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Abstract— Sensing the environment is a crucial task that 

robots have to perform to navigate autonomously. Furthermore, 

it must be well executed to make navigation safer and collision-

free. As autonomous mobile robots are being deployed in several 

applications, they often encounter dynamic habitats, where 

sensing and perceiving the environment becomes harder. This 

work proposes integrating a wireless sensor network with the 

Robotic Operating System to incorporate data into layered 

costmaps used by the robot to navigate, feeding the algorithms 

with advanced information about the territory. The architecture 

was tested in simulation, where we could validate the structure 

and collect data showing improved paths calculated and reduced 

computational load through better parametrization. Thus, this 

strategy ensures that the advanced information about the 

environment has improved the navigation process. 
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I.  INTRODUCTION 

Robotics research has been evolving and growing since it 

was first defined. Its various applications boosted the devel- 

opments from the beginning. Following the field tendency, 

mobile robotics has been in the spotlight for some time. 

Giving the robot the capability of movement through 

navigation only increases the possible tasks it can perform. 

However, navigation is not an easy mission to complete. It 

involves the integration of several systems that work closely 

together, as it can be shown in [1], in which the authors 

review the basics of mobile robotics as well as the sensor 

fusion techniques, citing the challenges of the field, and in 

[2], which presents basic concepts of mobile robots, 

algorithms applied, types of sensors, and future challenges. 

Indoor guidance is one of the fields where wheeled au- 

tonomous mobile robots (AMRs) are deployed. Museums, 

hospitals, restaurants, shopping centers, schools, and uni- 

versities are only a few examples where a guidance robot 

could be beneficial and make people’s lives easier. The work 

developed in [3] reviews guidance robots and the techniques 

used to navigate autonomously. Navigation in these dynamic 

environments always implies avoiding obstacles that were not 

previously expected, such as a group of people, objects left 

out of place, and several other dangerous situations. In 

industrial sites, there are other possible dangers to the robots, 

such as temperature or dirt, depending on the industry. That 

noted, the more information about the environment the AMR 

could get, the better it will be able to navigate. The work 

developed in [4] uses multi-layer maps to incorporate 

dynamic information to achieve human-aware behavior. 

Although several works have proposed navigation 

solutions and sensory data integration, the vast majority of 

these approaches only consider sensory data coming from 

sources on the robot’s frame. Thus, this initial work proposes 

and simulates the robot subsystem of an architecture 

integrating information from distant sources, such as a 

wireless sensor network (WSN), which would allow the robot 

to have advanced knowledge of its habitat. As a result, the 

robot senses the environment in advanced sections of the path 

it is traveling, far from the range of its platform’s sensor array. 

We achieve that kind of navigation through the Robot 

Operating System (ROS) tools. 

The remaining of this paper is structured as follows. Sec- 

tion II presents the system architecture. Section III aims for 

the application developed for the simulation tests. Section IV-

B introduces the results and discussion, and finally, a 

conclusion in Section V. 

II. SYSTEM ARCHITECTURE 

ROS is one of the most popular open-source platforms 

providing a dynamic middleware with publisher/subscriber 

communication, and a remote-procedure-call mechanism [5]. 

The different modules in the control architecture implement 

the functionalities mentioned above, also basic actions and 

report events about their state by subscribing and publishing 

messages, all controlled by a master acting as a broker, 

making it much easier to integrate different executable codes. 

ROS packages are a union of software that performs some 

tasks together. For example, the navigation stack package. The 

navigation stack is a meta-package in ROS, which means it is 

composed of a set of packages. This set of software integrates 

This work was supported through Portugal’s national funds FCT/MCTES 
(PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and 
SusTEC (LA/P/0007/2021). 

20
22

 S
m

ar
t T

ec
hn

ol
og

ie
s, 

C
om

m
un

ic
at

io
n 

an
d 

R
ob

ot
ic

s (
ST

C
R

) |
 9

78
-1

-6
65

4-
60

47
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

ST
C

R
55

31
2.

20
22

.1
00

09
31

5

Authorized licensed use limited to: b-on: Instituto Politecnico de Braganca. Downloaded on January 18,2024 at 11:05:10 UTC from IEEE Xplore.  Restrictions apply. 



2022 Smart Technologies, Communication & Robotics (STCR) |10 – 11 December 2022 | Sathyamangalam 

information such as odometry, laser scans, and mapping data 

to control the robot. The navigation stack integrates all 

software needed for a robot to navigate autonomously. It 

includes mapping, sensing, perceiving, planning, and acting. 

Although we can provide static maps to the platforms 

running ROS, the environments in which these robots operate 

usually are not static. Because of that, ROS allows us to use 

layered costmaps. Costmaps are grid-based maps that store 

information about their cells, if the cell is free, occupied, or its 

state is unknown. The work in [6] shows the basic idea for the 

implementation in ROS, comparing it with other techniques 

and presenting the benefits. Figure 1 illustrates this concept. 

The final map is a sum of all the values stored in the layers. 

There are three default layers in ROS, the static, the obstacles, 

and the inflation layer. The proposed system acts into this 

feature. We added a new costmap layer as a ROS plug-in, 

explained in [7], which receives information from any source 

published into a ROS topic called WSN. 

 

 
Fig. 1. Layered costmap adapted from [6]. 

The new layer is a C++ ROS plug-in class to which the 
navigation stack has access. Every layer class has its 
functions. The principal function of the layers is the update 
costs process. It is responsible for setting the values of the 
cells. Those values will be summed with the other layers’ 
values and compose the master costmap. They may be free, 
unknown, and lethal. This work’s architecture adapts the 
standard layer class to receive information from a topic that 
takes data from a WSN monitoring the robot’s habitat and 
updating the map accordingly. The communication between 
the sensor nodes and the robot will be implemented with 
Message Queuing Telemetry Transport (MQTT) [8]. 

This proposed architecture allows the robot to gain much 
more knowledge of the environment since the source may be 
anywhere as long as the robot can communicate with it. The 
idea is that a WSN would gather the information that the 
robot’s sensors cannot sense yet. Once the robot has this 
advanced data, it can optimize its actions and calculate better 
routes perceiving and avoiding dangerous areas much faster. 
Besides producing safer navigation, this advanced information 
about the environment allows us to tune the parameters of the 
navigation algorithms much better. A suit- able 
parametrization may lead to improved behavior and also 
computational load reduction. Note that this decentralization 
of sensory information increases the sensor coverage without 
boosting the robot’s CPU burden since the nodes control the 
sensors. The data will be processed before arriving at the 

robot, which will only have to receive and set the costmap 
values. 

Figure 2 illustrates the purpose of the system. It shows a 
map of an indoor environment. The robot was sent to the 
target point represented by the blue pin. At first, the robot has 
information about the static map and its surroundings 
(depending on the sensor’s range). Then, an unexpected “dan- 
ger”, represented by the red and yellow icon, appears outside 
the range of the robot’s sensors. With the system’s advanced 
information, given by the wireless sensors, the robot can 
recalculate its routes before it gets too close to the problematic 
area, possibly saving time, computational load, and energy, 
making a safer path around the site. Also, it’s possible to 
create temporarily blocked areas for the robot not to pass 
through, which could be useful in some environments (e.g., 
industrial plants). 

 

 
Fig. 2. System illustration. 

In this paper, we will focus on developing the integration 
and validation (through simulation) of the new layer and the 
WSN ROS topic. The subsystems outside the robot (WSN) 
will not be developed yet. They will be addressed in future 
works. The simulation tests will deal with the system 
presented in Figure 3. The block “identify obstacles in the 
monitored area” in the robot system would receive the WSN 
information sent via wireless communication. At this point, 
the obstacles will be perceived in the simulation, so the MQTT 
and WSN systems are not in focus. As one can see, besides the 
C++ plug-in, two other scripts in Python were implemented. 
The first takes the sensed information and loads an array of 
data to publish into the WSN ROS topic. The second is 
responsible for triggering a path recalculation when the 
costmap is updated by the WSN. 

 

 
Fig. 3. System Architecture. 

A. First Python Script – Array Loader 

The first script is represented in Algorithm 1. It receives 
the simulation information (which area received the obstacle) 
and organizes it to be published on the WSN topic. The data 

Authorized licensed use limited to: b-on: Instituto Politecnico de Braganca. Downloaded on January 18,2024 at 11:05:10 UTC from IEEE Xplore.  Restrictions apply. 



2022 Smart Technologies, Communication & Robotics (STCR) |10 – 11 December 2022 | Sathyamangalam 

structure created is an array. It receives the coordinates of the 
sensed areas’ locations if an obstacle is sensed. Invalid 
coordinates values (-999) are set if the area is clear. Figure 4 
shows the array. After it is loaded, it calls the ROS function to 
publish that array into the WSN ROS topic.  

 

 
Fig. 4. Data Array. 

 
  

B. Plug-In C++ Code – New Layer Function 

ROS plug-ins are usually C++ classes that the ROS system 
can reach, but it builds and works independently from the core 
software. Algorithm 2 presents the New Layer logic. The layer 
plug-in subscribes to the WSN topic and receives the data 
array mentioned above. It stores the information and waits for 
the navigation stack to call. Once it is called, it reads the 
area’s coordinates from the array and sets the cost of each cell 
in the covered area accordingly, using the ROS standard 
routine for that. The navigation stack then merges those costs 
with the other layers and updates the master costmap. 

 

 
  

C. Second Python Script – Recalculate Route 

The second Python script is responsible for triggering the 
path planner recalculation. This script is necessary to adjust 
and optimize the route accounting for the newest environment 
information received. Algorithm 3 presents the logic behind 
that script. The method accesses the robot’s data, such as 
odometry and the navigation goal, through ROS topics and, if 
needed, triggers the path planner. If the goal previously set is 
not valid anymore, for example, when the goal is inside a 

dangerous area, this script stops the robot and cancels the 
mission. With this implemented logic, the frequency of the 
global path planner may be adjusted to zero. The local planner 
triggers the recalculation if it detects obstacles near the robot, 
and this script triggers when the layer detects a change in the 
global environment. 

 

 

III. APPLICATION DEVELOPMENT 

To test the architecture and validate the possible gains of 
the proposed system, a simulation environment was prepared 
in Gazebo [9]. At first, the world model that simulates the 
blueprint of a school floor was built, which will be the site of 
the study. Figure 5 and Figure 6 show the simulated world and 
the floor’s blueprint. 

The robotic platform used in the simulations was the 
TurtleBot3 (TB3). The TB3 is an open-source and 
collaborative effort led by ROBOTIS, the Open Robotics 
organization, and other partners. The TB3 is not only a ROS 
standard platform, it is the most popular one, having an active 
community of developers that facilitate educational projects 
and research [10]. 

Inside that world, we proposed three routes the robot 
would have to perform as if it was guiding someone around 
the floor. Besides the routes, we have chosen seven areas on 
the map where the monitoring would be done. They were 
called “zones”. Considering where people usually stand, these 
seven zones were chosen, creating a possible danger for the 
robot by blocking the corridors. Figure 7 shows the routes and 

monitored zones. It also shows the sensor nodes 
(ESP8266 controlled) and the MQTT broker (Raspberry Pi 3 
B), which will be used in future works to collect information. 
With this centralization, one can remove some computational 
load from the robot and make the system scalable to any 

Fig. 6. Real blueprint. Fig. 5. Gazebo world. 
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number of robots since they would only have to subscribe to 
the MQTT topic. In the figure, we have points “A” to “D”. 
The first route goes from “A” to “B”, the second “B” to “C” 
and the third “C” to “D”. The algorithm raffles the location to 
place the obstacles for each route, once the robot gets to the 
goal the obstacles are cleared for the following route to begin. 
The red-colored area represents the monitored zone 4 (Z4). 
Each route will be performed 50 times for two configurations 
explained in the following paragraphs. 

 
Fig. 7. Simulation scenario. 

IV. EVALUATION 

A. Simulation 

To facilitate the gathering of information and to produce a 
high number of tests, a Python script was developed to control 
aspects of the simulation and automatize the runs. Each run is 
counted as the completion of the three routes. That way, we 
were able to simulate each configuration several times and 
have more accurate results. This script handled tasks such as 
the launch of all ROS structures, the placement of obstacles 
(randomly inside each route), setting navigation goals, and the 
creation of log files for analysis. Each test was conducted with 
fifty runs. The danger to the robot is simulated as obstacles 
blocking the passage completely. For the first route, the 
obstacles are placed either in the first monitored zone or the 
fourth. For the second path, the algorithm randomly places the 
obstacles in zones four or five. The third route gets zones one, 
five, and three randomly obstructed. A second Python script 
was produced to analyze all the log information generated by 
the first one. We monitored data such as computational load 
and memory usage of the ROS processes, time to complete 
each route, and distance traveled. All this information was 
treated using Python libraries such as Pandas and Numpy. 

The simulations compared two configurations of the TB3 
navigation stack. The first (called “default'') is a 
parametrization with minimal changes from the default values 
and without the architecture’s advanced information. The 
second (called “full”) will have our architecture, and some 
parameters were optimized considering the proposed system. 
The most rewarding ones in terms of CPU consumption were 
the reduction of the local costmap size and the path planner 
calculations. 

B. Results and Discussion 

The first thing we see as a result is behavior change. 
Figure 8 (default) and Figure 9 (full) show the visualization 
tool used in ROS to illustrate the change in the conduct of the 
robot. In both, the first moments of the simulation are 
presented. Here, obstacles obstructed the passage in zone 4 (in 
both), but only the second had already placed the danger on 
the map (pink-colored area). The full configuration already 
avoids the problematic area, and the default hasn’t yet 
detected the danger in the route. We can say that the 
integration of the ROS topic with the costmap through the new 
layer worked well. 

Now, focusing on the system performance, we analyzed 
Figure 10 and Figure 11. They show, respectively, the mean 
and 95% confidence interval of the distance traveled, and the 
time spent on each route. The blue bar represents the full con- 
figuration. The orange bar illustrates the default configuration. 
These results show that in the case that the danger makes the 
crossing impossible for the robot, the advanced information 
permits anticipation and correction of the routes in time to 
reduce the time and distance traveled. The ability to “predict” 
what is going to be in the way, in this case, produces these 
reductions as the obstacles or danger does not have to be 
inside the sensor’s range, so if the robot has to change the 
path, it saves time and distance traveled to detect the 
problematic area. To compare the parametrization, the script 
monitored the computational load used by the move base 
process, which is the central node that integrates the 
algorithms and sends the controlling commands to the drivers. 

 

 
Fig. 10. Distance traveled for each route. 

Fig. 8. Default behavior. Fig. 9. Modified behavior. 
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Fig. 11. Time to complete each route. 

In Figure 12, we can see a substantial reduction in 
computational load. This achievement was possible by tuning 
some parameters considering the advanced information of our 
architecture. For example, the sizes of the costmaps were 
reduced, and the frequency of path planning and map updates. 
It is a notable result since embedded boards with limited 
processing power usually control mobile robots. The chart 
below shows CPU percentage values over one hundred, which 
happens in multicore systems when the process runs in more 
than one core. 

V. CONCLUSION AND FUTURE WORKS 

This paper presented and demonstrated aspects of a dif- 
ferent concept to integrate advanced dynamic environment 
information with AMRs navigating with ROS. The 
introduced architecture was designed with layered costmaps 
and ROS topics that receive information about the 
environment from sources outside the robot’s sensory 

structure. Algorithm 1 successfully introduced the areas’ 
information into the ROS framework. Algorithm 2 allowed 
the navigation stack to account for the new cell costs, and 
Algorithm 3 guaranteed the global path recalculations only 
when it was necessary. Through the simulation produced, we 
validated this fusion and showed some of the possible gains. 
The system produced behavior that avoids danger zones with 
faster detection and reaction. This conduct opened the 
possibility of adjusting critical parameters of the navigation 
stack, reducing the computational load. In future works, the 
system will be implemented on a robotic platform. Also, the 
WSN, with its sensor nodes and the central broker. That 
way, we can compare the simulated and real results.  
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