
Intrusion Detection System in
Software-Defined Networks

Vinicius Lopes Leite

Work oriented by:

Profª. Dr. Tiago Miguel Ferreira Guimarães Pedrosa

Prof. Dr. Augusto Foronda

Prof. Nuno Gonçalves Rodrigues

Bragança, Portugal

2022/2023





Intrusion Detection System in
Software-Defined Networks

Vinicius Lopes Leite

Dissertation presented to the School of Technology and Management of Bragança to obtain

the Master’s Degree in Informatics under the scope of the Double Degree agreement with

UTFPR.

Bragança, Portugal

2022/2023



iv



Dedication

I dedicate this work to God, my family, friends and all people who were part of my life

during this journey.

v



Acknowledgement

I would like to express my gratitude to all the professors from the Universidade Tecnologica

Federal do Parana - Ponta Grossa and from Institute Polytechnic of Bragança for all the

help throughout this academic journey, with all the opportunities and knowledge passed

on to me over the last few years.

A Special thanks to my supervisors, Prof. Augusto Foronda, Prof. Tiago Pedrosa

and Prof. Nuno Gonçalves, who inspired me to follow the academic and professional

path I have taken, and giving invaluable help, without it, my research would have been

impossible.

I would like to thanks the “CybersSEC IP - CYBERSecurity SciEntific Competences

and Innovation Potential (NORTE-01-0145-FEDER-000044)” research project.

Would like to thanks my family for all the support that they have provided for me

during my entire life. My mom for always been there with love and wise words even don’t

understanding or knowing about my troubles, was always there for me. My dad for been

a role model of a wise, successful, protective man which although been more inclusive,

always provided the best he could for our family and protected us from everything. To

my sister who taught me about independence, about chasing my dreams and never giving

up independent of the obstacles that shows up.

Thanks to all the people that help during this last few years, a special thanks to special

friends that i made during all this journey, Milton, Mendes, Jhony, Guth, Iury, David,

Edson, Zé, Chuds, Nuno, Gabriel, Maicon, Fernando, Vinicius, each one of them marked

my life in a unique way and have showed a great side of life.

Thanks to my sisters of another mother, Anne and Thaynara, which a long time ago

vi



come to my life giving me support and always teaching me about love, friendship, so much

more that i can even rememer.

For my beloved girlfriend Dalila, thank you for been my side in each difficult moment

during the last year, for been my safe place during these journey and i would like to

emphasize all the gratitude and love i have for you.

vii



Abstract

Software-Defined Networking technologies represent a recent cutting-edge paradigm in

network management, offering unprecedented flexibility and scalability. As the adoption

of SDN continues to grow, so does the urgency of studying methods to enhance its security.

It is the critical importance of understanding and fortifying SDN security, given its pivotal

role in the modern digital ecosystem. With the ever-evolving threat landscape, research

into innovative security measures is essential to ensure the integrity, confidentiality, and

availability of network resources in this dynamic and transformative technology, ultimately

safeguarding the reliability and functionality of our interconnected world. This research

presents a novel approach to enhancing security in Software-Defined Networking through

the development of an initial Intrusion Detection System. The IDS offers a scalable

solution, facilitating the transmission and storage of network traffic with robust support

for failure recovery across multiple nodes. Additionally, an innovative analysis module

incorporates artificial intelligence (AI) to predict the nature of network traffic, effectively

distinguishing between malicious and benign data. The system integrates a diverse range

of technologies and tools, enabling the processing and analysis of network traffic data

from PCAP files, thus contributing to the reinforcement of SDN security.

Keywords: Software Defined Network, IDS, Cybersecurity

viii



Resumo

As tecnologias de Redes Definidas por Software representam um paradigma recente na

gestão de redes, oferecendo flexibilidade e escalabilidade sem precedentes. À medida

que a adoção de soluções SDN continuam a crescer, também aumenta a urgência de

estudar métodos para melhorar a sua segurança. É de extrema importância compreender

e fortalecer a segurança das SDN, dado o seu papel fundamental no ecossistema digital

moderno. Com o cenário de ameaças em constante evolução, a investigação de medidas

de segurança inovadoras é essencial para garantir a integridade, a confidencialidade e a

disponibilidade dos recursos da rede nesta tecnologia dinâmica e transformadora. Esta

investigação apresenta uma nova abordagem para melhorar a segurança nas redes definidas

por software através do desenvolvimento de um sistema inicial de deteção de intrusões. O

IDS oferece uma solução escalável, facilitando a transmissão e o armazenamento do tráfego

de rede com suporte robusto para recuperação de falhas em vários nós. Além disso, um

módulo de análise inovador incorpora inteligência artificial (IA) para prever a natureza do

tráfego de rede, distinguindo efetivamente entre dados maliciosos e benignos. O sistema

integra uma gama diversificada de tecnologias e ferramentas, permitindo o processamento

e a análise de dados de tráfego de rede a partir de ficheiros PCAP, contribuindo assim

para o reforço da segurança SDN.

Palavras-chave: Rede Definida por Software, IDS, Cibersegurança

ix





Contents

Abstract viii

Resumo ix

Acronyms xix

1 Introduction 1

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5

2.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Software Defined Network . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Literature Review Methodology . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Analysis and Selection Phase . . . . . . . . . . . . . . . . . . . . . 9

2.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 OpenDaylight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 OpenVSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xi



2.5.3 PCAP file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.4 Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.5 Hadoop Distributed File System . . . . . . . . . . . . . . . . . . . . 25

2.5.6 Capture tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.7 IA analisys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.8 Passive DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.9 PyPacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.10 Sci-kit Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Approach 31

3.1 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Packet capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.4 Data set Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.5 Analysis module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.6 AI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.7 Complete Solution Model . . . . . . . . . . . . . . . . . . . . . . . 37

4 Implementation 39

4.1 Network Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Controller Deploy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Virtual Switch Deploy . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 Host Deploy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Queuing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Data distributing and message sizes . . . . . . . . . . . . . . . . . 49

4.3 Storage System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Capture system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Analysis module implementation . . . . . . . . . . . . . . . . . . . . . . . 54

xii



4.6.1 Traffic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.2 Passive DNS Implementation . . . . . . . . . . . . . . . . . . . . . 57

4.6.3 Machine Learning Algorithm Tests . . . . . . . . . . . . . . . . . . 59

5 Experiments and Discussion 61

5.1 Tool used in the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Network Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Capture module performance . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Kafka Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Kafka Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Kafka Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Data Set Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 AI analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Real Case Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusions and future work 77

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Original dissertation proposal 86

B Opendaylight Configuration 89

B.1 Opendaylight Installation Script . . . . . . . . . . . . . . . . . . . . . . . . 89

B.2 Opendaylight Configuration Script . . . . . . . . . . . . . . . . . . . . . . 90

C OpenVSwitch Configuration 93

C.1 OpenVSwitch Installation Script . . . . . . . . . . . . . . . . . . . . . . . . 93

C.2 OpenVSwitch Bridge Configuration . . . . . . . . . . . . . . . . . . . . . . 95

D Interfaces Configuration 97

D.1 Interfaces example with 4 hosts . . . . . . . . . . . . . . . . . . . . . . . . 97

xiii



E Code Developed 101

E.1 Kafka Administration Code . . . . . . . . . . . . . . . . . . . . . . . . . . 101

E.2 Kafka Configuration for Capture Code . . . . . . . . . . . . . . . . . . . . 105

E.3 Capture Module Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

E.4 Training Traffic Analysis Code . . . . . . . . . . . . . . . . . . . . . . . . . 111

E.5 Training Passive DNS Analysis Code . . . . . . . . . . . . . . . . . . . . . 112

E.6 Complete Analysis Module Code . . . . . . . . . . . . . . . . . . . . . . . 114

xiv



List of Tables

2.1 Keywords and Synonyms for this work . . . . . . . . . . . . . . . . . . . . 8

2.2 Search String based on the keywords . . . . . . . . . . . . . . . . . . . . . 8

2.3 Digital Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Results of the Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Total packets in the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Controller Host Information . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Vulnerable Host Information . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Attack Host Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Regular Host Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Kafka Host Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 HDFS Host Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Traffic Analysis Machine Learning Result . . . . . . . . . . . . . . . . . . . 59

4.8 Passive DNS Machine Learning Result . . . . . . . . . . . . . . . . . . . . 60

5.1 Packets Capture Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Dataset packets result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



xvi



List of Figures

2.1 Software Defined Network Structure . . . . . . . . . . . . . . . . . . . . . . 6

2.2 PCAP File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Scalable System Architecure . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Complete Technologies Architecure . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Opendaylight terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Opendaylight Dlux interface . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Dlux Topology feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Bridge interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Bridge with devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Capture Fluxogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Network Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Kafka partitions performance . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Kafka message size performance . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Runtime Stress Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Runtime Regular Traffic Performance . . . . . . . . . . . . . . . . . . . . . 69

5.6 Runtime Traffic only Performance . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Real Scenario Regular Host . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 Real Scenario Kali Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.9 Real Scenario Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xvii



5.10 Real Scenario - Capture Module . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 Real Scenario - Analysis Module - Raw Packets . . . . . . . . . . . . . . . 73

5.12 Real Scenario - Analysis Module - Processed CSV . . . . . . . . . . . . . . 73

5.13 Real Scenario - Analysis Module - Passive DNS Process . . . . . . . . . . . 74

5.14 Real Scenario - Analysis Module - Passive DNS Characterization . . . . . . 74

5.15 Real Scenario - Analysis Module - Warning Result . . . . . . . . . . . . . . 75

xviii



Acronyms

AAA Authentication, Authorization, Accounting

ACM Association of Computing Machinery

AI Artificial Intelligence

API Application Programming Interface

ARP Address Resolution Protocol

BGP Border Gateway Protocol

CIDN Collaborative Intrusion Detection Network

CIRCL Computer Incident Response Center Luxembourg

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoS Denial of Service

EC Exclusion Criteria

FN False Negative

FP False Positive

FTP File Transfer Protocol

GB/s Gigabytes per second

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HIDS host-based intrusion detection system

HTML Hypertext Markup Language

xix



HTTP Hypertext Transfer Protocol

IC Inclusion Criteria

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPB Polytechnic Institute of Bragança

IPS Instrusion Prevention System

KB KiloBytes

MAC Media Access Control

ODL Opendaylight controller

ONOS Open Network Operating System

OVS OpenVSwitch

PCAP Packet Capture file

QoS Quality of Service

RQ Research Questions

SDL Security Development Lifecycle

SDLC Software Development Lifecycle

SDN Software Defined Network

SSH Secure Shell protocol

SSL Secure Sockets Layer

SYN Synchronize

TCP Transmission Control Protocol

TN True Negative

TP True Positive

TTL Time-to-live

UDP User Datagram Protocol

VLAN Virtual LAN

VM Virtual Machine

xx



Chapter 1

Introduction

The network architecture known as Software-Defined Networking (SDN) has arisen, in

which the forwarding plane and control plane logic are separated. SDN is an innovative

method for network programmability that is the capacity to use open interfaces and

software to control, modify and manage network behavior dynamically as opposed to

depending on closed boxes and proprietary defined interfaces [1]. The SDN architecture

permits centralized management of the components of the data path apart from the

technology employed by the network to link these devices that can come from various

suppliers. All of the intelligence is embedded in the centralized control, which also keeps

an overview of the data path elements and the links that link them across the network.

The controller is suitable to carry out network management tasks and allows for simple

modifications thanks to its centralized, up-to-date view [2].

In the current digital environment, research on security in SDN is crucial. SDN’s novel

architecture presents a number of distinct security challenges in addition to flexibility and

scalability. Protecting vital network infrastructures requires an understanding of these

issues and solutions. Because SDN is dynamic and centralized, research is needed to create

strong security measures like access control policies, encryption protocols and intrusion

detection and prevention systems. Research in SDN security is essential to keep ahead of

new threats, such as DDoS attacks, illegal network access and data breaches, given the

dynamic nature of the threat landscape [3].

1



Moreover, thorough research facilitates the creation of standards and best practices,

which promote an SDN ecosystem that is more resilient and secure. In the end, the

knowledge gathered from these kinds of studies is essential to guaranteeing the availability,

confidentiality and integrity of network resources—a crucial component that supports

modern digital networks’ functionality and public trust [4].

1.1 Problem

Since the SDN technologies are a recent work, the lack of traditional physical network

boundaries in SDN necessitates robust security measures at both the controller and switch

levels to protect against malicious activities. So, the main challenge is to develop a

intrusion detection system, that can identify and prevent the actions of malicious activities

inside a SDN network.

1.2 Goals

The main goal that this work tries to achieve is the development of a efficient IDS for the

SDN scenarios, which need to work in a near real time processing to prevent malicious

activities.

This research starts with a study of the recent scientific works in the SDN scenario

and the implementation of security measures for this type of networks, making a robust

literature review for this work. The next step deploys a scenario for the SDNs based on

the more used frameworks in the current market, collect and analysis of traffic will be

performed to detect malicious activities coming from any host. With the analysis done,

the process goes to a development of a AI model capable of identify these attacks and

warn the administrator of the networks safety.

2



1.3 Structure of Document

This document is structured in six chapters and 5 appendix. Chapter 1 refers to the

introduction, the problem description and the objectives of this dissertation. Chapter 2

explains how the literature research was made, the main topics and keywords that were

searched and the result of the gathering of information. Chapter 3 bring the approach

defined to solve the problem. Chapter 4 explain the implementation of this work and how

the tools defined in chapter 2 were used. Chapter 5 presents every experiment executed

in order to evaluate and improve the proposed system. Lastly, chapter 6 brings the final

conclusion of the discussion and future work.

1.4 Acknowledgement

This work was developed within the “CybersSEC IP - CYBERSecurity SciEntific

Competences and Innovation Potential (NORTE-01-0145-FEDER-000044)” research

project.

3





Chapter 2

State of the art

This chapter is arranged into four sections, the first will explain the main concepts of this

work, the second explains the methodological approach used in the systematic literature

review. The third one brings a overview of the research papers selected in the second

section with the purpose of contextualize the main discussion and problems that the

scientific community has identified during the last years. Then a final section with the

explanation about the tools that were chosen for this work.

2.1 Concepts

To have a fundamental comprehension of this work it is important to understand the main

concepts. In this section, we will present an overview of the ideas used in the subject and

explain them in an accessible and understandable manner.

2.1.1 Software Defined Network

Feamster, Rexford, Zegura et al. [5] explain that Software Defined Networking or SDN, is

a new approach that has been studied during the past years that consists in a networking

strategy that separates the control plane from the data plane. The network control

functions are replaced from the individual networking devices to a centralized controller,

5



which makes it easier to manage and configure the network as a whole as it can be see in

figure 2.1.

The centralized architecture from the controllers can communicate to the applications

through the northbound interface which interact with the controller and request specific

network policies or configurations. This interface provides a standard API (Application

Programming Interface) for applications to do this communication with the controller.

And in order to configure network communications for switches or routers, the controller

uses a southbound interfaces to program and operate network devices.

Figure 2.1: Software Defined Network Structure

Feamster, Rexford, Zegura et al. [5] explains that to enable the idea of the SDN, the

OpenFlow protocol is the best option to help it, which provides a standardized way for

the controller to communicate with the network devices. Without a standardized protocol

like OpenFlow, it would be much more difficult to create a centralized controller that can

interact with a wide variety of network devices.

Since OpenFlow allows the controller to configure network devices in real-time,

6



network behavior may be fast modified in response to changing network conditions.

This might help to guarantee that apps obtain the resources they require to run

effectively without overloaded the network or causing performance difficulties.

Malishevskiy, Gurkan, Dane, Narisetty, Narayan and Bailey et al.[6] Shows that SDN

and OpenFlow have several benefits over traditional networking methods. SDN and

OpenFlow give improved network visibility in addition to the benefits of being flexible

and programmable. The controller has complete insight into network traffic and may

use it to make better judgments about how to forward packets. This is especially useful

in contexts with unpredictable network traffic, such as data centers or cloud computing

environments.[6]

Another benefit of SDN and OpenFlow is that they simplify network administration.

Traditional networking requires network managers to setup each device separately, which

may be time-consuming and error-prone. The centralized controller can automate various

network administration functions, such as routing and load balancing, using SDN and

OpenFlow, making it easier for administrators to operate the network and reducing the

chance of mistakes.

2.2 Literature Review Methodology

This section explain the methods of data collection and analysis, the tools used to find

and organize the information.

To achieve a solution to the problems described in section 1, a research among the

recent works made in the area was needed in order to reach a better perception of the

problems, solutions and main concerns in this field. Also in this section some context will

be presented to define concepts that are crucial to the understand of the work.

Three main research questions were defined in order to help the gathering of data to

develop this work.

• RQ1: What are the main SDN controllers that are been used?

7



• RQ2: What are the SDN threats/attacks?

• RQ3: What are the security mechanisms and countermeasures to mitigate SDN

Intrusion?

Trying to find the best answers to the Research Questions, it was necessary to select

keywords and some synonyms that combined with logical operators formed a search string

to be used in the Researches repositories.

Keywords Synonyms
Software Defined Network ’SDN’; ’Software-Defined-Network’; ’SDN Controller’;
Intrusion Detection System ’Detection’; ’IDS’; ’Monitoring’;

Intrusion ’Attack’; ’Infection’; ’Threats’; ’Threat’;

Table 2.1: Keywords and Synonyms for this work

Search String
("Software Defined Network" OR "SDN Controller" OR "Software-Defined-Network")

AND ("Intrusion" OR "Attack" OR "Infection" OR "Threats" OR "Threat")
AND ("Intrusion Detection System" OR "Detection" OR "IDS" OR "Monitoring")

Table 2.2: Search String based on the keywords

2.2.1 Data Collection

With the search string set, the data collection and organization were carried through the

website Parsifal (www.parsif.al), because of it’s organization method and easy

understanding of the interface to organize and due to the ways that you can choose to

classify the studies made. Inside the website multiple digital libraries were selected to

proceed with this part.

Using the search string through all the digital research libraries, were reached a total

of 3147 scientific studies in the area during the last six years.

8



Digital Research Libraries URL
ACM Digital Library http://portal.acm.org
IEEE Digital Library http://ieeexplore.ieee.org

Scopus http://www.scopus.com

Table 2.3: Digital Libraries

Digital Research Libraries Total Results
ACM Digital Library 1016
IEEE Digital Library 651

Scopus 1480
Total 3.147

Table 2.4: Results of the Libraries

2.2.2 Analysis and Selection Phase

During the analysis and selection phase of the scientific studies, inclusion and exclusion

criteria were utilized to separate studies that do not fit this research, in order to find

relevant studies for the review.

The inclusion criteria outline the characteristics that research must possess or discuss

in order to be taken into consideration for the review. In this research the inclusion

criteria were:

• IC1: Papers that are focused on build an SDN environment or SDN applications.

• IC2: Papers that are focused on security area in SDN.

• IC3: Papers that bring threats and solutions to SDN problems.

• IC4: Papers that have similar approaches or solutions are compared and the more

recent and complete are included.

• IC4: Papers that include data sets for testing.

The exclusion criteria focus on classify research that approach field of area that were

not been discussed in the work. In this research the exclusion criteria were:

• EC1: Papers that focus on implementing SDN in Smart Cities or smart vehicles.

9



• EC2: Papers that uses SDN in their approaches but aren’t focused on it’s security

or implementation.

• EC3: Papers that were outdated in their approach.

• EC4: Papers that solves the same problems were excluded leaving only the most

recent or complete research.

• EC5: Papers that focused in solving industrial problems and not SDN problems.

With this methodology is possible to classify the papers in four distinct categories:

• Duplicated: Research papers that already were presented in a previous digital

library

• Rejected: Research papers that do not fit the purpose of this work or use similar

approaches that more completed papers.

• Accepted: Research papers that could help this work in a significant way

The main criteria for to choose. reduce and classify this papers were:

• Cibersecurity detection: Research papers that show different types of security

approaches to detect malicious activities.

• Cybersecurity in SDN: Research papers that shows approaches of cybersecurity

in SDN scenarios

• Different tools to implement an SDN scenario: Research papers that use

different technologies to deploy the SDN scenario like ODL, ONOS, Ryu. etc...

• Datasets for malicious activities: Research papers that use Malicious dataset

to train an AI model to detect attacks.

The results of the analysis can be see in the table 2.5, all the papers classified as

accepted were analyzed for building the research of this work.

10



Classification Total Results
Duplicated 687
Rejected 2.274
Accepted 186

Table 2.5: Classification Results

2.3 Literature review

Moussaid, Nadya and Toumanari et al. [7] affirms that besides the benefits of SDN, the

controllers also faces security challenges in different areas of its architecture. The use of

APIs can introduce vulnerabilities by facilitating communication between different

layers of the network architecture. If they are not properly verified and protected,

attackers or malicious user may exploit their vulnerabilities at various tiers, potentially

leading to unauthorized access to the network infrastructure or the ability for malicious

actors to manipulate network traffic. Additionally, the insertion of malicious code into

unprotected APIs can result in significant harm, such as data theft, network disruption,

or even complete network compromise. Therefore, it is crucial to ensure that SDN APIs

are adequately secured and protected against potential security threats.

One of the biggest issues presented by Zhu, Wang, Li et al.[8] is about the risk of an

unauthorized access, because of the fact that the controller runs a role as the brain of the

network. This level of control could allow an attacker to intercept, modify, or redirect

network traffic, leading to data theft or network downtime. In addition, an attacker

who has access to the SDN controller can potentially manipulate the network’s routing

decisions, leading to network congestion or even network-wide failure.

The SDN switches issues are primarily related to the vulnerability of Flow table entries

limitation as informed by Birkinshaw, Celyn and Rouka et al. [9], which can make them

extremely sensitive to Distributed Denial of Service (DDoS) attacks. These attacks can

overwhelm the switches by flooding them with traffic and exhausting their resources,

ultimately causing the network to fail. In addition to DDoS attacks, other security threats

that exploit the vulnerability of Flow table entries in SDN switches include buffer overflow

11



attacks, packet injection attacks and malware injection attacks.

If any of these attacks are successful the entire network are going to be in danger.

Thinking about solving and avoid these issues the development of effective security

measures, such as traffic filtering, access control, and anomaly detection, are vital to

prevent and mitigate the impact of these attacks. Techniques like monitoring and

analysis of network traffic patterns can help identify potential security threats and

enable proactive measures to be taken to enhance network security.

On a initial phase of the study at the area of SDN controllers, Arbettu, Khondoker,

Beyarou et al. [10] analyzed four controllers, two of which are Java-based open source

controllers: OpenDaylight (ODL) and Open Network Operating System (ONOS), and two

others are Ryu, a widely used Python-based controller in research areas, and Rosemary,

a proprietary controller software. Each controller was analyzed to assess the security of

its interfaces, processes, and internal data.

To evaluate the security levels of the individual controllers, the STRIDE threat

modeling framework was used, which was developed by Microsoft for threat modeling

purposes and has been an integral part of the Security Development Lifecycle (SDL). In

the SDL approach, security of an application is prioritized over other parameters such as

performance, availability, and integrity for evaluation during the Software Development

Lifecycle (SDLC). The STRIDE framework is an acronym for six threat categories:

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service (DoS), and

Elevation of Privileges. The author created an individual STRIDE threat matrix for

each of the controllers to summarize their maturity against known attack categories.

Arbettu, Khondoker, Beyarou et al. [10] reached a result that all controller are prone

to threats or vulnerabilities. Some secure modes available in a few controllers are

optional to maintain higher performance levels. The ONOS controller is susceptible to

known security threats, but the ONOS team already started addressing these issues.

The grate disadvantage of Ryu controller is the multi-threaded architecture that leads in

the DoS attacks due to the lack of authorization for adding flow rules and event

consumption. Rosemary for the other side employs an effective resource access control

12



mechanism, creating multiple micro-NOS instances for every application is an overhead

on performance. OpenDaylight surpassed the other controllers for several reasons, like

modular structure, constant monitored security and it’s own module to support Denial

of service attacks.

Mat Isa, Mhamdi et al. [11] proposes a new approach to enhance network security

by combining Software-Defined Networking (SDN) and machine learning techniques. The

proposed intelligent security framework leverages the centralized control plane of Ryu

SDN controller to facilitate efficient network monitoring and anomaly detection. By

combining deep learning algorithms with SDN, the framework enables real-time network

traffic analysis and anomaly detection.

The architecture for the solution was composed in two layers, the first is the gathering

data on network traffic within the SDN framework to inform the controller’s decision-

making process. To achieve this, a standardized Openflow protocol is employed, which

regularly dispatches Openflow flow stats request messages to all switches connected via

Openflow. These switches will then respond to the message with traffic flow statistics.

The collected data is then collated and utilized as required input for the controller to

execute appropriate actions.

The next tier of the system features an intrusion detection algorithm that combines

the use of an auto encoder and random forest algorithm. The collected data is then

formatted to enable the controller to execute detection and prevention functions within

the adaptive machine learning module. It is critical for the detection process to be quick

and accurate, given the high-speed flow of data. Following the classification, normal traffic

will be allowed to pass uninterrupted, while anomalous traffic will face penalties.

For the development of the machine learning, the usage of the KDD-99 dataset [12],

presented by the table 2.6.

Dataset Normal DoS Probe R2L U2R SUM
Train 67,343 45,927 11,656 995 52 125,973
Test 9,711 7,458 2,754 2,421 200 22,544

Table 2.6: Total packets in the dataset

13



The approach achieves high accuracy of 98.4% for intrusion detection while reducing

the time needed for training and execution. The results demonstrate that the model is

efficient for real-time intrusion detection, making it a promising solution for improving

network security in SDN-based intrusion mitigation architecture.

In a distinct approach Majid Ali and Pervez et al. [13] describes the use of metasploit

and Kali Linux to simulate seven different types of attacks within an SDN environment.

The attacks include DDoS, SSH, FTP, HTTP, ICMP, ARP, and Scan attacks. In order to

detect these attacks, the author proposes a solution that combines collaborative intrusion

detection and blockchain technology. The solution uses Snort signature-based detection

and deploys an SDN-based test-bed that uses three collaborated Snort IDS. These IDS

nodes securely receive new signature updates from the SDN Ryu controller, allowing for

effective sharing of important information.

Collaborative intrusion detection systems typically work by sharing information about

network traffic patterns, anomalies, and potential security threats. With that in mind

the block-chain method was chosen by it’s purpose of using the decentralised architecture

to keep information safe against any threat that can adulterate them. The information

exchange between IDS enables to identify breaches in the security.

The experiment consist in 2 Virtual Machines (VM), where VM-1 system is designed

through the integration of SDN Ryu and Snort. The SDN controller is responsible for

programming the network operation, including updating Snort’s signature rules and

data-plane flow. This program is triggered when Ryu receives the Packet in message

from OpenFlow. To modify the data-plane of the proposed CIDN network, the Ryu

controller employs Link-A in this virtual machine, while Link-B is used for Snort

signature sharing towards the CIDN network. VM2 represents the network domain,

where a Mininet emulator is used to create a CIDN virtual network with Mininet

simulator. The CIDN network comprises three Snort IDS nodes, all of which are

deployed with default signature rules. When a new packet with malicious attributes

arrives, the main HIDS Snort node receives new signature updates from Ryu via Link-D.

These updates are then disseminated to all other CIDN nodes via blockchain.

14



The collaborative approach of this solution is found to generate very few false alerts,

with an average of 5% False Positive rate and False Negative rate for DDoS and HTTP

attacks. However, the average False Positive rate and False Negative rate for other

attack types were nearly 10%, which can be attributed to each IDS detecting burst

attack input traffic. Despite this, the proposed solution shows promising results in terms

of detection accuracy and performance. By utilizing the Ryu Controller and blockchain

technology, the solution provides a verifiable information sharing. The article highlights

the importance of collaborative intrusion detection approaches in SDN environments,

particularly in safeguarding against various malicious attacks.

Also using snort IPS system Pratama, Fauzan and Suwastika et al. [14] describes

the use in a Ryu controller as well but using a different approach analyzing the packets

through a fuzzy logic system, where the validation process for the fuzzy design involves

determining the block’s duration.

Using SDN technology to process any packets present in the network, with Ryu

handling the initial processing and Snort analyzing the packets to determine their level

of danger based on established rules. If a packet is deemed safe, Snort will send it back

to Ryu for forwarding to the intended destination. In the other hand, if the analysis

result that the packet is malicious, the process of mitigation and alert will start.

Generating warnings to the controller, and blocking the passage of the packet for an

amount of time. As a result of these actions, the packet will not be delivered to its

destination host, and the sender host will be prohibited from sending any further

packets for a period commensurate with the attack frequency.

This is achieved by designing the fuzzy logic system 10 times, analyzing each design,

and then selecting the most appropriate one for use in the system. Based on the outcome

of the various trials, the SDN infrastructure that has been furnished with a flexible IPS

has the capacity to identify cyber assaults and restrict the aggressor’s host for a duration

that depends on the frequency and category of the executed attacks. Furthermore, the

implementation of the fuzzy algorithm added an execution time of 0.228 milliseconds to

the process.

15



Trying to understand more about the difference between the security problems in the

SDN controllers, Badotra, Sumit and Panda et al. snortDDoS brings a similar approach

on the use of the Snort system to reach an DDoS detection system on the ODL and ONOS

controllers.

In order to emulate a topology for the tests, Mininet tool was used to create and

distribute the Virtual machines, and for the Denial of Service attack since ODL and

ONOS uses TCP port number 8181 for HTTP, it can be attacked for both HTTP and

TCP SYN Flood attack, so four different tools:

• Xerxes: DoS tool that specializes in executing DoS attacks by launching multiple

independent attacks against numerous target websites.

• Tor’s Hammer: This tool is a DoS application that employs a low-rate hypertext

transfer protocol POST (OSI Layer 7) to carry out its attack. It utilizes a classic

slow POST approach, where the HTML POST fields are transmitted slowly under

a single session, in order to execute the DoS attack..

• Hping3: A command-line tool and packet analyzer that is capable of working with

a range of TCP/IP packets. It has support for protocols such as UDP, ICMP, and

RAW-IP, and includes a trace route mode. Hping3 also offers features such as secure

file transfer and numerous other options to facilitate more advanced functionality.

• Nping: A versatile tool that can create network packets for a wide range of

protocols, giving users complete control over the protocol headers. While it is

commonly used as a simple ping utility for detecting active hosts, Nping can also

function as a raw packet generator for stress-testing network stacks, carrying out

ARP poisoning, launching DoS attacks, and tracing routes, among other

applications

The results of the DDoS test revealed that ODL detected the attack faster than ONOS

and took longer to go down. To detect DDoS attacks, local SDN DDoS alert rules were

configured using various SNORT rules. The alert rules were created by setting the source

16



traffic from any network or port, and if the traffic was coming to the SDN controller at

TCP Port Number 8181, then the message was marked as an SDN connection attempt

from an outside network.

The detection time and packet loss were recorded for various scenarios. The number

of packets bombarded affected the time when the controllers went down, and the overall

network functionality stopped. Using this approach it has been observed that ODL detects

DDoS attacks in a shorter time than ONOS and experiences a delayed response compared

to ONOS.

In another approach to DDoS detect and mitigation system, Cajas and Budanov et al.

DDoSOpen uses an application in Java and choosing OpenDaylight as the controller.

The fundamental concept is that the software computes the data transfer rate of various

end-to-end connections that are set up in the network. This is accomplished through the

deployment of forwarding regulations that permit the accurate transmission of data from

a beginning location to a termination location and by amassing statistical data regarding

these rules.

The forwarding rules consist of matching fields, such as the source IP address,

destination IP address, and input port. The action of these rules is to forward packets

to a specific output port. When the matching fields of incoming packets perfectly match

those of a forwarding rule, the rule is applied, and the number of bytes for that rule is

updated in the switches. The application also stores the number of bytes for each rule,

along with a tuple consisting of the switch identifier, input port, destination IP address,

and destination port. This allows the forwarding rules to be identified across multiple

switches and connections.

By gathering information from all switches in the SDN network, the application can

make an estimate of the throughput for each end-to-end connection. The estimation is

periodically updated based on a time interval, referred to as the "refreshing_time"

variable, which is set to 5 seconds. This value is chosen to balance the need for timely

detection and mitigation of DoS attacks with the need for accurate estimation. If the

throughput of any connection exceeds a threshold, the application will identify the

17



corresponding tuple and end-to-end connection, and install new blocking rules not only

on the switch responsible for the throughput estimation but on all switches along the

end-to-end path. These blocking rules will have the same matching fields as the

forwarding rules but their actions will be to drop packets, effectively blocking the

end-to-end connection.

Understanding more about what are the main open source SDN controllers in the

actual market, Ohri, Pulkit and Neogi et al. [15] considers that are more than 20 SDN

Controllers available in the market, and ONOS and ODL are the most popular and

complete in the actual scenario, presenting a study about how these SDNs can face DDoS

security threats.

In OpenDaylight the use of the feature Defense4All is the main module of defense in

DDoS attacks and other security components include Authentication, Authorization,

accounting (AAA), Controller Shield, ODL-Cardinal, Secure Network Bootstrapping

Interface, and more. Defense4All divide it’s functionalities in two parts, Detection and

Mitigation part. In detection, Defense4All monitors network traffic in order to find any

suspicious behaviour of any host connected to the network managed by the controller,

using traffic flows in the Openflow Switches. After analyzing the network traffic,

Defense4All creates different baseline metrics, such as the mean number of users

connecting to the server, the number of responses and replies sent back and forth, and

others. If the system detects a consistent and significant deviation from this established

baseline, it will send an immediate alert to the ODL Controller to signal the presence of

suspicious activity. To mitigate the attack the feature uses the Attack Mitigating Hosts

Technique redirecting the malicious traffic to a temporary host mitigating the suspicious

traffic from affecting the network. It makes the hosts return to their normal flow of

operation.

By the ONOS controller side, it has an application layer access control feature which

brings a defense from malicious applications, allowing applications to use the most part

of the resources in the network. ONOS also has a Security mode which provides two main

features, Application authentication and permission based access, protecting the network

18



from malicious users.

In the paper, Ohri, Pulkit and Neogi et al. [15] divides his tests in DDoS attacks in

three types: Low Rate, Medium rate and High rate attacks. Testing the ODL feature,

Defense4all worked perfectly in low rate attacks, redirecting the malicious traffic to a

temporary host and keeping the response time of all hosts in the same time as always.

Now in the medium rate, the feature didn’t work so well, the nodes that were attacked had

they packet loss rate in 60% and losing response time. And in high rate DDoS attacks

ODL failed again in stop the attack having around 87% packet loss and a significant

deterioration in the response time again. But in a more positive side, when the ODL

finally realize that it is under attack, all operations are stopped, restarted and starts to

work again in a normal mode.

In the ONOS controller since it does not have any dedicated anti-DDoS mechanism, it

fails to work even for a low-rate DDoS attack. The fist approach was performing a host to

host attack in which two hosts, were used to attack a node, the network connectivity pings

performed well during this phase but after the SYN Flood attack the ping from the nodes

started to becomes unreachable. The ping between all ten nodes becomes unreachable.

In addition, the ONOS GUI also stopped responding. Which demonstrates a complete

failure of the controller against a simple SYN Flood DDoS attack.

In a practical scenario, attackers create a group of botnets to target a server that

responds to numerous hosts. However, in the experiment conducted by the author, only

two hosts were utilized to generate attack traffic, but it did not succeed. Therefore, it can

be concluded that ONOS Controller is incapable of defending against any form of DoS or

DDoS attack in the real world. In contrast to OpenDaylight, ONOS Controller does not

revert to its normal operation flow once the attack is halted, and the node pings continue

to show "Destination Host Unreachable". The controller only resumes its normal function

after being manually restarted.

The problem caused by DDoS attacks is a well-known issue that affects SDN controller

and both ODL and ONOS suffer from this attacks. ODL has attempted to fix this issue

by implementing an optional feature that consist in a custom anti-DDoS mechanism

19



called Defense4All, but it can only mitigate low-rate DDoS attacks and is ineffective

against medium and high-rate attacks. In contrast, ONOS has no anti-DDoS mechanism

and cannot handle low-rate DDoS attacks. Ohri, Pulkit and Neogi et al. [15] give more

emphasis in the need for SDN developers to address these security concerns and highlights

that ODL is more resistant to DDoS attacks than ONOS.

2.4 Related work

In the work developed by Olivera and Pedrosa et al.[16] was proposed an scalable

architecture that could handle large amount of data generated by network traffic using a

variety of current technologies and also develop an DGA detector in the traffic captured

in the network, which fits perfectly in this work’s scenario.

Using an strategy of combining Apache tools to create an scalable scenario where it’s

possible transmit all the data produced in a SDN network through a scalable queuing

module been received an stored in scalable persistent storage for backups and future

checkups, and a scalable analysis module to process all the data received. These

technologies will be present in the next section where the tools used in this work are

introduced

The AI usage in this work, brings an approach using the TensorFlow. a Google-

developed open-source machine learning framework, for creating and refining deep learning

models, it is commonly utilized. TensorFlow offers a flexible ecosystem of tools and

packages that allow programmers to quickly produce a range of deep learning and machine

learning models.

The machine learning algorithm chosen to this research was the Long-short-term

memory neural network architecture, where it excels in applications like natural

language processing, speech recognition, and time series forecasting where understanding

the context and temporal relationships in data is essential for precise predictions. They

are particularly good at capturing dependencies and patterns within sequences.

The results deployed by this research demonstrate a promising evolution in the usage

20



of AI in a near real-time analysis where the system has a precision and a recall of 98%

being a reliable detection model.

Based on this approach we will adapt the scalable solution to fit in a SDN scenario,

developing a system where an SDN solution could work and use scalable system as an

Intrusion detection system.

2.5 Tools

After the analysis of the works done in the SDN area, the tools chosen to be used in the

work were selected and in this section the functionalities and the reasons of why each of

them were chosen are explained.

2.5.1 OpenDaylight

With more than 20 SDN controllers that are under constant development in the actual

market scenario, Badavaro and Constantino et al. [17] ONOS and ODL are the most

popular and complete tools that are been used for giants network companies like Huawei

and Cisco. The chosen controller for this work is Opendaylight based on the leak of recent

works in the scientific community about it and because of it is the recommended option

for a new generation of Cisco switches [18].

OpenDaylight employs open protocols to provide centralized, programmatic control

and network device monitoring. The controller provides an interface for connecting

network devices quickly and intelligently to achieve optimal network performance,

similar to how an operating system provides an interface for connecting devices to a

computer. OpenDaylight is a collaborative open-source project hosted by the Linux

Foundation, with the primary goal of accelerating the adoption of SDN and creating a

solid foundation for NFV ODLmanual.

The project is governed by an open community decision-making process, which has

brought together community developers and open-source code to achieve this goal.

OpenDaylight can be a core component of any SDN architecture, providing the ability

21



to minimize operational complexity and extending the life of existing infrastructure

while enabling new services and capabilities. The architecture of OpenDaylight is

multi-layered, with the controller platform being the main layer. The OpenDaylight

Controller, which acts as the brain of the network, resides in this layer and manages

traffic flow from switches using flow tables. The controller can be executed on any

operating system as long as it supports Java. Multiple protocols can be supported on

the southbound, such as OpenFlow 1.0, OpenFlow 1.3, BGP-LS, etc.

2.5.2 OpenVSwitch

Since the physical switches that allow the use of the OpenFlow protocol are respectively

new and more expensive than the usual ones, we opted for an alternative to conventional

hardware-based network switches that is offered by Open vSwitch (OVS) tool, an open-

source software switch. It was developed to overcome the shortcomings of conventional

network switches and to make it possible for SDN environments to support more flexible

and dynamic network administration.

OVS can be utilized as an OpenFlow switch, offering a programmable and flexible

forwarding engine that can be managed by a centralized SDN controller. The OpenFlow

protocol is implemented in OVS’s datapath, allowing it to receive and process OpenFlow

messages from the controller. The controller may configure the forwarding tables in

OVS using OpenFlow, describing how incoming packets should be forwarded depending

on parameters such as source and destination addresses, protocol types, and Quality of

Service (QoS) needs. Furthermore, the OpenFlow integration enables OVS to interact

easily with other OpenFlow switches, allowing the establishment of large-scale,

heterogeneous SDN networks that can be controlled and managed centrally.

OVSmanual

We could see in the studies presented in the previous section, that the controller was

implemented in a host and all the network that it manages were a virtual network

simulated by the mininet tool or other network virtualization tool. And inside this

22



virtualized networks the switching process are build with OVS tool. It employs OVS as

its default switch implementation, allowing users to construct and manage virtual

switches, bridges, and routers that may be dynamically configured and maintained

based on network requirements. Because of its versatility and programmable, OVS is

well-suited for usage in Mininet, allowing users to design complicated network topology

and test different network configurations in a controlled and isolated environment. [19]

Other well known tool analyzed in these studies is the Proxmox Server Virtualization

Software, which the default virtual switch implementation is OVS, which provides users

with a versatile and configurable software switch for creating and managing virtual

networks. OVS is well-suited for usage in Proxmox due to its compatibility with a broad

range of SDN controllers and network functions, allowing users to design and administer

virtual networks that can be dynamically built and maintained based on the demands of

the virtual environment. [20]

2.5.3 PCAP file

A PCAP file is a type of file that stores network traffic captures. Farrukh, Khan, Irfan

and Wali et al.[21] defines the usage of this type of files for network analysis,

troubleshooting, and security purpose. The PCAP files are used to capture packets that

are been transported on the network. The PCAP file uses a binary format of the packets

that were captured, and including information about their headers, payloads, and

metadata. The packet header bring some of the most important characteristics about

the packet, like the size, date, and protocol that was used. This data may be used to

study network traffic and obtain insight into network applications and protocols

behavior.

The PCAP file is one of the most used formats by a grant variety of tools, because of

the easy architecture (figure 2.2) to extract information about network traffic, IP addresses

of the senders and receivers, packet contents. The data can be used to solve and monitor

network faults, identify security concerns, and improve network performance.

23



They also can be used to reconstruct network traffic after any incident or attack,

allowing investigators to follow the trace back to the cause of a security breach or other

network-related issue.

Figure 2.2: PCAP File Structure

2.5.4 Kafka

Peddireddy et al. [22] thinking about the large amount of data that would be necessary

to transmit and store in a traffic analyze, the best option would be a distributed and

scalable tool, which the Apache Kafka fits in the exact parameters the were judged as

necessary. The tool works in a distributed way, handling a real-time messaging system

that can care large volumes of data from multiple sources.

Kafka is made up of three major divisions: producers, customers and brokers.

Producers take care about the service of creating data and publishing it to the Kafka

cluster; Consumers are in charge of get this data and processing that data; And brokers

manages of all data that reaches the Kafka cluster.

Kafka utilizes an approach which consists is categorize the data into topics and the

producers sends messages specifying the topic with the data. Consumers can choose in

which topics it desires to receive real-time messages. Kafka also supports data storage

24



and processing, allowing for more efficient processing of massive amounts of data.

The architecture is intended to be scalable and to accommodate failures. Data

partitioning is used to ensure redundancy among the numerous brokers in the Kafka

cluster and each partition is duplicated across these brokers. Kafka also enables for

management changes in the cluster’s brokers without interfering with data processing.

Kafka’s high throughput and low latency make it ideal for real-time analysis, log

aggregation, and data streaming.

Kafka allows external systems to connect and use the services, and it’s APIs are

available in a variety of programming languages, making it accessible to a grant variety

of developers. [23]

2.5.5 Hadoop Distributed File System

Since we are searching for a scalable and secure way to handle all the data, with the Kafka

it’s possible to transmit large amount of data, and in order to store it all in a secure and

a reliable way , it will be necessary a tool that can provide these services.

The Apache Hadoop framework is a open source tool created to handle huge data set

processing and analysis in a distributed computing environment. Providing scalable and

fault-tolerant platform for storing, processing, and analyzing large volumes of data across

clusters.

Among different services provided by the framework, Tian, Yu. et al. [24] defines

the Hadoop Distributed File System (HDFS) as an interesting tool that delivers storing

and managing ways to large volumes of data across multiple nodes in a Hadoop cluster.

Data is kept in files, which are subsequently separated into blocks. These chunks are then

dispersed among several cluster nodes. Each block is duplicated across numerous nodes

to achieve redundancy and fault tolerance.

In addition a big advantage of using the Hadoop framework in this work, is the

capability communicating with other Apache technologies such as Kafka. Kafka can be

used to receive and process streaming data in real-time, while HDFS can be used to

25



store and process huge amount of data. This interaction between the tools can turns

possible to handle real-time data processing [25].

2.5.6 Capture tools

During the approach and implementation chapters it will be discussed why these methods

of capture and this tools where chosen to this work. The tools were the TCP Dump and

python3 language to develop the scripts of capture.

Python3 is the most recent version of the programming language Python. It is a

well-known and frequently used language noted for its ease of use, readability and

adaptability. Python 3 has a large number of libraries and frameworks that make it

suited for a wide range of applications such as web development, data analysis, machine

learning and automation. It features a simple and straightforward syntax, making it

simple to understand and produce code. Python 3 also stresses code readability and

encourages the usage of best practices in programming. Its vast community support and

extensive standard library make it a useful tool for developers to construct sturdy and

efficient applications. The libraries and how it was used will be explained in the

Implementation section 4.4 [26].

TCP Dump is a network monitoring and analysis program that uses command-line

packet sniffing techniques. It records network traffic in real time and offers precise

information on packets passing through a network interface. TCP Dump allows users to

create filters to capture certain types of traffic depending on protocols,

source/destination IP addresses, ports, and other parameters. It contains a plethora of

information, including packet headers, payload contents, source/destination information

and time information. Also in the section 4.4 will be explained the usage of this tool

TCPdump.

26



2.5.7 IA analisys

H. Kang, H. Kim et al.[27] define the use of artificial intelligence a major differential for

the future of IDS, redefining the way we keep our digital ecosystems safe from potential

attackers. Traditional IDS systems often struggled to keep pace with the dynamic and

increasingly sophisticated nature of modern cyberattack bringing an important role to the

AI usage because of its revolutionary characteristics like the ability to adapt, learn and

respond in real-time to a large amount of threats or events. AI succeeds in this difficult

environment by continuously analyzing massive data sets, spotting trends and foreseeing

possible dangers before they materialize into full-fledged attacks.

The capacity of AI-powered IDS to identify anomalies and deviations from normal

network activity, which frequently go unnoticed by human operators, is one of their

primary advantages as explained by Zebin, Tahmina, Rezvy, Shahadate, Luo, Yuan et

al.[28]. Faster response times as a result of the improved detection accuracy significantly

reduce the vulnerability window and reduce potential impact. Furthermore, AI has the

ability to automatically prioritize alarms, ensuring that security professionals focus their

efforts on the most serious threats. The overall cybersecurity stance is greatly

strengthened by this resource allocation optimization.

The ability of AI to change and advance is also quite valuable. Randhir, Prabhat,

Rakesh , P. Gupta, Garg, Hassan et al.[29] shows that new attack pathways and methods,

it can hone its detection capabilities over time, ensuring that IDS systems are resilient

to new threats. This adaptability extends to the scalability of AI-driven IDS, which can

easily manage the rising volume and complexity of data flow in the connected world of

today.

In addition to threat detection, AI equips IDS systems with powerful response

mechanisms so they can respond instantly and automatically to reduce risks. In

addition to reducing human involvement, this quickens the incident response procedure,

which is essential for avoiding data breaches and limiting potential harm.

As it will be possible to see in the chapter 4, we opted by using the Random Forest

27



Algorithm after getting the results of the performance presented by the table 4.7. We

got a satisfying performance from almost every algorithm based on the training using our

malicious traffic dataset. Afroz, Islam, Rafa, Samin and Maheen et al. [30] defines it

as an ensemble learning technique called Random Forest builds numerous decision trees,

each of which is based on a unique random sub sample of the initial training data. It adds

two layers of randomization during tree construction: first, by choosing only a portion of

features at each node split and second, by allowing the trees to develop naturally without

being pruned. This group of decision trees uses majority voting for classification tasks or

average forecasts for regression tasks to combine their individual predictions and tap into

their collective wisdom. With this method, over fitting is reduced, model generalization is

improved, and outliers and noisy data are robustly handled. Because it can take advantage

of unpredictability at several stages of the modeling process, Random Forest is effective

and frequently used.

2.5.8 Passive DNS

An important cybersecurity and network monitoring tactic is passive DNS, which focuses

on gathering and archiving past DNS information without actively querying or tampering

with the DNS infrastructure. Network traffic is continuously observed in a passive DNS

system, and information about DNS queries and answers is gathered and examined. With

the help of this method, organizations can track domain-related activities, investigate and

analyze network events, and improve security thanks to the priceless archive of historical

DNS data it offers [31].

Particularly helpful for a range of security and research needs is passive DNS data. It

facilitates the identification of malicious activity by exposing DNS request patterns linked

to malware, phishing, botnets, and other cyberthreats. Additionally, it helps with threat

intelligence, enabling businesses to proactively find IP addresses and domains that might

be malicious. Passive DNS can also be a very useful tool for forensic investigations and

incident response, assisting security experts in piecing together the timeline of events that

28



led up to a cyber incident. Passive DNS helps with network security, threat detection,

and cyberattack mitigation by providing a history of DNS resolutions [32].

In this work we count with an access to the CIRCL database [33], our partners in the

Passive DNS approach, which has released to us the use of their PyPDNS python library

which provide the queries to consult their database and use the informations in order to

develop a Passive DNS model that can identify potential malicious DNS.

2.5.9 PyPacker

Pypacker [34] is a python library that the main object are packet capturing and network

packet manipulation. It offers a range of tools and features that enable users to work

with, create, break down, and examine network packets at a low level. For example,

packet dissection lets users break down and examine network packets in order to extract

different packet attributes, including protocol information, source and destination IP

addresses, port numbers, and payload data. This makes it simple to analyze and work

with packets using these protocols, which is helpful for tasks like examining network

traffic and extracting particular data from packets. This is especially helpful for

complicated networking tasks involving several protocol layers.

2.5.10 Sci-kit Learn

A popular and potent Python machine learning library is called Scikit-Learn [35]. For

data scientists and machine learning practitioners, it is a priceless resource because it

provides a wide range of tools and functions for different aspects of machine learning.

For a wide range of machine learning applications, including dimensionality reduction,

clustering, regression, and classification, Scikit-Learn offers a standardized and intuitive

user interface. Its easy-to-use and thoroughly documented API makes creating, testing,

and assessing machine learning models more straightforward.

Scikit-Learn’s dedication to performance and efficiency is one of its main advantages;

the majority of its algorithms are written in low-level languages like C, which guarantees

29



fast computation. Additionally, it facilitates model selection, hyperparameter tuning,

and data preprocessing, forming a complete ecosystem for creating end-to-end machine

learning solutions. In addition to having a large selection of machine learning algorithms,

Scikit-Learn is well-known for its emphasis on model interpretability and evaluation. It

offers a number of tools for feature selection, cross-validation, and model metrics. With

all these features, Scikit-Learn is a must-have library for machine learning professionals,

regardless of experience level or volume of intricate real-world projects being worked on.

30



Chapter 3

Approach

In this chapter will presents the approach adopted to solve the problem introduced before,

presenting the architecture that was chosen and explaining how the situation was handled.

3.1 Proposed Solution

In order to achieve the solution to the problem related previously, it is essential to define

a network topology that satisfy the main reasons of using a SDN controller and a system

that support the idea of scalability that can handle the large amount of data with an

easy way to add more resources whenever necessary. With this idea in mind, the solution

scheme will be presented in two phases, the network topology and the system architecture.

3.1.1 Network Topology

Thinking in simulate a more realistic scenario, a set of hosts will be connected to a

virtual switch allowing communication between each other, and defining a collection of

Opendaylight nodes as the controller of the network, as it can be see in the figure 3.1.

31



Figure 3.1: Network Topology

The hosts will assume different roles in this work, as ordinary hosts, vulnerable hosts

and attackers. The Opendaylight cluster will allow a distributed deployment starting

with three nodes, in order to maintain the service work in cases of attack or some failure

resulting in the fall of one of this nodes. All the traffic generated in the network will be

monitored, captured and transmitted to the following part of the system that gonna be

presented in the next section.

3.1.2 System architecture

Searching for a system that can handle a real-time packet capture, is essential that it can

provide scalable resources satisfying any condition that is needed to process, transmit,

store and analyze the data during the process. As network traffic grows exponentially,

a scalable solution guarantee that the system can handle increasing volumes of packets

without compromising performance.

A scalable system enhances the efficiency of packet analysis and processing, ensuring

timely analysis and response. This is particularly critical for cybersecurity and network

monitoring, where any delays in packet processing can result in several consequences.

Also it allows fault tolerance and resilience, distributing packet capture and processing

across multiple nodes, ensuring redundancy and fault recovery in the event of a failure or

32



increased traffic load.

The main idea for this architecture can be seen in the figure 3.2 where it will permit

the system to capture, transmit, store, and analyze all in a scalable manner.

Figure 3.2: Scalable System Architecure

3.1.3 Packet capture

Analyzing the studies from the previous chapter, the mainly roads to capture the traffic

from the SDN networks is forwarding the packets to a packet analyzer or mirror the traffic

in the virtual switch to a new port and store it in a pcap file. Since we don’t want to

interfere in the flow of the network or on it’s performance, we opted for using the mirroring

option in the OVS.

In the documentation of the OpenVSwitch and OpenDaylight, them recommend the

usage of the tool TCP Dump., which is a packet sniffing and network analysis tool used in

Unix-like operating systems, allowing users to capture and analyze network traffic in real-

time and exporting it through PCAP files. TCP Dump provides a wide range of options

and filters to customize the packet capture process and extract specific information from

network packets.

TCP Dump can be combined with other tools, in-depth packet analysis and fits

perfectly to our architecture which can be used by the producer to sent the data to the

external system for the further processing. It’s important to note that TCP Dump

operates at a low-level network layer. The perfect scenario would it be a tool or an

application that could be run in a more higher level application which could be

33



connected to the ODL features.

When running TCP Dump, it listens to a specific network interface, capturing all

incoming and outgoing network traffic on that interface which will be the SDN interface

that connects to the Virtual Switch.

3.1.4 Data set Generation

To train the Artificial intelligence to recognize malicious packets, is necessary to collect

these types of packets and create data sets with some types of attacks. Data sets are a

crucial role in training artificial intelligence, as they serve as the foundation upon which

AI models learn and make predictions or decisions. This kind of information to the AI

models of examples and related points of the problem, allowing them to learn patterns,

relationships, and correlations.

With the training, the analyze algorithms can identify relevant features and extract

valuable information. This learning process enables the AI model to generalize knowledge

and make predictions or decisions on unknown data. This enables AI systems to adapt

and make informed predictions or decisions in real-world scenarios that may differ from

the training data.

In order to create this data sets, we will use the attacker host to execute a battery of

attacks and will store each of these generated packets in a PCAP file, which will be kept

in the HDFS node for further analysis. Also thinking in cover more malicious activities,

aa complementary module will be developed using a passive DNS technique.

3.1.5 Analysis module

The analysis stage follows after gathering both harmful and legitimate network traffic and

involves a thorough study of the data packets that were recorded. The analysis process

is diverse and includes a range of procedures and strategies to pick up on the smallest

details that could distinguish malicious from authorized activity.

The core of this research is the examination and dissection of packets. The core

34



components of each data packet are revealed through dissection. Examining the payload,

which comprises the actual data being transported between the source and destination,

as well as the packet headers is part of this. Analysts can spot telltale signals of malicious

intent because to the useful metadata provided by header information, which includes IP

addresses, ports, protocol types and timestamps.

Behavioral analysis is essential in addition to static analysis. Analysts keep track of

the behavior of network packets and flows throughout time. Unusual traffic patterns,

such as excessively high data transfer rates, repeated connections to domains that have

never been observed before, or patterns resembling port scanning, might all be warning

signs. This method is especially useful for identifying fresh threats that might not have

established signatures.

Machine learning techniques are rapidly being used into intrusion detection systems

to automate and speed up this process. These algorithms develop their recognition of

complex patterns linked to both benign and dangerous traffic as a result of learning

from prior data. This considerably improves the system’s capacity to identify previously

unidentified threats by enabling real-time examination of incoming packets against a

continuously updating knowledge base justifying the main idea of building an AI model

to help trough this process.

3.1.6 AI Model

For the development of the AI model we will balance the data set generated with all the

information needed for the AI to analyze and classify the data in a real time analysis.

This approach was based on some examples that were presented before in the state of

art, were the authors tests several machine learning algorithms trying to find the most

accurate to their problems.

In order to evaluate the best choice for our research, four main metrics were chosen

to give the best information trough the Algorithms in the test. And they are:

35



Accuracy

Accuracy is a fundamental metric that measures the proportion of correctly classified

instances among all the instances in the data set. It is calculated as the Accuracy A given

the number of true positives TP, the false positives FP, the false negative FN and the

true negative TN:

A = TP + TN

TP + TN + FP + FN
(3.1)

Recall

Recall measures the proportion of actual positive instances that the model correctly

predicted as positive. It focuses on the ability of the model to capture all relevant

instances of a particular class. It is calculated as:

R = TP

TP + FN
(3.2)

High recall indicates that the model is good at identifying most of the positive

instances, but it might have more false positives.

Precision

Precision measures the proportion of instances that the model correctly predicted as

positive, out of all instances predicted as positive. It reflects the model’s ability to make

accurate positive predictions. Precision is calculated as:

3.3:

P = TP

TP + FP
(3.3)

High precision means that when the model predicts an instance as positive, it is more

likely to be correct, but it may miss some positive instances (lower recall).

36



F1 Score

The F1 score is the harmonic mean of precision and recall and provides a balanced measure

of a model’s performance. It is particularly useful when there is an imbalance between

the classes or when both precision and recall are crucial. The F1 score is calculated as:

F = 2(P ∗ R)
P + R

(3.4)

The F1 score balances the trade-off between precision and recall, and it is especially

valuable when you want a single metric that considers both false positives and false

negatives.

3.1.7 Complete Solution Model

With the approach defined and the technologies that were explained in the last chapter we

reached the final mkodel that will be implemented as it show in image 3.3. Starting from

a virtualized network build on the top of the OVS tool, creating an virtual switch that

connect all the host and allowing Openflow Protocol. Then defining the ODL framework

as the controller of the virtual network.

Aligned to capture all the traffic, the TCPDump plays a pivotal role in gathering all

the inside traffic and sending it to the queuing module, which have kafka and zookeeper

tool in order to receive this informations and pass it to the Storage Module for possible

further monitoring and for the analysis module.

In the analysis the development of a AI model where it can check each packet

information and give a prediciton if it is malicious or not.

37



Figure 3.3: Complete Technologies Architecure

38



Chapter 4

Implementation

This chapter will explain the implementation of each one of the layers of the system

architecture and the configuration of the network, describing the problems encountered

and how they got surpassed, as well all the configuration about the system.

4.1 Network Deployment

The first part of the implementation is to deploy the network with all the hosts

connected and setting the controller to the traffic. The network was divide in two, one

(SDN topology figure 3.1) created by using a virtual machine inside the IPB network

and another (Solution Architecture figure 3.2) using several machines also in the IPB

network were all the system will be connected.

4.1.1 Controller Deploy

Since it was possible to see that the controller will have three nodes to test the distributed

deployment of the Opendaylight controller, each of these nodes will have the same system

specification, presented by the table 4.1.

39



Operating System 22.04.1-Ubuntu GNU/Linux

Storage 210 GB

Processor AMD EPYC 7452 32-Core Processor

RAM 32 GB

IP Node 1 192.168.191.86

IP Node 2 192.168.194.4

IP Node 3 192.168.191.14

Table 4.1: Controller Host Information

The Opendaylight controller used is the version Oxygen 0.8.4, the configuration file

is presented in Appendix B.2. This controller is based on API as explained before and

all functions that it can execute is necessary to install some inside feature for the desired

purpose, so to install and configure it, was necessary to follow these steps (Complete

Script in Appendix B.1):

1. Update and Upgrade the system.

2. Opendaylight is a java based application so is necessary to install java as well.

3. Configure the Java path in the environment variable.

4. Download the controller package in the distributor website.

5. Extract the files in a directory.

6. Execute the file "karaf" inside the directory /bin of the extracted data.

7. If it’s everything set, the Opendaylight terminal will open (figure 4.1)

With all this set up, it’s possible to start working with the controller. The controller

come with only basic functions to administrate the resources, like installing the wanted

features for the desired purpose.

In this work were selected several features released by the Opendaylight to reach our

goals, each of them are listed and explained ahead:

40



• odl-dlux-core: serves as the foundation for building the DLUX user interface,

providing a framework for creating a web-based GUI that enables network

administrators to visualize, manage, and monitor the SDN infrastructure. (figure

4.2)

• odl-dluxapps-nodes: enhances the DLUX user interface by focusing on network

nodes’ visualization, management, and monitoring. It allows network

administrators to view and interact with network devices, gather information

about node configurations and status, monitor node health and perform

node-specific management actions.

• odl-dluxapps-topology: provides network visualization, topology monitoring and

analysis capabilities. It allows network administrators to view the network’s physical

and logical structure, monitor real-time updates, analyze paths and receive event

notifications related to the network topology. (figure 4.3)

• odl-restconf: Network administrators and developers can programmatically interact

with the ODL controller, manage network configurations, retrieve operational data,

receive event notifications and automate network management tasks. RESTCONF’s

RESTful nature and adherence to standardized data modeling making it a powerful

tool for implementing SDN-based network management and control.

• odl-L2Switch: enhances the OpenDaylight controller’s capabilities by providing

Layer 2 switching functionalities. It allows for efficient packet forwarding, MAC

address learning, loop prevention, VLAN support and integration with other ODL

modules, enabling network administrators to manage and control Ethernet

switches in an SDN environment. Some of the main advantages are: MAC address

learning and association, Packet forwarding, Broadcast and multicast handling,

VLAN support.

• odl-mdsal-clustering: ODL-MD-SAL-Clustering provides a robust and scalable

solution for building highly available and reliable SDN deployments. It leverages

41



clustering techniques to distribute the workload, improve performance, and ensure

fault tolerance, making it suitable for enterprise networks, data centers, and

service provider environments.

All these features were essential to the development of this work, each one of them

since you install them in the Opendaylight terminal they will start working after a few

minutes. The only feature that need some configuration is the MD-SAL clustering, where

is needed to rewrite the IP addresses of the others nodes of the cluster in each of the

Opendaylight machines.

Figure 4.1: Opendaylight terminal

42



Figure 4.2: Opendaylight Dlux interface

Figure 4.3: Dlux Topology feature

4.1.2 Virtual Switch Deploy

To switching service, it’s used the OpenVSwitch version 2.17.5. To use and configure the

service is need to follow some steps (Appendix C.1):

43



1. Update and Upgrade the system.

2. Install the service

3. Check if the system is running executing "sudo ovs-vsctl show"

4. Create the bridge where the hosts will connect

5. Define the protocol version that you desire (OpenFlow 1.3 used in this work)

6. Turn the bridge interface to UP state and assign the network ip address that the

OVS will work on (figure 4.4)

Figure 4.4: Bridge interface

After this procedure the service is ready to start to be used. To connect the hosts

in the OpenVSwitch network, is necessary to create a Tun/Tap device to each of the

hosts that are going to be connected to the switch, which is a virtual network device that

allows user-space programs to interact with network traffic at the network layer (Example

of interfaces in Appendix D.1). The main steps to connect a host to the switch are:

1. If it is a virtual machine create a Tuntap device.

2. Add the interface in the Open Vswitch through "sudo ovs-vsctl add-port bridge

tuntap_device".

3. After adding all the host, it’s necessary to set the controller IP with the command

"sudo ovs-vsctl set controller bridge_name TCP :ip_of_controller:controller_port".

44



4. Check if the device and the controller were added in the bridge: "sudo ovs-vsctl

show" (figure 4.5 or Appendix C.2).

Figure 4.5: Bridge with devices

4.1.3 Host Deploy

In order to deploy the hosts in a way that we can simulate attacks and operate them

to execute some tests, we opted to use virtual machines to deploy this hosts, were there

going to be three types of hosts: Vulnerable machine, Attacker machine, and the common

hosts.

When starting the VMs is necessary to attribute their network device to the

Tun/tap port created in the previous section of the OpenVSwitch which will allow the

hosts communicate to each other inside the OpenVSwitch network. Also since

OpenVSwitch doesn’t work with a DHCP as explained in the basics configuration of the

documentation[36], is necessary to configure the IP address of all hosts inside itself,

which can be done using the commands with root privileges:

• ip addr add "ip_address/netmask" broadcast "broadcast_address" dev

"net_interface"

45



• ifconfig "net_interface" "ip_address" netmask "netmask_address" broadcast

"broadcast_address"

With the IP addresses set, to enable the communication now is just necessary to define

the OpenVSwitch bridge as the default gateway of the packets sent by the host. This can

be achieved using the following command with root privileges:

• route add default gw "ip_of_gateway"

The Vulnerable machine will have the system specification presented by table 4.2.

where it will run a metasploitable 2 image which is preloaded with a variety of intentionally

vulnerable software, including outdated and insecure versions of web servers (such as

Apache and Tomcat), database servers (such as MySQL and PostgreSQL), and other

network services (such as FTP and Telnet). Additionally, common vulnerabilities and

misconfigurations are present in the system, making it an ideal target for testing various

exploitation techniques.

Operating System Linux metasploitable 2.6.24-16-server i686 GNU/Linux

Storage 16 GB

Processor 1 core gpu

RAM 4 GB

IP 20.1.1.2

Table 4.2: Vulnerable Host Information

The attacker host, will count with a Kali linux image[37], running in the system

specification presented by the table 4.3. with versatile operating system specifically

designed for penetration testing, ethical hacking, and cybersecurity professionals. It is

an open-source distribution built upon the Debian Linux distribution and provides a

wide range of tools and utilities for various security-related tasks, that will fit in the

tests and to build our data set with these attacks.

46



Operating System Linux kali 6.1.0-kali5-amd64 x86 64 GNU/Linux

Storage 90 GB

Processor 1 core gpu

RAM 8 GB

IP 20.1.1.3

Table 4.3: Attack Host Information

The common hosts will run a simple linux server image, and have the system

specification in the table 4.4. they will have the role of generate normal traffic, to

execute performance tests in the SDN network and in the future to test if the AI can

differ their normal traffic to the malicious traffic.

Operating System Ubuntu 22.04.2-live-server-amd64 x86 64 GNU/Linux

Storage 12 GB

Processor 1 core gpu

RAM 2 GB

IP 20.1.1.4 & 20.1.1.5

Table 4.4: Regular Host Information

4.2 Queuing System

Apache Kafka and the Apache Zookeeper tool were used for the queuing system of this

work. Zookeeper is necessary to execute the Kafka broker leadership election and the

topics partition, as well as to maintain the state of all nodes in the cluster. Both of them

have a main role to execute in the queuing method.

Kafka assumes the distributed messaging system that provides a platform for building

real-time streaming applications, handling the high volumes of data streams in a fault-

tolerant and scalable manner. Kafka allows producers to publish messages to topics, and

consumers can subscribe to those topics to receive and process the messages as explained

47



in previous chapters.

Zookeeper serves as a distributed coordination service that provides a centralized

infrastructure for maintaining configuration information, naming, synchronization, and

group services in distributed systems. It ensures that distributed processes or

components can coordinate and synchronize their activities effectively.

Kafka uses ZooKeeper for cluster membership and leader election where keeps track

of the Kafka broker nodes (servers) and their status. It helps in determining which broker

acts as the leader for a given partition and handles leader election in case of failures or

changes in the cluster. Also is used to store and manage metadata related to topics, such

as the number of partitions, replication factor, and the mapping of partitions to brokers.

This information is crucial for proper data distribution and fault tolerance within the

Kafka cluster. The four nodes of this services utilizes the system specification defined in

the table 4.5.

To configure and execute this services is necessary to follow these steps:

1. Update and Upgrade the system

2. Install the java

3. configure the SSL certificates to have access through the services

4. Download and install the service

5. configure the operational part of the Kafka/zookeeper

6. Start the service

48



Operating System Debian 5.10.136-1 x86_64 GNU/Linux

Storage 150 GB

Processor KVM 4-Core Processor

RAM 16 GB

IP Node 1 192.168.44.101

IP Node 2 192.168.44.102

IP Node 3 192.168.44.103

IP Node 4 192.168.44.104

Table 4.5: Kafka Host Information

4.2.1 Data distributing and message sizes

Messages in Kafka are ordered per partition. When consuming from a topic with multiple

partitions, the order of retrieved messages is not guaranteed to match the publishing order,

bringing a serious problem when we talk about network packets, since they need to be

together in order to have a trustful and complete data. Having only one partition ensures

message order, but it fails in the mission of bringing scalability to this work, so to fix

this problem was used a strategy of resizing the message size to don’t leave any packet

information in different messages.

When talking about how Kafka works in different partitions and message sizes, it’s

necessary to test and compare the performance of each characteristics to combine the

best options, bring the best performance that it can take. This comparisons are gonna

be made in the following chapter of results and discussion.

4.3 Storage System

To storage all the packet files received by the Kafka, the HDFS storage was chosen using

the version 3.2.2 of the Apache Hadoop. To install and execute it’s services were used

similar steps like the other tools:

49



• Update and upgrade the system.

• Install and configure java environment variables.

• Download and install the Hadoop tool.

• Configure the services and it’s nodes.

• Configure the access through the SSL certificates.

• Start the services.

No bigger problems or variations were found in this part of the implementation. The

specification of the machines where the nodes were installed are defined in the following

table 4.6:

Operating System Debian 5.10.136-1 x86_64 GNU/Linux

Storage 150 GB

Processor KVM 4-Core Processor

RAM 8 GB

IP Node 1 192.168.44.105

IP Node 2 192.168.44.106

IP Node 3 192.168.44.107

IP Node 4 192.168.44.108

Table 4.6: HDFS Host Information

4.4 Capture system

Analyzing the studies made by other authors in the chapter 2, was possible to see that

when talking about the security of SDN, the authors uses forwarding rules to redirect the

traffic coming to the controller to a external tool like Packetfence or Snort. This kind of

approach interferes directly in the traffic performance of the network, and the objective

of this work is to mirror this traffic in order to don’t affect it’s performance.

50



Looking for some techniques or approaches used to solve this problem, nothing that

was implemented attend to this criteria, same implementations using forwarding rules

to external tool. Beside one only experiment found ten years ago, implemented in java

language that could replicate and capture this traffic in a maven application. But it was

designed for libraries and components that ended through the time.

So looking for solution in the switching layer, was found by documentations of the

controller and other experiments that TCP Dump python library could handle this

problem, by capturing the Openflow traffic that comes to Opendaylight.

To capture the traffic we used the python language, which has large amount of

information and libraries that can contribute to the progress of this work. These

libraries are:

• confluent_Kafka; A feature-rich and high-performance Python library for

interacting with Apache Kafka. It provides a comprehensive set of functionality

for producing and consuming messages, supporting schema registry integration,

delivery reports, partition management, consumer groups, security features, and

extensive configuration options(Appendix E.2).

• hdfs: HDFS library in Python enables developers with the Hadoop System using

the Python programming language. It provides functionalities for file operations,

data streaming, configuration, authentication, error handling, and integration with

the Hadoop ecosystem.

• subprocess: This library has a flexible interface for managing sub processes and

executing external commands. It allows you to automate tasks, run shell commands,

capture output, and interact with external programs seamlessly from within your

Python scripts. This library is essential to execute the TCP Dump process that is

installed inside the machine, and to capture the response.

With these libraries it’s possible to execute a code where it open a process for the TCP

Dump tool to capture the traffic that reaches the controller. To differ the traffic of the

51



controller with the normal traffic of the computer, we capture only the packets that goes

to the port of the controller (6633). After capturing the traffic, all the packets are wrote

in a PCAP file, which will be published in the Kafka with the confluent Kafka library.

We establish a connection through SSL certificates, decoding and sending the data of the

PCAP, distributing the information among the nodes. In order to solve the problem of

network packets been cut by the size of the Kafka messages, the script get the information

from the packet header of it’s size and if is lower or equal of the size remaining in the

message, it will fit in and send. Besides if is bigger than the space remaining, it will send

the message with the current content and start a new message with this packet. All this

process can be easy seen in the next figure 4.6 and the code are presented in Appendix

E.3.

Figure 4.6: Capture Fluxogram

52



4.5 Dataset Collection

After all the environment set, it’s possible to start the attack phase, where all the attack

vectors that are going to be tested are executed by the attacker host focused in the

metasploitable host. Each of these attacks are going to be captured by the capture

system, and sent for the persistent storage (HDFS) labeled by the tool and categorized.

The attack vectors that are going to be tested are listed in the table bellow, each of

them were tested and captured part of each other, searching to identify and isolate the

packets of each attack. The results of these collection can be seen in the next chapter.

Attack Vector Description Tools

Network

vulnerabilities

mapping

Network mapping’s objective is to collect

information about the network’s assets,

such as IP addresses, open ports, operating systems,

services running on hosts

and network protocols in use. This data assists

administrators and attackers in

understanding the network’s structure, aiming to

discover weaknesses that could be

exploited by attackers to compromise the target’s

confidentiality, integrity or availability.

OpenVAS

Port Scan A port scan is a method for locating open ports on a

target machine or network.

Sending network packets to various ports on the

target and evaluating the answers

to identify whether ports are open, closed, or

filtered is the process.

Nmap

Continued on next page

53



Table 4.6: (Continued)

DDoS A DDOS attack is a malicious effort to interrupt the

regular operation of a network,

service, or website by flooding it with unauthorized

traffic. The assault is called

distributed because it often involves numerous

hacked devices working together to establish

a botnet in order to produce excessive bandwidth.

Hping3

Brute force Brute force attacks in Telnet involve systematically

attempting multiple combinations of

usernames and passwords to gain unauthorized

access to a remote Telnet server.

Telnet is a protocol that allows users to remotely

access and manage devices

or systems over a network.

Telnet

Misconfigurations Misconfiguration and weak password attacks are

common techniques used

by attackers to exploit vulnerabilities in systems and

gain unauthorized access.

CVEs

4.6 Analysis module implementation

We methodically divide the development process for the analysis module into separate

phases, each of which contributes to the establishment of a sophisticated AI model capable

of analyzing collected network traffic in the SDN environment. Beginning with data

collection and preparation, where the raw network packets are ingested and converted into

a suitable format for subsequent analysis, this complex method entails a number of clearly

defined processes. The module then starts the feature extraction and engineering process,

obtaining important properties and parameters from the packets that help determine

54



whether they are malicious or benign. The process will be presented and each of the

choices are going to be used in the end of the work.

4.6.1 Traffic Analysis

Starting thinking about the traffic analysis, the first main step is to be capable of braking

the packets in the parts that are important for the process. Such as the header information

and the body of the massage inside the packet.

Working with the PyPacker library it is possible to access all the package information

gathered inside the PCAP file. As it can be see in the code presented in the appendix

E.6 we run through all the packets, collecting and storing the information that we judged

necessary to identify the possibility of malicious activity.

Trying to classify and select the most important fields to train our model, we reached

in these list of information that can be extracted from the packets, based on the type of

attacks that we executed and explained in the data set collection.

• Internet Header Length: The IHL has four bits that specify the number of 32-bit

words in the header

• Service Type: This field provides the queuing of the IP packets in their transmission

• Total Length: This is the total size of the header and data in bytes, where the

minimum size of the Total Length field is 20 bytes and the maximum size is 65,535

bytes

• Identification: If the IP datagram is fragmented (broken into smaller pieces), the

ID field helps identify fragments and determine to which IP packet they belong to

• IP Flags: This is a 3-bit field that uses a few possible configuration combinations

of control flags for fragmentation

• Fragmentation Offset (Fragment Offset): The Fragment Offset field, which occupies

13 bits, performs packet tracing by indicating the data bytes ahead. It does this by

55



identifying where in the original packet a specific fragment belongs.

• Time to Live (TTL): TTL restricts the datagram’s lifetime by forcing undeliverable

datagrams to be automatically deleted, preventing packets from an unending cycle

in the internet system.

• Protocol: This 8-bit field specifies the protocol used in the packet’s data section.

• Header Checksum: The Header Checksum field recognizes any communication faults

in the header.

• Source IP Address: IPv4 address of the sender of the packet

• Destination IP Address: IPv4 address of the receiver of the packet

• Source port: Specifies the port number of the sender.

• Destination port: Specifies the port number of the receiver.

• Sequence number: During a TCP session, how much data is sent is indicated by

the sequence number. Utilizing this sequence number, the recipient replies with an

acknowledgement.

• Acknowledgment number: Used by the receiver to request the next TCP segment.

• TCP Flags: Flags take up 9 bits, also known as control bits, are employed to create

connections, transmit data, and break connections.

• Window: The receiver’s acceptable number of bytes is specified in the field. In order

to inform the sender that it would like to receive more data than it is currently

receiving, it is used by the receiver.

• TCP Checksum: Used for a checksum to check if the TCP header is OK or not.

• Urgent Pointer: The urgent pointer serves as a marker for the end of the urgent

data when the URG bit is set.

56



• Body: Where all the data thar are willed to be received by the receiver are stored.

With this collection of data, we can also calculate and identify some important

information, such as the amount of packets that are been exchange between hosts, the

ports that are been loaded with information from the sender, the validation of the data

inside the packet. Now with this field is possible to train the AI model.

4.6.2 Passive DNS Implementation

As mentioned before the passive DNS solution are implemented based on library

developed by the CIRCL Passive DNS database, for querying Passive DNS records,

extracting relevant data, and preparing it for analysis.

The data for each domain that will be searched on are presented as a string,

encapsulating multiple records like:

• Rrname: DNS record name

• Rrtype: Type of DNS record

• Rdata: Data associated with the DNS record

• Time_first: Timestamp of the first occurrence of the DNS

• Time_last: Timestamp of the last occurrence of the DNS

with all the information that we can catch from requesting to the CIRCL database, we

can perform some operation in order to try to identify the legitimacy of these Domains.

Based on a combination of approaches explored by Khalil, Yu, Guan[38]. and Liu, Zeng,

Zhang, Xue, Zhang, [39]. We reached in some important lexical and resolving features of

the DNS such as:

• Number of distinct type ’A’ records

• Number of distinct ’NS’ records

57



• IP entropy of domain name

• Similarity of NS domain name

• Max length of labels in sub-domain

• Length of domain name

• Character entropy in DNS name

• Number of numerical characters

• Max length of continuous consonants

• Max length of continuous same alphabetic characters

• Max length of continuous numerical characters

• Max length of continuous alphabetic characters

• Ratio of numerical characters

• Ratio of vowels

By identifying and calculating these characteristics of the DNS we can manner a way

of analyze the legitimacy of these servers, and train an model capable of calculating and

interpret these information by extracting the DNS packets coming from the capture traffic.

In appendix E.6 it’s possible to see the code developed in these step. The code consist

in some steps:

• Extract DNS packets from upcoming traffic that were captured

• Extract the Domain Name Server information that are relevant for the DNS consult

• Get information about each of the DNS in the CIRCL database

• Calculate the previous characteristics from each unique DNS

• Analyze with the model developed for the DNS Analyze

58



4.6.3 Machine Learning Algorithm Tests

After the development on how to extract the important information and create a dataset

with examples of what are malicious or not in the common traffic or in SDN, it is necessary

to test a variety of machine learning algorithms leading us to a result that can effective

classify the captured information in benign or not.

For this part we count wuth the scikit-learn library where we could find a great pack of

algorithms to test their performance, the metrics defined to evaluate these approaches of

machine learning were presented in the previous chapther, the Accuracy, Recall, Precision,

f1-Score.

Taking in consideration each field, and data explained in the development of the traffic

analysis and in the Passive DNS, we obtained the results in the AI tests as presented by

the table 4.7 and table 4.8.

Machine Learning Algorithm Accuracy Recall Precision f1-Score

AdaBoost 0.949809 0.949893 0.949893 0.946893

Decision Tree 0.939809 0.929421 0.914853 0.929893

Gaussian Process 0.939231 0.949893 0.924345 0.939427

Linear SVM 0.919619 0.909423 0.912643 0.909872

Naive Bayes 0.933903 0.953557 0.939571 0.936580

Nearest Neighbors 0.959524 0.959893 0.929454 0.919732

Neural Net 0.951047 0.969574 0.949361 0.929467

RBF SVM 0.919619 0.909893 0.913680 0.929787

Random Forest 0.969809 0.944493 0.979893 0.967133

Table 4.7: Traffic Analysis Machine Learning Result

59



Machine Learning Algorithm Accuracy Recall Precision f1-Score

AdaBoost 0.937610 0.899375 0.881552 0.925617

Decision Tree 0.893141 0.878234 0.875853 0.876753

Gaussian Process 0.939642 0.909054 0.874004 0.891524

Linear SVM 0.935195 0.914256 0.931611 0.923415

Naive Bayes 0.891376 0.854155 0.877088 0.853652

Nearest Neighbors 0.939259 0.905183 0.876643 0.894211

Neural Net 0.941724 0.909830 0.920884 0.937223

RBF SVM 0.935195 0.928686 0.931611 0.915929

Random Forest 0.945462 0.929115 0.920910 0.941583

Table 4.8: Passive DNS Machine Learning Result

Analysing the results, we could conclude that the most eficient algorithm based on it’s

performance is the Random Forest Algorithm for the Traffic Analysis model with around

96% of accuracy in identifying the malicious packets, and in the Passive DNS approach

although the Random forest have the highest accuracy, the RBF SVM algorithm show

better results in a wide overview, keeping more consistent results in the metrics.

60



Chapter 5

Experiments and Discussion

This chapter brings the results of the experiments performed, explaining why and how it

was conducted, discussing the results and the reasons of why that occurs. These

experiments brings a performance test, where we wanted to know the best configuration

and distribution of the queuing module (Kafka message size and partitions), the

throughput of the communication between the nodes in a SDN network, the

performance of the packet capture module, the AI model performance in a stress test

and in a regular situation and a example of how the system worked in it’s final form.

5.1 Tool used in the experiment

Since this work is focused on performing a SDN network inside the most real situation

that is possible, we consider that the maximum network bandwidth that real devices like

computers with ethernet cables could handle, working around 1GB/s.

To simulate this kind of network traffic, to test all the experiments that were presented

previously was chosen the Iperf3 tool. An open-source application used as a network

testing tool designed to measure and analyze network performance. It works in a client-

server architecture where two hosts connect between themselves and transmit traffic based

on bandwidth and time that the user desires. It fits perfectly to simulate our conditions

and evaluate throughput, packet loss and latency.

61



5.2 Network Throughput

Using the iperf3 tool was possible to simulate the data transfer between hosts in order to

evaluate and analyze how a SDN network act in a real scenario. To bring a comparison it

was tested the throughput using the same conditions with and without an SDN controller

managing the network. Simulating the bandwidth of 1GB/s during the communication

between the hosts, the standard network could maintain a performance of 998 Mbits/sec,

while in the other side the SDN network could perform in 972 Mbits/sec.

The Throughput collected in the experiments can be seen in the figure 5.1. Even

performing in a very similar average bit-rate of the standard network, is possible to see

the inconstancy of the performance during all the test. This downgrade and variation

can be explained by the fact that the process of receiving the traffic on the OpenVswitch

and forwarding it to the controller for the switching decision process can cost in the

performance on delivering a quality and constant server, but even with this negative side,

the values where close to the common network.

Figure 5.1: Network Throughput

62



Number Packets
Received

Packets
Captured

Packets
Dropped

Packets Loss
(%)

Tests

1 2213793 2213793 0 0
2 4654748 4654583 165 0,003
3 4416509 4416393 116 0,002
4 4583945 4583710 235 0,005
5 4685000 4682572 2428 0,05

Table 5.1: Packets Capture Result

5.3 Capture module performance

To validate if the capture approach can fit and handle the objective of this work in

capturing the maximum amount of packets and don’t lose a significant quantity of this

information, is important to evaluate the capacity of receive, capture and send information

through the system.

Simulating the same scenario of the previous experiment, using the Iperf3 to perform

the packet exchange between the hosts in the maximum amount of bandwidth that it

can takes, the capture module worked in a period of 60 seconds, the same of the

throughput test, registering the amount of packets received, captured, and dropped

before the transmission to the Kafka start.

The results are presented in the table 5.1. It is possible to see that even with the

large amount of the data received, the module performed really well, following a pattern

of losing more packets when the amount of packets grow, but even with this lose, the

quantity of these leaks is minimal.

With the results, the approach used in this work is validated, were in normal traffic

conditions (in a daily situation of a network) this amount of packets tends to be lower

than the amount registered in the experiment, and in the vulnerabilities/attacks test, it

will fits to the objective of capturing all these malicious packets to generate our data set.

63



5.4 Kafka Performance

Since the Kafka service is a scalable tool that allows you execute different configurations,

it is necessary to test and evaluate the performance of each features seeking the best

configuration. When we talk about security in the network, every second counts, so

every gain that we can achieve by changing the configurations is important. The most

important features that Kafka allows us to set is the number of partitions and the size of

the messages that it can receive.

5.4.1 Kafka Partitions

The partitions are essential in scalability and redundancy in the Kafka work, where each

topic you create in the service will already have 1 partition where it will store the data

sequentially, but these partitions can be defined in the moment that you create a topic,

and it will spread the data received by the messages among the partitions distributing on

each server. With this distributing with the same number of partitions in each server, it

is possible to replicate the data and guarantee the fault tolerance.

So searching for the best amount of partitions to the work, were tested a range of 1 to

4 partitions. Thhis number comes from a suggestion recommended by the documentation

of the Kafka manual, where if we are working with a 1000 Mb/sec we need to divide by

the amount desired by the capture module, reaching an amount of 1 to 4 partitions.

The result of this test can be seen in the figure 5.2, where when we increase the

number of partitions, the delay of the process in transmitting the information to the

Kafka decrease on a significant amount. Using the default configuration of a topic, the

delay reached in an average rate of 213 seconds, and when we use the maximum amount

that was defined, the performance increased to a range of average rate 3,02 seconds, been

the best choice to this work.

64



Figure 5.2: Kafka partitions performance

5.4.2 Kafka Messages

The size of Kafka messages has a direct impact upon the amount of network bandwidth

necessary for data transmission. Kafka doesn’t support large data to be transmitted in on

a one way to the service. Larger message sizes need more bandwidth, resulting in greater

network traffic. According to the confluent Kafka manual, the maximum size supported

is 1 MB.

Using the capture module to test the message sizes, we can see that we are handling

gigabytes of files because of the enormous amount of network packets received by the

capture module. It will be necessary to test different sizes of messages, using the max

size that can bring the best performance of the transmission to the Kafka module. The

tested sizes were:

• 128 KB

• 256 KB

• 512 KB

• 1024 KB

65



The result of this test can be seen in the figure 5.3. Already using the best partitions

division presented in the previous subsection 5.4.2 (4 partitions), we can see that the time

influences directly on the performance of the transmission to Kafka server. Where greater

the size, the speed of transmission increase as well.

It’s possible to see that when increasing the size of this message the performance of the

4 partitions configuration increased in more the 2,5 seconds less than when using 128KB.

Even the messages been smaller it turns necessary to send more messages consuming

bandwidth of the network which can cause this performance decrease with smaller sizes.

Figure 5.3: Kafka message size performance

5.5 Data Set Results

On the production of the data set related with the attacks executed in this work, we

reached the number of 16.687.656 total packets (table 5.2), which provided for us

consistent and balanced data set for the training model.

66



Type of Packet Total

Benign Packets 4.895.885

Network Vulnerability Mapping 1.682.543

Port Scan 741.083

DDoS 9.340.748

Brute Force 25.152

Misconfigurations 2.245

Table 5.2: Dataset packets result

5.6 AI analysis

As presented in the subsection 4.6.3, the usage of the Random forest Algorithm for the

traffic analysis and the RBF SVM Algorithm for the Passive DNS analysis, showed a good

performance on identifying the malicious activities in the reaching respectively 96% and

94%.

But for concluding if this approach is feasible in a real environment, it is necessary to

validate the time that the analysis takes to realize all the process. In order to identify the

time spent by the code, we divided the timing in the 3 main process of the code:

• Consume of the Queuing module

• Processing the packets for the Traffic Analysis

• Processing the packets for the DNS Analysis

• Execute Traffic Analysis Model

• Execute Passive DNS Analysis Model

In the image 5.4, we can see the amount of time that all the process is gonna take

with worst case with more than 1 million packets and around 500 DNS packets with a

67



fast consumption around 1.30 seconds, to parse all the captured packets took a time of

36 seconds to get inside of each packets and extracting all the information needed in

the traffic analysis, now in consulting the passive DNS database of CIRCL to get the

information needed for the analysis it took around 194 seconds. When executing the AI

model responsible to analyze the traffic it run is a period of 2.71 seconds, now during the

analysis of the Passive DNS analyze it reached a execution time of 9.07 seconds. Reaching

a total of 246 second which is not a good result for an IDS system.

Figure 5.4: Runtime Stress Performance

If we consider a more common scenario with distinct hosts exchanging an amount

of 10.000 packets which 120 are DNS packets we would reach a performance around 93

second (figure 5.5), while maintains a fast performance on the general traffic but with a

slow processing in the Passive DNS solution.

68



Figure 5.5: Runtime Regular Traffic Performance

Trying to reach the main problem of the delay on the Passive DNS performance we

concluded that the amount of possible requests realized in the CIRCL database have a

quota limit which don’t allows us to execute an extensive check in DNS packets captured

with a 0.5 seconds delay between each access, this may not be so efficient for a IDS system

which required a near real time analysis, causing the delay presented before.

So to present a system which can function in a real world scenario we can isolate the

general traffic analysis module an get a result of 1.3 seconds as can be seen on image

5.6, which bring an efficient form to a real world scenario, almost reaching a real time

performance, only having a 1 second delay to consume the data from the scalable

architecture

69



Figure 5.6: Runtime Traffic only Performance

5.7 Real Case Scenario

In this section will be presented an example of a full process execution of the attack been

executed, as well as, the process handle each part of it.

To starts we prepared a regular host and a attack host on the SDN network. As we

can see in the image 5.7, the regular host has the IP 20.1.1.2 and the image 5.8 shows the

attacker host, with IP 20.1.1.4. Checking in the Opendaylight on image 5.9, it is possible

to see by the Ether (Hardware Address) on the images that the hosts are up and the

network connected to the SDN controller.

70



Figure 5.7: Real Scenario Regular Host

Figure 5.8: Real Scenario Kali Host

71



Figure 5.9: Real Scenario Topology

With the scenario set and ready to go we run the capture module code (appendix E.3)

as it was explained on the diagram 4.6 of section 4.4. When the capture start, a simple

message is displayed on the terminal indicating the capture configuration and that it has

started (image 5.10). It’s also possible to turn of the module by pressing CrtlC which will

bring a little report about the amount of packets that were captured and transmitted to

the queuing module.

Figure 5.10: Real Scenario - Capture Module

As showed by the last line of the terminal in the image 5.8 the type of attack we

executed in this example is a port mapping technique, using the NMAP tool provided in

the Kali Linux OS.

In the Analysis Module we can see the packets been consumed and been processed. In

the image 5.11, it is possible to see how the code received the raw data sent by the queuing

module, and through the use of the PyPacker library as explained in the previous chapter,

all the essential data coming from these packets is properly categorized and stored in a

72



CSV file. File that will be used by the AI model to predict if any of these are malicious

or not. The output of this processing and extraction procedure can be visualized in the

image 5.12.

Figure 5.11: Real Scenario - Analysis Module - Raw Packets

Figure 5.12: Real Scenario - Analysis Module - Processed CSV

Now in the processing of Passive DNS packets, the final CSV is different, because of

the field required to be analyzed. First, the previous packets that contain DNS protocols

73



are split from the others, and then a new process is made to extract the information.

As it can be seen on image 5.13, it starts with decoding and identifying the DNS query

responsible for that packet, and next it starts a query on the CIRCL database bringing

the information available for that specific DNS, where all of the results of the queries are

stored for the next step.

With the CIRCL information it’s necessary to execute the process of calculating some

of the characteristics presented before on section 4.6.2, turning the information to the

database into a full characterization of each domain found on the traffic. The result is

stored in another CSV file as presented on image 5.14, that will be used in the AI model,

classifying as malicious or not.

Figure 5.13: Real Scenario - Analysis Module - Passive DNS Process

Figure 5.14: Real Scenario - Analysis Module - Passive DNS Characterization

Now with all the information properly processed, the Analyzer execute the prediction

based on each field of the information, and if any packet contains a malicious behavior

he will notify the user by presenting a message containing the host responsible for that

traffic (image 5.15).

74



Figure 5.15: Real Scenario - Analysis Module - Warning Result

75





Chapter 6

Conclusions and future work

This work was developed jointly with the “CybersSEC IP - CYBERSecurity SciEntific

Competences and Innovation Potential (NORTE-01-0145-FEDER-000044)” which

provides the structure to develop the described architecture of this work. The solution

found is based on the studies identified in the systematic review, unifying knowledge to

bring the resolution of this work.

Using the researches made previously by scientific community, the deployment of the

SDN network was a success where it’s possible to add more virtual machines in the network

to simulate and work with any scenario wanted. Also based on Oliveira and Pedrosa[16]

solution to a scalable topology, was possible to link our capture module and SDN topology

to a more complex architecture were all data could be stored, replicated and consumed

whenever needed.

Taking into consideration our experiments made in the last section, it’s possible to see

that the capture solution performed really well, keeping a very low rate of packet loss by

varying between 0,002% and 0,005%, where in cases of intense network traffic it reaches

0,05%. Grouping and sending almost all the packets that passes through the sniffer.

Now about the scalable topology, it worked successfully where the Kafka nodes

stored correctly the traffic captured in the SDN topology, reaching a 0.25 second in the

transmission of the data, and the consume rate reaching a 1.3 seconds. These results

brings to us the successful usage of a scalable system for a real scenario which new

77



nodes are always welcome due the growing number of possible hosts in the network.

Talking on the solution proposed for the Intrusion Detection System, the main module

for analysing the general traffic of the hosts get an accuracy of 96% on finding the malicious

packets, during a period of time of 0.94 seconds (Traffic Parsing + Traffic Analysis). When

including the time of consumption reaching 1.3 seconds in the total process duration. The

Passive DNS solution shows promising results where the analysis module on identifying

malicious DNS get a positive result of 94%, showing reliability but for it’s usage in a

Intrusion Detection System would be necessary an improvement in the maximum quota

available for the requests in the CIRCL database for fastest responses.

6.1 Future Work

As a first step on researching the possibilities of providing security to a SDN architecture,

this work showed promising results, with a good performance in capturing and consuming

traffic and also providing a scalable system for this solution.

This work is the first of a large variety of possibilities for the future. It only shows

a small part of the power and the potential of the SDN and more extensive cases that a

IDS can cover. With the promising results of this work, in the future will be needed more

test and work to different scenarios.

To start this solution needs to be tested in a real SDN implementation scenario, with

modern physical switches that allow the Openflow communication for the SDN

deployment, which will be needed to do a comparison between the throughput provided

by this work in a virtual scenario and the real scenario, proving the real performance of

a real SDN deployment.

In the AI model side, the number of possible attacks and malicious situations in a

real scenario are huge, which bring us the need of works that can amplify the amount of

attacks detected by the model. Collecting more data to the Datasets gathered for the AI

training, since the attacks presented here are just the beginning of a possible attack, and

don’t include the more sophisticated approaches by the attacker.

78



The Passive DNS solution presented a positive result on detecting malicious DNS

activities, but as previously stated the performance of the CIRCL access limited the

project on the response time. Trying reach responsible for the CIRCL project and gather

more information about the quota available for Passive DNS requests is necessary for a

more robust and effective solution, and new researches could actual find more effective

approaches to increase the Passive DNS solution.

Also the CIRCL database has a big opportunity for a future work in a Passive SSL

solution, which their libraries include functions to execute Passive SSL approaches which

can be a good feature for the future of the IDS system on consulting the truthfulness of

the SSLs captured in the traffic.

79



Bibliography

[1] M. Mousa, A. M. Bahaa-Eldin and M. Sobh, “Software defined networking concepts

and challenges,” in 2016 11th International Conference on Computer Engineering

Systems (ICCES), 2016, pp. 79–90. doi: 10.1109/ICCES.2016.7821979.

[2] O. Starkova, K. Herasymenko, K. Nikolchev, O. Zelikovska, A. Bulgakova and N.

Solovey, “Virtualization and programmability in modern networks in the context of

sdn concept,” in 2022 IEEE 4th International Conference on Advanced Trends in

Information Theory (ATIT), 2022, pp. 204–207. doi: 10.1109/ATIT58178.2022.

10024178.

[3] U. Tupakula, K. K. Karmakar, V. Varadharajan and B. Collins, “Implementation

of techniques for enhancing security of southbound infrastructure in sdn,” in 2022

13th International Conference on Network of the Future (NoF), 2022, pp. 1–5. doi:

10.1109/NoF55974.2022.9942644.

[4] M. Byun, Y. Lee and J.-Y. Choi, “Risk and avoidance strategy for blocking

mechanism of sdn-based security service,” in 2019 21st International Conference

on Advanced Communication Technology (ICACT), 2019, pp. 187–190. doi:

10.23919/ICACT.2019.8701887.

[5] N. Feamster, J. Rexford and E. Zegura, “The road to sdn: An intellectual history

of programmable networks,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,

pp. 87–98, Apr. 2014, issn: 0146-4833. doi: 10.1145/2602204.2602219. [Online].

Available: https://doi.org/10.1145/2602204.2602219.

80

https://doi.org/10.1109/ICCES.2016.7821979
https://doi.org/10.1109/ATIT58178.2022.10024178
https://doi.org/10.1109/ATIT58178.2022.10024178
https://doi.org/10.1109/NoF55974.2022.9942644
https://doi.org/10.23919/ICACT.2019.8701887
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2602204.2602219


[6] A. Malishevskiy, D. Gurkan, L. Dane, R. Narisetty, S. Narayan and S. Bailey,

“Openflow-based network management with visualization of managed elements,” in

2014 Third GENI Research and Educational Experiment Workshop, 2014, pp. 73–74.

doi: 10.1109/GREE.2014.21.

[7] N. El Moussaid, A. Toumanari and M. El Azhari, “Security analysis as software-

defined security for sdn environment,” in 2017 Fourth International Conference

on Software Defined Systems (SDS), 2017, pp. 87–92. doi: 10.1109/SDS.2017.

7939146.

[8] Z. Shu, J. Wan, D. Li, J. Lin, A. V. Vasilakos and M. Imran, “Security in software-

defined networking: Threats and countermeasures,” Mob. Netw. Appl., vol. 21, no. 5,

pp. 764–776, Oct. 2016, issn: 1383-469X. doi: 10.1007/s11036- 016- 0676- x.

[Online]. Available: https://doi.org/10.1007/s11036-016-0676-x.

[9] C. Birkinshaw, E. Rouka and V. G. Vassilakis, “Implementing an intrusion detection

and prevention system using software-defined networking: Defending against port-

scanning and denial-of-service attacks,” J. Netw. Comput. Appl., vol. 136, no. C,

pp. 71–85, Jun. 2019, issn: 1084-8045. doi: 10 . 1016 / j . jnca . 2019 . 03 . 005.

[Online]. Available: https://doi.org/10.1016/j.jnca.2019.03.005.

[10] R. K. Arbettu, R. Khondoker, K. Bayarou and F. Weber, “Security analysis of

opendaylight, onos, rosemary and ryu sdn controllers,” in 2016 17th International

Telecommunications Network Strategy and Planning Symposium (Networks), 2016,

pp. 37–44. doi: 10.1109/NETWKS.2016.7751150.

[11] M. M. Isa and L. Mhamdi, “Native sdn intrusion detection using machine learning,”

in 2020 IEEE Eighth International Conference on Communications and Networking

(ComNet), 2020, pp. 1–7. doi: 10.1109/ComNet47917.2020.9306093.

[12] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani, “A detailed analysis of the

kdd cup 99 data set,” in 2009 IEEE Symposium on Computational Intelligence for

Security and Defense Applications, 2009, pp. 1–6. doi: 10.1109/CISDA.2009.

5356528.

81

https://doi.org/10.1109/GREE.2014.21
https://doi.org/10.1109/SDS.2017.7939146
https://doi.org/10.1109/SDS.2017.7939146
https://doi.org/10.1007/s11036-016-0676-x
https://doi.org/10.1007/s11036-016-0676-x
https://doi.org/10.1016/j.jnca.2019.03.005
https://doi.org/10.1016/j.jnca.2019.03.005
https://doi.org/10.1109/NETWKS.2016.7751150
https://doi.org/10.1109/ComNet47917.2020.9306093
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/CISDA.2009.5356528


[13] R. M. A. Ujjan, Z. Pervez and K. Dahal, “Snort based collaborative intrusion

detection system using blockchain in sdn,” in 2019 13th International Conference

on Software, Knowledge, Information Management and Applications (SKIMA),

2019, pp. 1–8. doi: 10.1109/SKIMA47702.2019.8982413.

[14] R. F. Pratama, N. A. Suwastika and M. A. Nugroho, “Design and implementation

adaptive intrusion prevention system (ips) for attack prevention in

software-defined network (sdn) architecture,” in 2018 6th International Conference

on Information and Communication Technology (ICoICT), 2018, pp. 299–304.

doi: 10.1109/ICoICT.2018.8528735.

[15] P. Ohri, S. G. Neogi and S. K. Muttoo, “Security analysis of open source sdn (odl

and onos) controllers,” in 2023 IEEE International Students’ Conference on

Electrical, Electronics and Computer Science (SCEECS), 2023, pp. 1–4. doi:

10.1109/SCEECS57921.2023.10063108.

[16] R. C. d. Oliveira, Near real-time network analysis for the identification of malicious

activity — hdl.handle.net, http : / / hdl . handle . net / 10198 / 24947, [Accessed

25-May-2023], 2021.

[17] F. J. Badaró V. Neto, C. J. Miguel, A. C. d. S. de Jesus and P. N. Sampaio, “SDN

Controllers - A Comparative approach to Market Trends,” in 9th International

Workshop on ADVANCEs in ICT Infrastructures and Services (ADVANCE 2021),

ser. Proc. of the 9th International Workshop on ADVANCEs in ICT

Infrastructures and Services (ADVANCE 2021), Rafael Tolosana Calasanz,

General Chair and Gabriel Gonzalez-Castañé, TPC Co-Chair and Nazim

Agoulmine, Steering Committee Chair, Zaragoza, Spain, Feb. 2021, pp. 48–51.

doi: 10 . 48545 / advance2021 - shortpapers - 3. [Online]. Available:

https://hal.science/hal-03133692.

[18] Opendaylight — developer.cisco.com,

https://developer.cisco.com/site/opendaylight/, [Accessed 07-10-2023].

82

https://doi.org/10.1109/SKIMA47702.2019.8982413
https://doi.org/10.1109/ICoICT.2018.8528735
https://doi.org/10.1109/SCEECS57921.2023.10063108
http://hdl.handle.net/10198/24947
https://doi.org/10.48545/advance2021-shortpapers-3
https://hal.science/hal-03133692
https://developer.cisco.com/site/opendaylight/


[19] M. P. Contributors, Mininet Walkthrough - Mininet — mininet.org,

http://mininet.org/walkthrough/, [Accessed 07-10-2023].

[20] Proxmox VE Documentation Index — pve.proxmox.com, https://pve.proxmox.

com/pve-docs/, [Accessed 07-10-2023].

[21] Y. A. Farrukh, I. Khan, S. Wali, D. Bierbrauer, J. A. Pavlik and N. D. Bastian,

“Payload-byte: A tool for extracting and labeling packet capture files of modern

network intrusion detection datasets,” in 2022 IEEE/ACM International Conference

on Big Data Computing, Applications and Technologies (BDCAT), 2022, pp. 58–67.

doi: 10.1109/BDCAT56447.2022.00015.

[22] K. Peddireddy, “Streamlining enterprise data processing, reporting and realtime

alerting using apache kafka,” in 2023 11th International Symposium on Digital

Forensics and Security (ISDFS), 2023, pp. 1–4. doi:

10.1109/ISDFS58141.2023.10131800.

[23] Apache Kafka — kafka.apache.org, https://kafka.apache.org/documentation/,

[Accessed 07-10-2023].

[24] Y. Tian and X. Yu, “Trustworthiness study of hdfs data storage based on

trustworthiness metrics and kms encryption,” in 2021 IEEE International

Conference on Power Electronics, Computer Applications (ICPECA), 2021,

pp. 962–966. doi: 10.1109/ICPECA51329.2021.9362537.

[25] Hadoop x2013; Apache Hadoop 3.3.6 — hadoop.apache.org,

https://hadoop.apache.org/docs/stable/, [Accessed 07-10-2023].

[26] 3.12.0 Documentation — docs.python.org, https : / / docs . python . org / 3/,

[Accessed 07-10-2023].

[27] T.-T.-H. Le, H. Kim, H. Kang and H. Kim, “Classification and explanation for

intrusion detection system based on ensemble trees and shap method,” Sensors,

vol. 22, no. 3, 2022, issn: 1424-8220. doi: 10.3390/s22031154. [Online]. Available:

https://www.mdpi.com/1424-8220/22/3/1154.

83

http://mininet.org/walkthrough/
https://pve.proxmox.com/pve-docs/
https://pve.proxmox.com/pve-docs/
https://doi.org/10.1109/BDCAT56447.2022.00015
https://doi.org/10.1109/ISDFS58141.2023.10131800
https://kafka.apache.org/documentation/
https://doi.org/10.1109/ICPECA51329.2021.9362537
https://hadoop.apache.org/docs/stable/
https://docs.python.org/3/
https://doi.org/10.3390/s22031154
https://www.mdpi.com/1424-8220/22/3/1154


[28] T. Zebin, S. Rezvy and Y. Luo, “An explainable ai-based intrusion detection system

for dns over https (doh) attacks,” IEEE Transactions on Information Forensics and

Security, vol. 17, pp. 2339–2349, 2022. doi: 10.1109/TIFS.2022.3183390.

[29] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, S. Garg and M. M. Hassan, “A

distributed intrusion detection system to detect ddos attacks in blockchain-enabled

iot network,” Journal of Parallel and Distributed Computing, vol. 164, pp. 55–68,

2022, issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2022.01.030.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0743731522000351.

[30] S. Afroz, S. Ariful Islam, S. Nawer Rafa and M. Islam, “A two layer machine learning

system for intrusion detection based on random forest and support vector machine,”

in 2020 IEEE International Women in Engineering (WIE) Conference on Electrical

and Computer Engineering (WIECON-ECE), 2020, pp. 300–303. doi: 10.1109/

WIECON-ECE52138.2020.9397945.

[31] G. Xuanzhen, P. Zulie and C. Yuanchao, “Application of passive dns in cyber

security,” in 2020 IEEE International Conference on Power, Intelligent Computing

and Systems (ICPICS), 2020, pp. 257–259. doi:

10.1109/ICPICS50287.2020.9202344.

[32] C. Han and Y. Zhang, “Clean : An approach for detecting benign domain names

based on passive dns traffic,” in 2017 6th International Conference on Computer

Science and Network Technology (ICCSNT), 2017, pp. 343–346. doi: 10.1109/

ICCSNT.2017.8343715.

[33] CIRCL &xBB; CIRCL – Computer Incident Response Center Luxembourg – CSIRT

– CERT — circl.lu, https://www.circl.lu, [Accessed 27-10-2023].

[34] GitHub - mike01/pypacker: :package: The fastest and simplest packet manipulation

lib for Python — github.com, https://github.com/mike01/pypacker, [Accessed

27-10-2023].

84

https://doi.org/10.1109/TIFS.2022.3183390
https://doi.org/https://doi.org/10.1016/j.jpdc.2022.01.030
https://www.sciencedirect.com/science/article/pii/S0743731522000351
https://www.sciencedirect.com/science/article/pii/S0743731522000351
https://doi.org/10.1109/WIECON-ECE52138.2020.9397945
https://doi.org/10.1109/WIECON-ECE52138.2020.9397945
https://doi.org/10.1109/ICPICS50287.2020.9202344
https://doi.org/10.1109/ICCSNT.2017.8343715
https://doi.org/10.1109/ICCSNT.2017.8343715
https://www.circl.lu
https://github.com/mike01/pypacker


[35] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn: Machine learning in

Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[36] Common Configuration Issues &x2014; Open vSwitch 3.2.90 documentation —

docs.openvswitch.org, https://docs.openvswitch.org/en/latest/faq/issues/,

[Accessed 28-10-2023].

[37] Kali Docs | Kali Linux Documentation — kali.org, https://www.kali.org/docs/,

[Accessed 28-10-2023].

[38] I. Khalil, T. Yu and B. Guan, “Discovering malicious domains through passive dns

data graph analysis,” in Proceedings of the 11th ACM on Asia Conference on

Computer and Communications Security, ser. ASIA CCS ’16, Xi’an, China:

Association for Computing Machinery, 2016, pp. 663–674, isbn: 9781450342339.

doi: 10 . 1145 / 2897845 . 2897877. [Online]. Available:

https://doi.org/10.1145/2897845.2897877.

[39] Z. Liu, Y. Zeng, P. Zhang, J. Xue, J. Zhang and J. Liu, “An imbalanced malicious

domains detection method based on passive dns traffic analysis,” Security and

Communication Networks, vol. 2018, p. 6 510 381, Jun. 2018, issn: 1939-0114. doi:

10 . 1155 / 2018 / 6510381. [Online]. Available:

https://doi.org/10.1155/2018/6510381.

85

https://docs.openvswitch.org/en/latest/faq/issues/
https://www.kali.org/docs/
https://doi.org/10.1145/2897845.2897877
https://doi.org/10.1145/2897845.2897877
https://doi.org/10.1155/2018/6510381
https://doi.org/10.1155/2018/6510381


Appendix A

Original dissertation proposal

86



 

Thesis Proposal 

Master in Informatics 

2021/2022 

  

  

Title: SDN IDS  

  

Supervisor (IPB): Tiago Pedrosa (riftman@ipb.pt) | Nuno Rodrigues (nuno@ipb.pt) 

Supervisor (UTFPR): Augusto Foronda (foronda@utfpr.edu.br) 

Student: Vinicius Lopes (a49816@alunos.ipb.pt) 

  

Context: 

Nowadays with the increase of the companies' information and communication infrastructure, having a high 

number of servers, devices and networks, companies seek to migrate their communication infrastructure 

technology to a more flexible one. These last years the trend is in having a virtualized networks,software-

defined networks, this way, with the separation of the network from the hardware the management of it, is 

much more practical and new efforts are possible, as it is all done through software at a global level. Also, 

this is the reality of the cloud services that multiple companies provide and many acquire. Like the traditional 

networks, this recent technology also needs to be assessed to find malicious activity on the network. This 

need to be performed differently as there is a lack of hardware devices to connect to and capture the 

network traffic for further analysis. 

Goal 

This project will be directly integrated into an ongoing investigation project designated as “CybersSEC IP - 

CYBERSecurity SciEntific Competences and Innovation Potential (NORTE-01-0145-FEDER-000044)”. 

The research project consists of a distributed intrusion detection system (IDS) with the analysis of the 

network data in near real-time. The connection of this dissertation with the research project would be in the 

implementation of a controller able to capture the network traffic from a set of selected virtual devices and 

to perform certain tasks accordingly to the output of the intrusion detection system like real-time blockage 

of certain traffic. The second objective would consist of the implementation of new analysis applications for 

the IDS to improve the detection of malicious activity.  

Prerequisites 

Tasks 

This work comprises the execution of the following stages: 



1. Literature review and study of related works for familiarization and identification of requirements, 

concepts and technologies that will be used for the development of the work; 
2. Systematic review of a set of solutions to determine which solution will fit the needs; 

3. Definition of the system architecture and components; 
4. Develop and implementation of the sniffer solution; 
5. Deploy the SDN solution; 

6. Creation of a scenario with several virtual machines on the SDN simulating normal and abnormal 

communication between server and client machines; 
7. Propose new analysis applications for the IDS to improve the detection of malicious activity; 
8. Experiments, analysis of results and possible improvements; 

9. Documentation and writing of the dissertation. 

Infrastructure and resources required 

Laptop and virtual machines 

 



Appendix B

Opendaylight Configuration

B.1 Opendaylight Installation Script

1 #!/ bin/bash

2

3 # Variables

4 ODL_VERSION ="0.8.4"

5 ODL_URL ="https :// downloads . opendaylight .org/odl/ opendaylight -

$ODL_VERSION .zip"

6 INSTALL_DIR ="/opt/ opendaylight "

7

8 # Prerequisites

9 sudo apt -get update

10 sudo apt -get install -y openjdk -8- jre unzip

11

12 # Download and extract OpenDaylight

13 mkdir -p $INSTALL_DIR

14 cd $INSTALL_DIR

15 wget $ODL_URL

16 unzip opendaylight - $ODL_VERSION .zip

89



17 rm opendaylight - $ODL_VERSION .zip

18

19 # Create a symbolic link to the current ODL version ( optional )

20 ln -s opendaylight - $ODL_VERSION current

21

22 # Start OpenDaylight

23 cd $INSTALL_DIR / current /bin

24 ./ karaf

25

26 # OpenDaylight should now be running . You can access the Karaf

console via SSH (if enabled ) or a web browser (http://your -

server -ip :8181) . Default credentials are username : "admin" and

password : "admin ".

B.2 Opendaylight Configuration Script

1

2 odl -cluster -data {

3 akka {

4 remote {

5 artery {

6 enabled = off

7 canonical . hostname = " 127.0.0.1 "

8 canonical .port = 2550

9 }

10 netty.tcp {

11 hostname = " 127.0.0.1 "

12 port = 2550

13 }

90



14 # when under load we might trip a false positive on the

failure detector

15 # transport -failure - detector {

16 # heartbeat - interval = 4 s

17 # acceptable -heartbeat -pause = 16s

18 # }

19 }

20

21 cluster {

22 # Remove ".tcp" when using artery .

23 seed - nodes = ["akka.tcp :// opendaylight -cluster - data@127

.0.0.1:2550 "]

24

25 roles = [

26 "member -1"

27 ]

28

29 }

30

31 persistence {

32 # By default the snapshots / journal directories live in

KARAF_HOME . You can choose to put it somewhere else by

33 # modifying the following two properties . The directory

location specified may be a relative or absolute path.

34 # The relative path is always relative to KARAF_HOME .

35

36 # snapshot -store.local.dir = " target / snapshots "

37 # journal . leveldb .dir = " target / journal "

38

39 journal {

91



40 leveldb {

41 # Set native = off to use a Java -only implementation of

leveldb .

42 # Note that the Java -only version is not currently

considered by Akka to be production quality .

43

44 # native = off

45 }

46 }

47 }

48 }

49 }

92



Appendix C

OpenVSwitch Configuration

C.1 OpenVSwitch Installation Script

1 #!/ bin/bash

2

3 # Update the package repository

4 sudo apt -get update

5

6 # Install Open vSwitch and its utilities

7 sudo apt -get install -y openvswitch - switch openvswitch - common

8

9 # Start the Open vSwitch service

10 sudo systemctl start openvswitch - switch

11

12 # Enable Open vSwitch to start on boot

13 sudo systemctl enable openvswitch - switch

14

15 # Verify the installation

16 ovs -vsctl --version

17

93



18 # Optional : Create a bridge interface ( replace "br0" and "eth0"

with your desired names)

19 # sudo ovs -vsctl add -br br0

20 # sudo ovs -vsctl add -port br0 eth0

21

22 # Optional : Configure bridge for management ( replace "

10.0.0.10/24 " and "br0" with your desired IP and bridge )

23 # sudo ifconfig br0 10.0.0.10/24 up

24

25 # Optional : Ensure the bridge survives reboots

26 # sudo ovs -vsctl set bridge br0 other_config ="stp - enable =true"

27 # sudo ovs -vsctl set bridge br0 other_config ="forward -bpdu=true"

28

29 # Optional : Add a default route ( replace " 10.0.0.1 " with your

gateway )

30 # sudo ip route add default via 10.0.0.1 dev br0

31

32 # Optional : Enable IP forwarding (if needed )

33 # echo ’net.ipv4. ip_forward =1’ | sudo tee -a /etc/ sysctl .conf

34 # sudo sysctl -p

35

36 # Optional : Add OVS to your firewall configuration (if you ’re

using iptables )

37 # iptables -I FORWARD -m physdev --physdev -is - bridged -j ACCEPT

38

39 # Confirm OVS bridge and network configuration

40 # sudo ovs -vsctl show

41

42 echo "Open vSwitch has been installed and configured ."

43

94



44 # You may need to restart your networking service to apply the

changes

45 # sudo service networking restart

C.2 OpenVSwitch Bridge Configuration

1

2 4e0985ca -d77c -4f2f -b610 - cd881464081d

3 Bridge sdn -br

4 Controller "tcp :192.168.199.231:6633 "

5 is_connected : true

6 Port sdn -br

7 Interface sdn -br

8 type: internal

9 Port host4

10 Interface host4

11 Port host1

12 Interface host1

13 Port host2

14 Interface host2

15 Port host3

16 Interface host3

17 ovs_version : " 2.17.5 "

95





Appendix D

Interfaces Configuration

D.1 Interfaces example with 4 hosts

1 ens18: flags =4163 <UP ,BROADCAST ,RUNNING ,MULTICAST > mtu 1500

2 inet 10.1.2.60 netmask 255.255.255.0 broadcast

10.1.2.255

3 inet6 2001:690:22 c0:8 a03 :6 cb6:bc37:a14f :8 c70 prefixlen

64 scopeid 0x0 <global >

4 inet6 fe80 :: e5f :9075:5 eb:7 e5b prefixlen 64 scopeid 0x20

<link >

5 inet6 2001:690:22 c0:8 a03:e42c:e388:c874 :224f prefixlen

64 scopeid 0x0 <global >

6 inet6 2001:690:22 c0:8 a03 :2 d36 :1 c15:b41c:f033 prefixlen

64 scopeid 0x0 <global >

7 inet6 2001:690:22 c0:8 a03:e775 :7443: ce3a:e439 prefixlen

64 scopeid 0x0 <global >

8 inet6 2001:690:22 c0:8 a03 :911d :3831:269 e:74 c6 prefixlen

64 scopeid 0x0 <global >

9 inet6 2001:690:22 c0:8 a03 :3 bcf :1db:d130:e802 prefixlen 64

scopeid 0x0 <global >

97



10 inet6 2001:690:22 c0:8 a03:e91b:a986 :8b9 :875b prefixlen 64

scopeid 0x0 <global >

11 inet6 2001:690:22 c0:8 a03:db19:a7c6 :3 d47:f4b0 prefixlen

64 scopeid 0x0 <global >

12 ether 62: ca :40:33:78:0 d txqueuelen 1000 ( Ethernet )

13 RX packets 16805567 bytes 4796017825 (4.7 GB)

14 RX errors 0 dropped 30657 overruns 0 frame 0

15 TX packets 11724849 bytes 7957569358 (7.9 GB)

16 TX errors 0 dropped 0 overruns 0 carrier 0 collisions

0

17

18 ens19: flags =4163 <UP ,BROADCAST ,RUNNING ,MULTICAST > mtu 1500

19 inet 192.168.199.231 netmask 255.255.0.0 broadcast

192.168.255.255

20 inet6 fe80 ::288d:7 eee :9395:9 d10 prefixlen 64 scopeid 0

x20 <link >

21 ether 0e:7a:dc:3c:3e:12 txqueuelen 1000 ( Ethernet )

22 RX packets 115595964 bytes 16282521332 (16.2 GB)

23 RX errors 0 dropped 1065876 overruns 0 frame 0

24 TX packets 535339 bytes 57421511 (57.4 MB)

25 TX errors 0 dropped 0 overruns 0 carrier 0 collisions

0

26

27 host1: flags =4099 <UP ,BROADCAST ,MULTICAST > mtu 1500

28 inet6 fe80 :: d09f :77 ff:fefe :5591 prefixlen 64 scopeid 0

x20 <link >

29 ether d2:9f:77: fe :55:91 txqueuelen 1000 ( Ethernet )

30 RX packets 0 bytes 0 (0.0 B)

31 RX errors 0 dropped 0 overruns 0 frame 0

32 TX packets 0 bytes 0 (0.0 B)

98



33 TX errors 0 dropped 201425 overruns 0 carrier 0

collisions 0

34

35 host2: flags =4099 <UP ,BROADCAST ,MULTICAST > mtu 1500

36 inet6 fe80 ::7 ce1:eff:fecb:eafc prefixlen 64 scopeid 0

x20 <link >

37 ether 7e:e1:0e:cb:ea:fc txqueuelen 1000 ( Ethernet )

38 RX packets 0 bytes 0 (0.0 B)

39 RX errors 0 dropped 0 overruns 0 frame 0

40 TX packets 0 bytes 0 (0.0 B)

41 TX errors 0 dropped 164856 overruns 0 carrier 0

collisions 0

42

43 host3: flags =4099 <UP ,BROADCAST ,MULTICAST > mtu 1500

44 inet6 fe80 :: dcf9 :35 ff:fe61:b2c7 prefixlen 64 scopeid 0

x20 <link >

45 ether de:f9 :35:61: b2:c7 txqueuelen 1000 ( Ethernet )

46 RX packets 0 bytes 0 (0.0 B)

47 RX errors 0 dropped 0 overruns 0 frame 0

48 TX packets 0 bytes 0 (0.0 B)

49 TX errors 0 dropped 111906 overruns 0 carrier 0

collisions 0

50

51 host4: flags =4099 <UP ,BROADCAST ,MULTICAST > mtu 1500

52 inet6 fe80 :: ecf2 :8 bff:fea1 :1020 prefixlen 64 scopeid 0

x20 <link >

53 ether ee:f2:8b:a1 :10:20 txqueuelen 1000 ( Ethernet )

54 RX packets 0 bytes 0 (0.0 B)

55 RX errors 0 dropped 0 overruns 0 frame 0

56 TX packets 0 bytes 0 (0.0 B)

99



57 TX errors 0 dropped 74998 overruns 0 carrier 0

collisions 0

58

59 lo: flags =73<UP ,LOOPBACK ,RUNNING > mtu 65536

60 inet 127.0.0.1 netmask 255.0.0.0

61 inet6 ::1 prefixlen 128 scopeid 0x10 <host >

62 loop txqueuelen 1000 (Local Loopback )

63 RX packets 30038751 bytes 8228591010 (8.2 GB)

64 RX errors 0 dropped 0 overruns 0 frame 0

65 TX packets 30038751 bytes 8228591010 (8.2 GB)

66 TX errors 0 dropped 0 overruns 0 carrier 0 collisions

0

67

68 sdn -br: flags =4163 <UP ,BROADCAST ,RUNNING ,MULTICAST > mtu 1500

69 inet 20.1.1.1 netmask 255.255.255.0 broadcast

20.1.1.255

70 inet6 fe80 :: dc95 :99 ff:febc:cb4d prefixlen 64 scopeid 0

x20 <link >

71 ether de :95:99: bc:cb:4d txqueuelen 1000 ( Ethernet )

72 RX packets 507783 bytes 72858918 (72.8 MB)

73 RX errors 0 dropped 404080 overruns 0 frame 0

74 TX packets 131142 bytes 27663795 (27.6 MB)

75 TX errors 0 dropped 0 overruns 0 carrier 0 collisions

0

100



Appendix E

Code Developed

E.1 Kafka Administration Code

1 from confluent_kafka .admin import AdminClient , NewTopic

2

3 BOOTSTRAP_SERVERS = ’kafka1 . alunos .local :9093 , kafka2 . alunos .local

:9093 , kafka3 . alunos .local :9093 , kafka4 . alunos .local :9093 ’

4 CERTIFICATE_LOCATION = ’/ssl/ client .crt ’

5 CERTIFICATE_KEY_LOCATION = ’/ssl/ client .key ’

6 CA_LOCATION = ’/ssl/ alunos .crt ’

7

8 admin = AdminClient ({

9 ’bootstrap . servers ’: BOOTSTRAP_SERVERS ,

10 ’security . protocol ’: ’SSL ’,

11 ’ssl. certificate . location ’: CERTIFICATE_LOCATION ,

12 ’ssl.key. location ’: CERTIFICATE_KEY_LOCATION ,

13 ’ssl.ca. location ’: CA_LOCATION

14 })

15

16

101



17 def create_topics (topics , num_partitions =1, replication_factor =1)

:

18 if type( topics ) is str:

19 topics = [ topics ]

20

21 new_topics = [ NewTopic (topic , num_partitions = num_partitions ,

replication_factor = replication_factor ) for topic in

22 topics ]

23

24 fs = admin. create_topics ( new_topics )

25

26 for topic , f in fs.items ():

27 try:

28 f. result ()

29 print(f’Topic {topic} created ’)

30 except Exception as e:

31 print(f’Failed to create topic: {topic }: {e}’)

32

33

34 def delete_topics (topics , operation_timeout =30):

35 if type( topics ) is list:

36 fs = admin. delete_topics (topics , operation_timeout =

operation_timeout )

37 elif type( topics ) is str:

38 fs = admin. delete_topics ([ topics ], operation_timeout =

operation_timeout )

39 else:

40 return

41

42 for topic , f in fs.items ():

102



43 try:

44 f. result ()

45 print(f’Topic {topic} deleted ’)

46 except Exception as e:

47 print(f’Failed to delete topic {topic }: {e}’)

48

49

50 def get_topics ():

51 """

52 : return : dictionary containing all the topics

53 """

54 metadata = admin. list_topics ()

55

56 return metadata . topics

57

58

59 def topic_information (topic):

60 name = topic.topic

61 partitions = topic. partitions

62

63 print(f’name: {name}, partitions : {list( partitions .keys ())}’)

64

65

66 def list_topics ():

67 topics = get_topics ()

68

69 for b in topics :

70 topic_information ( topics [b])

71

72

103



73 def get_brokers ():

74 metadata = admin. list_topics ()

75

76 return metadata . brokers

77

78

79 def broker_information ( broker ):

80 print(f’[{ broker .id}] { broker .host }:{ broker .port}’)

81

82

83 def list_brokers ():

84 brokers = get_brokers ()

85

86 for b in brokers :

87 broker_information ( brokers [b])

88

89 print("\n")

90 topic = get_topics ()

91 print("List of Topics :")

92 print(topic)

93 print("\n")

94 topic = list_topics ()

95 print("\n")

96 # delete_topics (’packetcapture ’)

97 create_topics (’packetcapture ’ ,4)

98 # create_topics (’__consumer_offsets ’ ,50)

99 print("\n")

100 topic = get_topics ()

101 print("List of Topics :")

102 print(topic)

104



103 print("\n")

104 topic = list_topics ()

105 print("\n")

E.2 Kafka Configuration for Capture Code

1

2 import argparse

3

4 BOOTSTRAP_SERVERS = ’kafka1 . alunos .local :9093 , kafka2 . alunos .local

:9093 , kafka3 . alunos .local :9093 , kafka4 . alunos .local :9093 ’

5 CERTIFICATE_LOCATION = ’/ssl/ client .crt ’

6 CERTIFICATE_KEY_LOCATION = ’/ssl/ client .key ’

7 CA_LOCATION = ’/ssl/ alunos .crt ’

8 PCAP_FILE_NAME = ’dump.pcap ’

E.3 Capture Module Code

1

2 from confluent_kafka import Producer

3 from custom_configs import *

4 import subprocess

5 import threading

6 import datetime

7 import signal

8 import json

9 import time

10 import re

11 import os

105



12

13 CUSTOM_HEADER_SIZE = 24

14 CUSTOM_PACKET_HEADER_SIZE = 16

15

16 custom_producer = Producer ({

17 ’bootstrap . servers ’: CUSTOM_BOOTSTRAP_SERVERS ,

18 ’security . protocol ’: ’CUSTOM_SSL ’,

19 ’ssl. certificate . location ’: CUSTOM_CERTIFICATE_LOCATION ,

20 ’ssl.key. location ’: CUSTOM_CERTIFICATE_KEY_LOCATION ,

21 ’ssl.ca. location ’: CUSTOM_CA_LOCATION

22 })

23

24 CUSTOM_FINISHED = False

25

26 custom_log_dir = ’custom_logs ’

27 os. makedirs ( custom_log_dir , exist_ok =True)

28 custom_date = datetime . datetime .now ()

29 custom_log_filename = f’custom_logs / custom_producer_ { custom_date .

strftime ("%Y-%m-%d_%H_%M_%S")}. json ’

30

31 custom_capture_started = None

32 custom_capture_ended = None

33 custom_packets_captured = None

34 custom_packets_dropped = None

35 custom_packets_received_by_filter = None

36 custom_kafka_ended = None

37 custom_pcap_sh1 = None

38

39 def custom_signal_handler (sig , frame):

40 if custom_tcpdump_process is not None:

106



41 custom_tcpdump_process . terminate ()

42

43 def custom_start_writer ():

44 global custom_tcpdump_process , CUSTOM_FINISHED ,

custom_capture_ended , custom_capture_started ,

custom_packets_captured , \

45 custom_packets_dropped , custom_packets_received_by_filter

46

47 custom_capture_started = time.time ()

48

49 custom_tcpdump_command = [’custom_tcpdump ’, CUSTOM_FILTER , ’-

i’, CUSTOM_NIC , ’-s’, str( CUSTOM_SNAPLEN ), ’-w’,

CUSTOM_PCAP_FILE_NAME ]

50 custom_tcpdump_process = subprocess .Popen(

custom_tcpdump_command , stdout = subprocess .PIPE , stderr =

subprocess .STDOUT , universal_newlines =True)

51 custom_tcpdump_process .wait ()

52

53 custom_tcpdump_output = custom_tcpdump_process . stdout .read ()

54 CUSTOM_FINISHED = True

55 custom_capture_ended = time.time ()

56

57 # Parse statistics from custom_tcpdump output

58 custom_statistics = re. findall (r"\n[0 -9]+",

custom_tcpdump_output )

59 custom_packets_captured = int( custom_statistics [0])

60 custom_packets_received_by_filter = int( custom_statistics [1])

61 custom_packets_dropped = int( custom_statistics [2])

62 print(" custom_tcpdump has finished ")

63 print(" Publishing the rest of the data ...")

107



64

65 def custom_start_reader ():

66 global custom_kafka_ended

67

68 custom_pcap_skipped = False

69 custom_pcap_file = open( CUSTOM_PCAP_FILE_NAME , ’rb’)

70 custom_left_overs = b’’

71

72 while True:

73 custom_chunk = custom_left_overs + custom_pcap_file .read(

CUSTOM_MESSAGE_SIZE - len( custom_left_overs ))

74 custom_left_overs = b’’

75

76 if custom_chunk == b’’ and CUSTOM_FINISHED :

77 break

78

79 if custom_chunk == b’’:

80 continue

81

82 custom_pointer = 0

83

84 while len( custom_chunk ) > custom_pointer :

85 if not custom_pcap_skipped :

86 custom_chunk = custom_chunk [ CUSTOM_HEADER_SIZE :]

87 custom_pcap_skipped = True

88

89 if len( custom_chunk ) < custom_pointer +

CUSTOM_PACKET_HEADER_SIZE :

90 break

91

108



92 custom_caplen = int. from_bytes ( custom_chunk [

custom_pointer + 8: custom_pointer + 12], ’little ’)

93

94 if len( custom_chunk ) < custom_pointer +

CUSTOM_PACKET_HEADER_SIZE + custom_caplen :

95 break

96

97 custom_pointer += CUSTOM_PACKET_HEADER_SIZE +

custom_caplen

98

99 custom_left_overs = custom_chunk [ custom_pointer :]

100

101 try:

102 if custom_chunk [: custom_pointer ] != b’’:

103 custom_producer . produce ( CUSTOM_KAFKA_TOPIC ,

custom_chunk [: custom_pointer ])

104 except BufferError :

105 print(’Local queue full , flushing messages and trying

again ... ’)

106 custom_producer .flush ()

107 custom_producer . produce ( CUSTOM_KAFKA_TOPIC ,

custom_chunk [: custom_pointer ])

108 finally :

109 custom_producer .poll (0)

110

111 print(’Flushing final messages ... ’)

112 custom_producer .flush ()

113 custom_kafka_ended = time.time ()

114

115 print(f’Custom Capture Module is running ’)

109



116 print(f’Custom Kafka Message Configuration : { CUSTOM_MESSAGE_SIZE }

chunks ’)

117 print(f’Traffic been captured on the: { CUSTOM_NIC } interface ’)

118

119 # Start the capture as a thread

120 custom_thread_capture = threading . Thread ( target =

custom_start_writer )

121 custom_thread_capture .start ()

122

123 # Let the custom_tcpdump start first

124 time.sleep (0.3)

125 custom_thread_publish = threading . Thread ( target =

custom_start_reader )

126 custom_thread_publish .start ()

127

128 signal . signal ( signal .SIGINT , custom_signal_handler )

129 print(’Press Ctrl+C to turn off the custom capture module ’)

130 signal .pause ()

131

132 custom_thread_capture .join ()

133 custom_thread_publish .join ()

134

135 # Script ended

136 custom_log_end_time = time.time ()

137

138 print(

139 f’\ nPackets captured : { custom_packets_captured }\ nPackets

dropped : { custom_packets_dropped }’

140 f’\ nPackets received by filter : {

custom_packets_received_by_filter }’

110



141 )

E.4 Training Traffic Analysis Code

1

2 import pandas as pd

3 import pickle

4 from sklearn . preprocessing import MinMaxScaler

5 from sklearn . metrics import confusion_matrix

6 from sklearn . ensemble import RandomForestClassifier

7 from sklearn . model_selection import train_test_split

8

9 scaler = MinMaxScaler ()

10

11 dataset = pd. read_csv (’./ Train_csv_HERE .csv ’)

12

13 y = dataset [’malicious ’]

14 x = dataset [list(

15 filter ( lambda x: x in [’ipvhl ’, ’iplen ’, ’ipid ’, ’ipfragoff ’,

’iptos ’

16 , ’ipttl ’, ’ipp ’, ’ipsum ’, ’tcpdport ’, ’tcpsport ’, ’tcpseq ’,

’tcpack ’, ’tcpoffx ’,

17 ’tcpflags ’, ’tcpwin ’, ’tcpsum ’, ’tcpurp ’, ’tcpbody ’],

dataset . columns ))]

18

19 names = [

20 " Random Forest "

21 ]

22

23 models = [

111



24 RandomForestClassifier

25 ]

26

27 dataRest = {’modelo ’: [], ’accuracy ’: [],

28 ’recall ’: [], ’precision ’: [], ’f1 -score ’: []}

29

30 X_train , X_test , y_train , y_test = train_test_split (x, y,

test_size =0.7)

31

32 model = RandomForestClassifier ()

33 model.fit(X_train , y_train )

34

35 filename = ’finalized_model .sav ’

36 pickle .dump(model , open(filename , ’wb’))

E.5 Training Passive DNS Analysis Code

1 import pandas as pd

2 import pickle

3 from sklearn . preprocessing import MinMaxScaler

4 from sklearn . metrics import confusion_matrix

5 from sklearn . model_selection import train_test_split

6 from sklearn .svm import SVC

7

8 scaler = MinMaxScaler ()

9

10 dataset = pd. read_csv (’./ Train_CSV_HERE .csv ’)

11

12 y = dataset [’malicious ’]

13 x = dataset [list(

112



14 filter ( lambda x: x in [’len_domain ’, ’

max_len_labels_subdomain ’, ’number_numerical_characters ’,

’ratio_numerical_characters ’

15 , ’max_len_cont_num_chars ’, ’max_len_cont_alpha_chars ’, ’

max_len_cont_same_alpha_chars ’, ’ratio_vowels ’, ’

max_length_continuous_consonants ’, ’

number_distinct_A_records ’, ’ip_entropy_domain_name ’, ’

number_distinct_NS_records ’,

16 ’similarity_NS_domain_name ’,’character_entropy ’], dataset .

columns ))]

17

18 names = [

19 "RBF SVM"

20 ]

21

22 models = [

23 SVC

24 ]

25

26 dataRest = {’modelo ’: [], ’accuracy ’: [],

27 ’recall ’: [], ’precision ’: [], ’f1 -score ’: []}

28

29 X_train , X_test , y_train , y_test = train_test_split (x, y,

test_size =0.8)

30

31 model = SVC ()

32 model.fit(X_train , y_train )

33

34 filename = ’finalized_model .sav ’

35 pickle .dump(model , open(filename , ’wb’))

113



E.6 Complete Analysis Module Code

1

2 from confluent_kafka import Consumer

3 from pypacker import ppcap

4 from pypacker . layer12 import ethernet

5 from pypacker . layer3 import ip , ip6

6 from pypacker . layer4 import tcp

7 from pypacker . layer567 import http

8 import pandas as pd

9 import time

10 import csv

11 import pandas as pd

12 import pypdns

13 import re

14 import math

15 import itertools

16 import editdistance

17 from statistics import mean

18 import threading

19 import subprocess

20 import datetime

21 import signal

22 import json

23 import time

24 import os

25 import pickle

26 import tkinter as tk

27 from tkinter import messagebox

28

29

114



30

31 ########### CONSUMING KAFKA ###################

32

33 BOOTSTRAP_SERVERS = ’kafka1 . alunos .local :9093 , kafka2 . alunos .local

:9093 , kafka3 . alunos .local :9093 , kafka4 . alunos .local :9093 ’

34

35 GROUP_ID = ’group1 ’

36

37 KAFKA_TOPICS = [’packetcapture ’]

38

39 CERTIFICATE_LOCATION = ’/ssl/ client .crt ’

40 CERTIFICATE_KEY_LOCATION = ’/ssl/ client .key ’

41 CA_LOCATION = ’/ssl/ alunos .crt ’

42

43 # file location (for local storage )

44 PCAP_FILE_NAME = ’dump.pcap ’

45

46 # timeout of the pool

47 POOL_WAIT = 1

48

49 CONSUMING = True

50

51 PCAP_GLOBAL_HEADER = b’\xd4\xc3\xb2\xa1\x02\x00\x04\x00\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x01\x00\x00\x00 ’

52

53 # logging

54 if not os.path. exists (’logs ’):

55 os.mkdir(’logs ’)

56

57 date = datetime . datetime .now ()

115



58 LOG_FILE = f’logs/ consumer_ {date.year }-{ date.month }-{ date.day}_{

date.hour}_{date. minute }_{date. second }. json ’

59 log_start_time = time.time ()

60 log_end_time = None

61 log_pcap_size_bytes = None

62 log_pcap_data_size_bytes = None

63 log_pcap_average_packet_rate = None

64 log_pcap_total_packets = None

65 log_pcap_sh1 = None

66

67 try:

68 os. remove ( PCAP_FILE_NAME )

69 except FileNotFoundError :

70 pass

71

72

73 def signal_handler (sig , frame):

74 global CONSUMING

75

76 CONSUMING = False

77

78

79 def packets_consumer ():

80 pcap_file = open( PCAP_FILE_NAME , ’wb’)

81

82 pcap_file .write( PCAP_GLOBAL_HEADER ) # write the pcap global

header , to get some statistics at the end

83

84 consumer = Consumer ({

85 ’bootstrap . servers ’: BOOTSTRAP_SERVERS ,

116



86 ’group.id’: GROUP_ID ,

87 ’auto. offset .reset ’: ’earliest ’,

88 ’security . protocol ’: ’SSL ’,

89 ’ssl. certificate . location ’: CERTIFICATE_LOCATION ,

90 ’ssl.key. location ’: CERTIFICATE_KEY_LOCATION ,

91 ’ssl.ca. location ’: CA_LOCATION

92 })

93

94 consumer . subscribe ( KAFKA_TOPICS )

95

96 while True:

97 message = consumer .poll( POOL_WAIT )

98

99 if not CONSUMING and message is None:

100 break

101

102 if message is None:

103 continue

104

105 pcap_file .write( message .value ())

106

107 consumer .close ()

108 pcap_file .close ()

109

110

111 thread_consumer = threading . Thread ( target = packets_consumer )

112 thread_consumer .start ()

113

114 signal . signal ( signal .SIGINT , signal_handler )

115 print(’Press Ctrl+C to stop analysis ’)

117



116 signal .pause ()

117

118 thread_consumer .join ()

119

120 ########### PARSE TRAFFIC DATA ###################

121

122 strtime = time.time ()

123 table = pd. DataFrame ()

124 aux1 = {’malicious ’: [],

125 ’ipvhl ’: [],

126 ’iptos ’: [],

127 ’iplen ’: [],

128 ’ipid ’: [],

129 ’ipfragoff ’: [],

130 ’ipttl ’: [],

131 ’ipp ’: [],

132 ’ipsum ’: [],

133 ’tcpdport ’: [],

134 ’tcpsport ’: [],

135 ’tcpseq ’: [],

136 ’tcpack ’: [],

137 ’tcpoffx ’: [],

138 ’tcpflags ’: [],

139 ’tcpwin ’: [],

140 ’tcpsum ’: [],

141 ’tcpurp ’: [],

142 ’tcpbody ’: []}

143

144 preader = ppcap. Reader ( filename =" traffic .pcap")

145 for ts , buf in preader :

118



146 eth = ethernet . Ethernet (buf)

147 if eth[ip.IP] is not None:

148 aux1["ipvhl"]. append (eth[ip.IP]. v_hl)

149 aux1["iptos"]. append (eth[ip.IP]. tos)

150 aux1["iplen"]. append (eth[ip.IP]. len)

151 aux1["ipid"]. append (eth[ip.IP].id)

152 aux1[" ipfragoff "]. append (eth[ip.IP]. frag_off )

153 aux1["ipttl"]. append (eth[ip.IP]. ttl)

154 aux1["ipp"]. append (eth[ip.IP].p)

155 aux1["ipsum"]. append (eth[ip.IP]. sum)

156 aux1["ipsrc"]. append (eth[ip.IP]. src_s)

157 aux1["ipdst"]. append (eth[ip.IP]. dst_s)

158 if eth[tcp.TCP] is not None:

159 aux1[" tcpdport "]. append (eth[tcp.TCP ]. dport)

160 aux1[" tcpsport "]. append (eth[tcp.TCP ]. sport)

161 aux1[" tcpseq "]. append (eth[tcp.TCP ]. seq)

162 aux1[" tcpack "]. append (eth[tcp.TCP ]. ack)

163 aux1[" tcpoffx "]. append (eth[tcp.TCP ]. off_x2 )

164 aux1[" tcpflags "]. append (eth[tcp.TCP ]. flags)

165 aux1[" tcpwin "]. append (eth[tcp.TCP ]. win)

166 aux1[" tcpsum "]. append (eth[tcp.TCP ]. sum)

167 aux1[" tcpurp "]. append (eth[tcp.TCP ]. urp)

168 aux1[" tcpbody "]. append (eth[tcp.TCP ]. body_bytes )

169 else:

170 aux1[" tcpdport "]. append ("0")

171 aux1[" tcpsport "]. append ("0")

172 aux1[" tcpseq "]. append ("0")

173 aux1[" tcpack "]. append ("0")

174 aux1[" tcpoffx "]. append ("0")

175 aux1[" tcpflags "]. append ("0")

119



176 aux1[" tcpwin "]. append ("0")

177 aux1[" tcpsum "]. append ("0")

178 aux1[" tcpurp "]. append ("0")

179 aux1[" tcpbody "]. append ("0")

180

181 aux1 = pd. DataFrame (aux1)

182

183 aux1. to_csv (" traffic .csv")

184 endtime = time.time ()

185 print("time taken: ", endtime - strtime )

186

187

188 ########### EXTRACT DNS DATA & CONSULT CIRCL DATABASE

###################

189 os. system (" tshark -r testData .pcap -Y dns -w Data_dns .pcap")

190 lay = pyshark . FileCapture ( input_file =" Data_dns .pcap")

191

192 x = len ([ packet for packet in lay ])

193

194 passive = pypdns . PyPDNS ( basic_auth =(’ipb.pt’,’

B5fzHNadddCF4j4sXYKzNOTXYXlDZ8OXACz02wPHsk8 =’))

195

196 rrname = []

197 rrtype = []

198 rdata = []

199 time_first = []

200 time_last = []

201 malicious = []

202

203 df = pd. read_csv ("DNS.csv")

120



204

205 x = len(df[’Domain ’])

206 for i in range(x):

207

208 dm = (df[’Domain ’][i])

209 response = ( passive . rfc_query (dm))

210 try:

211 y = len( response )

212 print(i,"=",response )

213 if response :

214 for t in range(y):

215 response_aux = str( response [t])

216 response_aux = response_aux . replace (" PDNSRecord ("

,""). replace (")","")

217 response_aux = response_aux . replace (’rrname ="’,""

). replace (’rrtype ="’,""). replace (’rdata ="’,"")

. replace (" time_first =",""). replace (" time_last =

",""). replace (’"’,"")

218 response_aux = response_aux .split(",")

219 if response_aux [1] == ’ A’ or response_aux [1] ==

’ NS’:

220 #print( response_aux )

221 rrname . append ( response_aux [0])

222 rrtype . append ( response_aux [1])

223 rdata. append ( response_aux [2])

224 time_first . append ( response_aux [3])

225 time_last . append ( response_aux [4])

226 except :

227 print("\n Error \n")

228 pass

121



229 time.sleep (0.5)

230

231

232 info = pd. DataFrame ({

233 " rrname ": rrname ,

234 " rrtype ": rrtype ,

235 "rdata": rdata ,

236 " time_first ": time_first ,

237 " time_last ": time_last ,

238 " malicious ": malicious

239 })

240 info. to_csv (’DNS.csv ’)

241

242 ########### PARSE DNS DATA ###################

243

244 data = pd. read_csv (’DNS.csv ’)

245

246 def fetch_data ( domain ):

247 records = data[data[’rrname ’] == domain ]. to_dict (’records ’)

248 return records

249

250 def count_distinct_A_records ( domain ):

251 records = data [( data[’rrname ’] == domain ) & (data[’rrtype ’]

== ’ A’)]

252 a_records = set( records ["rdata"])

253 return len( a_records )

254

255 def get_distinct_A_records ( domain ):

256 records = data [( data[’rrname ’] == domain ) & (data[’rrtype ’]

== ’ A’)]

122



257 A_records = records ["rdata"]. tolist ()

258 return A_records

259

260 def calculate_ip_entropy ( domain ):

261 A_records = get_distinct_A_records ( domain )

262 suffixes = []

263 for record in A_records :

264 regex = r"(?:\d{1 ,3}\.) {1}\d{1 ,3}"

265 matches = re. finditer (regex , record , re. MULTILINE )

266 for match in matches :

267 suffixes . append (match.group ())

268 break

269 unique_suffixes = set( suffixes )

270 entropy = 0

271 for n in unique_suffixes :

272 suffix_frequency = suffixes .count(n) / len( A_records )

273 entropy -= suffix_frequency * math.log2( suffix_frequency )

274 return round(entropy , 2)

275

276 def get_distinct_NS_records ( domain ):

277 records = fetch_data ( domain )

278 NS_records = [r[’rdata ’] for r in records if r[’rrtype ’] == ’

NS’]

279 return set( NS_records )

280

281 def retrieve_NS_records ( domain ):

282 ns_records = data [( data[’rrname ’] == domain ) & (data[’rrtype ’

] == ’ NS’)]

283 ns_records = ns_records [’rdata ’]. unique ()

284 return ns_records

123



285

286 def count_distinct_NS_records ( domain ):

287 ns_records = retrieve_NS_records ( domain )

288 return len( ns_records )

289

290 def calculate_similarity_NS_domain ( domain ):

291 NS_records = get_distinct_NS_records ( domain )

292 results2 = []

293 for a, b in itertools . combinations (NS_records , 2):

294 results2 . append ( editdistance .eval(a, b))

295 if not results2 :

296 return 0

297 return round(mean( results2 ), 2)

298

299 def length_of_domain ( domain ):

300 domain_no_dots = domain . replace (".", "")

301 return len( domain_no_dots )

302

303 def find_max_length_labels_subdomain ( domain ):

304 labels = domain .split(’.’)

305 max_label_length = max(len(label ) for label in labels )

306 return max_label_length

307

308 def compute_character_entropy ( domain ):

309 all_chars = [char for char in domain . replace (".", "")]

310 distinct_chars = list(set( all_chars ))

311 entropy = 0

312 for char in distinct_chars :

313 char_frequency = all_chars .count(char) / len( all_chars )

314 entropy -= char_frequency * math.log2( char_frequency )

124



315 return entropy

316

317 def count_numerical_characters ( domain ):

318 numerical_characters = re. findall (r’\d’, domain )

319 return len( numerical_characters )

320

321 def calculate_ratio_numerical_characters ( domain ):

322 numerical_count = count_numerical_characters ( domain )

323 domain_length = length_of_domain ( domain )

324 if domain_length == 0:

325 return 0

326 return numerical_count / domain_length

327

328 def find_max_length_continuous_num_chars ( domain ):

329 labels = domain .split(’.’)

330 max_cont_num_chars = 0

331 for label in labels :

332 num_chars = re. findall (r’\d+’, label )

333 if num_chars :

334 max_num_chars = max(num_chars , key=len , default ="")

335 max_cont_num_chars = max( max_cont_num_chars , len(

max_num_chars ))

336 return max_cont_num_chars

337

338 def find_max_length_continuous_alpha_chars ( domain ):

339 labels = domain .split(’.’)

340 max_count_alpha_chars = 0

341 for label in labels :

342 alpha_chars = re. findall (r’\D+’, label )

343 if alpha_chars :

125



344 max_alpha_chars = max( alpha_chars , key=len , default ="

")

345 max_count_alpha_chars = max( max_count_alpha_chars ,

len( max_alpha_chars ))

346 return max_count_alpha_chars

347

348 def find_max_length_same_alpha_chars ( domain ):

349 domain = ’’.join( filter (str.isalpha , domain ))

350 max_same_alpha_chars = 0

351 current_count = 1

352 for i in range(len( domain ) - 1):

353 if domain [i] == domain [i + 1]:

354 current_count += 1

355 else:

356 max_same_alpha_chars = max( max_same_alpha_chars ,

current_count )

357 current_count = 1

358 max_same_alpha_chars = max( max_same_alpha_chars ,

current_count )

359 return max_same_alpha_chars

360

361 def calculate_ratio_vowels ( domain ):

362 vowels = " AEIOUaeiou "

363 vowels_count = sum( domain .count(v) for v in vowels )

364 domain_length = length_of_domain ( domain )

365 if domain_length == 0:

366 return 0

367 return vowels_count / domain_length

368

369 def find_max_length_continuous_consonants ( domain ):

126



370 labels = domain .split(’.’)

371 max_cont_consonants = 0

372 for label in labels :

373 consonant_chars = re. findall (r’[b-df -hj -np -tv -z]+’, label

, re. IGNORECASE )

374 if consonant_chars :

375 max_consonant_chars = max( consonant_chars , key=len ,

default ="")

376 max_cont_consonants = max( max_cont_consonants , len(

max_consonant_chars ))

377 return max_cont_consonants

378

379 unique_domains = data[’rrname ’]. unique ()

380

381 results = {

382 " Domain ": unique_domains ,

383 " Length of Domain ": [],

384 "Max Length of Labels Subdomain ": [],

385 " Character Entropy ": [],

386 " Number of Numerical Characters ": [],

387 "Ratio of Numerical Characters ": [],

388 "Max Length of Continuous Numerical Characters ": [],

389 "Max Length of Continuous Alpha Characters ": [],

390 "Max Length of Same Alpha Characters ": [],

391 "Ratio of Vowels ": [],

392 "Max Length of Continuous Consonants ": [],

393 " Number of Distinct A Records ": [],

394 "IP Entropy of Domain Name": [],

395 " Number of Distinct NS Records ": [],

396 " Similarity of NS Domain Name": []

127



397 }

398

399 for domain in unique_domains :

400 results [" Length of Domain "]. append ( length_of_domain ( domain ))

401 results ["Max Length of Labels Subdomain "]. append (

find_max_length_labels_subdomain ( domain ))

402 results [" Character Entropy "]. append ( compute_character_entropy

( domain ))

403 results [" Number of Numerical Characters "]. append (

count_numerical_characters ( domain ))

404 results ["Ratio of Numerical Characters "]. append (

calculate_ratio_numerical_characters ( domain ))

405 results ["Max Length of Continuous Numerical Characters "].

append ( find_max_length_continuous_num_chars ( domain ))

406 results ["Max Length of Continuous Alpha Characters "]. append (

find_max_length_continuous_alpha_chars ( domain ))

407 results ["Max Length of Same Alpha Characters "]. append (

find_max_length_same_alpha_chars ( domain ))

408 results ["Ratio of Vowels "]. append ( calculate_ratio_vowels (

domain ))

409 results ["Max Length of Continuous Consonants "]. append (

find_max_length_continuous_consonants ( domain ))

410 results [" Number of Distinct A Records "]. append (

count_distinct_A_records ( domain ))

411 results ["IP Entropy of Domain Name"]. append (

calculate_ip_entropy ( domain ))

412 results [" Number of Distinct NS Records "]. append (

count_distinct_NS_records ( domain ))

413 results [" Similarity of NS Domain Name"]. append (

calculate_similarity_NS_domain ( domain ))

128



414

415 records = data [( data[’rrname ’] == domain )]

416 print( domain )

417

418 final_data = pd. DataFrame ( results )

419 final_data . to_csv (" FinalDNS .csv", index=False)

420

421

422

423 ########### ANALYSIS TRAFFIC MODULE ###################

424

425 model = pickle .load(open(’finalized_model .sav ’, ’rb’))

426 dataset = pd. read_csv (’./ testtable .csv ’)

427 rows = len( dataset )

428

429 x = dataset [list(

430 filter ( lambda x: x in [’ipvhl ’, ’iplen ’, ’ipid ’, ’ipfragoff ’,

’iptos ’

431 , ’ipttl ’, ’ipp ’, ’ipsum ’, ’tcpdport ’, ’tcpsport ’, ’tcpseq ’,

’tcpack ’, ’tcpoffx ’,

432 ’tcpflags ’, ’tcpwin ’, ’tcpsum ’, ’tcpurp ’, ’tcpbody ’],

dataset . columns ))]

433

434 print(" Receveid ",rows ," packets from the capture \n")

435

436 startAnalysis = time.time ()

437 print(" Starting analyzing at: ", startAnalysis )

438 predicted = model. predict (x)

439

440 i = 0

129



441 hosts = dataset [’ipsrc ’]

442 malicious = []

443 while (i < rows):

444 if( predicted [i] == 1):

445 malicious . append (hosts[i])

446 i = i+1

447

448 unique_domains = list(dict. fromkeys ( malicious ))

449 nDomain = len( unique_domains )

450 i=0;

451

452 while (i< nDomain ):

453 mess = " Malicious Activity coming from host: ",

unique_domains [i]

454 messagebox . showwarning (title=" MALICIOUS ACTIVITY FOUND",

message =mess)

455 i = i+1

456

457 end = time.time ()

458 print(" Finish analysis at: ", end - startAnalysis )

459

460

461 ########### ANALYSIS DNS MODULE ###################

462

463 model = pickle .load(open(’finalized_model_DNS .sav ’, ’rb’))

464 dataset = pd. read_csv (’./ FinalDNS .csv ’)

465 rows = len( dataset )

466

467 x = dataset [list(

130



468 filter ( lambda x: x in [’len_domain ’, ’

max_len_labels_subdomain ’, ’number_numerical_characters ’,

’ratio_numerical_characters ’

469 , ’max_len_cont_num_chars ’, ’max_len_cont_alpha_chars ’, ’

max_len_cont_same_alpha_chars ’, ’ratio_vowels ’, ’

max_length_continuous_consonants ’, ’

number_distinct_A_records ’, ’ip_entropy_domain_name ’, ’

number_distinct_NS_records ’,

470 ’similarity_NS_domain_name ’,’character_entropy ’], dataset .

columns ))]

471

472 print(" Receveid ",rows ," packets from the capture \n")

473

474 startAnalysis = time.time ()

475 print(" Starting analyzing at: ", startAnalysis )

476 predicted = model. predict (x)

477 end = time.time ()

478 print(" Finish analysis at: ", end - startAnalysis )

131


	Abstract
	Resumo
	Acronyms
	Introduction
	Problem
	Goals
	Structure of Document
	Acknowledgement

	State of the art
	Concepts
	Software Defined Network

	Literature Review Methodology
	Data Collection
	Analysis and Selection Phase

	Literature review
	Related work
	Tools
	OpenDaylight
	OpenVSwitch
	PCAP file
	Kafka
	Hadoop Distributed File System
	Capture tools
	IA analisys
	Passive DNS
	PyPacker
	Sci-kit Learn


	Approach
	Proposed Solution
	Network Topology
	System architecture
	Packet capture
	Data set Generation
	Analysis module
	AI Model
	Complete Solution Model


	Implementation
	Network Deployment
	Controller Deploy
	Virtual Switch Deploy
	Host Deploy

	Queuing System
	Data distributing and message sizes 

	Storage System
	Capture system
	Dataset Collection
	Analysis module implementation
	Traffic Analysis
	Passive DNS Implementation
	Machine Learning Algorithm Tests


	Experiments and Discussion
	Tool used in the experiment
	Network Throughput
	Capture module performance
	Kafka Performance
	Kafka Partitions
	Kafka Messages

	Data Set Results
	AI analysis
	Real Case Scenario

	Conclusions and future work
	Future Work

	Original dissertation proposal
	Opendaylight Configuration
	Opendaylight Installation Script
	Opendaylight Configuration Script

	OpenVSwitch Configuration
	OpenVSwitch Installation Script
	OpenVSwitch Bridge Configuration

	Interfaces Configuration
	Interfaces example with 4 hosts

	Code Developed
	Kafka Administration Code
	Kafka Configuration for Capture Code
	Capture Module Code
	Training Traffic Analysis Code
	Training Passive DNS Analysis Code
	Complete Analysis Module Code


