

EGU23-3463, updated on 29 Jan 2024 https://doi.org/10.5194/egusphere-egu23-3463 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Decadal Trends in the Oceanic Storage of Anthropogenic Carbon from 1994 to 2014

Jens Daniel Müller¹, Nicolas Gruber¹, Brendan Carter^{2,3}, Richard Feely³, Masao Ishii⁴, Nico Lange⁵, Siv K Lauvset⁶, Akihiko Murata⁷, Are Olsen⁸, Fiz F Pérez^{9,10}, Christopher Sabine¹¹, Toste Tanhua⁵, Rik Wanninkhof¹², and Donghe Zhu¹

¹ETH Zurich, IBP, U-SYS, Zurich, Switzerland (jensdaniel.mueller@usys.ethz.ch)

²Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, 98105

³Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA, 98115

⁴Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

⁵GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

⁶NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway

⁷Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, 237-0061, Japan

⁸Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway

⁹Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain

¹⁰Oceans Department, Stanford University, Stanford, CA 94305, USA

¹¹University of Hawaii at Manoa, Honolulu, HI, 96822

¹²Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, USA

The oceanic sink for anthropogenic CO₂ (C_{ant}) that humans have emitted into the atmosphere has been pivotal for limiting global warming. The transport of C_{ant} from the surface into the ocean interior, where most of it is accumulating, is the rate limiting step for this uptake. Yet multi-decadal trends in the ocean interior storage of C_{ant} have not been assessed at global scale. We determined such trends by applying the eMLR(C*) regression method to ocean interior observations collected between 1989 and 2020, and found that the global ocean storage of C_{ant} grew by 29 ± 3 Pg C dec⁻¹ and 27 \pm 3 Pg C dec⁻¹ (\pm 1 σ) from 1994 to 2004 and 2004 to 2014, respectively. Although the two growth rates are not significantly different, they imply a reduction of the oceanic uptake fraction of the anthropogenic emissions from 36 \pm 4 % to 27 \pm 3 % during the respective decades. We attribute this reduction to a decrease of the ocean buffer capacity and changes in ocean circulation. In the Atlantic Ocean, the maximum storage rate shifted from the Northern to the Southern Hemisphere, plausibly caused by a weaker formation rate of North Atlantic Deep Waters and an intensified ventilation of mode and intermediate waters in the Southern Hemisphere. Between 1994 and 2004, the oceanic C_{ant} accumulation exceeded the net air-sea flux by 8 ± 4 Pg C dec⁻¹, suggesting a loss of natural carbon from the ocean during this decade. Our results reveal a substantial vulnerability of the ocean carbon sink.