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Abstract—Disentangling drought impacts on plant photosynthe-
sis is crucial for projecting future terrestrial carbon dynamics.
We examined the separate responses of canopy structure and leaf
physiology to an extreme summer drought that occurred in 2011
over Southwest China, where the weather was humid and radia-
tion was the main growth-limiting factor. Canopy structure and
leaf physiology were, respectively, represented by near-infrared
reflectance of vegetation (NIRv) derived from MODIS data and
leaf scale fluorescence yield (@) derived from both continuous SIF
(CSIF) and global OCO-2 SIF (GOSIF). We detected contrasting
responses of canopy structure and leaf physiology to drought with a
14.0% increase in NIRv, compared with 12.6 or 19.3% decreases in
@, from CSIF and GOSIF, respectively. The increase in structure
resulted in a slight carbon change, due to water deficit-induced
physiological constraints. The net ecosystem effect was a 7.5%
(CSIF), 1.2% (GOSIF), and —2.96% (EC-LUE GPP) change in
photosynthesis. Our study improves understanding of complex
vegetation responses of plant photosynthesis to drought and may
contribute to the reconciliation of contrasting observed directions
in plant responses to drought in cloudy regions via remote sensing.
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1. INTRODUCTION

XTREME drought events are expected to increase in

frequency and intensity under ongoing global warming
[1], [2]; however, effects of drought on vegetation dynamics
represent a key source of uncertainty in projection models of
climate change impacts on plant photosynthesis and the terres-
trial carbon (C) pool [3]. Main impacts of drought on plant pho-
tosynthesis are mediated through changes in canopy structure
and leaf physiology [4], such as increases in leaf abscission and
senescence that reduce the area of transpiration and associated
water demand and increase the risks of xylem embolism and
plant desiccation [5], and closure of stomata and inhibition
of photosynthetic enzyme activity [6], [7], respectively. Thus,
changes in photosynthetically active radiation (PAR) and carbon
dioxide (CO,) assimilation rates due to canopy structure and leaf
physiology responses to drought conditions co-determine rates
of ecosystem photosynthesis [8].

Large-scale monitoring of drought impacts on vegetation
is currently achieved through remote sensing techniques [9],
where greenness vegetation indices (VIs), such as the normal-
ized difference vegetation index (NDVI), enhanced vegetation
index (EVI), and near-infrared reflectance of vegetation (NIRv),
are used to diagnose ecosystem-level effects of drought [10],
[11]. However, as these VIs principally indicate green biomass
[12], they may capture long-term effects of drought on canopy
structure, but not immediate physiological responses [13].

Satellite-recorded solar-induced chlorophyll fluorescence
(SIF) data provide an alternative approach to monitoring effects
of drought [14], [15], [16], because they represent the emission
of energy emanating from excited chlorophyll molecules, fol-
lowing light absorption; given photosynthesis and SIF compete
for the same type of excited energy, SIF carries information on
leaf-scale rates of photosynthesis [17], [18]. Satellite-recorded
SIF comprises an integrated signal that may be decomposed
as the product of absorbed PAR (APAR), fraction of leaf-scale
SIF photons escaping the canopy (canopy escape fraction),
and intrinsic leaf-scale fluorescence yield, where the first two
terms represent canopy structure and the third term represents
leaf physiology [19], [20], [21]; therefore, leaf physiological
responses to drought may be decoupled from canopy responses
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Land cover (a) and cloud frequency (b) in Southwest China. The climate change initiative land cover product in 2011 was used to represent land cover

[22]. Cloud frequency was quantified as the proportion of cloudy days from the MOD35 product [23].

by normalizing SIF, using APAR, to obtain canopy-scale flu-
orescence yield that is equivalent to the product of leaf-scale
fluorescence yield and canopy escape fraction [24], [25], [26].
However, the canopy-scale fluorescence yield is confounded
by canopy structure information, due to the involvement of
the canopy escape fraction that itself is difficult to estimate
precisely, as a result of the complexity of canopy radiative
transfer processes [27], [28]. Zeng et al. [21] proposed a practical
approach to improve the precision of canopy escape fraction
estimates, by combining the NIRv with the fraction of absorbed
PAR (fPAR) that allows information on leaf physiology to be
disentangled from the integrated SIF signal.

The aim of this article was to decouple and compare responses
of leaf physiology and canopy structure to an extreme drought
event that occurred in summer 2011 in the region of southwest
China. Using satellite greenness VIs, Song et al. [29] detected
enhanced plant structural growth in response to the drought,
during which there was a 40% decrease in average rainfall,
and attributed this counterintuitive finding to increased levels of
radiation that occurred during the drought period and radiation is
known to be a main limiting factor for plant growth therein [30].
Given drought reduces photosynthesis [31], this unexpected
finding reported by Song et al. [29] led us to investigate: whether
current satellites can detect contrasting responses of canopy
structure and leaf physiology to the summer 2011 drought and
(2) the net effect of this episode on ecosystem photosynthesis.

II. MATERIALS AND METHODS
A. Study Area

Croplands, forests, and grasslands are the dominant land
covers of the Southwest China study area [see Fig. 1(a)]; this area
accounts for >30% of assimilated CO5 nationally (mainland)
and represents the largest C reservoir in the country [11]. The
study area is dominated by a subtropical monsoon climate,
with an annual average temperature of 15°C and cumulative
precipitation of 1100 mm that results in high levels of humid-
ity. Ecosystems tend to be susceptible to droughts, due to the

widespread distribution of karst landform in the region [29],
[32], and plant growth is radiation-limited [30], particularly in
the east, as a result of high levels of cloud cover [see Fig. 1(b)].

B. Dataset

1) Satellite Data:

a) MCD43A4: Land surface reflectances were derived
from the MCD43A4 v006 nadir bidirectional reflectance dis-
tribution function adjusted reflectance product, with a daily
and 500 m resolution [33]. The retrieved values are produced
daily, based on a 16-day retrieval period, with the nominal date
occurring on the ninth day. We only selected observations with
high quality (quality flag indicating “processed, good quality”).

b) Continuous SIF: Continuous SIF (CSIF) is a machine
learning derived SIF product with a 4-day and 0.05° resolution.
Training of the machine learning algorithm was based on the
discrete orbiting carbon observatory-2 (OCO-2) SIF observa-
tions, using MODIS reflectances and fPAR as inputs. CSIF is
correlated with satellite SIF retrievals and in situ flux based gross
primary productivity (GPP)estimates [34].

c¢) Global OCO-2 SIF: To obtain robust results, we also
used global “OCO-2" SIF (GOSIF), with an 8-day and 0.05°
resolution, to monitor variation in vegetation photosynthesis
during drought. Like CSIF, GOSIF was generated using a ma-
chine learning method, based on discrete OCO-2 observations,
MODIS EVI, MERRA-2 reanalyzed data (including PAR), va-
por pressure deficit, and air temperature [35].

d) EC-LUE GPP: EC-LUE GPP is derived from the light
use efficiency (LUE) model based on eddy covariance (EC) mea-
surements. The model is driven by NDVI, PAR, air temperature,
and the Bowen ratio of sensible to latent heat flux [36].

e) Climate change initiative (CCI) land cover: We used
the CCI land cover product, which identifies land cover types at
an annual and 300-m resolution [22], for 201 1. We merged ever-
green, deciduous, and mixed forests into a simplified “forests”
class.
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2) Climate Data:

a) ERA-5 LAND: The ERA-5 land reanalysis dataset pro-
vides continuous climate variables with a 0.1° spatial and hourly
temporal resolution. We used monthly mean 2 m air temperature,
total precipitation, and surface solar radiation downwards data,
calculated from the original hourly dataset by the European
Centre for Medium-Range Weather Forecasts [37].

b) Standard  precipitation-evapotranspiration  index
(SPEI): Given the SPEI is based on the balance between
precipitation and potential evapotranspiration, it is a good proxy
for water availability mediated by surface water supply and at-
mospheric water demand. SPEI integrates the cumulative effects
from the preceding 1 to 48 months and the gridded SPEI dataset
is available at a 0.5° and monthly resolution [38]. To maintain
consistency with existing studies, we used a 3-month time-scale
SPEI and identified a drought event as SPEI <—0.5 [39].

C. Methods

1) Decoupling structural and physiological responses to
drought: We used NIRv to characterize canopy structural re-
sponses to drought, expressed as the product of NDVI and
near-infrared reflectance:

NIR — Red
NIR + Red ©

where NIR and Red are near-infrared and red reflectances,
respectively, derived from the MCD43A4. NIRv is directly
related to the number of NIR photons reflected by plants, with
a lower contribution by soil contamination and represents the
vegetation capacity of capturing light. Changes in chlorophyll
content (canopy structure) in response to drought stress lead to
shifts in reabsorption and canopy scattering patterns that affect
vegetation NIR; therefore, NIRv is a reliable proxy for canopy
structure [40], [41], [42].

Leaf physiology information was extracted from the decom-
position of satellite-recorded SIF [19], [20], [21]

SIF = PAR x fPAR x @ X fose 2)

where, fPAR is the absorbed fraction of PAR, ® s represents leaf-
scale fluorescence yield, and f.q. is the canopy escape fraction.
As @y and photosynthesis compete for the same excited energy
atthe leaf-scale [17], [18] and there is a positive relation between
@ and light-use efficiency of photosynthesis [43], we used @y
as an indicator of leaf physiology, by inversing (2)

B SIF
~ PAR x fPAR X fos

where f.s. may be approximated [21]

NIRv = NDVI x NIR = NIR (1)

Dy 3)

NIRv
fesc - fPTR (4)
so that ®; may be simplified from (4) and (3)
SIF
®f = PAR x NIRv” ©)

Surface solar radiation downwards from ERA-5 datasets was
used to represent PAR and, to increase the robustness of our
results, CSIF and GOSIF datasets were used as SIF proxies.
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2) Data Analysis: The extracted datasets varied in spatial
and temporal resolutions, so they were resampled to 0.05° and
restricted to summer observations (June, July, and August). We
used cumulative ERA-5 precipitation data across the summer
months, while data for the other indicators were averaged to im-
prove robustness of our analyses, because temporal aggregation
of data alleviates uncertainty associated with cumulative and
lagged effects of drought on canopy structure [44].

We compared data for multiple vegetation and climate vari-
ables from the drought summer of 2011 relative to normal
summers (in 2007 and 2008) for the study area, as done else-
where [29], when no drought episodes were detected, based
on SPEI <—0.5. To improve the robustness of the comparison,
we calculated relative changes between the drought and normal
years (Al)

Id—1Ir

Al T

(6)

where Id is the summer (June, July, and August) mean value of
NIRv and ®; indicators in the drought year 2011 and /Ir is the
reference value, computed as the 2-year summer average of the
indicators over 2007-2008. Using a long time scale (3 months)
can partially minimize influence of the “memory” effect on our
results. In addition, we explored the responses of ANIRv and
A®y to SPEI through the Pearson’s correlation in the drought
pixels, respectively.

III. RESULTS

In summer 2011, Southwest China experienced widespread
drought (SPEI < —0.5), with 43.8% of the area, particularly
in Guizhou province and its environs, exposed to severe and
extreme levels of drought (SPEI < —1.5) [see Fig. 2(a)]. There
were high levels of precipitation deficit in the areas under
drought conditions, where 21.8% of the study area experienced
a > 40% decrease in precipitation [see Fig. 2(b)], and spatial
increases in solar radiation and air temperature [see Fig. 2(c)
and (d)] tended to reflect the precipitation anomaly.

There was a general positive response in canopy structure to
drought, as indicated by relative changes in NIRv (ANIRv) (see
Fig. 3) and there was a significantly negative spatial correlation
between ANIRv and SPEI (r = —0.23 and P < 0.001). The
spatial distribution of the pixels with positive ANIRv agrees
with that of drought [low SPEI and decreased precipitation in
Fig. 2(a) and (b), respectively].

In contrast to the positive response of vegetation structure
to drought, analysis of leaf physiology based on CSIF and
GOSIF showed spatially similar negative responses, albeit with
contrasting magnitudes [see Fig. 4(a) and (b)] and a positive
spatial correlation with SPEI [see Fig. 2(a)] (r = 0.21 and
0.25, respectively, both with a P < 0.001). GOSIF generally
detected lower levels of leaf physiology responses than CSIF
(mean relative change in leaf-scale fluorescence yield: —19.3
and —12.6%, respectively).

NIRv increased and ® decreased for all the vegetation types
during drought period. Specifically, NIRv increased by 16.78%,
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Fig. 3. Canopy structure responses to the 2011 summer drought over South-
west China, based on relative change in NIRv for summer 2011 compared with
2007-2008.

17.26%, and 10.89% for croplands, forests and grasslands, re-
spectively, during drought period, compared to the base year
(see Fig. 5).
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Spatial distributions of (a) SPEI and relative changes in (b) Precipitation (Ap), (c) solar downward radiation (Ar), and (d) temperature (Ar) between

ANIRv increased with intensifying drought (decreasing
SPEI), while CSIF and GOSIF derived ®; both decreased with
intensifying drought. The similar results were observed for all
the vegetation types. The correlation between ANIRv / Ady
and SPEI of grasslands was the strongest (absolute correlation
coefficient, R, larger than 0.7) among the selected vegetation
types, may be due to its shallow root (see Fig. 6).

Analysis of net effects of the 2011 drought event on ecosystem
photosynthesis, based on ASIF observations from CSIF and
GOSIF, shows the 14.0% (see Fig. 3) increase in structural
growth resulted in 7.5% (CSIF) and 1.2% (GOSIF) increases in
photosynthesis (see Fig. 7), after accounting for effects on leaf
physiology (see Fig. 4), and reveals a lack of coincidence with
the spatial distribution of SPEI and precipitation [see Fig. 2(a)
and (b)].

In order to confirm the net effects of drought on plants more
accurately, we also used EC-LUE GPP to investigate change of
GPP during summer 201 1. The result showed that EC-LUE GPP
decreased by —2.96% during drought (see Fig. 8). Like CSIF
and GOSIF (see Fig. 7), the direct GPP product also changed
slightly.

Partial correlation separated the respective contributions of
climatic variables to the variations in canopy structure and leaf
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Fig. 5. Relative change of NIRv, and CSIF and GOSIF derived leaf-scale
fluorescence yield in summer 2011 compared with 2007-2008.

physiology. Radiation contributed the most to the variation of
both canopy structure (NIRv) and leaf physiology [® (CSIF)
and ®; (GOSIF)], but with opposite directions (see Fig. 9). The
increase of radiation stimulated the growth of canopy structure
(R =0.16) and inhibited leaf physiology (R = —0.13 and —0.18
for CSIF and GOSIF, respectively). Compared with radiation,
temperature and precipitation had slighter effect. Decreased
precipitation was often accompanied by increased radiation,
so the signs of partial correlation coefficient for precipitation
and radiation were opposite. And the same results were found
for different vegetation types, such as grassland, croplands and
forests, suggesting that the result was independent of vegetation
type and was universal across the region.

IV. DISCUSSION

We have demonstrated it is possible to separate canopy struc-
tural components of plant photosynthesis from leaf physiologi-
cal components using NIRv and ® as respective proxies. Using
this approach, we detected contrasting responses in canopy
structure and leaf physiology to the 2011 summer drought
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Responses in leaf physiology to summer drought in 2011, based on analysis of relative changes in leaf-scale fluorescence yield (5) in the (a) CSIF and

in Southwest China, where increases in structural growth and
reductions in leaf physiological function reflect the complexity
of drought impacts on plant photosynthesis.

A. Decoupling Vegetation Structure From Physiology

The photosynthetic capacity of plants depends on the inte-
gration of APAR with LUE, where APAR is the product of
incident PAR and fraction of PAR that is absorbed by green
vegetation and is determined by canopy structure [45], while
LUE is determined by leaf physiology [46]. Therefore, the net
effects of drought on plant photosynthetic activity depend on
combined canopy structure and leaf physiology responses.

We used NIRv, which is insensitive to background influ-
ences [40], [41], [42], to represent canopy structure and we
extracted leaf physiology information from decomposing the
satellite-recorded SIF signal (5) to decouple leaf-scale (Py) from
canopy-scale fluorescence yield (®; x fesc) that has been used
in previous studies [24], [25], [26]. Although ®; X f. is highly
sensitive to leaf physiology, it remains confounded by canopy
structure through reabsorption and multiple scattering, due to the
inclusion of fegc, so the greatest challenge in decoupling ® ¢ from
SIF observations is the estimation of f,s.. The complex radiative
transfer process of leaf emitted fluorescence renders the precise
estimation of fes. near-impossible [27], [28], while variation in
canopy structure has been shown affect fos. [47], [48]. Here, we
used the approximated estimation method for fes. [21] (4) and
successfully extracted ®. A novel method to extract ® rinvolves
the normalization of SIF using NIR radiance of vegetation rather
than PAR x NIRv (5) [49] and, as it does not require input
PAR at a coarse resolution, it definitively eliminates the impact
of canopy structure and sun-sensor geometry. Dechant et al.
[47] had compared two normalization methods, NIR radiance of
vegetation and PAR x NIRv, and observed a high consistency
between them. Therefore, the normalization used in this article
may not cause too much uncertainty to our results. We will
implement a deep comparison between the two methods with
a latest drought event.
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SIF is mechanistically linked to photosynthetic activity so,
satellite-recorded SIF has been widely used to represent GPP at
large-scales [14]; however, it remains unclear whether satellite-
recorded SIF carries leaf physiology information. Although vari-
ations in SIF are expected to be driven predominantly by APAR
and fesc, rather than ®; [21], [50], impacts of environmental
stress have yet to be tested, and it is likely to reveal a wider
dynamic range of ®; Nevertheless, SIF has been shown to
detect drought earlier and stronger than greenness VIs [10],
[20], [25], [26], [51], indicating that SIF may indeed reflect
leaf physiology under water stress conditions. Under stress
conditions, when energy dissipated as heat for photoprotection
is saturated, the relationship between fluorescence yield and
photochemical yield remains uncertain [43], [52]. In addition,
due to the different inputs of reconstructed CSIF and GOSIF, the
two datasets yielded an opposite pattern in the central region of
our study area where solar radiation was enhanced (see Fig. 7).
Therefore, dedicated field measurements are urgently needed to
test the reliability of fluorescence yield as an indicator of LUE as

99°E 102°E 105°E 108°E 111°E
(b)

Ecosystem photosynthesis responses to summer drought in 2011, based on analysis of relative changes in SIF in the (a) CSIF and (b) GOSIF products

well as to collect actual SIF to revise the response of vegetation
to drought.

B. Implications

The detection of enhanced structural growth in response to
the 2011 summer drought over Southwest China, despite in-
tense levels of water deficit [29] is supported by our study.
We suggest this response was driven by increased levels of
radiation, which is a limiting factor for plant growth in that
region [30], as indicated by the similar spatial patterns of relative
changes in radiation and NIRv [see Figs. 2(c) and 3]. In contrast
to lag responses of canopy structure to drought conditions,
those of leaf physiology, including closure of stomata to avoid
cavitation and inhibition of Rubisco enzyme activity [4], are
more rapid and reduce leaf photosynthetic rates. We found NIRv
increased and @ decreased for all vegetation types during sum-
mer drought period at large scale (see Fig. 5). The suppression of
leaf physiology (represented by decreased ®y) by drought was
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Fig. 8. Ecosystem photosynthesis responses to summer drought in 2011,
represented by relative changes in EC-LUE GPP between 2011 and 2007-2008.
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consistently reported by field measurement studies [53], [54].
However, there were still differences in field measurements of
the response of canopy structure to drought among different
vegetation types, and both the slight impact of drought on
canopy structure and the significant enhancement in it were
reported [53]. Our study supported the enhancement of canopy
during drought event. The inconsistence between the field and
satellite observations may be partially explained by the scale
effect. Given the lack of availability of synchronous in sifu plant
trait measurement data, we recommend dedicated manipulative
experiments to improve understanding of the mechanisms that
drive these contrasting responses.

Enhanced structural growth in response to increased radiation
under drought conditions in humid regions, such as the Amazon
forests, has been reported, based on various structure proxies,
such as leaf area index [55], EVI [56], [57], and NDVI [58].
These counter-intuitive impacts of drought on plant photosyn-
thesis contrast with field observations and have previously led to
the suggestion that these differences may be explained by remote
sensing artifacts, such as atmospheric contamination [59] and
angular effects [60]. Thus, our study provides novel insights to
drought impacts on plant photosynthesis in cloudy and mesic
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regions, where radiation-induced structural growth is not fully
converted into capacity for C uptake, due to drought-induced
constraints on leaf physiology, so that net ecosystem impacts
of drought depend on the balance between vegetation structure
and leaf physiology responses. We suggest that future research
should test for these contrasting responses in Amazon forests, to
improve understanding of ecosystem impacts of climate change.

V. CONCLUSION

This article investigated the impact of the 2011 summer
drought in Southwest China on canopy structure and leaf phys-
iology, represented by NIRv and leaf-scale fluorescence yield
(D), respectively. We used a physically based and simple ap-
proach to fully decouple @ from satellite-recorded SIF. Results
indicate that satellites detected contrasting responses of canopy
structure and leaf physiology to the drought: structural growth
increased by 13.8%, due to the mitigation of radiation con-
straints (decreased precipitation resulted in lower cloud cover
and increased radiation), whereas leaf physiology decreased by
12.6% (CSIF) or 19.3% (GOSIF), and the compromise between
structural enhancement and physiological inhibition resulted in
a slightly change in ecosystem photosynthesis (CSIF: 7.5%;
GOSIF: 1.2%; EC-LUE GPP: —2.96%). Our study provides a
novel insight to the complex responses of plant photosynthesis to
drought and may contribute to the reconciliation of contrasting
observed directions in plant responses to drought in cloudy and
mesic regions.
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