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A B S T R A C T

The balancing of three-phase node voltages in modern power distribution grids can be significantly deteriorated
by the penetration of single-phase PV renewable sources. For a given grid topology and prescribed loads,
voltage unbalance critically depends on the nodes where power is injected. Its amount can vary substantially
at different observations Buses in the grid. In this paper, we present a methodology that can inform network
operators about the critical Buses in the grid and critical injection scenarios. The method is based on a
numerically efficient but accurate probabilistic load flow that can handle the case of many PV sources and
provides detailed information on the probability distribution of voltage unbalance. The proposed methodology
relies on the complex-domain modeling of voltage unbalance sensitivity and on accelerating Monte Carlo
simulations via parameter space partitioning.
1. Introduction

Voltage unbalance is a major power quality concern in modern
power distribution grids that can result in a reduction of equipment
lifetime and motor efficiency [1,2]. The high penetration of distributed
single-phase renewable energy, i.e., Photovoltaic (PV) sources, can
significantly aggravate the unbalance problem [3].

Ideally, the assessment of voltage unbalance in PV penetrated power
grids would require complete long-time monitoring of voltages at all
buses as well as detailed (and in advance) information about all po-
tential PV injection nodes/points and associated power levels. In most
practical cases, instead, only limited information about PV deliverable
power is available, commonly under the form of historic measurements
data-set.

To cope with such an incomplete information, advanced simulation
tools capable of predicting in a realistic way the potentially critical
scenario and worst case voltage unbalance conditions are of vital
importance. From the network operators viewpoint, a first key issue is:
(a) For a given three-phase power distribution grid topology with prescribed
nominal loads, simulation tools should identify which Buses are potentially
more prone to observe great voltage unbalance due to the penetration of PV
sources.

Voltage unbalance assessment in a PV penetrated grid is compli-
cated by the fact that PV generation is intermittent/uncertain so that
grid analysis should be probabilistic, i.e., based on Probabilistic Power
Flow (PPF) analysis. A second key feature of advanced simulation tools

∗ Corresponding author.
E-mail address: giambattista.gruosso@polimi.it (G. Gruosso).

is: (b) They should rely on reliable and very efficient probabilistic methods
able to explore several critical scenarios with many injection PV sources
described by realistic data-based power distributions.

To this aim, state-of-the art PPF methods can be broadly divided
into analytical methods and numerical methods. Analytical methods in-
clude cumulant methods [4], point estimate methods [5], and Cornish–
Fisher expansion [6]. Such methods are computationally efficient since
they provide estimations of uncertain output variables (e.g., node volt-
ages) through a few deterministic formulas. However, in many cases
they rely on simplification hypotheses, e.g., they assume that power
flow equations are linear over the whole parameters variability space,
that do not hold in real system of interest.

Numerical methods are more general and employ sampling tech-
niques and Monte Carlo method (MC). However, due to the slow
numerical convergence, the reference MC method involves repeatedly
solving an enormous number of power flow problems. As a conse-
quence, the applicability of MC method to distribution grids of practical
interest requires the exploitation of proper acceleration techniques.
State-of-the-art techniques for MC acceleration include advanced sam-
pling methods [7,8] or rely on surrogate models that approximate the
input–output relationships (i.e., between injected power and observe
node voltage) determined by the power flow problem [9–12]. Unfor-
tunately, both above-mentioned acceleration approaches lose most of
their effectiveness when the number of uncertainty parameters get
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large, (due to the curse of dimensionality problem) as it is the case for
distribution grids penetrated by many PV sources.

To address such complex scenarios of growing practical interest,
in this paper, we present some enhanced simulation tools for voltage
unbalance assessment. In doing that, we use the commonly accepted
true definition of voltage unbalance given by the complex Voltage
Unbalance Factor (VUF) [13]. The novel contributions include:

1. A comprehensive sensitivity analysis of complex VUF observable
at all Buses in the grid versus all potential power injection nodes.
It is worth noticing how several methods for grid sensitivity are
available in the literature [14,15]. However, such techniques
provide the sensitivity of node voltages magnitude. Extra compu-
tation is required to deduce the sensitivity of the non-elementary
complex VUF.

2. From VUF sensitivity, some figures of merit coefficients (referred
to as 𝛽𝑛, 𝜈𝑗) are associated to each Bus describing its level of VUF
criticality. In fact, Buses with large coefficient values are prone
to exhibit great VUF values as well as they tend to induce large
VUF in other Buses when are employed as power injection nodes.

3. An advanced probabilistic power flow analysis that is able to
accurately and efficiently estimate the variability interval of VUF
at critical Buses in grids penetrated by a large number of PV
sources. The method employs a parameter space partitioning
via a k-means data clustering for overcoming the curse of di-
mensionality problem. Furthermore, VUF complex sensitivity is
exploited to accelerate MC simulations via local approximations
of VUF-versus-injected-power relationships.

The remainder of this paper is organized in this way: Section 2
briefly reviews power flow problem formulation. In Section 3, the
multi-variate dependence of complex VUF on PV injected powers is
formalized, while Section 4 describes VUF sensitivity computation. The
advanced parameter-space-partitioning-based probabilistic analysis is
illustrated in Section 5. Finally, in Section 6 the overall methodology
is applied to the IEEE 69 bus and IEEE 85 test grids penetrated by PV
injection.

2. Background material: Three-phase power flow analysis

We refer to a three-phase power distribution grid made of 𝑁𝑏 buses
and 𝑁 = 3 × 𝑁𝑏 nodes. Power Flow Analysis consists in the following
set of nonlinear equations in the complex field:

𝐟𝜈(𝐕⃗) = 𝐕∗
𝜈 𝐈𝜈 − 𝐒∗𝜈 = 𝟎 (1)

for 𝜈 = 1,… , 𝑁 , where 𝐕𝜈 , are voltage phasors at node 𝜈, 𝐈𝜈 are
current phasors at node 𝜈, and vector 𝐕⃗ = [𝐕1,… ,𝐕𝑁 ] assembles all
voltages. Complex power injected in the grid at node 𝜈 is denoted
as 𝐒𝜈 = 𝑃𝜈 + 𝑗𝑄𝜈 , where 𝑃𝜈 and 𝑄𝜈 are active and reactive power,
respectively. Node currents are written as a function of node voltages
via the following:

𝐈𝜈 =
𝑁
∑

𝑠=1
𝐘𝜈𝑠 𝐕𝑠 (2)

where 𝐘𝜈𝑠 are the elements of node admittance matrix [16].
In this paper, complex node voltages and currents are described in

Cartesian coordinates, similarly the power flow problem Eqs. (1) are
broken into their real and imaginary parts. These equations collected
for all nodes 𝜈 = 1,… , 𝑁 , form a system of 2 × 𝑁 nonlinear real
equations that can be denoted in compact form as:

𝐹 (𝑉 ) = 0 (3)

where 𝑉 = [𝑉 𝑅
1 , 𝑉 𝐼

1 ,… , 𝑉 𝑅
𝑁 , 𝑉 𝐼

𝑁 ]𝑇 is the column vector collecting node
voltages real and imaginary parts. Such a nonlinear system can be
solved with the Newton–Rapshon (NR) method that entails computing
the Jacobian matrix
𝜕𝐹 (𝑉 )

. (4)
2

𝜕𝑉
. Complex voltage unbalance factor

To model the potential effects that PV penetration can have on volt-
ge unbalance, we suppose that 𝐷 single-phase PV sources delivering
ctive powers 𝑃𝑑 , with 𝑑 = 1,… , 𝐷, are injected into 𝐷 actor nodes
n the grid. This general approach covers the case where some of the
njecting nodes belong to the same Bus as well as the opposite scenario
here injecting nodes all belong to different Buses in the grid. Due to

he uncertainty of renewable power generation, power 𝑃𝑑 are described
s continuous random variables ranging from zero to the maximum
nstalled power 𝑃𝑀

𝑑 in that node. Since maximum installed powers
an vary at different nodes, injected powers are mapped to normalized
alues:

𝑑 =
𝑃𝑑

𝑃𝑀
𝑑

, (5)

representing the input statistical parameters of the mathematical prob-
lem.

When the variability of PV normalized injected powers (and thus of
related 𝑃𝑑 = 𝑥𝑑 𝑃𝑀

𝑑 powers) is included in the analysis, the power flow
alance (3) can be rewritten as:

(𝑉 , 𝑥⃗) = 0, (6)

here 𝑥⃗ = [𝑥1,… , 𝑥𝐷]𝑇 collects statistical parameters.
To analyze voltage unbalance at 𝑛th Bus in the grid, we refer to the

omplex Voltage Unbalance Factor (VUF) defined as:

𝐔𝐅𝑛 =
𝐕𝑎
𝑛 + 𝐳2 𝐕𝑏

𝑛 + 𝐳 𝐕𝑐
𝑛

𝐕𝑎
𝑛 + 𝐳 𝐕𝑏

𝑛 + 𝐳2 𝐕𝑐
𝑛
, (7)

where 𝐕𝑎
𝑛, 𝐕𝑏

𝑛, 𝐕𝑐
𝑛 are the voltage complex phasors measured at phase

, 𝑏 and 𝑐, respectively, and 𝐳 = exp 𝑗 120o.
We want to calculate the complex VUF at a subset of observation

uses, i.e., 𝐕𝐔𝐅𝑛, with 𝑛 = 1,… ,𝑀 in the grid, as a function of PV
ower injections at actor nodes. To this aim, we observe that for a
iven value 𝑥⃗ of normalized power parameters vector, the solution of

(6) provides the associated three-phase 𝑉 node voltage values that once
substituted in (7) yields VUF. Voltage unbalance at 𝑛th Bus can thus
be seen as a multi-variate deterministic function 𝜑𝑛(⋅) of 𝐷 normalized
powers, i.e.:

𝐕𝐔𝐅𝑛 = 𝜑𝑛(𝑥⃗). (8)

Similarly, the vector of ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑉 𝑈𝐹 = [𝐕𝐔𝐅1,… ,𝐕𝐔𝐅𝑀 ]𝑇 at all observation
nodes, can be written as a multi-output function of normalized powers

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑉 𝑈𝐹 = 𝜑(𝑥⃗), (9)

with 𝜑(𝑥⃗) = [𝜑1(𝑥⃗),… , 𝜑𝑀 (𝑥⃗)]𝑇 .
For a given three-phase power distribution grid topology with

prescribed loads, the amount of VUF determined by PV penetration
strongly depends on the grid nodes where power is injected. In addi-
tion, VUF value can vary substantially at different observation Buses.
This is why network operators are greatly interested in simulation tools
having the following capabilities/features:

1. Simulations should identify which Buses are potentially more
prone to exhibit high VUF values and they should identify
which injection nodes may lead to the worst voltage unbalance
conditions.

2. To investigate the worst case scenarios identified at previous
point (1), accurate yet numerically-efficient probabilistic anal-
yses are highly desirable. Such probabilistic tools should be
extremely fast in order to allow exploration of several criti-
cal scenarios, be able to handle the case with many injection
sources and provide detailed information about VUF probability
distribution and variability intervals.

In the next Section 4, we cover the first point about VUF sensitivity,
while the advanced probabilistic analysis method proposed in this
paper is illustrated in Section 5.
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4. Determining VUF most sensitive buses and critical PV injection
nodes

The literature presents several approaches for voltage sensitivity
analysis that is for computing the sensitivity of grid node voltages
(e.g., described as real and imaginary parts) versus the assumed input
parameters.

In fact, for given values of the parameters vector 𝑥⃗, voltage sen-
sitivities can be directly derived from the solution of the power flow
problem (6). It implies solving the following variational problem:

𝜕𝐹
𝜕𝑉

⋅
𝜕𝑉
𝜕𝑥⃗

= − 𝜕𝐹
𝜕𝑥⃗

, (10)

where 𝜕𝑉
𝜕𝑥⃗

= [
𝜕𝑉 𝑅

1
𝜕𝑥𝑑

,
𝜕𝑉 𝐼

1
𝜕𝑥𝑑

,… ,
𝜕𝑉 𝑅

𝑁
𝜕𝑥𝑑

,
𝜕𝑉 𝐼

𝑁
𝜕𝑥𝑑

]𝑇 denotes the 2𝑁 × 𝐷 sen-
sitivity matrix assembling the unknown derivatives of node voltages
real and imaginary parts versus parameters. The right-hand-side matrix
− 𝜕𝐹
𝜕𝑥⃗

, of size 2𝑁 × 𝐷 too, contains the derivatives of power flow
equations versus parameters. Since in our problem, input parameters
are the PV-normalized active powers 𝑥𝑑 injected at actor nodes, the
𝑑th column of matrix − 𝜕𝐹

𝜕𝑥⃗
is a vector with a single 1 at 𝑑th actor node

position and all zero the other terms. Finally, the 𝜕𝐹
𝜕𝑉

is the 2𝑁 × 2𝑁

acobian matrix (4) employed in power flow analysis. Since, the LU
ecomposition of Jacobian matrix is already available from power flow
olution, the solution of voltage sensitivity problem (10) requires little
xtra computation.

From node voltage sensitivities, it is then possible to deduce VUF
ensitivity. To the aim of explaining VUF sensitivity calculation, we
enote with
𝑎
𝑛(𝑥⃗) = (𝑉 𝑎

𝑛 )
𝑅 + 𝑗(𝑉 𝑎

𝑛 )
𝐼

𝐕𝑏
𝑛(𝑥⃗) = (𝑉 𝑏

𝑛 )
𝑅 + 𝑗(𝑉 𝑏

𝑛 )
𝐼

𝐕𝑐
𝑛(𝑥⃗) = (𝑉 𝑐

𝑛 )
𝑅 + 𝑗(𝑉 𝑐

𝑛 )
𝐼

the 𝑛th Bus phase voltages, decomposed in their real and imaginary
arts. Such voltages are obtained by solving the power flow problem
or a given parameter vector value 𝑥⃗. Replacing such voltages into (7)
ives the associated 𝐕𝐔𝐅𝑛(𝑥⃗), which reads:

(𝑉 𝑎
𝑛 )

𝑅 + 𝑗(𝑉 𝑎
𝑛 )

𝐼 + 𝐳2[(𝑉 𝑏
𝑛 )

𝑅 + 𝑗(𝑉 𝑏
𝑛 )

𝐼 ] + 𝐳[(𝑉 𝑐
𝑛 )

𝑅 + 𝑗(𝑉 𝑐
𝑛 )

𝐼 ]
(𝑉 𝑎

𝑛 )𝑅 + 𝑗(𝑉 𝑎
𝑛 )𝐼 + 𝐳[(𝑉 𝑏

𝑛 )𝑅 + 𝑗(𝑉 𝑏
𝑛 )𝐼 ] + 𝐳2[(𝑉 𝑐

𝑛 )𝑅 + 𝑗(𝑉 𝑐
𝑛 )𝐼 ]

. (11)

The computation of VUF sensitivity versus 𝑑th parameter 𝑥𝑑 can
thus be implemented analytically by applying the following chain rule
derivatives:

𝜕𝐕𝐔𝐅𝑛
𝜕𝑥𝑑

=
𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑎
𝑛 )𝑅

⋅
𝜕(𝑉 𝑎

𝑛 )
𝑅

𝑥𝑑
+

𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑎
𝑛 )𝐼

⋅
𝜕(𝑉 𝑎

𝑛 )
𝐼

𝑥𝑑

+
𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑏
𝑛 )𝑅

⋅
𝜕(𝑉 𝑏

𝑛 )
𝑅

𝑥𝑑
+

𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑏
𝑛 )𝐼

⋅
𝜕(𝑉 𝑏

𝑛 )
𝐼

𝑥𝑑

+
𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑐
𝑛 )𝑅

⋅
𝜕(𝑉 𝑐

𝑛 )
𝑅

𝑥𝑑
+

𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑐
𝑛 )𝐼

⋅
𝜕(𝑉 𝑐

𝑛 )
𝐼

𝑥𝑑

(12)

where:
𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑎
𝑛 )𝑅

=
𝐷(𝑥⃗) −𝑁(𝑥⃗)

𝐷2(𝑥⃗)
;

𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑎
𝑛 )𝐼

= 𝑗
𝐷(𝑥⃗) −𝑁(𝑥⃗)

𝐷2(𝑥⃗)
𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑏
𝑛 )𝑅

=
𝐳2𝐷(𝑥⃗) − 𝐳𝑁(𝑥⃗)

𝐷2(𝑥⃗)
;

𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑏
𝑛 )𝐼

= 𝑗
𝐳2𝐷(𝑥⃗) − 𝐳𝑁(𝑥⃗)

𝐷2(𝑥⃗)
𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑐
𝑛 )𝑅

=
𝐳𝐷(𝑥⃗) − 𝐳2𝑁(𝑥⃗)

𝐷2(𝑥⃗)
;

𝜕𝐕𝐔𝐅𝑛

𝜕(𝑉 𝑐
𝑛 )𝐼

= 𝑗
𝐳𝐷(𝑥⃗) − 𝐳2𝑁(𝑥⃗)

𝐷2(𝑥⃗)

(13)

while 𝑁(𝑥⃗) and 𝐷(𝑥⃗) denote the numerator and denominator in VUF
xpression, respectively, i.e.:

(𝑥⃗) = (𝑉 𝑎)𝑅 + 𝑗(𝑉 𝑎)𝐼 + 𝐳2[(𝑉 𝑏)𝑅 + 𝑗(𝑉 𝑏)𝐼 ] + 𝐳[(𝑉 𝑐 )𝑅 + 𝑗(𝑉 𝑐 )𝐼 ], (14)
3

𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 m
Fig. 1. Example of three-phase grid with injection at actor node 𝑗, phase 𝑎 and VUF
observation at Bus 𝑛.

and

𝐷(𝑥⃗) = (𝑉 𝑎
𝑛 )

𝑅 + 𝑗(𝑉 𝑎
𝑛 )

𝐼 + 𝐳[(𝑉 𝑏
𝑛 )

𝑅 + 𝑗(𝑉 𝑏
𝑛 )

𝐼 ] + 𝐳2[(𝑉 𝑐
𝑛 )

𝑅 + 𝑗(𝑉 𝑐
𝑛 )

𝐼 ]. (15)

VUF sensitivity as computed in (12), through (13), (14) and (15), is
represented by a complex number and it is at the heart of the accelerated
probabilistic analysis presented in Section 5.

However, for the purpose of determining the VUF most sensitive
observation Buses in a given distribution grid and critical actor Buses,
in what follows we will refer to the sensitivity modules.

In fact, we denote with:

𝑠𝑎𝑛𝑗 =
|

|

|

|

|

𝜕𝐕𝐔𝐅𝑛(𝑥⃗)
𝜕𝑥𝑎𝑗

|

|

|

|

|

(16)

the sensitivity module of VUF at Bus of index 𝑛 versus power injection
t actor node at Bus of index 𝑗, phase 𝑎, as pictorially shown in Fig. 1.

Similar sensitivity coefficients 𝑠𝑏𝑛𝑗 and 𝑠𝑐𝑛𝑗 can be computed for phase
and 𝑐, respectively. However, in the hypothesis that before of PV

ower injection distribution grid is almost balanced, the VUF sensitivity
odules versus different phase injections are almost the same, i.e. 𝑠𝑎𝑛𝑗 ≈

𝑏
𝑛𝑗 ≈ 𝑠𝑐𝑛𝑗 . It is thus reasonable to focus on power injection at one of the
hree-phase nodes, e.g., on phase a.

For a given three-phase power distribution made of 𝑁𝑏 Buses and
rescribed loads absorbing nominal powers, we can compute the VUF
ensitivity modules for all Buses versus single-phase PV injection at all
uses. In this way the computed sensitivity coefficients (16) form a
𝑏 × 𝑁𝑏 matrix {𝑠𝑎𝑛𝑗}. We can thus introduce the following figure of
erit associated to the 𝑛th observation Bus:

𝑛 =
𝑁𝑏
∑

𝑗=1
𝑠𝑎𝑛𝑗 , (17)

hat is, the sum of sensitivity modules versus all injection points. High
alues of such a 𝛽𝑛 coefficient indicates which Buses in the grid are
otentially more prone to exhibit large VUF. Similarly, the following
igure of merit:

𝑗 =
𝑁𝑏
∑

𝑛=1
𝑠𝑎𝑛𝑗 , (18)

ndicates which Buses in the grid have actor nodes that are critical
njection points.

. Probabilistic analysis through parameter space partitioning

As already illustrated in Section 3, PV penetration in the grid is

odeled by 𝐷 random PV-delivered normalized powers 𝑥𝑑 , with 𝑑 =
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1,… , 𝐷 that are collected into vector 𝑥⃗ = [𝑥1,… , 𝑥𝐷]𝑇 of statistical
parameters. A sufficiently wide historical data set of PV-delivered
power samples, denoted as 𝑥⃗ 𝑖, with 𝑖 = 1,… , 𝑁𝑠 (𝑁𝑠 is the number
of samples), is exploited to perform probabilistic analysis [17].1

5.1. Probabilistic analysis with accelerated Monte Carlo method

Probabilistic analysis with basic Monte Carlo method implies re-
peating a large number of power flow simulations. In fact, for each
sample of normalized power values 𝑥⃗ 𝑖 = [𝑥1,… , 𝑥𝐷]𝑇 , the associated
PV injected power values 𝑃𝑑 = 𝑥𝑑 𝑃𝑀

𝑑 are first calculated. With these
power values, the node voltages of the unbalanced three-phase grid are
determined by solving the power flow analysis (3). Hence, the VUF
𝐕𝐔𝐅𝑛(𝑥⃗ 𝑖) for the 𝑖th sample is deduced via (7). Since the numerical
convergence of MC method is slow, commonly wide sample sets, with
𝑁𝑠 ≈ 10, 000 samples or more, are needed to accurately predict VUF
distribution (i.e., PDF). The computational burden grows ulteriorly
when probabilistic analysis should be repeated by considering several
possible injection points and many potential scenarios that can be
critical for grid unbalance assessment.

Several approximate MC acceleration techniques exist that reduce
the number of power flow analyses to be performed to a much smaller
subset of representative points in the statistical parameter space. Specif-
ically, in this paper, we focus on a a technique that identifies the
important representative points in the parameter space through a data
clustering method. In fact, the data clustering method illustrated in
the next Subsection, allows the decomposition of parameter space into
𝐾 ≪ 𝑁𝑠 clusters 𝑘 ∈ 𝐷 having centers 𝑐𝑘, with 𝑘 = 1,… , 𝐾. Power
flow analysis and related VUF complex sensitivity calculation (12) can
be performed limitedly to cluster centers where are exploited to locally
approximate the multi-variate functions 𝐕𝐔𝐅𝑛 = 𝜑𝑛(𝑥⃗) in (8) with the
𝐷-dimensional tangent hyperplane:

𝜑𝑛(𝑥⃗) ≈ 𝜑𝑛(𝑐𝑘) +
𝜕𝜑𝑛(𝑥⃗)
𝜕𝑥⃗

|

|

|

𝑥⃗=𝑐𝑘 ⋅ (𝑥⃗ − 𝑐𝑘). (19)

In this way, for all the samples assigned to the 𝑘th cluster, i.e., 𝑥⃗ 𝑖 ∈ 𝑘,
the associated VUF values 𝐕𝐔𝐅𝑛 = 𝜑𝑛(𝑥⃗ 𝑖) can be efficiently evaluated
using local approximation (19), i.e.,

𝜑𝑛(𝑥⃗ 𝑖) ≈ 𝜑𝑛(𝑐𝑘) +
𝜕𝜑𝑛(𝑥⃗)
𝜕𝑥⃗

|

|

|

𝑥⃗=𝑐𝑘 ⋅ (𝑥⃗ 𝑖 − 𝑐𝑘). (20)

5.2. Space partitioning via data clustering

Suppose that 𝑁𝑠 samples of the normalized powers 𝑥⃗ 𝑖 are available
from measurements or historical data set, we want to partition such
samples into 𝐾 clusters represented by centers 𝑐𝑘, for 𝑘 = 1,… , 𝐾. This
goal can be achieved using a 𝐾-means clustering technique [20]. The
idea behind such a technique is that a cluster can be thought of as a
subset of data points whose inter-point distances are small compared
with the distances to points outside of the cluster. Data partitioning
consists in finding an assignment of samples to clusters, along with a set
of cluster centers {𝑐𝑘}, such that the sum of the squares of the distances
of each sample to its closest 𝑐𝑘 is minimum. To formalize the assignment
of samples to clusters, a set of binary indicators are introduced. For
each sample 𝑥⃗ 𝑖, the binary indicators 𝑏𝑖𝑘 ∈ {0, 1}, with 𝑘 = 1,… , 𝐾 are
𝑏𝑖𝑘 = 1 if sample 𝑥⃗ 𝑖 is assigned to cluster k, while 𝑏𝑖𝑗 = 0 for 𝑗 ≠ 𝑘.
After that, the following objective function can be defined:

𝐸 =
𝑁𝑠
∑

𝑖=1

𝐾
∑

𝑘=1
𝑏𝑖𝑘‖𝑥⃗

𝑖 − 𝑐𝑘‖
2 (21)

The goal is to find values for the binary indicators {𝑏𝑖𝑘} and the
centers {𝑐𝑘} that minimize 𝐸. Starting from guessing initial values for

1 In the case available data samples is not wide enough, repopulation
techniques can be employed to generate new samples [18,19].
4

Fig. 2. Example of data clustering with 𝐾 = 5 number of clusters. Filled black
circles indicate the cluster centers 𝑐𝑘, points with the same color indicate the samples
belonging to the same cluster. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the centers, minimization is achieved via an iterative procedure that
at each iteration involves two steps. In the first step, using the current
values of centers, each data sample 𝑥⃗ 𝑖 is assigned to the closest cluster,
i.e.

𝑏𝑖𝑘 =
{

1 if 𝑘 = arg min𝑗‖𝑥⃗ 𝑖 − 𝑐𝑗‖2

0 otherwise. (22)

At the second step, using the currently-computed binary indicators, the
values of centers are updated as follows:

𝑐𝑘 =

𝑁𝑠
∑

𝑖=1
𝑏𝑖𝑘𝑥⃗

𝑖

𝑁𝑠
∑

𝑖=1
𝑏𝑖𝑘

. (23)

The two steps of re-assigning data samples to clusters and re-computing
the cluster centers are repeated until there is no further change in the
assignments (or until some maximum number of iterations is exceeded).
Because each step reduces the value of the objective function 𝐸,
convergence of the algorithm is guaranteed [20].

As an example, Fig. 2 shows the scattered plot of the samples for
two (normalized) PV-delivered powers, referred to as 𝑥1 and 𝑥2, taken
by the data set [17]. In this example, data samples are partitioned into
𝐾 = 5 clusters each one having its own center vector 𝑐𝑘. In this way,
the parameters space is decomposed into a set of 𝐾 subspace regions. It
is worth observing how for a given set of 𝑁𝑠 samples, several heuristics
exist for fixing a proper number 𝐾 of clusters. An approach we found
effective for PV data exploits the information about the number 𝑛𝑘 of
samples assigned to the 𝑘th cluster, i.e.

𝑛𝑘 =
𝑁𝑠
∑

𝑖=1
𝑏𝑖𝑘. (24)

Starting from a tentative initial value, the cluster number 𝐾 adopted
in the k-means algorithm is gradually increased till it results that one
cluster contains a too small fraction of the 𝑁𝑠 samples, i.e. when the
fraction of samples 𝑛𝑘∕𝑁𝑠 in the smallest cluster goes below a given
threshold (e.g., 2%).

We end this Section by summarizing in Fig. 3 the main computa-
tional steps of the accelerated probabilistic MC analysis derived from
K-means space-partitioning. It is worth noticing how the computational
cost is largely dominated by the solution of the 𝐾 Load Flow problems
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Fig. 3. Computational Flow Chart of the K-means space-partitioning accelerated MC.

at the centers of the clusters while subsequent VUF and sensitivity
computations require little extra computation.

6. Numerical results and experiments

In this Section, we investigate voltage unbalance caused by PV
penetration in modified three-phase versions of the IEEE 69 bus and
IEEE 85 bus test cases supplied in the MatPower software suite [21].
More specifically, in Section 6.1 we apply sensitivity analysis method
to identify the VUF most critical buses in the radial IEEE 69 grid.
In subsequent Section 6.2, the space-partitioning accelerated MC is
employed to perform probabilistic analysis of the PV penetrated IEEE
69 grid subject to balanced and unbalanced PV injection. Finally,
Section 6.3 illustrates the portability of the proposed analysis method
to more general scenarios. In fact, in this last example sensitivity and
probabilistic analysis are applied to a configurable IEEE 85 bus grid that
can work either as radial or meshed topology. Numerical simulations
have been done using the Matlab code described in [22]. The machine
used is an Intel I7 with 16 GB of ram and 2.3 GHz clock frequency.

6.1. VUF sensitivity analysis

Grid topology of IEEE 69 bus network and related buses numbering
are shown in Fig. 4. In our simulations, the single-phase IEEE 69 bus
grid is extended to a three-phase grid by duplicating the assigned
single-phase loads (i.e., their active and reactive powers) at the three-
phase nodes of each bus. In the three-phase IEEE 69 bus grid, the total
active power absorbed by loads is of 𝑃 = 11.4MW.

Starting from the three-phase grid in balanced condition, i.e., 𝑥⃗ = 0⃗,
UF sensitivity versus single-phase PV power injection is calculated
ccording to the method illustrated in Section 4.

In particular, complex VUF sensitivity for all Buses versus all in-
5

ection nodes is calculated. As an instance of such a calculation,
Fig. 4. The IEEE 69 bus radial distribution grid.

Fig. 5. (Blue) Real and (Red) imaginary parts of complex VUF sensitivities
𝜕𝐕𝐔𝐅65(0⃗)

𝜕𝑥𝑎𝑗
for 𝑗 = 1,… , 69, phase 𝑎. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5 shows the real and imaginary parts of complex VUF sensitivities
𝜕𝐕𝐔𝐅𝑛(0⃗)

𝜕𝑥𝑎𝑗
for Bus 𝑛 = 65 versus injection at all Buses 𝑗 = 1,… , 69,

hase 𝑎.
It is seen how VUF observed at node 65 is highly sensitive to single-

hase power injection at the nearby Buses in the same feeder (e.g., 𝑗 =
9,… , 65) with a maximum just at Bus 𝑗 = 65.

Fig. 6, instead, reports the complex VUF sensitivities

𝑎
𝑛𝑗 =

𝜕𝐕𝐔𝐅𝑛(0⃗)
𝜕𝑥𝑎𝑗

, 𝐬𝑏𝑛𝑗 =
𝜕𝐕𝐔𝐅𝑛(0⃗)

𝜕𝑥𝑏𝑗
, 𝐬𝑐𝑛𝑗 =

𝜕𝐕𝐔𝐅𝑛(0⃗)
𝜕𝑥𝑐𝑗

(25)

for Bus 𝑛 = 65 versus the three phases 𝑎, 𝑏 and 𝑐 at Bus 𝑗 = 60.
It is seen how the three complex sensitivities are balanced, i.e. they

ave the same modules and relative phase differences of 120o, and
thus 𝐬𝑎𝑛𝑗 + 𝐬𝑏𝑛𝑗 + 𝐬𝑐𝑛𝑗 = 𝟎. This result is correct since sensitivities have
been calculated for a three-phase power grid operating in balanced
conditions. In such a condition, PV power injections 𝛥𝑥𝑎𝑗 , 𝛥𝑥𝑏𝑗 and
𝛥𝑥𝑐𝑗 at the three phases of Bus 𝑗 produce a complex VUF variation at
observation node 𝑛 that reads:

𝛥𝐕𝐔𝐅𝑛 = 𝐬𝑎𝑛𝑗 ⋅ 𝛥𝑥
𝑎
𝑗 + 𝐬𝑏𝑛𝑗 ⋅ 𝛥𝑥

𝑏
𝑗 + 𝐬𝑐𝑛𝑗 ⋅ 𝛥𝑥

𝑐
𝑗 . (26)

If power injections at the three phases are the same, i.e., 𝛥𝑥𝑎𝑗 =
𝛥𝑥𝑏𝑗 = 𝛥𝑥𝑐𝑗 = 𝛥𝑥, the grid remains balanced and the resulting voltage
unbalance 𝛥𝐕𝐔𝐅𝑛 is zero, as correctly predicted by complex-domain

model (26).
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Fig. 6. Complex VUF sensitivities for Bus 𝑛 = 65 versus injection at the three phases
𝑎, 𝑏 and 𝑐 at nearby Bus 𝑗 = 60. Complex sensitivities are balanced, i.e. 𝐬𝑎 + 𝐬𝑏 + 𝐬𝑐 = 𝟎.

Fig. 7. (Blue) Real and (Red) imaginary parts of complex VUF sensitivities
𝜕𝐕𝐔𝐅27(0⃗)

𝜕𝑥𝑎𝑗
for 𝑗 = 1,… , 69, phase 𝑎. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. (Dot Marker) figure of merit 𝛽𝑛, (Square Marker) figure of merit 𝜈𝑗 .
6

4

Fig. 9. Unbalanced injection of PV sources. All sources are connected to Phase-A nodes.
PV injection buses are indicated with a red box, blue dots denote VUF observation
buses.

As a second instance, Fig. 7 shows the real and imaginary parts of
complex VUF sensitivities calculated for Bus 𝑛 = 27 versus at all Buses
𝑗 = 1,… , 69, phase 𝑎.

Also, in this case, VUF at node 27 is highly sensitive to single-phase
power injection at Buses in the same feeder (e.g., 𝑗 = 19,… , 27) with a

aximum just at 𝑗 = 27.
After that, in order to identify the VUF most critical Buses in the

rid, we focus on VUF sensitivities modules and calculate the figures
f merit 𝛽𝑛 and 𝜈𝑗 as defined in (17) and (18).

Fig. 8 reports the coefficient values: it is seen how Buses with
ndices 𝑛 = 19,… , 27 have the highest 𝛽𝑛 values. These Buses are thus
otentially the most prone to exhibit large VUF values due to single-
hase power injection. Other Buses with relatively high 𝛽𝑛 values are
hose numbered with indices 𝑛 = 59,… , 65. It is worth noting how

the second figure of merit 𝜈𝑗 follows the first one, i.e., 𝛽𝑘 ≈ 𝜈𝑘. This
eans that the most critical VUF observation Buses are also the most

ritical power injection points. By exploiting the clear insights that
reliminary VUF sensitivity analysis can provide for the grid under
est, it is now possible to identify a small set of critical scenarios that
re worth simulating with probabilistic methods in order to assess grid
nbalance performance.

.2. Probabilistic analysis of critical scenario

As an example, we provide analysis results for the unbalanced-
njection critical scenario where 15 PV power sources are connected to
uses with numbers 𝑗 = 60,… , 65 and 𝑗 = 19,… , 27, as shown in Fig. 9.

The selected PV injection nodes are suggested by previously presented
VUF sensitivity analysis. In all of such Buses, power injection is done
into single Phase-A node. Such an unbalanced PV injection arrangement
corresponds to the critical scenario.

Each power source represents the aggregation of many PV plants
and corresponds to a maximum installed PV power of 𝑃𝑀

𝑑 = 300 kW.
The samples of normalized power delivery 𝑥𝑑 , for 𝑑 = 1,… , 15 are
xtracted from the historic data set [17]. According to (5), normalized
owers are scaled by the assumed maximum installed power to provide
ctual PV power values 𝑃𝑑 = 𝑥𝑑 ⋅ 𝑃𝑀

𝑑 to be used in simulations. Since,
n IEEE 69 bus test case, the total active power absorbed by loads
s of 𝑃 = 11.4MW, the total installed PV power of 300 kW × 15 =

.5MW corresponds to a PV penetration of 𝛼 = 4.5∕11.4 ≈ 40%. We
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Fig. 10. Unbalanced injection scenario. PDF(|𝐕𝐔𝐅𝑛|) at Buses: (Blue line) 𝑛 = 27; (Red
line) 𝑛 = 23; (Green line) 𝑛 = 19 computed with the space-partitioning-accelerated MC.
The Square markers, (Blue, Red and Green) indicate the respective PDFs as computed
with reference MC (10,000 simulations). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Unbalanced injection scenario. PDF(|𝐕𝐔𝐅𝑛|) at Buses: (Blue line) 𝑛 = 65; (Red
line) 𝑛 = 62; (Green line) 𝑛 = 59 computed with the space-partitioning-accelerated MC.
The Square markers, (Blue, Red and Green) indicate the respective PDFs as computed
with reference MC (10,000 simulations). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

perform probabilistic analysis with the space-partitioning-accelerated
MC method presented in Section 5, samples data are partitioned into
𝐾 = 11 clusters. Results are compared with those provided by reference
MC method running 10,000 load flow simulations. Fig. 10 reports the
PDFs of the VUF module (in %) at the three Buses 𝑛 = 19, 23, 27 in the
right-most feeder. It is seen how voltage unbalance variability interval
is larger at the feeder-ending Bus 𝑛 = 27 where VUF module has a
nonzero probability of reaching the 3.5% value. In this unbalanced PV
injection scenario, and for the assumed 𝛼 ≈ 40% penetration level, the
VUF module at the three Buses 𝑛 = 19, 23, 27 has a ≈ 95% probability
f exceeding the safety threshold of 2%.

Similarly, Fig. 11 shows the PDFs of the VUF module at the three
uses 𝑛 = 59, 62, 65 in the left feeder. Also in this case the feeder largest
oltage unbalance variability interval is achieved at the ending Bus
= 65 where VUF module has a nonzero probability of reaching the
7

Fig. 12. Balanced injection of PV sources: sources are applied to the three-phase nodes.
PV injection buses are indicated with a triplet of red boxes, while blue dots denote VUF
observation buses. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 13. Balanced injection scenario. PDF(|𝐕𝐔𝐅𝑛|) at Buses: (Blue line) 𝑛 = 27; (Red
line) 𝑛 = 23; (Green line) 𝑛 = 19 computed with the space-partitioning-accelerated MC.
The Square markers, (Blue, Red and Green) indicate the respective PDFs as computed
with reference MC (10,000 simulations). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2.5% value. As it was correctly predicted by VUF sensitivity analysis,
left feeder is less critical than right one in terms of VUF.

Hence, we pass to consider a second PV injection scenario where the
15 PV sources are connected to all the three-phase nodes of the Buses
with numbers 𝑗 = 64, 65 and 𝑗 = 25, 26, 27, as shown in Fig. 12.

We refer to such an arrangement to as the balanced-injection sce-
nario even though it is worth noticing how the PV sources connected to
the three phases of the same Bus are represented by different random
variables whose samples are extracted from the historical data set. As
in the critical scenario, the maximum installed power for each source
is 𝑃𝑀

𝑑 = 300 kW and the grid PV penetration is 𝛼 ≈ 40%.
Fig. 13 reports the PDFs of the VUF module (in %) at the three Buses

𝑛 = 19, 23, 27 in the right-most feeder for the balanced injection sce-
nario. When compared to unbalanced injection case shown in Fig. 10,
it is seen a remarkable reduction of VUF variability interval that, for the
critical observation Bus 27 has zero probability of exceeding the 0.8%
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Fig. 14. Balanced injection scenario. PDF(|𝐕𝐔𝐅𝑛|) at Buses: (Blue line) 𝑛 = 65; (Red
line) 𝑛 = 62; (Green line) 𝑛 = 59 computed with the space-partitioning-accelerated MC.
The Square markers, (Blue, Red and Green) indicate the respective PDFs as computed
with reference MC (10,000 simulations). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 1
Methods comparison: IEEE 69 Bus (𝐷 = 15 parameters).

Numb. LF sim. Sim. time [s] Relative error

Reference MC 10,000 423 –
Accelerated MC 11 0.9 < 0.5%
gPC 136 11 < 0.5%

value. A similar conclusion holds for VUF at the left feeder, as shown
in Fig. 14, where VUF variability interval is predicted to be < 0.5%.

The correctness of such results have been confirmed by simula-
ions with reference MC method (running 10,000 repeated Load Flow
imulations). From Figs. 10, 11, 13, and 14 we see that the results
btained with space-partitioning-accelerated MC method match with
xcellent accuracy those provided by reference MC method. Table 1
eports the comparison between the two methods in terms of number
f required Load Flow analyses, overall simulation time and relative
rror introduced by the proposed acceleration technique (checked in
ll of the Buses in the grid).

As a further verification, we compare the proposed
pace-partitioning-accelerated MC method with the state-of-the-art MC
cceleration technique based on generalized Polynomial Chaos (gPC)
urrogate model [11,23–25]. We remind here that for 𝐷 statistical
arameters and approximation order 𝛾, the gPC method requires per-
orming at least
(𝐷 + 𝛾)!
𝐷! 𝛾!

(27)

epeated Load Flow simulations. Hence, for 𝐷 = 15 parameters and
pproximation order 𝛾 = 2, the gPC method requires ≥ 136 Load Flow
imulations. Comparison with the evaluation indices of gPC method,
s reported in Table 1, shows that the proposed space-partitioning-
ccelerated MC introduces an ≈ 10× speed-up factor over gPC method,
or a comparable accuracy.

.3. Method extension

In this final subsection, we illustrate a further numerical example
hat shows how the proposed sensitivity analysis and advanced proba-
ilistic method are portable and scalable to more complex scenarios. To
8

his aim we consider the IEEE 85 bus grid reported in Fig. 15. Such a
Fig. 15. The reconfigurable IEEE 85 bus grid; the branch (dashed line) connecting Bus
47 and Bus 71 can be switched-on to form a ring.

Fig. 16. Real parts of complex VUF sensitivities computed at Bus 47 in the: (Blue line)
radial and (Red line) meshed configurations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

network can be reconfigured in a weakly meshed grid by switching-on
the branch (shown in the figure with a dashed line) connecting Bus 47
with Bus 71.

Complex VUF sensitivity for all Buses versus all injection nodes can
be efficiently calculated with the proposed technique. For instance,

Fig. 16 reports the real parts of complex VUF sensitivities
𝜕𝐕𝐔𝐅𝑛(0⃗)

𝜕𝑥𝑎𝑗
for Bus 𝑛 = 47 versus injection at all Buses 𝑗 = 1,… , 85, phase 𝑎, as
computed in the radial and meshed grid configurations. It is seen how
for the radial grid, VUF sensitivity sharply depends on power injection
at nearby Buses in the same feeder. By contrast, in the meshed grid,
sensitivity is reduced in value and almost uniform with respect to the
Buses forming the mesh. Similar considerations hold for the imaginary
parts of complex VUF sensitivities, as shown in Fig. 17.

The probabilistic analysis of IEEE 85 bus grid can be performed
efficiently with the accelerated MC method allowing the exploration
of several critical scenarios. As a numerical example, in what follows,
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Fig. 17. Imaginary parts of complex VUF sensitivities computed at Bus 47 in the: (Blue
line) radial and (Red line) meshed configurations. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. PDF(|𝐕𝐔𝐅𝑛|) at Buses 𝑛 = 47 and 𝑛 = 71 computed for the cases: (Blue line)
radial grid; (Red line) meshed grid. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

we present results for the case where 𝐷 = 30 single-phase PV power
sources, each one injecting a maximum installed PV power of 𝑃𝑀

𝑑 = 300
kW, are connected to the Buses highlighted in Fig. 15. In this simulation
case, the 30 PV sources are equally distributed among the three phases,
i.e., 10 sources (randomly selected) are injected at Phase-A, 10 at
Phase-B and 10 at Phase-C node of related Buses.

In this case, having 𝐷 = 30 input variables, data samples are
partitioned into 𝐾 = 16 clusters using the K-means method out-
lined in Section 5.2. Probabilistic analysis is thus performed with the
space-partitioning accelerated MC and results are compared with those
provided by the reference MC method and by gPC-based acceleration
method.

Fig. 18 reports the PDFs of the VUF module (in %) at the observable
Buses 𝑛 = 47 and 𝑛 = 71 for the radial and meshed grid. It is clearly
seen how the meshed topology results in a significant reduction of the
VUF variability interval for both buses 𝑛 = 47 and 𝑛 = 71.

Finally, Table 2 reports the comparison among the methods: in this
second grid having 𝐷 = 30 input statistical parameters the compu-
tational speed-up introduced by space-partitioning-method over gPC
method grows to ≈ 25×.
9

Table 2
Methods comparison: IEEE 85 Bus (𝐷 = 30 parameters).

Numb. LF sim. Sim. time [s] Relative error

Reference MC 10,000 441 –
Accelerated MC 16 1.3 < 0.5%
gPC 496 37 < 0.5%

7. Discussion and conclusion

This paper has presented some advanced computational tools for
the evaluation of Voltage Unbalance Factor (VUF) in PV penetrated
three-phase distribution grids. The challenges connected with such an
issue are many and include the complex and non-elementary expression
of the VUF quantity, the great variability it can exhibit at different
observation buses in the grid as well as its dependence on the many
potential nodes where PV powers could be injected. In addition to
that, PV delivered powers are uncertain, commonly described by non-
standard (e.g., non-Normal) statistical distributions that are deduced
from historic data sets.

The method presented in this paper relies on the definition (7) of
complex VUF and on the computation of its sensitivity versus all the
potential injection points in the grid, as it has been illustrated in Sec-
tion 4. In the Numerical experiments shown in Fig. 6 and example given
by (26), it has been highlighted how the complex-domain modeling of
VUF is indeed indispensable in order to correctly compose together the
effects of power injection at different phases. Complex VUF sensitivities
allows one to build accurate local multi-variate approximations (19)
of VUF-versus-injected powers relationship at different locations in the
statistical space. On the other hand, it has been described how the
modules of VUF sensitivities, as given in (16), allow one to identify key
figures of merit (17) and (18) that clearly suggest which are the most
critical observation feeders and Buses in the grid and the critical PV
injection scenarios. Finally, an advanced probabilistic analysis method
has been presented that is able to handle in a numerically efficient, yet
accurate way, grids penetrated by many PV sources which are described
by large data set of historic samples. The novel method proposed
overcomes the curse of dimensionality problem by decomposing the
multi-variate statistical space into small subspace regions via a data
clustering method. It has been shown how such a space-partitioning
method combined with local multi-variate approximations (19) of VUF-
versus-injected powers can provide dramatic accelerations of MC-based
probabilistic analysis. For the IEEE 69 bus and IEEE 85 bus test grids
herein considered, a more than two orders of magnitude simulation
speed-up is introduced compared to reference MC method for a com-
parable accuracy. Space-partitioning method introduces a significant
simulation speed-up also when compared to state-of-the art surrogate
models based on generalized polynomial chaos methods. Such a speed-
up factor grows with the number of the input statistical parameters
considered in the analysis.
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