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Abstract: A review of the published quantitative risk assessment (QRA) models of L. monocytogenes
in dairy products was undertaken in order to identify and appraise the relative effectiveness of
control measures and intervention strategies implemented at primary production, processing, retail,
and consumer practices. A systematic literature search retrieved 18 QRA models, most of them
(9) investigated raw and pasteurized milk cheeses, with the majority covering long supply chains
(4 farm-to-table and 3 processing-to-table scopes). On-farm contamination sources, either from
shedding animals or from the broad environment, have been demonstrated by different QRA models
to impact the risk of listeriosis, in particular for raw milk cheeses. Through scenarios and sensitivity
analysis, QRA models demonstrated the importance of the modeled growth rate and lag phase
duration and showed that the risk contribution of consumers’ practices is greater than in retail
conditions. Storage temperature was proven to be more determinant of the final risk than storage
time. Despite the pathogen’s known ability to reside in damp spots or niches, re-contamination
and/or cross-contamination were modeled in only two QRA studies. Future QRA models in dairy
products should entail the full farm-to-table scope, should represent cross-contamination and the
use of novel technologies, and should estimate L. monocytogenes growth more accurately by means of
better-informed kinetic parameters and realistic time–temperature trajectories.

Keywords: systematic review; exposure assessment; simulation; raw milk; cheese; listeriosis

1. Introduction

Listeria monocytogenes is a Gram-positive, non-spore-forming, facultatively anaerobic
rod-shaped bacterium, pathogenic to both humans and animals and of great concern with
regard to human foodborne illness [1]. Foodborne listeriosis is one of the severe foodborne
diseases, and although it is a relatively rare disease, the high rate of mortality associated
with this infection makes it a significant public health concern. In the European Union
(EU), listeriosis was the fifth most commonly reported zoonosis in the year 2020, with
1876 confirmed cases in 27 EU Member States, and with the highest case fatality (13%) and
hospitalization rates (97.1%) [1]. Recently, a meta-analysis investigation on case–control
studies of sporadic listeriosis was conducted to summarize evidence on associations (odds
ratios, OR) between risk factors and sporadic cases [2]. Meta-analysis models on the
outcomes of 12 case–control studies spanning from 1988 to 2013 pointed seafood as the
most likely causative agent of listeriosis (pooled OR = 6.27 for susceptible populations
including perinatal/non-perinatal, immunocompromised, and the elderly), followed by
cheese (pooled OR = 1.83; 95% CI: 1.27–2.64), mainly including soft cheeses.
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In the past 20 years, many quantitative risk assessment (QRA) models have been
developed worldwide in order to guide the decision making on food safety and risk
management of L. monocytogenes. Models, from simple to more complex ones, attempt to
assess in a structured approach the possible routes of contamination of L. monocytogenes
at different points along the farm-to-fork chain of food products. Regardless of the scope
of the QRA models (i.e., farm-to-table, processing-to-table, end-of-processing-to-table,
retail-to-table, or consumption), their ultimate goals are to quantify the public health risk
associated with the consumption of food products of interest and evaluate scenarios or
potential risk reduction measures. The objectives of this study are as follows: (i) to carry
out a critical review of the published risk assessment models of L. monocytogenes in milk
and dairy products; (ii) to gather information on the type and relative effectiveness of the
control measures and intervention strategies tested as what-if scenarios implemented at
primary production, processing, retail, distribution, and consumer practices; and (iii) to
identify key lessons, knowledge gaps and recommendations for improving future QRA
models in dairy products. To meet the first objective, a systematic review was performed
to retrieve the published listeriosis QRA models and extract information that could allow
a transversal comparison of model structures, scenarios, and results. Although QRA
models are science-based, they are unavoidably subjected to choices, value judgments,
and assumptions, reasons as to why all of them must be documented in a systematic and
transparent manner. Therefore, the QRA models presented in this critical review are those
that contain a full description of assumptions and uncertainties.

2. Materials and Methods

A broad systematic review was carried out to recover published QRA models of
listeriosis associated with the consumption of any foodstuff. They were sought through a
literature search on Scopus and PubMed®, considering 1 January 1998 as the starting date
of publication. The searches were carried out on 18 May 2022 (end date of publication), and
the following search strings were applied for each of the literature engines:

SCOPUS: (TITLE-ABS-KEY (“risk assessment”) OR TITLE-ABS-KEY (exposure) OR
TITLE-ABS-KEY (quantitative microbial) OR TITLE-ABS-KEY (risk modeling) OR TITLE-
ABS-KEY (modeling) OR TITLE-ABS-KEY (simulation*) OR TITLE-ABS-KEY (second-
order) OR TITLE-ABS-KEY (“second order”) OR TITLE-ABS-KEY (“risk management”))
AND (TITLE-ABS-KEY (“L. monocytogenes”) OR TITLE-ABS-KEY (“Listeria monocyto-
genes”) OR TITLE-ABS-KEY (listeriosis)).

PUBMED: ((“risk assessment” [Title/Abstract]) OR (exposure [Title/Abstract]) OR
(quantitative microbial [Title/Abstract]) OR (risk modeling [Title/Abstract]) OR (modeling
[Title/Abstract]) OR (simulation* [Title/Abstract]) OR (second-order [Title/Abstract]) OR
(“second order” [Title/Abstract]) OR (“risk management” [Title/Abstract])) AND ((“L.
monocytogenes” [Title/Abstract]) OR (“Listeria monocytogenes” [Title/Abstract]) OR
(listeriosis [Title/Abstract])).

After merging into one single database, records were deduplicated. Eligibility assess-
ment was carried out by two senior reviewers as a two-step process: first, by evaluating
the title and abstract of the records, and subsequently, by examining the full text of the
remaining records. Studies were regarded as eligible if (1) they presented a quantitative
risk or exposure assessment model for listeriosis linked to any foodstuff, with formulae and
assumptions explicitly indicated, and (2) they were written in English or Spanish language.

From each eligible model, the following information was extracted: scope of the
QRA, food, country, existence of sub-models for cross-contamination, dose–response model
and endpoint, modeling of strain variability, inclusion of temperature profiles and lag
time, predictive microbiology models used, outcomes of what-if scenarios, outcomes of
sensitivity analysis, and observations on the overall level of complexity of the model.
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3. Results
3.1. Systematic Review Process

From Scopus, 1261 articles were collected, whereas 360 articles were retrieved from
PubMed®. As shown in Figure 1, at the end of the full-text assessment, forty-four records
were retained. In addition, through Google search, ten records were collected, which
consisted of four theses [3–6], five reports from health agencies [7–11], and one published
article [12]. A total of 54 records were therefore available, in which 65 models were
published. Through this literature search, listeriosis QRA models were retrieved for any
foodstuff and then classified into QRA for produce (11 models), seafood (10 models),
composite (4 models), meat products (23 models), and dairy (18 models). As defined in the
objectives of this study, this review focuses on dairy products only [7–23].
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Figure 1. PRISMA chart of literature search of studies comprising quantitative risk assessment models
on L. monocytogenes in foods published between January 1998 and May 2022.

3.2. Description of the QRA Models in Dairy Products

A total of 18 QRA models, published from 1998, investigating dairy products as
sources of listeriosis were recovered (Table 1). Out of them, nine models represented the
food production conditions of Europe, covering France (Bemrah et al. [13]; Sanaa et al. [16];
Tenenhaus-Aziza et al. [12]), Italy (Giacometti et al. [20]; Condoleo et al. [15]), Greece
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(Koutsoumanis et al. [18]), Ireland (Tiwari et al. [14]), Denmark (Njage et al. [23]), and the EU
(Pérez-Rodríguez et al. [10]). From the American continent (five QRA models), three of them
pertained to the USA and Canada (FDA-FSIS [7]; Latorre et al. [19]; FDA-HealthCanada [9]),
followed by Mexico (Soto-Beltrán et al. [22]) and Brazil (Campagnollo et al. [17]). Retrieved
models also originated from Korea (Yang and Yoon [21]), whereas two from FAO/WHO [8]
and one from EFSA BIOHAZ [11] were not particularly linked to any geographical location.
Most QRA models addressed the risk of listeriosis associated with ready-to-eat (RTE)
foods; only 2 out of the 18 models pertained to non-RTE food, specifically raw milk. A
total of 10 out of the 18 models assessed the risk from different kinds of cheeses, and in
most of the cases, they covered long supply chains; this is, either the whole supply chain
(4 farm-to-table scope models) or the processing-to-table chain (3 QRA models). Six out of
the nine QRA models focused on raw milk types, which, except for queso fresco, comprised
simulations over long supply chains. This signifies that these long supply chains have
been the preferred choice of the scope of QRA in cheeses as a consequence of the general
understanding that L. monocytogenes contamination in cheeses may occur at multiple points
along the food chain. The sole consumer’s practices module was simulated in two models,
whereas nine models comprised end-of-processing or retail-to-table. Apart from cheese
and milk, QRA models also investigated ice cream [8], yogurt [21], and cultured milk [23].
FDA-FSIS [7] investigated several RTE dairy products.

In the risk or exposure estimation procedure, most models did not perform separation
of uncertainty, although the distinction was often made between uncertainty and variability
distributions. Second-order simulations were undertaken in three models (16.6%). Despite
the many opportunities for cross-contamination, only three QRA models attempted to
characterize it. Tenenhaus et al. [12] proposed more complex discrete event models for use
during cheesemaking, ripening, and packaging.

Predictive microbiology models were employed in 15 out of 18 QRA models, covering
different functions for growth and survival, although the simple log-linear model for
growth was often employed. Despite its importance in obtaining more realistic exposure
assessment or less conservative risk estimates, not all QRA models represented the lag
phase duration. The lag phase was approached in only four models (22.2% of those taking
advantage of predictive microbiology). Similarly, only three QRA models solved the growth
of the pathogen for time–temperature trajectories [10,12,18].

Only 1 QRA model considered mortality as an endpoint for risk estimation, whereas
18 models considered illness as an endpoint. One model did not perform any risk esti-
mation as it only targeted the exposure assessment component. The exponential “single-
hit” dose–response equation was the most frequent choice for risk characterization, be-
ing utilized in 14 QRA models (77.8%), from which the preferred approach was that of
FAO/WHO [8] (9 models). The Weibull-gamma dose–response model was employed in
three QRA models.

Table 2 summarizes the predictive microbiology models and main outcomes related to
what-if scenarios and sensitivity analysis from the listeriosis QRA models linked to dairy
products. Most of the dairy QRA models undertook separate simulations evaluating the
impact of what-if scenarios, which constituted either risk factors or intervention strategies
(82.4% of the models), whereas sensitivity analysis on L. monocytogenes concentration, on
dose per serving or on risk measures as response variables was undertaken in 35.3% of
the models.
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Table 1. Main features of quantitative risk assessment models of Listeria monocytogenes (LM) from consumption of dairy products by scope *.

Scope Food RTE Cross-
Contamination

DR—
Endpoint

Type of DR
Model

DR
Sub-Populations Strain Variability Temp Profiles/

Lag Time Country Source

Farm-to-
table Raw milk soft cheese Yes No WG—I, D Farber et al. [24] High-risk/Low-risk Proportion of

virulent strains No/No France Bemrah et al.
[13]

Soft-ripened cheese Yes No Exp—I FAO/WHO [8] High-risk/Low-risk

Strain diversity
implicit in r; Tmin and
EGR20 represent
strain variability

No/Yes North America
FDA-
HealthCanada
[9]

Raw/pasteurized
milk cheese Yes

Yes: processing,
cheese smearing
stage

WG—I Bemrah et al.
[13] High-risk/Low-risk Proportion of

virulent strains No/No Ireland Tiwari et al.
[14]

Sheep’s raw milk
semi-soft cheese Yes No Exp—I FAO/WHO [8] High-risk/Low-risk

Strain diversity
implicit in r;
challenge test data
from a mixture
of strains

No/No Italy Condoleo et al.
[15]

Processing-
to-table

Raw milk cheeses:
Camembert of
Normandy and Brie
of Meau

Yes No Exp—I FAO/WHO [25] High-risk/Low-risk
Tmin and pHmin
represent strain
variability

No/No France Sanaa et al. [16]

Raw milk semi-hard
cheese and
pasteurized milk
soft cheese

Yes No Exp—I FAO/WHO [8] High-risk/Low-risk Strain diversity
implicit in r No/No Brazil Campagnollo

et al. [17]

Pasteurized milk
soft cheese Yes

Yes: cheese making
(pasteurized milk,
cheese surface);
ripening (cross-
contamination,
cheese surface);
packaging

Exp—I FAO/WHO [8] Generic
Strain diversity
implicit in r; lag
time distribution

Yes/Yes France
Tenenhaus-
Aziza et al.
[12]

End Process-
to-table

Pasteurized milk Yes No . . . Tmin represents strain
variability Yes/Yes Greece Koutsoumanis

et al. [18]

Raw milk No No Exp—I FAO/WHO [8] Multiple Strain diversity
implicit in r No/No USA Latorre et al.

[19]
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Table 1. Cont.

Scope Food RTE Cross-
Contamination

DR—
Endpoint

Type of DR
Model

DR
Sub-Populations Strain Variability Temp Profiles/

Lag Time Country Source

Retail-to-
table

Soft/semi-soft
cheese Yes No Exp—I

EFSA BIOHAZ
[11] based on
Pouillot et al.
[26]

Multiple
(sex/age group)

Challenge test data
from a mixture of
strains; strain
virulence and host
susceptibility explicit
in r distribution

No/No Non-specific EFSA BIOHAZ
[11]

Various dairy
products Yes No Mouse Epi—I FDA-FSIS [7] Multiple

Variability in the
virulence of different
strains represented
in DR

No/No USA FDA-FSIS [7]

Pasteurized milk Yes No Exp—I FAO/WHO [8] High-risk/Low-risk Strain diversity
implicit in r No/No Non-specific FAO-WHO [8]

Ice cream Yes No Exp—I FAO/WHO [8] High-risk/Low-risk Strain diversity
implicit in r No/No Non-specific FAO-WHO [8]

Raw milk No No Exp—I FAO/WHO [8] High-risk/Low-risk Strain diversity
implicit in r No/No Italy Giacometti

et al. [20]

Soft/semi-soft
cheeses Yes No Exp—I Pouillot et al.

[26] Multiple

Challenge test data
from a mixture of
strains; strain
virulence and host
susceptibility explicit
in r distribution

Yes/Yes EU
Pérez-
Rodríguez et al.
[10]

Yogurt Yes No Exp—I FAO/WHO [8] High-risk/Low-risk

Challenge test data
from a mixture of
strains; strain
diversity implicit in r

No/No Korea Yang and Yoon
[21]

Consumption Raw milk cheese
(Queso fresco) Yes No WG—I Farber et al. [24] High-risk/Low-risk Proportion of virulent

strains No/No Mexico Soto-Beltrán
et al. [22]

Cultured milk Yes No Exp—I FAO/WHO [25] Multiple

Strain variability
modeled by class
(cold, acid, salt,
desiccation stressed)
from WGS data

No/No Denmark Njage et al. [23]

* DR: dose–response; Exp: exponential; WG: Weibull gamma; I: illness; D: death: Mouse-Epi: mouse epidemiological model; EGRx: exponential growth rate at x ◦C; r: parameter of the
exponential dose–response model; Tmin: minimum temperature for microbial growth; WGS: whole-genome sequencing.



Foods 2023, 12, 4436 7 of 19

Table 2. Predictive microbiology models and main outcomes related to what-if scenarios and sensitivity analysis from quantitative risk assessment models of Listeria
monocytogenes (LM) from consumption of dairy products *.

Scope Food Predictive Microbiology
Models What-If Scenarios Sensitivity Complexity Source

Farm-to-table Raw milk soft
cheese -

(1) Excluding mastitis source of LM decreases
median counts in cheese from 2.53 to 1.88 CFU/g;
(2) reducing mean prevalence of contaminated
farms from 3% to 2% decreases median counts in
cheese from 2.53 to 0.024 CFU/g; (3) excluding
mastitis source of LM and reducing the mean
prevalence of contaminated farms from 3% to 2%
reduces the mean incidence of listeriosis by 80%;
(4) decreasing servings/person/year from 50 to
20 reduces the mean number of cases by 60%.

- Low Bemrah et al.
[13]

Soft-ripened cheese
Growth (linear EGR and
square root, RLT);
inactivation

(1) Consuming an artisanal raw milk soft-ripened
cheese increases the mean risk per serving
157 times in comparison to the pasteurized one;
(2) the mean risk per raw milk soft-ripened cheese
serving is ~24–37 times smaller when every milk
collection (bulk tank) is tested for LM, than when
no testing is conducted; (3) reducing LM in raw
milk by 3 log CFU/mL at the beginning of cheese
manufacturing reduces the mean risk by a factor
of 7–10 compared to baseline raw milk cheese;
(4) testing batches of cheeses and removing
non-compliant ones reduces the risk by 7–12 times
that of the mean risk of non-tested
pasteurized cheeses.

(1) Halving the EGR20 of LM reduces the mean
risk per contaminated serving by a factor of ~8.
Doubling the EGR20 multiplies the mean risk by a
factor of ~4; (2) an increase of 1 ◦C in the home
fridge temperature increases the mean risk per
contaminated serving by a factor of 1.7;
(3) shortening the maximum duration of the home
storage from 56 to 28 days reduces the mean risk
per contaminated serving by a factor of 1.4.
Outcome—risk per serving: LM in contaminated
cheese after home storage (r = 0.95); after retail
storage (r = 0.83); after transport (r = 0.75); after
aging (r = 0.64); LPD (r = −0.54); EGR20 (r = 0.45)

High: Meta-analysis, previous
adjustment of mixed distributions,
models for mixing and partition, lag
phase modeled as “work to be done”

FDA-
HealthCanada
[9]

Raw/pasteurized
milk cheese Growth (Gompertz)

(1) An increase in the initial LM in raw milk at
farm level from 0.03 to 10 CFU/mL up to a
maximum of 100 CFU/mL increases the final
mean concentration by 35% in raw cheese and by
45% in pasteurized cheese; (2) when there is no
further contamination during retail storage (only
cross-contamination through smearing), the
counts decrease by 24% in raw cheeses and 97% in
pasteurized ones; (3) improper storage
temperature above 4 ◦C at
retail increases by 39% LM in raw cheeses and by
64% in pasteurized ones.

Outcome—counts in raw/pasteurized milk
cheese: Temperature at retail (r = 0.65/0.75);
cheese consumption (r = 0.28/0.48); storage time
at retail (r = 0.15/0.20); fecal/silage/farm
contamination factors (r = 0.15/0.27);
cross-contamination from smearing machine
(r = 0.05/0.12)

Medium: a separate Bayesian model to
estimate sources of contamination on
farms; discrete differential equation
modeled transmission during smearing
from (1) contaminated cheese to machine,
(2) machine to cheese, and (3) machine to
the surrounding environment and
environment impact on the cheese

Tiwari et al.
[14]

Sheep’s raw milk
semi-soft cheese

Growth (linear and EGR
square root)

(1) Cheese from mastitis-free flocks decreased
concentration of LM in bulk tank milk by 24%, in
comparison to contaminated random flocks;
(2) flocks with a single mastitis case increase risk
per contaminated serving seven times that of
contaminated random flocks; (3) cheeses from
mastitis free flocks present 0.07 times the risk per
contaminated serving; (4) cheeses from family
flocks (10 animals maximum) have a risk eight
times higher.

- Low Condoleo et al.
[15]



Foods 2023, 12, 4436 8 of 19

Table 2. Cont.

Scope Food Predictive Microbiology
Models What-If Scenarios Sensitivity Complexity Source

Processing-to-
table

Raw milk cheeses:
Camembert of
Normandy and Brie
of Meau

Growth/no growth,
Growth (modified logistic,
cardinal models for
temperature and pH)

- -
Medium: growth was computed in the
core and rind of cheeses considering
modeled pH profiles

Sanaa et al.
[16]

Raw milk
semi-hard cheese
and pasteurized
milk soft cheese

Growth (empirical
functions)

(1) Anti-listerial LAB reduced from 7.7 log CFU
LM/g of raw milk semi-hard cheese in the
baseline scenario to 1.1 log CFU/g of cheese,
reducing risk by >6 log RR; (2) addition of
anti-listerial LAB to milk contaminated with LM
at 1 log CFU/mL (the same concentration used in
the baseline) reduced the risk 4.6-fold in
pasteurized milk soft cheese in the general and
vulnerable population.

- Low Campagnollo
et al. [17]

Pasteurized milk
soft cheese

Growth (logistic growth
model with delay and
growth rate as secondary
cardinal growth model
with interactions)

(1) When the initial number of cells in the ripening
room environment decreases from 2000 to
500 cells, the risk is divided by 3.7; (2) when the
primo-contamination event occurs on the
smearing machine, instead of during
cheese-making, with 500 cells, the risk is divided
by 350; (3) when the generation time of LM in the
environment extends from 24 (base) to 48 h, the
risk of listeriosis is divided by 546.

- High: many recontamination and
cross-contamination modules

Tenenhaus-
Aziza et al.
[12]

End
Process-to-table Pasteurized milk

Growth (linear model,
polynomial functions for
growth rate and lag phase
duration)

(1) Changing domestic storage temperature from
5 to 4 ◦C increases the proportion of milk cartoons
with no growth from 55 to 59%; (2) excluding the
door shelf from the fridge increases the proportion
of cartoons with no growth from 55% to 62%.

Outcome—counts in milk at consumption:
Domestic storage time (r = 0.482); domestic
temperature door-shelf (r = 0.288); retail storage
temperature (r = 0.181); retail storage time
(r = 0.174)

Medium: temperature profiles from the
Greek chill chain of pasteurized milk,
including transportation to retail, retail
storage, and domestic storage; the lag
time at a certain temperature was
calculated based on the h0 physiological
state parameter

Koutsoumanis
et al. [18]

Raw milk
Growth (linear model,
square root for
growth rate)

(1) Increasing LM prevalence in bulk tank milk
from 6% to 25% increases the mean risk four times;
(2) a five-fold decrease in the median listeriosis
cases per year is observed if a raw milk testing
program was in place (i.e., conducting monthly
testing of one sample of milk and recall of milk).

Outcome—probability of illness: temperature of
the home refrigerator (r = 0.55–0.77); temperature
of retail/farm fridge (r = 0.55); storage time in the
home refrigerator (r = 0.27–0.36); serving size for
raw milk purchased directly from milk tanks and
milk consumed on farms (r = 0.19–0.30)

Low Latorre et al.
[19]
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Table 2. Cont.

Scope Food Predictive Microbiology
Models What-If Scenarios Sensitivity Complexity Source

Retail-to-table Soft and semi-soft
cheese

Growth (Rosso model,
EGR 5 ◦C)

Probability of cheeses containing > 2.0 log CFU/g
is 0.022 at retail and 0.024 at consumption
(USA data)

Sensitivity analysis was conducted, taking
together various RTE food classes.

Low: generic model; only demands
some knowledge in R to utilize it

EFSA BIOHAZ
[11]

Various dairy
products

Growth (linear model,
square root model
for EGR)

(1) If the maximum refrigerator temperature is set
at 7 ◦C (instead of 16 ◦C in the baseline), the
number of cases of listeriosis is reduced by 69%,
and limiting the refrigerator temperature to 5 ◦C
further reduces the number of cases to >98%;
(2) reducing the maximum storage time from the
14-day baseline to 4 days reduced the annual
incidence of listeriosis cases by 43.6%; (3) in queso
fresco, the risk per serving is 43 times greater for
the perinatal population and 36 times greater for
the elderly population if cheeses were made from
raw milk compared to pasteurized milk.

-
Medium: ten different dairy products
considered; dose–response models
developed for three subpopulations

FDA-FSIS [7]

Pasteurized milk Growth (linear model,
square root growth model)

(1) If all milk were consumed immediately after
purchase at retail, the number of cases in both
susceptible and healthy populations would
decrease 1000-fold; (2) if temperature distribution
was shifted so the median increased from 3.4 to
6.2 ◦C, the mean number of illnesses
increased > 10-fold for both populations; (3) when
the storage time distribution was shifted from a
median of 5.3 days to 6.7 days, the mean rate of
illnesses increased 4.5-fold and 1.2-fold for the
healthy and susceptible populations.

-

Medium: dose–response models for
healthy and susceptible populations
developed; a hierarchical beta-binomial
model for the prevalence of LM in
pasteurized milk

FAO-WHO [8]

Ice cream No growth/no death - -

Medium: D–R models for healthy and
susceptible populations developed; a
hierarchical beta-binomial model for the
prevalence of LM in ice cream

FAO-WHO [8]

Raw milk Growth (linear model) - - Low Giacometti
et al. [20]

Soft/semi-soft
cheeses

Growth (Baranyi model
with Jameson effect, EGR
5 ◦C)

(1) Slicing the cheese increases the risk of infection
by two times; (2) increasing storage temperature by
3–4 ◦C produces an increase of 530% cases per
million servings; (3) decreasing storage temperature
did not produce a substantial variation in the
incidence of listeriosis (~4%) since temperature
conditions in the baseline scenario did not allow for
growth of LM in RTE cheese; (4) decreasing
maximum mean initial LM counts values from 5 to
3 log CFU/g produces a decrease in up to 98% the
cases; (5) decreasing time to consumption by 25%
produced a decrease of 33% in the incidence of
listeriosis cases per million servings; (6) adding the
lag time effect produced a reduction of 30% in the
number of cases per million servings.

-

Medium: time–temperature dynamic
profiles from retail to consumption, and
microbial competition models used
solved with the RK4 algorithm

Pérez-
Rodríguez et al.
[10]
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Table 2. Cont.

Scope Food Predictive Microbiology
Models What-If Scenarios Sensitivity Complexity Source

Drinking
yogurt/regular
yogurt

Survival (Weibull model,
secondary polynomial
model)

-

Outcome—risk of illness from drinking and
regular yogurt: prevalence of LM (r = 0.67, 0.21),
storage time at market (r = −0.31,--0.35),
consumption (r = 0.08, 0.02)

Low Yang and Yoon
[21]

Consumption Queso fresco - - - Low Soto-Beltrán
et al. [22]

Cultured milk Growth (linear model) -

The increase in the proportion of tolerant LM
resulted in an increased association between the
estimated cases per million and an increase in the
concentration of the pathogen during consumer
storage. This is due to the increase in the
concentration of the pathogen during storage for
the scenarios involving 0%, 25%, and 75% tolerant
proportion groups, which were 236 ± 139,
255 ± 150, and 293 ± 172 CFU/g, respectively,
compared to 274 ± 161 for the 50%
tolerant proportion

High: WGS data was used to model
population heterogeneity in microbial
phenotypic stress responses to integrate
it into predictive models

Njage et al.
[23]

* LPD: lag phase duration; RLT: relative lag time; EGRx: exponential growth rate at x ◦C; RR: risk reduction; r: coefficient of correlation in sensitivity analysis; CFU: colony forming units;
‘-‘: absence of information in the study.
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4. Discussion
4.1. Risk Factors and Control Measures Assessed at Primary Production

Many sources of contamination exist in the farm environment, such as silage, soil,
water, and inadequate sanitation and housing conditions, which prompt dissemination
to and between animals. In addition, L. monocytogenes mastitis is an important source of
contamination—that increases the risk associated with contamination of raw milk—which,
although it has an extremely low between- and within-herd prevalence, when present,
animals may have prolonged shedding of the bacteria in the milk. L. monocytogenes is
transmitted from animal to animal through fecal–oral routes, usually via manure con-
tamination of the pasture or silage with the microorganism. Next to this, bulk tank milk,
milk filters, milking machines, milk handlers, and poor on-farm hygiene during milking
are also considered sources of contamination. The QRA model of Bemrah et al. [13], re-
flecting French on farm conditions at the time, showed that the contamination load due
to the environment was much stronger than that of animal mastitis in the presence of
L. monocytogenes in raw milk soft cheese. In a scenario representing lower environmental
contamination that reduced the mean prevalence of contaminated farms from 3% to 2%,
the median concentration of L. monocytogenes in raw milk cheese decreased by 99% (from
2.53 to 0.024 CFU/g) (Table 2). However, in another scenario that assumed the absence
of mastitis, the median concentration of L. monocytogenes in raw milk cheese was reduced
by only 26%—from 2.54 CFU/g (baseline scenario assuming the probability of herds with
L. monocytogenes to be 10%) to 1.87 CFU/g.

Comparable results concerning the relative importance of mastitis, yet in sheep, were
obtained from a QRA model from Italy [15], whose scenario simulations showed that
the median concentration of L. monocytogenes in bulk tank raw milk from mastitis-free
flocks decreased in only 24% (from 0.56 CFU/mL to 0.43 CFU/mL) when compared to the
baseline scenario of contaminated random flocks (Table 2).

In the listeriosis QRA models available for cheese, no sensitivity analysis comparing
the contributions of the environment contamination and the mastitis animals has been
conducted. Only the study of Tiwari et al. [14] estimated coefficients of correlation of
0.27 and 0.15 between fecal/silage/farm contamination factors with the L. monocytogenes
counts in raw and pasteurized milk, respectively (Table 2). Nevertheless, despite their
relative importance, on-farm contamination sources, either from shedding animals or
from the broad environment, have been demonstrated by different QRA models to impact
the exposure dose and the risk of listeriosis, in particular from raw milk cheeses. For
instance, Condoleo et al. [15] estimated that sheep’s raw milk cheeses from mastitis-free
flocks presented 0.07 times the risk per contaminated serving of those from contaminated
random flocks, whereas raw milk cheeses from family flocks consisting of a maximum
of 10 animals each could present 8 times higher risk per contaminated serving. Sim-
ilarly, increasing the initial L. monocytogenes population in raw milk at the farm level
(between 0.03 and 10 CFU/mL for Ireland conditions) up to a maximum of 100 CFU/mL
(worst-case scenario of contamination) would increase the final mean concentration of
the pathogen by 35% for raw milk cheese and by 45% for pasteurized milk cheese [14].
Latorre et al. [19] tested a scenario whereby a four-fold increase in the risk per serving
would occur if the prevalence of L. monocytogenes in bulk tank milk increased from 6%
(baseline) to 25%. In the same line, according to the QRA model of FDA-Health Canada [9],
a 3 log/mL reduction in L. monocytogenes concentration in raw milk at the beginning of
cheese manufacturing—which can be interpreted as the result of the application of animal
husbandry strategies for mitigating the contamination of bulk milk as raw material for
cheese-making—can reduce the mean risk per serving by a factor of 7–10.

One such on-farm strategy to control the risk of listeriosis associated with raw milk
is the bulk tank and tank truck milk testing in order to reduce the concentration of
L. monocytogenes in dairy silo milk. Whereas Latorre et al. [19] estimated that a five-fold
decrease in the median listeriosis annual cases for raw milk consumers would occur if a
raw milk testing program were put in place (i.e., conducting monthly testing of one sample
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of milk and recall of milk), FDA-Health Canada [9] estimated that in raw milk soft-ripened
cheeses, the milk collection testing would reduce the mean risk per serving by 24–37 times
that of the risk when no testing at all is conducted (Table 2).

4.2. Risk Factors and Control Measures Assessed at Processing

It is widely known that pasteurization of milk is effective in destroying L. monocy-
togenes. The effectiveness of milk pasteurization as a key mitigation strategy to reduce
the risk from the consumption of cheese was quantified by FDA-Health Canada [9] and
FDA-FSIS [7]. The former estimated that consuming an artisanal raw milk soft-ripened
cheese increased the mean risk per serving 157 times in comparison to consuming the
pasteurized one in the general population. The latter estimated that the risk per serving
of queso fresco is 43 times greater for the perinatal population and 36 times greater for the
elderly population if cheeses were made from raw milk compared to pasteurized milk
(Table 2).

Another strategy to control L. monocytogenes that can be applied during processing
is the use of bacteriocinogenic lactic acid bacteria (LAB). Nevertheless, only one QRA
model [17] investigated the effect of an anti-listerial cocktail from indigenous LAB on the
risk of listeriosis from cheese. These authors estimated that the addition of 6 log CFU
of such a LAB cocktail per ml of raw milk reduced the concentration of L. monocytogenes
in raw milk semi-hard cheese ripened for 22 days from 7.7 log CFU/g (baseline scenario
without added LABs) to 1.1 log CFU/g, which in turn reduced the risk by over 6 log. In the
case of pasteurized milk soft cheeses, the addition of the same LAB cocktail to pasteurized
milk inoculated at 1 log CFU/mL of L. monocytogenes decreased the risk 0.22-fold in both
the general and vulnerable populations. Other current processing strategies, such as the
smearing of cheeses with plant-based extracts having antimicrobial properties or the use of
antimicrobial packaging, were not tested as what-if scenarios in any of the QRA models
collected (Table 2).

4.3. Cross-Contamination during Processing

Despite the effectiveness of pasteurization in inactivating L. monocytogenes, post-
pasteurization contamination and cross-contamination can occur within the processing
plants and are exacerbated by the pathogen’s capacity to grow at normal refrigeration
temperatures, and its ability to find damp spots or niches where they can reside and
proliferate. Furthermore, if mechanical cleaning, disinfection, and rinsing are not well
executed, the bacteria can form a biofilm on surfaces in contact with food, which then
becomes difficult to remove by standard sanitation protocols [27]. Nonetheless, despite the
relevance of cross-contamination, only two QRA models for dairy products comprised cross-
contamination modules: Tenenhaus-Aziza et al. [12] and Tiwari et al. [14]. The study of
Tenenhaus-Aziza et al. (12] conducted on pasteurized milk soft cheese produced in France
proposes new methods for modeling cross-contamination and recontamination events.
They utilize six contamination event modules, listed as follows: (1) the primo-contamination
event at the cheese-making phase, whereby milk or products can be contaminated, for
example, by cells from the environment or by cells arising from pasteurization failure;
(2) the primo-contamination event at the ripening phase, whereby the environment of
the ripening room and the smearing machine can be initially contaminated; (3) the cross-
contamination during smearing, whereby a whole colony from the surface of a cheese could
be transferred at a given probability to the machine or to the immediate surroundings close
to the machine, through the smearing solution and the cheese matter detached from the
surface of the product; (4) cross-contamination during packaging, which was modeled
using the same approach but in a simplified form, where the compartments were the
cheeses and the packaging machine; (5) the transfer of colonies from the smearing room
to the ripening room; whereby colonies located in the environment of the smearing room
are not assumed to adhere, since they come from the smearing machine and the duration
between contamination of the environment and transit of the batch is not enough long
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to allow adherence of the cells to the environment surfaces; and (6) the recontamination
during ripening, whereby during the transit of a batch inside or outside the ripening room,
colonies from the environment of the ripening room can be transferred to the surface of
products present in the ripening room.

This model scientifically corroborated that frequent hygienic operation is necessary in
the facilities by proving that the concentration of contaminated products correlates with
the total number of cells in the ripening environment. To this respect, two of the what-if
scenarios estimated that when the initial number of cells in the ripening room environment
decreases from 2000 to 500 cells, the mean risk of listeriosis is divided by 3.7, whereas
when the primo-contamination event occurs on the smearing machine, instead of during
cheese-making, with 500 cells, the mean risk is divided by 350. In the listeriosis QRA model
for Irish cheeses, Tiwari et al. [14] borrowed the cheese-smearing cross-contamination
model from Tenenhaus-Aziza et al. [12] and found a low correlation between the cross-
contamination from the smearing machine and the counts in raw and pasteurized milk
cheeses (r = 0.05 and 0.12, respectively), which sustained the scenario that if no further
contamination occurred during the retail phase, but only cross-contamination due to
smearing, the L. monocytogenes counts would decrease by 24% in raw cheeses and by 97%
in pasteurized cheeses (Table 2).

In the QRA models, there is no estimate of the contribution of cross-contamination in
processing plants to the final listeriosis risk. Nonetheless, it is widely known that cross-
contamination is an important factor, as suggested by the many surveys throughout the
world, which have reported varying prevalence levels in the environments of dairy process-
ing plants of up to 25.0% and, as implied by the listeriosis outbreaks due to contaminated
dairy products, directly linked to cross-contamination from the processing facilities [28].
Floor drains, floors, coolers, and areas of pooled water, such as washing machine areas,
are sites of frequent recovery of L. monocytogenes, which often contaminate food contact
surfaces [29]. This reinforces the importance of including sound modules to represent
cross-contamination prevalence, patterns, and events in QRA models for both raw and
pasteurized milk dairy products.

4.4. Risk Factors and Control Measures at Retail and Home

Ten dairy QRA models (58.8%) covered the contamination of L. monocytogenes in
shorter chains (two for end-of-processing-to-table, six for retail-to-table, and two for con-
sumption only) of dairy products, namely, raw milk (x2), pasteurized milk (x2), ice cream,
yogurt, soft and semi-soft cheeses, queso fresco cheese, cultured milk, and various dairy
products (Table 1). Due to the fragmented scope of these QRA models, these models address
the dairy foods entering the distribution chain or the retail establishment with a certain
level of contamination with L. monocytogenes, which is prone to multiply with prolonged
storage, even from low initial concentrations. Moreover, the dairy industry’s trend toward
the production of refrigerated products with longer shelf lives further aggravates this
problem. Other equally important factors for increasing the risk can take place in products
permitting the growth of L. monocytogenes during transport and distribution, retail, and
home consumption, namely retail/home refrigerator temperature fluctuations and abuse,
long-term storage, cross-contamination, and inadequate handling practices at retail and
at home. The high frequency and amounts of dairy foods consumption also contribute to
increasing the risk of listeriosis.

Many dairy QRA models compared the importance of retail/home storage tempera-
ture and retail/home storage time, and they unanimously found that the effect of higher
temperature is stronger than longer time. FDA-FSIS QRA model in 10 different RTE dairy
products [7] found out that if the maximum refrigerator temperature was set at 7 ◦C (in-
stead of 16 ◦C in the baseline), the mean number of cases of listeriosis would be reduced by
69%, whereas further limiting the refrigerator temperature at a maximum of 5 ◦C would
reduce the number of cases by >98%. On the other hand, if the maximum storage time
was reduced from 14 days (baseline) to the (unrealistic) 4 days, the annual incidence of
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listeriosis cases would be decreased by 43.6%. In the same line of results, the listeriosis
QRA model of pasteurized milk from FAO-WHO [8] undertook what-if scenarios that
proved the greater relative importance of temperature over time: when the temperature
distribution was shifted so that the median increased from 3.4 ◦C to 6.2 ◦C, the mean rate of
illnesses increased over 10-fold for both the healthy and susceptible population; however,
when the storage time distribution was extended from a median of 5.3 days to 6.7 days,
the mean rate of illnesses increased 4.5-fold and 1.2-fold for the healthy and susceptible
populations, respectively.

Similarly, FDA-Health Canada [9] predicted that an increase of only 1 ◦C in the home
refrigerator temperature increases the mean risk per contaminated serving by a factor of
1.7, whereas halving the maximum duration of the home storage from 56 days to 28 days
reduces the same risk by a factor of 1.4. In a more recent listeriosis QRA model from soft
and semi-soft cheeses, Pérez-Rodríguez et al. [10] also compared the impact of increasing
and decreasing storage temperature. When storage temperature was increased by 3–4 ◦C,
the number of cases/million servings increased by 530%, while a decrease in the storage
temperature by 3–4 ◦C produced only a 4% decrease in the number of cases since the
baseline temperature conditions did not allow for growth of L. monocytogenes in cheese. By
contrast, decreasing the time to consumption (storage time) by 25% produced a decrease of
33% in the incidence of listeriosis cases per million servings.

An interesting scenario was tested by Koutsoumanis et al. [18], which consisted of
storing pasteurized milk cartons away from the door shelf of the fridge. According to their
simulation, the proportion of cartons with no growth of L. monocytogenes increased from
55% to 62%. Outputs of sensitivity analysis of dairy QRA models also coincided with the
relative importance of storage temperature versus storage time. Spearman rank sensitivity
analysis on the probability of illness from the consumption of raw milk presented a higher
correlation with the temperature of the home refrigerator (r = 0.55–0.77) than with the
storage time in the home refrigerator (r = 0.27–0.36) [19]. Similarly, Tiwari et al. [14] found
higher correlations of the counts of L. monocytogenes in raw and pasteurized milk cheeses
with temperature at retail (r = 0.65 and 0.75, respectively) than with storage time at retail
(r = 0.15 and 0.20, respectively) (Table 2). Nevertheless, despite the strong contribution of
temperature to the risk as well as the well-known importance of maintaining the cold chain
to control risks, most of the dairy QRA models (3/18) utilized variability distributions
of average temperatures in the supply chain. To enable a better assessment of growth,
time–temperature profiles with credible trajectories and oscillations should be used. Only
three QRA models [10,12,18] solved L. monocytogenes growth for dynamic temperature
profiles at every iteration (Table 1).

None of the retail-to-table QRA models included cross-contamination or poor handling
modules, in spite of the potential of cross-contamination occurring during retail and at
home. Only Pérez-Rodríguez et al. [10], when comparing the risk of listeriosis from non-
sliced and sliced soft/semi-soft cheeses, indirectly determined that the processing step
of slicing doubled the risk of infection, suggesting, therefore, that cross-contamination
happens during slicing.

4.5. Contributions of Retail and Consumer Practices to the Final Risk of Listeriosis

Although not directly exposed, results from the QRA models, in perspective, pointed
towards a higher contribution of the consumer module than the retail module to the risk of
listeriosis from dairy foods. For instance, for the QRA model of Koutsoumanis et al. [18],
the storage time at home (r = 0.482) had a stronger effect on the counts of L. monocytogenes in
pasteurized milk at consumption than both the retail storage temperature (r = 0.181) and the
retail storage time (0.174). Latorre et al. [19] also showed that the temperature of the home
refrigerator (r = 0.55–0.77) can have a stronger effect than the temperature of the retail/farm
refrigerator (r = 0.55) on the probability of illness from raw milk. In the case of soft-ripened
cheeses [10], the risk per serving was more heavily driven by the L. monocytogenes counts
in cheese after home storage (r = 0.95) than the counts after retail storage (r = 0.83), and



Foods 2023, 12, 4436 15 of 19

in turn, than the counts after transport (r = 0.75). An interesting scenario performed in
FAO/WHO [8] illustrated the strong contribution of the consumers’ practices to the risk
of listeriosis by estimating that if all milk were consumed immediately after purchase at
retail, the number of cases in both susceptible and healthy populations would decrease
1000-fold. All of the QRA models above coincide in that the consumers’ practices can be
more determinant of the risk of listeriosis than the retail practices or conditions.

To a lesser extent, consumption as serving size or frequency has also been investigated
in the dairy QRA models. Their impact on the risk is more variable, although in general,
sensitivity analysis has ranked consumption-related variables lower than risk factors such
as the prevalence of the pathogen, storage temperature, and time; therefore, it is less
effective. According to Latorre et al. [19], the correlation between the probability of illness
with serving size for raw milk purchased directly from milk tanks and milk consumed in
farms was low, ranging between 0.19 and 0.30, whereas, in Yang and Yoon [21], the amount
of consumption of yogurt had no effect on the risk of illness associated to drinking and
regular yogurt (r = 0.08 and 0.02, respectively). In the early model of Bemrah et al. [13],
it was shown that the strategy of reducing the servings per person per year of raw milk
cheeses from 50 to 20 would reduce the incidence of listeriosis cases by 60%, less effective
than other strategies such as excluding mastitis source or reducing the mean prevalence of
L. monocytogenes of contaminated farms.

4.6. L. monocytogenes Growth Kinetic Parameters as Drivers of the Final Risk

Finally, some of the QRA models have shown that the kinetic parameters of the
pathogen have a strong impact on the estimated risk. For instance, in their model for
soft-ripened cheese, FDA-Health Canada [9] found moderate correlations between risk
per serving and lag phase duration (r = −0.54) and exponential growth rate at 20 ◦C
(EGR20) (r = 0.45); furthermore, halving the EGR20 of L. monocytogenes, decreased the mean
risk per contaminated serving by a factor of ~8, and doubling the EGR20 multiplied the
mean risk by a factor of ~4. In Tenenhaus-Aziza et al. [12], when the generation time of
L. monocytogenes in the environment was extended from 24 h (baseline) to 48 h, the risk of
listeriosis from pasteurized milk soft cheeses was divided by ~550, whilst Pérez-Rodríguez
et al. [10] showed that incorporating the lag time effect to the baseline model produced
a reduction of 30% in the number of cases per million servings. These findings reinforce
the importance of obtaining good estimates of the microbial kinetic parameters to model
the changes in microbial concentration between the point of contamination and human
exposure to the pathogens.

To avoid the assumption that the L. monocytogenes populations are homogeneous and
that their kinetic parameters represent average population behavior, the common strategy
in the QRA models was to represent strain variability in parameters such as growth rate,
minimum temperature for growth, minimum pH for growth and lag phase duration from
growth challenge data that utilized a cocktail of L. monocytogenes strains [10,11,15,16,18,21].
A different approach for modeling strain variability for increased precision exposure as-
sessment was proposed by Njage et al. [23], consisting of using whole-genome sequencing
(WGS) data to unravel the biological variability that induces the diverse response by mi-
croorganisms to the differing environmental conditions. These authors employed finite
mixture models to distinguish the number of L. monocytogenes sub-populations for each of
the stress phenotypes: acid, cold, salt, and desiccation. Based on the performance assess-
ment of the machine learning methods, they selected the support vector machine approach
for the prediction of acid stress and the random forest approach for cold, salt, and desicca-
tion stress responses. They used WGS data from a collection of 166 L. monocytogenes strains
from Canada and Switzerland, as well as associated data on growth phenotypes during the
different stress conditions. Njage et al. [23] showed that none of the four stress response
categories could be represented by a unique population, instead, maximum growth rates of
L. monocytogenes were multimodal distributions, which implied the presence of different
subgroups of strains: (1) The relative growth rate distribution for the cold stress response
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class was estimated as consisting of 3% of cold susceptible strains (µmax = 0.76) and 97% of
cold tolerant strains (µmax = 1.01); (2) The relative growth rate distribution for the acid stress
response class was estimated as consisting of 4% of highly susceptible strains (µmax = 0.41),
44% of susceptible strains (µmax = 0.85), 50% of tolerant strains (µmax = 1.13) and 3% of
highly tolerant strains (µmax = 1.50); (3) The relative growth rate distribution for the salt
stress response class was estimated as consisting of 16% of susceptible strains (µmax = 0.83),
77% of tolerant strains (µmax = 1.01) and 7% of highly tolerant strains (µmax = 1.18); and
(4) The relative growth rate distribution for the desiccation stress response class was es-
timated as consisting of 21% of susceptible strains (µmax = 0.87), 74% of tolerant strains
(µmax = 1.02) and 4% of highly tolerant strains (µmax = 1.26). This approach, however,
demands the collection of a database of strains with available WGS and phenotypic data on
microbial adaptation to various inherent food characteristics and conditions encountered
during food processing and handling [30].

It is crucial to bear in mind that the outcomes of a risk assessment are context-specific
and influenced by factors such as the country and population under consideration. More-
over, risk assessment is inherently linked to queries posed by a risk manager. Consequently,
the presentation of assessment results should be tailored to the specific question at hand,
whether it involves estimating risk at the population level to gauge the overall burden or
assessing risk per portion to evaluate the impact of control measures. Furthermore, certain
nuances are challenging to convey accurately. For instance, the term “cheese” encompasses
a diverse array of processes and microflora, rendering the transfer of models from one
country to another a complex task.

Traditionally, in risk assessment, it is assumed that the matrix’s effect influences
exposure, where growth or inactivation is linked to the properties of the matrix. Conversely,
it is presumed that the food matrix does not influence the virulence of strains, although
several studies propose that it might [31,32]. It is also generally assumed that it does not
affect the variability of virulence profiles among strains. Consequently, the distribution of
values characterizing intraspecific variability in the dose–response relationship is presumed
to be identical regardless of the food under consideration. Nevertheless, available data
demonstrate that the distribution of L. monocytogenes sequence types differs among various
food categories [33,34]. Employing a dose–response approach that considers the diversity
of virulence profiles would enable a more accurate assessment of the role of cheese and
dairy products in the risk of listeriosis. A preliminary suggestion by Fritsch et al. [35]
advocates for such an application.

4.7. Availability of Models

Sharing risk assessment models is essential to ensure the transparency of the approach
and ease of re-use. This is particularly important in scientific research, where reproducibility
and open science are increasingly valued [36]. By sharing models, researchers can allow
others to scrutinize their work, identify any potential biases, and apply the models to
their own data. This can help improve the accuracy and reliability of risk assessments and
ultimately lead to better decision-making. In addition to ensuring transparency, sharing
models also facilitates re-use. This is especially beneficial for researchers who may not have
the resources to develop their own models [37].

Of all the studies analyzed, four provide access to the codes or spreadsheets [10,11,16,23],
and one proposes to make the models used available on request [9] (details of models sharing
characteristics are available in the Supplementary Material of this article). For the other models,
no indication is given as to the availability of the models. One study dating from 2004 refers to
a site that no longer exists [7]. This latter questioned the challenge of reproducibility. Indeed,
after a few years, as software evolves and resources disappear (maintenance of websites, for
example), it becomes difficult to reproduce the calculations made [38,39].
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5. Conclusions

Cheese as a source of listeriosis tended to be studied in QRA models under the full
farm-to-table approach because of the many factors and forces of contamination that can
occur along the chain, namely, on-farm environmental contamination sources such as silage,
soil, water, and inadequate sanitation and housing conditions; extensive manipulation after
milk heat treatment (if heat treated); the potential for recontamination after pasteurization
and cross-contamination events during processing; the possible presence of contaminating
niches in processing and retail facilities; L. monocytogenes’ ability to grow during refrigera-
tion storage; long shelf-life in case of ripened cheeses; and wide consumption of cheese.
QRA models pointed out that storage practices at home could be more determinant of
the risk of listeriosis than those of retail. Furthermore, since storage temperature has a
stronger effect on the risk of illness than storage time, L. monocytogenes growth should
be more accurately estimated by using realistic time–temperature profiles as opposed to
constant temperatures. Validated microbial growth kinetic parameters, as affected by lactic
acid bacteria, should be employed in QRA models, given the impact of growth rate and
lag phase duration on the final risk estimates. Sound cross-contamination modules that
represent frequencies and contamination patterns should be placed along the food chain of
dairy food. Finally, QRA models should be able to describe the effects of new non-thermal
technologies, such as thermosonication and cold plasma, and bio-intervention strategies,
such as ad hoc starter cultures and bioactive packaging.
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