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Abstract

Regression Models have good use in the predictability of electrical systems and for

Home Energy Management Systems (HEMS) buildings. This master’s thesis performs

simulations with data from the Silk House, a building in Bragança. The objective is to

determine better parameters in building data collection to improve its efficiency.

Several Regression Models in Machine Learning (ML) are in a Python algorithm that

constructs different inputs to an output. The Data Set is short, with seven scalar variables

of the building’s power flow over a year, measured daily. The algorithm changed the

number of variables chosen in the input and ran several models, with and without Principal

Component Analysis (PCA). The Coefficient of Determination (R2) measures how well a

regression model fits the data and its percentage of results withR2 in the range [0.75, 1]

across all simulations.

The best results for R2 in the range [0.75, 1] found 45% without PCA and 47.14% with

PCA. With just one input, all models initially found 0% R2 in the range [0.75, 1]. The

results of R2 in the range [0.75, 1] increased directly with more variables in the input. The

variables with the best results were Photovoltaic Production (PP) and Direct Consump-

tion (DC), being consistent with the profile of the building (office), which recommends its

expansion. The variable Battery Charge (BC) never reached any R2 in the range [0.75, 1],

which indicates possible suppression. It is also concluded that it is prudent to have more

data and that non-linear tools are more suitable for site analysis.

Keywords: HEMS; Machine Learning; Data; Power Systems; Optimization; Regres-

sion Models; Energy; Sustainability.
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Resumo

Os modelos de regressão possuem bom uso na previsibilidade de sistemas elétricos e

em Home Energy Management Systems (HEMS). Esta dissertação de mestrado realiza

simulações com dados da Silk House, edifício em Bragança. O objetivo é determinar

melhores parâmetros na coleta de dados do edifício para melhorar sua eficiência.

Os diversos algoritmos Regression Models em Machine Learning (ML) estão escritos

em Python que constrói diferentes entradas para uma saída. O Data Set é curto, com

sete variáveis escalares do trânsito de potência do edifício durante um ano, medidas di-

ariamente. O algoritmo alterou o número de variáveis escolhidas na entrada e executou

diversos modelos, com e sem Principal Component Analysis (PCA). O Coeficiente de

Determinação R2 mede quão bem um modelo de regressão se ajusta aos dados e sua

porcentagem de resultados com R2 na faixa [0, 75, 1] perante todas simulações.

Os melhores resultados para R2 na faixa [0, 75, 1] encontraram 45% sem PCA e 47,14%

com PCA. Com apenas uma entrada, todos os modelos encontraram inicialmente 0% R2

no intervalo [0, 75, 1]. Os resultados de R2 no intervalo [0, 75, 1] aumentaram diretamente

com mais variaveis na entrada. As variáveis com melhores resultados foram Photovoltaic

Production (PP) e Direct Consumption (DC), sendo condizentes com o perfil da edificação

(escritório), o que recomenda sua expansão. A variável Battery Charge (BC) nunca atingiu

nenhum R2 no intervalo [0.75, 1], o que indica possível supressão. Conclui-se também que

é prudente ter mais dados e que as ferramentas não lineares são mais adequadas a análise

do local.

Keywords: HEMS; Machine Learning; Data; Power Systems; Optimization; Regres-

sion Models; Energy; Sustainability.
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Chapter 1

Introduction

In recent decades, environmental agreements have encouraged renewable energy explo-

ration, especially around the 2000s and since, mainly driven by the ecological importance

of reducing the consumption of fossil fuels, as well as the need to avoid an energy crisis.

The production of energy and our access to it expands the possibilities of other resource

management and production. In contrast, energy is also the primary means for obtaining

any resources and one vital resource. The intermittent nature of renewable energies in-

creases the complexity of management when one needs to consider that their production

exhibits seasonality attached to environmental conditions and is not necessarily a response

to load consumption. With the advancement and cheapening of photovoltaic and battery

technologies, and in the generators for hydro and wind, new opportunities have opened

up for possible new technical insertions [1]. Every country has political and regulatory

conditions regarding the topic of energy. Some reasons go beyond the historical construc-

tion of an energy service sector like the one we observe. It also has a fundamental short

and long-term strategic role, being at the basis of access to most services in developed

societies, just as its intermittent and cheap supply represents a likely future for a more

developed economy.

Thinking about energy is thinking about flow, as much as a resource and its presence

and use. The excellent use of energy has improved our quality of life, so we have trans-

formed it into a service that can be sold and purchased. Over time, population growth
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and economic expansion occurred, which also caused a greater need for energy and the

ability to obtain it from various sources.

Below is Figure 1.1 showing the growth in energy use over time and its most common

sources.

Global primary energy consumption by source
Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel

production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as

fossil fuels.

1800 20211850 1900 1950
0 TWh

20,000 TWh

40,000 TWh

60,000 TWh

80,000 TWh

100,000 TWh

120,000 TWh

140,000 TWh

160,000 TWh

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy OurWorldInData.org/energy • CC BY

Figure 1.1: Graph of the global distribution of energy consumption by source. Adapted
from [2].

Supplying energy allows for improving life perspectives for a community. They can ac-

cess services and products derived from the use or existence of power. Its access becomes

associated with a fundamental right for the population since the absence of it generates

marginalization and inequality, as well as low quality of life, referring to life in society in

contemporary times. Thirteen per cent of the world’s population is impoverished or has

no access to electricity [2], and taking the large pockets of the people implies that the

electricity demand is under-saturated. The regions of the world that have ample access

to electricity are also very industrialized, which means high consumption by individuals

2



with home items, but also by companies, where machines significantly impact power con-

sumption. Increasing and diversifying electricity production are a fundamental important

element, therefore. Fossil energies provide the cheapest access to energy demand for a

long time. However, they are also associated with the amount of environmental damage

that has been accumulating in worrying ways. Below is Figure 1.2 with energy demand

scenarios considering projections for reducing fossil fuel use.

Figure 1.2: Energy demands scenarios. Adapted from [3].

The organization of electric energy production near its final consumer is known as

Distributed Generation (DG), the closest form in the consumer unit. Until the beginning

of the 20th century, this model was the most used, mainly in the regions that produced

the most energy, which were also the ones that had industrial demands in a more dis-

tributed way, besides issues associated with energy transmission that were much more

technically relevant at the time [4]. Decades ago, there was a paradigm shift mainly on

the development of large generating plants and high-power transmission lines, which, to-

gether with the growth of these plants (often hydroelectric, nuclear, or fossil), determined

centralized generation as the new standard, where the plants of high energy production

are far from the primary consumers. This change occurred mainly from 1940 onwards and
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resulted from falling technical difficulties and cost per Wh, especially in large production

plants and power flow distribution projects [5]. Below is Figure 1.3 containing access to

electricity distributed across the world map. Although the energy cost continues to rise

as the demand increases, many regions still need access, which shows the inequality in its

entrance and that the energy production system is far from near saturation.

Electricity access, 2020
Share of the population with access to electricity. The definition used in international statistics adopts a very low

cutoff for what it means to ‘have access to electricity’. It is defined as having an electricity source that can provide

very basic lighting, and charge a phone or power a radio for 4 hours per day.

No data 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Source: World Bank OurWorldInData.org/energy • CC BY

Figure 1.3: Map of world electricity access. Adapted from [2].

However, as stated, the shift from centralized production meant that distributed gen-

eration was discouraged for a long time. However, this picture is changing with technolog-

ical changes, the nature of demand, and the energy market. This change and renewable

energy production can positively impact (and in a way necessary due to physical and

environmental demands) countries with broad access to electricity and where citizens do

not have it adequately.

In this work, we have the Silk House, a Home Energy Management Systems (HEMS),

a smart-grid building searching to produce its energy, becoming self-sustainable. The

4



electric system has internal loads in consumption and a photovoltaic with a micro-hydro

power system, which, together with a battery system, searches for autonomy in self-

consumption. Those pieces of equipment collect data, which will be taken for predictive

analyses using Machine Learning (ML) for possible better optimization of energy uses.

1.1 Motivation

In the last decades, electricity production has gotten more diversified by the commer-

cial introduction of solar energy production and the expansion of other categories, like

wind generation [2]. The electricity demand, as the energy demand, continuously rises

over time, and in the last decades, was raised a lot, and that happened in a limited way,

considering the market gap that exists, given that there is in the world a vast amount of

population which still does not access electricity [2]. Electricity is a type of service linked

with most human activities. It will be in diverse sectors, have variable demands, and be a

sensitive resource, creating the need for prediction for its production. In the last decade,

other great necessities have also aggravated and changed how we look at the energy and

electricity problem, mainly the climate needings and geopolitical issues. Below is Figure

1.4 with the world electricity distribution.

It is necessary to diversify the energy sources to meet the quantity of energy we will

need in the following decades. By doing that inside the regulation of climate agreements,

the renewable matrix needs to be expanded, as the nuclear. Nuclear is a type of produc-

tion where it is possible to control the quantity of energy produced, but there is some

complexity for a fast implementation for a new power plant, primarily because of its polit-

ical stigma [6]. When working with DG, a Smart micro-grid, Home Energy Management

Systems (HEMS) or Virtual Power Plant (VPP) is one of the most common forms of

finding projects that perform its management in the bibliography. However, in the recent

bibliography, it is with renewable energies. The present work uses data from Silk House,

a museum dedicated to disseminating science, with an office inside. The Foundation for

Science and Technology of Portugal funded it under the Silk-House Project [7]. The goal
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Figure 1.4: Electricity production by source type, in 1985-2021. Adapted from [2].

is to transform the House of Silk into a self-sustainable museum, contributing to dissemi-

nating renewable sources and new technologies for future buildings in smart cities. Much

of what this work with HEMS utilizes is akin to the processes undertaken in VPP. How-

ever, in contrast, we can see that VPP is a similar, more significant expression of a smart

microgrid when we think of managing data as intelligent microgrids.

The energy production processes involve power flows and data flows, where data here

refers to those collected during the system’s operation. During the production and con-

sumption of energy, it is possible to collect data about the functioning and dynamics of

the system over time. With this data collected and treated, it is possible to carry out

procedures such as predictive analysis. This work’s scope focuses on predictive analysis

based on ML algorithms and the data set provided by a micro power plant containing

solar and hydraulic energy, plus a set of batteries for storage and an auto-consumption

that is internal to the generation building. Especially with renewable technologies, there

6



is room to exploit micro-generation with relative ease acquired in the last decade.

Below is Figure 1.5, which contains a map of the energy a person uses worldwide.

That means that a person consumes this energy value in [kWh], and this quantity also

needs to be generated.

Energy use per person, 2021
Energy use not only includes electricity, but also other areas of consumption including transport, heating and

cooking.

No data
0 kWh

1,000 kWh
2,000 kWh

5,000 kWh
10,000 kWh
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100,000 kWh
200,000 kWh
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Source: Our World in Data based on BP & Shift Data Portal

Note: Energy refers to primary energy – the energy input before the transformation to forms of energy for end-use (such as electricity or petrol for
transport).

OurWorldInData.org/energy • CC BY

Figure 1.5: Map of the world of the energy use per person. Adapted from [2].

1.2 Background

The Silk House is a building in Bragança that has a self-sustainable system of internal

energy generation for internal consumption that is configured as an intelligent microgrid.

The concept of micro-grids and smart micro-grids has several descriptions in the literature,

which can confuse [8]. However, the organization of the predictability problem here closely

resembles the structure found in other classifications, such as Virtual Power Plant (VPP)

[9]. It is a renovated and re-adapted house from a place historically associated with silk
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production in the region. Today, there is an office and a demonstration space for tourism

and teaching. The leading consuming sources of the place are those of office functioning

(such as computers and devices), the building itself (such as structures and lighting), and

heating within the temperature control. The generating sources are solar panels and a

mini hydraulic generator installed in the region. Along with the controlling elements, a

system of 24 batteries stabilizes and organizes the flow of energy generated and consumed.

It is on-grid and can consume or inject power into the electrical grid [8].

The system collects data on consumption and generation separately and presents the

information by day and month within the data set. Within the context of Energy Man-

agement and Smart micro-grids, this work seeks to treat and manipulate data to produce

predictive mechanisms of consumption and production behaviour with them, assuming

that the proposed result has a relative consistency possible within the limits of method

and result predictability through the use of ML measuring the differences between the

techniques and other performance metrics.

Below is Figure 1.6, representing the Silk House, taken from the building’s website.

The building is next to a historic part of the city of Bragança and has a hydraulic entrance

and solar panels, as shown in the photo.

Figure 1.6: Representation of the house demonstrating the system. Adapted from [10].
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1.3 Objectives

This thesis proposes, using ML tools and data sets from the production and consump-

tion of electricity that occurs in the Silk House, where the local micro-generation has data

collection, to perform a report of predictive analyses (Regression Models) using different

models from ML tools and compare them.

It seeks to find, through data analysis, possibilities to make the building more efficient.

This problem in the electrical part of smart microgrids (HEMS) is very close to the

predictive analysis in VPP. Predictive analysis in VPP is currently a very active field

using ML, and the proximity of the problem to the smart microgrid allows for using its

bibliography. The main object of study and work of the thesis is collected data referring

to the physical and electrical operation of the site. In addition, the practical application

and discussion of technologies widely exposed in the market, for example, in the reference

[11].

The research involves the characterization of the data and its treatment and execution

in analytical tools already widely used for the nature of this type of problem. While

producing the results, we propose comparing the differences in analysis generated by

various potential techniques for addressing the problem, providing specific comments on

the study, and suggesting possible improvements.

This work uses a data set of a building that seeks to be autonomous in energy, aiming

to produce a sufficient amount for its operation (internal consumption), using photovoltaic

energy with solar panels and hydroelectric power. These productions respond to an offer

of insolation and hydraulic flow that can only sometimes coincide with a value higher

than the current consumption. In addition, the building is on the power grid, and a

battery system is in place to absorb any surplus production. The network fulfils a possible

supplementary role for the power flow. In the environment, internal consumption involves

different loads, such as computational loads and others (which have inductive factors),

and resistive loads for heating. The need for production seeks to overcome consumption

and keep the system sustainable. This work searches possibilities for optimization to make
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the building more efficient.

As the objective of the building is to be a HEMS, the data chosen to try to predict will

be the data of the photovoltaic power generation. In contrast, photovoltaic and hydraulic

power is present in the Silk House HEMS (SHH).

The analysis involved various regression models with specific criteria for good results,

including Linear Regression, Elastic Net, SGD Regressor, and more. Results were com-

pared using R2 values.

The models were executed using K-folds, then one situation with PCA and the other

without. The results were presented through charts, showing model performance by

variables and entries.

The analysis included system performance metrics categorized as ′Invalid′ (model

hasn’t found result), [0, 0.39], [0.39, 0.63], [0.63, 0.75], and [0.75, 1]. Threshold values were

defined for order each category, and the data were organized using Python code. The

most important results are on [0.75, 1].

1.4 Document Structure

Apart from this introduction, the dissertation contains four more chapters. Chapter 1

here is ”Introduction”. Chapter 2 is called ”Theoretical Background” which brings infor-

mation related to essential knowledge for the panorama of the problem in the electrical

energy and ML tools. Chapter 3 is called ”The Data Set” and contains the data char-

acterization with brief commentaries about what is essential for their use. Chapter 4 is

called ”Results and Discussion”, showing and discussing the results. Chapter 5 is the

”Conclusion and further work”, which rounds out the master thesis results and what can

be future works.
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Chapter 2

Theoretical Background and State of

the Art

2.1 Electrical Power and Energy

Electrical power finds application in various functions, serving electric loads and as-

sisting in various other operations, including heating. There are many ways to heat an

environment or a specific structure, where burning fossil fuels is one of the most common

sources. For example, fossil fuels are also used to generate electric power in a power plant.

In the electrical energy management literature, many solutions were made for places where

heating and fossil fuel generators, such as diesel and gas, are fundamental parts of the

analysis, as they are works that depend on these items as component analysis [9].

For energy generation that feeds the standard electrical grid, access to combustion gen-

erators, mostly diesel or gas, plays a vital role in controlling the specific demand related

to the seasonality of other generating sources, such as renewable ones. Many significant

electrical parameters, such as frequency and power flow control, require generation and

control demands, such as the presence of electric and non-electrical motors and genera-

tors, to keep the essential grid stable and functioning correctly. These are brief comments

on large power flows. However, it also needs to be pointed out that for individual energy
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generation, considering this for the majority analysis of this present work, energy man-

agement also considers factors associated with electrical energy, such as heating or lower

prices compared to a standard bill. Electric heating systems have a consumption close to

resistive when it is simple heating or inductive when heating involves coils, as in inductive

ovens, for example. These factors change the point consumption and the system’s power

factor with the loads acting, with the loads on or on standby. The individual electrical

systems, such as a building, are mainly on the grid. They depend on contracts in which

tariff issues and internal equipment maintenance receive consideration when accessing the

network. In individual off-grid systems, that is, that do not involve connection to an

external utility and therefore the absence of these contracts, the concern will be associ-

ated with the continuous supply of voltage, power, and frequency classes with stability

during the necessary periods. Off-grid systems are rare when considering urban contexts

[12]. Many auxiliary systems seek to maintain sufficient and convenient energy delivery

for the desired demands in both off-grid and multiple on-grid systems. Using batteries

or additional generators is expected when the demand power flow exceeds the required

generated power flow [12]. In power plants that generate their energy or seek to maximize

a parameter (such as profit), it is common to use these devices in parallel to meet greater

demands at peak times.

When a load switches on, the inrush current must surpass what the system can deliver

at the requested time. For those loads that do not have a starting system or are in a

system that has a delay in the power supply, it is common for voltage drops to refer to

the standard voltage supplied due to the current requirement. This type of problem can

lead to the destabilization of other loads or components of the network, which makes the

control and maintenance of the voltage an objective as well, as the current supply to the

loads needs to be done correctly.

In recent academic literature, productions referring to systems that work with Dis-

tributed Energy Resources (DER) are divided in many ways, as there are different prob-

lems to analyze and solve. For example, some systems work for small and high-power flows

[9]. In addition, there are recent academic productions that are concerned with operating
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costs, whether for profit (sale) or autonomy (implementation capacity), management of

energy, cost, implementation, seasonality, and micro-controller aspects, among other [9].

Other authors study systems electronically, detect errors and problems in existing or de-

signed systems, use renewables as a priority, use different types of energy generation or

energy flow for specific functions, presence or absence of any fossil fuel or matrix, energy

storage, power factor correction or standard voltage level correction, general applications,

domestic applications, and another infinity of applications found and associated in the

bibliography, mainly because after this long list of items, there are a large number of

recent articles that work with combinations of these concepts for a specific purpose [9].

Python and MATLAB have a rich set of out-of-the-box and optimized tools for these

applications, which makes it convenient for developing ML applications.

Within ML, one of the necessary foundations is the data set. This data needs to be

treated and used with some tool to fulfil some purpose.

Therefore, in the present bibliography [9], those focusing on production, local condi-

tions, network stability, and concerns with heating and the maintenance of this micro-

generation are prioritized, taking it as a smart power grid. In contrast, the modelling is

close enough to other homes/building energy management systems, such as Home Energy

Management Systems (HEMS).

Therefore, a vast range of forms currently associated with energy management is a

topic of great importance for several reasons. In other words, as there are interests

of public, private, and individual nature, which involve control and determination of

technical, financial, and security parameters, within each mentioned item, there are even

more numerous bifurcations and possible associations. That implies a different range of

different publications, which relate (and often complement each other) with the terms

mentioned above, mainly for the management of DER and Energy Management Systems

(EMS) [9].

Figure 2.1 below contains the recent distribution of academic production using ML for

predictability in energy generation and management, with various countries being input

elements and different research focuses on output. As seen in the figure and the article,
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there are differences in what is being researched depending on the region. For example,

the authors have found that China is part of the world where this topic is more active[9].

In the Sankey Chart below, we can see a mapping of the countries by how much research

has been done into the categories of interest by the geographical distribution on which

study topics, with China in red. The paths on the Sankey Chart indicate the academic

production of the countries, and the width indicates the production volume.

Figure 2.1: Sankey visual mapping of countries and their categories of interest. Adapted
from [9].
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2.1.1 Power Management

Energy management is a necessity for every electrical and electronic system. However,

extensive material in the literature usually separates these two areas [13]. One of the

reasons is the power level, which is generally quite different. Another is the enormous

diversification of both regions, especially the electronic part, which depends greatly on

using the electrical signal as its primary operation. Another distinction lies in the type

of electrical supply, where direct current systems receive different treatment compared to

alternating current systems [14].

Furthermore, the literature that analyzes and seeks how to build energy management

shows many divisions. In the bibliography, hierarchical divisions often occur in the his-

torical analysis of items related to energy management. The system we seek to analyze is

associated with HEMS and energy management systems, which have very different char-

acteristics. A massive number of determinants govern the nature of demands regarding

the use and management of energy.

These stratifications are observable within the most recent energy management pro-

ductions. Energy management in contemporary times appears commercially and in aca-

demic research as significantly associated with a high degree of sensorization, predictive

analysis, processing, or a combination.

The existence of both types of work as reference material for the nature of the desired

analysis is highly convenient. This convenience arises due to the similarities between works

in HEMS and VPP, making it common to observe projects, articles, and in-depth analyses

related to both. Moreover, specific projects consider VPP as a potential expansion of

HEMS, as noted by [9]. This presence of both types of work as reference material greatly

facilitates the desired analysis.

Below is Figure 2.2, which organizes the most common similarities, differences, and

relationships between these two types of systems. As consumption-generation systems

respond to mathematized criteria, they have a convenient analytical similarity. The figure
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shows the VPP and HEMS, where VPP is a broader power plant system type, typically

for power production and huge loads, and HEMS more focused on simple loads and lower

power production and management.

Figure 2.2: Comparative image between the similarities and differences between Virtual
Power Plant (VPP) and Home Energy Management Systems (HEMS). Adapted from [9].

As mentioned above, the context of energy management has always involved the signif-

icant participation of individual interests (population), public (state), and private (compa-

nies). Therefore, [9] conducted a taxonomic analysis on the primary divisions of presently

published research in energy management using ML, with a specific focus on HEMS, which

are systems that seek to simulate conditions of an environment that has generation and

consumption, generally involving ample use of renewable energies, considering economic

and market conditions.
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Even before the use of ML, and therefore, before the computational use of techniques

that will require a high amount of data and preferably good data handling, power manage-

ment already involved a lot of sensorization and processing to maintain stability, security,

a guarantee of supply and technical and commercial viability. One of the main reasons is

the need for data security, validation, and error handling. As processors have error cor-

rection implemented, it is customary to ignore in code – or to assume sufficiency, either

by internal correction mechanisms or redundancy – problems associated with errors in the

use and manipulation of data, such that concerns with the treatment of data refer to a loss

of packages, synchronization delays (jitter), and incorrect data measure (collection error).

Mechanisms of predictability analysis receive a large volume of data in advance, which

implies that there will be systems concerned with acting, with an already determined

configuration of possibilities, at the exact moment that it receives data, being a design

responsive to the moment, and others that are concerned with analyzing it beforehand

and then issuing a later report, not having a momentary action. It is rare to find systems

that operate actuators without feedback. It is usually rare because they tend to have low

performance and marginal differences in cost compared to others that contain feedback.

Works that aim to enhance the optimization of a particular energy system rely not only

on the sensing and computational components but also on the perception and utilization

of energy. Such an approach will lead to multiple variations in the representation of energy

resources.

Distributed Energy Resources (DER) are versatile energy solutions that extend beyond

generation to include controllable load and energy storage capabilities. These decentral-

ized technologies, such as solar panels, wind turbines, and batteries, produce electricity

and manage and store it efficiently. This integrated approach enhances grid stability,

supports demand management, and contributes to a more resilient and flexible energy

ecosystem. This is relevant to any HEMS.

Below is Figure 2.3, which frequently illustrates the organization of DER in a recent

bibliography.
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Figure 2.3: A sequential organization often found in the Distributed Energy Resources
(DER) bibliography. Adapted from [9].

With several advances in power systems, micro-controlled systems, electronics, pro-

gramming, and other related areas, electrical engineering, energy management, and in-

tegration between electrical systems and distributed generation, it has received many

advances in new facilities for its operations and implementations. Better strategic plan-

ning boosted a unification of this knowledge applied to energy management, where HEMS

have relevant participation in the electricity market, and their articles [15]. Several ar-

ticles compile several related subjects about the area, where many seek to find several

mathematical and computational models that present better performances in the face of
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what already exists (or does not exist) published and already being used. As mentioned,

regulatory and system construction elements drastically impact this area’s planning. Al-

though the laws of physics and their application in engineering tend to be universal, the

technical reality refers more to human operationalization, understanding the regional and

temporal context in the face of demand and what it wants to offer or operationalize. In

this context of electricity as a service, some articles study financial aspects before the op-

eration of HEMS [15], and possible internet frameworks for the interaction of HEMS [11].

Papers that focus on observing the uncertainties and potential solutions in the operations

of HEMS [16] analyze how HEMS can contribute to a sustainable energy future for urban

areas [13] and observe similarities between HEMS and collaborative systems [17], among

many other types of studies [9], where in this review will focus on these first five studies

as good examples of bibliography.

2.1.2 HEMS and the electricity markets

The search for an optimal solution in mathematical models for HEMS solutions has

become more complex over time due to operational constraints, such that more advanced

optimization techniques have become necessary. The models and techniques for solving

mathematical problems must communicate with different types of applicability and mar-

kets for real cases. The research and use of these models led to an optimization and

an increasing need for customization of each model to get used to certain realities [18].

Within models that seek to allow the highest profit, HEMS are usually optimized because

of the local economic and temporal reality and legal and operational issues. That also im-

plies differences for each regulatory environment. However, the HEMS personalization is

essential. It also has different active participations for the electric system and the owners

of the HEMS, who generally pocket the profit, if any.

Many industrial processes require good energy management to present functionality

and adequate profit, which implies that the facilities in which these processes take place
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need good governance and often energy generation to keep the proposal of what takes

place there conformed adequately. The article analyzed here reviews something commonly

found in the bibliography [9] in a specific or more generic context.

Below, Figure 2.4 illustrates several essential relationships for this HEMS projects.

Figure 2.4: Diagram of a HEMS and its interaction with electricity markets and networks.

Electricity is a relatively recent technology, given its importance. The human species

and our organization as a civilization have depended on using and managing external

energy sources since our earliest organizations in flocks. Stock management and manip-

ulation of resources have always been of high importance. Electricity production began

about a century and a half ago, mainly because of difficulties in power transmission,

along with the beginning of standardization of electrical systems; until almost half of

the 20th century, the most significant presence was of distributed generation, which wore
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distributed to feed the loads where they were, spatially distributed over the locations. It

was the practice of industry, commerce, residence, or agriculture. Centralized generation

became dominant through the evolution of electrical machines and distribution equip-

ment. It became part of nations’ standardization, normalization, and strategic systems,

thus becoming the norm. That was made possible by technical advances that implied

significant economies of scale. However, centralized generation depends on substantial

investments, with large infrastructures and low flexibility concerning the locality once

produced, indivisible production, and flexibility that implies adaptations to the electrical

systems. Because electric power is strategic, this has also meant a joint monopoly and

high control by governments and a few companies in the sector. This scenario depends

on less liberal relations in energy production, and with constant energy crises, the price

of energy increases, and the perspective that it will increase even more. Since the decade

70, with the oil shock, there have been the beginnings of the expansion of distributed

generation and cogeneration in local production, accompanied by technical evolutions for

the presence of distributed generation as technically possible and rewarding.

The use of DG is increasing, and we shall try to understand why. Smith et al. in [19]

find interesting answers, such as advancements in renewable energy technologies, declining

costs of DG systems, and the potential for enhanced energy efficiency and grid resilience.

2.1.3 Distributed generation

Distributed generation refers to producing electric energy located close to the con-

sumer. In the last decade, mainly with photovoltaic technology, it has become more

common that the consumer is also the producer of his energy. It generally occurs at rela-

tively low power levels to supply local loads. To adapt to the demand, the parties involved

are control systems, systems that operate the generators, and eventual load control.

Centralized power generation, which has been the norm for almost a century, is, there-

fore, an alternative model to this, with a distributed generation being another way to
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produce and operate power production within the electric system, such that the techni-

cal and financial challenges are also of another nature when compared with centralized

generation.

Centralized generation involves the production of electric power in large capacities,

which implies high machinery for its production, transmission, and distribution. It usually

involves highly complex technical apparatus and massive infrastructures associated with

a small number of producers and operators of the electrical grid and a vast number of

consumers of the energy generated. Most energy production in centralized generation

occurs in large hydroelectric plants, nuclear power plants, gas-fired plants, plants burning

coal and other fossil fuels, and massive wind and solar plants. These are usually large

infrastructures that also require significant investments.

Concerns about environmental problems, agreements signed by the world’s nations,

and technical advances in the last decades in photovoltaic production and wind and hydro

generators have caused a distributed generation to grow as a more exciting possibility.

That ranges from individual residential consumers to consumers with lower power re-

quirements, where in the context of distributed generation, it can address renewable or

non-renewable sources. Especially prominent in a distributed generation are diesel gen-

erators, fuel cells, micro gas turbines, and within the renewables are small hydroelectric

plants, biomass plants, photovoltaic installations, and small wind turbines.

Below is Figure 2.5 representing a DG and CG, showing how both can power the local

place where it is generated and transmitted.

The rise of distributed generation is primarily driven by the following factors: further

liberalization of the power sector, the entry of new companies into the industry providing

various types of products and services, the urgent demand for protection, restoration, and

future planning regarding the environment, along with compliance with environmental

agreements, a quest for greater energy efficiency, the needs for sustainable development,

and the increased reliability and desire for these technologies. It came accompanied by

new philosophies of power generation, which have also come about through these changes

and technical demands from various areas, along with elements of urgency and hype use.
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Figure 2.5: Representation of centralized generation and distributed generation together
[20].

There is also the fact that the combination of heat and power (cogeneration) contrasts in

most cases with the centralized generation because the released heat is a negative factor

in going into the biosphere. In contrast, distributed generation needs to present this

problem. There have been considerable developments regarding generators that, together

with the mitigation of environmental effects, have drastically boosted the recent growth

of technologies associated with distributed generation.

Below is Figure 2.6 that compares the expected growth data for the United States re-

garding commercial and residential production for photovoltaic compared to other energy

sources.
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Figure 2.6: Demonstration of photovoltaic production growth and forecasts. Adapted
from [21].
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2.2 Machine Learning

This work executes a conjunct of Machine Learning (ML) models using Python, which

searches and predicts the following energy generation results in Silk House, which has solar

and hydro generators linked with a group of batteries connected to the grid.

Modelling the problem involves entry data from sensors, which gives us electric models

for the consumption and production of electricity as the power flux inside the Home Energy

Management Systems (HEMS) (for the collected data, it is a building energy management

system). Taking the data for modelling that will consider a tiny HEMS, the type of

problem is a probabilistic problem, where the desire is to predict a possible behaviour and

then analyze the generated result for a better decision. In a brief resume, ML techniques

usually get good results (a better ratio between the error and the computational needs

for the low error).

2.2.1 Linear and non-linear models

Linear and non-linear models are fundamental tools in machine learning for analyzing

and predicting complex relationships in data. Linear models, characterized by their linear

combination of features, offer simplicity and interpretability. They assume a linear rela-

tionship between the input and target variables, making them well-suited for tasks like

regression and classification. The coefficients in linear models represent the importance

or contribution of each feature, providing insights into the impact of different variables.

However, linear models have limitations when capturing non-linear patterns and complex

interactions between components.

Non-linear models, on the other hand, are designed to handle more intricate relation-

ships. They can capture complex patterns and interactions through non-linear functions,

enabling them to approximate highly non-linear relationships between variables. Deci-

sion trees, random forests, support vector machines, and neural networks are popular
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non-linear models widely used in machine learning. These models can effectively model

intricate dependencies and interactions among features, making them suitable for image

recognition, natural language processing, and time series analysis.

The choice between linear and non-linear models depends on the specific problem

and the nature of the data. Linear models are often preferred when interpretability and

simplicity are essential or when the relationships in the data are relatively linear. Non-

linear models, on the other hand, excel in scenarios where complex patterns and non-linear

interactions are present. However, non-linear models can be more complicated to interpret

and may require more computational resources and training data.

Various techniques can be applied to enhance the performance of both linear and non-

linear models. Regularization methods, such as L1 and L2, help prevent over-fitting and

improve generalization by adding a penalty term to the loss function.

L1 and L2 regularization techniques, along with PCA, FFS, and K − Fold cross-

validation, are essential methods used in machine learning to improve model performance

and evaluation. L1 and L2 regularization are ways to add penalties to the model’s training

process. L1 regularization encourages sparsity in the model by making some coefficients

precisely zero, which helps with feature selection. L2 regularization encourages smaller

coefficients by shrinking them towards zero, preventing over-fitting. These techniques

promote simpler and more robust models. PCA, or principal component analysis, is a

technique to reduce data size. It transforms the original features into new orthogonal vari-

ables called main components, capturing essential information while lowering complexity

and correlated traits.FFS, or feature selection, involves selecting a subset of relevant fea-

tures from the original set. It helps reduce noise and improve model performance by

focusing on informative features. L1 regularization can be particularly useful for feature

selection by eliminating irrelevant features. K-fold cross-validation is a method for eval-

uating models and tuning hyper-parameters. It divides the data into k subsets, trains

the model on k − 1 subsets, and evaluates its performance on the remaining subset. This

process is repeated k times to provide a reliable estimate of the model’s performance and

prevent over-fitting [22].
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Below is Figure 2.7, a flowchart demonstrating possible uses of techniques for better

ML responses.

Evaluation

Regularization

Feature Selection

Dimensionality Reduction

L1 Regularization

Machine Learning Model

L2 Regularization

Principal Component Analysis

Forward Feature Selection

k-fold Cross-Validation

Input Data Model Output

Figure 2.7: Representation of methods typically used for a better response in ML.

Choosing between the appropriate types of algorithms takes practice and experience,

and qualifying the sort that might be most suitable is a job. Different kinds of techniques

and the data set, or the way the working in data happens, can change the performance.

There are problems like dealing with noise. Some are the best or worst answers for spe-

cific issues, whether the dataset and classes are linearly separable (or how easy it is to

do that). The nature of the statistical machine will correspond to the statistical factors

by the nature of the statistical work, the ML. That implies that an outcome with low

error would be suitable in pursuit of predictability, a condition often defined by a high

predictive accuracy despite the necessity for repeated executions. It is gauged by the

ratio between a consistent error value and the desired result, alongside a low demand

for successive program executions. Regardless, a universal factor in the face of problems

in ML is the data set, as already mentioned. With a large and suitable dataset (to the
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problem), it tends to have better results more quickly. In machines created using a su-

pervised approach, observers typically consider five criteria when assessing the conclusion

of resource processing and the collection of labelled training examples: selecting a perfor-

mance metric, choosing a projector and optimization, evaluating model performance, and

adjusting techniques [22].

2.2.2 The data treatment and its characterization

Data characterization is the first step in ML for dealing with data and producing

good results. The data set has massive importance for feeding the different types of

algorithms. Organized data, classified data, and a dataset that had been clean of errors,

missing values, and other types of disorganization are good data sets to use. We will

use the data to generate descriptive parameters that describe the characteristics and

behaviour of a particular data set. That means the unsupervised learning algorithms find

patterns, clusters, and trends without incorporating class labels that may have biases,

which allows trying to make predictions. The data characterization is the first step in

finding any hidden information that allows better use of ML. Chapter 3 consists of the

first data approach.

Below is Figure 2.8, a flowchart demonstrating the sequence of steps of an ML Model

Training.
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Figure 2.8: Flowchart of a Machine Learning (ML) use.

2.3 Models and recent literature

This work will use different regression models for the same data set, inputs, and

outputs. Separate regression models demonstrate other performances based on multiple

factors. In the recent literature, various authors have chosen one or more models to apply

the regression techniques. Below is information about the models and a reference to a

recent work using this model in HEMS. The models are listed below.

• 01 - LRM - Linear Regression Model: Linear Regression

• 02 - ELR - Elastic Net Regressor: Elastic Net Regressor

• 03 - SGD - SGD Regressor: SGD Regressor

• 04 - BRR - Bayesian Ridge Regressor: Bayesian Ridge Regressor

• 05 - SVR - Support Vector Regression: Support Vector Regression

• 06 - GBR - Gradient Boosting Regressor: Gradient Boosting Regressor

• 07 - CBR - Cat Boost Regressor: Cat Boost Regressor

• 08 - KRR - Kernel Ridge Regressor: Kernel Ridge Regressor

• 09 - XGB - XGBoost Regressor: XGBoost Regressor

• 10 - GBM - LightGBM Regressor: LightGBM Regressor

• 11 - DTR - Decision Tree Regressor: Decision Tree Regressor

• 12 - MLP - MLP Regressor: MLP Regressor
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• 13 - KNN - K-Nearest Neighbors: K-Nearest Neighbors

• 14 - RFR - Random Forest Regressor: Random Forest Regressor

• 15 - ABR - Ada Boost Regressor: Ada Boost Regressor

• 16 - GPR - Gaussian Process Regression: Gaussian Process Regression

• 17 - RRM - Ridge Regression Model: Ridge Regression Model

• 18 - BRM - Bagging Regressor Model: Bagging Regressor Model

• 19 - HGR - Hist Gradient Boosting Regressor: Hist Gradient Boosting Regressor

• 20 - ETR - Extra Trees Regressor: Extra Trees Regressor

2.3.1 Linear Regression – LR

Linear regression is a technique to model the relationship between a dependent vari-

able and one or more independent variables. By estimating the coefficients that define

the best-fitting line, linear regression allows us to understand how the independent vari-

ables impact the dependent variable. This technique employs methods like ordinary least

squares (OLS) to minimize the sum of squared residuals and find the line that best fits the

data. Its simplicity, interpretability, and versatility make linear regression valuable for

gaining insights, making predictions, and understanding the relationships between vari-

ables in various domains such as economics, finance, social sciences, and machine learning

algorithms.

Liu in [23] presents a novel approach to home energy management using linear re-

gression and price-based optimization techniques. The study aims to optimize energy

consumption in residential buildings by leveraging data-driven models and pricing infor-

mation. The authors propose a framework that combines linear regression models with

an optimization algorithm to minimize energy costs while maintaining user comfort.

2.3.2 Elastic Net Regressor – ELR
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Elastic Net is a regularization technique widely used in machine learning and statis-

tics, particularly linear regression models. It combines the strengths of both L1 and L2

regularization methods, effectively addressing the limitations of each. By introducing a

penalty term that is a linear combination of the L1 and L2 penalties, Elastic Net en-

courages both sparsity and group-wise selection of features. It makes it especially useful

in scenarios where there are high-dimensional datasets with a large number of correlated

traits. Elastic Net offers a flexible regularization approach, allowing an automatic feature

selection and handling of multicollinearity.

Doe in [24] proposes a novel approach for optimizing home energy consumption based

on elastic net regularized regression and real-time pricing. The authors address the chal-

lenge of managing energy usage in residential buildings by leveraging advanced ML tech-

niques. The study used elastic net regularized regression, which combines both L1 (Lasso)

and L2 (Ridge) regularization techniques, to improve the accuracy and interpretability

of the energy consumption models. The system can adapt to dynamic pricing signals by

incorporating real-time pricing data and optimizing energy consumption. The net elastic

approach allows for identifying significant features while also handling multicollinearity.

It is suitable for capturing the complex relationships between energy usage and various

factors such as weather conditions, occupancy patterns, and appliance usage.

2.3.3 Stochastic Gradient Descent Regressor – SGD

The SGD (Stochastic Gradient Descent) Regressor is a versatile algorithm widely

used for training linear models in machine learning. It is particularly suitable for large

datasets and real-time learning. The algorithm optimizes model parameters by iteratively

adjusting them based on the gradients of the loss function. Its stochastic nature, using

randomly selected subsets of training samples, makes it efficient and scalable.

In recent literature, the SGD Regressor has found applications in Home Energy Man-

agement Systems (HEMS). For example, Zhang in [25] proposed an optimal HEMS

framework using real-time pricing and the SGD Regressor. Their study demonstrated
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cost savings and load reduction capabilities. Also, Zhang in [26] focused on demand

response management in HEMS, using the SGD Regressor for energy demand prediction

and appliance scheduling adjustments. Their results highlighted improved performance

compared to traditional methods.

2.3.4 Bayesian Ridge Regression – BRR

Bayesian Ridge regression incorporates prior information about the coefficients into

the model through prior distributions. It allows for uncertainty estimation and pro-

vides a more robust and stable estimate of the coefficients compared to traditional linear

regression methods. Additionally, the ridge regularization term helps to address mul-

ticollinearity issues by introducing a penalty that encourages smaller coefficient values.

This regularization helps prevent over-fitting and improves the model’s generalization

performance.

Recent literature has demonstrated the effectiveness of Bayesian Ridge regression in

the context of HEMS. Li et al. in [27] proposed a Bayesian Ridge regression approach

for energy management in residential buildings. Their study showed that Bayesian Ridge

regression could effectively optimize energy utilization and achieve cost savings by ac-

curately predicting electricity consumption and managing the operation of appliances.

Similarly, Wang et al. in [28] applied Bayesian Ridge regression for load forecasting in

HEMS. Their research highlighted the advantages of Bayesian Ridge regression in provid-

ing accurate load predictions, enabling efficient energy planning and resource allocation.

2.3.5 Support Vector Regression – SVR

Support Vector Regression (SVR) finds application in complex and non-linear sce-

narios. SVR transforms the input data into a high-dimensional feature space and seeks

a hyperplane that maximizes the margin between predicted outputs and actual targets.

This approach allows SVR to capture intricate patterns and handle high-dimensional data

effectively.
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Li et al. in [29] proposed an SVR-based energy management strategy for optimizing

energy consumption in residential buildings. Their approach demonstrated significant en-

ergy savings and peak load reduction. Zhao et al. in [30] employed SVR with clustering

analysis for load forecasting in HEMS, achieving improved prediction accuracy and ro-

bustness compared to traditional methods. Li and Zhao are also frequent researchers in

this field.

2.3.6 Gradient Booster Trees – GBT

Gradient Boosting combines the strengths of ensemble learning and gradient descent

optimization. It effectively solves regression and classification problems, often outperform-

ing other algorithms regarding predictive accuracy. Gradient Boosting sequentially builds

an ensemble of weak learners, typically decision trees. Each subsequent learner undergoes

training to rectify the errors made by the previous ones, emphasizing the reduction of the

loss function gradient.

Zhang et al. in [31] proposed a Gradient Boosting-based load forecasting model

for HEMS, which achieved superior accuracy compared to traditional methods. Their

approach accounted for multiple factors, including weather conditions, historical load

data, and calendar information, resulting in more precise load predictions. Zhao et al.

in [32] used Gradient Boosting to optimize energy consumption in residential buildings.

Their study demonstrated significant energy savings by leveraging the model’s ability to

capture complex relationships and identify energy-efficient patterns.

2.3.7 Cat Boost Regressor – CBR

Cat Boost is a gradient-boosting framework that handles categorical features in ma-

chine learning tasks. Its algorithm combines gradient boosting with a category-specific

approach. Cat Boost is known for taking categorical variables without extensive pre-

processing, making it efficient and effective in various applications.

Zhang et al. in [33] found good results with numerical features in the study of the
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superior performance of Cat Boost compared to traditional regression models in load

forecasting for HEMS. Also, Liu et al. in [34] propose an enhanced HEMS framework

that integrates Cat Boost for load forecasting and optimization. The study showcases the

improved accuracy and efficiency achieved by Cat Boost in predicting energy consumption

patterns and optimizing energy usage in residential buildings.

2.3.8 Kernel Ridge Regression – KRR

Kernel Ridge Regression finds utility in both regression and classification tasks. It

combines the concepts of ridge regression and kernel methods to handle non-linear re-

lationships between variables. In this method, a non-linear transformation of the input

features, known as the kernel trick, is applied to map the data into a higher-dimensional

feature space. Then, a linear regression model is used for this transformed feature space,

considering a regularization term known as the ridge penalty.

Bouslimi et al. in [35] proposed a robust Kernel Ridge Regression approach for non-

intrusive load monitoring, which achieved accurate load prediction by considering energy

consumption’s temporal and contextual dependencies. Zhang et al. in [36] applied Kernel

Ridge Regression for residential load forecasting, taking into account weather data as an

additional input to capture the influence of weather conditions on energy consumption.

2.3.9 Extreme Gradient Boosting – XGB

XGBoost, short for Extreme Gradient Boosting, is an ensemble learning technique

that combines the predictions of multiple weak models, such as decision trees, to create a

robust predictive model. It employs a gradient-boosting framework to train new models

and minimize the overall prediction error iteratively. XGBoost introduces innovations

such as regularization techniques, parallelization for efficient training, and a customized

loss function to optimize model performance.

Zhang et al. in [37] proposed a load forecasting model for HEMS that incorporates

weather data using XGBoost. The results showed superior performance to traditional
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methods, enabling accurate load predictions and efficient energy management in residen-

tial buildings.

2.3.10 LightGBM Regressor – LGBM

LightGBM is a gradient-boosting framework suited for handling large-scale datasets

and utilizes gradient-based one-sided sampling (GOSS) to achieve faster training speed

while maintaining good accuracy. It employs a leaf-wise tree growth strategy and imple-

ments histogram-based binning to partition feature values, reducing memory usage and

computational overhead. Additionally, LightGBM supports advanced features such as

categorical feature handling and early stopping to prevent overfitting.

Kim et al. in [38] proposed a model that incorporated various input variables, in-

cluding historical load data, weather information, and calendar features, to predict future

load demand accurately.

2.3.11 Decision Tree Regressor – DTR

A Decision Tree is a non-parametric model that makes predictions by recursively

partitioning the input data based on a set of decision rules inferred from the training

data. The main advantage of decision trees is their interpretability. The tree structure

makes us understand and visualize the decision-making process more manageable. Each

internal node represents a decision based on a feature, and each leaf node represents a

class or a predicted value. Decision trees can handle categorical and numerical elements,

making them suitable for various applications.

Yu et al. in [39] developed a decision tree-based model for energy consumption predic-

tion in smart homes. The model utilized historical energy consumption data and weather

information to forecast future energy usage. The experimental results demonstrated the

effectiveness of decision tree models in accurately predicting energy consumption patterns,

enabling better energy management and optimization in residential buildings.
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2.3.12 Multilayer Perceptron Regressor – MLP

The MLP Regressor, short for Multilayer Perceptron Regressor, is an artificial neural

network consisting of multiple layers of interconnected nodes known as neurons. Each

neuron performs a weighted sum of its inputs, applies an activation function to the sum,

and produces an output. By stacking multiple layers of neurons, the MLP Regressor can

learn complex non-linear relationships between input features and target variables.

Wang et al. in [40] demonstrated the effectiveness of MLP Regressors in accurately

forecasting short-term load demand in residential buildings. Their work showcases good

results.

2.3.13 K-Nearest Neighbors Regressor – KNN

K-Nearest Neighbors (KNN) Regressor finds application in both classification and

regression tasks. This non-parametric algorithm predicts based on the similarity of input

data points to their neighbouring points in the feature space. The "K" in KNN refers to

the nearest neighbours considered for making predictions. In the case of regression, the

algorithm calculates the average or weighted average of the target values of the K nearest

neighbours to determine the predicted value for a given input.

Li et al. in [41] utilized KNN for short-term load forecasting in residential buildings.

By considering the historical load data and the similarity of input features to past patterns,

KNN can predict future energy consumption with reasonable accuracy. KNN has also been

utilized in anomaly detection, facilitating the identification of abnormal energy usage

patterns that significantly deviate from the norm. This approach aids homeowners and

system operators in identifying potential faults or anomalies within the HEMS.

2.3.14 Random Forest Regressor – RFR

Random Forest serves as a tool for both classification and regression tasks. It relies

on the creation of multiple decision trees and the amalgamation of their predictions to
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enhance the accuracy and robustness of predictions. Each decision tree within the Random

Forest undergoes training on a random subset of the training data and a random subset

of the input features. During the forecast, the final output is obtained by averaging or

voting the forecasts of individual trees.

Wang et al. in [42] utilized Random Forest for load forecasting, where the algo-

rithm considers historical load data and weather information to predict future energy

consumption patterns.

2.3.15 Adaptive Boosting Regressor – ABR

AdaBoost, short for Adaptive Boosting, is a popular boosting algorithm in machine

learning. It is a meta-algorithm that combines multiple weak learners, typically decision

trees, to create a robust ensemble model. AdaBoost assigns weights to each instance in

the training data, with higher weights given to misclassified cases. It trains a new weak

learner to focus on the previously misclassified samples in each iteration. Aggregating

the predictions of all vulnerable learners produces the final prediction, with each weak

learner’s contribution weighted by their performance.

Li et al. in [43] utilized AdaBoost to predict the energy consumption of residen-

tial buildings, considering factors such as weather conditions, occupant behaviour, and

building characteristics.

2.3.16 Gaussian Process Regression – GPR

Gaussian Process Regression is used for modelling and predicting continuous target

variables. Unlike traditional regression models that assume a specific functional form,

GPR models the relationship between input features and target variables as a distribution

over functions. It assumes that any finite set of target values follows a multivariate

Gaussian distribution. GPR can estimate uncertainties associated with its predictions,

which can be valuable for decision-making in HEMS applications.

Kim and Kim in [44] utilized GPR to predict the energy consumption of buildings,
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considering factors such as outdoor temperature, solar radiation, and time of day. The

authors showed that GPR achieved accurate predictions and highlighted its potential for

energy-saving strategies and load management in HEMS.

2.3.17 Ridge Regression – RR

Ridge Regression employs handling multicollinearity and enhancing the stability of

regression models. It is an extension of ordinary least squares (OLS) regression that

introduces a regularization term to the loss function, which helps prevent overfitting and

reduces the impact of highly correlated predictors. Ridge Regression can handle situations

where multiple predictors are highly correlated.

Zhang et al. in [45] utilized Ridge Regression to predict electricity consumption in

residential buildings. The authors considered temperature, humidity, and time of day

input features.

2.3.18 Bootstrap Aggregating Regressor – BAR

Bagging Regressor, short for Bootstrap Aggregating Regressor, is an ensemble learning

technique that combines multiple base regressor models to improve the overall prediction

performance. It belongs to the bagging method family, which involves training numerous

models on different subsets of the training data and then aggregating their predictions.

By training various base regressor models on different subsets of the training data and

averaging their predictions, BaggingRegressor can reduce the variance and improve the

generalization ability of the final model.

Kim et al.in [46] employed BaggingRegressor to forecast electricity demand in residen-

tial buildings. The authors compared the performance of BaggingRegressor with other

regression techniques and found that BaggingRegressor consistently provided accurate

and reliable predictions across different seasons and time horizons.
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2.3.19 Histogram Gradient Boosting – HGB

Histogram Gradient Boosting Regressor belongs to the gradient boosting family, de-

signed explicitly for regression tasks. It combines the advantages of gradient and histogram-

based gradient boosting. HGB leverages histogram-based gradient boosting. It discretizes

the continuous input features into bins and constructs histograms, which enables faster

and memory-efficient training. The algorithm can make optimal splits in each tree node

using histograms, improving computational efficiency and predictive performance.

Huang et al. in [47] utilized Histogram Gradient Boosting Regressor for short-term

load forecasting in commercial buildings. The authors compared Histogram Gradient

Boosting Regressor with other regression algorithms. They found that it outperformed

the competitors in terms of accuracy and computation time, making it a good choice for

HEMS load forecasting.

2.3.20 Extra Trees Regressor – ETR

The Extra Trees Regressor is a machine learning algorithm that belongs to the ensem-

ble learning family, specifically the tree-based methods. It is an extension of the Random

Forest algorithm and shares some similarities. The main idea behind the Extra Trees

Regressor is to build many unpruned decision trees and make predictions by averaging

their outputs. One of its key characteristics is its high level of randomness. Each tree’s

splitting point for each feature is selected randomly instead of using the optimal split.

This randomness reduces the correlation between trees and enhances the diversity of the

ensemble.

Chen et al. in [48] utilized the Extra Trees Regressor for energy consumption predic-

tion in residential buildings. The authors compared its performance with other regression

models and found that the Extra Trees Regressor achieved accurate and reliable forecasts.
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Chapter 3

The Data Set and the Methodology

3.1 Data Characterization

In Chapter 3, we will introduce the data and their correlations. Finding correlations

in the data is significant for predictability analysis. A predictive model can only have

a positive result with a high correlation. Correlations measure how much a data set

appears to be associated with another group, that is, how much one variable presents a

good result when exposed to another. There are several types of statistical correlation.

Some examples are Pearson, Kendall, and Spearman. The one used here is Pearson. At

Pearson, the correlation indices range from −1 to +1, with intermediate values such as

0.75, which is optimal for a correlation by default. Models with correlations of this degree

up to 1 give good results [22].

At Silk House, several electrical devices make the building a HEMS. The quoted data

are about the measurement of unidirectional power flow, measured in kWh. We compile

the data into a set that segregates them daily, and the record is a table of several daily

entries of power flows, where each entry pertains to a group of devices. As the building

behaves like a HEMS, a part of the building has load behaviour, consuming energy, and

another part of power production, generating energy. We record the flow as a unidirec-

tional vector in the data, so we have collected positive scalar values. There are seven
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values measured with the sensors:

(1) The total consumption, called Total Consumption (TC)

(2) Internal consumption (loads), called Direct Consumption (DC)

(3) Power output of the batteries (discharging), called Battery Discharge (BD)

(4) Main power consumption (bus input), called Network Consumption (NC)

(5) Photovoltaic production, called Photovoltaic Production (PP)

(6) Power injection output to the bus, called Network Injection (NI)

(7) Power input to the battery (charging), called Battery Charge (BC)

The total collection period was from month 5 of 2021 to month 4 of 2022, totalling 12

months. As there are differences in days between the months and the collection record is

daily, the months have slight differences in the amount of data between the months.

Below, there is Table 3.1 with information on the Median, Standard Deviation, Vari-

ance, and Average values from every variable, with all data sets from 12 months. Three

variables have a Standard Deviation above 5, which shows differences between the values

inside the same variable.

Table 3.1: Table of Median, Standard Deviation, Variance and Average values from vari-
ables.

Variables TC DC BD NC PP NI BC
Median 25.39 14.29 4.7 1.89 18.95 1.43 6.6
St. Dev. 9.7585 6.6976 3.8653 9.5334 9.2502 3.8146 3.6345
Variance 95.229 44.857 14.941 90.886 85.567 14.551 13.21
Average 25.386 13.23 5.2176 6.7906 20.02 3.3786 6.8513

Pearson’s correlation coefficient, often known as the correlation coefficient, was used.

It is unit less and ranges from −1 to 1. Its calculation equation is below. On the other

hand, covariance measures the joint variability between two variables but does not provide

a standardized measure of the relationship. It is sensitive to changes in units and can

take any real value.

cov(X, Y ) = 1
n

n∑
i=1

(xi − x̄)(yi − ȳ) (3.1)
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In this Equation of Covariance (3.1) [49]:

- n represents the number of data points or observations.

- xi and yi are the individual data points for X and Y respectively.

- x̄ and ȳ are the sample means of X and Y respectively.

ρ = cov(X, Y )
σxσy

(3.2)

In this Equation of Correlation (3.2) [50]:

- ρ: This is the Pearson correlation coefficient, which measures the strength and

direction of the linear relationship between two variables, X and Y .

- cov(X, Y ): This represents the covariance between variables X and Y . It quantifies

how these two variables change together. The covariance term is in the numerator because

it measures the joint variability of X and Y .

- σx: This is the standard deviation of variable X. It measures the dispersion or spread

of the data points for X around their mean.

- σy: Similarly, this is the standard deviation of variable Y . It measures the dispersion

or spread of the data points for Y around their mean.

The Coefficient of Determination (R2) is a statistical measure used in regression anal-

ysis to indicate how well a regression model fits the observed data. R2 quantifies the

proportion of the variance in the dependent variable that can be explained by the inde-

pendent variables included in the model. R2 value typically falls within the range of 0 to

1, where 0 indicates that the model fails to explain any of the variance, and 1 indicates a

perfect fit, where the model accounts for all the variance [51].

In this Equation of Coefficient of Determination (3.3) [51]:

R2 = 1 − SSR

SST
(3.3)

- R2: It is a value that suggests a superior fit of the model to the data.

- SSR: denotes the sum of squared residuals, representing the differences between

actual and predicted values.
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- SST : signifies the total sum of squares, which characterizes the variance of the

dependent variable. A higher R2 value suggests a superior model fit to the data.

This predictability analysis relies on a vast data set with strong correlations to achieve

rapid and good predictability results. Criteria such as the R2 can be employed to assess

these results after model training. The information in Chapter 4 should consider the small

dataset and low correlations.

Regression models will try to build equations with dependent and independent vari-

ables and weights that multiply the variables. When the variance is high, the model is

susceptible to the data, which tends to imply models that do not give good results with

a short data set, which is especially relevant for linear models. Linear models depend on

these weighting coefficients more than nonlinear models.

The high correlation between variables is a good sign for models to find predictive

paths, but this also implies high variance for linear models. Therefore, linear models

commonly make decisions such as suppressing a highly correlated variable to generate the

best result. This chapter contains nonlinear and other linear models, with no suppression

of variables. The objective is to maintain the same input data conditions to generate the

model and test data to impose the model on the observation and result. As the chosen

variables are correlated, linear models tend to perform differently than nonlinear ones.

It was only one match above 0.75, with Photovoltaic Production (PP) and Direct

Consumption (DC). The Total Consumption (TC) and Network Consumption (NC) have

a value above 0.65. However, all others are terrible. Data with low correlations will show

challenges to every model, even worse with scarce data, as is the case.

Below, there is Table 3.2 with the correlation between the variables among themselves.

A good value is considered from ±0.75 to ±1.

Below, there is Table 3.3 with the covariance between the variables among themselves,

and it measures the total variation of the variables from their expected values between

them. A high covariance between the independent and dependent variables indicates a

strong relationship, implying that changes in the independent variable correspond closely

with changes in the dependent variable.
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Table 3.2: Table of correlation between the variables

Correlation TC DC BD NC PP NI BC
TC
DC 0.3888
BD 0.1734 0.1343
NC 0.6583 -0.278 -0.165
PP -0.067 0.7836 -0.074 -0.576
NI -0.355 -0.05 0.1002 -0.384 0.2172
BC -0.179 -0.004 0.1539 -0.298 0.2524 -0.084

Table 3.3: Table of covariance between the variables.

Covariance TC DC BD NC PP NI BC
TC
DC 25.408
BD 6.5387 3.4779
NC 61.248 -17.74 -6.07
PP -6.092 48.546 -2.651 -50.8
NI -13.21 -1.277 1.4776 -13.97 7.6641
BC -6.344 -0.089 2.1621 -10.33 8.4874 -1.16

The data used originates from the place itself, where we actively sought to address

possible errors in the data before using it. That represents one of the essential elements in

the context of data analysis. This work analyzes a physical environment that exists, and

there needs to be more control over data collected in the past, such as knowledge about

possible problems in data collection by sensors and meters, before the present data dates.

Other types of possible errors in data are also associated with the transmission, cap-

ture, and storage by computer systems. These errors may eventually exceed the expected

errors, and data may be collected incorrectly. Therefore, there are limits to the data

treatment, which will be taken by observing the data used (after the minimum possible

treatment) as reliable data. There is an infinity of devices for processing and produc-

ing results in machine learning. The choice of technique is given by the selection of the
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designer referring to the observation of the recent bibliography, which seeks to solve prob-

lems close to or similar to the context of this work. These decision biases impact the final

as they are also part of the project; the project planning decisions are taken in the recent

existing bibliography, considering these above considerations. If there were a standard

or other criteria change, it would be different input-output techniques or configurations.

Table 3.4 contains information about outliers and blanks.

Table 3.4: Table of outliers in total data and information about them.

Name Outlier
Number

% of
Outliers

Blanks
Number

Min
Value

Max
Value

Mean
Value

Standard
Deviation

TC 9 2.46 8 0.42 61.87 25.34 9.83
DC 0 0 0 0 29.9 13.23 6.71
BD 5 1.36 0 0 32.65 5.21 3.87
NC 21 5.75 0 0.01 57.73 6.79 9.55
PP 0 0 0 0.14 39.97 20.02 9.26
NI 7 1.92 0 0 16.27 3.38 3.82
BC 1 0.27 11 0 19.2 6.93 3.64

The outliers were addressed using the log transformation technique from the NumPy

library, which involved taking the natural logarithm of data points.

3.2 Methodology for using the Models

Regression models need input data and test data. In all models, the regression tech-

niques have two main criteria utilized. First, the code will choose one variable for the exit

and one for the entry. Then, it will execute the 20 different regression models. The R2,

the Mean Square Error and the time used in each model are measured, and a graph with

the results for presentation. Multiple loops will be executed in the models to calculate

all the results for all the possible combinations of entries. In the end, it will find the

results for many possible combinations and different models when predicting some of the

variables in the exit.
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Principal Component Analysis (PCA) is a mathematical technique used to reduce the

dimensionality of data by identifying a set of orthogonal axes (principal components)

along which the data varies the most.

The essential leading operation is with model fit and train test split where it chooses

80% of data for training and 20% for testing. The first run is only all the possible

combinations without using PCA. In the second run, PCA is used. However, low data

and correlations limit the number of good results.

As all possible combinations between inputs and outputs were made, always respecting

only one output, the same results were generated for each variable. The code allows ob-

serving case by case, generating all possible results in the configurations used. After that,

a data file was generated and submitted to another code for organization and presentation

of values. This second code gathers the values according to the number of inputs (N-in)

and by observing the variables in the output. Afterwards, the code makes the results

proportional to the number of runs from the variables, building a proportion of how much

the variable had a particular result compared to how many times the combinations will

run in the code loop.

In Figure 3.1, we have a representation of the possible entry variables and one exit

variable. The algorithm executes every possible combination in the entry and then makes

a sequence of interactions of loops inside of loops to get the results. In resume, it will

choose a variable for the exit and then insert the other variables in the entry. As there

are seven total variables, there will always be one exit and all the possible combinations

of the other variables. The number of input variables appears as N − in in Chapter 4.

TC

Exit Variable

DC BD NC PP NI BC

Figure 3.1: Flowchart of the executed algorithm.

Two models were run, one using PCA before all models and the other only running
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models. All those data were later reunited and organized by another piece of code, also

made in Python. Charts with both results are presented in the discussion, allowing us to

analyse the difference. There are different metrics for looking at the results, each repre-

senting distinct levels of system performance. The important value is above 0.75 [52]. The

others were distributed to organize and present the generated data. They are presented

by R2, which is:

1. Interval 0: Invalid, the model did not find a solution.

2. Interval 1: [0, 0.39]

3. Interval 2: [0.39, 0.63]

4. Interval 3: [0.63, 0.75]

5. Interval 4: [0.75, 1]

The models can have high challenges for this kind of prediction. As shown, the data

set is tiny and has little of a sequence of correlations. The main criteria for results is an

R2 value in [0.75, 1] [22]. The models used with the Python Regression tools were always

in the same sequence with the same criteria.

The sequence of the run algorithm is below, in Figure 3.2.
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Start

Loop over the number of entries

Split data into features and target

Split data into training and testing sets

Perform Regression

Save results

Figure 3.2: Flowchart of the executed algorithm.

The results of the tests and the discussion are presented in the next chapter.
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Chapter 4

Results and Discussion

Here, in Chapter 4, we find the results from executing the models through Python.

The models were run based on the code and data found by the link in the Appendix

section. The code sequence runs the results by the N − in with some exit variable for all

Regression Models.

4.1 The ML Models

Bellow, there is a showcase variable by variable, showing the results. The behaviour of

the results is related to the number of entries or variables in the in-out. There are variables

with better results than others, and there is also a growth in the quality of the results as

the number of entrances increases. The tables have the values in percentage, and those

percentages represent the part of the results in total results. It’s the percentage of results

considering how many runs it took because of the number of possible combinations.

Two models were run, one using PCA before all models and the other only running

models. All those data were later reunited and organized by another piece of code, also

made in Python. Charts with both results are presented in the discussion, allowing us to

analyse the difference.

Figure 4.1 shows one simulation result as an example. This example has a [0.39, 0.63]
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R2 score result. In every generated result, the graph shows the expected Ideal result in

the red line and the simulation result in the blue dots. The model used is in the label,

and the basic scores, like R2, are below the image.
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11 - DTR - Decision Tree Regressor

R^2 Score: 0.4602, Mean Squared Error: 59.9271, Root Mean Squared Error: 7.7413, Run Time: 0.0030 

[5] DC_BD_NC_NI_BC [in], TC [out], Bad R² result
Actual vs. Predicted
Ideal

Figure 4.1: Exemple of output from one of the models.

Below, there are Tables 4.1 and 4.2 of best R2 from models with PCA and without

for demonstration. There are not many differences between them. As was with the other

data, the best models tended to be those who used many features on in, and the best

prevision also came from the Direct Consumption (DC). The best model in performance

was the MPL.

Table 4.1: Table of best 7 R2 values from models without PCA.

N-in Features(in) Features(out) Model R2 MSE
4 TC_BD_NC_PP DC 12 - MLP - MLP Regressor 0.986 0.808
5 TC_BD_NC_PP_NI DC 12 - MLP - MLP Regressor 0.985 0.867
6 TC_BD_NC_PP_NI_BC DC 12 - MLP - MLP Regressor 0.982 1.040
6 TC_DC_BD_PP_NI_BC NC 12 - MLP - MLP Regressor 0.969 3.631
5 TC_BD_NC_PP_BC DC 12 - MLP - MLP Regressor 0.967 1.868
5 TC_BD_NC_PP_NI DC 06 - GBR - Gradient Boosting Regressor 0.967 1.897
5 TC_DC_BD_NI_BC NC 12 - MLP - MLP Regressor 0.965 4.118

The R2 has shown consistent behaviour when compared with the incidence of it on

the accounting of normalized results by variable. In the majority of cases, the MSE values

were also low.

Bellow, the two Figures 4.2 and 4.3 have the best results without PCA and with PCA.

Both are from MPL Regressor. The MPL Regressor had shown an excellent performance.
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Table 4.2: Table of best 7 R2 values from models with PCA.

N-in Features(in) Features(out) Model R2 MSE
5 TC_DC_BD_NI_BC NC 12 - MLP - MLP Regressor 0.988 1.387
5 TC_BD_NC_PP_NI DC 12 - MLP - MLP Regressor 0.988 0.676
6 TC_DC_BD_PP_NI_BC NC 12 - MLP - MLP Regressor 0.984 1.898
4 TC_BD_NC_NI DC 12 - MLP - MLP Regressor 0.977 1.288
6 TC_BD_NC_PP_NI_BC DC 12 - MLP - MLP Regressor 0.977 1.305
5 TC_DC_BD_PP_NI NC 12 - MLP - MLP Regressor 0.970 3.476
5 DC_BD_NC_PP_BC TC 12 - MLP - MLP Regressor 0.969 3.493
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12 - MLP - MLP Regressor

R^2 Score: 0.9685, Mean Squared Error: 1.7939, Root Mean Squared Error: 1.3394, Run Time: 1.5776 

[4] TC_BD_NC_PP [in], DC [out], Good R² result
Actual vs. Predicted
Ideal

Figure 4.2: The best R2 result without PCA.
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12 - MLP - MLP Regressor

R^2 Score: 0.9882, Mean Squared Error: 1.3871, Root Mean Squared Error: 1.1778, Run Time: 1.8039 

[5] TC_DC_BD_NI_BC [in], NC [out], Good R² result
Actual vs. Predicted
Ideal

Figure 4.3: The best R2 result with PCA.
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4.2 Model Results

In bellow, we have the results from the best models. The table has the Model Name,

the incidence of occurrences of R2 in [0.75, 1] (appearance), and the success percentage,

which is the division between the number of successful incidences by times that that model

runs, with the equation (4.1) representing that. The first was 1588/8860, giving 17.82%

and 1503/8860, giving 16.96% as a result. The success of every model is based on the

total runs by the model run, which is divided by 20 as there are 20 different models.

Success(%) = Model with R2 > 0.75
Total Models Run (4.1)

Table 4.3 contains the Model Performances while using PCA and does not consider

the number of entries. Using PCA, model 8 was able to find results.

Table 4.3: Table of Models Performance with using PCA.

Model Name Frequency of R2>0.75 Sucess in all (%)
20 - ETR - Extra Trees Regressor 123 27.77

06 - GBR - Gradient Boosting Regressor 119 26.86
12 - MLP - MLP Regressor 116 26.19

14 - RFR - Random Forest Regressor 116 26.19
09 - XGB - XGBoost Regressor 116 26.19

18 - BRM - Bagging Regressor Model 111 25.06
10 - GBM - LightGBM Regresso 110 24.83

19 - HGR - Hist Gradient Boosting Regressor 106 23.93
13 - KNN - K-Nearest Neighbors 103 23.25
15 - ABR - Ada Boost Regressor 82 18.51

11 - DTR - Decision Tree Regressor 73 16.48
05 - SVR - Support Vector Regression 53 11.96
01 - LRM - Linear Regression Model 49 11.06
17 - RRM - Ridge Regression Model 49 11.06
02 - ELR - Elastic Net Regressor 48 10.84

04 - BRR - Bayesian Ridge Regressor 48 10.84
08 - KRR - Kernel Ridge Regressor 28 6.32

03 - SGD - SGD Regressor 4 0.90
16 - GPR - Gaussian Process Regression 0 0

Sum of all Models 1588
Percentage of Sucess (%) 17.92

Table 4.4 contains the Model Performances without PCA and does not consider the

number of entries. The model 16 never found any result above 0.75 to R2.

When observing the tables, it is possible to notice the similarity in the sequence of the
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Table 4.4: Table of Models Performance without using PCA.

Model Name Frequency of R2>0.75 Sucess in all (%)
20 - ETR - Extra Trees Regressor 116 26.18

06 - GBR - Gradient Boosting Regressor 114 25.73
12 - MLP - MLP Regressor 111 25.05

14 - RFR - Random Forest Regressor 108 24.37
09 - XGB - XGBoost Regressor 108 24.37

18 - BRM - Bagging Regressor Model 103 23.25
10 - GBM - LightGBM Regresso 103 23.25

19 - HGR - Hist Gradient Boosting Regressor 99 22.34
13 - KNN - K-Nearest Neighbors 95 21.44
15 - ABR - Ada Boost Regressor 79 17.83

11 - DTR - Decision Tree Regressor 73 16.47
05 - SVR - Support Vector Regression 50 11.28
01 - LRM - Linear Regression Model 49 11.06
17 - RRM - Ridge Regression Model 49 11.06
02 - ELR - Elastic Net Regressor 48 10.83

04 - BRR - Bayesian Ridge Regressor 48 10.83
08 - KRR - Kernel Ridge Regressor 34 7.67

03 - SGD - SGD Regressor 0 0
16 - GPR - Gaussian Process Regression 0 0

Sum of all Models 1503
Percentage of Sucess (%) 16.96

model results, expressing some similarity of total accuracy regarding the use or non-use

of PCA. As the best results only appear with a larger N-in, the general table does not

express the best models well, as it contains them all.

4.2.1 Models Results by N − in = 1

No models found any value in [0.75, 1] with N − in = 1, so no table will be presented

here. With more entries, the models had found values. With N − in = 1, 840 tries were

made without PCA and 840 with PCA. The N − in = 1 have no value in [0.75, 1], so it

was the GPR tool (16), represented by GPR 2.3.16 in tables. It’s unclear why, as GPR

usually works well on small Data Sets, which is the case here.

4.2.2 Models Results by N − in = 2

With N − in = 2, Tables 4.5 and 4.6 have the values without PCA and with PCA.

With N − in = 2, 2100 tries were been made without PCA and 2100 with PCA.
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Table 4.5: Models Performances in [0.75, 1] when N-in=2 and without PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=2 (%)

06 - GBR - Gradient Boosting Regressor 10 9.52

14 - RFR - Random Forest Regressor 10 9.52

13 - KNN - K-Nearest Neighbors 9 8.57

18 - BRM - Bagging Regressor Model 9 8.57

20 - ETR - Extra Trees Regressor 9 8.57

12 - MLP - MLP Regressor 9 8.57

10 - GBM - LightGBM Regresso 9 8.57

09 - XGB - XGBoost Regressor 9 8.57

19 - HGR - Hist Gradient Boosting Regressor 8 7.61

05 - SVR - Support Vector Regression 5 4.76

15 - ABR - Ada Boost Regressor 4 3.80

11 - DTR - Decision Tree Regressor 3 2.85

01 - LRM - Linear Regression Model 2 1.90

02 - ELR - Elastic Net Regressor 2 1.90

03 - SGD - SGD Regressor 2 1.90

04 - BRR - Bayesian Ridge Regressor 2 1.90

17 - RRM - Ridge Regression Model 2 1.90

16 - GPR - Gaussian Process Regression 0 0

08 - KRR - Kernel Ridge Regressor 0 0

Sum of all Models 113

Percentage of Sucess (%) 5.38
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Table 4.6: Models Performances in [0.75, 1] when N-in=2 and with PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=2 (%)

19 - HGR - Hist Gradient Boosting Regressor 11 10.48

14 - RFR - Random Forest Regressor 11 10.48

10 - GBM - LightGBM Regresso 11 10.48

18 - BRM - Bagging Regressor Model 10 9.52

20 - ETR - Extra Trees Regressor 10 9.52

06 - GBR - Gradient Boosting Regressor 9 8.57

13 - KNN - K-Nearest Neighbors 9 8.57

18 - BRM - Bagging Regressor Model 9 8.57

09 - XGB - XGBoost Regressor 8 7.62

12 - MLP - MLP Regressor 6 5.71

15 - ABR - Ada Boost Regressor 5 4.76

05 - SVR - Support Vector Regression 2 1.90

01 - LRM - Linear Regression Model 2 1.90

02 - ELR - Elastic Net Regressor 2 1.90

04 - BRR - Bayesian Ridge Regressor 2 1.90

17 - RRM - Ridge Regression Model 1 0.95

11 - DTR - Decision Tree Regressor 0 0.00

16 - GPR - Gaussian Process Regression 0 0.00

08 - KRR - Kernel Ridge Regressor 0 0.00

Sum of all Models 120

Percentage of Sucess (%) 5.71

At N − in = 2, the efficiency with or without PCA is low. However, the models

were found to differ significantly, making it possible to observe the influence of PCA. The

order in the model rank also differs well from the total rank. The models have more

characteristic performance with fewer variables.

There was sensitivity to the presence of PCA in N − in = 2, with GBR (2.3.6) in the

first place without using PCA but far behind with the use of PCA. This also happened

with HGB (2.3.19), which performed better using PCA. However, all models had low

numbers of success.
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4.2.3 Models Results by N − in = 3

With N − in = 3, Tables 4.7 and 4.8 have the values without PCA and with PCA.

With N − in = 3, 2800 tries were been made without PCA and 2800 with PCA.

At N −in = 3, the efficiency more than doubles compared to N −in = 2. The sequence

in the model ranks also comes closer to the total rank, indicating greater similarity in

performance with the total table.

Table 4.7: Models Performances in [0.75, 1] when N-in=3 and without PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=3 (%)

20 - ETR - Extra Trees Regressor 35 25.00

06 - GBR - Gradient Boosting Regressor 33 23.57

09 - XGB - XGBoost Regressor 33 23.57

14 - RFR - Random Forest Regressor 33 23.57

13 - KNN - K-Nearest Neighbors 32 22.85

12 - MLP - MLP Regressor 31 22.14

18 - BRM - Bagging Regressor Model 30 21.42

10 - GBM - LightGBM Regresso 27 19.28

19 - HGR - Hist Gradient Boosting Regressor 26 18.57

15 - ABR - Ada Boost Regressor 22 15.71

11 - DTR - Decision Tree Regressor 20 14.28

01 - LRM - Linear Regression Model 14 10.00

05 - SVR - Support Vector Regression 14 10.00

17 - RRM - Ridge Regression Model 14 10.00

02 - ELR - Elastic Net Regressor 13 9.28

04 - BRR - Bayesian Ridge Regressor 13 9.28

03 - SGD - SGD Regressor 8 5.71

08 - KRR - Kernel Ridge Regressor 0 0

16 - GPR - Gaussian Process Regression 0 0

Sum of all Models 430

Percentage of total Sucess (%) 15.35
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Table 4.8: Models Performances in [0.75, 1] when N-in=3 and with PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=3 (%)

20 - ETR - Extra Trees Regressor 39 27.86

06 - GBR - Gradient Boosting Regressor 37 26.43

14 - RFR - Random Forest Regressor 37 26.43

09 - XGB - XGBoost Regressor 36 25.71

18 - BRM - Bagging Regressor Model 34 24.29

10 - GBM - LightGBM Regresso 32 22.86

12 - MLP - MLP Regressor 32 22.86

13 - KNN - K-Nearest Neighbors 32 22.86

19 - HGR - Hist Gradient Boosting Regressor 31 22.14

15 - ABR - Ada Boost Regressor 23 16.43

11 - DTR - Decision Tree Regressor 20 14.29

05 - SVR - Support Vector Regression 15 10.71

01 - LRM - Linear Regression Model 14 10.00

17 - RRM - Ridge Regression Model 14 10.00

02 - ELR - Elastic Net Regressor 13 9.29

04 - BRR - Bayesian Ridge Regressor 13 9.29

08 - KRR - Kernel Ridge Regressor 6 4.29

03 - SGD - SGD Regressor 2 1.43

16 - GPR - Gaussian Process Regression 0 0.00

Sum of all Models 470

Percentage of total Sucess (%) 16.79

The models ETR (2.3.20) and GBR (2.3.6) stand out on N − in = 4. The PCA

affected the most prominent ones, but the success rate was still above 30%.

4.2.4 Models Results by N − in = 4

With N − in = 4, Tables 4.9 and 4.10 have the values without PCA and with PCA.

With N − in = 4, 2100 tries were been made without PCA and 2100 with PCA.

At N − in = 4, the efficiency increases compared to N − in = 3, as expected. The

sequence in the model ranks also comes closer to the total rank and N − in = 5 and

N − in = 6. With three entries, the models that will have the best result in the end start

to appear.

59



Table 4.9: Models Performances in [0.75, 1] when N-in=4 and without PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=4 (%)

20 - ETR - Extra Trees Regressor 43 30.71

06 - GBR - Gradient Boosting Regressor 42 30

12 - MLP - MLP Regressor 42 30

19 - HGR - Hist Gradient Boosting Regressor 40 28.57

18 - BRM - Bagging Regressor Model 39 27.85

14 - RFR - Random Forest Regressor 39 27.85

13 - KNN - K-Nearest Neighbors 38 27.14

11 - DTR - Decision Tree Regressor 37 26.42

10 - GBM - LightGBM Regresso 37 26.42

09 - XGB - XGBoost Regressor 32 22.85

15 - ABR - Ada Boost Regressor 27 19.28

05 - SVR - Support Vector Regression 20 14.28

04 - BRR - Bayesian Ridge Regressor 18 12.85

17 - RRM - Ridge Regression Model 18 12.85

02 - ELR - Elastic Net Regressor 18 12.85

01 - LRM - Linear Regression Model 17 12.14

03 - SGD - SGD Regressor 15 10.71

16 - GPR - Gaussian Process Regression 0 0

08 - KRR - Kernel Ridge Regressor 0 0

Sum of all Models 565

Percentage of Sucess (%) 26.90
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Table 4.10: Models Performances in [0.75, 1] when N-in=4 and with PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=4 (%)

20 - ETR - Extra Trees Regressor 45 32.14

06 - GBR - Gradient Boosting Regressor 45 32.14

12 - MLP - MLP Regressor 44 31.43

09 - XGB - XGBoost Regressor 42 30.00

14 - RFR - Random Forest Regressor 42 30.00

18 - BRM - Bagging Regressor Model 41 29.29

10 - GBM - LightGBM Regresso 40 28.57

19 - HGR - Hist Gradient Boosting Regressor 38 27.14

13 - KNN - K-Nearest Neighbors 38 27.14

11 - DTR - Decision Tree Regressor 31 22.14

15 - ABR - Ada Boost Regressor 30 21.43

05 - SVR - Support Vector Regression 19 13.57

01 - LRM - Linear Regression Model 18 12.86

17 - RRM - Ridge Regression Model 18 12.86

02 - ELR - Elastic Net Regressor 18 12.86

04 - BRR - Bayesian Ridge Regressor 18 12.86

08 - KRR - Kernel Ridge Regressor 11 7.86

03 - SGD - SGD Regressor 2 1.43

16 - GPR - Gaussian Process Regression 0 0.00

Sum of all Models 591

Percentage of Sucess (%) 28.14

The models ETR (2.3.20), GBT (2.3.6), and MPL (2.3.12) stand out from the others

regardless of the presence of PCA on N −in = 4. These are models that have the potential

to produce good results when faced with data with a lot of randomness or non-linear data.

4.2.5 Models Results by N − in = 5

With N − in = 5, Tables 4.11 and 4.12 have the values without PCA and with PCA.

With N − in = 5, 840 tries were been made without PCA and 840 with PCA.

At N − in = 5, the efficiency gain becomes notable compared to previous cases.

Although there has been little difference in the use or non-use of PCA, the best models

are already more than 60% efficient. This is about 6 times more gain than N − in = 2,

the first cycle capable of generating R2 in [0.75, 1].
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Table 4.11: Models Performances in [0.75, 1] when N-in=5 and without PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=5 (%)

20 - ETR - Extra Trees Regressor 24 57.14

12 - MLP - MLP Regressor 24 57.14

06 - GBR - Gradient Boosting Regressor 24 57.14

19 - HGR - Hist Gradient Boosting Regressor 22 52.38

09 - XGB - XGBoost Regressor 22 52.38

10 - GBM - LightGBM Regresso 22 52.38

18 - BRM - Bagging Regressor Model 21 50.00

19 - HGR - Hist Gradient Boosting Regressor 20 47.61

13 - KNN - K-Nearest Neighbors 20 47.61

11 - DTR - Decision Tree Regressor 19 45.23

15 - ABR - Ada Boost Regressor 18 42.85

02 - ELR - Elastic Net Regressor 13 30.95

17 - RRM - Ridge Regression Model 13 30.95

17 - RRM - Ridge Regression Model 13 30.95

01 - LRM - Linear Regression Model 13 30.95

05 - SVR - Support Vector Regression 10 23.80

03 - SGD - SGD Regressor 8 19.04

04 - BRR - Bayesian Ridge Regressor 0 0

08 - KRR - Kernel Ridge Regressor 0 0

Sum of all Models 332

Percentage of Sucess (%) 39.52
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Table 4.12: Models Performances in [0.75, 1] when N-in=5 and with PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=5 (%)

12 - MLP - MLP Regressor 26 61.90

20 - ETR - Extra Trees Regressor 24 57.14

09 - XGB - XGBoost Regressor 24 57.14

06 - GBR - Gradient Boosting Regressor 23 54.76

10 - GBM - LightGBM Regresso 23 54.76

18 - BRM - Bagging Regressor Model 23 54.76

19 - HGR - Hist Gradient Boosting Regressor 22 52.38

14 - RFR - Random Forest Regressor 22 52.38

13 - KNN - K-Nearest Neighbors 20 47.62

15 - ABR - Ada Boost Regressor 19 45.24

11 - DTR - Decision Tree Regressor 18 42.86

17 - RRM - Ridge Regression Model 13 30.95

01 - LRM - Linear Regression Model 13 30.95

02 - ELR - Elastic Net Regressor 13 30.95

04 - BRR - Bayesian Ridge Regressor 13 30.95

05 - SVR - Support Vector Regression 12 28.57

08 - KRR - Kernel Ridge Regressor 9 21.43

04 - BRR - Bayesian Ridge Regressor 0 0.00

16 - GPR - Gaussian Process Regression 0 0.00

Sum of all Models 343

Percentage of Sucess (%) 40.83

The models ETR (2.3.20) and MPL (2.3.12) stand out on N − in = 5, and the XGB

(2.3.9) when PCA is present. The XGB (2.3.9) have other optimisation techniques on the

model that make a good combo with PCA.

4.2.6 Models Results by N − in = 6

With N − in = 6, Tables 4.13 and 4.14 have the values without PCA and with PCA.

With N − in = 6, 140 tries were been made without PCA and 140 with PCA.

The models ETR (2.3.20) and MLP (2.3.12) stand out on N − in = 6, and the XGB

(2.3.9) when PCA is present again, with GBR (2.3.6) losing a lot with PCA presence.
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Table 4.13: Models Performances in [0.75, 1] when N-in=6 and without PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=6 (%)

20 - ETR - Extra Trees Regressor 5 71.42

06 - GBR - Gradient Boosting Regressor 5 71.42

12 - MLP - MLP Regressor 5 71.42

19 - HGR - Hist Gradient Boosting Regressor 4 57.14

18 - BRM - Bagging Regressor Model 4 57.14

14 - RFR - Random Forest Regressor 4 57.14

13 - KNN - K-Nearest Neighbors 4 57.14

11 - DTR - Decision Tree Regressor 4 57.14

10 - GBM - LightGBM Regresso 4 57.14

09 - XGB - XGBoost Regressor 4 57.14

15 - ABR - Ada Boost Regressor 3 42.85

05 - SVR - Support Vector Regression 2 28.57

04 - BRR - Bayesian Ridge Regressor 2 28.57

17 - RRM - Ridge Regression Model 2 28.57

02 - ELR - Elastic Net Regressor 2 28.57

01 - LRM - Linear Regression Model 2 28.57

03 - SGD - SGD Regressor 1 14.28

16 - GPR - Gaussian Process Regression 0 0

08 - KRR - Kernel Ridge Regressor 0 0

Sum of all Models 63

Percentage of Sucess (%) 45
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Table 4.14: Models Performances in [0.75, 1] when N-in=6 and with PCA.

Model Name Incidences of R2>0.75 Sucess in N-in=6 (%)

12 - MLP - MLP Regressor 6 85.71

09 - XGB - XGBoost Regressor 5 71.43

20 - ETR - Extra Trees Regressor 5 71.43

18 - BRM - Bagging Regressor Model 4 57.14

15 - ABR - Ada Boost Regressor 4 57.14

14 - RFR - Random Forest Regressor 4 57.14

13 - KNN - K-Nearest Neighbors 4 57.14

10 - GBM - LightGBM Regresso 4 57.14

19 - HGR - Hist Gradient Boosting Regressor 4 57.14

06 - GBR - Gradient Boosting Regressor 4 57.14

11 - DTR - Decision Tree Regressor 3 42.86

05 - SVR - Support Vector Regression 2 28.57

04 - BRR - Bayesian Ridge Regressor 2 28.57

02 - ELR - Elastic Net Regressor 2 28.57

17 - RRM - Ridge Regression Model 2 28.57

01 - LRM - Linear Regression Model 2 28.57

08 - KRR - Kernel Ridge Regressor 2 28.57

03 - SGD - SGD Regressor 0 0.00

16 - GPR - Gaussian Process Regression 0 0.00

Sum of all Models 64

Percentage of Sucess (%) 45.71

At N − in = 6, we have the best results in efficiency, with the most effective models

achieving 85.71% effectiveness. Based on the difference in the ranking of the models in the

tables, the sensitivity of some models to PCA, which may perform better or worse, such

as the GBR tool model (06), can be noted. It is also possible to observe how some models

only found results without PCA, such as SGD (03), although with poor performance.

PCA’s presence (or absence) was noted for generating a slight adjustment in the results,

causing some models to have slightly better ranks, and the less effective ones sometimes

managed to generate results different from zero.
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4.3 Variable results by number of input variables

One way of looking at the results is taking their performance while the number of

entries changes. There are seven variables, and always one is in the exit. The behaviour

of the results by variable changes as the number of entries variables increases. The charts

show the variable on the exit on X − axis and the prevalence percentage of the results in

the Y − axis.

4.3.1 Variable behavior for N − in = 1

In N − in = 1, there are no [0.75, 1] results. As the Table shows, outcomes are almost

no difference between PCA and without PCA. The [0.75, 1] and [0.63, 0.75] results criteria

are close. Bellow in Figures 4.4 and 4.5 show the exit variable results.

Figure 4.4: N − in = 1 results with PCA for every exit variable.
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Figure 4.5: N − in = 1 results without PCA for every exit variable.

4.3.2 Variable behavior for N − in = 2

In N − in = 2, there are some [0.75, 1] results. The general performance is also ex-

pressed in those charts, with the best variable having better results even with a small

number of entries, especially PP. The [0.63, 0.75] results rose to the same [0.75, 1] perfor-

mance presence. Bellow in Figures 4.6 and 4.7 show the exit variable results.

Figure 4.6: N − in = 2 results without PCA for every exit variable.
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Figure 4.7: N − in = 2 results with PCA for every exit variable.

4.3.3 Variable behavior for N − in = 3

In N − in = 3, the [0.75, 1] results rose, and the terrible dropped, especially for the

variables with good results. BD, NI and BC otherwise are still having a hard time. As the

number of entry variables rises, the quality of results also rises. With three entries, the

[0.75, 1] from DC, NC and PP surpasses the [0.63, 0.75] in the graph. Bellow in Figures

4.8 and 4.9 show the exit variable results.

Figure 4.8: N − in = 3 results with PCA for every exit variable.
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Figure 4.9: N − in = 3 results without PCA for every exit variable.

4.3.4 Variable behavior for N − in = 4

In N−in = 4, the [0.75, 1] results rise in almost all variables. There are some significant

differences between PCA models, too. It became visible with a small data set and non-

linear relations between the variables. Only with multiple N-ins do the [0.75, 1] results

become more frequent. It is important also to notice that the [0, 0.39] and [0.39, 0.63]

results show small numbers with the increase of N-in. The [0.63, 0.75] are almost close

to [0.39, 0.63] in number of performances. Bellow in Figures 4.10 and 4.11 show the exit

variable results.

Figure 4.10: N − in = 4 results with PCA for every exit variable.
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Figure 4.11: N − in = 4 results without PCA for every exit variable.

4.3.5 Variable behavior for N − in = 5

In N − in = 5, the amount of [0.39, 0.63] and [0, 0.39] results dropped considerably, as

the [0.75, 1] results rose consistently. The [0.63, 0.75] results are now closer to [0.39, 0.63]

and [0, 0.39] results, showing that models fit better the results because all three are not

in a high number, with an exception for NI and BC. Bellow in Figures 4.12 and 4.13 show

the exit variable results.

Figure 4.12: N − in = 5 results with PCA for every exit variable.
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Figure 4.13: N − in = 5 results without PCA for every exit variable.

4.3.6 Variable behavior for N − in = 6

There are the most consistent results in N − in = 6, with all other entries feeding

the models and giving some exit. The number of [0.75, 1] results rose slightly compared

with five entries, but most importantly, the number of [0, 0.39] and [0.39, 0.63] dropped

considerably. There are indeed some variables which don’t answer the curves, as the

models found. This will be discussed below. Bellow in Figures 4.14 and 4.15 show the

exit variable results.

Figure 4.14: N − in = 6 results with PCA for every exit variable
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Figure 4.15: N − in = 6 results without PCA for every exit variable.

4.4 Results by exit variable

As the variable in exit changes, the behaviour of the results also changes. Some

variables have good predicting behaviours, while others never achieved [0.75, 1] results.

This section looks at the variables’ behaviour by their exit variable. The charts have

the number of entries on X − axis and the percentage of prevalence of the results in the

Y − axis.

4.4.1 Total Consumption (TC)

The variable Total Consumption (TC) notably influenced the regression model’s per-

formance, as observed in the provided data table. As N-in increased from 1 to 6, TC

consistently improved in achieving [0.75, 1] results.

At N-in = 1, TC had limited impact, resulting in no [0.75, 1] results. However, as N-in

increased to 2, there was a substantial increase in [0.75, 1] results, reaching 0.52%. This

trend continued with further increases in N-in, with TC achieving 7.02% [0.75, 1] results

at N-in = 5 and 8.57% at N-in = 6.

The Total Consumption (TC) is a good predictor for enhancing the model’s accuracy
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and effectiveness. Its consistent improvements in achieving [0.75, 1] results as N-in in-

creased indicate a robust relationship that merits further investigation and consideration

in optimizing the system’s performance.

In Figures 4.16 and 4.17 the charts show the results of Total Consumption (TC) with

PCA and without PCA. As can be seen by the charts, the increase in the number of entries

also increased the number of good results and decreased the number of bad results.

Figure 4.16: The result with PCA for TC in out.

Figure 4.17: The result without PCA for TC in out.
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4.4.2 Direct Consumption (DC)

The variable Direct Consumption (DC) significantly influenced the regression model’s

performance, as observed in the provided data table. The best results came from DC and

PP.

At N-in = 1, DC showed limited impact, resulting in no [0.75, 1] results. However, as

N-in increased to 2, there was an increase in [0.75, 1] results, reaching 1.43%. This trend

continued with further increases in N-in, with DC achieving 4.96% [0.75, 1] results at N-in

= 3 and 8.48% at N-in = 4.

The most significant improvement in DC’s predictive capability occurred at N-in = 5

and N-in = 6, where the proportions of [0.75, 1] results rose remarkably to 11.67% and

12.86%, respectively. These results suggest a positive correlation between data consump-

tion DC and improved model predictions.

The findings underscore the importance of considering data consumption DC in the

regression model to enhance its accuracy and effectiveness. As N-in increases, the increas-

ing impact of DC on achieving favourable outcomes highlights its potential as a valuable

predictor for optimizing system performance.

In Figures 4.18 and 4.19 the charts show the results of Direct Consumption (DC) with

PCA and without PCA.

Figure 4.18: The result with PCA for DC in out.
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Figure 4.19: The result without PCA for DC in out.

4.4.3 Battery Discharge (BD)

The variable Battery Discharge (BD) exhibited sub-optimal performance in the re-

gression models. BD struggled to achieve [0.75, 1] results and displayed limited success

even when four or more variables were included in the model. While there were instances

of improved performance with four or more variables, the proportion of [0.75, 1] results re-

mained relatively small. This finding further emphasizes the challenges in leveraging BD

as a reliable predictor for the regression models, raising concerns about its effectiveness

in contributing meaningfully to the outcomes.

In Figures 4.20 and 4.21 the charts show the results of Battery Discharge (BD) with

PCA and without PCA. The few [0.75, 1] results the models could find only started with

four entry variables.
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Figure 4.20: The result with PCA for BD in out.

Figure 4.21: The result without PCA for BD in out.

4.4.4 Network Consumption (NC)

The variable Network Consumption (NC) had a minor influence on the regression

model’s performance, as observed in the provided data table.

At N-in = 1, N-in had limited impact, resulting in no [0.75, 1] results. However, as

N-in increased to 2, a minor gain increase in [0.75, 1] results reached 1%. This trend

continued with further increases in N-in, with N-in achieving 3.43% [0.75, 1] results at

N-in = 3 and 5.71% at N-in = 4. The higher value was at N-in = 5 and N-in = 6, where
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the proportions of [0.75, 1] results rose to 8.10% and 7.86%, respectively.

In Figures 4.22 and 4.23 the charts show the results of Network Consumption (NC)

with PCA and without PCA. The best that the models could find was [0.39, 0.63] or

[0, 0.39] performances when the number of entries increased.

Figure 4.22: The result with PCA for NC in out.

Figure 4.23: The result without PCA for NC in out.
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4.4.5 Photovoltaic Production (PP)

The variable Photovoltaic Production (PP) significantly influenced the regression

model’s performance, as evidenced by the provided data table. Examining the results

reveals distinct changes in the proportion of [0.75, 1] results with varying numbers of

entries (N-in).

At N-in = 1, PP demonstrated limited impact, resulting in no [0.75, 1] results. How-

ever, as N-in increased to 2, there was a moderate increase in [0.75, 1] results, reaching

2.81%. This trend continued with further increases in N-in, with PP achieving 6% [0.75, 1]

results at N-in = 3 and 9.05% at N-in = 4.

The most significant improvement in PP’s predictive capability occurred at N-in = 5

and N-in = 6, where the proportions of [0.75, 1] results rose remarkably to 11.90% and

12.14%, respectively. These findings suggest a positive correlation between photovoltaic

production PP and improved model predictions.

The data underscores the significance of considering photovoltaic production (PP) in

the regression model to enhance its accuracy and effectiveness. As N-in increases, the

increasing impact of PP on achieving favourable outcomes highlights its potential as a

valuable predictor for optimizing system performance.

In Figures 4.24 and 4.25 the charts show the results of Photovoltaic Production (PP)

with PCA and without PCA.
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Figure 4.24: The result with PCA for PP in out.

Figure 4.25: The result without PCA for PP in out.

4.4.6 Network Injection (NI)

The variable Network Injection (NI) had terrible results on the regression models, as

depicted in the provided data table. At N-in = 1, NI exhibited a significant negative

influence, resulting in 9.88% ′Invalid′ and 4.05% [0, 0.39] results, with no [0.75, 1] results

achieved. This poor performance continued as N-in increased to 3, where NI achieved

7.68% ′Invalid′ and 3.86% [0, 0.39] results, still showing no [0.75, 1] results.

The negative impact of NI persisted at N-in = 4 and 5, with 5.19% and 3.93%
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[0.39, 0.63] results, respectively, but no [0.75, 1] results were achieved. At N-in = 6, NI

showed only a small amount of [0.75, 1] results.

In Figures 4.26 and 4.27, the charts show the results of Network Injection (NI) with

PCA and without PCA.

Figure 4.26: The result with PCA for NI in out.

Figure 4.27: The result without PCA for NI in out.
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4.4.7 Battery Charge (BC)

The variable Battery Charge (BC) demonstrated consistently poor performance across

different configurations of the regression model. Notably, BC never achieved any [0.75, 1]

results, indicating that it failed to influence the model’s predictions positively. Regardless

of the number of variables included in the model, BC consistently showed no signs of

meaningful improvement, and its contribution to the regression models remained negli-

gible. The results strongly suggest that BC had little to no predictive power, neither in

linear nor non-linear models, underscoring its limited usefulness as a predictor for the

system’s outcomes.

In Figures 4.28 and 4.29, the charts show the results of Battery Charge (BC) with

PCA and not using. The best that the models could find was [0.39, 0.63] or [0, 0.39]

performances when the number of entries increased.

Figure 4.28: The result with PCA for BC in out.
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Figure 4.29: The result without PCA for BC in out.

4.5 An Electrical and Commercial place

For this problem, we have some initial well know issues. First, we don’t have the Data

Sheet of the components. Those data are affirmed to come from electrical machines with

consumption and generation, with no more information beyond that, and with no internal

electrical schematics. Also, this type of problem has a robust non-linear profile, and the

small data set makes it hard to generate R2 results in [0.75, 1]. There are 360 days of

data, always with only the simple final day scalar value of power flux, and many data

flaws that need to be corrected in data cleaning. For those type of problem, only a 360 is

a challenge that, as expected, find the same typical result in literature: only with many

entries can the models find better results, even if they are not so big.

Now, let’s look at the network injection and battery behaviour. The Network Injection

(NI) is a decision taken by the system when it is over-positive in electricity generation.

Still, that doesn’t generate credits in the case of Silk House HEMS (SHH). This made

this building not projected for a Network Injection in the case of excess generation. The

projected desire is to supply and charge the batteries. The SHH is mainly an office with

a commercial work time, close to the Photovoltaic Generation (daylight). The variables

that had the better performance, not surprisingly, were Photovoltaic Production (PP) and
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Direct Consumption (DC). The essential power influx comes from both. And that also

means that the Battery Charge (BC) and Battery Discharge (BD) will be the main focus

when there is any slight excess of energy. But as the building is commercial, those events

of an extra generation to charge the batteries probably will come with a peak of over

or low consumption in the internal electrical loads, making the battery’s behaviour more

unpredictable for Regression Models. In this case, it is essential to note those electrical

configurations and understand why those variables have terrible results compared to the

Direct Consumption (DC) and Photovoltaic Production (PP).

Bellow in Figures 4.30 and 4.31, the charts show the sum of results, considering the

number of in, for models without and with PCA. With the data used, it was needed the

maximum number of entries to find good results. Regarding future analyses, it is also

noted in the section 4.2 that there are more convenient models to expose the data in

search of regression models, with notably better performance, in addition to the number

of variables in the input.

Figure 4.30: Sum of the performances showing all variables cases for models without PCA.

Otherwise, there is also another topic to analyze. Photovoltaic Systems, such as
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Figure 4.31: Sum of the performances showing all variables cases for models with PCA.

Energy Management Systems, are less expensive than batteries. Batteries are still a

massive problem in Electrical Engineering, with price and maintenance over time, to do

not say about the environment or recycling. As the building is connected to the electrical

grid, the cost of batteries may be a factor to be considered in case of expansion or not

to expand. Most of the internal loads are computers and heating. Heating a resistance

load doesn’t require complex management. A UPS can maintain computers in an office.

UPS is also a battery system but is usually cheaper than an extensive one. Where SHH

is located, power cuts are rare, so in a matter of project, it is more important to manage

a good energy production thinking about costs for this building, which mainly operates

on commercial daylight hours.

Now, in the next chapter, the conclusion is presented.
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Chapter 5

Conclusion and future work

A forecasting analysis using ML aims to, with an available data set, execute one or

more types of models. Solutions generally rely on various techniques to compare the error

among other models for the same data set. This comparison combines with optimiza-

tion algorithms that may exist for every problem the implementer faces, as observed in

numerous articles.

A faster solution, whereas a model with a low training time and still an excellent R2

value, is also an example of good technical results usually searched. The main challenge

in this field is finding a well-trained model for a well-organized (preferably as vast as

possible) data set.

This work approached ML for the regression analyses. However, merely considering

the ML tools as an example, an infinite variety of applications for ML exists, yielding

already excellent results and promising perspectives. The results here showed that it is

possible, albeit with a small data set, to find readable results for some variables within

the current problem configuration, as was for Photovoltaic Production (PP), Total Con-

sumption (TC), Direct Consumption (DC) and Network Consumption (NC). Combined

with the not-so-high presence of correlations, some models still have enough complexity

to address this problem if provided the possible computational capacity for the desired.
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ML can be employed in many scenarios and promotes the development and use of

many technologies, like regression and other types of precision and classification computer

analysis. This computer technique is highly versatile and an exciting solution for many

applications. That is a living research and development field, and the rate of articles

and productions is so fast because it is also expected that the tools and techniques are

continually updated for new challenges, which shows that this is a non-saturated field but

also not so well explored in the face of possible applications. As seen in Chapter 2, there

is much production in this field right now.

For future optimizations of the environment where data was collected, either to im-

prove the quality of energy production or to gain greater security in the face of production

predictability (being able to adapt consumption), it is essential to implement a more com-

plex model to the process of executing predictability, as these models showed the highest

performance against R2 as a metric. Considering better data collection or a broader

database becomes crucial, as this significantly enhances predictive capabilities and re-

duces the reliance on less capable computational elements. That, in turn, enables cost

and energy optimization within the predictive process. The small data set revealed itself

to be a significant issue. It used optimization and non-optimization solutions but strug-

gled with the same problem, showing little difference. The optimization models performed

better primarily at the end, with numerous variables at the input. This expectation arises

due to its non-linear nature. Nevertheless, to plan better solutions, it is necessary to have

a better data set for better results.

Considering recent contributions in the bibliography, this work closely replicates the

results of studies utilizing various models. Additionally, it endeavours to identify pre-

dictability models for data sets that could offer enhanced assistance. Possible optimiza-

tions on this HEMS building could efficiently plan using a data set featuring more corre-

lations (if possible) or a more extensive data set (with a broader range of collected data

points over time). Another suggestion to boost future work beyond the data set is to keep

testing different models with different optimizations. As commented in Chapter 2, it is

possible that for every type of problem, it optimizes using other support algorithms, as
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some authors have done in [53].

Otherwise, the best observations tended to be at the internal consumption and gen-

eration. The battery behaviour data could have been better for the Regression Models,

but the inconsistency in battery data is consistent with the building profile. However, the

battery system shall be observed for the costs because a solid battery system is one of

the most expensive parts of an autonomous electrical project. The power influx shown on

data had only relevance on the relations between Direct Consumption (DC) and the DC.

To establish a good ratio between performance and cost of implementation, an absence

of batteries and the system supplied by the connection with the grid can be considered.

For future works, it is crucial to have a more extensive data set, especially with a

low correlation profile, as in this case. The code, in the end, is provided free for use.

The generated code can adapt to a data set with tiny to colossal size, adjust to different

numbers of columns, provide optimized or non-optimized results, save and order the

generated data later, and also make figures for representation. New models can be added

or removed, and the code will generate all the possibilities for all possible solutions. The

code I made to find this work’s results is also very flexible and can be used for different

problems, adapting itself to find possible Regression Models. All codes are attached to

the Appendix at the end.
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Appendix A

Appendix

This extra chapter contains a series of elements that could not be inserted in the

previous chapters, given the criterion of not being judiciously necessary for what would

be argued but being the origin where the organization and analysis of data were made.

Here, there is the full code in Python.

Listing A.1: Regression Models in Python

# # # # D a n i e l T K W
# # # # Code f o r r e g r e s s i o n models
# # # # v4

# R e q u i r e d L i b r a r i e s
import os

import csv

import time

import s h u t i l

import i t e r t o o l s

import numpy as np

import pandas as pd

import matp lo t l ib . pyplot as p l t

from sk l ea rn . kerne l_r idge import KernelRidge

from sk l ea rn . mode l_se lect ion import t r a i n_t e s t_sp l i t

from sk l ea rn . metr i c s import r2_score , mean_squared_error

from sk l ea rn . impute import SimpleImputer

from sk l ea rn . l inear_model import (

L inearRegress ion , Elast i cNet , BayesianRidge ,

Ridge , SGDRegressor , E la s t i cNet

)

from sk l ea rn . svm import SVR

from sk l ea rn . ensemble import (

GradientBoost ingRegressor , HistGradientBoost ingRegressor ,
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RandomForestRegressor , AdaBoostRegressor , BaggingRegressor

)

from sk l ea rn . t r e e import Dec i s ionTreeRegres sor

from sk l ea rn . ne ighbors import KNeighborsRegressor

from sk l ea rn . gauss ian_process import Gauss ianProcessRegressor

from xgboost import XGBRegressor

from l ightgbm import LGBMRegressor

from catboost import CatBoostRegressor

from t en so r f l ow . keras . models import Sequent i a l

from t en so r f l ow . keras . l a y e r s import LSTM, Dense

from sk l ea rn . neural_network import MLPRegressor

# −−−−−−−−−−−−−−−−−−−−−−−−−

# Funct ion t o l o a d t h e d a t a
def load_data ( f i l e_path ) :

data = pd . read_csv ( f i l e_path )

return data

# Funct ion t o h a n d l e m i s s i n g v a l u e s
def handle_missing_values ( data ) :

imputer = SimpleImputer ( s t r a t egy=’median ’ )

data_imputed = pd . DataFrame ( imputer . f i t_trans fo rm ( data ) , columns=data . columns )

return data_imputed

# Funct ion t o f i x t h e e r r o r i n d i r e c t o r i e s f o r f i g u r e s
def remove_directory ( path , max_retr ies ) :

r e t r i e s = 0

while r e t r i e s < max_retries :

try :

s h u t i l . rmtree ( path , i gnore_er ro r s=True )

break # D i r e c t o r y removed s u c c e s s f u l l y , e x i t t h e l o o p
except Exception as e :

print ( f " Error ␣ occurred ␣whi le ␣ removing␣ d i r e c t o r y : ␣{e} " )

r e t r i e s += 1

i f r e t r i e s < max_retries :

print ( " Retrying . . . " )

i f r e t r i e s == max_retries :

print ( "Maximum␣number␣ o f ␣ r e t r i e s ␣ reached . ␣ Fa i l ed ␣ to ␣remove␣ d i r e c t o r y . " )

# Funct ion t o c r e a t e d i r e c t o r i e s f o r f i g u r e s
def c r e a t e_ f i gu r e_d i r e c t o r i e s ( data_imputed ) :

i f os . path . e x i s t s ( ’ f i g u r e s ’ ) :

remove_directory ( ’ f i g u r e s ’ , max_retries=2)

os . makedirs ( ’ f i g u r e s ’ )

for i in range (1 , len ( data_imputed . columns ) ) :

in_combinations = i t e r t o o l s . combinations ( data_imputed . columns , i )

out_combinations = data_imputed . columns

folder_name = f ’ { i } in−1out ’

os . makedirs ( f ’ f i g u r e s /{ folder_name} ’ )

for in_combination in in_combinations :
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in_combination_str = ’_ ’ . j o i n ( in_combination )

os . makedirs ( f ’ f i g u r e s /{ folder_name}/{ in_combination_str} ’ )

for out_combination in out_combinations :

i f out_combination not in in_combination :

os . makedirs ( f ’ f i g u r e s /{ folder_name}/{ in_combination_str }/{ out_combination} ’ )

def per form_regress ion (X_train , y_train , models ) :

model_times = {}

model_durations = {} # New d i c t i o n a r y t o s t o r e model d u r a t i o n s
for model_name , model in models . i tems ( ) :

model_start_time = time . time ( )

model . f i t ( X_train , y_train )

model_end_time = time . time ( )

model_duration = model_end_time − model_start_time

model_times . s e t d e f a u l t (model_name , [ ] ) . append (model_duration )

model_durations [ model_name ] = model_duration # S t o r e model d u r a t i o n
return model_times , model_durations

# Funct ion t o s a v e t h e model r e s u l t s and f i g u r e s
def save_model_results (model_path , model_name , in_combination_str , out_combination ,

X_test , y_test , y_pred , model_durations ) :

# C a l c u l a t e e v a l u a t i o n m e t r i c s
r2 = r2_score ( y_test , y_pred )

mse = mean_squared_error ( y_test , y_pred )

rmse = np . sq r t (mse )

# D e c l a r e v a r i a b l e s as g l o b a l
global good_results , hal f_good_results , bad_results , t e r r i b l e_ r e s u l t s , worse_than_constant ,

b i z a r r e_re su l t s , t o t a l_r e su l t s , threshold_used

# I n i t i a l i z e c o u n t e r s f o r e v a l u a t i o n
i f not globals ( ) . get ( ’ e v a l u a t i o n_ i n i t i a l i z e d ’ ) :

good_resu lts = 0

hal f_good_resu l t s = 0

bad_results = 0

t e r r i b l e_ r e s u l t s = 0

worse_than_constant = 0

b i z a r r e_ r e s u l t s = 0

t o t a l_ r e s u l t s = 0

threshold_used = 0

globals ( ) [ ’ e v a l u a t i o n_ i n i t i a l i z e d ’ ] = True

i f r2 > thr e sho ld s [ ’Good ’ ] :

good_resu lts += 1

threshold_used = ’Good ’

e l i f th r e sho ld s [ ’ Half−Good ’ ] <= r2 <= thr e sho ld s [ ’Good ’ ] :

ha l f_good_resu l t s += 1

threshold_used = ’ Half−Good ’

e l i f th r e sho ld s [ ’Bad ’ ] <= r2 <= thre sho ld s [ ’ Half−Good ’ ] :

bad_results += 1

threshold_used = ’Bad ’

e l i f th r e sho ld s [ ’ Te r r i b l e ’ ] <= r2 <= thr e sho ld s [ ’Bad ’ ] :

t e r r i b l e_ r e s u l t s += 1

threshold_used = ’ Te r r i b l e ’

e l i f r2 < thr e sho ld s [ ’Worse−Than−Constant−F ’ ] :

worse_than_constant += 1
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threshold_used = ’Worse−Than−Constant−F ’

e l i f r2 > thr e sho ld s [ ’ B i za r r e ’ ] :

b i z a r r e_ r e s u l t s += 1

threshold_used = ’ Bizar r e ’

t o t a l_ r e s u l t s += 1

# Make t h r e s h o l d s a v a r i a b l e
threshold_used = str ( threshold_used )

# Create t h e r e s u l t s t r i n g
r e s u l t = f ’R^2␣ Score : ␣{ r2 : . 4 f } , ␣Mean␣Squared␣Error : ␣{mse : . 4 f } , ␣Root␣Mean␣Squared␣Error : ␣{rmse : . 4 f } ’

# Save t h e r e g r e s s i o n p l o t s i n PNG and EPS f o r m a t s
f i g_fo lder_path = os . path . j o i n (model_path , ’ f i g u r e s ’ )

os . makedirs ( f ig_folder_path , exist_ok=True )

# Save PNG f i l e
png_folder_path = os . path . j o i n ( f ig_folder_path , ’ png ’ )

os . makedirs ( png_folder_path , exist_ok=True )

png_file_path = os . path . j o i n ( png_folder_path , f ’ {model_name} . png ’ )

# Save EPS f i l e
eps_folder_path = os . path . j o i n ( f ig_folder_path , ’ eps ’ )

os . makedirs ( eps_folder_path , exist_ok=True )

eps_f i le_path = os . path . j o i n ( eps_folder_path , f ’ {model_name} . eps ’ )

# Save TXT f i l e
txt_folder_path = os . path . j o i n ( f ig_folder_path , ’ txt ’ )

os . makedirs ( txt_folder_path , exist_ok=True )

txt_f i l e_path = os . path . j o i n ( txt_folder_path , f ’ {model_name} . txt ’ )

# Save CSV f i l e
csv_folder_path = os . path . j o i n ( f ig_folder_path , ’ csv ’ )

os . makedirs ( csv_folder_path , exist_ok=True )

csv_f i le_path = os . path . j o i n ( csv_folder_path , f ’ {model_name} . csv ’ )

p l t . f i g u r e ( f i g s i z e =(10 , 6 ) )

p l t . s c a t t e r ( y_test , y_pred , c=’ blue ’ , l a b e l=’ Actual ␣vs . ␣ Pred icted ’ )

p l t . p l o t ( [ y_test .min ( ) , y_test .max( ) ] , [ y_test .min ( ) , y_test .max( ) ] , ’ r−− ’ , lw=2, l a b e l=’ Id ea l ’ )

p l t . x l ab e l ( ’ Actual ’ )

p l t . y l ab e l ( ’ Pred icted ’ )

p l t . t i t l e ( f ’ { in_combination_str}␣ [ in ] , ␣{out_combination}␣ [ out ] , ␣{ threshold_used}␣R2␣ r e s u l t ’ )

p l t . t ext ( 0 . 5 , 1 . 15 , model_name , hor i zonta l a l i gnment=’ cente r ’ ,

v e r t i c a l a l i gnmen t=’ cente r ’ , t ransform=p l t . gca ( ) . transAxes )

p l t . t ext ( 0 . 5 , −0.15 , r e su l t , ho r i zonta la l i gnment=’ cente r ’ ,

v e r t i c a l a l i gnmen t=’ cente r ’ , t ransform=p l t . gca ( ) . transAxes )

p l t . l egend ( )

p l t . g r id (True )

p l t . t ight_layout ( ) # A d j u s t l a y o u t
p l t . s a v e f i g ( png_file_path , format=’png ’ , bbox_inches=’ t i gh t ’ ) # Add b b o x _ i n c h e s argument f o r PNG f i l e
p l t . s a v e f i g ( eps_fi le_path , format=’ eps ’ , bbox_inches=’ t i gh t ’ ) # Add b b o x _ i n c h e s argument f o r EPS f i l e
p l t . c l o s e ( )

# Save model r e s u l t s t o TXT f i l e
with open( os . path . j o i n ( txt_folder_path , ’ model_results . txt ’ ) , ’ a ’ ) as f :

f . wr i t e ( f ’ Features : ␣{ in_combination_str}␣ ( in ) ␣vs . ␣{out_combination}␣ ( out )\n ’ )
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f . wr i t e ( ’=====\n ’ )

f . wr i t e ( ’ Evaluat ion ␣Metr ics :\ n ’ )

f . wr i t e ( ’=====\n ’ )

f . wr i t e ( f ’R^2␣ Score : ␣{ r2 : . 4 f }\n ’ )

f . wr i t e ( f ’Mean␣Squared␣Error : ␣{mse : . 4 f }\n ’ )

f . wr i t e ( f ’ Root␣Mean␣Squared␣Error : ␣{rmse : . 4 f }\n ’ )

f . wr i t e ( f ’ Result : ␣{ r e s u l t }\n ’ )

f . wr i t e ( ’=====\n ’ )

f . wr i t e ( f ’Model␣ durat ion : ␣{model_durations [ model_name ] : . 4 f }\n ’ )

f . wr i t e ( ’=====\n ’ )

f . wr i t e ( ’− ’ ∗ 30 + ’\n ’ )

# L i s t t o s t o r e t h e r e s u l t s
r e s u l t s _ l i s t = [ ]

# S t o r e t h e r e s u l t s i n a d i c t i o n a r y
r e s u l t s = {

’ Features ␣ ( in ) ’ : in_combination_str ,

’ Features ␣ ( out ) ’ : out_combination ,

’Model ’ : model_name ,

’R^2␣ Score ’ : r2 ,

’Mean␣Squared␣Error ’ : mse ,

’ Root␣Mean␣Squared␣Error ’ : rmse ,

’Model␣Time ’ : model_durations [ model_name ]

}

# Append t h e d i c t i o n a r y t o t h e r e s u l t s l i s t
r e s u l t s _ l i s t . append ( r e s u l t s )

# Write t h e r e s u l t s t o t h e CSV f i l e
f i e ldnames = [ ’ Features ␣ ( in ) ’ , ’ Features ␣ ( out ) ’ , ’Model ’ , ’R^2␣ Score ’ , ’Mean␣Squared␣Error ’ ,

’ Root␣Mean␣Squared␣Error ’ , ’Model␣Time ’ ]

with open( csv_fi le_path , ’w ’ , newl ine=’ ’ ) as c s v f i l e :

w r i t e r = csv . DictWriter ( c s v f i l e , f i e ldnames=f i e ldnames )

wr i t e r . wr i teheader ( )

wr i t e r . wr i terows ( r e s u l t s _ l i s t )

# C l e a r t h e c o n s o l e
c l ea r_conso l e ( )

print ( f ’ Running␣ r e g r e s s i o n : ␣{ in_combination_str}␣ in , ␣{out_combination}␣out ’ )

# Funct ion t o c l e a r t h e t e r m i n a l c o n s o l e
def c l ea r_conso l e ( ) :

# C l e a r t h e c o n s o l e
os . system ( ’ c l s ’ i f os . name == ’ nt ’ e l s e ’ c l e a r ’ )

# Funct ion t o p r i n t t h e summary o f r e s u l t s
def print_summary_results ( good_results , hal f_good_results , bad_results , t e r r i b l e_ r e s u l t s ,

worse_than_constant , b i z a r r e_re su l t s , t o t a l_r e su l t s , model_times ) :

c l ea r_conso l e ( )

print ( ’Summary␣ o f ␣Resu l t s : ’ )

print ( ’−−−−−−−−−−−−−−−−−−− ’ )

print ( f ’ Total ␣Models : ␣{ t o t a l_ r e s u l t s } ’ )

print ( f ’Good␣Resu l t s : ␣{ good_resu l ts } ’ )
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print ( f ’ Hal f ␣Good␣Resu l t s : ␣{ ha l f_good_resu l t s } ’ )

print ( f ’Bad␣Resu l t s : ␣{ bad_results } ’ )

print ( f ’ Te r r i b l e ␣Resu l t s : ␣{ t e r r i b l e_ r e s u l t s } ’ )

print ( f ’Worse␣Than␣Constant␣Resu l t s : ␣{worse_than_constant} ’ )

print ( f ’ B i za r r e ␣Resu l t s : ␣{ b i z a r r e_ r e su l t s } ’ )

print ( f ’ Percentage ␣ o f ␣Good␣Resu l t s : ␣{(1+good_resu lts ) ␣/␣(1+ t o t a l_ r e s u l t s ) ␣∗␣ 100 : . 2 f}% ’ )

#This +1 sum i s f o r a v o i d a e r r o r i n t h i s v e r s i o n o f code

print ( ’ \nModel␣Times : ’ )

print ( ’−−−−−−−−−−−− ’ )

for model_name , model_time in model_times . i tems ( ) :

print ( f ’ {model_name} : ␣{(1+model_time ) : . 2 f }␣ seconds ’ )

# D e f i n e t h e e v a l u a t i o n t h r e s h o l d s
th r e sho ld s = {

’ B iza r r e ’ : 1 . 01 ,

’Good ’ : 0 .74566 ,

’ Half−Good ’ : 0 . 63 ,

’Bad ’ : 0 . 39 ,

’ Te r r i b l e ’ : 0 . 01 ,

’Worse−Than−Constant−F ’ : 0

}

# Main f u n c t i o n
def main ( ) :

# B e g i n n i n g

# I n i t i a l i z e c o u n t e r s f o r e v a l u a t i o n
good_resu lts = 0

hal f_good_resu l t s = 0

bad_results = 0

t e r r i b l e_ r e s u l t s = 0

worse_than_constant = 0

b i z a r r e_ r e s u l t s = 0

t o t a l_ r e s u l t s = 0

threshold_used = 0

# I n i t i a l i z e a l i s t t o s t o r e t h e r e s u l t s from a l l models
a l l _ r e s u l t s_ l i s t = [ ]

# C l e a r t h e c o n s o l e
c l ea r_conso l e ( )

# Time c o u n t e r
start_time = time . time ( )

# Load d a t a
data = load_data ( ’ data . csv ’ )

# Handle m i s s i n g v a l u e s
data_imputed = handle_missing_values ( data )

# Create d i r e c t o r i e s f o r f i g u r e s
c r e a t e_ f i gu r e_d i r e c t o r i e s ( data_imputed )

# D e f i n e r e g r e s s i o n models
models = {
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’ L inear ␣Regress ion ’ : L inearRegres s ion ( ) ,

’ E l a s t i c ␣Net ’ : E la s t i cNet ( ) ,

’SGD␣Regressor ’ : SGDRegressor (max_iter=2000 , t o l=1e−6) ,

’ Bayesian ␣Ridge ’ : BayesianRidge ( ) ,

’ Support␣Vector ␣Regress ion ’ : SVR( ) ,

’ Gradient ␣Boosting ’ : GradientBoost ingRegressor ( ) ,

’ CatBoost ’ : CatBoostRegressor ( verbose=False ) ,

’ Kernel ␣Ridge ’ : KernelRidge ( ) ,

’XGBoost ’ : XGBRegressor ( ) ,

’LightGBM ’ : LGBMRegressor ( ) ,

’ Dec i s ion ␣Tree ’ : Dec i s ionTreeRegres sor ( ) ,

’MLP␣Regressor ’ : MLPRegressor ( ) ,

’K−Nearest ␣Neighbors ’ : KNeighborsRegressor ( ) ,

’Random␣Forest ’ : RandomForestRegressor ( ) ,

’ AdaBoost ’ : AdaBoostRegressor ( ) ,

’ Gaussian␣Process ␣Regress ion ’ : Gauss ianProcessRegressor ( ) ,

’ Ridge␣Regress ion ’ : Ridge ( ) ,

’ BaggingRegressor ’ : BaggingRegressor ( ) ,

’ H i s tGrad ientBoost ingRegressor ’ : Hi s tGrad ientBoost ingRegressor ( )

}

# Perform r e g r e s s i o n f o r each c o m b i n a t i o n o f i n p u t s and o u t p u t
for i in range (1 , len ( data_imputed . columns ) ) :

in_combinations = i t e r t o o l s . combinations ( data_imputed . columns , i )

out_combinations = data_imputed . columns

folder_name = f ’ { i } in−1out ’

for in_combination in in_combinations :

in_combination_str = ’_ ’ . j o i n ( in_combination )

# C l e a r t h e c o n s o l e
c l ea r_conso l e ( )

mode l_re su l t s_ l i s t = [ ] # L i s t t o s t o r e t h e r e s u l t s f o r t h i s model

for out_combination in out_combinations :

i f out_combination not in in_combination :

print ( f ’ Running␣ r e g r e s s i o n : ␣{ in_combination_str}␣ in , ␣{out_combination}␣out ’ )

# S p l i t d a t a i n t o f e a t u r e s and t a r g e t
X_in = data_imputed [ l i s t ( in_combination ) ]

y_out = data_imputed [ out_combination ]

# S p l i t d a t a i n t o t r a i n i n g and t e s t i n g s e t s
X_train , X_test , y_train , y_test = t r a i n_t e s t_sp l i t (X_in ,

y_out , t e s t_s i z e =0.2 , random_state=42)

# Perform r e g r e s s i o n and measure t ime
model_times , model_durations = per form_regress ion (X_train , y_train , models )

# Save t h e model r e s u l t s and f i g u r e s
model_path = f ’ f i g u r e s /{ folder_name}/

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣{ in_combination_str }/{ out_combination} ’

os . makedirs (model_path , exist_ok=True )

for model_name , model in models . i tems ( ) :

y_pred = model . p r ed i c t ( X_test )

r2 = r2_score ( y_test , y_pred )

mse = mean_squared_error ( y_test , y_pred )
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rmse = np . sq r t (mse )

save_model_results (model_path , model_name , in_combination_str , out_combination ,

X_test , y_test , y_pred , model_durations )

# S t o r e t h e r e s u l t s i n t h e m o d e l _ r e s u l t s _ l i s t
r e s u l t s = {

’ Features ␣ ( in ) ’ : in_combination_str ,

’ Features ␣ ( out ) ’ : out_combination ,

’Model ’ : model_name ,

’R^2␣ Score ’ : r2 ,

’Mean␣Squared␣Error ’ : mse ,

’ Root␣Mean␣Squared␣Error ’ : rmse ,

’Model␣Time ’ : model_durations [ model_name ]

}

mode l_re su l t s_ l i s t . append ( r e s u l t s )

# Append t h e m o d e l _ r e s u l t s _ l i s t t o t h e a l l _ r e s u l t s _ l i s t
a l l _ r e s u l t s_ l i s t . extend ( mode l_re su l t s_ l i s t )

# Write t h e r e s u l t s t o t h e o v e r a l l CSV f i l e
overal l_csv_path = os . path . j o i n ( ’ f i g u r e s ’ , ’ o v e r a l l_ r e s u l t s . csv ’ )

with open( overal l_csv_path , ’w ’ , newl ine=’ ’ ) as c s v f i l e :

f i e ldnames = [ ’ Features ␣ ( in ) ’ , ’ Features ␣ ( out ) ’ , ’Model ’ , ’R^2␣ Score ’ , ’Mean␣Squared␣Error ’ ,

’ Root␣Mean␣Squared␣Error ’ , ’Model␣Time ’ ]

w r i t e r = csv . DictWriter ( c s v f i l e , f i e ldnames=f i e ldnames )

wr i t e r . wr i teheader ( )

wr i t e r . wr i terows ( a l l _ r e s u l t s_ l i s t )

# P r i n t t o t a l e l a p s e d t ime
end_time = time . time ( )

elapsed_time = end_time − start_time

#p r i n t ( f ’ T o t a l e l a p s e d t ime : { e l a p s e d _ t i m e : . 2 f } s e c o n d s ’ )

# P r i n t t h e summary o f r e s u l t s
print_summary_results ( good_results , hal f_good_results , bad_results , t e r r i b l e_ r e s u l t s ,

worse_than_constant , b i z a r r e_re su l t s , t o t a l_r e su l t s , model_times )

# C a l l t h e main f u n c t i o n
i f __name__ == ’__main__ ’ :

main ( )

# # # #
# # # # end
# # # #
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