
2022 Smart Technologies, Communication & Robotics (STCR) |10 – 11 December 2022 | Sathyamangalam

978-1-6654-6047-7/22/$31.00 ©2022 IEEE

Integration of ROS Navigation Stack with Dynamic
Environment Information in Gazebo Simulation

Pedro H. F. Mendes

Dep. Acadêmico da Elétrica
Universidade Tecnológica Federal

do Paraná (UTFPR), Cornélio

Procópio, Brasil, Instituto

Politécnico de Bragança, Bragança,

5300-253, Portugal

pedromendes@alunos.utfpr.edu.br

André Mendes

Research Center in Dig. and Int. Robotics

(CeDRI), Lab. Sust. e Tec. em Regiões de

Montanha (SusTEC), Instituto P. de

Bragança, 5300-253, Portugal,
Dep. de Ing. de Sist. y Automática,

Universidade de Vigo, 36.310, Spain
a.chaves@ipb.pt

Luís F. C. Duarte

Departamento Acadêmico da Elétrica,
Universidade Tecnológica Federal do

Paraná (UTFPR),
Cornélio Procópio, Brasil

 lfduarte@utfpr.edu.br

Abstract— Sensing the environment is a crucial task that

robots have to perform to navigate autonomously. Furthermore,

it must be well executed to make navigation safer and collision-

free. As autonomous mobile robots are being deployed in several

applications, they often encounter dynamic habitats, where

sensing and perceiving the environment becomes harder. This

work proposes integrating a wireless sensor network with the

Robotic Operating System to incorporate data into layered

costmaps used by the robot to navigate, feeding the algorithms

with advanced information about the territory. The architecture

was tested in simulation, where we could validate the structure

and collect data showing improved paths calculated and reduced

computational load through better parametrization. Thus, this

strategy ensures that the advanced information about the

environment has improved the navigation process.

Keywords— Autonomous Mobile Robot; Wireless Sensor

Network; Robot Operating System; Gazebo Simulator;

TurtleBot3

I. INTRODUCTION

Robotics research has been evolving and growing since it

was first defined. Its various applications boosted the devel-

opments from the beginning. Following the field tendency,

mobile robotics has been in the spotlight for some time.

Giving the robot the capability of movement through

navigation only increases the possible tasks it can perform.

However, navigation is not an easy mission to complete. It

involves the integration of several systems that work closely

together, as it can be shown in [1], in which the authors

review the basics of mobile robotics as well as the sensor

fusion techniques, citing the challenges of the field, and in

[2], which presents basic concepts of mobile robots,

algorithms applied, types of sensors, and future challenges.

Indoor guidance is one of the fields where wheeled au-

tonomous mobile robots (AMRs) are deployed. Museums,

hospitals, restaurants, shopping centers, schools, and uni-

versities are only a few examples where a guidance robot

could be beneficial and make people’s lives easier. The work

developed in [3] reviews guidance robots and the techniques

used to navigate autonomously. Navigation in these dynamic

environments always implies avoiding obstacles that were not

previously expected, such as a group of people, objects left

out of place, and several other dangerous situations. In

industrial sites, there are other possible dangers to the robots,

such as temperature or dirt, depending on the industry. That

noted, the more information about the environment the AMR

could get, the better it will be able to navigate. The work

developed in [4] uses multi-layer maps to incorporate

dynamic information to achieve human-aware behavior.

Although several works have proposed navigation

solutions and sensory data integration, the vast majority of

these approaches only consider sensory data coming from

sources on the robot’s frame. Thus, this initial work proposes

and simulates the robot subsystem of an architecture

integrating information from distant sources, such as a

wireless sensor network (WSN), which would allow the robot

to have advanced knowledge of its habitat. As a result, the

robot senses the environment in advanced sections of the path

it is traveling, far from the range of its platform’s sensor array.

We achieve that kind of navigation through the Robot

Operating System (ROS) tools.

The remaining of this paper is structured as follows. Sec-

tion II presents the system architecture. Section III aims for

the application developed for the simulation tests. Section IV-

B introduces the results and discussion, and finally, a

conclusion in Section V.

II. SYSTEM ARCHITECTURE

ROS is one of the most popular open-source platforms

providing a dynamic middleware with publisher/subscriber

communication, and a remote-procedure-call mechanism [5].

The different modules in the control architecture implement

the functionalities mentioned above, also basic actions and

report events about their state by subscribing and publishing

messages, all controlled by a master acting as a broker,

making it much easier to integrate different executable codes.

ROS packages are a union of software that performs some

tasks together. For example, the navigation stack package. The

navigation stack is a meta-package in ROS, which means it is

composed of a set of packages. This set of software integrates

This work was supported through Portugal’s national funds FCT/MCTES
(PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and
SusTEC (LA/P/0007/2021).

20
22

 S
m

ar
t T

ec
hn

ol
og

ie
s,

C
om

m
un

ic
at

io
n

an
d

R
ob

ot
ic

s (
ST

C
R

) |
 9

78
-1

-6
65

4-
60

47
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

ST
C

R
55

31
2.

20
22

.1
00

09
31

5

Authorized licensed use limited to: b-on: Instituto Politecnico de Braganca. Downloaded on January 18,2024 at 11:05:10 UTC from IEEE Xplore. Restrictions apply.

2022 Smart Technologies, Communication & Robotics (STCR) |10 – 11 December 2022 | Sathyamangalam

information such as odometry, laser scans, and mapping data

to control the robot. The navigation stack integrates all

software needed for a robot to navigate autonomously. It

includes mapping, sensing, perceiving, planning, and acting.

Although we can provide static maps to the platforms

running ROS, the environments in which these robots operate

usually are not static. Because of that, ROS allows us to use

layered costmaps. Costmaps are grid-based maps that store

information about their cells, if the cell is free, occupied, or its

state is unknown. The work in [6] shows the basic idea for the

implementation in ROS, comparing it with other techniques

and presenting the benefits. Figure 1 illustrates this concept.

The final map is a sum of all the values stored in the layers.

There are three default layers in ROS, the static, the obstacles,

and the inflation layer. The proposed system acts into this

feature. We added a new costmap layer as a ROS plug-in,

explained in [7], which receives information from any source

published into a ROS topic called WSN.

Fig. 1. Layered costmap adapted from [6].

The new layer is a C++ ROS plug-in class to which the
navigation stack has access. Every layer class has its
functions. The principal function of the layers is the update
costs process. It is responsible for setting the values of the
cells. Those values will be summed with the other layers’
values and compose the master costmap. They may be free,
unknown, and lethal. This work’s architecture adapts the
standard layer class to receive information from a topic that
takes data from a WSN monitoring the robot’s habitat and
updating the map accordingly. The communication between
the sensor nodes and the robot will be implemented with
Message Queuing Telemetry Transport (MQTT) [8].

This proposed architecture allows the robot to gain much
more knowledge of the environment since the source may be
anywhere as long as the robot can communicate with it. The
idea is that a WSN would gather the information that the
robot’s sensors cannot sense yet. Once the robot has this
advanced data, it can optimize its actions and calculate better
routes perceiving and avoiding dangerous areas much faster.
Besides producing safer navigation, this advanced information
about the environment allows us to tune the parameters of the
navigation algorithms much better. A suit- able
parametrization may lead to improved behavior and also
computational load reduction. Note that this decentralization
of sensory information increases the sensor coverage without
boosting the robot’s CPU burden since the nodes control the
sensors. The data will be processed before arriving at the

robot, which will only have to receive and set the costmap
values.

Figure 2 illustrates the purpose of the system. It shows a
map of an indoor environment. The robot was sent to the
target point represented by the blue pin. At first, the robot has
information about the static map and its surroundings
(depending on the sensor’s range). Then, an unexpected “dan-
ger”, represented by the red and yellow icon, appears outside
the range of the robot’s sensors. With the system’s advanced
information, given by the wireless sensors, the robot can
recalculate its routes before it gets too close to the problematic
area, possibly saving time, computational load, and energy,
making a safer path around the site. Also, it’s possible to
create temporarily blocked areas for the robot not to pass
through, which could be useful in some environments (e.g.,
industrial plants).

Fig. 2. System illustration.

In this paper, we will focus on developing the integration
and validation (through simulation) of the new layer and the
WSN ROS topic. The subsystems outside the robot (WSN)
will not be developed yet. They will be addressed in future
works. The simulation tests will deal with the system
presented in Figure 3. The block “identify obstacles in the
monitored area” in the robot system would receive the WSN
information sent via wireless communication. At this point,
the obstacles will be perceived in the simulation, so the MQTT
and WSN systems are not in focus. As one can see, besides the
C++ plug-in, two other scripts in Python were implemented.
The first takes the sensed information and loads an array of
data to publish into the WSN ROS topic. The second is
responsible for triggering a path recalculation when the
costmap is updated by the WSN.

Fig. 3. System Architecture.

A. First Python Script – Array Loader

The first script is represented in Algorithm 1. It receives
the simulation information (which area received the obstacle)
and organizes it to be published on the WSN topic. The data

Authorized licensed use limited to: b-on: Instituto Politecnico de Braganca. Downloaded on January 18,2024 at 11:05:10 UTC from IEEE Xplore. Restrictions apply.

2022 Smart Technologies, Communication & Robotics (STCR) |10 – 11 December 2022 | Sathyamangalam

structure created is an array. It receives the coordinates of the
sensed areas’ locations if an obstacle is sensed. Invalid
coordinates values (-999) are set if the area is clear. Figure 4
shows the array. After it is loaded, it calls the ROS function to
publish that array into the WSN ROS topic.

Fig. 4. Data Array.

B. Plug-In C++ Code – New Layer Function

ROS plug-ins are usually C++ classes that the ROS system
can reach, but it builds and works independently from the core
software. Algorithm 2 presents the New Layer logic. The layer
plug-in subscribes to the WSN topic and receives the data
array mentioned above. It stores the information and waits for
the navigation stack to call. Once it is called, it reads the
area’s coordinates from the array and sets the cost of each cell
in the covered area accordingly, using the ROS standard
routine for that. The navigation stack then merges those costs
with the other layers and updates the master costmap.

C. Second Python Script – Recalculate Route

The second Python script is responsible for triggering the
path planner recalculation. This script is necessary to adjust
and optimize the route accounting for the newest environment
information received. Algorithm 3 presents the logic behind
that script. The method accesses the robot’s data, such as
odometry and the navigation goal, through ROS topics and, if
needed, triggers the path planner. If the goal previously set is
not valid anymore, for example, when the goal is inside a

dangerous area, this script stops the robot and cancels the
mission. With this implemented logic, the frequency of the
global path planner may be adjusted to zero. The local planner
triggers the recalculation if it detects obstacles near the robot,
and this script triggers when the layer detects a change in the
global environment.

III. APPLICATION DEVELOPMENT

To test the architecture and validate the possible gains of
the proposed system, a simulation environment was prepared
in Gazebo [9]. At first, the world model that simulates the
blueprint of a school floor was built, which will be the site of
the study. Figure 5 and Figure 6 show the simulated world and
the floor’s blueprint.

The robotic platform used in the simulations was the
TurtleBot3 (TB3). The TB3 is an open-source and
collaborative effort led by ROBOTIS, the Open Robotics
organization, and other partners. The TB3 is not only a ROS
standard platform, it is the most popular one, having an active
community of developers that facilitate educational projects
and research [10].

Inside that world, we proposed three routes the robot
would have to perform as if it was guiding someone around
the floor. Besides the routes, we have chosen seven areas on
the map where the monitoring would be done. They were
called “zones”. Considering where people usually stand, these
seven zones were chosen, creating a possible danger for the
robot by blocking the corridors. Figure 7 shows the routes and

monitored zones. It also shows the sensor nodes
(ESP8266 controlled) and the MQTT broker (Raspberry Pi 3
B), which will be used in future works to collect information.
With this centralization, one can remove some computational
load from the robot and make the system scalable to any

Fig. 6. Real blueprint. Fig. 5. Gazebo world.

Authorized licensed use limited to: b-on: Instituto Politecnico de Braganca. Downloaded on January 18,2024 at 11:05:10 UTC from IEEE Xplore. Restrictions apply.

2022 Smart Technologies, Communication & Robotics (STCR) |10 – 11 December 2022 | Sathyamangalam

number of robots since they would only have to subscribe to
the MQTT topic. In the figure, we have points “A” to “D”.
The first route goes from “A” to “B”, the second “B” to “C”
and the third “C” to “D”. The algorithm raffles the location to
place the obstacles for each route, once the robot gets to the
goal the obstacles are cleared for the following route to begin.
The red-colored area represents the monitored zone 4 (Z4).
Each route will be performed 50 times for two configurations
explained in the following paragraphs.

Fig. 7. Simulation scenario.

IV. EVALUATION

A. Simulation

To facilitate the gathering of information and to produce a
high number of tests, a Python script was developed to control
aspects of the simulation and automatize the runs. Each run is
counted as the completion of the three routes. That way, we
were able to simulate each configuration several times and
have more accurate results. This script handled tasks such as
the launch of all ROS structures, the placement of obstacles
(randomly inside each route), setting navigation goals, and the
creation of log files for analysis. Each test was conducted with
fifty runs. The danger to the robot is simulated as obstacles
blocking the passage completely. For the first route, the
obstacles are placed either in the first monitored zone or the
fourth. For the second path, the algorithm randomly places the
obstacles in zones four or five. The third route gets zones one,
five, and three randomly obstructed. A second Python script
was produced to analyze all the log information generated by
the first one. We monitored data such as computational load
and memory usage of the ROS processes, time to complete
each route, and distance traveled. All this information was
treated using Python libraries such as Pandas and Numpy.

The simulations compared two configurations of the TB3
navigation stack. The first (called “default'') is a
parametrization with minimal changes from the default values
and without the architecture’s advanced information. The
second (called “full”) will have our architecture, and some
parameters were optimized considering the proposed system.
The most rewarding ones in terms of CPU consumption were
the reduction of the local costmap size and the path planner
calculations.

B. Results and Discussion

The first thing we see as a result is behavior change.
Figure 8 (default) and Figure 9 (full) show the visualization
tool used in ROS to illustrate the change in the conduct of the
robot. In both, the first moments of the simulation are
presented. Here, obstacles obstructed the passage in zone 4 (in
both), but only the second had already placed the danger on
the map (pink-colored area). The full configuration already
avoids the problematic area, and the default hasn’t yet
detected the danger in the route. We can say that the
integration of the ROS topic with the costmap through the new
layer worked well.

Now, focusing on the system performance, we analyzed
Figure 10 and Figure 11. They show, respectively, the mean
and 95% confidence interval of the distance traveled, and the
time spent on each route. The blue bar represents the full con-
figuration. The orange bar illustrates the default configuration.
These results show that in the case that the danger makes the
crossing impossible for the robot, the advanced information
permits anticipation and correction of the routes in time to
reduce the time and distance traveled. The ability to “predict”
what is going to be in the way, in this case, produces these
reductions as the obstacles or danger does not have to be
inside the sensor’s range, so if the robot has to change the
path, it saves time and distance traveled to detect the
problematic area. To compare the parametrization, the script
monitored the computational load used by the move base
process, which is the central node that integrates the
algorithms and sends the controlling commands to the drivers.

Fig. 10. Distance traveled for each route.

Fig. 8. Default behavior. Fig. 9. Modified behavior.

Authorized licensed use limited to: b-on: Instituto Politecnico de Braganca. Downloaded on January 18,2024 at 11:05:10 UTC from IEEE Xplore. Restrictions apply.

2022 Smart Technologies, Communication & Robotics (STCR) |10 – 11 December 2022 | Sathyamangalam

Fig. 11. Time to complete each route.

In Figure 12, we can see a substantial reduction in
computational load. This achievement was possible by tuning
some parameters considering the advanced information of our
architecture. For example, the sizes of the costmaps were
reduced, and the frequency of path planning and map updates.
It is a notable result since embedded boards with limited
processing power usually control mobile robots. The chart
below shows CPU percentage values over one hundred, which
happens in multicore systems when the process runs in more
than one core.

V. CONCLUSION AND FUTURE WORKS

This paper presented and demonstrated aspects of a dif-
ferent concept to integrate advanced dynamic environment
information with AMRs navigating with ROS. The
introduced architecture was designed with layered costmaps
and ROS topics that receive information about the
environment from sources outside the robot’s sensory

structure. Algorithm 1 successfully introduced the areas’
information into the ROS framework. Algorithm 2 allowed
the navigation stack to account for the new cell costs, and
Algorithm 3 guaranteed the global path recalculations only
when it was necessary. Through the simulation produced, we
validated this fusion and showed some of the possible gains.
The system produced behavior that avoids danger zones with
faster detection and reaction. This conduct opened the
possibility of adjusting critical parameters of the navigation
stack, reducing the computational load. In future works, the
system will be implemented on a robotic platform. Also, the
WSN, with its sensor nodes and the central broker. That
way, we can compare the simulated and real results.

ACKNOWLEDGMENT

The authors are grateful to the Research Centre in
Digitalization and Intelligent Robotics (CeDRI) for sharing its
facilities and material, and also to the Foundation for Science
and Technology (FCT, Portugal) for financial support as
mentioned earlier.

REFERENCES

[1] Mary B Alatise and Gerhard P Hancke. A review on challenges of
autonomous mobile robot and sensor fusion methods. IEEE Access,
8:39830–39846, 2020.

[2] Md AK Niloy, Anika Shama, Ripon K Chakrabortty, Michael J Ryan,
Faisal R Badal, Zinat Tasneem, Md H Ahamed, Sumaya I Moyeen,
Sajal K Das, Md F Ali, et al. Critical design and control issues of
indoor autonomous mobile robots: A review. IEEE Access, 9:35338–
35370, 2021.

[3] Debajyoti Bose, Karthi Mohan, Meera CS, Monika Yadav, and
Deven- der K Saini. Review of autonomous campus and tour guiding
robots with navigation techniques. Australian Journal of Mechanical
Engineering, pages 1–11, 2022.

[4] Fang Fang, Manxiang Shi, Kun Qian, Bo Zhou, and Yahui Gan. A
human-aware navigation method for social robot based on multi-layer
cost map. International Journal of Intelligent Robotics and
Applications, 4(3):308–318, 2020.

[5] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[6] David V Lu, Dave Hershberger, and William D Smart. Layered
costmaps for context-sensitive navigation. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
709–715. IEEE, 2014.

[7] Creating a new layer. Available: http://wiki.ros.org/costmap 2d/
Tutorials/CreatingaNewLayer. Accessed: January 2022.

[8] Biswajeeban Mishra and Attila Kertesz. The use of mqtt in m2m and
iot systems: A survey. IEEE Access, 8:201071–201086, 2020.

[9] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David
Howard. A review of physics simulators for robotic applications.
IEEE Access, 9:51416–51431, 2021.

[10] Robotis e-manual. Available: https://emanual.robotis.com/docs/en/
platform/turtlebot3/overview/#overview. Accessed: June 2022.

Fig. 12. Move base percentage of CPU consumption.

Authorized licensed use limited to: b-on: Instituto Politecnico de Braganca. Downloaded on January 18,2024 at 11:05:10 UTC from IEEE Xplore. Restrictions apply.

