Top-k accuracy and the mean reciprocal rank (MRR).

Svyatkovskity, Zhao, Fu, and Sundaresan’s Pythia paper (2019) publish an overall MRR

and Top-5 accuracy, and the Top-5 for the 10 most frequent libraries their dataset

included. This dissertation uses the Pythia overall MRR and Top-5 as a baseline to

compare against.

 The secondary metric used to indicate improvement was the shift in the K counts

from missing to K>5 to K5 to K1. The shifting of K counts shows how the dataset is

improving that is sometimes not visible in the Top-K and MRR. As an example, a shift

from missing to K>5 is an improvement of the model and was visible in the MRR, but

not reflected in the Top-5. Similarly, a move from K5 to K1, was not significantly

reflected in the MRR for larger datasets.

 Given the initial dataset for Pythia was not identified, it was not possible to ensure the

recreation of their top-10 Python libraries given a fully random dataset. Therefore, the

dataset generator supported encouraging more projects with the same libraries identified

in Pythia’s results. This was used to measure against the same libraries. Finally, the

model was run without the dataset generation biased to include the Pythia top-10 libraries

to demonstrate the ability to generate improved results for a random set of 10 Python

libraries.

58

Differences from Pythia

Preprocessing

 The preprocessing phase differed from the original Pythia model by introducing the

ability to regenerate the input dataset to include more projects that use third-party Python

modules. This involved the new data collection process, dataset generator, and the

dependency evaluator. Other aspects of the Pythia model remained, though the

implementation differed slightly due to alternative tooling used.

Model Training

 The offline model training was simplified by removing the parallel processing and

reducing the number of hidden layers. This reduced the cycle time for each model test

with a generated dataset and reduced the time to implement. The reduced complexity also

removed other potential variables from the comparison that could adversely impact the

results.

Model Quantization

 Model quantization was not implemented. This process’s purpose was to reduce the

physical size of the stored model as an optimization for serving results to clients. It is not

significant to the accuracy results of predictions.

59

Serving Recommendations

 The ability to serve recommendations to an IDE is not required to test the prediction

accuracy of the implemented model. This is only necessary to demonstrate the integration

with developer tools. Since it is not required to evaluate the predictions, it was not

implemented.

Conclusion

 This research showed that by increasing the number of projects into the Pythia dataset

using guidance based on the frequency of Python third-party modules included, the

accuracy of Pythia for those third-party modules is increased. The successful

demonstration of that improvement justifies the additional effort to include this guided

dataset adjustment into existing Pythia based code recommendation systems.

60

Chapter 4

Results

Introduction

 The Pythia model was replicated using Python 3.11, gensim 4.3.1 for Word2Vec

processing, keras 2.12.0, and tensorflow 2.12.0. Numerous hardware configurations in

AWS and Google Cloud were tried, but the below configurations were stable and

produced results reliably in reasonable timeframes. Based on memory, CPU, GPU, and

disk needs, the following runtime environments were used:

• Local computer with AMD Ryzen 9 5960X 16 core processors / 32 cores, 64 GB

RAM, NVIDIA GeForce RTX 3070 Ti with 40GB GPU memory, and

approximately 8TB SSD storage.

• Google Collab Pro+ with NVIDIA A100 GPU with 40GB GPU RAM, 83.6GB

CPU RAM and 166.8 SSD.

• AWS r6a.4xlarge EC2 with 16 vCPU, 128GB RAM, and 2TB storage.

 The tests were successfully completed without exhausting the initial GitHub

repositories collected during the proposal phase.

61

Changes from Planned Methodology

 The automated dependency evaluator planned for in the methodology was not

implemented. The processing of data on different platforms (local, Google Collab, and

AWS EC2s) required the frequent migration of data between the platforms. This

migration drove up the time needed and the costs of each pass. It was necessary to

manually select the dependencies and use broader step sizes in the dataset instead of the

planned auto-incrementing steps in repository sizes based on the results of individual

tests.

Baseline Model

 The Pythia paper from Svyatkovskity, Zhao, Fu, and Sundaresan (Svyatkovskiy et al.,

2019) list ten Python libraries with the Top-5 accuracy results. They do not list individual

MRR results, but instead provide an overall Top-1 accuracy score, Top-5 accuracy score,

and MRR for Pythia. They identify the source data for the overall scores as the “test set

for the Pythia neural model and various baselines.”

 This left a few possibilities for how they computed their over results:

• The calculation is the aggregation over the entirety of the test data set, but not the

validation or training data sets.

• The calculation is the aggregation over a different, but unidentified, combination

of the test, validation, and training data sets.

• The calculation is an aggregation of the ten libraries used in the Top-5 Pythia

results.

62

 The first two options are impossible to replicate without the original source input data

used by Pythia and the exact computation used. Neither of this information was provided.

The last calculation cannot be replicated without the exact formula and the original

source input libraries used by Svyatkovskiy.

 To circumvent this gap in information, the baseline version of this dissertation’s

implementation was compared against the Pythia K5 accuracy only for the ten libraries

with measurable results by Svyatkovskiy. One of the ten libraries had no measurable

results in this dissertation’s baseline, which generated an outlier situation that skewed

those results. To compensate for that scenario, the baseline was compared against all ten

and the nine libraries with results in both models. The average change in K5 accuracy

over the libraries with and without the outlier were calculated between Pythia and this

dissertation’s baseline. The comparison between Pythia and the baseline model used in

this dissertation is shown in Table 9 below. This table shows the Python libraries used in

Svyatkovskiy’s paper, the K5 accuracy reported for Pythia, the K5 accuracy generated by

this dissertations baseline model, and improvement percentage over the Pythia K5

achieved by the baseline model.

Library Pythia K5

Accuracy

Dissertation K-5

Accuracy

Improvement

os 0.863 0.976 +2.71%

numpy 0.575 0.843 +21.02%

63

list 0.978 0.975 -1.40%

str 0.974 0.968 -2.01%

os.path 0.895 0.980 +2.39%

sys 0.821 0.947 +1.61%

wx 0.272 0.000 -100.00%

logging 0.846 0.970 +6.11%

time 0.951 0.977 -0.33%

tensorflow 0.511 0.838 +75.96%

Table 9 - Comparison of Pythia and Baseline Model for K5 Accuracy

 The average change across all ten libraries identified by Pythia is an improvement of

0.61%. When the outlier of the wx library is removed, the average of the improvement

across the nine remaining libraries is 11.79%. Considering the full set of ten libraries

shows that this dissertation’s baseline model is comparable to Pythia’s results in terms of

K5 accuracy, the only per-library metric provided by Svyatkovskiy. When the outlier of

the wx library is removed, the baseline model shows a measurable improvement over the

results presented by Svyatkovskiy.

 Since the MRR results of Svyatkovskiy are not directly reproducible, the MRR for the

ten Pythia identified libraries, the MRR for the Pythia libraries without the outlier of wx,

and the MRR for all libraries included in the test data set was calculated and compared

against the MRR provided by Svyatkovskiy. The results of this MRR calculation are

provided in Table 10 below.

64

Pythia Baseline w/ Outlier Baseline w/o Outlier Baseline w/ All Libraries

0.814 0.765 0.849 0.705

Table 10 - Comparison of Pythia and Baseline Model for MRR

 The table shows that when comparing the baseline model MRR, including the outlier,

against Svyatkovskiy’s MRR result, leads to a 6.02% decrease in MRR. However, when

comparing the baseline model MRR, excluding the outlier, against Svyatkovskiy’s MRR

result, leads to a 4.30% increase in MRR. Comparing the MRR average of all libraries in

the baseline model’s test set against Svyatkovskiy’s MRR results in a 13.39% decrease in

MRR. The challenge here is that without being able to use Svyatkovskiy’s input dataset

to calculate a baseline MRR, it is not possible to have a meaningful comparison in

absolute MRR values.

 Given this limitation in showing accurate MRR comparisons against Svyatkovskiy,

this dissertation uses the K5 accuracy comparison to establish the validity of the baseline

model being able to replicate the capabilities of Pythia. Comparable model parity is

shown for the libraries tested by Svyatkovskiy with the outlier with a difference of

0.61%. While excluding the outlier model raises this difference to 11.79% showing a

significant improvement. The expectation is that for the same libraries, the baseline

model will generate similar or better results than the Pythia model as documented by

Svyatkovskiy.

65

 This dissertation calculated the impact of increasing the quantity of specific libraries

based on their relative change over the baseline model’s in K1, K5, and MRR. It also

calculated the improvement in the target counts where a prediction moves from missing

to greater than K5, to K5, and to K1. Given the lack of required information to precisely

replicate the Svyatkovskiy Pythia model, the baseline model was used as a comparable

stand in for the Pythia model, and improvements against the baseline model are expected

to replicate against Svyatkovskiy Pythia in a similar fashion.

Expansion by 100 Repositories

 The first expansion set test used a maximum quantity of 100 new repositories per

target library. This represents a 3.70% increase in the total number of repositories in the

dataset, which expanded from 2,700 repositories to a maximum of 2,800 repositories.

 The following libraries were selected to be expanded by 100: markdown, yaml, and

tqdm. The reason for their selection was because the ratio of count to missing was

significant, the current MRR had room for improvement, and the test data sets were not

significant in size. This allowed for the models to be recreated and tested frequently

during the hyperparameter tuning phase of the model generation.

markdown Library

 The markdown library in the baseline model had a total of 2,167 identified method

calls in the test data set, with 876 of those method calls being K1 accurate, 907 being K5

66

accurate, 3 being greater than K5 accurate, and 1,257 missing from the prediction list.

This resulted in a K1 accuracy rate of 40.42%, a K5 accuracy rate of 41.86% and an

MRR of 0.410 as seen in table 11.

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

2,167 876 907 3 1,257 0.40425 0.41855 0.41015

Table 11 - Markdown Library Results using Baseline Model

 The dataset was expanded by 100 repositories that included imports of the markdown

library. This increase only applied to the training and validation dataset, and not to the

testing dataset. The same testing dataset was used in all tests to ensure that the changes to

the results were not impacted by the tests, only by the input datasets. The results of

adding 100 additional markdown including repositories resulted in a significant

improvement, with the raw results visible in table 12 below.

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

2,167 941 1,009 11 1,147 0.43424 0.46562 0.44733

Table 12 - Markdown Library Results using Baseline+100 Model.

 The change between the baseline dataset and the baseline+100 dataset is visible in

table 13 below. The results show a significant left shift improvement in the counts of

predictions. The K1 count increased by 7.42%, K5 count increased by 11.25%, the

67

greater than K5 (Kn) counts increased by 266.67%, and the missing predictions count

(Kmissing) reduced by 8.75%. K1 and K5 accuracy directly correlates to their count

improvements, so they improved by 7.42% and 11.25% respectively. MRR improved by

9.07%. This is provided in table 13 below.

ΔK1 ΔK5 ΔKn ΔKmissing ΔK1 Acc. ΔK5 Acc. ΔMRR

+7.42% +11.25% 266.67% -8.75% +7.42% +11.25% +9.07%

Table 13 - Markdown Library Improvement Results of Baseline v Baseline+100

tqdm Library

 The tqdm library in the baseline model had a total of 1,475 identified method calls in

the test data set, with 902 of those method calls being K1 accurate, 977 being K5

accurate, 17 being greater than K5 accurate, and 481 missing from the prediction list.

This resulted in a K1 accuracy rate of 61.15%, a K5 accuracy rate of 66.24% and an

MRR of 0.635 as seen in table 11.

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

1,475 902 977 17 481 0.61153 0.66237 0.63451

Table 14- TQDM Library Results using Baseline Model

 The dataset was expanded by 100 repositories that included imports of the tqdm

library. This increase only applied to the training and validation dataset, and not to the

68

testing dataset. The same testing dataset was used in all tests to ensure that the changes to

the results were not impacted by the tests, only by the input datasets. The results of

adding 100 additional repositories including the tqdm module resulted in a minor

improvement that was less significantly visible than shown with the markdown library.

The raw results are visible in table 15 below.

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

1,475 905 987 7 481 0.61356 0.66915 0.63830

Table 15 – TQDM Library Results using Baseline+100 Model.

 The change between the baseline dataset and the baseline+100 dataset is visible in

table 16 below. The results show a minor left shift improvement in the counts of

predictions. The K1 count increased by 0.33%, K5 count increased by 1.02%, the greater

than K5 (Kn) counts decreased by 58.82%, and the missing predictions count (Kmissing)

remained the same. K1 and K5 accuracy directly correlates to their count improvements,

so they improved by 0.33% and 1.02% respectively. MRR improved by 0.60%. This is

provided in table 16 below.

ΔK1 ΔK5 ΔKn ΔKmissing ΔK1 Acc. ΔK5 Acc. ΔMRR

+0.33% +1.02% -58.82% 0.00% +0.33% +1.02% +0.60%

Table 16 – TQDM Library Improvement Results of Baseline v Baseline+100

69

yaml Library

 The yaml library in the baseline model had a total of 564 identified method calls in

the test data set, with 114 of those method calls being K1 accurate, 114 being K5

accurate, 0 being greater than K5 accurate, and 450 missing from the prediction list. This

resulted in a K1 accuracy rate of 20.21%, a K5 accuracy rate of 20.21% and an MRR of

0.202 as seen in table 17.

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

564 114 114 0 450 0.20213 0.20213 0.20213

Table 17 - Yaml Library Results using Baseline Model

 The dataset was expanded by 100 repositories that included imports of the yaml

library. This increase only applied to the training and validation dataset, and not to the

testing dataset. The same testing dataset was used in all tests to ensure that the changes to

the results were not impacted by the tests, only by the input datasets. The results of

adding 100 additional yaml including repositories resulted in no change to the results.

The raw results are shown in table 18 below. It was expected based on the experience

with the tqdm library, that the results of adding 100 yaml repositories would yield little

improvement. The result of no improvement was not expected.

Count K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

70

564 114 114 0 450 0.20213 0.20213 0.20213

Table 18 - Yaml Library Results using Baseline+100 Model.

Results Analysis

 The results with 100 additional repositories were mixed across the three tests

performed. The markdown library had significant improvements with an increase in K1

and K5 accuracy, the MRR score, and a left shift in the counts from missing through to

K1. However, tqdm’s results were marginal at best. The K1 and K5 accuracy improved,

but not significantly. Similarly, the MRR increased by not significantly. The only left

shift was from the already identified predictions from Kn to K5 to K1. Finally, the results

for yaml were disappointing with no change in any of the calculated values.

 Numerous different hyperparameters were tried to improve the model with no

improvement, and most yielded worse results. Examining the new repositories included

into input dataset showed that additional code being analyzed was very similar to the

existing code being analyzed. There were some additional patterns of usage for tqdm, but

there were no significant usages difference for yaml. This lack of diversity in the code

base was visible in the testing data by showing no significant improvements in

identifying new patterns. There was nothing new for the training to learn with the current

dataset over what it had learned. It improved on what it had already learned but did not

find something new.

71

 This is not a fault of the model, but of the input dataset. The model was able to

improve the predictability of items it could already find, the Kmissing to K5 and K1, but

it could not find new predictions. The working theory being that there is a floor to the

improvement value of an additional 100 repositories, which is only a 3.70% increase, that

it is not bringing enough diversity to the training set to improve the results. Given the

small size of tqdm and yaml tests relative to the entire dataset, 0.039% and 0.015%

respectively, of the overall test dataset, it is probable they required more usage patterns

for training to identify the small number of unique usage patterns in the test dataset. For

reference, markdown represented 0.058% of the test dataset and saw significant

improvement. The tqdm library saw a small improvement with 100 additional

repositories at 0.039% of the test dataset, and yaml saw no improvement with 100

additional repositories and 0.015% of the test dataset. There is a floor to the improvement

with 100 additional repositories that likely has a correlation to the size of the test dataset.

Expansion by 270 Repositories

 Based on the results of testing with 100 additional repositories, two options were

available to move the analysis forward: increase the size of the tests for the target

libraries relative to the overall test dataset or increase the number of libraries being added

into the input dataset. The former option would require re-baselining the model and

would create bespoke testing channels based on the specific library sets. This was not

conducive to proving the general improvement of the Pythia model through increasing

the input dataset and was discarded as an option.

72

 It was decided to increase the number of libraries added to the input dataset. The

analysis in the prior section shows that 100 additional libraries, or 3.70%, was too small.

The new number of additional libraries would be 10% of the repository count, or 270

additional libraries. This would be a significant enough increase to provide more input

data diversity.

markdown Library

 The markdown library in the baseline model had a total of 2,167 identified method

calls in the test data set. The model was enhanced with 270 additional repositories

containing the markdown library. The result was with 1,042 of those method calls being

K1 accurate, 1,096 being K5 accurate, 8 being greater than K5 accurate, and 1,063

missing from the prediction list. This resulted in a K1 accuracy rate of 48.08%, a K5

accuracy rate of 50.58% and an MRR of 0.493 as seen in table 19 below.

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

Baseline 876 907 3 1,257 0.40425 0.41855 0.41015

Baseline+100 941 1,009 11 1,147 0.43424 0.46562 0.44733

Baseline+270 1,042 1,096 8 1,063 0.48085 0.50577 0.49256

Table 19 – Markdown Library Results for Baseline, Baseline+100, and Baseline+270 Models

 This dataset with 270 additional repositories yielded significant improvements over

the baseline and the baseline with 100 additional repositories. The raw results of all 3

73

tests are below in table 19. The baseline+100 yielded improvements of 7.42%, 11.25%,

and 9.06% over the baseline for K1 accuracy, K5 accuracy, and MRR, respectively. The

baseline+270 yielded improvements of 18.95%, 20.84%, and 20.09% over the baseline

for K1 accuracy, K5 accuracy, and MRR, respectively. The baseline+270 improved over

baseline+100 for K1, K5, and MRR by 10.73%, 8.62%, 10.11% respectively. Table 20

below shows the percentage change from baseline to the baseline plus 100 and 270

additional markdown repositories. The table also shows the percentage change between

100 and 270 markdown repositories.

 The increased repositories also impacted the predictions greater than K5 and the

missing predictions. The missing predictions were reduced by 15.43% with 270

additional repositories compared to the baseline, and 7.32% when compared to the

baseline+100. The predictions above K5 went down by 27.27% between baseline+270

and baseline+100. This shows that more of the expected predictions were now being

captured by both the baseline+100 and baseline+270 models. The baseline+100 had K>5

predictions increase by 266.67 over baseline. This implies that many of the missing

predictions that are now identified are still in the K>5 predictions list. However, with

baseline+270, this number is reduced by 27.27% over the baseline+100. This shows that

the baseline+270 is not only finding more predictions, but significantly more of them are

in the K1 to K5 prediction range.

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

74

Baseline+100

v Baseline

7.42% 11.25% 266.67% -8.75% 7.42% 11.25% 9.07%

Baseline+270

v Baseline

18.95% 20.84% 166.67% -15.43% 18.95% 20.84% 20.90%

Baseline+270

v

Baseline+100

10.73% 8.62% -27.27% -7.32% 10.73% 8.62% 10.11%

Table 20 – Markdown Library Change % for Baseline, Baseline+100, and Baseline+270 Models

 The MRR reinforces this conclusion by showing the improvement in the rank of the

predictions by 10.11% using the baseline+270 compared to from the baseline+100 model.

When compared to baseline, the MRR shows a 20.90% improvement in the rank of the

predictions. These MRR improvements reinforce the improvements visible in the K1 and

K5, plus the shift from Kmissing to K>5.

tqdm Library

 The tqdm library in the baseline model had a total of 1,475 identified method calls in

the test data set. The baseline model results were significantly better than markdown, and

the resulting improvement to tqdm by adding 100 repositories was not as significant.

Adding 100 tqdm repositories yielded improvements of 0.33%, 1.02%, and 0.60% over

baseline for K1, K5, and MRR respectively. The number of missing predictions was

unchanged. The number of K>5 predictions reduced by 58.82%, the only significant

change, but in raw numbers the change was less significant, being a 17 to 7 reduction.

75

 The addition of 270 tqdm repositories improved over the baseline and baseline+100,

but not significantly. K1 improved by 2.00%, K5 by 1.13%, K>5 by 64.49%, and MRR

by 1.78%. Kmissing was still unchanged. Compared to baseline+100, the baseline+270

improvement was 1.66%, 0.10%, 14.29%, and 1.18% for K1, K5, K>5, and MRR,

respectively. These results show that the baseline+270 has improved prediction rank for

already known predictions but did not identify any of the missing predictions. It is an

improvement, but not a significant improvement. The raw results are in table 21 below.

The comparative percentage improvements of the models are in table 22 below.

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

Baseline 902 977 17 481 0.61153 0.66237 0.63451

Baseline+100 905 987 7 481 0.61356 0.66915 0.63830

Baseline+270 920 988 6 481 0.62373 0.66983 0.64580

Table 21 - TQDM Library Results for Baseline, Baseline+100, and Baseline+270 Models

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

Baseline+100

v Baseline

7.42% 11.25% 266.67% -8.75% 7.42% 11.25% 9.07%

Baseline+270

v Baseline

18.95% 20.84% 166.67% -15.43% 18.95% 20.84% 20.90%

76

Baseline+270

v

Baseline+100

10.73% 8.62% -27.27% -7.32% 10.73% 8.62% 10.11%

Table 22 – Yaml Library Change % for Baseline, Baseline+100, and Baseline+270 Models

 The results for tqdm show improvement using more input data, but with a higher

starting prediction quality for tqdm combined with less diversity of code usage, means

that finding new prediction patterns are harder for this library. The improvements from

more data do exist, but not with the same significance as seen with markdown.

yaml Library

 The yaml library in the baseline model had a total of 1,475 identified method calls in

the test data set, and a poor prediction quality with a K1 and K5 accuracy of 20.21% and

20.21% respectively. The addition of 100 yaml repositories to the baseline model resulted

in no change to any of the measurements.

 The addition of 270 yaml repositories yielded a significant improvement over the

baseline and baseline+100 models with K1, K5, Kmissing, and MRR improving by

34.21%, 78.95%, 24.00%, and 52.67% respectively. The baseline+270 model improved

the ability to find missing predictions, which resulted directly in improved K1 and K5

results. The K>5 metric increased instead of reducing because of missing predictions not

being in the K1 or K5 prediction lists. The result is that the MRR improved by 52.67%.

77

 The raw metrics are in table 23 below and comparative percentages for the models are

visible in table 24 below.

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

Baseline 114 114 0 450 0.20213 0.20213 0.20213

Baseline+100 114 114 0 450 0.20213 0.20213 0.20213

Baseline+270 153 204 18 342 0.27128 0.36170 0.30860

Table 23 - Yaml Library Results for Baseline, Baseline+100, and Baseline+270 Models

Model K1 K5 Kn Kmissing K1 Acc. K5 Acc. MRR

Baseline+100

v Baseline

0.00% 0.00% N/A 0.00% 0.00% 0.00% 0.00%

Baseline+270

v Baseline

34.21% 78.95% N/A -24.00% 34.21% 78.95% 52.67%

Baseline+270

v

Baseline+100

34.21% 78.95% N/A -24.00% 34.21% 78.95% 52.67%

Table 24 – Yaml Library Change % for Baseline, Baseline+100, and Baseline+270 Models

 The results for yaml show significant improvement using more input data. However,

it required more input data than markdown to show improvement. Further, starting with a

78

lower initial prediction quality allowed for a more significant improvement than

markdown or tqdm.

Results Analysis

 The results with 270 additional repositories showed improvements at various levels of

significance. Libraries with a higher prediction quality, such as tqdm with an MRR of

0.63451, have less room for improvement, so a less significant improvement was

expected. Similarly, libraries with lower prediction quality, such as yaml with an MRR of

0.20213, have more room for improvement, so a more significant improvement was

expected. The markdown library had a prediction quality between the other two, with an

MRR of 0.41015, and it showed improvement in both models using additional libraries.

Increasing the expansion size to 270 repositories yielded better results for all three

libraries. While the three did not have the same level of improvement, there was an

inverse correlation between the lower the initial quality and a higher improvement in the

quality of the predictions. A deeper analysis of this correlation is left to future research.

Impact Beyond Target Module

 The expansion of additional repositories for a specific target module impacts the

predictions of the model for the specific target module, but the additional repositories

bring in other modules than the specific target module. The additional repositories must

not degrade the overall performance of the model for the non-target modules to maintain

the expected performance of the generated model.

79

 The Pythia paper provides three overall metrics when comparing against other

models, K1 Accuracy, K5 Accuracy, and MRR. However, it does not provide the details

of the input or test data sets that would allow for these overall metrics to be replicated

using the same technique. To account for this insufficient information, this dissertation

selected the 10 modules that were clearly used by Pythia in Svyatkovskiy’s paper and

added 31 more modules. These 41 modules were used in all tests against all models. For

each module in each test suite, the K1 Accuracy, K5 Accuracy, Kn Count, and K-missing

Count, and MRR were calculated. The sum of all method calls in the test suite is

3,747,192. This total method count is constant for all models tested with the other

measures being variable by model. The sum of K1, K5, Kn, and K-missing are each

calculated along with its percentage against the constant total. Finally, the average MRR

is calculated for each model across all 41 modules. These metrics allow comparing the

results of each model against the baseline and each other.

 The tables 25 and 26 below show the raw counts, MRR, and percentages for the

overall results for the baseline and the 10 derivative models that were tested. While only

markdown, tqdm, and yaml were used to measure the impact of expanding a specific

module, other modules were run through the same process to ensure that the overall

baseline remained stable independent of the module selected.

80

Module K1 Calls K5 Calls Kn Kmissing MRR

Baseline 2,772,862 3,464,843 249,932 32,417 0.70453

markdown-100 2,763,246 3,460,939 254,261 31,992 0.70719

markdown-270 2,782,032 3,467,626 249,261 30,305 0.71785

tensorflow.python.ops.

array_ops-270

2,782,032 3,467,626 249,261 30,305 0.71785

numpy.random-270 2,793,479 3,473,222 243,785 30,185 0.70911

tqdm-100 2,768,410 3,462,466 252,593 32,133 0.70342

tqdm-270 2,774,217 3,463,070 252,470 31,652 0.70510

yaml-100 2,762,635 3,461,007 253,955 32,230 0.70314

yaml-270 2,775,664 3,466,599 249,027 31,566 0.70969

flask-270 2,777,943 3,467,538 249,540 30,114 0.72756

pytest-270 2,764,001 3,463,086 253,646 30,460 0.71162

Table 25 - Overall Raw Counts and MRR for Baseline and 10 Derivative Models

81

Module K1% K5% Kn% Kmissing%

Baseline 74.00 92.47 6.67 0.87

markdown-100 73.74 92.36 6.79 0.85

markdown-270 74.24 92.54 6.65 0.81

tensorflow.python.ops.

array_ops-270

74.24 92.54 6.65 0.81

numpy.random-270 74.55 92.69 6.51 0.81

tqdm-100 73.88 92.40 6.74 0.86

tqdm-270 74.03 92.42 6.74 0.84

yaml-100 73.73 92.36 6.78 0.86

yaml-270 74.07 92.51 6.65 0.84

flask-270 74.13 92.54 6.66 0.80

pytest-270 73.76 92.42 6.77 0.81

Table 26 - Overall Percentages for Baseline and 10 Derivative Models

 The data shows that across the 10 variants of the baseline model that were tested, the

overall metrics remained relatively stable. The K1% changed slightly for all variants, but

within a small range of the baseline. Only 3 modules degraded K1%, and they were no

more than 0.37% away from the baseline. Similarly, 7 modules improved their K1%, but

no more than 0.74%. Examining the K5% shows comparable results, but over a narrower

range with 5 modules degrading and 5 modules improving. The 5 modules that degraded

were within 0.11% of the baseline and the 5 modules that improved were within 0.24% of

the baseline.

82

 The changes were more noticeable in the Kn% and Kmissing% metrics, but still

small. However, the Kn% is not a clear good or bad indicator since a reduction in Kn%

could mean an increase in K1% or K5% or it could mean an increase in Kmissing%.

Similarly, an increase in Kn% could mean a decrease in K1% or K5% or it could mean a

decrease in Kmissing%. The more relevant number is Kmissing%, which decreased for

all variants, with a maximum decrease of 7.1%. This decrease in Kmissing% means that

all variants improved their ability to produce more predictions.

 The analysis of the Mean Residual Rank (MRR) supports the overall data analysis of

K1%, K5%, and Kmissing%. The MRR only degraded for 2 variants, and both were

within 0.20% of the baseline. However, the other 8 variants improved, with a maximum

overall improvement of 3.27%. The two variants that degraded in MRR were expanded

with 100 repositories, and both of those showed positive improvements when 270

repositories were used.

 These overall metrics show that the additional repositories had a minor impact overall

on the K1%, K5%, and MRR accuracy but did help to improve the number of predictions

found. The additional repositories targeted a specific subset of the modules included,

which represents a subset of the overall model data. Since the additional repositories

bring with it unpredictable and effectively random additional modules, the overall minor

83

impact is the expected result. Figure 16 shows the distribution of the 3,747,192 method

calls across K5, Kn, and Kmissing for all model variants.

Figure 16 - Distribution of Method Calls

 3,300,000

 3,350,000

 3,400,000

 3,450,000

 3,500,000

 3,550,000

 3,600,000

 3,650,000

 3,700,000

 3,750,000

 3,800,000

Distribution of Method Calls

K5 Calls Kn Calls Kmissing Calls

84

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

 Analysis of the results clearly shows improvement of predictions with additional

repositories containing a specified target library, while maintaining the same overall

predictive quality across the entire test suite. Figure 16 above shows the stability of

predictive quality across 10 variant models, Figures 17 and 18 below show the

improvement specific to the markdown module, Figures 19 and 20 below show the

improvement specific to the tqdm module, and Figures 21 and 22 below show the

improvement specific to the yaml module.

 The Accuracy by Model charts show the percentage of accuracy for K1, K5, and

MRR metrics for the different models. These charts show the change in accuracy from

the baseline model to the baseline with 100 additional repositories model, to the baseline

with 270 additional repositories model. The higher the result, the higher the accuracy of

the prediction. The Missing Predictions by Model charts show changes in the count of

missing predictions between the same models. The lower the value, the less predictions

missing from the model.

85

Figure 17 - Markdown Accuracy for Baseline, Baseline+100, and Baseline+270

Figure 18 - Missing Markdown Predictions for Baseline, Baseline+100, and Baseline+270

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Baseline Markdown-100 Markdown-270

A
cc

u
ra

cy
 %

Accuracy by Model

k1_acc k5_acc mrr

 950

 1,000

 1,050

 1,100

 1,150

 1,200

 1,250

 1,300

Baseline Markdown-100 Markdown-270

Missing Predictions by Model

86

Figure 19 - tqdm Accuracy for Baseline, Baseline+100, and Baseline+270

Figure 20 - Missing tqdm Predictions for Baseline, Baseline+100, and Baseline+270

58.00%

59.00%

60.00%

61.00%

62.00%

63.00%

64.00%

65.00%

66.00%

67.00%

68.00%

Baseline tqdm-100 tqdm-270

A
cc

u
ra

cy
 %

Accuracy by Model

k1_acc k5_acc mrr

0

100

200

300

400

500

600

Baseline tqdm-100 tqdm-270

Missing Predictions by Model

87

Figure 21 - yaml Accuracy for Baseline, Baseline+100, and Baseline+270

Figure 22 - Missing yaml Predictions for Baseline, Baseline+100, and Baseline+270

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Baseline yaml-100 yaml-270

A
cc

u
ra

cy
 %

Accuracy by Model

k1_acc k5_acc mrr

0

50

100

150

200

250

300

350

400

450

500

Baseline yaml-100 yaml-270

Missing Predictions by Model

88

 These results prove the hypothesis that increasing the input quantity of repositories

containing specific third-party Python modules increased the predictive quality of the

Pythia model. Furthermore, the results show that this increase in predictive quality results

in no loss of overall predictive quality of the variant models.

Implications

 This dissertation demonstrated the ability to increase the accuracy of code prediction

for a specific third-party Python module. This concept should be applicable to internal

Python modules and other languages beyond Python. The ability to create targeted

models for specific use cases could improve the accuracy of predictions in focused

development efforts with highly specialized third-party libraries, such as game

development, finance, statistics, and LSTM model development.

 Instead of a single general purpose predictive model being used for all use cases, a

targeted model could be generated by use case. While the model generation time is not

short enough to enable real or near-time, a specialized model is achievable within hours

using consumer grade computing resources locally and on the cloud.

Recommendations

 The parsing function narrowly focused specific elements of the Python code and did

not account for more complex constructs, such as polymorphism and specialized Python

methods. Further, this dissertation leveraged Gensim for tokenization and type

identification. Both could be addressed with a more specialized approach to the Python

parser, as was done by Svyatkovskiy for Pythia.

89

 During the analysis of the data for this dissertation, a correlation between the number

of exposed methods in a given module to the accuracy was noticed. Specifically, when

the module had a lower number of exposed methods, a higher accuracy was achieved

using less unique usages in the training set. This correlation was observed, is intuitive,

but not proven, and would be worthy of exploration in future research.

 The dynamic nature of available open-source code available in online hosted

repositories combined with the webhooks available from similar repository hosts, such as

GitHub, provide an opportunity for automated model generation. Specifically,

repositories for specific languages could be monitored in a repository host, and when

enough repositories have been added or updated, these repositories could be cloned and

used as additional input content for model generation. Further, older repositories that

have grown stale could be eventually expunged from the input data set. This would allow

for the prediction models to reflect active code usage patterns and language versions.

Summary

 This dissertation shows that by adding additional repositories containing a specific

module into the Pythia input dataset, it is possible to increase the accuracy of the third-

party method calls within the specific module without negatively impacting the other

predictions provided by the Pythia model. While increasing the repository count by 3.7%

resulting in some positive results, a 10% increase yielded more consistent improvements

across multiple third-party Python modules. The prediction improvement was

demonstrated across 3 different Python third-party modules using 6 different model

variants. The lack of negative impact to predictive quality was demonstrated using 10

different model variants.

90

Appendices

91

Appendix A – Hyperparameters

Hyperparameter Description Value Used

LookbackTokens Number of lookback tokens 100

GensimWorkers Gensim Worker Threads 15

WindowSize word2vec window size 5

EmbeddingVectorDimensions

word2vec embedded vector

dimensions

150

EmbeddingEpochs word2vec epochs 10

MinimumFrequencyThreshold Minimum frequency of a token 50

MinimumLabelFrequencyThreshold

Minimum frequency of a method

call

25

MinimumModuleFrequencyThreshold

Minimum frequency of a Python

module

500

TokenPadding Token used for padding <PAD>

TokenUnknown Token used for unknown tokens <UNK>

TokenEOS Token used for end of sentence .

Figure 23 - Gensim word2vec Hyperparameters

92

Hyperparameter Description Value Used

LookbackTokens Number of lookback tokens 100

BatchSize Batch sample size 512

HiddenDimensions

Number of LSTM hidden

dimensions

256

LearningRate Learning rate for LSTM 0.0001

LRWeightDecay Decay rate per epoch 0.97

ClipNorm Clipping rate 3

LSTMEpochs Number of LSTM epochs 20

Dropout

Dropout rate for individual

LSTM units

0.4

L2Regularizer LSTM L2 regularizer 0.0001

LRWarmupEpochs Number of warmup epochs 0

LossMethod LSTM loss function

sparse_categorical_crossen

tropy

Activation LSTM activation method softmax

Optimizer LSTM optimization method Adam

Figure 24 - LSTM Hyperparameters

93

Appendix B – Experiment Result Data

module_name count k1 k5 kn k_missing mrr

numpy 962,356 575,828 811,728 149,603 1,025 0.70719

os 440,614 390,136 429,917 9,297 1,400 0.92554

list 412,277 347,572 402,037 8,302 1,938 0.90275

str 393,713 327,275 381,164 10,744 1,805 0.89528

posixpath 292,597 212,912 285,803 6,730 64 0.83346

tensorflow 201,677 121,076 168,920 31,068 1,689 0.70626

dict 178,616 135,055 169,185 8,026 1,405 0.84095

sys 142,761 115,432 139,118 3,025 618 0.88147

re 94,908 65,983 91,871 2,899 138 0.80840

logging 67,673 49,796 65,635 1,585 453 0.83169

numpy.random 67,418 45,281 62,852 4,521 45 0.78067

unittest 60,321 58,351 59,981 213 127 0.97990

google.protobuf.descript

or
57,798 57,535 57,751 9 38 0.99704

time 54,017 46,458 52,761 777 479 0.91084

datetime 52,695 36,086 50,292 1,899 504 0.79893

json 45,274 37,573 45,010 46 218 0.90833

pandas 43,799 33,079 41,345 1,790 664 0.83785

tensorflow.python.ops.ar

ray_ops
21,939 10,294 17,206 4,496 237 0.60823

tensorflow.python.frame

work.ops
21,509 18,401 21,192 87 230 0.91200

pandas._testing 19,087 14,981 18,423 193 471 0.86389

numpy.testing 17,458 11,698 17,117 201 140 0.79290

six 16,609 14,397 16,300 152 157 0.91819

ui_mainwindow 14,907 1,263 2,391 1,255 11,261 0.12043

jax.numpy 12,551 5,741 9,065 2,256 1,230 0.57521

os.path 11,498 9,336 11,267 100 131 0.88422

requests 11,289 8,655 10,940 195 154 0.85736

emitter 10,142 8,453 8,965 13 1,164 0.85726

keras 5,241 4,604 5,124 59 58 0.92290

jax 4,247 2,847 3,739 188 320 0.76006

scipy 4,004 3,289 3,726 88 190 0.86941

dataframe 2,876 1,289 1,718 93 1,065 0.51543

markdown 2,167 876 907 3 1,257 0.41015

tqdm 1475 902 977 17 481 0.63451

yaml 564 114 114 0 450 0.20213

flask 454 70 70 0 384 0.15419

beautifulsoup 337 85 88 0 249 0.25668

werkzeug 133 69 73 2 58 0.52986

djangocache 80 42 42 0 38 0.52500

94

pytest 61 28 29 0 32 0.46449

sqlalchemy 50 0 0 0 50 0.00001

Figure 25 - Baseline Data

module_name count k1 k5 kn k_missing mrr

numpy 962,356 570,721 808,643 152,734 979 0.70282

os 440,614 389,157 429,975 9,239 1,400 0.92428

list 412,277 348,418 402,326 8,035 1,916 0.90425

str 393,713 326,316 381,177 10,731 1,805 0.89416

posixpath 292,597 212,228 285,812 6,721 64 0.83193

tensorflow 201,677 120,450 168,148 31,840 1,689 0.70365

dict 178,616 134,587 168,881 8,354 1,381 0.83894

sys 142,761 115,232 139,116 3,051 594 0.88097

re 94,908 66,220 91,940 2,830 138 0.80942

logging 67,673 49,384 65,599 1,621 453 0.82806

numpy.random 67,418 45,185 62,986 4,387 45 0.78056

unittest 60,321 58,167 59,982 212 127 0.97804

google.protobuf.descriptor 57,798 57,536 57,749 11 38 0.99714

time 54,017 46,449 52,796 742 479 0.91116

datetime 52,695 35,418 50,148 2,043 504 0.79098

json 45,274 37,523 45,001 55 218 0.90769

pandas 43,799 32,903 41,216 1,974 609 0.83471

tensorflow.python.ops.array_ops 21,939 10,010 17,095 4,607 237 0.59778

tensorflow.python.framework.ops 21,509 18,212 21,196 83 230 0.90761

pandas._testing 19,087 15,036 18,392 224 471 0.86515

numpy.testing 17,458 12,066 17,136 182 140 0.80662

six 16,609 14,458 16,301 193 115 0.91996

ui_mainwindow 14,907 1,223 2,390 1,256 11,261 0.11779

jax.numpy 12,551 5,726 9,031 2,290 1,230 0.57191

os.path 11,498 9,232 11,228 139 131 0.87887

requests 11,289 8,745 10,986 194 109 0.86370

emitter 10,142 8,510 8,993 9 1,140 0.86128

keras 5,241 4,586 5,119 64 58 0.92020

jax 4,247 2,831 3,728 199 320 0.75697

scipy 4,004 3,221 3,708 106 190 0.85695

dataframe 2,876 1,214 1,709 102 1,065 0.49820

markdown 2,167 941 1,009 11 1,147 0.44733

tqdm 1475 917 979 15 481 0.64103

yaml 564 110 114 0 450 0.19708

flask 454 78 85 0 369 0.17952

beautifulsoup 337 84 88 0 249 0.25520

95

werkzeug 133 82 86 7 40 0.63357

djangocache 80 42 42 0 38 0.52500

pytest 61 28 29 0 32 0.46722

sqlalchemy 50 0 0 0 50 0.00001

Figure 26 - Markdown-100 Variant

module_name count k1 k5 kn k_missing mrr

numpy 962,356 579,634 812,792 148,723 841 0.71007

os 440,614 390,304 430,203 9,160 1,251 0.92608

list 412,277 348,600 402,152 8,286 1,839 0.90421

str 393,713 328,251 381,516 10,435 1,762 0.89708

posixpath 292,597 214,001 286,163 6,370 64 0.83563

tensorflow 201,677 121,232 168,461 31,551 1,665 0.70593

dict 178,616 136,051 169,496 7,784 1,336 0.84442

sys 142,761 116,107 139,221 2,946 594 0.88475

re 94,908 66,409 91,827 2,951 130 0.81042

logging 67,673 49,574 65,532 1,705 436 0.82955

numpy.random 67,418 45,416 63,046 4,327 45 0.78216

unittest 60,321 58,378 59,964 230 127 0.97984

google.protobuf.descriptor 57,798 57,563 57,747 13 38 0.99746

time 54,017 46,287 52,741 797 479 0.90896

datetime 52,695 36,153 50,276 1,934 485 0.80018

json 45,274 37,421 45,013 43 218 0.90651

pandas 43,799 33,062 41,395 1,921 483 0.83826

tensorflow.python.ops.array_ops 21,939 9,980 17,095 4,607 237 0.59788

tensorflow.python.framework.ops 21,509 18,091 21,156 123 230 0.90392

pandas._testing 19,087 14,906 18,378 238 471 0.86083

numpy.testing 17,458 11,777 17,174 168 116 0.79651

six 16,609 14,402 16,314 180 115 0.91866

ui_mainwindow 14,907 1,244 2,380 1,288 11,239 0.11837

jax.numpy 12,551 5,480 8,816 2,505 1,230 0.55334

os.path 11,498 9,344 11,243 124 131 0.88519

requests 11,289 8,719 10,952 228 109 0.86147

emitter 10,142 9,413 9,716 21 405 0.94189

keras 5,241 4,575 5,109 74 58 0.91776

jax 4,247 2,805 3,708 219 320 0.75049

scipy 4,004 3,225 3,702 112 190 0.85706

dataframe 2,876 1,148 1,679 132 1,065 0.48243

markdown 2,167 1,042 1,096 8 1,063 0.49256

tqdm 1475 897 970 24 481 0.63162

yaml 564 153 194 28 342 0.30478

96

flask 454 84 85 0 369 0.18613

beautifulsoup 337 150 156 0 181 0.45352

werkzeug 133 83 87 6 40 0.63757

djangocache 80 42 42 0 38 0.52500

pytest 61 29 29 0 32 0.47541

sqlalchemy 50 0 0 0 50 0.00001

Figure 27 - Markdown-270 Variant

module_name count k1 k5 kn k_missing mrr

numpy 962,356 572,735 809,899 151,432 1,025 0.70454

os 440,614 388,782 429,835 9,402 1,377 0.92369

list 412,277 348,679 402,153 8,186 1,938 0.90406

str 393,713 326,943 381,104 10,804 1,805 0.89478

posixpath 292,597 213,138 285,778 6,755 64 0.83359

tensorflow 201,677 120,740 168,731 31,357 1,589 0.70557

dict 178,616 135,661 169,515 7,696 1,405 0.84331

sys 142,761 115,703 139,025 3,118 618 0.88244

re 94,908 65,700 91,742 3,028 138 0.80548

logging 67,673 49,536 65,556 1,664 453 0.82976

numpy.random 67,418 45,603 62,812 4,561 45 0.78269

unittest 60,321 58,348 59,982 212 127 0.97983

google.protobuf.descriptor 57,798 57,520 57,738 22 38 0.99699

time 54,017 46,332 52,770 768 479 0.90995

datetime 52,695 35,946 50,280 1,911 504 0.79730

json 45,274 37,342 45,011 45 218 0.90600

pandas 43,799 32,950 41,275 1,903 621 0.83569

tensorflow.python.ops.array_ops 21,939 9,830 17,069 4,633 237 0.59311

tensorflow.python.framework.ops 21,509 18,321 21,178 101 230 0.91015

pandas._testing 19,087 15,013 18,401 215 471 0.86443

numpy.testing 17,458 11,538 17,139 179 140 0.78872

six 16,609 14,419 16,311 141 157 0.91765

ui_mainwindow 14,907 1,245 2,383 1,263 11,261 0.11918

jax.numpy 12,551 5,624 8,989 2,398 1,164 0.56708

os.path 11,498 9,382 11,270 97 131 0.88747

requests 11,289 8,624 10,936 211 142 0.85658

emitter 10,142 8,509 8,956 22 1,164 0.85951

keras 5,241 4,626 5,109 74 58 0.92344

jax 4,247 2,869 3,761 206 280 0.76573

scipy 4,004 3,349 3,736 78 190 0.87937

dataframe 2,876 1,228 1,717 94 1,065 0.50194

markdown 2,167 868 905 5 1,257 0.40836

97

tqdm 1475 905 987 7 481 0.63830

yaml 564 110 110 4 450 0.19600

flask 454 70 70 0 384 0.15419

beautifulsoup 337 86 88 0 249 0.25817

werkzeug 133 65 74 1 58 0.51116

djangocache 80 42 42 0 38 0.52500

pytest 61 29 29 0 32 0.47541

sqlalchemy 50 0 0 0 50 0.00001

Figure 28 - tqdm-100 Variant

module_name count k1 k5 kn k_missing mrr

numpy 962,356 574,582 810,056 151,299 1,001 0.70586

os 440,614 389,210 429,723 9,514 1,377 0.92422

list 412,277 349,107 402,375 7,990 1,912 0.90499

str 393,713 327,723 381,354 10,572 1,787 0.89605

posixpath 292,597 212,514 285,771 6,762 64 0.83263

tensorflow 201,677 121,560 168,858 31,448 1,371 0.70785

dict 178,616 135,722 169,075 8,173 1,368 0.84275

sys 142,761 115,370 139,135 3,008 618 0.88086

re 94,908 65,941 91,700 3,070 138 0.80742

logging 67,673 49,707 65,579 1,641 453 0.83053

numpy.random 67,418 45,695 62,937 4,436 45 0.78405

unittest 60,321 58,374 60,009 185 127 0.98018

google.protobuf.descriptor 57,798 57,493 57,751 9 38 0.99674

time 54,017 46,693 52,749 789 479 0.91336

datetime 52,695 36,314 50,211 1,980 504 0.80124

json 45,274 37,870 45,021 35 218 0.91174

pandas 43,799 33,593 41,358 1,844 597 0.84399

tensorflow.python.ops.array_ops 21,939 10,062 17,354 4,348 237 0.60451

tensorflow.python.framework.ops 21,509 18,463 21,170 114 225 0.91376

pandas._testing 19,087 14,981 18,401 215 471 0.86352

numpy.testing 17,458 11,727 17,146 172 140 0.79461

six 16,609 14,401 16,305 147 157 0.91776

ui_mainwindow 14,907 1,321 2,392 1,254 11,261 0.12290

jax.numpy 12,551 5,404 8,798 2,589 1,164 0.55085

os.path 11,498 9,252 11,252 126 120 0.88103

requests 11,289 8,722 10,954 193 142 0.86106

emitter 10,142 8,412 8,966 12 1,164 0.85425

keras 5,241 4,555 5,132 67 42 0.91922

jax 4,247 2,825 3,750 217 280 0.75916

scipy 4,004 3,243 3,715 99 190 0.86244

98

dataframe 2,876 1,148 1,681 130 1,065 0.48102

markdown 2,167 863 905 5 1,257 0.40659

tqdm 1475 920 988 6 481 0.64580

yaml 564 167 198 18 348 0.32100

flask 454 67 70 0 384 0.15015

beautifulsoup 337 82 88 0 249 0.25223

werkzeug 133 68 73 2 58 0.53052

djangocache 80 42 42 0 38 0.52500

pytest 61 24 28 1 32 0.42214

sqlalchemy 50 0 0 0 50 0.00001

Figure 29 - tqdm-270 Variant

module_name count k1 k5 kn k_missing mrr

numpy 962,356 571,319 809,310 152,021 1,025 0.70329

os 440,614 389,267 429,997 9,217 1,400 0.92448

list 412,277 346,815 401,612 8,749 1,916 0.90113

str 393,713 326,705 381,067 10,841 1,805 0.89441

posixpath 292,597 213,427 285,980 6,553 64 0.83481

tensorflow 201,677 120,775 168,380 31,655 1,642 0.70445

dict 178,616 133,425 168,710 8,523 1,383 0.83480

sys 142,761 116,023 139,326 2,841 594 0.88481

re 94,908 65,753 91,875 2,895 138 0.80567

logging 67,673 49,721 65,668 1,552 453 0.83113

numpy.random 67,418 43,871 62,672 4,701 45 0.76690

unittest 60,321 58,385 59,985 209 127 0.98008

google.protobuf.descriptor 57,798 57,562 57,742 18 38 0.99737

time 54,017 46,475 52,785 753 479 0.91130

datetime 52,695 36,043 50,253 1,938 504 0.79856

json 45,274 37,608 45,011 45 218 0.90891

pandas 43,799 33,242 41,358 1,825 616 0.84002

tensorflow.python.ops.array_ops 21,939 9,671 17,128 4,574 237 0.59185

tensorflow.python.framework.ops 21,509 18,059 21,191 88 230 0.90303

pandas._testing 19,087 15,003 18,420 196 471 0.86435

numpy.testing 17,458 11,597 17,124 194 140 0.79001

six 16,609 14,420 16,315 137 157 0.91840

ui_mainwindow 14,907 1,259 2,427 1,219 11,261 0.11986

jax.numpy 12,551 5,621 8,927 2,394 1,230 0.56445

os.path 11,498 9,286 11,248 119 131 0.88137

requests 11,289 8,604 10,960 175 154 0.85622

emitter 10,142 8,620 8,990 12 1,140 0.86725

keras 5,241 4,526 5,093 90 58 0.91299

99

jax 4,247 2,798 3,694 233 320 0.75015

scipy 4,004 3,282 3,714 100 190 0.86668

dataframe 2,876 1,286 1,745 66 1,065 0.51724

markdown 2,167 870 905 5 1,257 0.40806

tqdm 1475 904 978 16 481 0.63641

yaml 564 114 114 0 450 0.20213

flask 454 70 70 0 384 0.15419

beautifulsoup 337 88 88 0 249 0.26113

werkzeug 133 70 74 1 58 0.53733

djangocache 80 42 42 0 38 0.52500

pytest 61 29 29 0 32 0.47541

sqlalchemy 50 0 0 0 50 0.00001

Figure 30 - yaml-100 Variant

module_name count k1 k5 kn k_missing mrr

numpy 962,356 575,680 811,451 149,880 1,025 0.70688

os 440,614 390,268 430,143 9,159 1,312 0.92593

list 412,277 349,909 402,572 7,809 1,896 0.90634

str 393,713 327,625 381,834 10,074 1,805 0.89647

posixpath 292,597 212,660 285,920 6,613 64 0.83324

tensorflow 201,677 121,148 168,913 31,235 1,529 0.70660

dict 178,616 135,289 169,460 7,796 1,360 0.84267

sys 142,761 116,377 139,264 2,903 594 0.88591

re 94,908 66,191 91,755 3,035 118 0.80831

logging 67,673 49,900 65,699 1,541 433 0.83316

numpy.random 67,418 45,109 62,820 4,553 45 0.77947

unittest 60,321 58,421 59,974 220 127 0.98024

google.protobuf.descriptor 57,798 57,532 57,743 17 38 0.99705

time 54,017 46,498 52,754 784 479 0.91141

datetime 52,695 36,097 50,277 1,930 488 0.80013

json 45,274 37,693 45,019 37 218 0.91012

pandas 43,799 33,213 41,473 1,777 549 0.84089

tensorflow.python.ops.array_ops 21,939 9,786 17,233 4,469 237 0.59537

tensorflow.python.framework.ops 21,509 18,321 21,184 95 230 0.91058

pandas._testing 19,087 15,008 18,417 199 471 0.86473

numpy.testing 17,458 11,375 17,152 166 140 0.78431

six 16,609 14,445 16,320 153 136 0.91936

ui_mainwindow 14,907 1,244 2,434 1,212 11,261 0.11935

jax.numpy 12,551 5,375 8,892 2,429 1,230 0.55097

os.path 11,498 9,231 11,271 107 120 0.88006

requests 11,289 8,652 10,992 186 111 0.85869

100

emitter 10,142 8,601 8,978 24 1,140 0.86567

keras 5,241 4,571 5,114 69 58 0.91861

jax 4,247 2,770 3,660 267 320 0.74306

scipy 4,004 3,276 3,702 112 190 0.86334

dataframe 2,876 1,100 1,674 137 1,065 0.47100

markdown 2,167 901 950 6 1,211 0.42637

tqdm 1475 904 981 13 481 0.63570

yaml 564 153 204 18 342 0.30860

flask 454 70 70 0 384 0.15419

beautifulsoup 337 131 156 0 181 0.42335

werkzeug 133 69 73 2 58 0.52919

djangocache 80 42 42 0 38 0.52500

pytest 61 29 29 0 32 0.47541

sqlalchemy 50 0 0 0 50 0.00001

Figure 31 - yaml-270 Variant

101

References

“19. Adding to the Stdlib — Python Developer’s Guide.” Accessed October 21, 2020.

https://devguide.python.org/stdlibchanges/.

Asaduzzaman, Muhammad, Chanchal K. Roy, Kevin A. Schneider, and Daqing Hou. “A

Simple, Efficient, Context-Sensitive Approach for Code Completion: A Simple,

Efficient, Context-Sensitive Approach for Code Completion.” Journal of Software:

Evolution and Process 28, no. 7 (July 2016): 512–41. https://doi.org/10.1002/smr.1791.

“Boto · PyPI.” Accessed October 21, 2020. https://pypi.org/project/boto/.

Bruch, Marcel, Martin Monperrus, and Mira Mezini. “Learning from Examples to Improve

Code Completion Systems.” In Proceedings of the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering on European Software Engineering Conference

and Foundations of Software Engineering Symposium - ESEC/FSE ’09, 213. Amsterdam,

The Netherlands: ACM Press, 2009. https://doi.org/10.1145/1595696.1595728.

Bruch, Marcel, Thorsten Schäfer, and Mira Mezini. “On Evaluating Recommender Systems

for API Usages.” In Proceedings of the 2008 International Workshop on

Recommendation Systems for Software Engineering - RSSE ’08, 16. Atlanta, Georgia:

ACM Press, 2008. https://doi.org/10.1145/1454247.1454254.

D’Souza, Andrea Renika, Di Yang, and Cristina V. Lopes. “Collective Intelligence for

Smarter API Recommendations in Python.” arXiv:1608.08736 [Cs], August 31, 2016.

http://arxiv.org/abs/1608.08736.

https://devguide.python.org/stdlibchanges/
https://doi.org/10.1002/smr.1791
https://pypi.org/project/boto/
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/1454247.1454254
http://arxiv.org/abs/1608.08736

102

“GitHub - Dspinellis/Unix-History-Repo at Research-V1-Snapshot-Development.” Accessed

June 6, 2021. https://github.com/dspinellis/unix-history-repo/tree/Research-V1-Snapshot-

Development.

Halter, Dave. “Davidhalter/Jedi.” Python, October 21, 2020.

https://github.com/davidhalter/jedi.

He, Xincheng, Lei Xu, Xiangyu Zhang, Rui Hao, Yang Feng, and Baowen Xu. “PyART:

Python API Recommendation in Real-Time.” arXiv:2102.04706 [Cs], February 9, 2021.

http://arxiv.org/abs/2102.04706.

Kaiser, Gail E., Peter H. Feiler, and Steven S. Popovich. “Intelligent Assistance for Software

Development and Maintenance.” IEEE Software 5, no. 3 (1988): 40–49.

Li, Jian, Yue Wang, Michael R. Lyu, and Irwin King. “Code Completion with Neural

Attention and Pointer Networks.” Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, July 2018, 4159–65.

https://doi.org/10.24963/ijcai.2018/578.

“Linux in 2020: 27.8 Million Lines of Code in the Kernel, 1.3 Million in Systemd -

Linux.Com.” Accessed June 6, 2021. https://www.linux.com/news/linux-in-2020-27-8-

million-lines-of-code-in-the-kernel-1-3-million-in-systemd/.

Mărășoiu, Mariana, Luke Church, and Alan Blackwell. An Empirical Investigation of Code

Completion Usage by Professional Software Developers, 2015.

“Microsoft/PTVS.” C#. 2015. Reprint, Microsoft, October 21, 2020.

https://github.com/microsoft/PTVS.

https://github.com/dspinellis/unix-history-repo/tree/Research-V1-Snapshot-Development
https://github.com/dspinellis/unix-history-repo/tree/Research-V1-Snapshot-Development
https://github.com/davidhalter/jedi
http://arxiv.org/abs/2102.04706
https://doi.org/10.24963/ijcai.2018/578
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://github.com/microsoft/PTVS

103

“Microsoft/Python-Language-Server.” C#. 2018. Reprint, Microsoft, October 21, 2020.

https://github.com/microsoft/python-language-server.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estimation of Word

Representations in Vector Space.” arXiv:1301.3781 [Cs], September 6, 2013.

http://arxiv.org/abs/1301.3781.

“ML.NET | Machine Learning Made for .NET.” Accessed June 13, 2021.

https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet.

Murphy, Gail C. “Beyond Integrated Development Environments: Adding Context to

Software Development.” In 2019 IEEE/ACM 41st International Conference on Software

Engineering: New Ideas and Emerging Results (ICSE-NIER), 73–76. Montreal, QC,

Canada: IEEE, 2019. https://doi.org/10.1109/ICSE-NIER.2019.00027.

Murphy, G.C., M. Kersten, and L. Findlater. “How Are Java Software Developers Using the

Elipse IDE?” IEEE Software 23, no. 4 (July 2006): 76–83.

https://doi.org/10.1109/MS.2006.105.

Nguyen, Anh Tuan, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast, Eli

Rademacher, Tien N. Nguyen, and Danny Dig. “API Code Recommendation Using

Statistical Learning from Fine-Grained Changes.” In Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2016,

511–22. Seattle, WA, USA: ACM Press, 2016. https://doi.org/10.1145/2950290.2950333.

“Numpy · PyPI.” Accessed October 20, 2020. https://pypi.org/project/numpy/.

https://github.com/microsoft/python-language-server
http://arxiv.org/abs/1301.3781
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet
https://doi.org/10.1109/ICSE-NIER.2019.00027
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1145/2950290.2950333
https://pypi.org/project/numpy/

104

Proksch, Sebastian, Johannes Lerch, and Mira Mezini. “Intelligent Code Completion with

Bayesian Networks.” ACM Transactions on Software Engineering and Methodology 25,

no. 1 (December 2, 2015): 1–31. https://doi.org/10.1145/2744200.

“PyCharm: The Python IDE for Professional Developers by JetBrains.” Accessed October 21,

2020. https://www.jetbrains.com/pycharm/.

“PyTorch.” Accessed June 13, 2021. https://pytorch.org/.

Robbes, Romain, and Michele Lanza. “How Program History Can Improve Code

Completion.” In 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering, 317–26. L’Aquila, Italy: IEEE, 2008. https://doi.org/10.1109/ASE.2008.42.

Schuster, Roei, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. “You Autocomplete

Me: Poisoning Vulnerabilities in Neural Code Completion.” arXiv:2007.02220 [Cs],

October 8, 2020. http://arxiv.org/abs/2007.02220.

“Search Results · PyPI.” Accessed October 21, 2020.

https://pypi.org/search/?c=Topic+%3A%3A+Software+Development+%3A%3A+Librari

es+%3A%3A+Python+Modules.

Stylos, Jeffrey, and Steven Clarke. “Usability Implications of Requiring Parameters in

Objects’ Constructors.” In 29th International Conference on Software Engineering

(ICSE’07), 529–39. Minneapolis, MN: IEEE, 2007.

https://doi.org/10.1109/ICSE.2007.92.

Svyatkovskiy, Alexey, Ying Zhao, Shengyu Fu, and Neel Sundaresan. “Pythia: AI-Assisted

Code Completion System.” In Proceedings of the 25th ACM SIGKDD International

https://doi.org/10.1145/2744200
https://www.jetbrains.com/pycharm/
https://pytorch.org/
https://doi.org/10.1109/ASE.2008.42
http://arxiv.org/abs/2007.02220
https://pypi.org/search/?c=Topic+%3A%3A+Software+Development+%3A%3A+Libraries+%3A%3A+Python+Modules
https://pypi.org/search/?c=Topic+%3A%3A+Software+Development+%3A%3A+Libraries+%3A%3A+Python+Modules
https://doi.org/10.1109/ICSE.2007.92

105

Conference on Knowledge Discovery & Data Mining, 2727–35. KDD ’19. New York,

NY, USA: Association for Computing Machinery, 2019.

https://doi.org/10.1145/3292500.3330699.

“The NumPy Open Source Project on Open Hub.” Accessed October 21, 2020.

https://www.openhub.net/p/numpy.

“The Python Standard Library — Python 3.9.0 Documentation.” Accessed October 21, 2020.

https://docs.python.org/3/library/.

“Welcome to Astroid’s Documentation! — Astroid 2.5.9.Dev10+g432aa99 Documentation.”

Accessed June 13, 2021. http://pylint.pycqa.org/projects/astroid/en/latest/.

Winograd, Terry. “Breaking the Complexity Barrier Again.” ACM SIGIR Forum 9, no. 3

(November 4, 1973): 13–30. https://doi.org/10.1145/951761.951764.

https://doi.org/10.1145/3292500.3330699
https://www.openhub.net/p/numpy
https://docs.python.org/3/library/
http://pylint.pycqa.org/projects/astroid/en/latest/
https://doi.org/10.1145/951761.951764

	Increasing Code Completion Accuracy in Pythia Models for Non-Standard Python Libraries
	Share Feedback About This Item

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	Background
	Problem Statement
	Dissertation Goal
	Research Questions
	Relevance and Significance
	Barriers and Issues
	Assumptions, Limitations, and Delimitations
	Summary

	Chapter 2
	Review of the Literature
	Introduction
	Intelligent Assistants
	Code Completion
	Optimistic Code Completion
	Intelligent Code Completion
	Frequency Based Code Completion
	Association Rule Based Code Completion
	Best Matching Neighbors Code Completion

	Intelligent Code Completion with Bayesian Networks
	Improving Best Matching Neighbor for Dynamically Typed Languages
	Long Short-Term Memory Neural Networks Pythia

	Measuring Code Completion
	Prefix Scoring with Change Replay
	Mean Reciprocal Rank
	Top-k Accuracy
	Recall
	Precision

	Replicating Pythia

	Chapter 3
	Methodology
	Introduction
	Data Collection
	GitHub Data Collector

	Preprocessing
	Dataset Generator
	Code Processing
	Dependency Evaluator
	Encoding Code Snippets

	Offline Model Training
	Pythia Deep Learning Model Training
	Hyperparameter Tuning

	Evaluation
	Key Questions
	Evaluation Metrics

	Differences from Pythia
	Preprocessing
	Model Training
	Model Quantization
	Serving Recommendations

	Conclusion

	Chapter 4
	Results
	Introduction
	Changes from Planned Methodology
	Baseline Model
	Expansion by 100 Repositories
	markdown Library
	tqdm Library
	yaml Library
	Results Analysis

	Expansion by 270 Repositories
	markdown Library
	tqdm Library
	yaml Library
	Results Analysis

	Impact Beyond Target Module

	Chapter 5
	Conclusions, Implications, Recommendations, and Summary
	Conclusions
	Implications
	Recommendations
	Summary

	Appendices
	Appendix A – Hyperparameters
	Appendix B – Experiment Result Data

	References

