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Abstract—Mobile multi-robot systems are versatile alternatives
for improving single-robot capacities in many applications, such
as logistics, environmental monitoring, search and rescue, pho-
togrammetry, etc. In this sense, this kind of system must have a
reliable communication network between the vehicles, ensuring
that information exchanged within the nodes has little losses. This
work simulates and evaluates the use of autoencoders for image
compression in a multi-UAV simulation with ROS and Gazebo
for a generic surveillance application. The autoencoder model
was developed with the Keras library, presenting good training
and validation results, with training and validation accuracy
of 70%, and a Peak Signal Noise Ratio (PSNR) of 40dB. The
use of the CPU for the simulated UAVs for processing and
sending compressed images through the network is 25% faster.
The results showed that this compression methodology is a good
choice for improving the system’s performance without losing too
much information.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The current state of the art in mobile robot applications
research has little to debate about the fact that Unmanned
Aerial Vehicles (UAVs) are one of the most versatile robot
platforms for a wide range of applications [1, 2]. To cite
some uses, there is surveillance [3], naval operations assistance
[4], search and rescue [5], inspection [6], package delivering
[7], environmental monitoring [8], topography [9], among
others. The UAV systems also have improved their capacities
when combined in groups or swarms, where coordinated
vehicles can share the same tasks or individually execute parts
of a bigger mission, gaining efficiency or even being able
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to accomplish operations where a single robot wouldn’t be
enough [10].

An essential aspect of the UAV multi-vehicle systems is the
communication strategy between each part. The vehicles need
to be able to send and receive data in a real-time pipeline to
know each other’s position, velocity, orientation, and flight au-
tonomy and communicate with the mission’s Ground Control
Stations (GCS) [11]. These network systems may be designed
as IoT-based (Internet of Things) architectures or even be
nodes of an IoT architecture itself, like fog [12], fog-cloud
[13], or edge-fog-cloud networks [14].

Some applications, such as surveillance, may also demand
that the vehicles send and receive sensing data, for example,
lidar readings, thermal images, or simple video footage frames
[15]. Therefore, for designing reliable network communication
systems for multi-UAV applications, some factors must be
considered, such as communication latency, data throughput,
package loss, interference, processing delay in network nodes,
and power constraints [16]. Given the significant volume
of data flowing through this system, efficient compression
strategies are fundamental to reducing data volume without
losing too much information.

According to [17], thousands of data compression research
papers are published in the most important scientific bases.
The author categorizes the techniques in compression method-
ologies based on data quality, coding schemes, data types, and
applications. The present work mainly concerns compression
based on application (wireless sensor networks) and data
quality (lossy compression). Advances in Machine Learning
(ML) and Deep Learning (DL) allowed the development of
versatile models for data compression [18].

Once DL is mainly based on training a model to extract
features from input data (coding) and then reconstructing the
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input at the output based on those reduced features (decoding),
it is possible to use those properties to reduce (code) the
data generated in network nodes, and then recreate it on its
destination (decode). If necessary, the same node may send
the compressed data by coding and decoding the original data,
with some loss, a methodology described as autoencoder [19].
This paper aims to propose a linear autoencoder architecture
based on a DL model and evaluate its training, test, and
validation results. The trained autoencoder is integrated with
a multi-UAV control simulation which captures video data,
evaluating the results of transmitting compressed and uncom-
pressed image data during the simulation workout.

The present work aims to develop a multi-UAV simulation
framework with ROS and Gazebo packages and integrate it
with a data (image) compression DL model, evaluating its
robustness within the robot system. According to [20] state-
of-the-art review about multi-UAV systems development, the
published works present only simulated results, with physical
tests mostly being executed indoors with only dozens of
robots, and even fewer tests are executed outdoors.

Main contributions of the present work are (i) The generic
multi-UAV development platform with reconfigurable sepa-
rated sensors, controls, and sensors modules built with ROS;
(iii) The multi-UAV development framework ready for out-
doors field tests using up to 10 vehicles and capacity to coordi-
nate missions that demand large distances between robots;(iii)
The linear trained model for image compression, developed
with Keras and already integrated to the control modules in
ROS.

II. PROPOSED METHODOLOGY

The proposed work is divided into three main parts,
which are the development, training, and validation of the
autoencoder model for image compression, the development
of the multi-agent simulation with ROS and Gazebo, and
the integration of the trained and validated model into the
ROS control node, evaluating the real-time results of image
compression and the controller behavior operating with and
without compressed data.

A. Autoencoder model

Autoencoders are a type of neural network that tries to
rebuild the input data at its output but with an initial stage of
reducing the input data to essential features and then building
the output from this reduced set of features. The first stage of
the network is called the encoder, and the second is called
the decoder. The encoder outputs are the reduced features
that reconstruct the original input data. Autoencoders use
unsupervised training to learn how to effectively reduce the
information (code) and then represent the input again at its
output (decode), with some loss of information (compression).
The TensorFlow Keras library was used for the model con-
struction and training.

The proposed autoencoder’s input and output layers have
96×96×3 shapes, representing an RGB input image with
96×96 pixels. The encoder structure consists of 4 groups of

4 convolutional 2D layers interspersed and stacked with 4
batch normalization layers, totaling eight layers per group. The
convolutional 2D layers create a convolution kernel convoluted
with the layer input to produce a tensor of outputs. Those
kernels represent the information extracted from the input data.
The batch normalization layers apply a transformation that
maintains the mean output close to 0 and the output standard
deviation close to 1. That’s why a batch normalization layer
must be between two consecutive convolutions (the input data
must also be normalized before compression). Between each
group of layers, there is a maximum pooling 2D layer, which
downsamples the number of features extracted from each
group, followed by a dropout layer to help prevent overfitting
during training. The encoded input at the end of the encoder
stage has dimension 12×12×32.

The decoder structure comprises four groups of 4 con-
volutional 2D layers interspersed and stacked with 4 batch
normalization layers. Still, instead of the maximum pooling 2D
layers followed by the dropout layer, there is an upsampling
2D layer for reconstructing the data to its original format. The
decoder output has shape 96×96×3, the same as the input,
which also represents an RGB image of 96×96 pixels. In other
words, the decoder tries to reproduce the input image data with
a reduced set of features after the encoder process. In order to
train the model, it was used the STL-10 dataset [21], which
is composed of 10,000 RGB generic images of 96×96 pixels,
with 6,000 being used for training and 4,000 used for the test.
The training was performed in 100 epochs, with a batch size
of 10, and Adam optimizer with a learning rate 0.0005. The
loss and validation loss criteria were the minimum squared
error and the accuracy criteria performed for the evaluation.

In order to validate the model, it was studied the loss and
validation loss curves, as well as the accuracy and validation
accuracy curves. It also evaluated the peak-to-signal noise
ratio (PSNR) variation for 1 to 10 consecutive compressions,
presented in Equation 1.

PSNR = 10 log10

(
MAXI

2

MSE

)
(1)

Where:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(I(i,j) −K(i,j))
2 (2)

MAXI is the maximum possible pixel value of the image,
and MSE is the minimum squared error between the pixels
(i, j) of images I (original) and K (compressed), of shape
m×n. The structural similarity index (SSIM, given in Equa-
tion 3) and the multi-scale structural similarity (MS-SSIM,
presented in Equation 4) were evaluated as well.

SSIM =
[2µxµy + (k1L)

2][2σxy + (k2L)
2]

[µx
2 + µy

2 + (k1L)2][σx
2 + σy

2 + (k2L)2]
(3)

MS − SSIM =
1

M

M∑
j=0

SSIM(xj , yj) (4)
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The SSIM measures the similarity between two images,
where µx and µy are the average values of x and y respectively,
σx

2 and σy
2 are the variances of x and y respectively, σxy

is the covariance between x and y, and finally (k1L)
2 and

(k2L)
2 are two stabilization constants, where in this analysis

k1 = 0.01, k2 = 0.03 and L = 2n − 1 where n is the number
of bits per pixel. MS-SSIM is nothing else but the average
SSIM for a set of images. All training and evaluation were
executed from an Intel NUC 38i3BEK, using Google Collab
computational resources to speed up the training.

B. Multi-UAV simulation with ROS and Gazebo

The first step for creating the simulation in ROS to integrate
with the autoencoder for image compression was establishing
a generic application that uses aerial imaging to accomplish its
goals. It was chosen as a mission in an offshore environment
where the UAVs will follow programmed paths for environ-
mental surveillance (search for oil spills, for example). The
UAV swarm should take off from the oil production facility’s
helideck and send its camera images to the control station.
First, to simulate the environment in which the mission will
take place, an oil rig and a shuttle tanker vessel were designed
with Blender 3D modeling software, Gazebo packages for
designing the sky, clouds, sea, and ODE plugins for wind and
sea parameters, the world on which the simulation took place
was created. Figure 1 presents the results.

Fig. 1. World created in Gazebo for simulating the image transmission system
on an offshore mission.

The main idea adopted for developing the UAVs simulation
was to launch separated agents with the PX4 FCU and the
developing custom nodes representing offboard controllers.
These offboard nodes will communicate to their respective
FCU through MAVLINK protocol (in this case, MAVROS) to
receive data from sensors, alarms, status, position, velocity,
and any other variable that is important for the operational
controller of each robot. In real life, this offboard controller
may be a companion computer like a Raspberry Pi attached
to the UAV, and the communication between the UAV and

the companion computer may happen through serial com-
munication via USB or the MAVLINK telemetry radio (one
attached to the FCU and one attached to the companion com-
puter). In the offboard controller, packages will be developed
for controlling its respective UAV, communicating with the
simulated network, and using a different sensor that can’t be
embedded in the UAV’s FCU. In the simulation, this sensor
is the camera, which is a Gazebo external plugin streaming
the image ”seen” by each UAV through a pipeline using
the Python GStreamer library and OpenCV, transformed to
a camera node that communicates to each offboard node. The
active nodes diagram for a 3 UAV group developed under this
logic is presented in Figure 2.

Fig. 2. Active ROS nodes and topics for 3 UAV groups in simulation.

The image compression autoencoder model is also inte-
grated into the offboard nodes, which take the camera’s image
from the camera nodes and transmit it to the ground station.
In real life, this may be addressed with WiFi, ZigBee, or
other wireless communication technology associated with the
companion computer. The simulated UAV was a Typhoon
H480 model, and the simulation was performed with groups
of 1 to 10 vehicles. Figure 3 presents the simulated UAVs in
the Gazebo environment.

For the image transmission test, the offboard controllers
were programmed for a 10 meters takeoff, then described a
squared trajectory of 20 m × 20 m side around the oil rig.
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Fig. 3. Swarm of 10 Typhoon H480 in simulation.

The results will be presented in the next session.

III. RESULTS AND DISCUSSION

The results will be presented in the following subsections,
one detailing training and static evaluation of the developed
autoencoder and one containing the results obtained when
integrating the autoencoder into the multi-UAV simulation.

A. Autoencoder evaluation

Figure 4 presents the loss and validation loss during training
the autoencoder.

Fig. 4. Loss and Validation Loss in the autoencoder’s model training.

The training began with 0.0370 for loss and 0.0249 for vali-
dation loss at the end of the first epoch and ended with 0.0075
for loss and 0.0069 for validation loss. Usually, validation loss
is greater than training loss, as the network is trained with
those data, but the dropout layers in the encoder structure
penalize the model variance by randomly freezing neurons
in a layer during model training. Since it applies only to the
training process, it affects training loss, leading to a validation
loss lower than training loss. This is a good indicator that the
autoencoder could compress generic images from the dataset,
even if it is new (validation images). Figure 5 below presents
the training’s accuracy and validation accuracy results.

The final accuracy for the training was 0.7053, and for the
test, it was 0.6982. This is also similar to the loss and indicates
that the model could predict the output data given the input
data with almost 70% precision. For an object detector, this

Fig. 5. Accuracy and Accuracy Loss in the autoencoder’s model training.

could be considered a low result, but since the network goal
is to reduce transmitted bytes in the proposed system, this is a
solid result and shows that the trained model can accomplish
the task. A compression result example is presented in Figure
6, which shows the input (a random image from the STL-10
dataset) data and the output compressed data.

Fig. 6. Compression example.

As the model prediction is fast, improving byte transmission
reduction (with the cost of losing data) compresses the image
several times before streaming it. The number of compressions
for each UAV transmitting images could be defined in the
offboard controller nodes, being a collective decision of the
group which agent should detail more or less the data they’re
sending. In order to validate the autoencoder’s performance,
an image from outside the training and validation dataset was
used, being compressed from 1 to 10 times, and the PSNR,
SSIM, and MS-SSIM were measured. Figure 7 presents the
variation results for each indicator.

The similarity of the compressed image decreases with suc-
cessive compression as expected, and the signal/noise relation
also decays fast. After the seventh compression, the image
is practically unrecognizable. Figure 8 presents the result
of the image subjected to successive compression with the
autoencoder.

With the autoencoder ready to use, the next step was
integrating it with the multi-UAV simulation system.
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Fig. 7. PSNR, SSIM, and MS-SSIM variation for interlinked compression.

Fig. 8. Interlinked compression example.

B. Image compression evaluation in simulation

Nine simulations were carried out, each one increasing the
number of drones from 1 to 10 units. In [22], it is possible to
see a video of an example using 2 UAVs. Each time one UAV
was added, the simulation ran slower due to computational
restrictions. Figure 9 presents the route flight by each UAV in
the simulation with ten agents.

All robots could compress and stream their camera’s images
through the designed network. The images were presented
at a 25 fps rate, and the autoencoder decreased this to 15
when performing ten successive compressions. The CPU use
of each offboard controller was evaluated with and without
the image compression, using only one encoding. The results
are presented in Figure 10.

The CPU is in less demand when the images are compressed
because the process deals with less data. The streamed data
is also much smaller than the original image, reconstructed at
the origin. In a real application scenario, the network could
process which UAV must stream images with more or less
quality, ensuring signal continuity.

Fig. 9. Route performed by the UAV swarm in simulation.

Fig. 10. CPU use during the simulation.

IV. CONCLUSIONS AND FUTURE WORK

The autoencoder was satisfactorily trained and tested, with
robust validation results. The proposed strategy to simulate
and control the UAV swarm also worked as expected, opening
the possibility for future experiments since several intelligent
routines, new sensors, and communication pipelines can be
integrated with the offboard controllers. Those packages are
also ready to be used in real robots using the PX4 FCU. This
was also proved by integrating the encoder and decoder mod-
els into the controllers for compressing and streaming data,
reducing the necessity of CPU usage and dealing with fewer
bytes. For future works, this system must be integrated with
a network simulator like OMNET++ or NS-3 to verify other
constraints regarding the communication of robot swarms and
the compression performance with different communications
protocols. The swarm framework must also be developed
and presented as a generic application for swarm simulation.
Finally, field tests must be performed to validate the proposed
framework.
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and D. B. Haddad, “Hybrid methodology based on
computational vision and sensor fusion for assisting
autonomous uav on offshore messenger cable transfer
operation,” Robotica, vol. 40, no. 8, pp. 2786–2814,
2022.

[3] M. F. Pinto, A. G. Melo, A. L. Marcato, and C. Urdiales,
“Case-based reasoning approach applied to surveillance
system using an autonomous unmanned aerial vehicle,”
in 2017 IEEE 26th International Symposium on Indus-
trial Electronics (ISIE), pp. 1324–1329, IEEE, 2017.

[4] G. S. Ramos, D. Barreto Haddad, A. L. Barros,
L. de Melo Honorio, and M. Faria Pinto, “Ekf-based
vision-assisted target tracking and approaching for au-
tonomous uav in offshore mooring tasks,” IEEE Journal
on Miniaturization for Air and Space Systems, vol. 3,
no. 2, pp. 53–66, 2022.

[5] C. D. Rodin, L. N. de Lima, F. A. de Alcantara Andrade,
D. B. Haddad, T. A. Johansen, and R. Storvold, “Ob-
ject classification in thermal images using convolutional
neural networks for search and rescue missions with
unmanned aerial systems,” in 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2018.

[6] G. S. Berger, M. Teixeira, A. Cantieri, J. Lima, A. I.
Pereira, A. Valente, G. G. de Castro, and M. F. Pinto,
“Cooperative heterogeneous robots for autonomous in-
sects trap monitoring system in a precision agriculture
scenario,” Agriculture, vol. 13, no. 2, p. 239, 2023.

[7] L. D. P. Pugliese, F. Guerriero, and G. Macrina, “Using
drones for parcels delivery process,” Procedia Manu-
facturing, vol. 42, pp. 488–497, 2020. International
Conference on Industry 4.0 and Smart Manufacturing
(ISM 2019).

[8] D. R. Green, J. J. Hagon, C. Gomez, and B. J. Gregory,
“Chapter 21 - using low-cost uavs for environmental
monitoring, mapping, and modelling: Examples from
the coastal zone,” in Coastal Management (R. Krish-
namurthy, M. Jonathan, S. Srinivasalu, and B. Glaeser,
eds.), pp. 465–501, Academic Press, 2019.

[9] S. Manfreda, P. Dvorak, J. Mullerova, S. Herban,
P. Vuono, J. J. Arranz Justel, and M. Perks, “Assessing
the accuracy of digital surface models derived from
optical imagery acquired with unmanned aerial systems,”
Drones, vol. 3, no. 1, 2019.

[10] A. Tahir, J. Boling, M.-H. Haghbayan, H. T. Toivonen,
and J. Plosila, “Swarms of unmanned aerial vehicles —

a survey,” Journal of Industrial Information Integration,
vol. 16, p. 100106, 2019.

[11] G. Asaamoning, P. Mendes, D. Rosário, and
E. Cerqueira, “Drone swarms as networked control
systems by integration of networking and computing,”
Sensors, vol. 21, no. 8, 2021.

[12] A. Gupta and S. K. Gupta, “Uav aided fog network
(uafn): A proposal framework for better qos,” in 2022
2nd International Conference on Computing and Infor-
mation Technology (ICCIT), pp. 265–270, 2022.

[13] H. A. Alharbi, B. A. Yosuf, M. Aldossary, J. Almutairi,
and J. M. H. Elmirghani, “Energy efficient uav-based
service offloading over cloud-fog architectures,” IEEE
Access, vol. 10, pp. 89598–89613, 2022.

[14] Z. Chen, N. Xiao, and D. Han, “A multilevel mobile fog
computing offloading model based on uav-assisted and
heterogeneous network,” Wireless Communications and
Mobile Computing, vol. 2020, p. 8833722, Jul 2020.

[15] J. Scherer and B. Rinner, “Persistent multi-uav surveil-
lance with energy and communication constraints,” in
2016 IEEE International Conference on Automation Sci-
ence and Engineering (CASE), pp. 1225–1230, 2016.

[16] M. F. Pinto, A. L. Marcato, A. G. Melo, L. M. Honório,
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