
Citation: Thuany, M.; Valero, D.;

Villiger, E.; Forte, P.; Weiss, K.;

Nikolaidis, P.T.; Andrade, M.S.; Cuk,

I.; Sousa, C.V.; Knechtle, B. A

Machine Learning Approach to

Finding the Fastest Race Course for

Professional Athletes Competing in

Ironman® 70.3 Races between 2004

and 2020. Int. J. Environ. Res. Public

Health 2023, 20, 3619. https://

doi.org/10.3390/ijerph20043619

Academic Editor: Corrado Lupo

Received: 10 December 2022

Revised: 9 February 2023

Accepted: 15 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

A Machine Learning Approach to Finding the Fastest Race
Course for Professional Athletes Competing in Ironman®

70.3 Races between 2004 and 2020
Mabliny Thuany 1 , David Valero 2 , Elias Villiger 3 , Pedro Forte 4,5,6 , Katja Weiss 7 ,
Pantelis T. Nikolaidis 8 , Marília Santos Andrade 9 , Ivan Cuk 10 , Caio Victor Sousa 11 and
Beat Knechtle 7,12,*

1 Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
2 Ultra Sports Science Foundation, 69310 Pierre-Benite, France
3 Klinik für Allgemeine Innere Medizin, Kantonsspital St. Gallen, 9000 St. Gallen, Switzerland
4 CI-ISCE, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
5 Research Center in Sports, Health and Human Development, 6201-001 Covilhã, Portugal
6 Department of Sport Sciences, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
7 Institute of Primary Care, University Hospital Zurich, 8091 Zurich, Switzerland
8 School of Health and Caring Sciences, University of West Attica, 12243 Athens, Greece
9 Department of Physiology, Federal University of São Paulo, São Paulo 04021-001, Brazil
10 Faculty of Sport and Physical Education, University of Belgrade, 11000 Belgrade, Serbia
11 Health and Human Sciences, Loyola Marymount University, Los Angeles, CA 90045, USA
12 Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland
* Correspondence: beat.knechtle@hispeed.ch

Abstract: Our purpose was to find the fastest race courses for elite Ironman® 70.3 athletes, using
machine learning (ML) algorithms. We collected the data of all professional triathletes competing
between 2004 and 2020 in Ironman 70.3 races held worldwide. A sample of 16,611 professional
athletes originating from 97 different countries and competing in 163 different races was thus obtained.
Four different ML regression models were built, with gender, country of origin, and event location
considered as independent variables to predict the final race time. For all the models, gender was
the most important variable in predicting finish times. Attending to the single decision tree model,
the fastest race times in the Ironman® 70.3 World Championship of around ~4 h 03 min would be
achieved by men from Austria, Australia, Belgium, Brazil, Switzerland, Germany, France, the United
Kingdom, South Africa, Canada, and New Zealand. Considering the World Championship is the
target event for most professional athletes, it is expected that training is planned so that they attain
their best performance in this event.

Keywords: endurance; cycling; half-distance Ironman; swimming; triathlon; running

1. Introduction

Triathlon is a multi-sports discipline. Long-distance triathlons, such as the ‘Ironman®

Hawaii’ (3.8 km swimming, 180 km cycling, and 42.195 km running), are known to many
people [1] and have increased in popularity in terms of participants [2]. In a half-Ironman
(‘Ironman® 70.3’), the swimming, cycling, and running segments are half the distance of the
corresponding segments in a full Ironman® distance triathlon. Ironman® ‘70.3’ refers to the
total distance in miles (113.0 km) of the race, consisting of a 1.2 mile swim, a 56 mile bike
ride, and a 13.1 mile run. Among different research topics involving endurance athletes,
the interest in understanding the environmental characteristics related to the place of
competition and country of origin of the athletes has increased over the last few years [3–6].

Regarding the country of origin of long-distance triathletes, it has been reported that
most finishers, as well as the fastest athletes competing in ‘Ironman® Hawaii’, originated
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from the United States of America [7]. Although the previous literature has showed
the dominance of certain nations in specific sports disciplines [4,6,8,9], little evidence is
available regarding the place of competition or if these characteristics are performance-
related. As the most popular long-distance triathlon in the world, athletes travel hundreds
of miles to compete in Ironman® 70.3 events, with many travelling thousands of miles
to compete at remote locations and achieve personal goals or to earn a spot in the World
Championship.

As previously showed, travelling may have a negative effect on athletes’ perfor-
mance [10], due to sleep disorders, nutritional and appetite changes, travel fatigue (i.e.,
hours spent seated and disruption in daily rhythm and routines). Considering these nega-
tive effects on athletes’ cognitive and physical levels, specific treatments to surpass these
effects are necessary [10,11]. Thus, looking past the athletes’ country of origin, the character-
istics and place of competitions can provide important information for athletes and coaches
to better prepare and select the most appropriate race course in the world. Since no infor-
mation is available regarding the role of the course characteristics in runners’ performance,
this study intended to find the fastest race courses for elite Ironman® 70.3 athletes, using
machine learning (ML) algorithms for predictive statistics. Based on previous findings, we
hypothesized that the USA would be the fastest country [7].

2. Materials and Methods
2.1. Ethical Approval

This study was approved by the Institutional Review Board of Kanton St. Gallen,
Switzerland, with a waiver of the requirement for informed consent of the participants as
the study involved the analysis of publicly available data (EKSG 01-06-2020).

2.2. Study Design, Sample, and Data Preparation

This is a cross-sectional study, using secondary data available and downloaded from
the official Ironman® website (www.ironman.com, accessed on 22 June 2022) using a
Python script. We analyzed elite (PRO) finishers race data of all Ironman® 70.3 races
recorded in the Ironman website between 2004 and 2020. To register as an elite triathlete,
an athlete must apply in the Ironman® 70.3 community to become a “PRO” member with
a copy of the athlete’s license status as a professional athlete from the respective national
triathlon federation, and must also be affiliated with the International Triathlon Union
(www.triathlon.org, accessed on 22 June 2022). Data obtained include the athletes’ sex and
country of origin, the event location and year, and the race finish time. Exclusion criteria
were as follows: (i) athletes who did not start or finish, (ii) disqualified athletes, (iii) records
with missing split time, and (iv) inconsistent times (i.e., impossible split times or final times
smaller than split times, etc.).

2.3. Statistical Analysis

Descriptive statistics are presented using mean and standard deviation, frequencies,
and percentages. Four ML regression models were built and compared, using four different
algorithms: random forest regressor, XG boost regressor, cat boot regressor, and decision
tree regressor. All four algorithms are decision-tree-based. The simplest of all of them is the
single decision tree algorithm, whilst the other three are tree-ensembles that use between a
few hundred and a few thousand trees. For each algorithm, the mean absolute error (MAE)
and R-squared (R2) metrics were calculated. In order to try and understand the algorithms’
logic, several model-agnostic explainability tools were used, including the algorithms’
features of relative importance, partial dependence plots (PDP), and the aggregated SHAP
values. In addition, a graphical illustration of the single decision tree model is also provided.
During the training, the model was fitted with 75% of the available data, and the remaining
25% was used to test and compare predictions vs. real values, calculating MAE and R2 as
the accuracy metrics of the algorithm. The MAE presents the mean of the absolute values
of the individual prediction errors over all instances in the test set, in which higher values

www.ironman.com
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mean higher prediction errors. R2 is a value between 0 and 1 and refers to the “goodness of
fit”, that is, the model’s predictive power. The features’ relative importance represents a
score for each feature in a specific model. Higher values correspond to higher importance
in predicting the target variable. PDP and SHAP values provide information on how each
feature contributes to the model output. Since the outcome (or predicted variable) was
the finish time in seconds, the fastest courses were defined as the race locations where
the average finish time was the lowest. The triathletes’ gender and country of origin, as
well as the event location (race course) were used as predictors. As three of them were
categorical variables, they were encoded into numerical values. Gender was encoded as
0 = female, 1 = male, whilst for the country and event location, a rank-encoding scheme
based on the frequency was used. Data processing and analysis were performed using
Python and associated ML libraries in a Jupyter notebook (Google Colab).

3. Results

A total of 16,611 athletes of both sexes from 97 different countries in 163 different race
locations were sampled. Figure 1 presents the histograms of the finish times for both sexes.
Based on the histograms, it is possible to see a higher frequency for men than women, and
that men present a higher frequency of lower finish times.
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Figure 1. Histograms of the finish time of Ironman® 70.3 PRO athletes competing between 2004 and
2020.

Table 1 presents a comparative table with the performance scores (MAE and R2) and
the features’ relative importance for all four predictive models considering the different
algorithms and calculated using the 25% test sample. The XG boost and cat boost models
were the models achieving the best predictive performance (R2 of 0.55), while the simplest
of the models (model 4, single decision tree) obtained the lowest score (R2 of 0.43). In
regards to the features’ importance, gender was the most important variable to predict the
finish time for all five models. However, event location and country of origin presented
different importance for different algorithms. For example, event location presented a
higher importance compared to country when the random forest regressor was used,
whereas for the decision tree, the triathlete’s country of origin was more important than
the event location.

Figure 2 represents the aggregated SHAP values of each of the four models. The
SHAP values show how each of the predictors contribute to the model output in respect
to a reference value. For instance, the gender variable adds about 1000 s on average to
the predicted finish time for females (blue points) and subtracts about 600 for males (red
points). The relative low importance of the event location variable for the decision tree
model can be appreciated in the respective chart, given the small size of its contributions
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to the model output. However, a few blue points can be seen at the far-left of the chart
(between 0 and −500 s), indicating that locations with low values for EventLocation_ID,
which have the highest number of participants, would be among the fastest race locations.
Similarly, a few red dots at the far-right end of the XG boost and cat boost charts indicate
that some countries with a low number of participants would be the worst-performing
ones, adding 3000 s or more to the predicted race finish time.

Table 1. Regression models results using the four different algorithms.

Algorithm

Random Forest XG Boost Cat Boost Decision Tree

MAE (seconds) 720.8 688.4 688.8 796.5
R-squared 0.51 0.55 0.55 0.43

Feature (variable) Importance
Gender 0.45 0.93 0.45 0.81

Event Location 0.32 0.04 0.30 0.01
Country 0.23 0.03 0.25 0.18

Legend: MAE (mean absolute error)
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Figure 2. Aggregated SHAP values of the five predictive models: (A) Algorithm Random Forest
Regressor; (B) Algorithm XG Boost Regressor; (C) Algorithm Cat Boot Regressor, (D) Algorithm
Decision Tree Regressor).

Figures 3 and 4 show the partial dependence plots (PDP) of each predictive model.
The PDP plots provide additional details on the specific locations and/or countries that
more contribute to the models’ predictions, as well as the amount of their contribution.
Each of the charts show the contribution to the predictive model output for each value of
each feature, with respect to a reference value of zero. For the gender predictor, 0 means
females, whilst for country, a value of 0 corresponds to the USA, and for event location a
value of 0 corresponds to the Ironman® 70.3 World Championship.
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Figure 3. PDP plots of PDP plots of (A) Algorithm Random Forest Regressor,  (B) Algorithm XG 
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Figure 3. PDP plots of PDP plots of (A) Algorithm Random Forest Regressor, (B) Algorithm XG Boost
Regressor; (C) Algorithm Cat Boost Regressor, and (D) Algorithm Decision Tree.
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Figure 4. Decision tree (model 4) graphical representation.

All four models identify the Philippines as the worst-performing country (Country_ID
= 13) adding around 2000 s on average (3000 in the case of the decision tree) to the finish
time predictions with respect to the USA. Furthermore, the three ensemble algorithms
identify several countries (IDs 2, 5, 9) as making negative contributions to the finish time
predictions; however these contributions are relatively small (less than 1000 s) in all cases.
The fourth model (single decision tree) shows a flatter country PDP chart which reflects the
less complex nature of the algorithm.

In respect of the event location variable, the first three algorithms (the tree ensembles)
show very similar charts with two distinctive lows at positions 35 and 37 corresponding
to Ironman® 70.3 Monterrey and Dubai, subtracting around 600–800 s from the output in
respect to the reference (the World Championship). The last algorithm (single decision tree)
shows a simpler chart, corresponding to its simpler logic, in which all and every single race
location will add either 160, 200, or 220 s (approximately) to the reference value. According
to the decision tree then, the Ironman® 70.3 World Championship is the fastest race course.

Figure 4 represents the decision tree algorithm implemented as model 4. As already
explained, all four predictive models are ensemble variations in the basic decision tree;
hence, interpreting the latter is relevant to understanding all of them. Starting at node 0
(with gender encoded as 0 for women and 1 for men), the decision node Gender_ID <= 0.5
leads to the women’s results on the top branch (node #1) and men´s at the bottom (node #16).
Note the color coding in which the darker colors represent longer finish times (represented
by the “value” in seconds). As we are searching for the best times, we continue to the men’s
branch, in which decision node #16 Country <= 11.5 splits the dataset into the first athletes’
countries by the number of records (i.e., Austria, Australia, Belgium, Brazil, Switzerland,
Germany, France, United Kingdom, United States, South Africa, Canada, and New Zealand
in node #17) and the rest (node #24). The algorithm tells us at this point that 47.8% of the
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records in the PRO sample were men from one of the first twelve countries by the number
of participants, and that they achieved an average race time of 4 h 10 min (14,992.2 s). If
we continue through node #18 (from node #17 when EventLocation_ID < = 0.5, that is, the
Ironman® World Championship) and then to node #20 (when Country_ID > 0.5, and is less
or equal than 11 as determined earlier) we reach the fastest (whitest) node in this decision
tree which corresponds to male triathletes from countries with IDs from 1 to 11 (Austria,
Australia, Belgium, Brazil, Switzerland, Germany, France, United Kingdom, South Africa,
Canada, and New Zealand) competing in the Ironman® World Championship location and
achieving an average time of 14,585.5 s (4 h 3 min) (Figures 5 and 6).
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4. Discussion

This study is the first to investigate the location of the fastest race course for Ironman®

70.3 using ML algorithms. The first important finding was that the best race times in
professional athletes in Ironman® 70.3 competitions were achieved by men competing in
the Ironman® 70.3 World Championship. The World Championship is the target event
for most professional athletes, so it is expected that athletes attain their best performance
in this event. In addition, only the best-placed athletes in the Ironman® 70.3 events can
participate in the World Championship, which greatly raises the level of competition
and competitiveness among the athletes. Since few studies have used a ML approach to
predict performance or different outcomes in triathletes [12,13], comparisons are limited.
Nevertheless, we expect that our data’s accuracy in the prediction of results could also
guide future studies. Moreover, it is important to mention that the actual race course of
the Ironman® 70.3 World Championship changed between 2006 and 2020 (see Table 2).
Regarding the average temperature (see Table 3), no fundamental differences exist between
the various race courses; however, some differences according the month of the event as
well as differences for the swimming, cycling, and running segments could be seen. These
characteristics present some insights regarding the interplay between the intrapersonal (i.e.,
motivation), interpersonal (i.e., competitive environment), and environmental features (i.e.,
different race courses) for competitive athletes. Although these factors were beyond our
scope in this study, future studies should investigate how these factors interact, and how
performance can be conditioned by this interaction.

Table 2. Locations of Ironman® 70.3 World Championships.

Year City, Country

2006–2010 Clearwater, FL, USA
2011–2013 Henderson, NV, USA

2014 Mont-Tremblant, QC, Canada
2015 Zell am See-Kaprun, Austria
2016 Mooloolaba, QLD, Australia
2017 Chattanooga, TN, USA
2018 Nelson Mandela Bay, South Africa
2019 Nice, Alpes-Maritimes, France
2020 Taupo, New Zealand

Table 3. Specific descriptions of Ironman® 70.3 race courses.

Race Month Average
Temperature

Swimming Course
Characteristics

Cycling Course
Characteristics

Running Course
Characteristics

IRONMAN® 70.3
Zell am See

August 19 ◦C 1 lap of 1.9 km in a
lake

1 lap of 90 km, altitude
difference of 1270 m per lap,
overall altitude difference of

1270 m

2 laps of 21.1 km, altitude
difference of 26 m per lap, at
an overall altitude difference

of 52 m

IRONMAN® 70.3
European

Championship
Elsinore

June 21 ◦C 1 lap of 1.9 km in a
bay

1 lap of 90 km, altitude
difference of 600 m per lap,

overall altitude difference of
600 m

3.5 laps of 21.1 km, altitude
difference of 28.6 m per lap, at
an overall altitude difference

100 m

IRONMAN® 70.3
Greece Costa

Navarino
October 23 ◦C 1 lap of 1.9 km in the

ocean

2 laps of 90 km, altitude
difference of 540 m per lap,

overall altitude difference of
1080 m

3 laps of 21.1 km, altitude
difference of 66.7 m per lap, at
an overall altitude difference

200 m

IRONMAN® 70.3
Indian Wells La

Quinta
December 18 ◦C 1 lap of 1.9 km in a

lake

1 lap of 90 km, altitude
difference of 161 m per lap,

overall altitude difference of
161 m

2 laps of 21.1 km, altitude
difference of 57.7 m per lap, at
an overall altitude difference

of 115 m
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Table 3. Cont.

Race Month Average
Temperature

Swimming Course
Characteristics

Cycling Course
Characteristics

Running Course
Characteristics

IRONMAN® 70.3
Middle East

Championship
Bahrain

December 22 ◦C 1 lap of 1.9 km in a
bay

1 lap of 90 km, altitude
difference of 300 m per lap,

overall altitude difference of
300 m

3 laps of 21.1 km, altitude
difference of 24.3 m per lap, at
an overall altitude difference

73 m

IRONMAN® 70.3
Texas

April 21 ◦C 1 lap of 1.9 km in a
bay

1 lap of 90 km, altitude
difference of 45 m per lap,

overall altitude difference of
45 m

3 laps of 21.1 km, altitude
difference of 10.7 m per lap, at
an overall altitude difference

32 m

IRONMAN® 70.3
Tallinn

August 17 ◦C 1 lap of 1.9 km in a
lake

1 lap of 90 km, altitude
difference of 300 m per lap,

overall altitude difference of
300 m

2 laps of 21.1 km, altitude
difference of 57.7 m per lap, at
an overall altitude difference

of 115 m

IRONMAN® 70.3
Western Sydney

September 23 ◦C 1 lap of 1.9 km in a
lake

2 laps of 90 km, altitude
difference of 165 m per lap,

overall altitude difference of
330 m

1 lap of 21.1 km, altitude
difference of 25 m per lap, at
an overall altitude difference

of 25 m

IRONMAN® 70.3
Maceio

August 28 ◦C 1 lap of 1.9 km in the
ocean

1 lap of 90 km, altitude
difference of 200 m per lap,

overall altitude difference of
200 m

3 laps of 21.1 km, altitude
difference of 23.3 m per lap, at
an overall altitude difference

70 m

IIRONMAN® 70.3
Liuzhou

September 28 ◦C 1 lap of 1.9 km in a
river

2 laps of 90 km, altitude
difference of 168.5 m per lap,
overall altitude difference of

337 m

2 laps of 21.1 km, altitude
difference of 171 m per lap, at
an overall altitude difference

of 342 m

IRONMAN® 70.3
Luxembourg

June 18 ◦C 1 lap of 1.9 km in a
river

1 lap of 90 km, altitude
difference of 580 m per lap,

overall altitude difference of
580 m

2,5 laps of 21.1 km, altitude
difference of 40 m per lap, at
an overall altitude difference

of 100 m

IRONMAN® 70.3
Marbella

May 21 ◦C 1 lap of 1.9 km in the
ocean

1 lap of 90 km, altitude
difference of 1400 m per lap,
overall altitude difference of

1400 m

2 laps of 21.1 km, altitude
difference of 25 m per lap, at
an overall altitude difference

of 50 m

IRONMAN® 70.3
Vichy

August 28 ◦C 1 lap of 1.9 km in a
lake

1 lap of 90 km, altitude
difference of 1000 m per lap,
overall altitude difference of

1000 m

2 laps of 21.1 km, altitude
difference of 50 m per lap, at
an overall altitude difference

of 100 m

IRONMAN® 70.3
Gdynia

August 25 ◦C 1 lap of 1.9 km in a
bay

1 lap of 90 km, altitude
difference of 1860 m per lap,
overall altitude difference of

1860 m

2 laps of 21.1 km, altitude
difference of 70 m per lap, at
an overall altitude difference

of 340 m

IRONMAN® 70.3
Mallorca

May 25 ◦C 1 lap of 1.9 km in the
ocean

1 lap of 90 km, altitude
difference of 850 m per lap,

overall altitude difference of
850 m

3 laps of 21.1 km, altitude
difference of 20 m per lap, at
an overall altitude difference

60 m

IRONMAN 70.3
Panama March 30 ◦C 1 lap of 1.9 km in the

ocean 3 laps of 90 km 3 laps of 21.1 km

IRONMAN 70.3
Augusta September 27 ◦C 1 lap of 1.9 km in the

river 1 lap of 90 km 2 laps of 21.1 km

IRONMAN 70.3
North Carolina October 18 ◦C 1 lap of 1.9 km in the

ocean 1 lap of 90 km 1 lap of 21.1 km

IRONMAN 70.3
Dubai March 24 ◦C 1 lap of 1.9 km in the

ocean

1 lap of 90 km, altitude
difference of 87 m per lap,

overall altitude difference of
87 m

1,5 laps of 21.1 km, altitude
difference of 5 m per lap, at

an overall altitude difference
7.5 m

IRONMAN 70.3 Sao
Paolo September 25 ◦C 1 lap of 1.9 km in a

reservoir

2 laps of 90 km, altitude
difference of 20 m per lap,

overall altitude difference of
40 m

3 laps of 21.1 km, altitude
difference of 15 m per lap, at
an overall altitude difference

45 m
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Table 3. Cont.

Race Month Average
Temperature

Swimming Course
Characteristics

Cycling Course
Characteristics

Running Course
Characteristics

IRONMAN 70.3
Alagolas August 28 ◦C 1 lap of 1.9 km in the

ocean

1 lap of 90 km, altitude
difference of 100 m per lap,

overall altitude difference of
100 m

3 laps of 21.1 km, altitude
difference of 20 m per lap, at
an overall altitude difference

60 m

IRONMAN 70.3
Emilia Romagna September 25 ◦C 1 lap of 1.9 km in the

ocean

1 lap of 90 km, altitude
difference of 185 m per lap,

overall altitude difference of
185 m

3 laps of 21.1 km, altitude
difference of 5 m per lap, at

an overall altitude difference
15 m

IRONMAN 70.3 Pays
D’Aix May 20 ◦C 1 lap of 1.9 km in a

lake

1 lap of 90 km, altitude
difference of 390 m per lap,

overall altitude difference of
390 m

3 laps of 21.1 km, altitude
difference of 15 m per lap, at
an overall altitude difference

45 m

IRONMAN 70.3
Sunshine Coast September 26 ◦C 1 lap of 1.9 km in the

ocean

2 laps of 90 km, altitude
difference of 35 m per lap,

overall altitude difference of
70 m

2 laps of 21.1 km, altitude
difference of 20 m per lap, at
an overall altitude difference

40 m

IRONMAN 70.3
Geelong March 19 ◦C 1 lap of 1.9 km in a

bay

2 laps of 90 km, altitude
difference of 75 m per lap,

overall altitude difference of
150 m

2,5 laps of 21.1 km, altitude
difference of 25 m per lap, at
an overall altitude difference

67 m

IRONMAN 70.3
Steelhead Juna 20 ◦C 1 lap of 1.9 km in a

lake 1 lap of 90 km 2 laps of 21.1 km

IRONMAN 70.3
Turkey November 24 ◦C 2 laps of 1.9 km in the

ocean

2 laps of 90 km, altitude
difference of 20 m per lap,

overall altitude difference of
40 m

3 laps of 21.1 km, altitude
difference of 5 m per lap, at

an overall altitude difference
15 m

IRONMAN 70.3
California April 17 ◦C 1 lap of 1.9 km in the

ocean

1 lap of 90 km, altitude
difference of 220 m per lap,

overall altitude difference of
220 m

2 laps of 21.1 km, altitude
difference of 10 m per lap, at
an overall altitude difference

20 m

IRONMAN 70.3
Astana June 25 ◦C 1 lap of 1.9 km in a

river

1 lap of 90 km, altitude
difference of 20 m per lap,

overall altitude difference of
20 m

2 laps of 21.1 km, altitude
difference of 5 m per lap, at

an overall altitude difference
10 m

IRONMAN 70.3
Florianapolis April 21 ◦C 1 lap of 1.9 km in the

ocean 1 lap of 90 km 3 laps of 21.1 km

Another interesting finding was that the locations with the highest number of partici-
pants would be among the fastest race locations. Factors that explain these findings may be
related to the race course, the difficulty in accessing the race event, weather characteristics,
and personal motivation, since a larger number of athletes compete in these events. Since
these are speculative, future studies should better explore these findings in order to achieve
a deeper understanding of the influence of each of these effects.

Our study presents some advantages for performance prediction compared to other
studies which have largely focused on the role of training [14], pacing [15,16], technical
adjustments [16], and nutritional and morphological characteristics [17] in endurance
athletes. The importance of the event location for athletes’ performance has not been
sufficiently explored in the scientific literature [18,19]. Besides the influence of athletes and
equipment characteristics on Ironman® 70.3 triathlon performance [20,21], as an outdoor
sport, the role of environmental characteristics needs to be considered, moving beyond
the weather characteristics frequently studied (i.e., temperature, wind, humidity) [22].
In this way, our results indicate that the place of competition is an important variable
to be considered for athletes to achieve their best performance. In addition, altitude,
terrain characteristics, water temperature, sea current, and track characteristics influence
performance, and are emergent topics that also need to be considered in the future.
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Finally, all our predictive models showed that the best performance would be achieved
by men. Despite the reduction in gender gaps in performance over the last few years,
men still perform better than women [23]. Gender differences have been previously
investigated [24,25] and performance differences range between 12% to 18%, depending
on race characteristics [24]. In summary, morphological characteristics (e.g., lower limbs,
body fat, body mass) and physiological determinants (e.g., maximal oxygen uptake, lactate
threshold, movement economy) [23] were contextualized to explain the differences in the
swimming, cycling, and running segments that reduce women’s performance [23]. Due
to the large body of the literature available regarding sex performance differences, it is
important to move beyond this topic. Future studies should investigate the role of the
race course, in addition to the training background and intrapersonal motivation, in each
group, as well as different performance levels and age categories. As mass sporting events
have increased over the last few years and participants often compete in their leisure
time, it would be desirable to obtain a good understanding of the impact of these race
characteristics on their well-being.

It is acknowledged that this study is not free from limitations. The first important
limitation was the lack of information regarding the race courses that could explain why
the Ironman® 70.3 World Championship presented the best characteristics for athletes’
performance, considering the different characteristics of the triathlon disciplines. The lack
of information about the race course in each segment impaired our understanding of which
discipline (swimming, cycling, running) would be the most positively affected by the race
course characteristics and would have the strongest influence on the athletes’ finish times.
Secondly, information regarding changes in race course characteristics over the years was
not taken into consideration during the data analysis. The absence of additional information
about the athletes’ personal characteristics, such as motivation, training background, and
travel distance, also limits the generalization of these findings. However, our results bring
valuable insights about the importance of the event location in performance and introduce
some advances regarding the importance of statistical approaches in helping with athletes’
preparation.

5. Conclusions

Between 2004 and 2020, most professional Ironman® 70.3 athletes achieved their fastest
race times in the Ironman® 70.3 World Championship with an average final time of around
4 h. Future studies should consider stratification based on the performance level, as well as
understand the effects of racecourses in helping athletes achieve their best results.
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