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Abstract—To map the Virtual Control Actions (VCAs) into
Real Control Actions (RCAs), over-actuated systems typically
require nonlinear control allocation methods. On embedded
robotic platforms, computational efforts are not always avail-
able. With this in mind, this work presents the design of a
Quadrotor Tilt-Rotor (QTR) through a new concept of control
allocation with uncoupled RCAs, where a nonlinear system is
divided into partially dependent and linear subsystems with fast
and robust convergence. The RCAs are divided into smaller
and linearized sets and solved sequentially. Then, the cas-
cade Multipe-Input-Multipe-Output (MIMO) Proportional (P)-
Proportional, Integral and Derivative (PID) controllers tuning
were presented with saturation constants and successive loop
closure technique, where some open-field environment tests were
conducted to validate the respective tuning. In the end, it showed
to be reliable, robust, efficient, and applicable when VCAs are
overlapped between the subsystems.

Index Terms—P-PID Controller, Overactuated Vehicle,
MIMO Cascade Controller

I. INTRODUCTION

As suggested by the name, the Unmanned Aerial Vehicles
(UAVs) are vehicles able to move through the air with-
out close human interference or even totally autonomous,
popularly known as drones. Through their overfly ability,
these vehicles can supervise dangerous and/or inaccessible
areas [1]. According to the United States Federal Aviation
Administration (FAA), more than 1 million UAVs have been
registered until September 2018 in the last few years [2].

The control of those vehicles is essential to avoid colli-
sions, but non-linear flight dynamics are a challenge due to
real-time control needed to maintain stability [3]. On this, a
usual control method observed is the Non-Linear Dynamic
Inversion (NDI), widely applied in flight control as can
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be observed in the works [4], [5]. Another one commonly
observed in recent works can be applied in UAVs for the
Fault-Tolerance Control (FTC), such as presented in [6].

Furthermore, the UAV control in open-field is indispens-
able as long it requires precision to deal with multiple wings,
flight resistance and the vehicle weight [7].

Some important works can be highlighted, such as [4],
where it was applied the hybrid NDI based on the angular ac-
celeration feedback control to improve the system robustness
and performance joining the NDI and INDI (Incremented
NDI) attributes: feedforward control, proportional control,
and logical integral control. These results demonstrate the
robustness and excellence of this method. In the hybrid
NDI control method, good control results can be attributed
mainly to feedback control of the angular acceleration signals
because it eliminates system uncertainties, nonlinearities,
couplings, and time-varying problems.

In [6] is observed the appliance of the FTC focused on the
faulty fixed-wing with the errors provided to the actuators.
After, it is detected and transformed into a new set of
variables to compensate the fault and keep the UAV working
safely.

Based on this, the present work aims to detail the cascade
MIMO P-PID controller with its respective tuning, applied to
the overactuated QTR UAV developed in [8], [9]. The aircraft
topology is in H form and its RCAs are totally independent
through Fast Control Allocation (FCA) technique. For this
purpose, it is also presented a safe testing environment
to analyze the QTR angular stability before the open-field
experiments.

This work is divided as follows: Section II presents the
QTR kinematics and dynamics modeling which will bring
some basic notions of its constructive part and the description
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of its actuators; Section III presents the QTR overall control
structure, providing a detailed explanation of the entire
control loop, also depicting the control allocation, named as
FCA; Section IV demonstrate how the cascade MIMO P-PID
are tuned; Section IV presents some experimental results:
in the gyroscopic testbench and in open-field. In the end,
Section VI concludes the work with some future works.

II. QTR KINEMATICS AND DYNAMICS MODELLING

The aircraft is flying over a small area of the planet, which
implies that the radius of the Earth tends to infinity, so the
centripetal acceleration of the curvature is ignored.

The UAV kinematics behavior is described by twelve state
variables: pn (inertial position (north) along îi in F i; pc
(inertial position (east) along ĵi in F i); h (height measured
along k̂i in F i); u (velocity measured along îb in Fb); v
(velocity measured along ĵb in Fb); ω (velocity measured
along k̂b in Fb); ϕ (roll angle relative to Fv2); θ (pitch angle
relative to Fv1); ψ (yaw angle relative to Fv); p (roll rate
measured over îb in Fb); q (pitch rate measured over ĵb in
Fb); r (yaw rate measured over k̂b in Fb).

The UAV translation velocity is commonly determined by
the frame that joins the drone’s structure [10], [11]. The
components u, v, and ω correspond to the inertial velocities
[12]. Equations (1) and (2) describe those positions and their
speeds.

d

dt

 pn
pe
−h

 = Ab
v

 u
v
ω

 = (Av
b )
T

 u
v
ω

 , (1)

(Av
b )
T
=

 cθcψ sϕsθcψ − cθsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕsθ cϕcθ

 .(2)

The angles ϕ, θ, and ψ are positioned in different frames
from the other ones, which implies using rotational matrix
[12], [13] resultin in the matrices in (3): p

q
r

 =

 1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

 ϕ̇

θ̇

ψ̇

 . (3)

Evidencing the angular positions, (3) turns into (4). ϕ̇

θ̇

ψ̇

 =

 1 sϕtθ cϕtθ
0 cθ −sϕ
0 sϕ/cθ cϕ/cθ

 p
q
r

 . (4)

The dynamics modeling is divided into translational and
rotational, both following Newton’s Second Law [12].

Starting with the translational part, based on the linear
momentum conservation equations, (5) shows the relations
since Newton’s Second law until letting it in the function of
the QTR mass m, the velocity vector v through ib, jb and
kb and the vector f which means the summation of the all
external forces (gravitational, aerodynamic and propulsion).

f = ma,

m
dv

dti
+ v

dm

dti
= f .

(5)

As the mass does not change with time, (5) is reduced to
(7) whose derivative is in time on the inertial frame F i.

m
dv

dti
= f . (6)

The derivative of the velocity in the inertial frame can be
described in terms of the derivative of frame Fb joined to
the structure and the angular velocity reaching in (7), (8) and
(9).

dv

dti
=
dv

dtb
+ ωb/i × v, (7)

m

[
dv

dtb
+ ωb/i × v

]
= f , (8)

m

[
dvb

dtb
+ ωb/i × vb

]
= f b. (9)

Knowing that dvb
dtb

is the derivative of the frame Fb joined
to the structure, it is equal to the vector of derivatives of
the velocities u, v and ω described at the beginning of this
section.

Now, rewriting the cross product from (9), it reaches in
(10).

ωb/i × vb = ib (qω − rv) + jb (ur − pω) + kb (pv − qu) .
(10)

Then, keeping in mind that ib, jb and kb are unit vectors
and considering the respective axes forces, the translation can
be described in (11).

ωb
b/i × vb =

 u̇
v̇
ω̇

 =

 rv − qω
pω − ur
qu− pv

+
1

m

 Xb
p

Y bp
Zbp

 .
(11)

where Xb
p, Y bp and Zbp are the resultant forces for rolling,

pitching and yawing, respectively on the fixed-body frame.
About the rotational movement, the Second’s Newton Law

turns into (12):

dHb

dti
+ ωb

b/i ×Hb = tb. (12)

In rigid structures, the angular momentum is defined by
the product between the inertia matrix Jb ∈ R3x3 and the
angular vector Hb = Jbωbb/i where R3x3 is defined in (13).

Jb =

 Jx −Jxy −Jxz
−Jxy Jy −Jyz
−Jxz −Jyz Jz

 . (13)

The integrals presented in (13) were calculated in function
of the axes ib, jb and kb in Fb, where the inertia momentum
Jb is considered constant seen from the same frame, which
implies dJb

dtb
= 0 [14]. Then, (12) turns into (14):

Jb
dωb

b/i

dtb
+ ωb

b/i × Jbωb
b/i = tb. (14)
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The angular velocity can be written in terms of the deriva-
tive matrix of the instantaneous projections on the ib, jb

and kb of the roll, pitch and yaw rate measure p, q and
r, respectively. Isolating the angular velocity of (14), (15)
appears.

 ṗ
q̇
ṙ

 = Jb−1

−

 ṗ
q̇
ṙ

× Jb

 ṗ
q̇
ṙ

+

 Lbp
M b
p

N b
p

 ,

(15)
where Lbp, M b

p and N b
p are the resultant torques for rolling,

pitching and yawing, respectively on the fixed-body frame.
Then, the 6 DoFs from Newton-Euler modeling for UAV

kinematics and dynamics is described by (1), (4), (11) and
(15).

III. QTR OVERALL CONTROL STRUCTURE

Fig. 1 presents the control structure composed by the five
inputs: roll, pitch, yaw, high and the linear velocity which
result in the virtual controls that will be used to control the
eight real variables that correspond to the actuators: γi and
δi.

Fig. 1: QTR control structure

A. FCA Control Allocation

This control method is based on a faster linear version
compared to the traditional linear approach described by
dividing the problem into two subsets interconnected [8],
[15].

In this way, the non-linear system can be divided into two
different problems, as shown in (16) and (17).

τa = Ma (ub)ua, (16)
τb = Mb (ua)ub, (17)

where ua ∈ R with q ∈ N represents a part of the n system
actuators, ub ∈ Rr with r ∈ N represents the remaining
actuators, τa ∈ Rma , τb ∈ Rmb , Ma(ua) ∈ Rma×q

and Mb(ub) ∈ Rmb×q which are the QTR sub-Control
Effectiveness Matrixs (CEMs).

Then, the initial non-linear system can be described into
two combinations:

• Separate the defined VCAs in which the resulting set
generates two dependents and linear subsystems. It

linearizes a set considering the previous action of the
other one;

• The VCAs in the first subset should be completely
overlapped on the second one aiming to facilitate its
convergence. The absence or partiality overlapping can-
not guarantee convergence in situations even with the
desired signal is still reachable.

The non-linearities of the RCAs are divided into two
independent problems that can be solved by a recursive and
iterative form until reaching the convergence criteria.

IV. MIMO P-PI CONTROLLERS TUNING

The QTR control structure is run at a higher level than the
allocation control marked with the number 3 shown in Fig.
1.

The control loop was implemented with an external cas-
cade level using a P controller and an internal one with a
PID.

Regarding the forward/backward velocity (Vx), it was
created only one level through a PID controller, with the
same frequency of the height velocity loop (40Hz).

Taking the tuning into account, it is designed according to
the canonical transfer function shown in (18), where ξ is the
damping coefficient and ωn is the natural frequency chosen.

G(s) =
ω2
n

s2 + 2ξωn + ω2
n

. (18)

Considering the simplified model of all control loops, the
methodology used in the works of [16]–[18] was followed.

A. Angular Position and Velocity Loops Tuning

When the angle is small or equal to zero, the amplitude
of the controller action can be determined by the amplitude
of the control error and proportional gain kp. When umax =
kpe

max, (19) can be used to get the proportional gain of the
pitch angular position controller.

kθp =
umax − umin

emax − emin
=

∆u

∆e
=

5− (−5)

2.5− (−2.5)
= 2.(19)

From (19), the considered maximum error ∆e was 5
degrees, given that the vehicle was designed to remain at
0 degrees of pitch. As the output from the controller, the ∆u
adopted was 10 degrees/sec. For the proportional controller
of angular roll attitude presented in (20).

kϕp =
10− (−10)

10− (−10)
=

20

20
= 1.0. (20)

In this controller, different from the pitch one, the QTR
can receive setpoints different from 0 degrees, limited from
−10 to +10 degrees at each iteration (∆e = 20 degrees).
For the control action, ∆u = 20 degrees/sec was considered.

For the yaw loop, a gain kψp = 3.0 was obtained.
For the rolling angular velocity loop, torque control actions

were adopted with a minimum value of −1.1768 and a
maximum of 1.1768 N, therefore, ∆u = 2.3536 Nm. The
maximum rolling velocity error comes from the control
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action of the rolling angular position loop, where ∆e = 20
degrees/sec generating kϕ̇p = 0.1177.

For the angular pitch velocity loop, ∆u = 2.3536 Nm and
∆e = 10 degrees/sec, resulting in kθ̇p =0.23536.

Taking yawing into consideration, it was obtained that the
servomotors will allow the QTR to generate a maximum
torque close to 8.46 Nm with ∆u = 16.92 Nm. For maxi-
mum yaw error, ∆e = 45 degrees/sec was taken. Therefore,
kψ̇p = 0.376.

Considering that vehicle’s inertia matrix has only moments
of inertia, the dynamics is reduced to (21), (22) and (23).

ϕ̇(s) =
1

Jxs
Lbp(s), (21)

θ̇(s) =
1

Jys
M b
p , (22)

ψ̇(s) =
1

Jzs
N b
p . (23)

However, the torques generated by the controllers must
be distributed respectively to the 8 QTR actuators. To tune
the controllers, the CEM constants must be grouped in the
variables b1, b2 and b3.

Manipulating the CEM presented in the works [8], [9] and
applying the approximation for small angles (cosx ∼= 1 and
sinx ∼= x), it reaches in (24), (25) and (26).

Considering that the value of the constant k2 is negligible
compared to that of k1, it results in (27), (28) and (29):

Substituting the torques Lbp(s), M
b
p and N b

p in (21), (22)
and (23), the variables b1, b2 and b3 are:

ϕ̇(s) =
b1
s
∆δ(s), (30)

θ̇(s) =
b2
s
∆δ(s), (31)

ψ̇(s) =
b3
s
∆γδ(s), (32)

where b1 =
k1
Jx

; b2 =
k1
Jy

; b3 =
k1
Jz

; ∆δ is the subtraction

of the positive and negative terms of the propulsion motor
RCAs; ∆γδ is the subtraction of the positive terms from
the negative ones, where now each term is the product of a
propulsion motor RCA by the respective servomotor RCA.

At the end of the angular velocity control actions, the
closed-loop transfer functions are presented from (33) to (35):

ϕ̇(s)

ϕ̇d(s)
=

b1(k
ϕ̇
d s

2 + kϕ̇p s+ kϕ̇i )

(1 + b1k
ϕ̇
d )s

2 + b1k
ϕ̇
p s+ b1k

ϕ̇
i

, (33)

θ̇(s)

θ̇d(s)
=

b2(k
θ̇
ds

2 + kθ̇ps+ kθ̇i )

(1 + b2kθ̇d)s
2 + b2kθ̇ps+ b2kθ̇i

, (34)

ψ̇(s)

ψ̇d(s)
=

b3(k
ψ̇
d s

2 + kψ̇p s+ kψ̇i )

(1 + b3k
ψ̇
d )s

2 + b3k
ψ̇
p s+ b3k

ψ̇
i

, (35)

where ϕ̇d, θ̇d and ψ̇d are the respective desired rolling,
pitching and yawing angular velocities, resulting from the
angular position loop control action P.

Matching the characteristic polynomials of the functions
presented above with the desired canonical function in (18)
and considering ζ = 0.8 and wn = 5 rad/sec: kϕ̇d = 0.0017,
kϕ̇i = 0.3678, kθ̇d = 0.0020, kθ̇i = 0.7355, kψ̇d = 1.1750 and
0.0196.

B. Inertial Position and Velocity Loops Tuning

With the angular dynamics stabilized, it is started the
altitude h and speed Vx controllers tuning along the îb axis.

First, the tuning of the proportional gain P for the altitude
inertial position loop will be presented, and then the tuning
of the inertial velocity control loops Vx and ω.

Again, it is considered the first-order approximation for
small angles of terms involving cosine: cosx ∼= 1. The
terms sin θ were approximated to 0 because the vehicle is
not rotated significantly in pitch.

Following the same methodology for obtaining the gains of
the proportional controllers P of the low-level control loops,
∆e = 10 m and ∆u = 5 m/sec in each iteration, obtains
(36).

khp =
2.5− (−2.5)

5− (−5)
=

5

10
= 0.5, (36)

where 2.5 m/sec is the climb rate.
For kVx

p is considered the saturation limits on the thrust
force for the servomotors tilting, ranging from −11.0950 to
11.0950 N. This generates ∆u = 22.19N as in (37) to (38).

SATP = 4gTM = 15, 6906N, (37)
SATVx

= SATP cos 45o = 11, 0950N, (38)

where g is the acceleration due to gravity, 9.8066m/s2;
SATP is the maximum force generated by the 4 propellers
together; SATVx is the maximum thrust force projected along
the îb axis; TM = 0.4Kg is the maximum thrust each engine
is capable of producing.

Adopting ∆e = 5 m/s, the proportional gain P of the speed
controller Vx is expressed in (39).

kVx
p =

11.095− (−11.095)

2.5− (−2.5)
= 4.438. (39)

For kωp , the maximum actuation of the altitude inertial
position controller (5 m/sec) becomes the maximum error
of the velocity loop ω, being 2.5 m/sec for engines off (the
maximum allowed speed that gravitational force can impart
on the aircraft) and −2.5 m/sec for propulsion motors in
operation.

The maximum performance in the ω velocity loop consid-
ered here was umax = −15.6906 N for upward movements
and umin = 9.8361 N (engines off where only the force
gravitational force acts), resulting in (40).

kωp =
15.6906− (−9, 8361)

2.5− (−2.5)
= 5.1053. (40)

Neglecting the Coriolis terms and applying the approxima-
tion for small angles (cosx ∼= 1 and sinx ∼= x), it is shown
the simplified transfer functions of the velocity controllers.
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Lbp(s) = k1[δ2(s) + δ3(s)− δ1(s)− δ4(s)] + k2[γ3(s)δ3(s) + γ4(s)δ4(s)− γ1(s)δ1(s)− γ2(s)δ2(s)], (24)

M b
p = k1[δ1(s) + δ3(s)− δ2(s)− δ4(s)], (25)

N b
p = k1[γ2(s)δ2(s) + γ3(s)δ3(s)− γ1(s)δ1(s)− γ4δ4(s)] + k2[δ1(s) + δ2(s)− δ3(s)− δ4(s)] (26)

Lbp(s) = k1[δ2(s) + δ3(s)− δ1(s)− δ4(s)], (27)

M b
p = k1[δ1(s) + δ3(s)− δ2(s)− δ4(s)], (28)

N b
p = k1[γ2(s)δ2(s) + γ3(s)δ3(s)− γ1(s)δ1(s)− γ4δ4(s)]. (29)

Vx(s) =
Xb
p(s)

ms
, (41)

ω(s) =
g

s
−
Zbp(s)

ms
. (42)

Manipulating again the CEM presented in the works [8],
[9], considering that the drag force is small compared to the
QTR displacement force and applying again the approxima-
tion for small angles, (43) and (44) are obtained.

Xb
p(s) = k1[∆γδ(s)], (43)

Zbp(s) = −k1[
4∑
i=1

δi(s)]. (44)

Substituting the forces Xb
p and Zbp in (41) and (42), it is

obtained the closed-loop transfer functions for the inertial
velocities Vx and ω in (45) and (46):

Vx(s)

V dx (s)
=

k1(k
Vx

d s2 + kVx
p s+ kVx

i )

(m+ k1k
Vx

d )s2 + k1k
Vx
p s+ k1k

Vx
i

, (45)

ω(s)

ωd(s)
=

k1(k
ω
d s

2 + kωp s+ kωi )

(m+ k1kωd )s
2 + k1kωp s+ k1kωi

. (46)

where V dx and ωd are the respective desired inertial velocity
setpoints Vx and ω.

Following the same methodology used in the angular
velocity control and considering ζ = 0.9, wn = 2.5 rad/sec
for both dynamics, the gains kVx

i = 6.1639, kωi = 7.0907,
kVx

d = 0.7305 and kωd = 0.8788 are calculated.

V. EXPERIMENTAL RESULTS

To test the QTR performance, it was created 2 different
scenarios: Scenario 1 (In-door environment to test only 3
Degrees of Freedom (DoFs), using a gyroscopic testbench
[8]) and Scenario 2 (Out-door environment to test all 5 DoFs,
to perform an eight shape path).

A. Scenario 1

The QTR was coupled to a gyroscopic test bench with 0
degrees of pitch and the setpoints of the Table I applied. The
system behavior was compared to these values in Fig. 2.

This test shown on the Fig. 2 can be divided in 5 stages,
which the first one have roll, pitch and yaw setpoints on 0
degrees, corresponding from 0 until 23 seconds. About yaw

TABLE I: Fast Control Allocation Algorithm

Time Stamp (sec) 1 23 73 122 173
ϕ (degrees) 0 30 0 -30 0
θ (degrees) 0 0 0 0 0
ψ (degrees) 0 100 0 -100 0

Propulsion (N) 10.3 10.3 10.3 10.3 10.3
V̂x (N) 0 4.5 0 4.5 0

-30
-20
-10

0
10
20
30

φ
(t
)
[◦
]

-30
-20
-10

0
10
20
30

θ
(t
)
[◦
]

1 20 40 60 80 100 120 140 160 180 200

Time [sec]

-150
-100

-50
0

50
100
150

ψ
(t
)
[◦
]

QTR SetPoints

(a) Roll (ϕ), pitch (θ) and yaw (ψ) controlled responses

0.4

0.5

0.6

0.7

0.8

δ
(t
)
[0
,
+
1
]

δ
QTR
1 δ

QTR
2 δ

QTR
3 δ

QTR
4

1 20 40 60 80 100 120 140 160 180 200

Time [sec]

-10

0

10

20

30

γ
(t
)
[◦
]

γ1 γ2 γ3 γ4

(b) QTR propulsion signals (δi) and servomotors tilting angles (γi)

Fig. 2: Controlled responses with QTR in a gyroscopic test bench for the
setpoints shown in Table I

dynamics, the vehicle did not start aligned with the setpoint
like the roll and pitch, but it is adjusted after 10 seconds.

In the second stage, 30 degrees roll and 100 degrees
yaw setpoints were inserted from 24 to 73 seconds. Pitch
dynamics corrections were needed to keep it on 0 degrees.
Fig. 2(b) shows that servomotors were inclined forward
considerably, implying they were searching for the velocity
setpoint.

In the third stage, from 74 to 122 seconds, setpoints came
back to 0 to the linear velocity, roll, pitch and yaw dynamics.

In the fourth one, from 123 to 173 seconds, the same
amplitudes but with inverted signals of the second stage
were required. It can be notice some oscillations in the pitch
control because those setpoints.

The last one (from 174 to 200 seconds) the setpoins
reached the 0 values, as it was expected.

B. Scenario 2

It was tested in out-door environment, which the QTR
elevates its height to 10 meters at the beginning.

After, it starts a trajectory like “8” format with linear
velocity of 5 m/s reducing to 2.5 m/s in the two intersection
moments. In the end, the QTR lands in the closest land point.
This experimental test is followed in Fig. 3.
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Fig. 3: Controlled responses with the QTR in open field experimental test
for “8” shape

Fig. 3 shows the controlled response along the time of the
variables with its linear velocity, height and the state variables
roll, pitch and yaw.

The ascent rate observed in Fig. 3 (b) is approximately 4
times faster than the descent rate as the previous scenario.
The linear velocity was reduced in 29.5 seconds in the “8”
intersection. The trajectory was executed close to 87 seconds.

VI. CONCLUSIONS

The objective of this work was based on those 6 stages:
• Projecting and develop the aircraft;
• Modelling of the kinematics and dynamics of it;
• Project, tuning and implementation of the control loops;
• Development of the proposed FCA;
• Perform tests in in-door environment (using the gyro-

scopic test bench);
• Perform tests in out-door environment.
According to the experimental test results to reach a

reliable and stable QTR, the first step was successfully
completed.

Modeling was essential for implementing and tuning con-
trollers, leading to a more efficient allocation control method,
which was necessary for the work to continue.

The control loop creation step was successful due to the
tests, which showed that the control requirements were met.

The experimental tests proved through flights that QTR
was reliable during the experiments, tracking the desired
setpoint, for both scenarios.

FUTURE WORKS

The conclusion of this works opens different areas for
future works. First, it is suggested to expand the FCA
technique to other overactuated vehicles like a fixed-wing
tilt rotor and an overactuated boat.

The second point is about analyzing the QTR performance
in front of more allocation control subsystems. It will also
serve as an important tool, this UAV can be used for
exploring other areas, such as dam and power transmission
line inspections [19], [20]
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